
Evaluating Scalable Distributed Erlang
for Scalability and Reliability

Natalia Chechina, Kenneth MacKenzie, Simon Thompson, Phil Trinder, Olivier Boudeville,

Vikt�oria F€ordo��s, Csaba Hoch, Amir Ghaffari, and Mario Moro Hernandez

Abstract—Large scale servers with hundreds of hosts and tens of thousands of cores are becoming common. To exploit these

platforms software must be both scalable and reliable, and distributed actor languages like Erlang are a proven technology in this area.

While distributed Erlang conceptually supports the engineering of large scale reliable systems, in practice it has some scalability limits

that force developers to depart from the standard language mechanisms at scale. In earlier work we have explored these scalability

limitations, and addressed them by providing a Scalable Distributed (SD) Erlang library that partitions the network of Erlang Virtual

Machines (VMs) into scalable groups (s_groups). This paper presents the first systematic evaluation of SD Erlang s_groups and

associated tools, and how they can be used. We present a comprehensive evaluation of the scalability and reliability of SD Erlang using

three typical benchmarks and a case study. We demonstrate that s_groups improve the scalability of reliable and unreliable Erlang

applications on up to 256 hosts (6,144 cores). We show that SD Erlang preserves the class-leading distributed Erlang reliability model,

but scales far better than the standard model. We present a novel, systematic, and tool-supported approach for refactoring distributed

Erlang applications into SD Erlang. We outline the new and improved monitoring, debugging and deployment tools for large scale SD

Erlang applications. We demonstrate the scaling characteristics of key tools on systems comprising up to 10 K Erlang VMs.

Index Terms—Scalability, reliability, actors, Erlang

Ç

1 INTRODUCTION

CHANGES in hardware manufacturing technologies are
driving systems to include ever more cores. Servers

comprising hundreds of commodity hosts with tens of thou-
sands of cores in total are becoming commonplace. Experi-
ence with high performance and data centre computing
shows that reliability is critical at these scales, e.g., host fail-
ures alone account for around one failure per hour on com-
modity servers with approximately 105 cores [1].

Distributed actor languages and frameworks like
Erlang [2], [3] or Scala/Akka [4] are proven technologies for
reliable scalable computing. The key innovation in actor lan-
guages and frameworks is to isolate state: that is, actors do
not share state with each other but rather exchange informa-
tion using asynchronous messages.

In Erlang actors are called processes, and their isolated
state means that they may fail with minimal disruption to
concurrent processes. Moreover one process may supervise

other processes, detecting failures and taking remedial
action, e.g., restarting the failed process. Distributed Erlang
deploys processes across multiple Erlang Virtual Machines
(VMs or nodes) potentially on different hosts. In distributed
Erlang fault tolerance is provided by global process registra-
tion, where the name of a server process is registered, and if
the process fails a new server process can be spawned and
re-associated with the name. This allows systems to adopt a
“let it crash” philosophy, where a process is written to deal
with the common error-free case, and failure is handled by
the supervising process.

While distributed Erlang conceptually supports the engi-
neering of scalable reliable systems, in practice it has some
scalability limits that force developers to depart from the
standard language mechanisms when programming at
scale [5]. Scalability is limited by two main factors. First,
maintaining a fully connected mesh of Erlang nodes means
that a system with n nodes must maintain O(n2) active
TCP/IP connections and this induces significant network
traffic above 40 nodes. Second, maintaining a global process
namespace incurs high synchronisation and communication
costs (Section 3).

In prior work we have addressed these scalability issues
by providing a Scalable Distributed (SD) Erlang library that
partitions the network of Erlang nodes into scalability
groups (s_groups). An s_group reduces the number of con-
nections a node maintains by supporting full mesh connec-
tions only to other nodes within the s_group, and pairwise
connections to nodes outside the s_group. S_groups reduce
the amount of global information, as process names can be
registered only in the nodes of the s_group, rather than

� N. Chechina, K. MacKenzie, P. Trinder, A. Ghaffari, and M. Moro
Hernandez are with the University of Glasgow, Glasgow G12 8QQ,
United Kingdom. E-mail: {Natalia.Chechina, Phil.Trinder, Amir.Ghaffari}
@glasgow.ac.uk, kwxm@inf.ed.ac.uk, kakotamix@hotmail.com.

� S. Thompson is with the University of Kent, Canterbury CT2 7NZ, United
Kingdom. E-mail: s.j.thompson@kent.ac.uk.

� O. Boudeville is with EDF R&D, Clamart 92141, France.
E-mail: olivier.boudeville@edf.fr.

� V. F€ordo��s and C. Hoch are with Erlang Solutions AB, Budapest 1093,
Hungary. E-mail: {viktoria.fordos, csaba.hoch}@erlang-solutions.com.

Manuscript received 25 Apr. 2016; revised 16 Dec. 2016; accepted 3 Jan. 2017.
Date of publication 17 Jan. 2017; date of current version 14 July 2017.
Recommended for acceptance by A. Benoit.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2654246

2244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 8, AUGUST 2017

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

globally. We discuss the motivation for, design of, and
implications of s_groups further in Section 3.

This paper presents the first comprehensive evaluation of
SD Erlang s_groups and associated tool support, together
with guidance about how those constructs and tools can
best be used. We argue that s_groups preserve the distrib-
uted Erlang approach to reliability while improving scal-
ability. We start by outlining the Orbit, ACO and IM
benchmarks and the substantial (approx. 150 K lines of
code) Simulation of Discrete Systems of All Scales (Sim-
Diasca) case study used to evaluate SD Erlang and demon-
strate how the tools are used (Section 4), before presenting
the primary research contributions as follows.

(1) We present a systematic and comprehensive evalua-
tion of the scalability and reliability of SD Erlang
(Section 5). We measure three benchmarks and the
case study on several platforms, but the primary plat-
form is a cluster with up to 256 hosts and 6144 cores.

The benchmarks evaluate different aspects of SD
Erlang: Orbit evaluates the scalability impact of transi-
tive network connections,ACOevaluates the scalability
impacts of both transitive connections andmaintaining
a global namespace for reliability, and IM targets reli-
ability. The experiments cover three application-
specific measures of scalability: speedup for Orbit,
weak scaling forACO, and throughput for IM.

Crucially we show that s_groups improve the scal-
ability of both reliable andunreliable distributedErlang
applications (Section 5.2); and use ChaosMonkey [6] to
show that SD Erlang preserves Erlang’s leading reli-
ability model (Section 5.4). While some scalability and
reliability results for the ACO and Orbit benchmarks
have been reported in a paper that outlines all of the
results of the RELEASE project [7], this paper focuses
on SD Erlang and describes 9 additional experiments
with it, provides a more detailed analysis, and addi-
tional evidence from the IM benchmark and the Sim-
Diasca case study to support the conclusions.

(2) We present guidance for the construction of SD
Erlang systems, through a set of questions that iden-
tify key design decisions; these support construction
of SD Erlang systems from scratch as well as for refac-
toring distributed Erlang applications into SD Erlang.
This approach is built a suite of new or improved
tools for monitoring, debugging, deploying and
refactoring SD Erlang applications (Section 6).

(3) We demonstrate the capability of the tools, for exam-
ple showing that WombatOAM is capable of deploy-
ing and monitoring substantial (e.g., 10 K Erlang
VMs) distributed Erlang and SD Erlang applications
with negligible overheads (Section 6.8).

2 RELATED WORK

2.1 Scalable Reliable Programming Models

There is a plethora of shared memory concurrent program-
ming models like PThreads or Java threads, and some mod-
els, like OpenMP [8], are simple and high level. However,
synchronisation costs mean that these models generally do
not scale well, often struggling to exploit even 100 cores.
Moreover, reliability mechanisms are greatly hampered by

the shared state: for example, a lock becomes permanently
unavailable if the thread holding it fails.

The High Performance Computing (HPC) community
build large-scale (106 core) distributed memory systems
using the de facto standard MPI communication libraries [9].
Increasingly these are hybrid applications that combine
MPI with OpenMP. Unfortunately MPI is not suitable for
producing general purpose concurrent software as it is too
low level with explicit, synchronous message passing.
Moreover the most widely used MPI implementations offer
no fault recovery: if any part of the computation fails, the
entire computation fails. Currently, the issue is addressed
by using what is hoped to be highly reliable computational
and networking hardware, but there is intense research
interest in introducing reliability into HPC applications [10].

Server farms use commodity computational and net-
working hardware, and often scale to around 105 cores,
where host failures are routine. They typically perform
rather constrained computations, e.g., big data analytics,
using reliable frameworks like Google MapReduce [11] or
Hadoop [12]. The idempotent nature of the analytical
queries makes it relatively easy for the frameworks to pro-
vide implicit reliability: queries are monitored and failed
queries are simply re-run. In contrast, actor languages like
Erlang are used to engineer reliable general purpose com-
putation, often recovering failed stateful computations.

2.2 Actor Languages

The actor model of concurrency consists of independent
processes communicating by means of messages sent asyn-
chronously between processes. A process can send a mes-
sage to any other process for which it has the address (in
Erlang the “process identifier” or pid), and the remote pro-
cess may reside on a different host. The notion of actors
originated in artificial intelligence [13], and has been used
widely as a general metaphor for concurrency, as well as
being incorporated into a number of niche programming
languages in the 1970s and 80s. More recently it has come
back to prominence through the appearance not only of
multicore chips but also larger-scale distributed program-
ming in data centres and the cloud.

With built-in concurrency and data isolation, actors are a
natural paradigm for engineering reliable scalable general-
purpose systems [14]. The model has two main concepts:
actors, which are the unit of computation, and messages,
which are the unit of communication. Each actor has an
address-book that contains the addresses of all the other
actors it is aware of. These addresses can be locations in
memory, or direct physical attachments, or network
addresses. In a pure actor language messages are the only
way for actors to communicate.

After receiving a message an actor can do the following:
(i) send messages to another actor in its address-book, (ii)
create new actors, or (iii) designate a behaviour to handle
the next message it receives. The model does not impose
any restrictions in the order in which these actions must
be taken. Similarly, two messages sent concurrently can
be received in any order. These features enable actor
based systems to support indeterminacy and quasi-
commutativity, while providing locality, modularity, reli-
ability and scalability [14].

CHECHINA ETAL.: EVALUATING SCALABLE DISTRIBUTED ERLANG FOR SCALABILITYAND RELIABILITY 2245

Erlang [2], [3] is widely used to develop reliable and scal-
able production systems, initially with its developer Erics-
son and then more widely through open source adoption.
There are now actor frameworks for many other languages;
these include Akka for C#, F# and Scala [15], CAF [16] for
C++, Pykka [17], Cloud Haskell [18], PARLEY [19] for
Python and Termite Scheme [20], and each of these is cur-
rently under active use and development. Moreover, the
recently defined Rust language [21] has a version of the
actor model built in, albeit in an imperative context.

2.3 Reliability in Distributed Erlang Systems

Erlang was designed to solve a particular set of problems,
namely those in building telecommunications systems,
where systems need to be scalable to accommodate hun-
dreds of thousands of calls concurrently, in soft real-time.
These systems need to be highly-available and reliable: i.e.,
to be robust in the case of failure, which can come from soft-
ware or hardware faults. Given the unavoidability of the lat-
ter, Erlang also adopts the “let it crash” philosophy in error
situations, and uses the supervision mechanism, discussed
shortly, to handle all kinds of faults.

Scaling in Erlang is provided in two different ways. It is
possible to scale within a single node by means of the multi-
core Erlang VM which exploits the concurrency provided
by the multiple cores. It is also possible to scale across multi-
ple hosts using multiple distributed Erlang nodes. In this
paper we only address the latter.

Reliability in Erlang is multi-faceted. As in all actor lan-
guages each process has private state, preventing a failed or
failing process from corrupting the state of other processes.
Messages enable stateful interaction, and contain a deep
copy of the value to be shared, with no references (e.g.,
pointers) to the senders’ internal state. Moreover, Erlang
avoids type errors by enforcing strong typing, albeit dynam-
ically [2]. Connected nodes check liveness with heartbeats,
and can be monitored from outside Erlang, e.g., by an oper-
ating system process.

However, the most important way to achieve reliability is
supervision, which allows a process to monitor the status of a
child process and react to any failure, for example by
spawning a substitute process to replace a failed process.
Supervised processes can in turn supervise other processes,
leading to a supervision tree. In a multi-node system the tree
may span multiple nodes.

A global namespace maintained on every node maps pro-
cess names to pids to provide reliable distributed service reg-
istration, and this is what we mean when we talk about a
reliable system: it is one in which a named process in a dis-
tributed system can be restarted without requiring the client
processes also to be restarted (because the name can still be
used for communication).

To see global registration in action, consider spawning a
server process on an explicitly identified node (some_node)
and then globally registering it using some_server name

RemotePid = spawn(some_node, fun () ->
some_module:some_fun() end),

global:register_name(some_server,RemotePid).

Clients of the server process can send messages to the
registered name, e.g.,

global:whereis_name(some_server) ! ok.

If the server fails the supervisor can spawn a replacement
server process with a new pid and register it with the
same name (some_server). Thereafter client messages
addressed to the some_server name will be delivered to
the new server process. We discuss the scalability limitations
of maintaining a global namespace further in Section 3.1.

3 SCALING DISTRIBUTED ERLANG

In this section we first discuss the scaling limitations of dis-
tributed Erlang (Section 3.1) and currently adopted ad hoc
solutions (Section 3.2). Then we provide an overview of the
SD Erlang approach to scaling distributed systems called
s_groups (Section 3.3).

3.1 Scalability Issues

The scalability limitations of distributed Erlang aremainly due
to the two mechanisms that support fault tolerance, namely
transitive connections and global processes registration [5],
[7]. Global name registration depends on the transitivity;
therefore, when the latter is disabledwith the -connect_all
falseflag, global name registration is not available either.

Transitive connectivity connects all normal (not hidden)
nodes in the system. This happens “under the hood” and
the information about live and lost connections is kept up-
to-date. As a result the system can avoid sending messages
to, or expecting messages from, disconnected nodes and
automatically adjust to the changed number of nodes.
Therefore, apart from fault tolerance, transitivity also pro-
vides elasticity, i.e., seamless growth or contraction of the
number of nodes in the system. However, full connectivity
means that the total number of connections in the system is
nðn� 1Þ=2, and every node supports ðn� 1Þ connections. In
addition every connection requires a separate TCP/IP port,
and node monitoring is achieved by periodically sending
heartbeat messages. In small systems maintaining a fully
connected network is not an issue, but when the number of
nodes grows a fully connected network requires significant
resources becoming a burden that worsens the performance.

Global process registration enables one to associate a pro-
cess with a name and replicate this information on all transi-
tively connected nodes creating a common namespace.
However, as the number of nodes or the failure rate of regis-
tered processes grow, global name registration has a signifi-
cant impact on network scalability [5].

3.2 Ad Hoc Approaches

A straightforward approach to eliminating scalability limi-
tations caused by transitive connections and global process
registration is to disable transitive connectivity; currently,
this is the main approach used in industrial applica-
tions [22]. However, when adapting this approach, either
applications lose the fault-tolerance that comes with transi-
tivity and shared namespace, or developers introduce their
own libraries which provide features resembling transitivity
and shared namespace but restricted to a particular connec-
tivity mechanism. These libraries usually have very limited
reusability due to the mechanisms being specialised for a
particular application.

2246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 8, AUGUST 2017

Another approach is to use Erlang/OTP global_groups
that partition a set of nodes. Nodes within the global_group
have transitive connections, and non-transitive connections
with nodes outside of the global_group. Each global_group
has its own namespace. The drawback is that the approach
is limited to the cases when the network can be partitioned.
As a result although global_groups are available in Erlang/
OTP they are not widely used.

3.3 SD Erlang and S_groups

Scalable Distributed Erlang (SD Erlang) is a conservative
extension of distributed Erlang. It was introduced to
provide a reusable solution that overcomes scalability limi-
tations posed by both transitive connectivity, global name-
space, and a lack of resource awareness, while preserving
fault tolerance mechanisms of distributed Erlang. This was
achieved by introducing two new libraries: (1) attribute
that provides semi-explicit process placement [23], and
s_group that partitions the node connection graph into
s_groups [5]. SD Erlang has been available with several
releases of Erlang/OTP, and is likely to remain available in
the medium term as the Erlang/OTP group at Ericsson indi-
cate no near future plans to change the mechanisms that the
s_group libraries rely on.

To reduce the number of connections and the size of the
namespace, nodes are grouped into s_groups. Nodes in
s_groups have transitive connections with nodes from the
same s_group , non-transitive connections with other nodes,
and each s_group has its own namespace. The s_groups
do not partition the set of nodes, i.e., a node can belong
to many s_groups facilitating the construction of connec-
tion topologies appropriate for different application
needs. For example, nodes can be assembled into hierar-
chical s_groups, where communication between nodes
from different s_groups occurs only via gateway nodes.
To provide fault-tolerance s_groups may have two or
more gateway nodes.

S_group functionality is supported by 15 functions, eight
of which manipulate s_groups, including dynamic creation
of new s_groups (s_group:new_s_group/1,2) and get-
ting information about known s_groups (s_group:
s_groups/0), and the remainder manipulate names regis-
tered in the groups, like registering a name (s_group:
register_name/2) and getting information about all
names registered in a particular s_group (s_group:
registered_names/2). More details can be found in [5].

For example, the following function creates an s_group
called some_s_group that consists of three nodes:

s_group:new_s_group(some_s_group,
[some_node, some_node_1, some_node_n]).

To register a name, we provide both a pid and also the
name of the s_group in which we want to register that
name;
s_group:register_name(some_s_group,

some_server, RemotePid).

The s_group name is also required when sending a mes-
sage to a process using its name:

s_group:whereis_name(some_s_group,

some_server) ! ok.

4 BENCHMARKS AND A CASE STUDY

To evaluate the performance of SD Erlang we use three
benchmarks, named Orbit (Section 4.1), Ant Colony Optimi-
sation (ACO, Section 4.2), and Instant Messenger (IM,
Section 4.3), and a case study (Sim-Diasca, Section 4.4). The
benchmark code is open source at https://github.com/
release-project/benchmarks.

Each benchmark corresponds to a typical class of Erlang
applications as follows. Orbit employs a Distributed Hash
Table (DHT) of the type used in replicated form in No-SQL
DBMS like Riak [24], implemented in Erlang. ACO is a large
search, similar to the Erlang Sim-Diasca simulation frame-
work [25]. IM is a simplified version of a very typical inter-
net-scale Erlang application, namely a chat service like
WhatsApp [26].

4.1 Orbit

Orbit is a generalization of a transitive closure computation,
and is a common pattern in algebraic computations [27]. To
compute the Orbit of an element x0 in a given space ½0::X�, a
number of generator functions g1; g2; . . . ; gn are applied to x0,
obtaining new elements x1; . . . ; xn 2 ½0::X�. The generator
functions are applied to the new elements until no new ele-
ment is generated.

The computation is initiated on the master node. Then
processes are spawned to worker nodes to explore the space
and populate the DHT maintained by the worker nodes. In
the distributed Erlang version of Orbit the master node is
directly connected to the worker nodes, so it is enough to
hash xn once to determine the target node that keeps the
corresponding part of the DHT. In the SD Erlang version of
Orbit the worker nodes are partitioned (Fig. 1) and the mas-
ter node functionality is shared with the submaster nodes
which also perform the routing between the s_groups;
therefore, to define the target node, xn is hashed twice-the
first hash defines the s_group, and the second hash defines
the worker node in that s_group.

4.2 Ant Colony Optimisation

Ant Colony Optimisation [28] is a metaheuristic which is
used for solving combinatorial optimisation problems. Our
implementation is specialised to solve a scheduling problem
called the Single Machine Total Weighted Tardiness
Problem [29]. In the basic single-colony ACO algorithm, a

Fig. 1. Communication model in SD Erlang orbit.

CHECHINA ETAL.: EVALUATING SCALABLE DISTRIBUTED ERLANG FOR SCALABILITYAND RELIABILITY 2247

number of agents called ants independently construct candi-
date solutions guided by problem-specific heuristics with
occasional random deviations influenced by a structure
called the pheromone matrix which contains information
about choices of paths through the solution space which
have previously led to good solutions. After all of the ants
have produced solutions, the best solution is selected and
used to update the pheromone matrix. A new generation of
ants is then created which constructs new solutions guided
by the improved pheromone matrix, and the process is
repeated until some halting criterion is satisfied: in our
implementation, the criterion is that some fixed number of
generations have been completed. The algorithm is natu-
rally parallelisable, with one process for each ant in the col-
ony. Increasing the amount of parallelism (i.e., the number
of ants) does not lead to any speedup, but does lead to an
improvement in the quality of the solution.

In the distributed setting, one can have several colonies (in
our implementation, one colony per Erlang node)which occa-
sionally share pheromone information. In addition to increas-
ing the number of ants exploring the solution space,
distribution also gives the possibility of having colonies with
different parameters: for example, some colonies might have
more randomness in their search, making it easier to escape
from locally-optimal solutionswhich are not globally optimal.

We have implemented four variations on the multi-
colony ACO algorithm. In each of these, the individual
colonies perform some number of local iterations (i.e., gener-
ations of ants) and then report their best solutions; the
globally-best solution is then selected and is reported to the
colonies, which use it to update their pheromone matrices.
This process is repeated for some number of global iterations.
Our four versions are as follows.

Two-Level ACO (TL-ACO). There is a single master node
which collects the best solutions from the individual colo-
nies and distributes the overall best solution back to the col-
onies. Fig. 2 depicts the process and node placements of the
TL-ACO in a cluster with NC nodes. The master process
spawns NC colony processes on available nodes. In the next
step, each colony process spawns NA ant processes on the
local node. In the figure, the objects and their corresponding
captions have the same colour. As the arrows show, com-
munications between the master process and colonies are
bidirectional.

Multi-Level ACO (ML-ACO). In TL-ACO, the master node
receives messages from all of the colonies, and thus could
become a bottleneck. ML-ACO addresses this by having a
tree of submasters (Fig. 3), with each node in the bottom
level collecting results from a small number of colonies.
These are then fed up through the tree, with nodes at higher

levels selecting the best solutions from among a number of
their children.

Globally Reliable ACO (GR-ACO). This adds fault-
tolerance using functions from Erlang’s global module. In
ML-ACO, if a single colony fails to report back the whole
system will wait indefinitely. GR-ACO adds supervision so
that faulty colonies can be detected and restarted, allowing
the system to continue its execution.

Scalable Reliable ACO (SR-ACO). This also adds fault-
tolerance, but using SD Erlang’s s_groups instead of the
global methods. In addition, in SR-ACO nodes are only
connected to the nodes in their own s_group.

4.3 Instant Messenger

An Instant Messenger is a server application where clients
exchange messages via servers like WhatsApp [26]. The IM
requirements include both non-functional aspects such as
scalability, reliability, network topology or security and func-
tional aspects on how the service must be delivered and
how the different entities interact with each other [30], [31].
In general, an IM server application provides two services:
presence and instant messaging. The first allows the clients
to be aware of their contacts’ status, whereas the second
enables the exchange of messages with other clients.
Although we have implemented the IM benchmark only to
evaluate scalability of a typical distributed Erlang applica-
tion, the server part meets all of the requirements above
apart from security and encryption [32]. We have imple-
mented the following two versions.

Reliable Distributed IM (RD-IM) is implemented in distrib-
uted Erlang where reliability is supported by supervision,
global name registration of all processes that maintain data-
bases, and replication of these databases. Therefore, when a
database process fails it is restarted by a corresponding
supervising process (Fig. 5). The table is then populated
from a copy kept on a different node. In the meantime the
data can be obtained from a replica. After the recovery pro-
cess finishes the table can be accessed using the same glob-
ally registered name.

Reliable Scalable Distributed IM (RSD-IM). Is implemented
in SD Erlang with the same reliability mechanism as in RD-
IM. The only difference is that in RSD-IM the names are reg-
istered in corresponding s_groups rather than globally.

Fig. 4 compares the node connection in RD-IM and RSD-
IM. Connections to the client nodes in both versions are hid-
den and non-transitive to facilitate comparison of the

Fig. 2. Two-level distributed ACO.

Fig. 3. Multi level distributed ACO.

2248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 8, AUGUST 2017

distributed and SD Erlang servers. Unlike the previous two
case studies the IM benchmark was specifically designed to
evaluate SD Erlang fault tolerance in comparison with the
distributed Erlang one. For that, we have implemented the
rhesus module to terminate various processes, and per-
formed minimal refactoring such that the two versions even
have identical supervision trees (Fig. 5).

The rhesus module (named after the rhesus macaque) is
a modification of Chaos Monkey [6] that we designed spe-
cifically to accommodate requirements of the IM applica-
tion. For example, the Erlang/OTP version of Chaos
Monkey [33] does not differentiate between the types of pro-
cess which means that all processes have equal chances to
be terminated. Since the most frequent processes in the IM
are client monitors and chat sessions the rest of the
processes have very low chances of termination, which is
not suitable for the current study. To overcome that we
have introduced weighted termination probability for all
types of IM processes and user-defined termination time.

The traffic for client communication is provided by traffic
generators that simulate real-life conversations and associ-
ated parameters, such as time to type messages and lengths
of conversations [34]. A traffic generator randomly picks two
clients A and B, and sends client A a request to start a conver-
sation with client B. Then client A generates a random string
and sends the message to client B. When client B receives the
message, it generates a reply message (again a random
string), simulates the typing time, and sends the message to
client A. The number of messages in the conversation is ran-
dom, and defined at the beginning of the conversation.

4.4 Sim-Diasca

Simulation of Discrete Systems of All Scales is a discrete
simulation engine developed by EDF R&D in Erlang. Sim-

Diasca has been available as free software since 2010 under
the GNU LGPL licence [25]. Its objectives are to evaluate
correctly the models involved in a simulation, and preserve
key properties like causality, total reproducibility and
some kind of “ergodicity”, i.e., a fair exploration of the pos-
sible outcomes of the simulation.

Using the requested simulation frequency, Sim-Diasca
splits the simulated time into a series of time steps, automat-
ically skipping those that can be omitted, and re-ordering
the inter-model messages so that properties like reproduc-
ibility are met. Causality resolution requires time steps to be
further divided into as many logical moments (called dias-
cas) as needed. During a given diasca, all model instances
that must be scheduled are evaluated concurrently. How-
ever, this massive parallelism can only occur between two
(lightweight) distributed synchronisations.

The City simulation example (approx. 10 K lines of Erlang
code) has been designed to provide an open, shareable, trac-
table yet representative use case of Sim-Diasca for bench-
marking purposes. As Sim-Diasca is a simulation engine we
need to define a simulation instance to create a benchmark.
The simulation attempts to represent a few traits of a city,
such as a wastemanagement and theweather system.

The City example is potentially arbitrarily scalable in
terms of both duration and size: there are bounds neither to
the duration in virtual time during which the target city can
be evaluated, nor to its size. Therefore, the City example can
be used to benchmark arbitrarily long and large simula-
tions, reflecting the typical issues that many real-world
simulations exhibit, such as sequential phases and new bot-
tlenecks as the scale increases.

5 PERFORMANCE EVALUATION

In this section we first provide a brief overview of the clus-
ters we used in the experiments (Section 5.1), and then
address the following research questions by measuring the
performance of the benchmarks discussed in Section 4. RQ1
Does SD Erlang scale better than distributed Erlang for
applications with no reliability requirement (Section 5.2),
and if so why (Section 5.3)? RQ2 Can SD Erlang preserve
the Erlang supervision-based reliability model despite parti-
tioning the set of nodes (Section 5.4)? RQ3 Does SD Erlang
scale better than distributed Erlang for reliable applications
(Section 5.2), and if so why (Section 5.3)?

The benchmarks evaluate different aspects of s_groups:
Orbit evaluates the scalability impacts of network
connections, ACO evaluates the impact of both network

Fig. 4. Connections in IM Server.

Fig. 5. IM Supervision Hierarchy. The Arrows Indicate Supervision.

CHECHINA ETAL.: EVALUATING SCALABLE DISTRIBUTED ERLANG FOR SCALABILITYAND RELIABILITY 2249

connections and the global namespace required for reliabil-
ity, and IM targets reliability.

Moreover the experiments cover three measures of scal-
ability. As Orbit does a fixed size computation, the scaling
measure is relative speedup (or strong scaling), i.e., speedup
relative to execution time on a single core. As the work in
ACO increases with the compute resources, weak scaling is
the appropriate measure. As IM is a messaging system, scal-
ability is measured as maximum throughput (messages per
minute).

The experiments are conducted using Erlang/OTP 17.4
and its SD Erlang modification. Complete descriptions of all
experiments on the benchmarks and case study are avail-
able in [35], [36].

5.1 Cluster Specifications

The primary experiments presented in this paper were con-
ducted on the following two clusters: Athos (EDF, France)
and GPG (Glasgow University, UK). Additional experi-
ments on Kalkyl and TinTin clusters (Uppsala University,
Sweden) presented elsewhere [35] confirm the results pre-
sented here. The configuration of the clusters is provided
in Table 1.

5.2 Scalability

The scalability evaluation is conducted on the Athos cluster
(Table 1). To run the experiments we had simultaneous access
to up to 256 nodes (6,144 cores) for up to 8 hours at a time.

5.2.1 Orbit

In the implementation of Orbit no global operations were
used which means the main difference between distributed
Erlang (D-Orbit) and SD Erlang (SD-Orbit) versions of Orbit
is due to the number of connections maintained by nodes.
Assume the total number of nodes is N . Then D-Orbit has
one master node and N � 1 worker nodes; therefore, every
node maintains N � 1 connections. SD-Orbit also has 1 mas-
ter node but in addition it has S submaster nodes. If we
assume that all s_groups have the same number of worker
nodes (Fig. 1), then the number of worker nodes per
s_group is k ¼ ðN � 1Þ=S � 1, where N and S are such that
k 2 N> 0. Therefore, the number of connections maintained
by the nodes is as follows: the master node maintains S

connections, every submaster node maintains ðN � 1Þ=Sþ
S � 1 connections, and every worker node maintains
ðN � 1Þ=S � 1 connections.

Fig. 6 shows D-Orbit and SD-Orbit speedup depending
on the number of orbit elements, which vary between 2 � 106
and 5 � 106. The speedup is a ratio between execution time
on one node with one core and the execution time on the
given number of nodes and cores. The execution time does
not include the time required to start the nodes but only the
time taken by the Orbit calculation. For each of the experi-
ments we plot standard deviation. The speedup results
show that as we increase the number of nodes the perfor-
mance of D-Orbit first grows but then starts degrading
(Fig. 6a). This trend is not observed in the corresponding
SD-Orbit experiments (Fig. 6b). In addition when we
increase the number of orbit elements beyond 5 � 106,
D-Orbit fails due to the fact that some VMs exceed the avail-
able RAM of 64 GB. However, we did not experience this
problem when running SD-Orbit experiments even with
60 � 106 orbit elements.

5.2.2 ACO

The ACO community commonly evaluates the quality of
ACO implementations using a set of benchmarks whose
optimal solutions are known, and then runs a program on
them for some fixed number of iterations and observes how
close the program’s solutions are to the optimal ones. We
apply the strategy used in [37], [38] to our two-level ACO.

We ran the TL-ACO application on 25 hard SMTWTP
instances of size 100 described in [39, 3.2], gradually increas-
ing the number of colonies, each on a different node, from

TABLE 1
Cluster Specifications

Name Hosts
Cores
per
host

Max
hosts
(cores)
avail.

Hardware
RAM per
host, GB

Inter-
connect.

GPG 20 16 20
(320)

Intel Xeon
E5-2640v2 8C,

2 GHz

64 10 GB
Ethernet

Kalkyl 384 8 176
(1,408)

Intel Xeon
5520v2 4C,
2.26 GHz

24–72 InfiniBand
20 Gb/s

TinTin 160 16 140
(2,240)

AMD Opteron
6220v2 Bulldozer

8C, 3.0 GHz

64–128 2:1 over-
subscribed

QDR InfiniBand
Athos 776 24 256

(6,144)
Intel Xeon

E5-2697v2 12C,
2.7 GHz

64 InfiniBand
FDR14

Fig. 6. Orbit relative speedups in SDErl-17.4.

2250 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 8, AUGUST 2017

1 to 256. Fig. 7 shows the mean difference in cost between
our solutions and the optimal solutions: it is clear that
increasing the number of colonies increases the quality of
solutions, although the trend is not strictly downwards
because the random nature of the ACO algorithm means
that repeated runs with the same input may produce differ-
ent solutions.

Weak scaling is the appropriate performance measure
for ACO where the amount of work increases with the
compute resources to gain improved solutions. Fig. 8
shows the weak scaling of ACO, plotting mean execution
time against the number of colonies, and hence hosts. We
see an upward trend due to increasing amounts of com-
munication and the increasing time required to compare
incoming results. This is typical of the scaling graphs for
the ACO application.

Fig. 9 compares the scalability of the TL-ACO, multi-level
ACO, globally reliable ACO and scalable reliable ACO ver-
sions, executing each version with 1, 10, 20, ..., 250 compute
nodes; for each number of nodes we recorded the execution
time for seven runs, and plotted the mean times for these
runs. There is some variation in execution time, but this is
typically only about 2-3 percent around the mean, so we
have reduced clutter in the plots by omitting it. The execu-
tion times here were measured by the ACO program itself,
using Erlang’s timer:tc function, and they omit some
overhead for argument processing at the start of execution.

We see that ML-ACO performs slightly better than TL-
ACO and the performance of GR-ACO is significantly
worse than both of these. The performance of SR-ACO is
considerably better than all the other versions.

These results are as we would expect. GR-ACO uses
global name registration, which is known to limit scalabil-
ity. TL-ACO uses a single master node which collects mes-
sages from all of the worker nodes, and this can cause a
bottleneck. ML-ACO eliminates this bottleneck by introduc-
ing a hierarchy of submasters to collect results. Both TL-
ACO, ML-ACO, and GR-ACO use Erlang’s default distribu-
tion mechanism, where every node is connected to every
other one even if there is no communication between the
nodes. In SR-ACO we use SD-Erlang’s s_groups to reduce
the number of connections and the namespace, and we attri-
bute SR-ACO’s superior performance to this fact.

5.3 Network Traffic

To investigate the reason for the improved scalability we
measure the impact of s_groups on network traffic. We mea-
sure the number of sent and received packets on the GPG
cluster for three versions of ACO: ML-ACO, GR-ACO, and
SR-ACO. Fig. 10 shows the total number of received packets.
The highest traffic (the blue line) belongs to GR-ACO and the
lowest traffic belongs to SR-ACO (green line). This shows
that SD Erlang significantly reduces the network traffic
between Erlang nodes. Evenwith the s_group name registra-
tion SR-ACO has less network traffic than ML-ACO, which
has no global name registration. This difference becomes
more significant as the number of nodes grows. For example,
on 145 nodes, in SR-ACO there were 500,000 packets
received whereas in ML-ACO and GR-ACO the number of
received packets is two and three times larger respectively.

Fig. 7. ACO mean error.

Fig. 8. ACO weak scaling to 256 hosts, 6,144 cores.

Fig. 9. Weak scaling of ACO versions.

Fig. 10. Number of received packets in ML-ACO, GR-ACO, and SR-ACO
(GPG cluster).

CHECHINA ETAL.: EVALUATING SCALABLE DISTRIBUTED ERLANG FOR SCALABILITYAND RELIABILITY 2251

5.4 Reliability

In this section we evaluate an impact of failures on perfor-
mance of distributed Erlang and SD Erlang applications
using the IM (Section 5.4.1) and ACO (Section 5.4.2) bench-
marks on the GPG cluster.

5.4.1 IM

To analyse an impact of failures in SD Erlang applications
we first analyse whether there is a difference in throughput
between the reliable versions of IM implemented in distrib-
uted Erlang (RD-IM) and SD Erlang (RSD-IM) when no fail-
ures occur. For that we vary the number of server nodes (3,
4, 6, 8, 12, 16) while maintaining just a single router node.
Since RSD-IM has only one s_group, this setup results in
identical architectures for both IM versions. The throughput
measures the number of delivered messages per minute.
The throughput results presented in Fig. 11 show that RD-
IM and RSD-IM scale identically.

We then investigate the impact of failures and their rate
on the performance of the RD-IM and RSD-IM applications.
In the experiments we use two router nodes and 12 server
nodes, making 14 nodes in total. In case of RSD-IM this
results in three s_groups: one router s_group that consists of
only two router nodes, and two server s_groups that consist of
one router and six server nodes each. We first run experi-
ments with no failures, thenwe terminate random processes,
gradually reducing the rate from 15 and 5 seconds; finally
we randomly terminate only globally registered database
processes reducing the rate from 5 seconds to 1 second. The
processes start failing five minutes into the benchmark exe-
cution once the applications are stable, i.e., failures occur
only between minutes 5 and 15. The throughput results in
Fig. 12 show that the IM fault tolerance is robust and the
introduced failure rate has no impact on either of the of the
IM versions in the given scale (number of nodes).

5.4.2 ACO

To evaluate an impact of failures in the ACO benchmark we
ran Chaos Monkey against GR-ACO and SR-ACO. The fault
tolerance here is mainly supported by globally registering
master and submaster processes. Recall that in SR-ACO the
processes are global only in their s_groups whereas in GR-
ACO the processes are global to thewhole system. The Chaos
Monkey processes ran on every Erlang node (i.e., master,
submasters, and colony nodes), periodically killing random

Erlang processes. As in the IM experiments, the failures had
no measurable impact on the runtime of either GR-ACO or
SR-ACO. From the IM and ACO results we conclude that SD
Erlang preserves the distributed Erlang reliabilitymodel.

6 TOOLS AND SYSTEM DEVELOPMENT

How are scalable SD Erlang systems developed? This sec-
tion outlines a general development strategy, from incep-
tion, though refactoring, performance tuning and operation.
Here is not the place to rehearse the Erlang philosophy of
concurrency-oriented programming, and the way that fault
tolerance, robustness and distribution are integrated into
the language and the OTP middleware layer: for more about
this see [40], [41]. Instead, we look here at the twin issues of
how to build systems in SD Erlang, and how to tune and
operate those systems once built.

Fig. 13 gives a schematic view of an SD Erlang system, and
the tools that are used in building and tuning it. Each node is
an Erlang runtime, running on a multicore host machine;
these nodes are grouped into (overlapping, generally)
s-groups, each of which forms a fully interconnected network.
In this sectionwe first look at how tools support development
of SD Erlang programs, and then cover tools for performance
tuning and operation. Some of the tools are independent of
SD Erlang, others were enhanced by us to support SD Erlang,
and the rest were developed from scratch to support it.

6.1 Development Strategy

In designing an SD Erlang system the most important deci-
sion we need to make is how to group nodes together: nodes in
a single s_group are all connected to each other, but

Fig. 11. RD-IM and RSD-IM throughput without failures (GPG cluster).
Fig. 12. RD-IM and RSD-IM throughput with and without failures
(13 GPG cluster nodes).

Fig. 13. Tool usage in development and performance optimisation.

2252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 8, AUGUST 2017

connections between nodes can be added in an ad hoc way,
and overlapping groups can also provide an implicit
“routing” capability. This leads to three specific questions:

How should s_groups be structured? Depending on the rea-
son the nodes are grouped-reducing the number of connec-
tions, or reducing the namespace, or both-s_groups can be
freely structured as a tree, ring, or some other topology.
One might also wish to have some free nodes that belong to
no s_group (free nodes follow distributed Erlang rules), or
to replicate nodes to improve fault-tolerance.

How do nodes from different s_groups communicate?
S_groups do not impose any restrictions on the nodes in
terms of establishing new connections. Therefore any node
can communicate directly with any other node. However, to
keep the number of connections minimal the communica-
tion between nodes from different s_groups can be routed
via gateway nodes, i.e., nodes that belong to more than one
s_group. S_groups do not provide any automatic routing
mechanism, but we discuss in Section 6.2.2 how a particular
generic mechanism can be identified and introduced.

How can one avoid the single point of failure of root/master
nodes? To avoid overloading root (or master) nodes in hier-
archically structured s_groups, it is advisable to introduce
submaster nodes and processes that replicate some of these
nodes’ responsibilities.

A common development technique is refactoring, and
Wrangler [42] is a mature refactoring tool for Erlang. Some
existing features are very useful here and it has also been
extended to support refactoring distributed Erlang pro-
grams into SD Erlang.

6.2 Refactoring with Wrangler

The process of refactoring distributed Erlang applications
into SD Erlang applications is very much application spe-
cific. However, we identify and support two mechanisms:
replacing global_groups with s_groups, and introducing
and using a generic communication pattern.

6.2.1 From global_groups to s_groups

SD Erlang extends distributed Erlang by extending Erlang’s
original communication mechanism and replacing the
global_group library with a new s_group library. As a
result, Erlang programs using global_group will have to
be refactored to use s_group. This kind of API migration
problem is common as software evolves. To support such
changes we extended Wrangler to migrate client code from
using an old API to using a new one, with group migration,
explained above, as a special case.

Our approach works this way: when an API function’s
interface is changed, the author of this API function imple-
ments an adaptor function, defining calls to the old API in
terms of the new. From this definition we automatically
generate the refactoring, that transforms the client code to
use the new API. This refactoring can be supplied by the
API writer to clients on library upgrade, allowing users to
upgrade their code automatically.

As a design principle, we try to limit the scope of changes
as much as possible, so that only the places where the ‘old’
API function is called are affected, and the remaining part
of the code is unaffected. One could argue that the

migration can be done by unfolding the function applications
of the old API function using the adaptor function once it is
defined; however, the code produced by this approach
would be a far cry from what a user would have written.
Instead, we aim to produce code that meets users’ expecta-
tion. More details about Wrangler’s support for API migra-
tion are reported in [43], which also presents a more
complex API migration for a regular expression library.

6.2.2 Introducing a Generic Communication Pattern

In the first SD-Orbit implementation, described in Section
5.2.1, there is strong coupling of s_group manipulation and
the application logic, making it difficult to separate the spe-
cific (application) from the generic (groups and communica-
tions). Using a general refactoring tool to support
operations such as function renaming, function extraction
and moving functions between modules, it was possible to
separate out the generic portion, a reusable s_group pattern.

This reusable pattern provides (i) functions for setting up
the s_group structure according to the pattern specified, (ii)
functions for spawning gateway processes which are in
charge of relaying messages from one s_group to another,
and (iii) s_group-specific send and spawn functions.

With this generic component in place, it was possible to
revisit the original D-Orbit code and transform it into SD
Erlang with a simple set of refactorings, which set up the
group structure and modify a number of functions: for
instance, message send of the form Pid!{vertex,X,

Slot,K} is transformed to a call to central_grouping:

s_group_send/2 with arguments Pid and {vertex,X,

Slot,K}. These refactorings can themselves be automated
using Wrangler’s extension API.

The advantage extracting a generic component like this is
that it allows developers more easily to use s_groups, and
also to evolve the architecture of their systems more easily.
More details of this process are explained in Deliverable 5.3
of the Release project [44].

6.3 Performance Methodology

To tune performance we are able to use conventional tools,
such as unix top and htop (Section 6.4), as well as others that
are specific to Erlang. These include Percept2 (Section 6.7)
which can be used to optimise concurrent performance of
systems on a single (multicore) node, SD-Mon and Devo
(Sections 6.5 and 6.6), which are used to monitor and visual-
ise the performance of a multinode system, and Womba-
tOAM operations and maintenance framework (Section 6.8),
that can be used tomonitor, tune and adapt live systems.

Which Nodes Should be Grouped Together? Nodes in the
same s_group maintain all-to-all connections and a common
namespace. So we might want to put nodes in the same
group because of, e.g., communication distances or fre-
quency of communication between the nodes, or common
node attribute, such as available hardware [23]. To assist
this decision, it is possible to use Devo, which shows nodes’
affinity (Section 6.6), and Percept2, which shows the com-
munication between nodes (Section 6.7).

How Should the Size of s_groups be Determined? The size of
an s_group depends on the intensity of the inter- and intra-
s_group communication, and the number of global to
s_group operations. The larger these parameters the smaller

CHECHINA ETAL.: EVALUATING SCALABLE DISTRIBUTED ERLANG FOR SCALABILITYAND RELIABILITY 2253

the number of nodes in the s_group should be. To analyse
intra- and inter-s_group communications and determine
these parameters the Devo (Section 6.6) and SD-mon
(Section 6.5) tools can be used.

6.4 Existing System Tools

Here we discuss conventional tools using the example of the
City instance of the Sim-Diasca case study. We run the
newsmall scale of the City example that has two phases:
initialisation and execution, but we exclude the former from
our measurements. We employ standard Linux tools such
as top and netstat to analyse core, memory, and network
usage, and perform measurements on the GPG and Athos
clusters described in Table 1.

To analyse scalability we compare the runtime of the
Sim-Diasca City example at different GPG cluster sizes: 1, 2,
4, 8, 12, and 16 nodes, with 16 cores per node. Fig. 14 reports
the runtime of the Sim-Diasca City example on up to 16
nodes (256 cores). The results show that the case study takes
around 1,000 minutes on a single node, and below 300
minutes on 16 nodes. While the runtime of the Sim-Diasca
instance continues to fall up to 16 nodes, the available
resources are not utilised efficiently: we get a reasonable
speedup of 1.5 on two nodes (32 cores), but it is only 2.2 on
four nodes (64 cores), and degrades to a maximum of 3.45
on 16 nodes (256 cores).

The Linux top command is used to investigate core and
memory usage. The maximum core and memory usage are
69 and 14 percent (8.96 GB out of 64 GB) respectively for a
single 16-core node. The memory usage on a single host
may become a bottleneck when running larger Sim-Diasca
instances. As expected in a distributed system, both core
and memory usage decrease as the number of nodes grow.
Fig. 15 shows the network traffic, i.e., the number of sent
and received packets between nodes in the cluster during
the case study execution. The network traffic increases as
the cluster size grows, while the number of sent and
received packets are almost the same.

The results above also illustrate the common practice of
tuning an application on a small cluster before moving to a
larger and more expensive cluster. The range of tools avail-
able on small clusters is often greater than can be used
through the batch queue interfaces on large clusters. Despite
the issues revealed even at this modest scale we have, for
completeness, repeated the experiments on the large Athos
cluster and obtained similar results [35].

6.5 SD-Mon

The SD-Mon tool provides the scalable infrastructure to
support off- and online monitoring of SD Erlang systems
through a “shadow network” of nodes designed to collect,
analyse and transmit monitoring data from active nodes
and s_groups. SD-Mon can be used to understand the cor-
rect allocation of nodes in groups. At an initial stage, just by
looking at the inter-node message flow, it can drive the ini-
tial grouping itself. After that it can be used to trim the net-
work architecture and to monitor the system, revealing
anomalies like intergroup messages bypassing the gateway
nodes, i.e., nodes that belong to two or more s_groups.

The tracing to be performed is specified within a configu-
ration file. An agent is started by a master SD-Mon node for
each s_group and for each free node, as shown in Fig. 16.
Configured tracing is applied on every monitored node, and
traces are stored in a binary format in the agent file system.

SD-Mon is dynamic: each network change in the s_group
structure is cached by agents and notified to the master,
which is the only one having a global network view. It
takes care to restructure the shadow network accord-
ingly: if a new s_group is created then a new agent is
started; if an s_group is deleted then the related agent is
stopped, the tracing files are gathered from its host, and
new agents are started for its nodes not controlled by
any other agent. This is of particular value for deployed
systems running in production mode; online monitoring
allows devops tuning and anticipation of changed future
deployment configurations.

6.6 Devo

Devo is an online visualisation tool for SD Erlang pro-
grams.1 There are two visualization options available to a
user: “Low” and “High” level visualizations. The low level
visualization shows process migrations and the run queue
lengths of a single Erlang node, whereas the high level visu-
alization shows nodes in s_groups using D3’s force-directed
graph functionality (Fig. 17).2

The s_groups to which a node belongs are indicated by the
colour(s) of the graph node representing the Erlang node, and
the edges connect nodes within the same group. When a sin-
gle node is in more than one group the node’s colour is
split between the appropriate colours. When the nodes

Fig. 14. Runtime. Sim-Diasca city example (GPG cluster). Fig. 15. Network traffic. Sim-Diasca city example (GPG cluster).

1. Devo is available online from github.com/RefactoringTools/devo
2. Neatly replicating the system architecture in Fig. 1.

2254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 8, AUGUST 2017

communicatewith each other the edges change colour to indi-
cate the level of communication between those two nodes rel-
ative the amount of communication between other nodes.

6.7 Percept2

Percept2 enhances the Percept tool from the standard
Erlang distribution, which gives an off-line visualisation of
the processes making up a concurrent Erlang system on a
single node. Percept2 adds the functionality to support mul-
ticore and distributed systems, and also refactors the tool to
be more scalable [45]. It also improves on the existing func-
tionality in Percept, by, for example, letting users control
the (huge) amount of data that is collected by the tool,
through allowing them to profile particular aspects of a sys-
tem execution, or allowing more selectivity in function pro-
filing within processes.

Percept2 also enhances the kind of information presented
to users. In particular, Percept2 distinguishes between pro-
cess states of running and runnable, i.e., the process is ready
to run, but another process is currently running. Runnable,
but not running, processes present an opportunity for fur-
ther exploitation of concurrency. Other enhancements
include an improved dynamic function callgraph and a
graph displaying process communications.

Percept2 particularly allows the tracing of s_group activi-
ties in a distributed system. The trace events collected,
together with the initial s_group configuration if there is
any, can be used to generate an off-line replay of the
s_group structure evolution, as well as the online visualisa-
tion of the current s_group structure, of an Erlang system.

The insight gained from examining running and runn-
able processes in Percept2 underpins the parallelization
refactorings in Wrangler [46] that improve scalability by
getting the full performance of each multicore node.

6.8 WombatOAM

WombatOAM is a tool that provides a scalable infrastruc-
ture for the deployment of thousands of Erlang nodes. Its
broker layer creates, manages, and dynamically scales het-
erogeneous clusters. For fault tolerance WombatOAM also
provides optional monitoring of deployed nodes, periodi-
cally checking whether nodes are alive, and restarting failed
ones if needed. The deployment phase of WombatOAM
comprises these steps: (1) registering providers; (2) upload-
ing the application; (3) defining node families, i.e., nodes in
the same node family have identical initial behaviour and
run the same Erlang release; and (4) node deployment.

Deployment time is the period between arrival of a deploy-
ment request and a confirmation fromWombatOAM that all
nodes have been deployed. The deployment time depends
on various factors, such as the number of nodes (NC), usage
of monitoring service (on or off), and the number of nodes
deployed on the same host (fair or unfair). Fair deployment
means that the number of nodes on each host is less than, or
equal to, the number of cores on that host. Due to the fact
that on the Athos cluster we have an access to 256 physical
hosts with 24 cores each (Table 1), in the experiments we
run up to 6,144 nodes using fair deployment, and up to
10,000 nodes using unfair deployment.

When running an unfair deployment of up to 10k Erlang
nodes, the monitoring is off and every CPU core is shared
by three Erlang nodes. The results show that deployment
time changes linearly with the best fit equal to ð0:0124506�
N þ 83:4547Þ, and 10,000 Erlang nodes are deployed in less
than 4 minutes (approx. 47 nodes per second).

To analyse the impact of monitoring on the deployment
time we measure the time of fair deployment (one node per
CPU core) against two monitoring states: enabled (on) and
disabled (off). From the performance results in Fig. 18 we
conclude that at the target scale WombatOAM monitoring
has no impact on the deployment time.

Finally, we analysed the impact of using WombatOAM
on a running system, the ACO benchmark, comparing its
runtime in two scenarios: monitoring enabled (on) and dis-
abled (off). Fig. 19 shows that the WombatOAM monitoring
overhead is not intrusive, at 1.33 percent maximum.

7 CONCLUSION & FUTURE WORK

Conclusion. In prior work we have investigated the
scalability limits of distributed Erlang for engineering reli-
able systems, identifying network connectivity and the
maintenance of global recovery information as the key bot-
tlenecks. To address these issues we have developed a

Fig. 16. Monitoring for (2 s_group) SD-Orbit within SD-Mon.

Fig. 17. S_groups in SD-Orbit using a 3D force-directed graph (Devo).

CHECHINA ETAL.: EVALUATING SCALABLE DISTRIBUTED ERLANG FOR SCALABILITYAND RELIABILITY 2255

Scalable Distributed Erlang library that partitions the net-
work of Erlang nodes into scalable groups (s_groups) to
minimise both network connectivity and global recovery
data (Section 3).

This paper presents a systematic evaluation of SD Erlang
for improving the scaling of reliable applications using the
Orbit, Ant Colony Optimisation, Instant Messenger) arche-
typal benchmarks and the Sim-Diasca case study outlined
in Section 4. We report measurements on several platforms,
but the primary platform is a cluster with up to 256 hosts
and 6,144 cores.

The benchmarks evaluate different aspects of SD Erlang:
Orbit evaluates the scalability impact of transitive network
connections, ACO evaluates the scalability impacts of both
transitive connections and the shared global namespace
required for reliability, and IM targets reliability. The
experiments cover three application-specific measures of
scalability: speedup for Orbit, weak scaling for ACO, and
throughput for IM.

We investigate three performance research questions
(Section 5), obtaining the following results that are consis-
tent with other experiments [5], [7].

RQ1: For unreliable applications we show that SD Erlang
applications scale better than distributed Erlang applications.
Specifically SD-Orbit scales better than D-Orbit, and that
SR-ACO scales better than ML-ACO. The SD Erlang appli-
cations have far less network traffic. We conclude that, even
when global recovery data is not maintained, partitioning
the fully-connected network into s_groups reduces network
traffic and improves performance on systems with more
than 40 hosts on the Athos cluster (Sections 5.2 and 5.3).

RQ2: ACO has relatively simple reliability mechanisms,
essentially a supervision tree with a single supervised pro-
cess type. Reliability in IM is far more elaborate and realistic
with multiple types of process supervised, and the potential
for Chat_Session or Client databases to fail, and hence more
elaborate recovery mechanisms. Chaos Monkey experi-
ments with both ACO and IM show that both are reliable,
and hence we conclude that SD Erlang preserves the distrib-
uted Erlang reliability model (Section 5.4).

RQ3: For reliable applications we show that SD Erlang scales
better than distributed Erlang. Comparing the weak scaling of
the reliable GR-ACOwith the unreliableML-ACO shows that
maintaining global recovery data, i.e., a process name space,
induces a huge amount of network traffic and dramatically
limits scalability above 40 hosts. Comparing GR-ACO and

SR-ACOweak scaling shows that scalability can be recovered
by partitioning the nodes into appropriately-sized s_groups,
and hence maintaining the recovery data only within a rela-
tively small group of nodes (Section 5.4.2).

We present a new systematic and tool-based approach for
refactoring distributed Erlang applications into SD Erlang. The
approach presents a set of design questions, and builds on a
suite of new or improved tools for monitoring, debugging,
deploying and refactoring SDErlang applications (Section 6).

We demonstrate the capability of the tools, for example
showing that WombatOAM is capable of deploying and
monitoring substantial (e.g., 10K Erlang VM) distributed
Erlang and SD Erlang applications with negligible over-
heads (Section 6.8).

Future Work. The SD Erlang libraries would benefit from
enhancements: e.g., to automatically route messages
between s_groups. It would be interesting to extend our
preliminary evidence that suggests that some SD Erlang
technologies and methodologies could improve the scalabil-
ity of other actor languages. For example, the Akka frame-
work for Scala could benefit from semi-explicit placement,
and Cloud Haskell from partitioning the network [47]. In
the medium term we plan to integrate SD Erlang with other
technologies to create a generic framework for building per-
formant large scale servers.

ACKNOWLEDGMENTS

We thank our RELEASE project colleagues for technical
insights. This work has been supported by the EU grant
‘RELEASE: A High-Level Paradigm for Reliable Large-scale
Server Software’ (287510), and by the UK’s EPSRC grant
‘Adaptive JIT-based Parallelism (AJITPar)’ (EP/L000687/1).

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. H€olzle, The Datacenter as a Com-
puter, 2nd ed. San Rafael, CA, USA: Morgan and Claypool, 2013.

[2] J. Armstrong, Programming Erlang: Software for a Concurrent World,
2nd ed. Raleigh, NC, USA: Pragmatic Bookshelf, 2013.

[3] F. Cesarini and S. Thompson, Erlang Programming, 1st ed. Sebasto-
pol, CA, USA: O’Reilly Media, 2009.

[4] M. Odersky, et al., “The Scala programming language,” 2012.
[Online]. Available: http://www.scala-lang.org/

[5] N. Chechina, H. Li, A. Ghaffari, S. Thompson, and P. Trinder,
“Improving the network scalability of Erlang,” J. Parallel Distrib.
Comput., vol. 90/91, pp. 22–34, 2016.

[6] A. Tseitlin, “The antifragile organization,” Commun. ACM, vol. 56,
no. 8, pp. 40–44, 2013.

Fig. 18. Impact of WombatOAM’s monitoring on deployment time.
Fig. 19. Impact of WombatOAM’s monitoring.

2256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 8, AUGUST 2017

[7] P. Trinder, et al., “Scaling reliably: Improving the scalability of the
Erlang distributed actor platform,” ACM Trans. Program. Lang.
Syst., 2016, submitted for publication.

[8] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. San Mateo, CA, USA:
Morgan Kaufmann, 2001.

[9] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Leder-
man, MPI: The Complete Reference. Cambridge, MA, USA: MIT
Press, 1995.

[10] A. Gainaru and F. Cappello, “Errors and faults,” in Fault-Tolerance
Techniques for High-Performance Computing. Cham, Switzerland:
Springer, 2015, pp. 89–144.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[12] T. White, Hadoop: The Definitive Guide. Sunnyvale, CA, USA:
Yahoo! Press, 2010.

[13] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular
ACTOR formalism for artificial intelligence,” in Proc. 3rd Int. Joint
Conf. Artif. Intell., 1973, pp. 235–245.

[14] C. Hewitt, “Actor model for discretionary, adaptive concurrency,”
CoRR, 2010.

[15] P. Haller and F. Sommers, Actors in Scala. Mountain View, CA,
USA: Artima Inc., 2012.

[16] “CAF: C++ actor framework,” 2016. [Online]. Available: actor-
framework.org/

[17] S. M. Jodal, et al., “Pykka,” 2016. [Online]. Available: pykka.read-
thedocs.org/

[18] J. Epstein, A. P. Black, and S. Peyton-Jones , “Towards Haskell in
the cloud,” SIGPLAN Notices, vol. 46, no. 12, pp. 118–129, 2011.

[19] J. Lee, et al., “Python actor runtime library,” 2010. [Online]. Avail-
able: http://osl.cs.uiuc.edu/parley/

[20] G. Germain, “Concurrency oriented programming in termite
scheme,” in Proc. ACMSIGPLANWorkshop Erlang, 2006, pp. 20–20.

[21] Rust, 2016. [Online]. Available: https://www.rust-lang.org/
[22] SpilGames, “Spapi-router: A partially-connected Erlang

clustering,” 2014. [Online]. Available: https://github.com/spil-
games/spapi-router

[23] K. MacKenzie, N. Chechina, and P. Trinder, “Performance porta-
bility through semi-explicit placement in distributed Erlang,” in
Proc. ACM SIGPLANWorkshop Erlang, 2015, pp. 27–38.

[24] Basho, “Riak,” 2014. [Online]. Available: http://basho.com/riak/
[25] EDF, “The Sim-Diasca Simulation Engine,” 2010. [Online]. Avail-

able: http://www.sim-diasca.com
[26] WhatsApp, 2015. [Online]. Available: https://www.whatsapp.

com/
[27] F. Lubeck and M. Neunhoffer, “Enumerating large orbits and

direct condensation,” Exp. Math., vol. 10, no. 2, pp. 197–205, 2001.
[28] M. Dorigo and T. St€utzle, Ant Colony Optimization. Scituate, MA,

USA: Bradford Company, 2004.
[29] R. McNaughton , “Scheduling with deadlines and loss functions,”

Manage. Sci., vol. 6, no. 1, pp. 1–12, 1959.
[30] M. Day, J. Rosenberg, and H. Sugano, “A model for presence and

instant messaging,” IETF, Fremont, CA, USA, Tech. Rep.
RFC2778, 2000.

[31] S. Aggarwal, J. Vincent, G. Mohr, and M. Day, “Instant messag-
ing/presence protocol requirements,” IETF, Fremont, CA, USA,
Tech. Rep. RFC2779, 2000.

[32] M. M. Hernandez, N. Chechina, and P. Trinder, “A reliable instant
messenger in Erlang: Design and evaluation,” Glasgow Univ.,
Glasgow, U.K., Tech. Rep. TR-2015-002, 2015.

[33] D. Luna, “Chaos monkey,” 2016. [Online]. Available: https://
github.com/dLuna/chaos_monkey

[34] Z. Xiao, L. Guo, and J. Tracey, “Understanding instant messaging
traffic characteristics,” in Proc. 27th Int. Conf. Distrib. Comput.
Syst., 2007, pp. 51–51.

[35] RELEASE D6.2, “Scalability case studies: Scalable Sim-Diasca for
the blue gene,” 2015. [Online]. Available: http://www.release-
project.eu/documents/D6.2.pdf

[36] N. Chechina, M. Moro Hernandez , and P. Trinder, “A scalable
reliable instant messenger using the SD Erlang libraries,” in Proc.
ACM SIGPLANWorkshop Erlang, 2016, pp. 33–41.

[37] M. den Besten, T. St€utzle, and M. Dorigo, “Ant colony optimiza-
tion for the total weighted tardiness problem,” in Proc. 6th Int.
Conf. Parallel Problem Solving Nature, 2000, pp. 611–620.

[38] D. Merkle and M. Middendorf, “An ant algorithm with a new
pheromone evaluation rule for total tardiness problems,” in Proc.
Real-World Appl. Evol. Comput. EvoIASP EvoSCONDI EvoTel EvoS-
TIM EvoROB EvoFlight, 2000, pp. 287–296.

[39] M. J. Geiger, “New instances for the single machine total weighted
tardiness problem,” Helmut-Schmidt-Universit€at, Hamburg,
Hamburg, Germany, Tech. Rep. 10-03-01, 2010.

[40] F. Cesarini and S. Vinoski, Designing for Scalability with Erlang/
OTP, 1st ed. Sebastopol, CA, USA: O’Reilly Media, 2016.

[41] J. Armstrong, “Making reliable distributed systems in the pres-
ence of software errors,” Ph.D. dissertation, Dept. Microelectron.
Inf. Technol., KTH, Stockholm, Sweden, 2003.

[42] Wrangler, 2016. [Online]. Available: https://www.cs.kent.ac.uk/
projects/wrangler

[43] H. Li and S. Thompson, “Automated API migration in a user-
extensible refactoring tool for Erlang programs,” in Proc. 27th
IEEE/ACM Int. Conf. Automat. Softw. Eng., 2012.

[44] RELEASE D5.3, “Systematic testing and debugging tools,” 2015.
[Online]. Available: http://www.release-project.eu/documents/
D5.3.pdf

[45] H. Li and S. Thompson, “Multicore profiling for Erlang programs
using Percept2,” in Proc. 12th ACM SIGPLAN Workshop Erlang,
2013, pp. 33–42.

[46] H. Li and S. Thompson, “Safe concurrency introduction through
slicing,” in Proc. Workshop Partial Eval. Program Manipulation, 2015,
pp. 103–113.

[47] RELEASE D6.7, “Scalability and Reliability for a Popular Actor
Framework,” 2015. [Online]. Available: http://www.release-
project.eu/documents/D6.7.pdf

Natalia Chechina received the PhD degree from Heriot-Watt University
and is a research fellow with the University of Glasgow. Her main
research interests include distributed and parallel computing, scaling
Erlang programming language, robotics, mathematical, and theoretical
analysis.

Kenneth MacKenzie received the BSc degree in mathematics, the MSc
degree in theoretical computer science, and the PhD degree in mathe-
matics. He is a research fellow with the University of St Andrews. He is
interested in programming language design and implementation.

Simon Thompson is professor of logic and computation in the School of
Computing, University of Kent. His research interests include computa-
tional logic, functional programming, testing, and diagrammatic reason-
ing. He is the author of standard texts on Haskell, Erlang, Miranda and
constructive type theory.

Phil Trinder is a professor of computing science with the University of
Glasgow. For more than 20 years, he has researched the design, imple-
mention, and evaluation of high-level distributed, and parallel program-
ming models.

Olivier Boudeville is a research engineer in the SINETICS Department,
EDF R&D, France. His interests include the simulation of complex sys-
tems, parallel and distributed architectures, and functional programming.
He created the Sim-Diasca simulation engine.

Vikt�oria F€ordo��s has 8 years of software development experience at an
insurance broker company and as a researcher with ELTE-Soft belong-
ing to the Hungarian University of Science (ELTE) and at Erlang Solu-
tions Hungary.

Csaba Hoch is a senior Erlang developer with Erlang Solutions, where
he has been working on WombatOAM. He spent several years with
Ericsson, where he participated in the development of NETSim, one of
the largest Erlang programs ever written.

Amir Ghaffari received the PhD degree in computing science from Glas-
gow University. He is a senior software developer with Fujitsu Consulting,
Canada, Inc.

Mario Moro Hernandez received the BA (Hons.) degree in psychology
and the BSc (Hons.) degree in computing sciences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHECHINA ETAL.: EVALUATING SCALABLE DISTRIBUTED ERLANG FOR SCALABILITYAND RELIABILITY 2257

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

