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Abstract: Railway accidents place significant demands on resources and 

support from departments of railway emergency management. Once an 

accident occurs, an efficient incident rescue plan needs to be given as early 

as possible to reduce the loss of life and property. However, in railway 

system, most related departments currently face a challenge in drawing up 

rescue scheme effectively and accurately with insufficient information 

collected from the scene of a train accident.  To assist with the rescue 

planning, we propose a framework which can rapidly and automatically 

construct a 3D virtual scene of a train accident by utilizing the photos of 

the accident spot. The framework uses a hybrid 3D reconstruction 

technology to extract the position and pose information of carriages 

involved in an accident. It adopts a geographic information system (OSG 

Earth) and a 3D visualization engine to model and display the landscapes 

and buildings in a train accident. In order to assess and validate our 

prototype, we quantitatively evaluate our main algorithm and demonstrate 

the usage of our technology with two case studies including a simulated 

scene with in-lab setting and a real train derailment scene from on-site 

pictures, and both results are accountable with high accuracy and represent 

the ability of timely modelling and visualisation of a train accident scene.  

Keywords: Train accident; scene reconstruction; accident rescue; photo-

based modelling; railway safety; 

1 Introduction  

Despite the fact that the railway industry attempts to ensure the safety, many train 

accidents still happen worldwide every year and there is approximately one severe 

accident every 2 years1. Once a train accident occurs, it is important to gain a full 

understanding and comprehensive awareness of the accident situation, which helps 



achieve an optimal decision-making of train accident rescue. At the same time, critical 

information about the accident, like the positions and poses of vehicles in the scene, 

needs to be acquired as soon as possible.  Currently, railway rescue operation mainly 

depends on visual observations and survey by the rescuers to make decision, suffering 

from the lack of detailed information of an accident. In addition, taking lessons from the 

previous accidents is an effective way to prevent the accident happening again. What 

we can learn from an accident depends on our understanding to the cause and 

phenomenon of the accident2. Reconstruction of the accident scene will improve our 

understanding with visual presentation and 3D location information, developing insight 

about the cause of the accident. 

Apparently, a realistic 3D virtual accident scene can provide meaningful materials 

and as much relevant information as possible about the train accident, which can not 

only help with decision-making for rescue but also analyze the cause of the accident. 

However, rapidly constructing an accurate 3D digital accident scene is challenging 

because it involves a large number of different objects, such as vehicles, tracks and 

buildings, as well as the large-scale surrounding environment, which requires great 

modelling efforts.  

In recent decades, computer vision technology has been applied to railway 

industry3-6. These works have mainly focused on operational inspection rather than the 

reconstruction of a train accident scene. A popular method in computer vision, named 

photo-based (or image-based) modelling,  provides an automatic approach of 3D objects 

modelling by deriving geometric information from photos7. This technique has been 

applied in various disciplines, including virtual reality or augmented reality8, 

architecture9, 10, earth sciences11, even in forensic infography12 and archaeometry13 etc. 

However, to our best knowledge, literatures and practices of applying the photo-based 

3D modelling technique to the railway industry for assisting accident rescue are rarely 

seen. 

Most photo-based 3D modelling techniques can sketch outlines of objects in a 3D 

space， but it resorts to multi-view inputs of the objects. It normally needs at least two 

photos from different camera angles to calculate the spatial position of a given point. 

This is the basis of almost all multi view-based 3D reconstruction methods. In an 

example, the reconstruction of a bridge used over 100 photos from different view 

angles9. However for a rescue operation of a train accident, it may not be always 

practical to take so many photos with precise settings around the vehicles involved in 



the accident because some landscapes may prevent taking photos from a particular 

angle. Moreover, in many situations, the modellers, who are the beholders of the special 

knowledge on how to set the camera, just cannot be present at the scene of the accident 

and take photos. In addition, the multi view-based approaches may not be adequate to 

construct digital scenes of train accidents due to the fact that the response time of the 

railway accident is generally very short, not more than a few hours. We cannot acquire 

images with 360 degree of view that contain all accident objects in such a short 

response time.  

Since 2000, researchers have been attempting to develop the single view-based 

reconstruction method which can produce convincing results 14, 15. But, the existing 

single view solution may degenerate the reconstruction with possible loss of 

information15.   

Besides the photo-based method, other surveying methods such as aerial 

photogrammetry and laser scanning can also provide accurate measurement and rich 

information. But most of them rely on expensive equipment and require users to have 

relevant skills and knowledge of surveying theory, which may not be always available 

for the reconstruction of a train accident.  

In this paper, we propose a framework to construct a 3D virtual accidental scene 

automatically. This framework uses a single view photo-based method to measure the 

position and pose of a train coach in the accident, and then utilizes 3D geographic 

information system (GIS) and visualization technology to construct the environment 

where the accident occurs.  

The remainder of the paper is structured as follows. The overview of this 

framework is presented in section 2. Section 3 describes the theory of our framework in 

photo-based automatic 3D reconstruction. It is worth mentioning that all the inputs we 

use are images captured at the accident scene. Section 4 describes the automatic 

construction of environment, including terrain, buildings and tracks parts. Finally, two 

case studies are studied in section 5.  It shows the photo-based 3D reconstruction of a 

train accident scene with scaled models in lab and a real derailment accident occurring 

in Philadelphia on May 12, 2015. Section 6 concludes the paper. 

2 Overview 

As shown in Figure 1, our framework consists of four modules: photo capturing 



module, image recognition module, 3D modelling module and 3D visualization module.  
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Figure 1. Framework to construct a 3D virtual train accident scene 

The primary function of photo capturing module is on-site photo taking which can 

be done by drones or staff nearby. The captured photos are transmitted to back-end 

server for further processing and are also the main inputs of our framework which need 

to be provided by end-users.  

The objective of image recognition module is to build a panorama that can register 

primary objects involved in the accident, such as vehicles, train coaches, tracks and 

buildings. Image alignment and image stitching algorithms are necessary to discover the 

correspondence and relationships among images.  We adopt the image feature detecting 

and matching method named Scale Invariant Feature Transform (SIFT) 16 to search the 

2D image location of vehicles in the panorama, and benefit from its good performance 

in recognizing the pixel coordinates of objects in panorama and robustness when 

detecting features in spite of the changes of scale, rotation, blur, illumination and affine. 

With SIFT, we can locate the coordinates of objects in the 2D image plane.  

In 3D modelling module, the spatial pose and position of carriages involved in an 

accident are measured by minimizing the distance errors in projections.  Inspired by 



Bundle Adjustment algorithm17, we resolve the multi-carriages position and pose 

measuring problem with a non-linear least square expression. It involves perspective-

projection calculation and projection-error minimization. Differing from Bundle 

Adjustment algorithm, a hybrid photo-based 3D modelling method is proposed to 

extract multiple carriages from a single-view image. Instead of reconstructing the full 

geometric details from a photo/photos, the hybrid photo-based 3D modelling method 

only computes the poses and positions of the carriages and describes the detailed 

geometric information by utilizing pre-existing CAD models which are stored in our 

database.  

3D visualization module consists of three sub-modules (3D terrain modelling, 3D 

buildings modelling and 3D scene modelling) which render the terrain, buildings and 

other objects respectively.  This module generates a 3D virtual environment by using 

3D realistic environment data (GIS database, satellite images, elevation data and 

environment models). These data are stored in database in advance and integrated into 

the scene in real-time. Ultimately, by embedding the 3D CAD model of accident 

vehicles into this virtual environment according to the pose and position generated by 

3D modelling module, a realistic 3D virtual train accident scene is reconstructed. 

3 Photo-based measurement and 3D modelling for train accident scene 

Manually sketching and modelling the 3D models in a train accident would be labor 

intensive, demanding tedious and repetitive efforts of modelers or researchers. It is also 

error-prone. In this section, a photo-based measurement and 3D modelling method is 

proposed to automatically determine the spatial position and pose of multiple carriages 

in a train accident.  

3.1 Image stitching 

The objective of image stitching is to find all matching images, then connect sets of 

image matches to produce a panoramas. We use Lowe’s Scale Invariant Feature 

Transform (SIFT) features for image matching thanks to its better performance in 

achieving reliable matching of multiple images and handling scale, rotation, blur, and  

affine changes of image than SURF and PCA-SIFT detector18. To automatically 

discover the matching relationships in unordered multi-images, the automatic panorama 

stitching algorithm proposed by Matthew Brown and David G. Lowe 19is recommended. 



The main flow of this part is shown in Figure 2. 
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Figure 2. The flowchart of automatic image stitching 

By using this automatic stitching algorithm, a high-equality panorama of a train 

accident scene can be obtained, which contains all the things in the accident including 

the damaged coaches/carriages, surrounding buildings and other environmental 

elements. From this panorama, we can also have a better awareness of the whole picture 

of the accident situation. This set a basis for the next stage where a photo-based 

modelling technique is employed to identify the position and pose of vehicles involved 

in the accident, which is the critical information for rescue planning. 

3.2 Hybrid Photo-based 3D modelling of vehicles 

Up to now, we have obtained the panorama of the train accident scene. In the next step, 

we need to locate the spatial position and pose of the coaches/carriages contained in the 

panorama. We propose a novel hybrid photo-based 3D modelling method, which 



models this problem as a constrained non-linear least square optimization, then use 

perspective-projection calculation and projection-error minimization to solve it. 

Furthermore, based on the coupler connection relationship between coaches/carriages, 

geometric constraints are taken into account when solving the minimization problem. 

For such a constrained non-linear least square optimization problem, the conventional 

Levenberg-Marquart algorithm20, 21 used in Bundle Adjustment is no longer valid. 

Instead, we employ the Trust Region algorithm22.  

As to the hybrid method, pre-existing 3D models like CAD models generated by 

3D CAD software is a prerequisite, which can normally be satisfied in the railway 

sector because generally there are limited types of trains in a country. For example, in 

china, the high-speed EMU is mainly the CRH series, we can acquire the CAD models 

involved in an accident from factories or the government easily and store them in 

database in advance. Combining the CAD model of objects to the photo-based 

modelling method can compensate the depth information about the objects contained in 

the panorama, as well as conquer the singularity problem existing in traditional single 

view photo-based modelling method. The hybrid modelling method consists of three 

pars, projection process, feature extraction and matching and position and pose 

estimation. In following sections, we will discuss this method in more details. 

3.2.1 Projection Process 

The projection process shows how to project a 3D model to a 2D image, which is 

modeled by a perspective projection consisting of translation, rotation and scaling 

operations. Here, we use the basic pinhole camera model to illustrate the camera 

mapping process23, then utilize the finite projective camera model, which is the 

generalized model of a pinhole camera, to implement the hybrid photo-based 3D 

modelling. The pinhole camera model is shown in Figure 3. A 3D point can find its 

projection on the image plane as the intersection of the image plane and a line defined 

by camera centre and this point.  
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Figure 3. Pinhole camera model 

We denote the points on a carriage using Xw=(xw, yw, zw) ∈R3, in world 

coordinate frame, and Xc=(xc, yc, zc) ∈R3 in camera coordinate frame, and denote the 

pixel coordinates of projection points of carriage by Xp=(u, v) ∈R2 in image coordinate 

frame. Based on the pinhole model, the projection process from 3D points on carriage 

onto 2D image plane can be expressed as: 
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where f ∈R is the focal length of camera, dx, dy ∈R represents the width and height of 

a pixel. f/dx and f/dy represent the focal length measured by pixel dimensions in 

horizontal axis and vertical axis respectively. The principle point is not at the origin of 

image coordinate frame, and we offset principle point by (u0, v0) ∈R2. The intrinsic 

matrix K can be defined as: 
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In general, the points in camera coordinate frame can be expressed in world 

coordinate frame through rotation and translation, and we can denote the two 

transformation by a rotation R ∈R3×3 and a translation T∈R3. The equation can be 

written as: 



 c wX R X T= ⋅ +   (3) 
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φ ,θ , ψ are the rotation angle around x, y, z axis respectively, and [R | T] is defined 

as the extrinsic matrix of camera. We can then express the projection of 3D carriage 

surface in world coordinates frame onto image coordinates frame: 
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Starting from the pinhole model, we can generalize the projection by considering 

the skew effect and distortion of camera lens, which describes a skewing of pixel in 

CCD array because the x and y axis, as well as radial and tangential distortion 

coefficient of camera lens, are not perpendicular. 

Taking a skew effect into consideration, the intrinsic matrix K can be rewritten as: 

 
0

0

/
0 /
0 0 1

f dx s u
K f dy v

 
 =  
  

  (5) 

where s denotes the skew parameter. 

At this point, we adopt the model proposed by Heikkila 24 to introduce the skew 

and distortion of camera lens. The distortion model can be expressed as: 
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In this equation, the distortion coefficients are represent by vector kc=(k1, k2, …, kn,)T. 

Once the skew parameter and distortion coefficients are considered, the projection 

model can be written as: 
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From equation(7), any point Xw on the carriage surface in the world coordinates 

can have its pixel projection on image plane calculated by knowing the related 

parameters, like camera focal length, skew parameter and distortion coefficients. In 

order to express clearly, we denote the projection from world coordinates frame onto 

image coordinates frame processed by: 

 ( )p wX Proj R X T= ⋅ +   (8) 

3.2.2 Feature extraction and matching 

In the last section, we have presented the projection model that describes the 

relationship between points on carriages surface and their projection on image plane. It 

means that the crucial work of estimating the position and pose of a carriage boils down 

to determining the extrinsic parameters [R | T]used in equation(8).  

To solve these parameters, the task of this section is confirming the 

correspondence relationship between the selected points on carriage model in world 

coordinates frame and its location in a panorama. Hence we model it as a feature 

matching problem as shown in Figure 4. 

 
Figure 4. Feature extraction and matching 

We adopt the SIFT detector 16 to extract the inherent pattern on the carriage surface 

in panorama, and mark the location of these inherent patterns onto the 3D carriage 

model. SIFT detector is robust in detecting features of these patterns under the scale, 

rotation, blur, illumination and affine changes. We can then build a one to one 



correspondence relationship between carriage points in panorama and in the world 

coordinate frame. 

Once the correspondence relationship is confirmed, for any selected point Xw∈R3 

on carriage surface, we know its feature point X∈R2 in image plane, then the 

parameters in equation(7) can be determined through solving an optimization problem, 

where the expected parameters minimise the overall errors among all the pairs of 

selected matching features. 

3.2.3 Position and Pose Estimation 

After the feature extraction and matching stage, we can get the correspondence 

relationship between selected points on carriage surface in 3D space and their feature 

points on image plane. Let us suppose that there are m carriages in a train accident scene, 

and ni features on the ith carriage. We denote the coordinates of the jth point on the ith 

carriage CAD model in world coordinate frame by ,
w
i jX ∈R3, and its corresponding 

feature point in image coordinates frame by ,i jX ∈R2 (i=1, 2, …, m, j=1, 2, …,ni). It is 

worth emphasizing that the coordinates ,
w
i jX  in world frame is only an initial position of 

carriage model which needs to be adjusted to the camera frame by rotation and 

translation. For the ith carriage model, we denote its rotation matrix and translation 

vector by Ri and Ti respectively as shown in(7). We can then measure the projection 

error by expression(9):  
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where d(. , .) is the distance measure, and it is always defined by Euclidean norm. Ii,j is 

the indicator function, which represents the feature matching result. If the jth feature on 

the ith carriage is visible in the panorama, Ii,j = 1, otherwise, Ii,j = 0. ,
1

in

i i j
j

N I
=

=∑ . 

Hence, the target of estimating the position and pose of carriages boils down to 

solving a non-linear least square optimization problem if we define d(x, y)=||x-y||2 , as 

shown in expression(10). The intrinsic matrix K, skew parameter s and distortion 

parameter kc should be solved by camera calibration process which is discussed in 

following section, hence all the optimization variables are extrinsic matrix [Ri | Ti] 

(i=1,2, …, m).  
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The Levenberg-Marquart method can be adopted to solve this non-linear least square 

optimization problem, and all projection information can be obtained if the optimal 

parameters, [Ri
* | Ti

*] (i=1, 2, …, m) are searched, including the position and pose 

information of all the carriages.  

Let us denote all mesh points on the ith carriage CAD model in world coordinates 

frame by {Pi
w} ∈ R3, then the position and pose of the ith carriage in camera 

coordinates frame can be expressed as Ri
*{Pi

w}+ Ti
*. Some rotation and translation 

operator can be utilized if it needs to be transfered to a specific coordinates frame. 

Formula(10) is a non-linear least square problem without any constraints. Each 

pair of optimal parameters [Ri
* | Ti

*] are only decided by minimizing 

2
, , ,

1
|| ( ) ||

in
w

i i j i i j i j
j

Proj R X T X I
=

⋅ + − ⋅∑ (i=1, 2, …, m). Hence, the formula (10) can be 

rewritten as a multi-object optimization form, which means that there is no connection 

between carriages and the reconstruction process of its pose and position is independent. 

In other words, [Ri
* | Ti

*](i=1, 2, …, m) is independent in different carriages. However, 

in reality this is not the case. On a common train accident spot, the passenger carriages 

are usually connected by the coupler. If we take these connections into account, it 

performs better in estimating the entire pose and position of a train than the method 

expressed in(10), which only has a good performance in estimating separate carriages.  

Let us denote the coordinates of all points on the ith carriage model in world 

coordinates frame by ,1 ,2 ,{ , , , }
i

w w w w
i i i i nX X X X= 2 ∈R3. For every carriage, we add the 

coordinates of couplers ,1 ,2,w w
i iC C  to w

iX , which represent the front and rear coupler 

respectively, while ,1 ,2 , ,1 ,2{ , , , , , }
i

w w w w w w
i i i i n i iX X X X C C= 2 and the couplers need not to be 

matched the image feature. 

For any couple of carriages w
iX , 1

w
iX +  the pose and position of the front carriage 

have an effect on the rear carriage. The pose and position of the rear carriage can be 

written as: 

 1 1 1 1,1 1 ,2( )w w w w
i i i i i iX R X C T C+ + + + += − + +   (11) 



Ri+1, Ti+1 are the rotation and translation operator of the i+1th carriage relative to the ith 

carriage. And Ti+1 describes the translation from the rear coupler of the ith carriage to 

the front coupler of i+1th carriage. If we require 1
2

iT ρ+ ≤ , the geometric constraints 

can be added. Moreover, all the carriages have a constrained pose and position except 

the first carriage. Then we can rewrite the optimization problem by a constrained non-

linear least square programming as shown in formula(12). 
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To solve this problem, we adopt the genetic algorithm with a small number of 

individuals and generations to generate initial value of optimization variables rapidly, 

and use trust-region method 22 to solve it, which performs well in handling constrained 

optimization problems. 

Once the optimization problem has been solved, the position and pose of the ith 

carriage in camera coordinates frame can be expressed as Ri
*{Pi

w}+ Ti
*. If it needs to 

base some specific coordinates frame, the rotation and translation operator can be 

utilized.  

3.3 Modelling based on calibrated or uncalibrated camera case 

So far, the main methodology of the hybrid photo-based 3D modelling has been 

discussed in detail. The only thing that still has not been given is the way of obtaining 

the camera intrinsic parameters, from which we can calculate extrinsic matrix [Ri
* | 

Ti
*](i=1, 2, …, m) for recovering the position and pose information of carriages. 

Meanwhile, as previously mentioned, only when we obtain the intrinsic matrix K, skew 

parameter s and distortion parameter kc beforehand can we solve the optimization 

problem. Considering actual application, here, we divide the method of acquiring 

intrinsic parameters into two branches: 1. Calibrate the camera before an accident 

occurs which is discussed in section 3.3.1; 2. Consider intrinsic parameters as 

optimization variables and solve them in formula(12) which is detailed in section 3.3.2.  

 



3.3.1 Modelling based on calibrated camera 

In general, a camera needs to be calibrated before an accident occurs then can be used to 

photograph the accident scene and calculate the [Ri
* | Ti

*] further.We follow the four-

step camera calibration method24 and use the Camera Calibration Toolbox for Matlab 25 

to realize the calculation of the camera intrinsic matrix K, skew parameter s and 

distortion parameter kc in lab. The related case study is discussed in section 5.1.  

3.3.2 Modelling based on uncalibrated camera 

In some cases, the camera intrinsic parameters of photos captured in an accident scene 

cannot be obtained by using calibration process. For instance, the pictures are acquired 

from the internet, or captured by passengers, etc. In this case, we also consider 

parameter K, s, kc as optimization variables and search the optimal value of them by 

minimizing the error in formula(12) as the way we optimize  [Ri
* | Ti

*](i=1, 2, …, m) in 

previous section. In practice, thanks to the solid-state manufacturing techniques, the 

skew parameter of camera is negligible. And in most cases, the pixel size is 

approximately square, which means dx=dy. Therefore, we do not need to solve all 

parameters. If these pictures are captured by high--accuracy camera, we can even 

suppose that the focal point is in the center of image plane, and distortion parameter is 

also negligible. Then the projection model reduce to a simple version, and the only 

variable to be solved is the focal length. We will discuss more details when we conduct 

a case study in section 5.2, which is based on a single image of train accident from the 

internet. 

4 Modelling other components in a virtual train accident scene 

The main aim of this work is to automate the reconstruction of a 3D virtual scene of a 

train accident in a short time. In the previous sections, we present an automatic 

modelling method for train carriages. However, except railway vehicles, the 

environment including terrain, buildings, catenary and tracks are also very important 

elements in a realistic 3D digital train accident scene.  

4.1 Terrain 

Railway lines were built through a very large-scale area. In general, A virtual globe 

engine is required on rendering such wide geological features. Although Google Earth26 



is a very popular virtual globe and is applied in many sectors, we find that the functions 

open to developers are limited. So we adopt an open-source solution. OSG Earth is a 

scalable open-source terrain rendering toolkit for OpenSceneGraph27. It is a 3D high 

performance graphics toolkit for applications such as industry simulation and 

visualization.  

4.2 Railway track, Catenary and building 

The railway track and catenary are in regular shapes and patterns. We develop an 

automatic modelling script to generate the geometry models of railway track and 

catenary based on a CAD system named CATIA. The main components of track and 

catenary including sleeper, ballast, support, and stay are automatically generated. The 

information to be input to the software tool for track and catenary modelling, such as 

curve radius, superelevation, can be specified from a known standard and also based on 

the observation at the accident spot. 

Buildings are another possible part of the accident scene. Accordingly, these 

buildings around the accident spot also need be generated automatically. Some 

commercial software packages like CityEngine23  can do this very well. So we utilize 

this commercial package to model the buildings if there are many buildings around the 

accident spot.  

5 Case study 

To validate and evaluate our framework in reconstructing the train accident scene, we 

conducted two case studies. The first case is to reconstruct the simulated train accident 

scene in lab, and the second one is the reconstruction of a real derailment accident scene 

from the internet image which occurred in Philadelphia on May 12, 2015. 

5.1 Reconstruction of in-lab scene  

In this stage, we mimic the real train accident scene by placing 3 small-size carriage 

models in different pose and location, and measure the coordinates of key points in the 

surface of carriage models to access the accuracy of our main reconstruction algorithms. 

In terms of in-lab case study, it is feasible for us to simulate the photo-based 3D 

modelling based on calibrated camera(Section 3.3). Hence we should calibrate the 

camera parameters beforehand. 



 The camera model we calibrated is NIKON D610, and the intrinsic matrix is 
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distortion coefficients kc=[-0.020511, 0.1966, -0.0032969, -0.0065837, 0] (n=5) as 

expressed in Camera Calibration Toolbox for Matlab28, and the panorama of the in-lab 

scene is shown in Figure 5. 
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Figure 5. Panorama of the in-lab scene 

In world coordinates frame (Ow- Xw- Yw- Zw), we denote the coordinates of the jth 

key point on the ith carriage by Pi, j(xi, j, yi, j, zi, j) . The measured coordinates of 12 key 

points are listed in Table 1.  

Table 1. Coordinates of key points 

Train No. Key point ID X(mm) Y(mm) Z(mm) 

I 

P1,1 1266 521 10 
P1,2 1962 521 10 
P1,3 1962 521 170 
P1,4 1266 521 170 

II 

P2,1 756 1245 51 
P2,2 1242.8 768.99 5.8529 
P2,3 1252.9 763.49 173.17 
P2,4 766.16 1239.5 218.37 



III 

P3,1 -381.04 1196.5 43 
P3,2 756 1196.5 43 
P3,3 756 1202.2 230.58 
P3,4 -381.03 1202.2 230.66 

While, as shown in Figure 5, the texture information is not obvious around these key 

points and cannot be easily distinguished from the background, hence it is a tough task 

to recognize these points by using feature matching and detection algorithms. To detect 

these locations of key points on carriages automatically, we put markers on the carriage 

as shown in Figure 6. Then the SIFT detector is applied to recognize the pixel 

coordinates of each marker, and the recognition result is shown in Figure 7. To 

reconstruct the whole train accident scene, CAD models of each carriage should be 

prepared in database (Figure 8).  

 
Figure 6. Panorama of marked carriages 



 

Figure 7. Recognition result of each marker 

 
Figure 8. CAD models of 3 carriages 

Once the previous work has been finished, the reconstructed scene can be obtained 

with solving the optimization problem in(12), and the result is shown in Figure 9.  

  



 

Figure 9. Reconstructed scene 

Figure 10 shows a comparison chart of position accuracy between real carriages in 

lab and the reconstructed one. The red region in this chart illustrates the location of real 

in-lab carriages, while the grey region denotes the reconstructed carriages. The box at 

the bottom-left position of this scene roles as an origin point, which is used to unify all 

points to a world coordinates system. It is intuitive that the proposed reconstruction 

algorithms achieve a good performance. 

 

 

Figure 10. Comparison chart of real and reconstructed carriages 

To access the accuracy of the whole reconstruction in Figure 10 quantitatively, we 

have listed the reconstructed coordinates of key points (as denoted in Figure 5), and 

made a comparison with the measured value of real in-lab carriages in Table 2. The 

errors are listed in Table 3 



 

Table 2. Comparison results 

Real coordinates Reconstructed coordinates 
Train No. X(mm) Y(mm) Z(mm) Train No. X(mm) Y(mm) Z(mm) 

I 1266 521 10 I 1290 520.95 24 
1962 521 10  1962 520.95 24 
1962 521 170  1962 520.95 156 
1266 521 170  1290 520.95 156 

II 756 1245 51 II 693.4 1101.5 46.127 
1242.8 768.99 5.8529  1176.2 640 59.279 
1252.9 763.49 173.17  1232.8 702.13 161.06 
766.16 1239.5 218.37  750.01 1163.6 147.91 

III -381.04 1196.5 43 III -427.27 1012.2 85.335 
756 1196.5 43  691.96 1100.4 59.581 
756 1202.2 230.58  684.3 1227 160.38 

-381.03 1202.2 230.66  -434.93 1138.8 186.13 
 

Table 3. Absolute errors  

Train No. Key point ID X(mm) Y(mm) Z(mm) 

I 

P1,1 24 0.05 14 
P1,2 0 0.05 14 
P1,3 0 0.05 14 
P1,4 24 0.05 14 

II 

P2,1 62.6 143.5 4.873 
P2,2 66.6 128.99 53.4261 
P2,3 20.1 61.36 12.11 
P2,4 16.15 75.9 70.46 

III 

P3,1 46.23 184.3 42.335 
P3,2 64.04 96.1 16.581 
P3,3 71.7 24.8 70.2 
P3,4 53.9 63.4 44.53 

 Mean 37.44333 64.87917 30.87626 
From Table 2 and Table 3, the cumulative absolute errors of 3 carriages in different 

directions can be calculated, which are shown in Figure 11, display that the algorithm 

has a better performance in reconstructing carriage I than others. Figure 12 denotes the 

cumulative absolute errors of different carriages in 3 directions, and it shows a 

relatively large reconstruction errors in y-axis direction, which is closely related to the 

depth in camera coordinates space. Generally it is hard for single-view reconstruction 

method to estimate the depth information from one image. 



 

Figure 11. Cumulative absolute errors distribution of 3 carriages 

 

Figure 12. Cumulative absolute errors of different carriages in 3 directions 

The reconstruction process in this case is based on the assumption that there are some 

inherent texture or artificial markers on the surface of carriages, which can instruct the 

feature detector to recognize. It is impossible to complete the reconstruction work 

without the information of pixel location about carriages. However, in most real cases, 

the photos may generally lack the necessary texture information about carriages, for 

instance, when the resolution of photo is low or the captured object is smooth or 

transparent. Hence, some manual intervention in recognizing the pixel location of 



carriages is necessary. If the SIFT detector cannot perform or leads to a wrong match, 

manual intervention can improve the effectiveness and accuracy. 

5.2 Reconstruction of real derailment scene  

A real train accident site differs from an ideal laboratory environment in terms of 

constraints on accessibility, line-of-sight, and illumination. In the in-lab scene, the 

camera intrinsic parameters like the focal length, distortion etc. and extrinsic parameters 

(i.e., position and orientation) can be pre-known or determined with calibration process.  

In this section, we reconstruct the train accident scene which occurred in Port 

Richmond neighborhood of Philadelphia, Pennsylvania, on May 12, 2015. The photo is 

shown in Figure 13 which displays that 6 carriages have derailed29. The type of the 

passenger car involved in this accident is Amfleet I series passenger cars, and its 

simplified CAD model is shown in Figure 14. 

  

 

 
Figure 13. Accident scene occurring in Port Richmond 

 



Figure 14. Simplified CAD model of Amfleet I 

As mentioned in the previous sections, the SIFT detector may fail in extracting a feature 

where there is no necessary texture information. In that case, appropriate manual 

intervention can improve the performance of the pose and position recognition 

algorithm.  

In this case, it is clear that we cannot obtain the camera parameters and there are not 

enough significant feature information on the surface of carriages. So we need to utilize 

a simplified camera model (mentioned in Section 4.2) and manual matching instead of 

SIFT detector to accomplish the reconstruction work. Because the skew and distortion 

effects are ignored, briefly it may cause a large number of errors. In this case, the 

topographic information of the accident scene is utilized in this paper which is a key 

factor to improve the reconstruction performance. We summarize the reconstruction as 

the following steps: 

Step1. Estimate pose information of each carriage in case that geometric 

constraints are canceled. 

Step2. Move each carriage to the zero potential energy surface (surface of terrain 

in the spot of accident scene) 

Step3. Introduce the geometric constraints, but keep the rotation matrix of each 

carriage unchanged which is solved in step1 and only optimize the other variables 

(translation vector, focal length, etc.). 

Step4. Substitute all parameters acquired by previous 3 steps into equation (3), the 

pose and position information of each carriage are obtained. 

Once all the steps are accomplished, the 3D reconstruction result of carriages can 

closely represent the real case, which is shown in Figure 15.  



 

Figure 15. Reconstructed carriages 

Afterwards, the reconstructed carriages are integrated into the 3D virtual geographical 

environment created by 3D GIS and visualization engine.  A digital 3D train accident 

scene is created, as shown in Figure 16. 

 

 

Figure 16. Simulated train accident scene. 

The reconstructed 3D digital accident scene allows users to view the 3D scene from a 

different angle and know exactly the relative locations and configurations of different 

objects, allowing further interactions with objects and making a rescue plan with 3D 

planning software. 



6 Conclusion and future work 

In this paper, we propose a framework to rapidly reconstruct the 3D digital scene of a 

train accident, and develop a hybrid photo-based 3D modelling method for vehicles 

involved in an accident, which helps make a development in using computer vision and 

virtual reality technique for railway emergency rescue and offers benefits to railway 

industry.  The main conclusions and contributions of this work are as follows: 

(1) We offer a cost-efficient, flexible, effective framework to construct 3D scene of a 

train accident, which will make the related rescue planning more efficient and 

transparent, thereby minimizing the loss of lives and properties.  

(2) To meet the particular needs of railway industry, we tailor a hybrid photo-based 3D 

modelling method for the reconstruction of a train accident scene. Differing from 

conventional photo-based 3D modelling method, it can generate the 3D digital scene 

rapidly after a train accident occurs without resort to significant manual 

interventions. In extreme condition, this method only needs a single panoramic 

image of the accident scene and do not prone to the singularity problem which is 

common in the traditional single view photo-based modelling. 

(3)  The errors of the whole reconstruction process may be caused by the following 

reasons: 

a)  The calibrated camera model is an approximation with simplified model of the 

complete camera projection. An accurate camera model is essential if we 

require a precise projection. 

b) There is a disparity between the CAD model of carriages and the real one in 

accidents scene, especially when a carriage severely damaged. 

c) There may be a bias between the recognized feature on the image plane and its 

respective point on the carriage model. This part is the main error source in our 

practice. Limited human intervention with minor effort can greatly reduce the 

error. 

The accumulation of errors may lead to a bad reconstruction, so we should control 

the main error sources. While in some special cases, it is not possible to avoid these 

errors, e.g. we may not know the calibrated camera parameters (which is mentioned 

in Section3.3), or there is no significant features that can be recognized (Section 

5.2). Fortunately, by the introduction of geometric constraints and topographic 

information, we can ensure the accuracy of our algorithms even in the worst 

situations (Section5.2). 



(4) Two case studies, in-lab small-scale train accident scene and real 

derailment scene in America, are conducted. With proposed method and applying 

3D visualization technology to rendering the environment, two different digital 3D 

scenes of train accidents are obtained. By comparison, we find that the proposed 

framework has a good reconstruction performance in both accuracy and operability. 

For real derailment scene, the images used for reconstruction are from the internet, 

while the intrinsic parameters of camera are unavailable. But, we also achieve 

plausible result. 

    In the future, we envisage that the framework will be used in train accident rescue 

planning as well as for accident analysis by providing useful information, as well as 

helping make a reliable rescue decision effectively. There are also still many works 

to be done to improve the accuracy of 3D scene modelling and cover more 

application scene, such as at night or in foggy weather. In addition, more aided 

software tools, including modelling and visualization, also need to be developed for 

the proposed framework can be better applied in train accident rescue or education 

and training.  
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