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Abstract 
 
 

Biological systems achieve energy efficient and adaptive behaviours through 
extensive autologous and exogenous compliant interactions. Active dynamic 
compliances are created and enhanced from musculoskeletal system (joint-space) to 
external environment (task-space) amongst the underactuated motions. 
Underactuated systems with viscoelastic property are similar to these biological 
systems, in that their self-organisation and overall tasks must be achieved by 
coordinating the subsystems and dynamically interacting with the environment. One 
important question to raise is: How can we design control systems to achieve 
efficient locomotion, while adapt to dynamic conditions as the living systems do? 

In this thesis, a trajectory planning algorithm is developed for underactuated 
microrobotic systems with bio-inspired self-propulsion and viscoelastic property to 
achieve synchronized motion in an energy efficient, adaptive and analysable manner. 
The geometry of the state space of the systems is explicitly utilized, such that a 
synchronization of the generalized coordinates is achieved in terms of geometric 
relations along the desired motion trajectory. As a result, the internal dynamics 
complexity is sufficiently reduced, the dynamic couplings are explicitly 
characterised, and then the underactuated dynamics are projected onto a 
hyper-manifold. Following such a reduction and characterization, we arrive at 
mappings of system compliance and integrable second-order dynamics with the 
passive degrees of freedom. As such, the issue of trajectory planning is converted 
into convenient nonlinear geometric analysis and optimal trajectory parameterization. 



 

 
 

Solutions of the reduced dynamics and the geometric relations can be obtained 
through an optimal motion trajectory generator. Theoretical background of the 
proposed approach is presented with rigorous analysis and developed in detail for a 
particular example. Experimental studies are conducted to verify the effectiveness of 
the proposed method. 

Towards compliance interactions with the environment, accurate modelling or 
prediction of nonlinear friction forces is a nontrivial whilst challenging task. 
Frictional instabilities are typically required to be eliminated or compensated 
through efficiently designed controllers. In this work, a prediction and analysis 
framework is designed for the self-propelled vibro-driven system, whose locomotion 
greatly relies on the dynamic interactions with the nonlinear frictions. This thesis 
proposes a combined physics-based and analytical-based approach, in a manner that 
non-reversible characteristic for static friction, presliding as well as pure sliding 
regimes are revealed, and the frictional limit boundaries are identified. Nonlinear 
dynamic analysis and simulation results demonstrate good captions of 
experimentally observed frictional characteristics, quenching of friction-induced 
vibrations and satisfaction of energy requirements.  

The thesis also performs elaborative studies on trajectory tracking. Control 
schemes are designed and extended for a class of underactuated systems with 
concrete considerations on uncertainties and disturbances. They include a collocated 
partial feedback control scheme, and an adaptive variable structure control scheme 
with an elaborately designed auxiliary control variable. Generically, adaptive control 
schemes using neural networks are designed to ensure trajectory tracking. 
Theoretical background of these methods is presented with rigorous analysis and 
developed in detail for particular examples. The schemes promote the utilization of 
linear filters in the control input to improve the system robustness. Asymptotic 
stability and convergence of time-varying reference trajectories for the system 
dynamics are shown by means of Lyapunov synthesis.  
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Chapter 1   

Introduction 
 
 

1.1 Background and Research Motivation 

During the past decade, researchers all over the world have been attracted and 
involved in an interdisciplinary research field—robotics, seeking feasible solutions 
for a large scope from theoretical challenges (Albu-Schäffer and Petit, 2012; 
Ravichandran and Mahindrakar, 2011; Xin et al., 2013) and practical problems 
(Petković et al., 2013a; Shiriaev et al., 2014; Zhang et al., 2016) to potential 
applications (Fang et al., 2012; Huda and Yu, 2015; N. Sun et al., 2012). Besides the 
well-established industrial robots, tremendous applications have emerged from 
factory automation to field and service applications, for instance, surgical robots, 
unmanned vehicles, automated cranes, tele-operated machines, humanoid robots, 
rehabilitation robots.  

The innovations arose in the design of robotic mechanisms that are capable of 
surpassing human beings in terms of efficiency, operation accuracy as well as 
flexibility have achieved promising outcomes in extensive fields of applications. 
However, from the perspective of control, theoretical and practical challenges have 
all along existed in the research of robotics in finding feasible control inputs for 
desired movements and compensating for internal model uncertainties and external 
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disturbances, such that higher controllability, manoeuvrability and adaptability to the 
uncertain environments can be realized.  

Presenting fascinating variety of motion forms, nature has always been a source 
of ideas and inspirations for the robotics community (Habib, 2007). During the past 
few decades, applications of bio-inspired mobile systems have been extensively 
studied to undertake large scope of tasks in unstructured and hazardous 
environments. Towards this end, the major challenge has been converted to be the 
design of novel robotic systems and related control systems that inspired from the 
motion/behaviour of biological systems to improve the energy efficiency, to 
maintain autologous and exogenous compliant interactions, to enhance the 
adaptability to the dynamic environments. For instance, by considering the agile 
animals as multi-body systems integrated with actuators and intelligent, mobile 
sensors, particularly represent the relationship between animal’s joint and muscle 
using viscoelastic property. Nevertheless, given such a nontrivial representation, the 
design of these complicated bio-inspired mobile systems has been proven to be 
considerably challenging. This thesis proposes a bio-inspired micro-robotic system 
with viscoelastic property, it can be used as a benchmark model for studying 
bio-inspired design and control of underactuated microrobotic systems. 

Design of mechanism and actuation for those mechanical systems raises 
difficulties in how to achieve systematic methodology in a comprehensive way. For 
robotic systems such as industrial manipulators, the design concepts are mature, for 
instance, establishing the interconnection between different links and realizing joints 
actuation through electric, hydraulic or pneumatic actuators. However, this is not the 
case for many other kinds of robotic systems, in which some degrees of freedom 
(DOF) are absent by design or some passive elements are involved, have appeared to 
be influential to perform motions, which are richer in terms of energy efficiency, 
speed and agility (Chevallereau et al., 2013; Pfeifer et al., 2012; Zoso and Gosselin, 
2012). The robotic systems have the feature above are known as underactuated 
mechanical systems (UMSs), which are defined with fewer independent control 

inputs 𝑚 than the degree of freedom 𝑛, and as such 𝑘 = 𝑛 −𝑚 DOF cannot be 
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directly actuated. The terminology underactuation is referred to as the system which 
has a difference between the number of DOF and the number of control actions 
(Acosta et al., 2005). Studying underactuation in the context of locomotion, as 
reported in the seminal work (Spong, 1998), is likely to lead to an improved 
understanding of locomotion in biological systems. The applications of UMSs in 
real-life is extensive, including mobile robots (Z. Li et al., 2014), helicopters 
(Meza-Sánchez et al., 2011), underwater vehicles (Cui et al., 2010), legged robots 
(Ackerman and Seipel, 2013), aircrafts (Do, 2015), spacecrafts (Zou et al., 2011) 
and flexible systems (Wang et al., 2013). Synthesis of the control systems for UMSs, 
according to the Brockett’s theorem (Brockett et al., 1983), is always challenging 
due to the non-holonomic property, complicated internal dynamics and 
unavailability of feedback linearizability. The existence of underactuation and other 
undesirable properties such as possessing an undetermined relative degree or being 
in a non-minimum phase, give rise to complex theoretical problems and less 
generality in which the conventional techniques are not directly applicable, 
particularly for the issues of trajectory planning and nonlinear control. Still, in spite 
of the challenges and difficulties, UMSs are excel in performing complicated tasks 
with a reduced number of actuators, which in turns imply the increased 
manoeuvrability, optimized energy consumption as well as reduced cost. However, 
as recently reported in (Shiriaev et al., 2014), it is always challenging to find an 
appropriate way to describe and characterize performance of the non-collocated 
subsystem due to the underactuation and dynamic couplings. 

Starting with this viewpoint, the motions with a repeated pattern at periodic 
intervals raise interests for various applications, for instance, walking or running of 
the biological systems under a regular pattern in their implementation. During the 
past few decades, significant devotions have been made from robotics and control 
communities towards the trajectory planning and nonlinear control of UMS, not just 
facing the theoretical challenges, but also towards the practical requirements. 
Among these studies, a class of UMSs that employ a pendulum or a system of 
pendulums attracts investigations to select different important nonlinear effects. 
Attentions have been extensively paid to the classical pendulum-like UMSs as 
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benchmarks, including the Acrobot (Xin and Yamasaki, 2012; A. Zhang et al., 2013), 
the Pendubot (Mathis et al., 2014; Ordaz et al., 2014; Xia et al., 2014; Xin et al., 
2013), the cart-pole system (Peters et al., 2010; Yih, 2013), the crane systems (Ning 
Sun et al., 2012; Sun et al., 2013; X. Zhang et al., 2014), the TORA (translational 
oscillator with rotational actuator) systems (Celani, 2011), Furuta pendulum systems 
(Chang, 2010; Freidovich et al., 2007). Besides, numerous applications of such 
systems are known in engineering, for instance, in vibro-absorption problems (Shi 
and Parker, 2012), in trajectory tracking control of pendulum-driven capsule systems 
(Y. Liu et al., 2011; Yu et al., 2008a). However, making a periodic motion trajectory 
through feedback laws has been proved to be essential for nonlinear control. And 
describing and characterizing the coupling behaviour, which are difficult and 
challenging, are of vital importance particularly for efficient trajectory planning. 
This is owing to the coupling system dynamics that make the related analysis a 
difficult task. In this research, it is found that the underactuated system dynamics are 
susceptible to the elastic coefficient and viscous coefficient, which are vital factors 
for energy consumption. As such, it is plausible to design a geometric analysis-based 
approach to project the dynamics onto a hyper-manifold that is affected qualitatively 
by the control parameters. Then, the issue of trajectory planning is converted into 
geometric analysis and trajectory optimization. This thesis proposes a novel 
characterization algorithm towards the dynamic couplings, and designs kernel 
practical control indexes in associate with viscoelastic property and the jag problem, 
and therefore constructs an analytical motion trajectory. 

For high fidelity engineering systems, accurate modelling or prediction of 
nonlinear friction force is a nontrivial while intractable aspect of scientific research. 
Conventionally, frictions are regarded as instabilities that need to be eliminated or 
compensated through control systems design. Conversely, for self-propelled robotic 
systems, friction plays pivotal roles in robot locomotion, the dynamic coupling 
between the driving mechanism and the robot are utilized to generate efficient 
stick-slip motions. Hence, accurate predictions of the dynamic interactions in the 
sticking, presliding and pure sliding regimes become crucial. Therefore, a robust 
friction model is required in practical engineering problems to capture several 
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experimentally observed dynamic phenomena reported in literature. Nevertheless, 
the static friction models solely consider the difference in velocities between two 
bodies in frictional contact, whilst the hysteretic loops and the drooping frictional 
characteristics in the regime with lower relative velocity are not captured. Therefore, 
this study proposes a combined physics-based and analytical-based approach to 
model the frictional dynamic interactions and identify the frictional limits for the 
static friction, the presliding regime and the pure sliding regime. It is the first time 
the dynamic frictional characteristics (non-reversible drooping and hysteretic) are 
studied towards the capsule systems. The proposed framework is an advisable 
benchmark to exploit the challenges in friction compensation and control of 
underactuated micro-robotic systems. 

The complexity of control problem related to UMSs can be reduced when the 
objective is to stabilize merely a subset of the system’s DOF. In the specialized 
literature, a great number of existing control system design for UMSs are based on 
the idea of linearization through partial feedback (Huda and Yu, 2015; Le et al., 
2012, 2014; Lee et al., 2013; Terry and Byl, 2014; Wu and He, 2016). Although 
linear systems could be suitably applied to capture the nonlinear dynamics at a 
certain local operation range, globally stabilization of the underactuated dynamics 
are still unavailable under this approach. Besides, practical requirements are raised 
from the current applications, in which the adaptability of UMSs is extremely 
crucial when facing environments with matched and mismatched uncertainties. 
However, it is difficult to get an exact dynamic model due to the presence of 
frictions, unknown disturbances, time-varying parameters, etc. It is noted that the 
descriptions of dynamic couplings between the actuated and passive subsystems of 
UMSs are typically highly nonlinear. Therefore, it is plausible to consider the 
employment of approximation approaches to map the coupling between the torques 
applied at the actuated subsystem and the resulting accelerations of the passive 
subsystem, with the intent of achieving control globally. The state-of-art literatures 
indicate that only a few works have addressed the problem of trajectory tracking 
control of UMSs. Note also that very few reported studies on this subject have 
presented rigorous analysis of the closed-loop system trajectories. Therefore, the 
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problem of trajectory tracking control of a class of UMSs with uncertainties is an 
open problem and requires in-depth investigations. This thesis proposes novel 
schemes to extend and encompass the adaptive control schemes from fully actuated 
systems to underactuated systems. Mismatched disturbances are considered in this 
research which are omitted in most of existing methods for the tracking control of 
underactuated systems. 

1.2 Aims and Objectives 

1.2.1 Research Aims 

In this research, the main focus is to address the problems that consider: (1) the 
proposal of a self-propelled robotic model drawing inspirations from the undulatory 
locomotion of nematode worm, (2) the planning of periodic motion trajectory that 
accommodates the bio-inspired viscoelastic property, (3) the prediction of dynamic 
compliance interactions that manipulate the stick-slip effects, and (4) the design of 
nonlinear and adaptive tracking control systems that can be used to accurately match 
the reference model in a finite-time horizon. A particular goal is to elaborate a 
framework that has the basis of the work presented here. Specifically, the aim of this 
research is to propose principles for: (1) design of motion principles for the 
bio-inspired robotic model, (2) systematic planning of periodic trajectory with 
bio-inspired viscoelastic property based on the dynamics of UMSs, (3) physical and 
analytical characterization of compliant interaction dynamics, and (4) design of 
nonlinear and adaptive tracking control systems.  

1.2.2 Research Objectives 

The objectives of this research project are: 

1. To investigate the state-of-art in the UMSs and bio-inspired approaches and 
identify the theoretical challenges and common difficulties (in Chapter 2). 

2. To study control systems for UMSs with underactuation degree one using 
coordinate transformation and decoupling (in Chapter 3). 
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3. To study the structural control properties of partial integrability and complete 
integrability of UMSs with underactuation degree one (in Chapter 3). 

4. To propose a novel self-propelled robotic model that draws inspirations from 
the undulatory locomotion of the nematode worm (in Section 4.2.1 of 
Chapter 4). 

5. To propose a novel and systematic algorithm for trajectory planning and 
control for a class of UMSs with bio-inspired viscoelastic property (in 
Chapter 4). 

6. To design 3D models and develop the prototype of the proposed vibro-driven 
model, and to conduct comparative experimental studies to verify the robotic 
model and motion principle (in Section 4.7 of Chapter 4). 

7. To perform combined physics-based and analytical-based analysis for the 
vibro-driven capsule system and develop mathematical model of the 
frictional interaction dynamics (in Section 5.2 of Chapter 5). 

8. To conduct analytical studies on the frictional interaction dynamics of the 
vibro-driven capsule system (in Section 5.3 of Chapter 5). 

9. To extends and encompasses the adaptive control schemes to stabilize the 
state space of a class of underactuated systems (in Chapter 6). 

10.  To counteract matched and mismatched disturbances, and function 
approximation error of a class of underactuated systems (in Chapter 6). 

1.3 Research Contributions 

Motivated by the aforementioned nontrivial challenges when confronting with the 
issues of modelling, bio-inspired design and bio-inspired control, trajectory planning 
and nonlinear control of the UMSs, this thesis specializes in the proposal of new 
benchmark models and development of novel algorithms for optimal and adaptive 
underactuated locomotion. The contributions are stated in detail below. 

The main contributions of Chapter 3 are to formulate the control problems for 
trajectory planning and tracking control of 2-DOF UMSs with underactuation degree 
one and conduct coordination transformation and decoupling of a class of 2-DOF 
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UMSs with PFL and PFL-free. The control properties of partial integrability and 
complete integrability of 2-DOF Class I, II UMSs have been investigated with some 
propositions. 

The main contributions of Chapter 4 are to propose a bio-inspired robotic model 
for underactuated vibro-driven microrobotic systems and to propose a novel 
geometric analysis-based trajectory planning approach with bio-inspired viscoelastic 
property. The main idea is to reduce the complexity and to characterize the coupling 
by imposing a harmonic drive and then to compute the dynamics projection onto a 
hyper-manifold, such that the issue of trajectory planning is converted into 
geometric analysis and trajectory optimization. An analytical two-stage velocity 
trajectory is developed based on the control indexes and dynamic constraints. A 
locomotion-performance index is proposed and evaluated to identify the optimal 
viscoelastic parameters. The trajectory is optimally parameterized through rigorous 
analytical-based analysis. Nonlinear tracking controllers are designed using 
collocated partial feedback linearization and variable structure control with an 
auxiliary control variable, respectively. For the sake of efficiency in progression and 
energy, the proposed method provides a novel approach in characterizing and 
planning motion trajectory for underactuated vibro-driven systems such that the 
optimal locomotion can be achieved. 

The main contributions of Chapter 5 are to propose a novel model and to 
analysis and characterise the dynamic frictional interactions of underactuated 
vibro-driven capsule systems with bio-inspired viscoelastic actuation. Up to now, 
most investigations in frictional interactions towards capsule systems were confined 
into static or quasi-dynamic circumstance, where it is difficult to facilitate online 
utilization and control. In this chapter, it is the first time the dynamic frictional 
characteristics (non-reversible drooping and hysteretic) are studied towards the 
capsule systems. Primary attention is devoted to the modelling and characterization 
of frictional interaction dynamics using a combined physics-based and 
analytical-based approach, in a manner that non-reversible characteristic for static 
friction, presliding as well as pure sliding regimes are revealed, and the frictional 
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limit boundaries are identified. Subsequently, the studies are mainly focused on 
numerical analysis and comparison of friction-induced vibrational responses and 
qualitative changes triggered by the control parameters in capsule dynamics. It is 
found that the models predict periodic responses for the parameters considered and 
the average capsule velocity can be controlled through proper tuning of the control 
parameter around identified control points. 

The main contributions of Chapter 6 are to propose adaptive control schemes 
for a class of UMSs with matched and unmatched disturbances. For fully actuated 
mechanical systems, adaptive stabilization of time–varying reference trajectories can 
be achieved (He et al., 2016b; Wang, 2016). However, the extension of these works 
to the underactuated case is not straightforward. This chapter extends and 
encompasses the adaptive control schemes to stabilize the state space of 
underactuated systems by designing auxiliary control variables that contain NN 
approximator and robust compensator. The parametric uncertainties, matched and 
unmatched external disturbances are considered in the controller design, which 
feature a generic model in the research of underactuated systems. The unmatched 
disturbances have been neglected in most of existing methods for the tracking 
control of underactuated systems. Robust compensators are designed to counteract 
matched and unmatched disturbances, and function approximation error of NNs and 
nonlinear frictions. The tracking error can be reduced as small as desired in finite 
time by selecting appropriate controller parameters. 

1.4 Structure of the Thesis 

The organization of the thesis is summarized as follows. 

Chapter 1 provides an introduction to the thesis. The background and research 
motivation for carrying out this study are explained, with reference to the state-of-art 
studies on UMSs. Subsequently, the overall aims and objectives, contributions of the 
study are stated. A list of publications is presented at the end of the chapter. 

Chapter 2 presents a systematic review of relevant studies from the literature. 
Concentrations are mainly placed on six categories. Elaborate reviews of state-of-art 
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in modelling, bio-inspired design and bio-inspired motor/behaviour control, periodic 
trajectory planning and nonlinear control techniques are investigated. Four identified 
key directions are thoroughly investigated towards the bio-inspired behaviour/motor 
control of underactuated robotics: (1) active impedance modulation/control for 
compliance interactions; (2) appropriate mechanical feedback for self-stabilization; 
(3) optimized morphological design for behavioural variability, and (4) optimal 
dynamics control for motor control learning. Undulation locomotion and serpentine 
robotic systems are investigated in this chapter. Challenges and future research 
trends are summarized. 

Chapter 3 studies nonlinear control problem of mechanical systems with 
underactuation degree one based on coordinate transformation of the UMSs with 
PFL and PFL-free approach. The control problems of trajectory planning and 
tracking control of UMSs are then formulated. The control properties of partial 
integrability and complete integrability of 2-DOF Class I, II UMSs are investigated 
by proposing some propositions.  

Chapter 4 proposes a bio-inspired robotic model of underactuated microrobotic 
system, develops a novel geometric-analysis based trajectory planning algorithm in 
the presence of viscoelastic property and constructs two nonlinear tracking control 
schemes. The non-collocated dynamic constraints are considered into the control 
indexes, wherein the viscoelastic modelling of actuation interaction plays vital role 
in the optimal control of stick-slip propulsion and the energy efficacy. The two-stage 
motion trajectory is constructed and synthesized based on the control indexes and 
lag problem consideration in control practice. The coupling and qualitative variation 
patterns between the driving mechanism and the unactuated cart progression are 
identified through rigorous geometric analysis in the phase plane. The control 
indexes and constraints are evaluated analytically, and the synthesized trajectory is 
further optimized and tuned via rigorous analysis on the base of system dynamics. 
Two tracking control schemes are constructed with rigorous convergence analysis, 
wherein an auxiliary control variable is designed for the adaptive variable structure 
control of underactuated system in the presence of parametric uncertainties. 
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Asymptotic stability and convergence of time-varying reference trajectories for the 
system dynamics are shown by means of Lyapunov synthesis. The effectiveness and 
efficacy of the proposed approach are verified via numerical simulations. The robot 
design, experimental setup and experimental results are presented to validate the 
proposed robotic model and locomotion principle. 

Chapter 5 studies the dynamic frictional characteristics for accurate prediction 
and control of a vibro-driven capsule model. A combined physics-based and 
analytical-based approach is proposed to the modelling and characterization of 
frictional interaction dynamics, as such, non-reversible characteristic for static 
friction, presliding as well as pure sliding regimes are revealed, and the frictional 
limit boundaries are identified. Subsequently, the studies are mainly focused on 
numerical analysis and comparison of friction-induced vibrational responses and 
qualitative changes triggered by the control parameters in capsule dynamics. The 
simulation results demonstrate good captions of experimentally observed frictional 
characteristics, quenching of friction-induced vibrations and satisfaction of energy 
requirements. The results suggested that the frictional interaction dynamics of the 
capsule systems for a wide range of vibrational behaviours can be predicted, and the 
vital importance of a concrete understanding and accurate description of the 
dynamic friction at the sliding substrate is highlighted. 

Chapter 6 proposes a systematic adaptive control scheme for a class of UMSs 
with matched and unmatched disturbances. Coping with the internal uncertain 
dynamics and external disturbances, adaptive neural network control schemes are 
developed with auxiliary control variables to close the unactuated feedback loops. 
RBF neural networks is adopted to approximate the nonlinearities of the 
non-collocated subset, the adaptive control algorithm is constructed to estimate the 
neural networks approximation error and the bounded unmatched disturbance. The 
combination of variable structure control, NN approximation and adaptive approach 
makes the constructed new controller more robust, and such errors resulting from 
trajectory tracking, parameter uncertainties, unmatched external disturbances as well 
as NN approximation are compensated. 
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Chapter 7 summarizes the entire thesis and future researches. The research aims 
and objectives of the PhD project are revisited. The future works are presented for 
the further studies. 

1.5 List of Publications 
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Chapter 2   

Literature Review 
 
 

2.1 Introduction 

There has been a surge of researches in the field of bio-inspired underactuated 
robotic systems aiming at significant improvement of the behavioural performances 
of the robots. Bio-inspiration implies the understanding of principles underlying the 
behaviours of animals and humans and transfers these principles into the 
development of robots. Biological systems naturally perform dynamic behaviours in 
complex environment with fantastic energy efficacy, adaptability and robustness. 
Active dynamic compliance is created and enhanced from musculoskeletal system 
(joint-space) to external environment (task-space) amongst the underactuated 
motions. Whilst the underactuated robotic systems are still lagging behind, in that 
their self-organisation and overall tasks must be achieved by coordinating the 
subsystems and dynamically interacting with the environment. Towards the 
discrepancy of behaviour/motor control in biological and robotic systems, 
underactuated robotic systems have attracted significant attentions for manoeuvrable, 
efficient, and adaptive behaviours in the real world. One important question to raise 
is: How can we design control systems to achieve efficient locomotion, while adapt 
to dynamic conditions as the living systems do? 
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Underactuated systems are characterized with fewer independent control inputs 
than configuration variables. Basically, the terminology underactuation describes the 
property of a system to have an input vector with smaller dimension than the output 
vector, meaning that the DOF cannot be fully controlled. UMSs are extensively 
utilized in the real-life, such as mobile robots (Z. Li et al., 2014), helicopters 
(Meza-Sánchez et al., 2011), underwater vehicles (Cui et al., 2010), legged robots 
(Ackerman and Seipel, 2013), aircrafts (Do, 2015), spacecrafts (Zou et al., 2011) 
and underactuated manipulators (Z. Li et al., 2014). The origination of 
underactuation are generally diversified, including: (1) the natural dynamics of the 
system such as spacecraft, aircraft, helicopters, underwater vehicles; (2) by design 
for reduction of the cost or some practical purposes such as satellites with two 
thrusters and flexible-link robots; (3) be imposed artificially to create complex 
low-order nonlinear systems to gain insight into the control of high-order 
underactuated systems, e.g., the Pendubot (Xia et al., 2014), the Acrobot (A. Zhang 
et al., 2013), the TORA (Chen and Huang, 2012); and (4) the actuator failure. 

It is emerging that the relatively slow evolution of control algorithms for UMSs 
unmatches the rapid development of sophisticated prototypes, this inconformity 
makes researchers and practitioners seek feasible solutions when control is supposed 
to be a vital part of integrally functioning UMSs. To achieve a thorough 
understanding of UMSs, it is necessary to scrutinize from the dynamic 
characterizations in the forms of modelling, trajectory planning and nonlinear 
control of UMSs over the past decade. On the other hand, the complexity is 
increased by the restricted control authority, resulting into the non-effectiveness of 
the well-established classical control techniques such as feedback linearizability and 
passivity. Furthermore, practical requirements are raised from the current 
applications, for instance, the adaptability of UMSs when facing environments with 
uncertainties. These difficulties motivate the researchers and engineers all over the 
world devoting their endeavours into the issues of nonlinear control, stabilization as 
well as periodic trajectory generation, etc. However, despite these extensive studies, 
there are a few particularly significant challenges that are related to the control of 
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nonlinear dynamics derived from autologous compliance interaction between the 
subsystems and exogenous physical interaction with the environment. 

Although these problems and challenges are nontrivial, there are several 
potentially promising research directions which, we believe, significantly contribute 
to the progress in the exciting research domain of bio-inspired underactuated 
robotics. This chapter discusses four prevailing directions of research and 
technological challenges that will potentially lead to significant breakthroughs in 
dealing with bio-inspired underactuated systems. The references discussed in this 
chapter are selected with rationale for representing the critical information that 
delineate the state-of-art perspectives and addressing particular research issues and 
problems in underactuated systems. Figure 2.1 demonstrates the relationship of the 
four directions from the system level. The block region in purple presents the 
underactuated systems to be controlled, where the issues of modelling (in Section 
2.2) and bio-inspired design (in subsection 2.3.1) are discussed. The block region in 
blue shows the trajectory planning module where the periodic reference trajectory is 
generated, this module is discussed in Section 2.4. The block region in green 
demonstrates the control system for underactuated robotic systems, the studies on 
bio-inspired control and nonlinear control system design are investigated in 
Subsection 2.3.2 and Section 2.5, respectively. 

 

 Figure 2.1  Block diagram of trajectory planning and control of underactuated 
robotic systems 
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This chapter starts with the reviews of the latest studies on issues of modelling, 
bio-inspired design and bio-inspired control, planning of periodic trajectory and 
control system design from Section 2.2 to Section 2.5. Subsequently, challenges and 
future research trends are summarized in Section 2.6. Finally, confronting these 
difficulties and challenges, a summary of contributions of this study is presented in 
Section 2.8 as a trigger of the following chapters. 

2.2 Modelling of UMSs 

Before the motion/trajectory planning and control law design, different analytical 
solutions for robotic application have been developed through the understanding of 
the fundamental first principles which precisely portray the robot dynamics. 
Generally, a set of differential equations are formulated from the basis of 
mathematical models whose solutions predict the evolution of the configuration 
variables in time in the presence of a given sequence of external generalized forces 
which referred to as control input torques. Based on the conventional procedure to 
model the Euler-Lagrangian mechanical systems as shown in Appendix A, this 
section aims to shed light on the state-of-art in modelling issue of UMSs. 

Modelling of UMSs has been extensively investigated in various domains over 
the past decade, from prevailing benchmarks such as the cart-pole system (Peters et 
al., 2010; Yih, 2013) to novel underactuated systems (Huang et al., 2013; Huda and 
Yu, 2015; Liu et al., 2013b; Zhao et al., 2010). Most of the modelling studies have 
been conducted based on the model of fundamental Lagrangian mechanical system. 
However, many realistic and practical considerations have been simplified or 
omitted, for instance, modelling of the interactions with actuators, sensors, dynamic 
frictions, and (structured or unstructured) uncertainties and external disturbances. 
Towards this end, researchers have been trying to design plausible and efficient 
control systems that are able to guarantee the adaptability and robustness to the 
inaccuracies. Nevertheless, any achievement in adaptive and robust control becomes 
intractable due to the underactuated dynamics. Therefore, modelling of the UMSs in 
a systematic way becomes a nontrivial issue. 



Chapter 2: Literature Review 
 

18 
 

For high fidelity engineering systems, accurate modelling or prediction of 
nonlinear frictional dynamics has always been a nontrivial while intractable aspect 
of scientific research. Conventionally, frictional instabilities are required to be 
eliminated or compensated through efficiently designed controllers. Simplified static 
friction model using the Rayleigh dissipation function (see Figure 2.2 (b)) has been 
employed in a very few literatures (Minguzzi, 2015; Sarracino et al., 2013), in which 
the friction force was considered proportional to the velocity of the object. 
Subsequently, accompanied by the requirements of underactuated systems in the 
industrial applications, substantial efforts have been devoted to the modelling of 
more realistic frictions for practical control purposes (Armstrong-Helouvry, 2012; 
Freidovich et al., 2010; Lee et al., 2011; Na et al., 2014). The dynamic friction 
model proposed in these works normally refers to as the LuGre friction model, 
which is capable of reproducing some of the observed friction distinctive behaviour, 
such as hysteresis, Stribeck effect and Coulomb friction. A discontinuous friction 
model was applied on the unactuated joint in (Martínez and Álvarez, 2012) for a 
class of 2 DOF UMSs, which was based on the Coulomb friction model (Figure 2.2 
(a)).  

Recently, a modified nonlinear friction model based on the LuGre model  
utilized for the passivity-based control of UMSs was proposed in (Cornejo and 
Alvarez-Icaza, 2011). And the passivity-based control law together with the 
interconnection and damping assignment was successfully demonstrated by an 
underactuated double pendulum with friction effect. For more realistic application, 
the considerations of modelling the frictions need to be more practical. As promising 
underactuated microrobotic models, the capsule robotic systems have attracted 
significant interest in various applications such as medical assistance (Carpi et al., 
2011; Ciuti et al., 2010; Huda and Yu, 2015; Tianjia Sun et al., 2012; C. Zhang et al., 
2014a), pipeline inspection (Lai et al., 2010; Perelman and Ostfeld, 2013; Yusupov 
and Liu, 2016), maritime search (Matos et al., 2013), etc. For self-propelled capsule 
systems, friction plays pivotal roles in capsule propulsion and locomotion, 
particularly for the vibro-driven underactuated systems considered in this thesis, the 
dynamic coupling between the driving mechanism and the system body are utilized 
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to generate efficient stick-slip motions. Hence, accurate prediction of dynamic 
interactions in the sticking, presliding as well as pure sliding regimes becomes 
crucial. 

 

Figure 2.2  Friction models for locomotive systems: (a) the Coulomb model; (b) the 
Coulomb viscous damping model; (c) Stiction plus Coulomb and viscous friction; (d) 

seven-parameter model (Olsson et al., 1998). 

 

The uncertainties and disturbances are other important issues need to be 
considered in modelling of UMSs, which contain parameter uncertainty, 
environmental noises and uncertain perturbations. The inclusion of disturbances and 
uncertainties in the system dynamics has always been one of the pivotal issues 
particularly in the control system design. During the past years, the development of 
control algorithms is accompanied with the deepening understanding and improving 
of robustness in the presence of various type of uncertainties and disturbances. 
Among them, most of the researches modelled the system dynamics considering 
relatively simple parameters with uncertain boundaries (Mohanty and Yao, 2011; 
Zeinali and Notash, 2010) and utilized robust control approach. More recently, the 
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issues of robust tracking control for an underactuated surface vessel with parameter 
uncertainties was addressed in (Yu et al., 2012). For nonholonomic mobile 
manipulators with an underactuated joint, adaptive motion/force control by dynamic 
coupling and output feedback is considered by (Li et al., 2010), in the presence of 
parametric and functional uncertainties.  An integral sliding-mode controller was 
proposed in (Xu et al., 2014) on a two-wheeled mobile robot with the friction 
modelled as the combination of viscous friction and Coulomb friction. Most of the 
studies were conducted from the viewpoint of control, i.e. developing robust 
controllers for UMSs with uncertainties, however, relatively a few considerable 
works took this issue to the modelling stage. 

To sum up, the issue of modelling of UMSs dynamics is still challenging in 
accurately represent the interactions with actuators, sensors, dynamic frictions, and 
(structured or unstructured) uncertainties and external disturbances. 

2.3 Bio-Inspired Design and Bio-Inspired Control 

2.3.1 UMSs with Bio-Inspired Viscoelastic Property 

Nature has always been a source of inspirations and ideas for researchers and 
practitioners from robotics and control communities. The terminology 
bio-inspiration implies the understanding of fundamental principles that underlie the 
motions/behaviours of animals and humans and transfers these principles into 
development of robotic systems. For example, during walking, the muscles 
constantly change their stiffness and damping when the leg is swinging forward and 
the foot is put on the ground. This idea enables explorations in robotic systems with 
flexible elements—viscoelasticity to mimic the compliant motion of biological 
muscles. 

During the past few decades, the effective utilizations of flexible elements into 
the robotic locomotion have attracted significant interests. The motivations are 
diverse, for instance, to build up safer interactions with humans (Argall and Billard, 
2010; Ulmen and Cutkosky, 2010; Wolf et al., 2015), to improve the model accuracy 
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of the robotic systems (Moreira et al., 2014; Wang et al., 2013), to achieve higher 
level of manoeuvrability, high bandwidth mechanical compliance 
(Chanthasopeephan et al., 2014; Miyata et al., 2016), flexibility, agility, 
controllability, adaptability, and efficacy in fulfilling large scope of tasks in 
unstructured and hazardous environment (Grebenstein et al., 2011; Kolhe et al., 
2013; Lam and Xu, 2011; Shang et al., 2011). The DLR hand arm system as shown 
in Figure 2.3 has Series Elastic Actuators (SEAs) that employ compliant and flexible 
elements (e.g., springs) at the joints. 

 

Figure 2.3  The DLR hand arm system (Grebenstein et al., 2011) 

 

Extensive endeavours have been devoted to these research domains. The online 
estimation problem of transmission stiffness in robots driven by variable stiffness 
actuators in antagonistic or serial configuration was studied in (Flacco et al., 2012) 
without the need for joint torque sensing. A viscoelastic models were proposed in 
(Nguyen et al., 2014) for a soft robotic mechanism horizontally actuated by two 
dielectric elastomer actuators. To maximize the energy dissipated in transparent 
laminates under low velocity impact, a genetic algorithm was employed in (Antoine 
and Batra, 2015) to optimize a model built as thermo-elasto-visco-plastic materials. 
In the presence of hysteresis and friction, the impact on stiffness and damping 
characteristics of elastic robot joints were discussed in (Ruderman, 2012). To design 
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an optimal motion trajectory of flexible mobile manipulators, Pontryagin’s minimum 
principle was adopted in (Korayem et al., 2012) and the optimal control issue was 
converted into a two point boundary value problem. However, for locomotive 
systems, the challenges are remained in how to achieve a systematic way of utilizing 
the system dynamics in the forms of optimally synthesized trajectory and effectively 
designed controller, particularly in the presence of viscoelasticity. Structural simple 
systems may behave rich system dynamics, and a tiny parameter variation may lead 
to qualitative changes of the system outputs.  

Recently, along with the practical requirement of engineering applications and 
the rising research interest in nonlinear dynamics, the vibro-impact characteristic of 
active mechanisms have been widely applied to a large range of practical 
mechanical systems. During these applications, correlative relationships between the 
model parameters and dynamic performance can be achieved. Driven by external 
harmonic excitations, these implementations are capable of motions such as 
rectilinear (Liu et al., 2013a; Pavlovskaia et al., 2015), unidirectional (Pavlovskaia 
and Wiercigroch, 2003) and bidirectional (Liu et al., 2013b) by utilizing a 
periodically driven mass/inertia interacting with the main body. A newly developed 
three masses model was analysed and compared with a low dimensional model in 
(Pavlovskaia et al., 2015). More interestingly, the authors considered three main 
control parameters which were referred to as the applied static force, the amplitude 
and the frequency of the applied dynamics force, which were optimally chosen 
through the higher dimensional model simulations. As an practical application in 
robotics domain, the vibro-impact dynamics of a capsule robot was studied in (Liu et 
al., 2013b; Y. Liu et al., 2015), which consists of a capsule main body interacting 
with an internal mass driven by a harmonic excitation. It is revealed in (Liu et al., 
2013b) that the system response are mainly periodic and the best progression can be 
determined by a careful choice of the system parameters. In the presence of various 
friction models, the qualitative changes in the capsule dynamics were studied in (Liu 
et al., 2013a) such that directional control of the system was achieved. Notably, the 
dynamic models developed by these works have been proved to be useful for 
uncovering the interactive dynamic performance of such systems in real-world 



Chapter 2: Literature Review 
 

23 
 

applications. Moreover, the related studies have contributed abundant information of 
the fundamental characteristics to the non-smooth motions of practical mechanical 
systems especially with impacts. It is important to note that most of these researches 
are, in nature, based on linear motions with the consideration of viscoelastic 
characteristic. However, for the systems that are intrinsically nonlinear, limited 
studies have been considered modelling, analysis and optimal parameter selection 
for active rotational motions with viscoelastic properties.  

 

Figure 2.4  Physical model of the vibro-impact capsule system (Liu et al., 2013b) 

 

It is well known that incorporated with nonlinear elements, harmonically 
excited mass-spring-damper systems behave complex dynamics in their motion near 
resonant conditions (Nayfeh and Balachandran, 2008). Particularly when a 
pendulum is introduced, its geometric nonlinearity initially coupled with the 
rotational motion naturally induces the occurrence of quadratic nonlinearities. 
Extensive investigations have been carried out from a perspective of utilizing the 
pendulum in real environment which needs to be stabilized or neutralized, for 
example, effective vibration control of absorbers (Harne, 2013; Li et al., 2013; 
Weber, 2014), balance control of suspension system (C.-J. Huang et al., 2010; Lee 
and Kim, 2010) and human standing posture (Insperger et al., 2013; Kanamiya et al., 
2010), etc. However, the researches above are mainly restricted to the stability and 
dynamic behaviour of unforced systems, relatively few efforts have been devoted to 
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the nonlinear dynamic behaviour and efficient controller design of mobile 
mechanisms. 

2.3.2 Bio-Inspired Behaviour/Motor Control 

Biological systems naturally exhibit energy efficient, robust and adaptive behaviours 
in complicated environment, whilst the robotic systems we have are still suffering 
from insufficient capabilities of sensory-motor and learning. To bridge the gap 
between biological and robotic systems in behaviour control, there has been a surge 
of research interest in underactuated robotic systems operating in the real world.  

Due to the nature of UMSs, the behaviours of underactuated robots are 
constrained by their passive dynamics, which characterize the motion control in 
biological systems (Iida, 2009). The passive dynamics bring three advantages: (1) 
most of the behaviours of underactuated robots are regulated by passive dynamics 
due to less number of motors, e.g. Passive Dynamic Walkers (Y. Huang et al., 2010; 
Wang et al., 2010); (2) the locomotion velocity is plausible to be improved through 
exploiting the passive dynamics, and the limitation on maximum speed of each 
actuator can be sufficiently relaxed; (3) UMSs have simpler mechanical structures 
and therefore control architectures on account of less number of motors and sensors. 
Therefore, it is plausible that underactuated robots achieve controlled behaviours 
and self-adaptability as their biological counterparts through appropriate exploration 
in their passive dynamics. 

A. Active Impedance Modulation/Control for Compliance Interactions 

It is well-established that appropriate utilization of impedance modulation/control is 
able to improve the interaction ability of robotic systems through modulating high 
mechanical impedance. Over the years, it has attracted significant research interests 
in the domains where the robotic systems are required to work in close vicinity or 
interact with the unknown and dynamic environments or humans.  

Active impedance modulation/control is when an actuator mimics the 
impedance behaviour using software control. Based on the measured output state, a 
correction is calculated by the controller and set by the (stiff) actuator. An advantage 
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of controlled impedance is that it can adapt both the damping and stiffness 
(contributing to the impedance of the system) online and this in a theoretical infinite 
range and with infinite speed (Vanderborght et al., 2013). A novel human-like 
learning controller to interact with unknown environments was proposed in (Yang et 
al., 2011), which can deal with unstable situations that are typical of tool use and 
gradually acquire a desired stability margin. (Hussain et al., 2013) presented an 
adaptive impedance control scheme adapts the robotic assistance according to the 
disability level and voluntary participation of human subjects. An impedance model 
with virtual force was considered in (Yang et al., 2013) to design the model 
reference control of robot dynamics, which provides a kind of cushion effect 
(compliance) for better user experience. 

Noted that the determination of the architecture of active impedance control is 
dramatically related to specific application and required performance of impedance 
regulation. The specifications include, naming a few, stability bandwidth, desired 
impedances, passivity, working frequency, and other mechanical and electrical 
features of the robotic systems. 

B. Appropriate Mechanical Feedback for Self-Stabilization 

Mechanical feedback is an important and useful notion that proposed and studied by 
many researchers from various fields of biological research. Its main idea is that 
many mechanical processes in biology effectively act to assist in the 
self-stabilization of tasks, and therefore, serve functionally as a first level of 
feedback control (Seipel, 2011). Using neural feedback has been proved insufficient 
to control many tasks of biological systems, and therefore more appropriate 
perspectives in feedback control in neuro-mechanical systems are needed when 
designing bio-inspired robot and control system architectures. 

It is plausible that the motions of underactuated robot are able to be 
mechanically regulated through appropriate design inspired from the biological 
systems. Mechanical feedback for self-stabilization in periodic motions has been 
proved applicable to different kinds of underactuated robot models. The study in 
(Collins et al., 2005) based on the Passive Dynamic Walker is a good example as 
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shown in Figure 2.5, which can walk on level ground and induce behaviour patterns 
with small active power sources substituted for gravity. More interestingly, the 
undesired motion deviations due to the robot-environment interactions can be 
mechanically regulated. 

 

Figure 2.5  Bipedal robots based on passive-dynamic walkers (Collins et al., 2005) 

 

C. Optimized Morphological Design for Behavioural Variability 

The nonlinear dynamics of underactuated robots that derived from their 
morphological constraints have attracted many research interests in to the modest 
control system design. Morphology plays a vital role in underactuated systems with 
respect to the behavioural variability, since many UMSs merely capable of limited 
periodic behavioural patterns (Iida, 2009).  

The study in (Collins et al., 2015) demonstrates reduction of the energy cost of 
human walking through designing and utilization of an unpowered exoskeleton. A 
lightweight elastic device was designed as shown in Figure 2.6 that acts in parallel 
with the user’s calf muscles, off-loading muscle force and thereby reducing the 
metabolic energy consumed in contractions. Interestingly, there is no mechanical 
work is done by the actuators, and the springs store and return energy through the 
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fact that the kinetic and potential energy of the body remain constant on average. A 
powered prosthetic ankle joint was designed in (Grimmer et al., 2016) for walking 
and running as shown in Figure 2.7. The active spring design improve the 
motion/behavioural variability in certain range and relax the limitations in positive 
work output of passive walking and running feet. These studies demonstrate how 
various kinds of motion/behaviour can be created through the robot nonlinear 
dynamics that are significant in the motion adaptability as well. It is noted that not 
only behavioural variability is achieved through appropriate computational 
procedure of the motor control, but also it is dramatically determined by the 
interaction dynamics with simple motor action and the reaction force from the 
environment. 

 

Figure 2.6  Unpowered exoskeleton design (Collins et al., 2015) 

One of the interesting challenges is how to generate desired and substantially 
different motor/behaviour patterns through appropriate design and control of the 
morphological parameters, e.g., coefficient of elasticity and viscosity. As such, new 
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optimal motion control schemes are to be constructed with energy efficiency and 
adaptability. 

 

Figure 2.7  Springactive Walk-Run ankle (Grimmer et al., 2016) 

 

D. Optimal Dynamics Control for Motor Control Learning 

The appropriate design of mechanical feedback for self-stabilization has been 
proved to be of great significance in the research of underactuated robotics, whilst 
the challenge in kinematic trajectory control is still an intractable issue due to the 
unactuated/passive dynamics. Towards this control problem, there has been a rising 
interest in utilization of computational optimization, which is able to tackle with the 
automatic reasoning of nonlinear dynamics through evaluation of single scalar value.  
A novel approach to reinforcement learning for parameterized control policies based 
on the framework of stochastic optimal control with path integrals was studied in 
(Theodorou et al., 2010). A method that learns to generalize parametrized motor 
plans by adapting a small set of global parameters was studied in (Kober et al., 
2012), called meta-parameters. The arm reaching dynamics was thoroughly explored 
in (Huang et al., 2012) to achieve reductions of metabolic cost during motor learning 
as shown in Figure 2.8. A method to learn discrete robot motions from a set of 
demonstrations was presented in (Khansari-Zadeh and Billard, 2011), global 
asymptotic stability at the target was guaranteed through defining of sufficient 
conditions. 
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Figure 2.8  Arm reaching experiment setup and force fields (Huang et al., 2012) 

 

The cutting-edge researches on motor control learning including control and 
trajectory planning have demonstrated significant preliminary steps in bio-inspired 
control of underactuated robotic systems, whilst there are several challenging issues 
need to be uncovered. The reduction of the number of trial-and error iterations is the 
nontrivial and intractable one. Towards this end, it is plausible to explore the design 
of more generalized state representations, and improvement in autonomy of 
mechanical model generation of the robot itself (Bongard et al., 2006). 

2.3.3 Undulatory Locomotion and Serpentine Robotic Systems 

Movement is one of the vital existential requirements of microbial and animal life 
on the earth. Many terrestrial animals adopt limbs to support their weight and to 
cope with the gravitational forces. Some smaller animals have employed a great 
number of forms that keep them close to the ground or even underground to 
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minimise the effects of gravity. Whilst flying, subterranean and marine animals have 
to deal with various kinds of physical environments.  

Undulatory locomotion is a primitive and relatively simple mode of locomotion 
that relies on the generation and propagation of waves along the animal body. It is 
remarkably widespread across a wide range of biological systems from motile 
bacteria and worms to snakes. It is evident that the body’s interplay with the 
physical environment is the key to undulatory locomotion. Various forms of 
undulations are adopted by animals, which can be categorized into direct (same as 
the motion direction) or retrograde (opposite to the motion direction), horizontal or 
vertical, and longitudinal or transverse. Generally speaking, retrograde waves are 
used to propagate opposite to the motion direction such that the body move in a 
given direction. Specifically, the environment applies forward forces to the body if 
the body wave travels backward. For example, some worms and protozoa, when 
their body is moving forwards or backwards, have their body lined with so-called 
‘bristles’ that jut out at right angles to the long axis and act as paddles to generate 
sufficient drag forces. 

It is evident that undulatory locomotion is typically constrained by frictional or 
drag forces of the physical environment rather than the gravitational forces. 
Significant endeavours have been made in the development of robotic systems with 
undulatory locomotion that is inspired from worms or snakes (Boyle et al., 2013; 
Liljebäck et al., 2012; Memon et al., 2014; Mohammadi et al., 2014), e.g., the 
worm-inspired robot as shown in Figure 2.9. These systems typically consist of a 
chain of rigid segments linked by articulated joints actuated by motors and normally 
restricted to planar bending motions. They propel themselves by changing their body 
configurations. The snake robot Anna Konda (Liljeback et al., 2006; Transeth et al., 
2008) is a typical example that is able to push against external obstacles apart from a 
flat ground and capable of obstacle-aided locomotion. There are also some robotic 
systems using alternative actuation systems such as pneumatics (Liljebäck et al., 
2005; Transeth et al., 2009) and shape-memory alloys (Liu and Liao, 2004; Yuk et 
al., 2011). 
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(a) Top-down 2-D schematic of the robot 

 

(b) Physical robot 

Figure 2.9  Worm-inspired robot (Boyle et al., 2013) 

 

The forward propulsion by means of undulatory locomotion requires the 
actuators are controlled in a manner that the propulsive wave propagates along the 
robot body, this feature is significantly different from the traditional wheeled, legged 
or tracked robotic systems whose forward motion is obtained simply by driving the 
motors on the wheel or leg. Therefore, undulatory locomotion has the potential 
capabilities of robustness and versatility with suitably designed control systems. 
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Undulatory rectilinear motion can be generally partitioned in two different 
forms: rectilinear motion using vertical waves as shown in Table 2.1 and rectilinear 
motion using expanding/contracting segments as shown in Table 2.2. 

 

Table 2.1 Undulation-based bio-inspired robots using vertical waves 
 
Robots/Features Bionic 

target 
Locomotion 

types 
Sensors Power 

supply 
Examples 

Inchworm robots Inchworm Extension & 
flexion; 

Autonomous. 

Tactile, 
infrared 

Tethered (Felton et al., 2013; 
Koh and Cho, 2013; 

Qiao et al., 2013; 
Wang et al., 2014) 

Snake robots Snake Obstacle-aided
; 

Autonomous. 

Visual 
camera 

Tethered (Liljeback et al., 
2006; Liljebäck et 

al., 2012; 
Mohammadi et al., 

2014; Transeth et al., 
2008) 

Reconfigurable 
robots 

Snake Sinusoid 
serpentine 

-like; 
Rolling track; 

Caterpillar-like
. 

Visual 
camera 

Electric
al 

module 
 

(Eckenstein and 
Yim, 2012, 2014) 

Modular robots Snake Serpentine 
-like; 

climbing, 
swimming & 
crossing gaps; 
Autonomous. 

Video 
camera 

Tethered 

 
(“Biorobotics Lab,” 

n.d.) 

 

To sum up, it is plausible that underactuated robots achieve controlled 
behaviours and self-adaptability as their biological counterparts through appropriate 
exploration in their passive dynamics. Viscoelastic property helps understanding the 
efficient, compliant and adaptive behaviours of biological systems through 
bio-inspired design of the underactuated robotic systems, the problem is how to 
realize optimal morphological design such that the behavioural variation can be 



Chapter 2: Literature Review 
 

33 
 

increased while maintaining fascinating characteristics of underactuated robotic 
systems? Besides, compliant interactions can be obtained through active impedance 
modulation/control, self-stabilization can be realized by appropriate mechanical 
feedback using passive dynamics and motor learning is important preliminary steps 
in bio-inspired control of underactuated systems. 

 

Table 2.2 Undulation-based bio-inspired robots using linear expansion 
 
Robots/Features Bionic 

target 
Locomotion 

type 
Sensors Power 

supply 
Examples 

Slim Slime robot Snake Snake-like 
creep; 

Snail-like 
pedal wave; 

Lateral rolling 
& pivot 
turning; 

Autonomous. 

Visual 
camera 

Tethered 

 
(Wright et al., 2012) 

Planar 
inchworm robot 

Inchwor
m/Snake 

Snake-like 
creep; 

Autonomous. 

Visual 
camera 

Tethered 

 
Planar Walker (Chen 

and Yeo, 2003) 
Self-Reconfigurab

le robots 
Snake Contracting 

/expending; 
Connecting/ 

disconnecting 
from 

neighbouring 
modules; 

Autonomous. 

Not 
reported 

Electric
al 

module 

 
SMORES (Davey et 

al., 2012) 
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2.4 Periodic Trajectory Planning 

Trajectory planning is a terminology that extensively used in robotics and control 
communities, which generally includes motion planning and trajectory optimization 
for the process of finding a feasible trajectory to fulfil certain tasks that minimizes or 
maximizes some measure of performance within prescribed constraint boundaries.  

The concentrations on periodic trajectory planning are twofold depending on the 
dimensions of the input space. For the mechanical systems whose DOF is equivalent 
to the dimensions of the input space (referred to as fully-actuated systems), the 
procedure of trajectory planning falls into the task of generating trajectories that 
integrally reveals the system dynamics and satisfies specific constraints, for instance, 
bounded input torques, constraints in various motion stages, obstacles avoidance in 
the work space. In terms of the motion execution, the feedback linearization 
technique which shed light on the tracking issue of a predesigned reference 
trajectory is convenient to be extended to more general cases. On the other hand, 
when the reduced dimensions of the input space appear, the underactuation is an 
essential factor needs to be considered, which makes finding a feasible trajectory for 
a specific task highly nontrivial. Moreover, it becomes more complicated in the 
presence of nonholonomic dynamic constraints (Li and Canny, 2012). 

Towards the issue of trajectory planning for UMSs, extensive efforts have been 
made in diverse ways. A feedback motion-planning algorithm was proposed by 
(Tedrake et al., 2010) to efficiently evaluate regions of attraction for smooth 
non-linear systems, which utilized rigorously computed stability regions to build a 
sparse tree of LQR-stabilized trajectories. Optimized adaptive control and neural 
network-based trajectory generation was studied in (Yang et al., 2013) for a class of 
wheeled inverted pendulum (WIP) models of vehicle systems for dynamic balance 
and motion tracking of desired trajectories. The proposed control method considers 
the presence of various uncertainties, including both parametric and functional 
uncertainties. An optimal offline minimum-time trajectory planning (MTTP) 
approach for underactuated overhead cranes was proposed in (X. Zhang et al., 2014) 
as shown in Figure 2.10, which simultaneously considers various constraints, 
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including the bounded swing angle for the payload, bounded velocity, acceleration, 
and even jerk for the trolley. A point-to-point motion planning algorithm was 
presented in (Zoso and Gosselin, 2012) that is based on the natural frequency of the 
pendulum-like free motion with unconstrained degree of freedom. The virtual 
holonomic constraint approach was utilized in (Meza-Sánchez et al., 2011) to 
generate the feasible periodic motion along a path founded through the computation 
of the reduced-order dynamics. Towards the nonholonomic constraints and nonlinear 
dynamic coupling, (Ryu and Agrawal, 2010) used a special inertia distribution on 
the manipulator arm to achieve the differential flatness property of mobile 
manipulators, such that the issues of trajectory planning and control were addressed. 
However, dynamic constraints and the evaluation of objective function may result in 
computational complexity and subsequent slow convergence, particularly in the 
presence of higher DOF and higher degrees of underactuation. 

 

Figure 2.10  Block diagram for planning and control of overhead crane 

Systems (X. Zhang et al., 2014) 

 

Kinematic coupling was elaborately considered in (Ning Sun et al., 2012) to 
plan the motion trajectory of overhead crane systems with the objectives of smooth 
trolley transportation and small payload swing. An anti-swing mechanism was 
developed into an S-shape reference trajectory based on analytical studies on the 
coupling behaviour between the payload and the trolley. The combined trajectory 
was tuned through a designed iterative learning scheme to ensure precise trolley 
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positioning. The trajectory planning scheme proposed in this study (as shown in 
Figure 2.11) was proved to be robust against payload variations, and it guarantees 
accurate trolley positioning and efficient swing elimination. However, globally 
describing and characterizing the coupling behaviour including kinematic and 
dynamic couplings, which are of vital importance particularly for efficient trajectory 
planning, are still difficult and challenging tasks for underactuated robotic systems. 

 

Figure 2.11  Overall block diagram for trajectory planning in the kth iteration (Ning 
Sun et al., 2012) 

 

Motion behaviours are important aspect to the trajectory of underactuated 
systems. A behaviour-based control approach was proposed in (Huda et al., 2014) 
for the trajectory tracking control of an underactuated planar capsule robot. The 
basis behaviours and required behaviour-sets to track the trajectory were elaborately 
defined in this study. Four motion behaviours, four switching behaviours and one 
stationary behaviour were proposed for the motion trajectory generation. A selection 
algorithm was designed to determine the appropriate behaviour-set to track each 
piece of the trajectory. Nevertheless, the issue of robustness to uncertainties and 
external disturbances were not investigated. 

There have been a rising research interests in employing limit cycle 
reshaping/control for trajectory planning of underactuated robots. This approach is 
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motivated by various practical engineering applications whose motion behaviours 
are repetitively, for instance, walking (Hu et al., 2011; Tlalolini et al., 2011), running 
(Haldane et al., 2013; Karssen and Wisse, 2011), etc. Limit cycles are periodic 
trajectories defined on the phase space, accordingly the utilization of limit cycles 
can be regarded as curve tracking in the phase space. The common difficulty exists 
in the determination of the existence of limit cycles for a given set of differential 
equations. It is also challenging to plan these periodic orbits as feasible trajectory 
candidates which can be served as the dynamic behaviour of the closed-loop system. 
The utilization of limit cycle control falls in to the existence of limit cycles and the 
orbital stability analysis. Confronting both tasks, Poincaré map analysis is a popular 
and promising approach. The method of Poincaré sections and return maps has been 
widely used to determine the existence and stability of periodic orbits in a broad 
range of system models. Poincaré maps are able to sample the solution of a system 
according to an event-based or time-based rule, and then evaluate the stability 
properties of equilibrium points (or fixed points) of the sampled system. Periodic 
solutions correspond to fixed points in Poincaré map. The stability of the periodic 
solutions can be guaranteed through the stability of the fixed points in Poincaré map 
which is determined by the eigenvalues of the Poincaré map linearized about these 
points. Inspired by this idea, extensive studies have been carried out, for example, 
(Erez and Todorov, 2012; Freidovich et al., 2009; Gregg et al., 2010; Grizzle et al., 
2001; Manchester et al., 2011; Plestan et al., 2003; Shkolnik et al., 2010). 
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Figure 2.12  A visualization of Poincaré surfaces and transverse linearization of a 
periodic orbit (red) and a trajectory converging to it (black) (Manchester et al., 2011) 

 

The comparison among trajectory planning algorithms based on key features is 
demonstrated in Table 2.3. 

To sum up, underactuated systems have reduced dimensions of the input space, 
thus underactuation is an essential factor needs to be considered, which makes 
finding a feasible trajectory for a specific task highly nontrivial. Moreover, it 
becomes more complicated in the presence of nonholonomic dynamic constraints 
(Li and Canny, 2012). Describing and characterizing the coupling behaviour 
including kinematic and dynamic couplings, which are of vital importance 
particularly for efficient trajectory planning, are still difficult and challenging tasks 
for underactuated robotic systems. 
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Table 2.3 Comparison among trajectory planning algorithms for UMSs based on key features 
 

Algorithms/
Features 

Controlled 
system 

Objectives Novelty Coping with 
uncertainties 

Holonomic/ 
Nonholonomic 

constraints 

Dynamic 
coupling 

Kinematic 
coupling 

Example Comments/ 
Demerits 

Feedback 
motion 

planning 

Constrained 
nonlinear 

system 

To build a 
sparse tree of 

LQR-stabilized 
trajectories 

LQR trees; 
Sums-of-squares 

method 

No No No No (Tedrake et 
al., 2010) 

Randomized 
motion 

planning 

NN-based 
trajectory 
generation 

WIP Dynamic 
balance and 

motion 
tracking 

Optimized 
trajectory model 

Yes Yes No No (Yang et al., 
2013) 

Implicitly 
controlled 

passive 
dynamics 

MTTP Overhead 
cranes 

Minimum-time 
trajectory 
planning 

State and control 
constraints 

Yes No No No (X. Zhang et 
al., 2014) 

Off-line 
trajectory 
planning 

Point-to-point 
planning 

Cable-suspend
ed robot 

Regulation of 
prescribed 

poses 

Natural frequency 
of unconstrained 

DOF 

No No No No (Zoso and 
Gosselin, 

2012) 

Unconstrained 
motion 

dynamics 
Periodic 
motion 

planning 

Underactuated 
helicopter 

Tracking of 
prescribed 

motion 
trajectory 

Virtual 
constraints-based 

approach 

Yes Yes No No (Meza-Sánc
hez et al., 

2011) 

Control 
problem of 
linearized 

system 
Kinematic 

coupling-based 
planning 

Overhead 
cranes 

Accurate 
trolley 

positioning 

S-shape reference 
trajectory with 

coupling 

No No No Yes (Ning Sun et 
al., 2012) 

Off-line 
trajectory 
planning 

Behaviour-bas
ed planning 

Planar capsule 
robot 

Tracking of 
predefined 

behaviour-sets 

Basis behaviours 
design 

Yes No No No (Huda et al., 
2014) 

Off-line 
trajectory 
planning 

Controlled  
Invariants 

UMSs Creation of 
invariants via 

feedback 

Reduction and 
representation 
of dynamics 

No Yes No No (Shiriaev et 
al., 2014) 

Virtual 
holonomic 
constraints 



 
Chapter 2: Literature Review 

 
 

40 
 

2.5 Nonlinear Control Systems Design 

The control of UMSs is an active domain of research in robotics and control 
engineering, which generates interesting topics and requires systematic nonlinear 
approaches. The difficulties of designing controller for UMSs are originated from 
the nature of underactuation, which results in the partially linearizable feedback. 
Some well-established approaches and properties of nonlinear systems such as 
feedback linearizability and passivity are not directly applicable in the presence of 
UMSs. The traditional approaches to nonlinear control laws design are, for instance, 
backstepping (Cheng et al., 2012; Hu et al., 2012; Taheri et al., 2014; Wai and 
Muthusamy, 2014), forwarding (Krupinski et al., 2012; Wang and Kosuge, 2012), 
predictive control (Ge et al., 2012; Oh and Sun, 2010; Yan and Wang, 2012), and 
SMC (J. Huang et al., 2010; Hwang et al., 2014; Xu et al., 2014; Yu et al., 2012). 
This is resulted from the fact that these approaches are unable to transform UMSs 
into cascade nonlinear systems. During the past decade, considerable nonlinear 
control algorithms have been developed for the underactuated characteristics based 
on passivity, feedback linearization, Lyapunov theory, etc. However, nonlinear 
control systems design for UMSs is still regarded as a major open challenge 
(Ashrafiuon et al., 2010; Jiang, 2010; Liu and Yu, 2013; Pfeifer et al., 2012; Xin and 
Liu, 2014). 

2.5.1 Classification 
Based on the introduction in Section 2.1, this subsection concentrates on the 
underactuation due to the origination that imposed artificially to create complex 
low-order nonlinear systems for gaining insight into the control of higher order 
UMSs. These systems are classified into two types in (Olfati-Saber, 2000) according 
to the object to be controlled, which are named as Type-I systems and Type-II 
systems. 
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Figure 2.13 The 3-DOF WIP model scheme (Yang et al., 2013) 

 

Type-I systems is defined as the UMSs that contain a pendulum or a system of 
pendulums, such as the Acrobot, the Pendubot, the IWP (inertia-wheel pendulum) 
system as shown in Figure 2.13, the rotating pendulum system, the cart-pole system, 
etc. Based on the system properties, the main control objective is to regulate the 
configuration variables asymptotically convergence to the set-point references. Two 
essential issues have been facing towards these UMSs. The first one is devoted to 
swing the pendulum from the hanging position to the upright position (Huang et al., 
2015; Tao et al., 2010; Xin and Yamasaki, 2012). The second issue is dealing with the 
problem of upward pendulum stabilization (Adhikary and Mahanta, 2013; 
Ramirez-Neria et al., 2014; Ravichandran and Mahindrakar, 2011), including 
stabilizing the system around its unstable equilibrium point, on condition that the 
pendulum is initially above the horizontal plane, or lies inside an open vicinity of zero, 
i.e. the attraction region of the closed-loop system. Numerous control schemes have 
been developed, e.g. Bang-Bang Control (Damadi et al., 2011; Kim and Turner, 2014; 
X. Zhang et al., 2014), Fuzzy Logic (Chang et al., 2013; Hwang et al., 2014; Z. Li et 
al., 2014; Petković et al., 2013b), energy based (Xin and Yamasaki, 2012), state 
feedback based (Anvar et al., 2010), Sliding Mode (Man and Lin, 2010), 
Backstepping , PID adaptive (Li and Xu, 2010), Time Optimal (Jiang and Jiang, 
2012), Switching (Ibanez et al., 2013), Neural Network (Zhang et al., 2011), 
Prediction (Mills et al., 2009), etc. The issues of trajectory planning and optimized 
adaptive control was investigated in (Yang et al., 2013) for a class of WIP vehicle 
models. Under the control objective of shaping the controlled vehicle dynamics with 
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minimized motion tracking errors and angular accelerations, the linear quadratic 
regulation optimization approach was employed to achieve an optimal reference 
model. Variable structure technique was used for adaptive control to guarantee the 
reference model to be accurately matched in a finite-time horizon, even in the 
presence of internal and external uncertainties. Interestingly, a neural network-based 
adaptive generator of implicit control trajectory of the tilt angle was proposed to 
indirectly manipulate the forward velocity. 

 
Figure 2.14 The VTOL aircraft (Hua et al., 2013) 

 

Type-II systems is defined as the UMSs that contain car-like subsystems such as 
the mobile robot (yue et al., 2010), VTOL aircraft (Hua et al., 2013) as shown in 
Figure 2.14, UAV (Raffo et al., 2011), underwater vehicles (Cui et al., 2010), etc. 
The control objectives of these kind of UMSs are to regulate the configuration 
variables asymptotically convergence to the predesigned trajectories. This trajectory 
tracking problem has twofold cases: kinematic tracking or dynamic tracking which 
is depended on whether the systems is represented by a kinematic or dynamic model. 
Some studies have been made on the kinematic tracking issue, for instance, (Chwa, 
2011; Ghommam et al., 2010; Ghommam and Saad, 2014; M. Huang et al., 2010). 
However, considering the tracking problem in a dynamics point of view is more 
realistic and practical than its kinematic counterpart, which needs to be uncovered 
elaborately. 
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2.5.2 Control Algorithms 

Definition 2.1. The set of DOF of UMSs can be partitioned into two subsets (Spong, 
1998), which referred to as collocated subset with its cardinality contains the 
actuated DOF and equals the number of control inputs; and non-collocated subset 
accounts for the remaining non-actuated DOF. 

A. Partial Feedback Linearization 

Partial feedback linearization (PFL) is an interesting property which can be applied 
for the control of UMSs. For UMSs with symmetry, the authors proposed natural 
global changes of coordinates according to the Lagrangian of the system that 
transform nonlinear models into strict feedback ones. PFL approach is presented in 
detail as follows. 

Lemma 2.1 (Spong et al., 2006): Consider the actuated configuration vector 𝑞2 in 
equation (A.11), there exists a global invertible change of control in the form below 

𝑢 = 𝛼1(𝑞)𝜏 + 𝛽1(𝑞, �̇�)                      (2.1) 

that partially linearizes the dynamics of equation (A.11) in the following form 

�̇�1 = 𝑝1                         (2.2a) 

            �̇�1 = 𝑓0(𝑞, 𝑝) + 𝑔0(𝑞)𝜏                  (2.2b) 

�̇�2 = 𝑝2                         (2.2c) 

�̇�2 = 𝜏                          (2.2d) 

where 𝛼1(𝑞) is a 𝑚 × 𝑚 positive-definite symmetric matrix and  

𝑓0(𝑞, 𝑝) = −𝐷11−1(𝑞)ℎ1(𝑞, �̇�)                 (2.3a) 

𝑔0(𝑞) = −𝐷11−1(𝑞)𝐷12(𝑞)                  (2.3b) 

The procedure of PFL using Lemma 2.1 is named as the collocated partial 
linearization, which copes with the dynamics of the actuated configuration vector. 
The advantages of the PFL are both a conceptual and a structural simplification of 
the control problem. It is always used as an initial simplifying step for reduction and 
control of underactuated systems, regardless of the method used for decoupling of 
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the actuated and unactuated subsystems. There are a few control approaches, such as 
energy-based control (EBC), adaptive control, and SMC have been developed based 
on the PFL technique. 

B. Energy-Based Control 

EBC is one of the most popular control approaches for UMSs particularly for the 
set-point regulation problem. This idea is originated from the energy existing in the 
system dynamics. Obtaining the derivative of total energy (Liu and Yu, 2013) gives 

�̇�(𝑞, �̇�) = �̇�𝑇[𝐵(𝑞)𝑢 − 𝜕𝑝(�̇�)
𝜕�̇�

] ≤ �̇�𝑇𝐵(𝑞)𝑢            (2.4) 

where �̇�(𝑞, �̇�) denotes the total energy of the systems, 𝑝(�̇�) is the dissipation 
term of UMSs, 𝐵(𝑞) is the input force matrix. (2.4) implies that the system is 
passive with respect to the input 𝑢 and output �̇�. As an essential characteristic of 
UMSs, the passivity enables the stable origin and existence of feedback control law 

for �̇�(𝑞, �̇�) ≤ 0. Therefore, passivity has always been a main property considered 
in energy-based control. The main idea of passivity-based control is to regulate the 
total energy of the system to the equivalent value of a desired equilibrium.  

Most EBC algorithms integrate with the PFL technique to deal with the 
swing-up control of the pendulum-like (Type-I) UMSs. Energy-based swing-up 
control was studied in (Xin and Yamasaki, 2012) for a remotely driven Acrobot 
which is a 2-link planar robot with the first link being underactuated and the second 
link being remotely driven by an actuator mounted at a fixed base through a belt. 
The global motion analysis was conducted based on the behaviour of the closed-loop 
solution and the stability of the closed-loop equilibrium points. An energy 
coupling-based output feedback control scheme was proposed in (Sun et al., 2013) 
for 4 DOF overhead cranes with saturated input constraints. The concept of virtual 
payloads was introduced with a designed energy storage function to efficiently 
explore the crane dynamics. A new energy shaping control design was presented in 
(Albu-Schäffer and Petit, 2012) for a class of underactuated systems including 
flexible joint robots, Series Elastic Actuators, and Variable Impedance Actuated 
Robots. Passivity property was utilized to conduct Lyapunov-based analysis for 
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arbitrarily low feedback gains. Interestingly, non-collocated feedback was 
considered for the control scheme to shape the kinetic energy of the system. 

C. Sliding Mode Control/Variable Structure Control 

In the control system construction, uncertainty is a common but intractable problem 
to be considered, particularly for UMSs. One of the notable forms is the 
discrepancies between the practical system and the theoretical model built up 
through some well-established principles. These discrepancies are mainly due to the 
unmodeled dynamics, parameter uncertainty and external disturbances. Therefore, 
adaptability and robustness have attracted significant interests from the control 
engineering community in the past decade. Among them, two of the main 
approaches are adaptive control (Dydek et al., 2013; Gribovskaya et al., 2011; He et 
al., 2016a; Park et al., 2010; Sun et al., 2011) and robust control (Fallaha et al., 2011; 
Fateh, 2012; Islam and Liu, 2011; Kolhe et al., 2013; Soltanpour et al., 2014).  

Robust control aims to make the system insensitive to all uncertainties using a 
fixed structure, but is only suitable for coping with small uncertainties. On the other 
hand, adaptive control uses on-line identification in which either the system 
parameters are identified using the predictive errors, or the controller parameters are 
adjusted using tracking errors. It is applicable to a wide range of parameter 
variations, but is sensitive to the unstructured uncertainties. 

The difficulty of control law designs for UMSs results from the reduced 
dimension of the input space, and it becomes folded when taking uncertainty into 
consideration. Thus, the control of UMSs with uncertainty has been received 
extensive attentions. One interesting approach is Sliding Mode Control (SMC), 
which is a specific type of Variable Structure Control (VSC). This method has been 
successfully applied to various UMSs. For example, an adaptive neural network 
sliding-mode controller design approach with decoupled method was proposed by 
(Hung and Chung, 2007), which presented a simple way to achieve asymptotic 
stability for a class of fourth-order nonlinear systems. SMC was employed to 
stabilize a class of underactuated systems which are in cascaded form in (Xu and 
Özgüner, 2008). A novel SMC method was introduced by (Park and Chwa, 2009) 
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based on the coupling sliding surface, the semi-globally asymptotically stable zero 
dynamics over the upper half-plane was generated. A cascade adaptive fuzzy 
sliding-mode control (AFSMC) scheme including inner and outer control loops is 
investigated in (Wai et al., 2008) for the stabilizing and tracking control of a 
nonlinear two-axis inverted-pendulum servomechanism. Hybrid controller design is 
developed by (Martinez et al., 2008) for a class of 2-DOF underactuated mechanical 
systems with dry friction in the joints. It is noted that both of the unactuated and 
actuated joints were regulated, and the convergence of error dynamics and 
robustness to small variations of Coulomb friction coefficients were guaranteed. A 
robust-velocity-tracking scheme was proposed in (J. Huang et al., 2010) using two 
SMC methods to deal with the parametric uncertainties and external disturbances. 
To suppress the pendulum sway motion of an offshore container crane in 
load/unload operations, (Ngo and Hong, 2012) designed a new mechanism for 
anti-sway control through a sliding surface design. Taking into consideration of 
frictions and uncertainties, A hierarchical sliding-mode under-actuated control 
scheme was developed in (Hwang and Wu, 2013) for trajectory tracking of a 
differential mobile robot. Direct and indirect reference inputs were elaborately 
planned with separately defined sliding surfaces for the collocated and 
non-collocated subsystems. 

D. Soft Computing-based Learning and Approximation 

Despite the sustained active research on control of underactuated robotics over the 
past decades, the key technical problems such as adaptive learning of varying 
nonlinear dynamics, the improvement of robustness, and the removal of effects of 
unmodeled dynamics, external disturbances and uncertainties remain to be the main 
research issues that have attracted consecutive attention. Extensive researches have 
been carried out towards these issues. One of the prevailing objectives is to make the 
existing controller more intelligent. Soft computing is regarded as one of the key 
future intelligent systems technologies and has been studied and applied in 
addressing different kinds of practical problems. As shown in Figure 2.15, it 
contains various advanced techniques such as Neural Networks (NNs), Fuzzy Logic 
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(FL), Evolutionary Computation (EC), which are paradigms for mimicking human 
intelligence and smart optimization mechanisms observed in the nature to solve 
problems that are too large or too complex to be solved with traditional techniques 
(Yu and Kaynak, 2009).  

Soft 
Computing

FL
Representing 
by quantifying

NNs
Approximation

EC
Random search 
using mutation, 

crossover 
operations

 

Figure 2.15 Soft computing techniques 

 

The structure of NNs is inspired by observed processes in natural networks of 
brain neurons as shown in Figure 2.16. The learning process is conducted by 
adjusting the weights which represent the interconnection strength of neurons based 
on specific learning algorithms. NNs have an inherent learning ability and are able 
to approximate a nonlinear continuous function to arbitrary accuracy. As such, a 
surge of researches has been devoted using NNs-based approach for underactuated 
robot control. An active adaptive NNs-based controller for WIP models was 
proposed in (Yang et al., 2014), wherein NN scheme was utilized for motion control 
of the actuated subsystem, and the passive subsystem was indirectly controlled 
through the dynamic coupling with the planar forward motion of its actuated 
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counterpart. The energy-based controller integrated with radial basis function (RBF) 
NN compensation was developed in (Xia et al., 2014) to swing up the Pendubot. In 
this study, NNs was employed to compensate the effect of dynamic friction of the 
system. Multiple underactuated underwater vehicles were considered in (Cui et al., 
2010), where the leader-follower formation control system was proposed using NNs 
to approximate model parametric uncertainties and unknown disturbances for the 
follower. 

 

Figure 2.16 Structure of the RBF neural network 

 

FL is a form of multivalued logic derived from fuzzy set theory to address 
vague instead of precise reasoning, wherein the degree of truth of a statement is 
ranging from zero to one. Fuzzy systems provide an alternative representation 
framework to present problems which are difficult to be expressed using 
deterministic and probabilistic mathematical models. As such, FL is chosen as one 
of the prevailing approximator for the control problems of UMSs. Nonholonomic 
mobile manipulator (as shown in Figure 2.17) was considered in (Z. Li et al., 2014) 
in the presence of parametric and functional uncertainties, and designed an adaptive 
control for the actuated subsystem using FL approximation. The reference trajectory 
was developed through FL-based motion generator, and the unactuated subsystem is 
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indirectly controlled through dynamic coupling. A Takagi-Sugeno-type FL controller 
was presented in (Xu et al., 2013) for a two-wheeled mobile robot to facilitate 
position control of the wheels while keeping the pendulum around the upright 
position. The proposed FL controller synthesizes the heuristic knowledge and the 
model information of the considered system. The output parameters of the controller 
are chosen through comparison of the output with a linear controller at certain 
operating points, which avoids the tedious manual tuning work. 

 

Figure 2.17 The mobile underactuated manipulator (Z. Li et al., 2014) 

To sum up, nonlinear control systems design for underactauted systems is still 
regarded as a major open challenge (Ashrafiuon et al., 2010; Jiang, 2010; Liu and Yu, 
2013; Pfeifer et al., 2012; Xin and Liu, 2014). The existence of underactuation and 
other undesirable properties like possessing an undetermined relative degree or 
being in a non-minimum phase, give rise to complex theoretical problems and less 
generality in which conventional techniques are not directly applicable. 
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Table 2.4 Comparison among nonlinear control algorithms for UMSs based on key features 
 

Algorithms/ 
Features 

Properties Adaptability 
to 

uncertainties 

Robustness 
to 

disturbances 

Merits Limitations/ 
Demerits 

Examples 

PFL Linearization for 
dynamics of the 

actuated/unactuated 
configuration vector 

Poor Poor A conceptual and a 
structural 

simplification of the 
control problem 

Low-level control (Huda and Yu, 2015; 
Le et al., 2014; Wu 

and He, 2016; H. Yu et 
al., 2008) 

EBC/ 
Passivity 

-based 
control 

Regulation of the total 
energy to the equivalent 

value of a desired 
equilibrium state 

Weak Weak Investigation in 
passive dynamics 

Conditions of passivity 
need to be satisfied 

(Cornejo and 
Alvarez-Icaza, 2011; 

Vakil et al., 2011; 
Valentinis et al., 2015; 
Venkatesh et al., 2013; 

Xin and Yamasaki, 
2012) 

SMC/VSC Alteration of the 
dynamics by applying 
discontinuous control 

signal 

Good Good Robust to input 
disturbances 

Control input chattering; 
Assumption of known 

uncertainty bounds 

(Hwang and Wu, 
2013; Ngo and Hong, 
2012; Soltanpour et 
al., 2014; Yu et al., 

2012) 
NNs-based 

control 
Approximation of 

nonlinear continuous 
function 

Good Good Learning ability; 
Arbitrary 

approximation 

Design of the NN 
structure; 

Determination of the 
NN parameters 

(Xia et al., 2014; 
Yang et al., 2013, 

2014) 

FL-based 
control 

Representation of 
nonlinear continuous 

function by 
quantification 

Good Good Learning ability; 
Arbitrary 

approximation 

Design of fuzzy rules (Hwang et al., 2014; 
Petković et al., 2013b; 
Wai et al., 2008; Yue et 
al., 2016; Zhang et al., 

2011) 
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2.6 Challenges and Future Trends 

2.6.1 Theoretical Challenges and Common Difficulties 

Based on the investigations in modelling, bio-inspired design and bio-inspired 
control, trajectory planning and nonlinear control of UMSs, we may observe that the 
evolutions of relevant techniques are relatively slower than the speed of 
development of sophisticated robotic prototypes. This drives us wonder that why 
this discrepancy exists when the above technical issues are supposed to be 
significant aspects of integrally functioning of UMSs. It is hypothesized that this is 
due to several challenges that are inherent to UMSs. 

Analysis of frictional interaction dynamics   As discussed in Section 2.2, for 
high fidelity engineering systems, accurate modelling or prediction of nonlinear 
friction force is a nontrivial while intractable aspect of scientific research. 
Conventionally, the frictional instabilities are required to be eliminated or 
compensated through efficiently designed controllers. For instance, the practical 
engineering problems historically reside in the circumstances where robust friction 
models with instabilities are essentially required. Therefore, accurate predictions of 
friction-induced dynamic responses in sticking, presliding as well as pure sliding 
regimes become crucial. Several friction models with an arbitrary 
degree-of-complexity (i.e. numbers of parameters to be identified and controlled) 
have been proposed in literature which incorporates varying physical phenomena 
corresponding to friction. However, an accurate representation of friction for given 
practical applications of UMSs is required to capture several experimentally 
observed dynamic phenomena reported in literature. The static friction models are 
merely determined by the relative velocity between surfaces in frictional contact, 
and the dropping friction characteristics in the low relative velocity regime and the 
hysteretic loops are not captured. 

Optimal morphological design with bio-inspired viscoelastic property   As 
discussed in Subsection 2.3.1, UMSs have a couple of beneficial properties 
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including mechanical self-stability, energy efficiency and manoeuvrability, however, 
there still remain some challenges that are related to optimal morphological design 
process of nonlinear mechanical dynamics and their robust and accurate control. To 
realize efficient trajectory planning and tracking control, bio-inspired morphology 
constraints need to be elaborately considered, such that the behavioural variation can 
be increased while maintaining fascinating characteristics of underactuated robotic 
systems. 

Efficient operation/locomotion   It implies efficient operation/locomotion during 
each motion cycle in terms of travelling distance and energy consumption, either for 
the Type-I UMSs (Kolhe et al., 2013; Mathis et al., 2014) that are fastened to the 
environment or, type-II UMSs that are designed to move and interact with the 
environment (Cristofaro et al., 2014; Pereira et al., 2014). The operation/locomotion 
index is typically set as distance-optimal or energy-optimal, as such, the challenges 
become how to generate optimal trajectory and how to design effective control 
system to satisfy the designed index. 

Dynamic coupling characterization with system performance   Describing and 
characterizing the coupling behaviour, which are difficult and challenging, are of 
vital importance particularly for efficient trajectory planning. Unfortunately, a 
majority of reported results in the literature, such as (Li et al., 2006; 2014; Yu et al., 
2008), are mainly devoted to the couplings characterization in part of the motion 
stage, the underactuated (passive) motion stage is usually neglected. This is mostly 
owing to the underactuated kinematic and dynamic coupling behaviours and the 
relevant analysis is a difficult and challenging task. Towards trajectory construction, 
it is worth mentioning that there are several significant studies for overhead cranes 
systems based on phase plane analysis of crane kinematics (Sun et al., 2011, 2012), 
whilst as locomotion systems, the locomotion-performance indexes (e.g., average 
locomotion velocity, energy efficiency) were not examined. Indeed, it is a tough task 
to achieve steady-state periodic motion of the driving mechanism and efficient 
system performance simultaneously. 
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Planning of optimal motion trajectories   Generating periodic motions that can 
be seen in various natural locomotion of biological systems has always been a 
challenging issue. UMSs have reduced dimensions of the input space, thus 
underactuation is an essential factor needs to be considered, which makes finding a 
feasible trajectory for a specific task highly nontrivial. Moreover, it becomes more 
complicated in the presence of nonholonomic dynamic constraints (Li and Canny, 
2012) and viscoelastic property (Korayem et al., 2012).  

Dealing with uncertainties and disturbances   Uncertainties in system dynamics 
are critical and challenging issues either for control design or for trajectory planning 
of the UMSs, including structured and unstructured uncertainties and time-varying 
matched and unmatched external disturbances. As such, the construction of adaptive 
control schemes or approximator-based (e.g., NNs, FL) approaches tends to be 
promising solutions. However, the uncertainty lies in different loops requires 
different treatments, especially in the non-collocated subset that is unmatched with 
the control action, which is nontrivial and intractable for adaptive control system 
design. 

2.6.2 Trends and Future Directions 

Through the investigations into the characteristics and state-of-arts of UMSs and 
bio-inspired approaches, it is apparent that studying on UMSs is meaningful and 
significant and has always been a popular and active domain of research in robotics 
and control communities. Based on the investigations, several essential research 
issues, trends and promising future research directions of UMSs are summarized and 
presented as follows. 

Novel bio-inspired design and development   With increasing requirements in 
real life, current machines and equipment become unable to satisfy new applications 
and new explorations. What can be further developed based on the current 
framework of UMSs to deal with the presence of new issues in real-life control 
systems? For example, the tasks of monitoring, sensing and intervention in narrow 
and restricted space such as pipeline that are inaccessible to human beings require 
the robot to undertake minimally invasive operation/locomotion. The robot therefore 
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needs to adopt some principles inspired from animals that excel in moving in such 
environments. Therefore, novel bio-inspired design and development of UMSs are 
required for a natural understanding of motion/behaviour principles of biological 
systems, the achievement in diversified motion/behaviour patterns of underactuated 
robotic systems. It is believed that this is a promising research direction of UMSs in 
applications in military, healthcare, medical assistance, industry, etc. 

Accurate modelling and prediction of dynamic frictional interactions   
Friction plays an important part in the motion of UMSs, however, it is easily ignored 
or simplified in the works during the past decades. Moreover, the investigation of 
nonlinearities of the friction effects is still open. Therefore, attentions are to be paid 
to the characterization of frictional dynamics. Besides, investigations from the 
viewpoint of chemical and material science are also promising directions to 
characterize the dynamic interactions with the environment. 

Analysis of underactuated dynamics with bio-inspired viscoelastic property   
For locomotive UMSs, there has always been a lack of thorough understanding of 
system dynamics and their efficient utilization. Therefore, efforts are to be made in 
how to achieve a systematic way of utilizing system dynamics in the forms of 
optimally synthesized trajectories and effectively designed controllers, particularly 
when bio-inspired viscoelastic elements are employed. Moreover, to the best of our 
knowledge, for the systems consisting of a pendulum or a system of pendulums that 
are essentially nonlinear, unfortunately, there is little analytical research. 

Optimal planning of periodic motion trajectories   Dynamical underactuated 
locomotion of robotic systems corresponds to the existence of limit cycles in the 
state space of the UMSs. The generation of periodic motion trajectory and the design 
of controllers that induce limit cycles, while a challenge in its own right, are made 
significantly even more difficult by the aforementioned difficulties. The objectives 
of optimal planning are typically containing time-optimal, distance-optimal and 
energy-optimal. Therefore, attentions are to be paid to how to construct the periodic 
motion trajectories and how to design efficient control laws that induces limit cycle 
locomotion and holds stability. 
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Adaptive control in the presence of matched and unmatched uncertainties   It 
is well-established that tracking control has always been a vital control issue of 
UMSs due to unknown unactuated trajectory, less control actuator, and nonlinear 
behaviour, etc. Compared with their fully-actuated counterparts, challenges still 
remain in trajectory tracking control of UMSs, particularly in the presence of 
matched and unmatched uncertainties. When the dynamic parameters are uncertain 
or unknown in practice, and kinematics relationship is not accurate, what adaptive 
control scheme is feasible for this nonlinear system where linear parameterization 
does not hold and linear structured adaptive control scheme is not valid. 

2.7 Conclusion 

This chapter has presented the state-of-art in UMSs and bio-inspired approaches 
over the past decade, including the research problems of modelling, bio-inspired 
design principles and bio-inspired motor/behaviour control approaches, periodic 
trajectory planning, and nonlinear control systems. Most of the modelling studies 
were conducted based on the model of fundamental Lagrangian mechanical system. 
Realistic and practical considerations need to be emphasized, for instance, models of 
the interactions with actuators, sensors, dynamic interactions with the environment, 
dynamic frictions, and (structured or unstructured) uncertainties and external 
disturbances.  

Flexible element—viscoelasticity is of vital significance to understand the 
compliant motion/behaviour of the biological muscles and biological system. The 
challenges are remained in how to achieve a systematic way of utilizing the system 
dynamics in the forms of optimally synthesized trajectory and effectively designed 
controller, particularly in the presence of bio-inspired viscoelastic property. The 
passive dynamics of underactuated robotic systems have three advantages: (1) most 
of the behaviours of underactuated robots are regulated by passive dynamics due to 
less number of motors; (2) the locomotion velocity can be improved through 
exploiting the passive dynamics, and the limitation on maximum speed of each 
actuator can be sufficiently relaxed; (3) UMSs have simpler mechanical structures 
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and therefore control architectures because less number of motors and sensors. 
Therefore, by appropriate exploration in the passive dynamics, underactuated robots 
can achieve controlled behaviours and self- adaptability as their biological 
counterparts through appropriate exploration in their passive dynamics. Motor 
control learning including control and trajectory planning are significant preliminary 
steps in bio-inspired control of underactuated robotic systems. As such, four 
identified key directions have been thoroughly investigated towards the bio-inspired 
behaviour/motor control of underactuated robotics. 

Periodic trajectory planning generally includes motion planning and trajectory 
optimization for the process of finding a feasible trajectory for the underactuated 
robots to fulfil certain tasks that minimizes or maximizes some measure of 
performance within prescribed constraint boundaries. The underactuation is an 
essential factor needs to be considered, which makes finding a feasible trajectory for 
a specific task highly nontrivial. Moreover, it becomes more complicated in the 
presence of nonholonomic dynamic constraints.  

This chapter also emphasizes on the nonlinear control problem of UMSs. The 
existence of underactuation gives rise to complex theoretical problems and less 
generality in which classical control techniques are not applicable. Global 
controllability and uncertainties are key issues for the nonlinear control system 
design of underactuated systems. The local controllability of the system can be 
obtained if the linearization of a nonlinear system at an equilibrium point is 
controllable. In the presence of uncertainties and disturbances, the linear 
parameterization does not hold and linear structured adaptive control scheme is not 
valid due to the inaccurate kinematics relationship. There are mainly two types of 
control problems for UMSs: stabilization control and trajectory tracking control. 
Extensive researches have been done towards the stabilization, however, trajectory 
tracking is still challenging. This research investigates the trajectory tracking 
problem of UMSs. 
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Chapter 3   

Control Systems for 2-DOF UMSs with 
Underactuation Degree One 
 
 

3.1 Introduction 

In this chapter, the control problems are formulated for a class of 2-DOF UMSs with 
underactuation degree one, the structural control properties are investigated for the 
ease of control systems construction. The system is of underactuation degree one, as 
defined in (Acosta et al., 2005), if the difference between the number of DOF and 
the number of control actions is one. The difficulties lie in the fact that reduced input 
space is less than the number of the system configuration to be controlled. Generally 
speaking, there are three typical control problems towards UMSs: 

1. Feedback stabilization: given a desired equilibrium configuration 𝑞𝑑, the 
control objective is to design a feedback control law that makes equilibrium 

state 𝑞 = 𝑞𝑑 and �̇� = 0 asymptotically stable; 

2. Trajectory planning: given an initial state (𝑞0, �̇�0) and a final desired state 
(𝑞𝑑 , �̇�𝑑), the control objective is to design a feasible trajectory 𝑞𝑑(𝑡) that 
joins the initial and the final states. 
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3. Trajectory tracking: given a feasibly designed trajectory 𝑞𝑑(𝑡), the control 
objective is to construct a feedback control system that makes the trajectory 
tracking error 𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡) converges to zero asymptotically. 

It is well-established that for fully actuated mechanical systems, the number of 
control inputs is equal to the dimension of the configuration manifold, thus these 
control problems are always solvable with convenient solutions. Specifically, for 
set-point stabilization and trajectory tracking, there always exists a nonlinear static 
state feedback that can transform the system into a linear controllable form. As for 
trajectory planning, any trajectory 𝑞𝑑(𝑡)  with arbitrary boundary velocities is 
feasible to interpolate 𝑞0(0) and 𝑞𝑑(𝑡) only if the condition of 𝑞(𝑡) is twice 
differentiable is satisfied. On the other hand, the mechanical systems with 
underactuation are the systems that the number of control inputs is less than the 
dimension of their configuration manifold. However, most studies on underactuated 
systems focus on set-point regulation, such as swing-up of the Acrobot (Xin and 
Yamasaki, 2012), the Pendubot (Xia et al., 2014), and the cart-pole system (Yih, 
2013), etc.  

This chapter is devoted to study the control problems for 2-DOF UMSs with 
1-DOF unactuated. The structural control properties are investigated for the ease of 
control systems construction. The issues of trajectory planning and tracking control 
are studied. The contributions of this chapter are summarized as follows: 

1. Coordination transformation and decoupling of a class of 2-DOF UMSs with 
PFL-free approach in the cascade form to satisfy the pure feedback 
condition; 

2. Formulating the control problems of trajectory planning and trajectory 
tracking towards 2-DOF UMSs; 

3. Studying the structural control properties of partial integrability and 
complete integrability. 

This chapter is organized as follows. Coordinate transformation of UMSs with 
PFL and PFL-free approaches are investigated in Section 3.2. In Section 3.3, the 
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control problems of feedback stabilization, trajectory planning and trajectory 
tracking for UMSs are formulated. In Section 3.4, some important structural control 
properties are investigated with emphasis on the partial and complete integrability. 
Finally, conclusions are given in Section 3.5. 

3.2 Coordinate Transformations of 2-DOF UMSs 

The PFL algorithm discussed in the previous chapter is utilized for coordinate 
transformation that facilitates control system design. In this section, decoupling of a 
class of 2-DOF UMSs with PFL and PFL-free are studied to formulate the control 
problems. The reason behind this consideration is that 2-DOF systems are 
well-established as benchmarks for the investigations in nonlinear control problems 
of UMSs, for instance, the cart-pole system, Acrobat, and Pendubot system. The 
transformation of 2-DOF underactuated dynamics with PFL is firstly studied, and 
then a system model transformation with PFL-free is presented. 

3.2.1 Transformation with PFL  

Based on the partially linearized dynamics (2.2), the following 2-DOF UMSs in 
general chained form is considered 

�̇�1 = 𝑝1                           (3.1a) 

�̇�1 = 𝑓0(𝑞, 𝑝) + 𝑔0(𝑞)𝜏                    (3.1b) 

�̇�2 = 𝑝2                           (3.1c) 

�̇�2 = 𝜏                           (3.1d) 

where 𝑞 = [𝑞1 𝑝1 𝑞2 𝑝2]𝑇 is the state vector defined in the Q-space for the sake of 
simplicity. It is noted that the control input exists in the two subsystems. Applying 
the coordinate transformation (Olfati-Saber, 2002) as 

𝑤1 = 𝑞1 − � 𝑔0(𝑠)
𝑞2

0
𝑑𝑠 

𝑤2 = 𝑝1 − 𝑔0(𝑞)𝑝2 

𝑤3 = 𝑞2 
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𝑤4 = 𝑝2                           (3.2) 

Subsequently, in the space defined by the state vector 𝑤 = [𝑤1 𝑤2 𝑤3 𝑤4]𝑇, the 
dynamics of (3.1) can be obtained through the time derivative of (3.2), we have 

�̇�1 = �̇�1 −
𝑑
𝑑𝑡
� 𝑔0(𝑠)
𝑞2

0
𝑑𝑠 

= 𝑝1 −
𝑑
𝑑𝑡
� 𝑔0(𝑠)
𝑤3

0
𝑑𝑠 

= 𝑤2 + 𝑔0(𝑤)𝑤4 −
𝑑
𝑑𝑡
� 𝑔0(𝑠)
𝑤3

0
𝑑𝑠 

�̇�2 = �̇�1 − 𝑔0(𝑞)�̇�2 −
𝑑𝑔0(𝑞)
𝑑𝑡 𝑝2 

= 𝑓0(𝑞, 𝑝) + 𝑔0(𝑞)𝜏 −
𝑑𝑔0(𝑞)
𝑑𝑡 𝑝2 − 𝑔0(𝑞)𝜏 

= 𝑓0(𝑤) −
𝑑𝑔0(𝑤)
𝑑𝑡 𝑤4 

�̇�3 = �̇�2 = 𝑝2 = 𝑤4 

�̇�4 = �̇�2 = 𝜏 

Put them collectively as 

�̇�1 = 𝑤2 + 𝑔0(𝑤)𝑤4 −
𝑑
𝑑𝑑 ∫ 𝑔0(𝑠)𝑤3

0 𝑑𝑠              (3.3a) 

�̇�2 = 𝑓0(𝑤) − 𝑑𝑔0(𝑤)
𝑑𝑑

𝑤4                    (3.3b) 

�̇�3 = 𝑤4                           (3.3c) 

�̇�4 = 𝜏                            (3.3d) 

As a result, it can be concluded that the decoupling is effective, as after the 

coordinate transformation from Q-space to W-space, there is no control signal 𝜏 
exists in (3.3a) and (3.3b).  
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3.2.2 Transformation with PFL-Free Approach 

The complete feedback linearization of UMSs, according to the Brockett’s theorem, 
is always unavailable. In Subsection 3.2.1, the transformation with PFL decouples 
the actuated subsystem into a double integrator. In this subsection, 2-DOF UMSs are 
transformed into a model with PFL-free approach. 

Consider the generic model of a class of 2-DOF UMSs in the form of (A.11) 
and after some reorganisation, gives 

𝐷𝑝𝑝(𝑞)�̈�𝑝 + 𝐷𝑝𝑚(𝑞)�̈�𝑚 + 𝐻𝑝(𝑞, �̇�) = 0              (3.4a) 

𝐷𝑚𝑝(𝑞)�̈�𝑝 + 𝐷𝑚𝑚(𝑞)�̈�𝑚 + 𝐻𝑚(𝑞, �̇�) = 𝜏              (3.4b) 

where 𝑞 = [𝑞𝑝 𝑞𝑚]𝑇 ∈ 𝑅2 , 𝐻𝑝(𝑞, �̇�) = 𝐶𝑝𝑝(𝑞, �̇�)�̇�𝑝 + 𝐶𝑝𝑝(𝑞, �̇�)�̇�𝑝 + 𝐺𝑝(𝑞)  and 

𝐻𝑚(𝑞, �̇�) = 𝐶𝑝𝑝(𝑞, �̇�)�̇�𝑝 + 𝐶𝑝𝑝(𝑞, �̇�)�̇�𝑝 + 𝐺𝑝(𝑞). 

From (3.4), we have 

�̈�𝑝 = −𝐷𝑝𝑝−1(𝑞)𝐷𝑝𝑚(𝑞)�̈�𝑚 − 𝐷𝑝𝑝−1(𝑞)𝐻𝑝(𝑞, �̇�)            (3.5) 

Substitute (3.5) into (3.4b), gives 

𝐷𝑚𝑝�−𝐷𝑝𝑝−1𝐷𝑝𝑚�̈�𝑚 − 𝐷𝑝𝑝−1𝐻𝑝� + 𝐷𝑚𝑚 + 𝐻𝑚 = 𝜏            (3.6) 

Take some convenient mathematical calculations, we have 

�̈�𝑚 = 𝑓𝑚(𝑞, �̇�) + 𝑔𝑝(𝑞)𝜏                    (3.7) 

where  

𝑓𝑚(𝑞, �̇�) = (𝐷𝑚𝑚 − 𝐷𝑚𝑝𝐷𝑝𝑝−1𝐷𝑝𝑚)−1[𝐷𝑚𝑝𝐷𝑝𝑝−1𝐻𝑝(𝑞, �̇�)− 𝐻𝑚(𝑞, �̇�)] 

𝑔𝑚(𝑞) = (𝐷𝑝𝑝 − 𝐷𝑝𝑝𝐷𝑝𝑝−1𝐷𝑝𝑝)−1
 

Subsequently, substitute (3.7) into (3.5) to obtain 

�̈�𝑝 = −𝐷𝑝𝑝−1𝐷𝑝𝑚[𝑓𝑚(𝑞, �̇�) + 𝑔𝑝(𝑞)𝜏] −𝐷𝑝𝑝−1𝐻𝑝(𝑞, �̇�) 

= −𝐷𝑝𝑝−1𝐷𝑝𝑚𝑓𝑚(𝑞, �̇�) −𝐷𝑝𝑝−1𝐻𝑝(𝑞, �̇�)− 𝐷𝑝𝑝−1𝐷𝑝𝑚𝑔𝑝(𝑞)𝜏 

Then �̈�𝑝 can be described in the form as 
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�̈�𝑝 = 𝑓𝑝(𝑞, �̇�) + 𝑔𝑝(𝑞)𝜏                    (3.8) 

where 

𝑓𝑝(𝑞, �̇�) = −𝐷𝑝𝑝−1𝐷𝑝𝑚𝑓𝑚(𝑞, �̇�) −𝐷𝑝𝑝−1𝐻𝑝(𝑞, �̇�) 

𝑔𝑝(𝑞) = −𝐷𝑝𝑝−1𝐷𝑝𝑝𝑔𝑚(𝑞) 

Put (3.7) and (3.8) collectively to represent the system as 

�̈�𝑚 = 𝑓𝑚(𝑞, �̇�) + 𝑔𝑝(𝑞)𝜏                   (3.9a) 

�̈�𝑝 = 𝑓𝑝(𝑞, �̇�) + 𝑔𝑝(𝑞)𝜏                   (3.9b) 

Define the state vector as 𝑞 = [𝑞1 𝑝1 𝑞2 𝑝2]𝑇 = [𝑞𝑝 �̇�𝑝 𝑞𝑚 �̇�𝑚]𝑇, we therefore 

have the system model in the Q-space as 

�̇�1 = 𝑝1                          (3.10a) 

�̇�1 = 𝑓𝑝(𝑞,𝑝) + 𝑔𝑝(𝑞)𝜏                   (3.10b) 

�̇�2 = 𝑝2                          (3.10c) 

�̇�2 = 𝑓𝑝(𝑞, �̇�) + 𝑔𝑚(𝑞)𝜏                   (3.10d) 

It is apparent that there are differences between the system model represented 
by (3.10) and the one described by (3.1) in Subsection 3.2.1. From (3.1c) and (3.1d), 
the actuated subsystem becomes a double integrator after the transformation with 
PFL, whilst with PFL-free transformation, nonlinearities arise in the actuated 
subsystem as shown in (3.10c) and (3.10d). Besides, the control signal of the 
actuated system in (3.1) has the constant coefficient 1, whilst the one in (3.10) is 
with the nonlinear coefficient 𝑔𝑚(𝑞) = −𝐷𝑝𝑝−1𝐷𝑝𝑝𝑔𝑚(𝑞). As a result, the decoupling 
approach utilized in (3.2) is not applicable here. Therefore, a new transformation is 
considered as follows 

𝑤1 = 𝑞1 − �
𝑔𝑝(𝑠)
𝑔𝑚(𝑠)

𝑞2

0
𝑑𝑠 

𝑤2 = 𝑝1 −
𝑔𝑝(𝑞)
𝑔𝑚(𝑞)𝑝2 
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𝑤3 = 𝑞2 

𝑤4 = 𝑝2                          (3.11) 

Then, in the space defined by the new state vector 𝑤 = [𝑤1 𝑤2 𝑤3 𝑤4]𝑇, the 
system dynamics described by (3.10) can be obtained through the time derivative of 
(3.11), gives 

�̇�1 = �̇�1 −
𝑑
𝑑𝑡
�

𝑔𝑝(𝑠)
𝑔𝑚(𝑠)

𝑞2

0
𝑑𝑠 

= 𝑝1 −
𝑑
𝑑𝑡
�

𝑔𝑝(𝑠)
𝑔𝑚(𝑠)

𝑤3

0
𝑑𝑠 

= 𝑤2 + 𝑔𝑝(𝑤)
𝑔𝑎(𝑤)

𝑤4 −
𝑑
𝑑𝑑 ∫

𝑔𝑝(𝑠)
𝑔𝑎(𝑠)

𝑤3
0 𝑑𝑠              (3.12a) 

�̇�2 = �̇�1 −
𝑔𝑝
𝑔𝑚

�̇�2 −
𝑑(𝑔𝑝/𝑔𝑚)

𝑑𝑡 𝑝2 

= 𝑓𝑝(𝑞, 𝑝) + 𝑔𝑝(𝑞)𝜏 −
𝑑 �

𝑔𝑝
𝑔𝑚
�

𝑑𝑡 𝑝2 −
𝑔𝑝
𝑔𝑚

[𝑓𝑝(𝑞, �̇�) + 𝑔𝑚(𝑞)𝜏] 

= 𝑓𝑝(𝑤) − 𝑔𝑝(𝑤)
𝑔𝑎(𝑤)

𝑓𝑚(𝑤) −
𝑑[
𝑔𝑝(𝑤)
𝑔𝑎(𝑤)]

𝑑𝑑
𝑤4           (3.12b) 

�̇�3 = �̇�2 = 𝑝2 = 𝑤4                    (3.12c) 

�̇�4 = �̇�2 = 𝑓𝑝(𝑞, �̇�) + 𝑔𝑚(𝑞)𝜏               (3.12d) 

Allocate the dynamics equations collectively as 

�̇�1 = 𝑤2 +
𝑔𝑝(𝑤)
𝑔𝑚(𝑤)𝑤4 −

𝑑
𝑑𝑡
�

𝑔𝑝(𝑠)
𝑔𝑚(𝑠)

𝑤3

0
𝑑𝑠 

�̇�2 = 𝑓𝑝(𝑤) −
𝑔𝑝(𝑤)
𝑔𝑚(𝑤) 𝑓𝑚(𝑤) −

𝑑[
𝑔𝑝(𝑤)
𝑔𝑚(𝑤)]

𝑑𝑡 𝑤4 

�̇�3 = 𝑤4 

�̇�4 = 𝑓𝑝(𝑤) + 𝑔𝑚(𝑤)𝜏                     (3.13) 



Chapter 3: Control Systems for 2-DOF UMSs with Underactuation Degree One 
 

64 
 

It is noted that the system dynamics in the W-space as shown in (3.13) only 

contains one control input 𝜏. The actuated subsystem in the W-space shares the 
same form with the one in the Q-space as shown in (3.10), while more complexities 
appear in the unactuated subsystem in the W-space. As such, the following 
definitions are given as 

𝒹1(𝑤) =
𝑔𝑝(𝑤)
𝑔𝑚(𝑤)𝑤4 −

𝑑
𝑑𝑡
�

𝑔𝑝(𝑠)
𝑔𝑚(𝑠)

𝑤3

0
𝑑𝑠 

𝒹2(𝑤) = 𝑓𝑝(𝑤) −
𝑔𝑝(𝑤)
𝑔𝑚(𝑤)𝑓𝑚(𝑤) −

𝑑 �
𝑔𝑝(𝑤)
𝑔𝑚(𝑤)�

𝑑𝑡 𝑤4 − 𝑤3 

𝒹3(𝑤) = 0 

𝒹4(𝑤) = 𝑓𝑝(𝑤)                        (3.14) 

Substitute (3.14) into (3.13), we have the system dynamics in the W-space as 

�̇�1 = 𝑤2 + 𝒹1(𝑤) 

�̇�2 = 𝑤3 + 𝒹2(𝑤) 

�̇�3 = 𝑤4 + 𝒹3(𝑤) 

�̇�4 = 𝒹4(𝑤) + 𝑔𝑚(𝑤)𝜏                    (3.15) 

From (3.15), it is plausible to design a control system to stabilize the system in 

the W-space through the unique control input 𝜏 in the actuated subsystem. It is 
obvious that 𝒹1(𝑤) and 𝒹2(𝑤) could be with high complexities such that the 
accurate forms are difficult to achieve. One plausible approach is to consider them 
as nonlinear uncertainties in the system, while they enter the system from the 
unactuated subsystem, meaning that they are unmatched with the control input. As a 
result, conventional control schemes are not feasible and applicable in this 
circumstance. In this thesis, an adaptive controller is firstly designed in this chapter 
to cope with the parametric uncertainties through realisation of the online update of 
the parameter values. 
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3.3 Control Problem Formulation 

In Section 3.2, coordinate transformations and decoupling for a class of 2-DOF 
UMSs with PFL and PFL-free approaches are investigated. In this section, the 
existence of uncertainties is studied to formulate the problem of control system 
design. Specifically, Subsection 3.3.1 demonstrates that, when the system model is 
transformed and decoupled with PFL, no uncertainty is contained in the system and 
needs to be coped with. In this circumstance, the control problem is solely confined 
into feedback stabilization, trajectory planning or trajectory tracking scheme design 
for UMSs without uncertainties. 

On the other hand, it is shown in Subsection 3.3.2 that the system with PFL-free 
transformation and decoupling generally allows the existence of uncertainties in the 
Q-space that features a generic significance of UMSs. As such, considerations in 
advanced control need to be taken to cope with the uncertainties. Finally, 
formulation of the control problems for n-th order UMSs is given in Subsection 
3.3.3. 

3.3.1 2-DOF UMSs Control System Design with PFL  

From Figure 3.1, the coordinate transformation and decoupling with PFL of the 
system from Q-space to W-space is summarized. The system dynamics in the 
Q-space and the W-space are represented by (3.1) and (3.3), respectively. The 

transformation law is described by (3.2). In the Q-space, one control signal 𝜏 
appears in both actuated and unactuated subsystems that formulate the underactuated 

dynamics; whilst in the W-space, 𝜏 only appears in the actuated subsystem that 
demonstrates the effectiveness of the decoupling. 
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Figure 3.1 The coordination transformation and decoupling of a class of 2-DOF 

UMSs with PFL approach 

 

It is evident that no uncertainty is contained in 𝑔0(𝑞) = 𝐷𝑝𝑝−1(𝑞)𝐷𝑝𝑚(𝑞) as seen 

from (3.1b), which guarantees the realizability of the coordinate transformation. It is 
noted that when using PFL, one assumption that all system parameters are known is 
given to facilitate the linearization of the system into a double integrator. In this 
regard, no uncertainty is contained in 𝑓0(𝑞,𝑝) either. This in turn implies that the 
following term needs to be known 

𝒷 = (𝐷𝑝𝑝 − 𝐷𝑝𝑝𝐷𝑝𝑝−1𝐷𝑝𝑝)−1[𝐻𝑝(𝑞, �̇�) −𝐷𝑝𝑝𝐷𝑝𝑝−1𝐻𝑝(𝑞, �̇�)]      (3.16) 

From the definition in (A.10), (3.16) is a function of 𝐻𝑚(𝑞, �̇�) and 𝐻𝑝(𝑞, �̇�), and 

therefore it is a function of the matrixes 𝐶(𝑞, �̇�) and 𝐺(𝑞). The initial matrix 𝐷(𝑞) 
is also needed to be available to obtain 𝒷. Therefore, it is concluded that the system 
in Q-space does not contain any uncertainty when PFL is utilized. 

3.3.2 2-DOF UMSs Control with PFL-Free Design 

From Figure 3.2, the coordinate transformation and decoupling with PFL-free design 
of the system from Q-space to W-space is summarized. The system dynamics in the 
Q-space and the W-space are represented by (3.10) and (3.13), respectively. The 
transformation law is described by (3.11). In the Q-space, one control signal 𝜏 



Chapter 3: Control Systems for 2-DOF UMSs with Underactuation Degree One 
 

67 
 

appears in both actuated and unactuated subsystems that formulate the underactuated 

dynamics; whilst in the W-space, 𝜏 only appears in the actuated subsystem that 
demonstrates the effectiveness of the decoupling. 

 

Figure 3.2 The coordination transformation and decoupling of a class of 2-DOF 
UMSs with PFL-free approach 

 

It is observed from the coordinate transformation law (3.11) that it contains both 

𝑔𝑝(𝑞) = −𝐷𝑝𝑝−1𝐷𝑝𝑝𝑔𝑚(𝑞)(𝐷𝑝𝑝 − 𝐷𝑝𝑝𝐷𝑝𝑝−1𝐷𝑝𝑝)−1  and 𝑔𝑚(𝑞) = (𝐷𝑝𝑝 − 𝐷𝑝𝑝𝐷𝑝𝑝−1𝐷𝑝𝑝)−1
, 

which have to be known. This in turn implies that the inertia matrix 𝐷(𝑞) is not able to 

contain uncertainties. Nevertheless, both 𝑓𝑝(𝑞, 𝑝) and 𝑓𝑚(𝑞, 𝑝)  in (3.10) can be 

independently transformed, therefore their availability can be guaranteed. 
Considering their precise forms as follows that  

𝑓𝑝(𝑞, �̇�) = −𝐷𝑝𝑝−1𝐷𝑝𝑚𝑓𝑚(𝑞, �̇�) −𝐷𝑝𝑝−1𝐻𝑝(𝑞, �̇�) 

𝑓𝑚(𝑞, �̇�) = (𝐷𝑚𝑚 − 𝐷𝑚𝑝𝐷𝑝𝑝−1𝐷𝑝𝑚)−1[𝐷𝑚𝑝𝐷𝑝𝑝−1𝐻𝑝(𝑞, �̇�)− 𝐻𝑚(𝑞, �̇�)] 

As a result, the matrixes 𝐻𝑝(𝑞, �̇�) and 𝐻𝑚(𝑞, �̇�) may have uncertainties. This in 

turns indicates that the matrixes 𝐶(𝑞, �̇�) and 𝐺(𝑞) may be unknown to us. Therefore, 

in this thesis, the system model without going through PFL approach is also considered 

in the presence of uncertainties to facilitate adaptive control scheme design. 
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3.3.3 Control Problem Formulation 

A. Trajectory Planning 

Trajectory planning for fully-actuated robotic systems consists of constructing a 
trajectory that satisfies system dynamics and various constraints, such as limitations 
in control torques and velocities, obstacle avoidance in the work space. As these 
systems are feedback linearizable at the motion execution level, thus the task of 
trajectory tracking of a constructed motion trajectory can be done by conventional 
approaches. However, robotic systems with passive (unactuated) DOF are generally 
restricted in feasible motions and their dynamics are typically not feedback 
linearizable, and the determination of efficient and optimal trajectories is a tough 
task. Thus, trajectory planning for UMSs is a highly nontrivial task due to the 
dynamic constraints. There is apparently a need for analytical approaches that 
simplify the motion trajectory planning and quantify the dynamic properties along 
the planned motions.  

Consider the 2-DOF UMSs dynamics as 

𝐷11(𝑞)�̈�1 + 𝐷12(𝑞)�̈�2 + 𝐻1(𝑞, �̇�) = 0 

𝐷21(𝑞)�̈�1 + 𝐷22(𝑞)�̈�2 + 𝐻2(𝑞, �̇�) = 𝜏 

Then the problem of trajectory planning is formulated as follows: 

Control Problem 3.1. Given a final time 𝑇 > 𝑡0 for one motion cycle and two 
system states 𝑞1 and 𝑞2, given arbitrary initial and final states, construct a feasible 
and optimal motion trajectory for the actuated subsystem that satisfy the above 
system dynamics and second-order dynamic constraints (motion-dependent velocity 
and acceleration constraints), and the optimization objectives of travel displacement 
and energy consumption can be achieved. 

In this thesis, a novel trajectory planning algorithm is proposed for a class of 
2-DOF UMSs as outlined in Section 3.5 and detailed in Chapter 4. The main idea is 
to reduce complexity and to characterize coupling by imposing a harmonic drive and 
then to compute the dynamics projection onto a hyper-manifold, such that the issue 
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of trajectory planning is converted into geometric analysis and trajectory 
optimization problems. 

B. Trajectory Tracking Control 

Synthesis of the tracking control systems for UMSs, according to the Brockett’s 
theorem, is always challenging due to the nonholonomic property, complicated 
internal dynamics and unavailability of feedback linearizability. Based on the 
absence and presence of uncertainties and disturbances, the tracking control 
problems studied in this thesis are two-folded. 

Control Problem 3.2. Consider the UMSs in the following form  

𝐷𝑛𝑛(𝑞)�̈�𝑛 + 𝐷𝑛𝑐(𝑞)�̈�𝑐 + 𝐶𝑛(𝑞, �̇�)�̇�𝑛 + 𝐺𝑛(𝑞) = 0            (3.17a) 

𝐷𝑐𝑛(𝑞)�̈�𝑛 + 𝐷𝑐𝑐(𝑞)�̈�𝑐 + 𝐶𝑐(𝑞, �̇�)�̇�𝑐 + 𝐺𝑐(𝑞) = 𝜏            (3.17b) 

where the subscripts “c” and “n” respectively indicate collocated and non-collocated. 

Suppose that the control objective is to let the system to follow a prescribed 

desired motion trajectory, in other words, to drive the system states 𝑞 = [𝑞𝑐 , 𝑞𝑛]𝑇 
to follow a prescribed path 𝑞𝑐𝑑 and 𝑞𝑛𝑑, respectively, and assume that 𝑞𝑐𝑑 and 
𝑞𝑛𝑑  are bounded in norm (‖𝑞𝑐𝑑‖∞ ≤ 𝜗1, ‖𝑞𝑛𝑑‖∞ ≤ 𝜗2 with 𝜗𝑚 , 𝑖 = 1,2 be the 
positive upper bounds of the desired reference trajectories) and uniformly 

continuous on ℛ+, and homogenously on the same set, its first and second order 
derivatives are well-defined, bounded and uniformly continuous.  

Introducing the trajectory tracking error as 

𝑞�𝑐 = 𝑞𝑐−𝑞𝑐𝑑, 𝑞�𝑛 = 𝑞𝑛−𝑞𝑛𝑑                    (3.18) 

It is noted that the design of 𝜗1 and 𝜗2 has to satisfy the zero dynamics as 

𝐷𝑛𝑐(𝑞)�̈�1 + 𝐷𝑛𝑛(𝑞)�̈�2 + 𝐶𝑛𝑐(𝑞, �̇�)�̇�1 + 𝐶𝑛𝑛(𝑞, �̇�)�̇�2 + 𝐺𝑛(𝑞) = 0 

(3.19) 

The tracking control problem is solvable if we can construct appropriate 
continuous or discontinuous time-varying feedback controllers, given prescribed 
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motion trajectories 𝑞𝑐𝑑  and 𝑞𝑛𝑑 , such that the closed loop system is globally 
asymptotically stable. 

In this thesis, this control problem will be investigated in Chapter 4, where the 
tracking error dynamics asymptotically stabilized.  

Control Problem 3.3. Consider the UMSs with parametric uncertainties and 
external disturbances in the following form  

𝐷𝑐𝑐(𝑞,𝛼)�̈�𝑐 + 𝐷𝑐𝑛(𝑞,𝛼)�̈�𝑛 + 𝐶𝑐𝑐(𝑞, �̇�,𝛼)�̇�𝑐 + 𝐶𝑐𝑛(𝑞, �̇�,𝛼)�̇�𝑛 + 𝐺𝑐(𝑞,𝛼) + 𝐹𝑣𝑐(𝛼)�̇�𝑐
+ 𝐹𝑐𝑐(𝑞, �̇�,𝛼) + 𝜏𝑑𝑐 = 𝜏 

(3.20a) 

𝐷𝑛𝑐(𝑞,𝛼)�̈�𝑐 + 𝐷𝑛𝑛(𝑞,𝛼)�̈�𝑛 + 𝐶𝑛𝑐(𝑞, �̇�,𝛼)�̇�𝑐 + 𝐶𝑛𝑛(𝑞, �̇�,𝛼)�̇�𝑛 + 𝐺𝑛(𝑞,𝛼)

+ 𝐹𝑣𝑛(𝛼)�̇�𝑛 + 𝐹𝑐𝑛(𝑞, �̇�,𝛼) + 𝜏𝑑𝑛 = 0 

(3.20b) 

with 𝑞 = [𝑞1, … ,𝑞𝑛]𝑇 ∈ ℛ𝑛  describes the vector of generalized configurations, 
𝛼 ∈ ℛ𝑝 is the vector of the unknown parameters of the system mainly including the 
base initial parameters and possible loading parameters (𝑝 indicates the number of 
uncertain parameters), 𝐷(𝑞,𝛼) ∈ ℛ𝑛×𝑛  is a symmetric, positive definite inertial 
matrix, 𝐶(𝑞, �̇�,Φ) ∈ ℛ𝑛 is the vector of centripetal and Coriolis matrix, 𝐺(𝑞,Φ) ∈
ℛ𝑛  is the gravitational torque/force, 𝐹𝑣(𝛼) ∈ ℛ𝑛×𝑛  denotes the viscous friction 
coefficients which is a positive definite matrix, 𝐹𝑐(𝑞, �̇�,𝛼) ∈ ℛ𝑛  models the 
nonlinear friction torques, 𝜏𝑑  denotes bounded unknown disturbances and 
unmodeled dynamics. 

Let the reference trajectory for the actuated and unactuated subsystems be 
descried by the vector-valued functions ‖𝑞𝑐𝑑‖∞ ≤ 𝜗1  and ‖𝑞𝑛𝑑‖∞ ≤ 𝜗2 , 
respectively, and assume that these functions are bounded in norm and uniformly 
continuous on ℛ+, and homogenously on the same set, its first and second order 
derivatives are well-defined, bounded and uniformly continuous. Introducing the 
trajectory tracking error as 

𝑞�𝑐 = 𝑞𝑐−𝑞𝑐𝑑, 𝑞�𝑛 = 𝑞𝑛−𝑞𝑛𝑑                   (3.21) 



Chapter 3: Control Systems for 2-DOF UMSs with Underactuation Degree One 
 

71 
 

which is to be asymptotically stabilized to zero without the knowledge of the system 

parameters 𝛼 . 𝜗1  and 𝜗2  are positive upper bounds of the desired reference 
trajectories. Noted that the design of 𝜗1 and 𝜗2 must satisfy the zero dynamics as 

𝐷𝑛𝑐(𝑞,𝛼)�̈�1 + 𝐷𝑛𝑛(𝑞,𝛼)�̈�2 + 𝐶𝑛𝑐(𝑞, �̇�,𝛼)�̇�1 + 𝐶𝑛𝑛(𝑞, �̇�,𝛼)�̇�2 + 𝐺𝑛(𝑞,𝛼)

+ 𝐹𝑣𝑛(𝛼)�̇�2 + 𝐹𝑐𝑛(𝑞, �̇�,𝛼) + 𝜏𝑑𝑛 = 0 

(3.22) 

The tracking control problem is solvable if we can construct appropriate 
continuous or discontinuous time-varying feedback controllers, given prescribed 
motion trajectories 𝑞𝑐𝑑 and 𝑞𝑛𝑑, such that the all the error signals in the closed 
loop system is globally asymptotically or exponentially stable.  

3.4 Control Properties of UMSs with 2-DOF 

In this section, some of the structural control properties of UMSs are investigated for 
the ease of facilitating feasible solutions towards the control problems formulated in 
Section 3.3.  

3.4.1 Constraint Integrability 

The integrability of constraints is one of the important control properties to be 
determined. If the constraints are completely integrable, some algebraic relations 
between the generalized coordinates can be obtained, such that the system 
dimension can be reduced through eliminating some of the generalized coordinates. 
Based on the integrability status of UMSs, the following definition is given 

Definition 3.1. (Raffaella and Oriolo, 2003) (Partial Integrability and Complete 
Integrability) The (n-m)-dimensional second-order differential constraint expressed 
by the unactuated subsystem in (A.11) is partially integrable to a set of 𝑛1 (0 <
𝑛1 < 𝑛 −𝑚) first-order differential constraints 

ℎ1(𝑞, �̇�) = 0 

or even completely integrable to a set of 𝑛2 ≤ 𝑛1 holonomic constraints 

ℎ2(𝑞) = 0 
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Definition 3.2. (Holonomy and Non-holonomy) An underactuated system is 
defined as holonomic if the constraint is completely integrable; it is defined as 
nonholonomic if the constraint is partially integrable or non-integrable. 

Consider the 2-DOF UMSs with configuration vector 𝑞 = [𝑞1 𝑞2]𝑇, and the 

system has kinetic symmetry with respect to 𝑞1, in other words, only 𝑞2 is contained 
in the inertial matrix, the system dynamics is in the following Class-I,II form 
(Olfati-Saber, 2000)  

𝐷11�𝑞2��̈�1 + 𝐷12�𝑞2��̈�2 + 𝐷′11(𝑞2)�̇�1�̇�2 + 𝐷′12(𝑞2)�̇�22 − 𝐺1�𝑞1,𝑞2� = 𝑢1  (3.23a) 

𝐷21�𝑞2��̈�1 + 𝐷22�𝑞2��̈�2 −
1
2
𝐷′

11(𝑞2)�̇�12 + 1
2
𝐷′

22(𝑞2)�̇�22 − 𝐺2�𝑞1, 𝑞2� = 𝑢2 (3.23b) 

where 𝐺𝑚(𝑞1, 𝑞2) = −𝜕𝑉(𝑞)
𝜕𝑞𝑖

, 𝑖 = 1,2 , 𝑉(𝑞)  denotes the potential energy of the 

system, the prime (′) represent 𝑑
𝑑𝑞2

. 

A. Partial Integrability 

Proposition 3.1. Given the underactuated system dynamics as (3.23), the 
second-order dynamic constraint is not integrable if 𝑢2 = 0. 

Proof. Consider the underactuated system dynamics as (3.23) with 𝑢1 = 𝑢 ≠ 0 and 
𝑢2 = 0. Then the dynamic equation of the unactuated subsystem is given by 

𝐷21(𝑞2)�̈�1 +  𝐷22(𝑞2)�̈�2 −
1
2
𝐷′

11(𝑞2)�̇�12 + 1
2
𝐷′

22(𝑞2)�̇�22 − 𝐺2(𝑞1,𝑞2) = 0  (3.24) 

It is noted that no input control signal appears in (3.24), it therefore can be 
regarded as a second-order dynamic constraint containing generalized coordinates 
and their first and second-order time derivatives. 

Take the following generic form for the first-order constraints as 

𝒻(�̇�,𝑞, 𝑡) = 0                         (3.25) 

Taking differentiation of (3.25) with respect to 𝑡, gives 

𝜕𝒻
𝜕�̇�
�̈� + 𝜕𝒻

𝜕𝑞
�̇� + 𝜕𝒻

𝜕𝑑
= 0                     (3.26) 
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For (3.24) to be integrable, it must have the equivalent structure with (3.26). 

Considering that 𝑡 does not exist explicitly in (3.24), it is plausible that the term 𝜕𝒻
𝜕𝑑

 

enters the system as a constant. Then we have 

𝒻(�̇�,𝑞, 𝑡) =  𝒻1(�̇�,𝑞) + 𝑐1𝑡                   (3.27) 

Taking differentiation of (3.27) with respect to 𝑡, gives 

𝜕𝒻1
𝜕�̇�
�̈� + 𝜕𝒻1

𝜕𝑞
�̇� + 𝑐1 = 0                   (3.28) 

Setting �̇� = 0, from (3.24) and (3.28), we have 

𝜕𝒻1
𝜕�̇�

= [𝐷21(𝑞2) 𝐷22(𝑞2)], 𝑐1 = −𝐺2             (3.29) 

It is noted that only 𝑞2 is contained in the inertia matrix, thus �̇� must appear 
linearly in 𝒻1(�̇�,𝑞). Accordingly, the following equation is obtained 

𝒻(�̇�,𝑞, 𝑡) = 𝐷21(𝑞2)�̇�1 + 𝐷22(𝑞2)�̇�2 + 𝒻2(𝑞)− 𝐺2𝑡       (3.30) 

Taking differentiation of (3.30) with respect to 𝑡, gives 

𝐷21(𝑞2)�̈�1 + 𝐷22(𝑞2)�̈�2 + 𝐷′21(𝑞2)�̇�1�̇�2 + 𝐷′22(𝑞2)�̇�22 + 𝜕𝒻2
𝜕𝑞
�̇� − 𝐺2 = 0 (3.31) 

Comparing (3.31) with (3.24), the following equation is yielded 

𝜕𝒻2
𝜕𝑞
�̇� = − 1

2
𝐷′

11(𝑞2)�̇�12 −
1
2
𝐷′

22(𝑞2)�̇�22 − 𝐷′
21(𝑞2)�̇�1�̇�2      (3.32) 

It is evident that (3.32) violates (3.30) due to the fact that �̇� is not contained in 
𝒻2(𝑞). This is the end of the proof.                                        ∎ 

Proposition 3.2. Given the underactuated system dynamics as (3.23), the 
second-order dynamic constraint (3.24) is partially integrable with the integral form 
of 

𝒻(�̇�,𝑞, 𝑡) = 𝐷11(𝑞2)�̇�1 + 𝐷12(𝑞2)�̇�2 − 𝐺1𝑡 + 𝑐2 

(where 𝑐2 is a constant related to 𝒻2(𝑞) to be determined from the system initial 
conditions) if and only if the following conditions hold: 
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(1) 𝑢1 = 0 and 𝑢2 = 𝑢 ≠ 0; 

(2) the initial matrix does not contain the unactuated state variable 𝑞1; 

(3) the gravitational term in subsystem (3.23a) is constant. 

Proof. (Necessity) 

Consider the underactuated system dynamics as (3.23) with 𝑢1 = 0  and 
𝑢2 = 𝑢 ≠ 0, then the second-order dynamic constraint becomes 

𝐷11(𝑞2)�̈�1 +  𝐷12(𝑞2)�̈�2 + 𝐷′11(𝑞2)�̇�1�̇�2 + 𝐷′12(𝑞2)�̇�22 − 𝐺1 = 0    (3.33) 

Following the procedure from (3.25) to (3.28), we have 

𝜕𝒻1
𝜕�̇�

= [𝐷11(𝑞2) 𝐷12(𝑞2)], 𝑐1 = 𝐺1                (3.34) 

Accordingly, the following expression of (3.25) is obtained 

𝒻(�̇�,𝑞, 𝑡) = 𝐷11(𝑞2)�̇�1 + 𝐷12(𝑞2)�̇�2 + 𝒻2(𝑞)− 𝐺1𝑡          (3.35) 

Taking differentiation of (3.35) with respect to 𝑡, gives 

𝐷11(𝑞2)�̈�1 + 𝐷12(𝑞2)�̈�2 + 𝐷′11(𝑞2)�̇�1�̇�2 + 𝐷′12(𝑞2)�̇�22 + 𝜕𝒻2
𝜕𝑞
�̇� − 𝐺1 = 0  (3.36) 

Comparing (3.36) with (3.33), the following equation is yielded as 

𝜕𝒻2
𝜕𝑞
�̇� = 0                          (3.37) 

It is evident from (3.37) that 𝒻2(𝑞) is constant. Therefore, if the integrability of 
(3.33) can be obtained, from (3.35) and (3.37), we have the following integral form 

𝒻(�̇�,𝑞, 𝑡) = 𝐷11(𝑞2)�̇�1 + 𝐷12(𝑞2)�̇�2 − 𝐺1𝑡 + 𝑐2           (3.38) 

(Sufficiency) 

Assuming Proposition 3.2 is hold, then the second-order dynamic constraint 
becomes 

𝐷11(𝑞2)�̈�1 +  𝐷12(𝑞2)�̈�2 + 𝐷′11(𝑞2)�̇�1�̇�2 + 𝐷′12(𝑞2)�̇�22 − 𝐺1 = 0    (3.39) 

Taking integration of (3.39) with respect to 𝑡, gives 
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[𝐷11(𝑞2)�̇�1 + 𝐷12(𝑞2)�̇�2 − 𝐺1𝑡]𝑑0
𝑑 = 0           (3.40) 

where 𝑡0 is the initial time. 

Rewriting (3.40) in the following form as 

𝐷11(𝑞2)�̇�1 + 𝐷12(𝑞2)�̇�2 − 𝐺1𝑡 + 𝑐2 = 0           (3.41) 

where 𝑐2 = −𝐷11(𝑞2)|𝑑=𝑑0 �̇�1|𝑑=𝑑0
− 𝐷12(𝑞2)|𝑑=𝑑0�̇�2|𝑑=𝑑0

− 𝐺1𝑡|𝑑=𝑑0 . 

This is the end of the proof.                                          ∎ 

B. Complete Integrability 

Propositions and discussions have been given for the partial integrability of the 
constraint above, in this subsection, conditions for (3.40) to be further integrated are 
investigated. The following definitions are given at the first place: 

Definition 3.3. (1-Distribution mapping) The smooth mapping ∆:𝑞 ↦ ∆(𝑞) is the 
1-distribution with respect to the constraint that assigns a linear subspace of ∆(𝑞) 
to each configuration variables 𝑞. 

Definition 3.4. (Lie bracket) let 𝑓 and 𝑔 be two arbitrary vector fields, the Lie 
bracket [𝑓,𝑔] is the vector field of 

𝜕𝑔
𝜕𝑞 𝑓 −

𝜕𝑓
𝜕𝑞 𝑔 

where each column of 𝜕𝑔
𝜕𝑞

 and 𝜕𝜕
𝜕𝑞

 is partial of velocity with respect to the 

configuration variable 𝑞. 

Definition 3.5. (Involutivity closure) The closure ∆�  of the distribution ∆  is 
involutive closure under the vector field of Lie bracket. 

Definition 3.6. (Distribution involutivity) A distribution is involutive if it is closed 
under the vector field of Lie bracket. 

Therefore, the following proposition is proposed for the conditions of complete 
integrability. 



Chapter 3: Control Systems for 2-DOF UMSs with Underactuation Degree One 
 

76 
 

Proposition 3.3. Given the underactuated system dynamics as (3.23), the 
second-order dynamic constraint (3.24) is completely integrable with the integral 
form 

𝔇(𝑞)− 1
2
𝐺1𝑡2 + 𝑐2𝑡 + 𝑐3 = 0               (3.43) 

(where 𝜕𝔇(𝑞)
𝜕𝑞

= 𝐷𝑝, 𝐷𝑝(𝑞) = [𝐷11(𝑞) 𝐷12(𝑞)] is a Pfaffian constraint that satisfies 

𝐷𝑝(𝑞)�̇� = 0 and 𝑐3 is a constant determined by the system initial condition) if and 

only if the following conditions hold: 

(1) the constraint (3.24) is partially integrable; 

(2) the distribution ∆ of 𝐷𝑝(𝑞)�̇� = 0 is involutive. 

Proof. Consider the following Pfaffian Constraint as 

𝐷𝑝(𝑞)�̇� = 0                       (3.42) 

Note that for any 𝑞, (3.42) determines a 1-dimensional linear subspace ∆(𝑞) 
which is the null-space of matrix 𝐷𝑝(𝑞). Introducing the following theorem as 

Theorem 3.1. (Frobenius’s Theorem) (Oriolo and Nakamura, 1991) A distribution 
∆ is integrable if and only if it is involutive. 

From Theorem 3.1, the distribution of (3.41) is 1-dimensional and involutive, it 
then can be concluded that is (3.41) always integrable, and it can be further 
integrated in to the following form 

𝔇(𝑞)− 1
2
𝐺1𝑡2 + 𝑐2𝑡 + 𝑐3 = 0               (3.43) 

where 𝜕𝔇(𝑞)
𝜕𝑞

= 𝐷𝑝 and 𝑐3 is a constant determined by the system initial condition. 

This is the end of the proof.                                          ∎ 

Remark 3.1. The partial integrability and complete integrability of system 
constraint are important control properties to be determined for UMSs. If these 
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properties are identified, the system dimension can be reduced and the system model 
is simplified through eliminating some of the generalized coordinates. 

3.5 Conclusion 

In this chapter, control of mechanical systems with underactuation degree one has 
been studied. The study is based on the coordinate transformation of the UMSs with 
PFL or PFL-free approach. The control problems of trajectory planning and tracking 
control of UMSs are then formulated. The control properties of partial integrability 
and complete integrability of 2-DOF Class I, II UMSs have been investigated with 
some propositions. In this thesis, a trajectory planning scheme will be proposed for 
underactuated vibro-driven cart systems with bio-inspired viscoelastic property in 
Chapter 4. The planned motion trajectory is based on a rest-to-rest motion, wherein 
the unactuated subsystem is controlled by the planned trajectory of the actuated 
subsystem. Trajectory tracking control schemes will be studied for vibro-driven cart 
systems with and without parametric uncertainties in Chapter 4, respectively. 
Generically, a tracking control scheme coping with UMSs with parametric 
uncertainties and external disturbances will be studied in Chapter 6. 
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Chapter 4  

Geometric Analysis-Based Trajectory 
Planning and Tracking Control 
 
 

4.1 Introduction 

Vibro-driven cart systems (VDCs), as typical UMSs, have become an increasingly 
important domain of research and received significant attentions from control and 
robotics communities (Bolotnik and Figurina, 2008; Fang and Xu, 2011; Huda et al., 
2014; Huda and Yu, 2015; Kim et al., 2010, 2007; Wang et al., 2008). These systems 
are energetically involved in several fields of application working in restricted space 
and vulnerable media, such as minimally invasive diagnosis and intervention, 
engineering diagnosis, pipeline inspection, seabed exploration and disaster rescues. 
Nevertheless, describing and characterizing feasible motions and trajectories and 
nonlinear control are still challenging tasks for underactuated VDCs. 

The primary objectives of trajectory planning for autonomous VDCs are optimal 
travel distance and fast average travel velocity. Towards this end, one of the key 
issues is the motion principles and actuation mechanisms, which determine the 
capabilities, performance, and in particular, the energy consumption and degrees of 
autonomy of VDCs. Conventional motion mechanisms have been designed and 
utilized via mimicking the earth-worm progression (Wang et al., 2008), canoe 
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paddling (Kim et al., 2010), magnetic field (Ciuti et al., 2010; Yim et al., 2014), etc. 
The internal force-static friction principle (Yamagata and Higuchi, 1995) is 
well-established in the literature of VDCs researches (Bolotnik and Figurina, 2008; 
Fang and Xu, 2011; Huda et al., 2014; Huda and Yu, 2015; Kim et al., 2010, 2007; 
Liu et al., 2014; Wang et al., 2008). The primary principle is that the rectilinear 
locomotion of VDCs can be achieved via an internally vibration-driven mass 
interacting with the main body and simultaneously, overcoming the resistance forces 
acting at the contacting surface. Generally speaking, one cycle of operation contains 
two fundamental stages: fast motion stage and slow motion stage. Specifically, the 
internal mass is driven at relatively high acceleration and the capsule body can move 
via the coupling behaviour in fast motion stage. Then, the capsule is terminated and 
the internal mass returns to the desired location through the interaction between the 
driving force and friction in slow motion stage.  

In recent years, intensive researches have been conducted to the optimal 
periodic control modes of the internal driving mechanism, namely 
velocity-controlled mode (Lee et al., 2008; Li et al., 2006; Su et al., 2009; H. Yu et 
al., 2008) and acceleration-controlled mode (Fang and Xu, 2011; Yu et al., 2011). 
The minimal energy solution is obtained in (Li et al., 2006) to generate a four step 
motion pattern. An optimal controller is designed with an experimental comparison 
in (Lee et al., 2008). Yu et al (H. Yu et al., 2008) propose a six-step motion strategy 
based on optimal selection of trajectory parameters. A novel four-step acceleration 
profile is proposed in (Yu et al., 2011) for the motion control of capsubots. The 
stick-slip effect is considered by Fang et al (Fang and Xu, 2011) to optimize the 
parameters of the internal controlled mass under the objective of maximal average 
steady-state velocity of the system. It is well-established that the VDCs dynamics 
can be generally partitioned into two parts, namely collocated (actuated driving 
subsystem) and non-collocated (passive cart subsystem) dynamics, which are 
strongly coupled. It is also evident that friction plays pivotal roles in the propulsion 
and locomotion for self-propelled VDCs. In the fast motion stage, the system is 
propelled to move back and forth under the effects of underactuated dynamics and 
nonlinear friction, which contributes the net progressions. Therefore, globally 
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describing and characterizing the coupling behaviour, which are difficult and 
challenging, are of vital importance particularly for efficient trajectory planning. 
Unfortunately, a majority of reported results in the literature, such as (Li et al., 2006; 
2014; Yu et al., 2008), are mainly devoted to the couplings in the slow motion stage, 
optimal control of the fast underactuated motion is usually neglected. This is mostly 
owing to the underactuated kinematic coupling behaviour and the relevant analysis 
is of much difficulty. Towards trajectory planning and control, there exist some 
studies for overhead cranes systems based on phase plane analysis of crane 
kinematics (Sun et al., 2011, 2012), however for locomotion systems, the 
locomotion-performance indexes (e.g., average locomotion velocity, energy 
efficiency) were not examined. Besides, it is always a tough task to achieve 
steady-state periodic motion of the driving mechanism and efficient progression of 
the cart simultaneously. In this research, an optimized trajectory model is proposed 
by geometric analysis method to characterize the coupling dynamics and identify the 
qualitative variation laws in fast motion stage in a manner that the designed control 
(locomotion-performance) indexes can be met. The main idea is to reduce 
complexity and to characterize coupling by imposing a harmonic drive and then to 
compute the dynamics projection onto a hyper-manifold, such that the issue of 
trajectory planning is converted into geometric analysis and trajectory optimization. 

Most of the published studies on VDCs mainly focus on the optimization of the 
trajectory parameters in such a manner that the maximal average velocity can be 
obtained. Indeed, the operational environment can be very dynamic and the system 
may subject to parameter uncertainties. In this regards, overly unsupervised 
oscillations or even chaotic motions induced by the system control parameters 
would dramatically reduce the efficiency and lead to risks of severe jerk and 
potential damages to the actuators. Thus, the control parameters of VDCs are 
essential elements for the steady-stage system response and therefrom, for the 
efficient trajectory planning. Nevertheless, this nontrivial consideration has not been 
taken in any of the existing studies on the trajectory planning problems of 
underactuated VDCs. Besides, in control practice, it is well-established that the 
smart actuators (e.g. piezoelectric actuators, shape memory alloys) may experience 
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lag problem (certain delay in time such as hysteresis) originated from magnetic, 
ferromagnetic and ferroelectric materials, which may occur between the application 
and the removal of a force (Hassani et al., 2014; Iyer et al., 2005; Tan and Baras, 
2004; Wang and Su, 2006). It is particularly true when sudden changes in 
velocity/acceleration burst in. This is the circumstance in which the motion principle 
of VDCs resides. To drive the cart via the coupling behaviour, the internal 
mechanism has to be initiated by the actuator with relatively higher 
velocity/acceleration. Besides, the interaction between the actuator and the driving 
mechanism needs to be characterized such that practical engineering requirements 
can be met. Nevertheless, these technical issues and relevant solutions have not been 
reported in the literature of trajectory planning. 

In this chapter, the issues of trajectory planning and tracking control are studied 
using a novel VDC model that employs combined tangential-wise (linearly along the 
direction of motion) and norm-wise vibrations for bidirectional underactuated 
locomotion, which features a generic significance in the studies on VDCs. In 
contrast to the conventional cart-pole systems (CPSs), the control input is applied at 
the pendulum pivot, instead of the force on the cart in the horizontal direction. More 
importantly, CPSs address the set-point stabilization problem, whilst the proposed 
system is to make the cart track a desired (designed) trajectory by actuating the 
inverted pendulum. It is worth mentioning that the interaction between the actuator 
and the driving pendulum is characterized by a viscoelastic pair of torsional spring 
and viscous damper. It is the first time that the viscoelastic elements are introduced 
into the trajectory planning of VDCs to model the nontrivial interaction and to 
explore the feasibilities of improving the energy efficacy. As such, a novel geometric 
analysis-based trajectory planning approach is proposed, the main idea is to reduce 
complexity and to characterize coupling by imposing a harmonic drive and then to 
compute the dynamics projection onto a hyper-manifold, such that the issue of 
trajectory planning is converted into geometric analysis and trajectory optimization. 
Based on the trajectory planning approach studied in Chapter 3, this chapter will 
concretely investigate the nonlinear geometric-based approach on the VDCs with 
viscoelastic property. The proposed VDCs model is an advisable benchmark to 
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exploit the challenges in trajectory planning and tracking control of UMSs. Main 
contributions of this chapter are as follows:  

1. Proposing a bio-inspired robotic model utilizing undulatory self-propulsion 
with viscoelastic property; 

2. Designing a characterization algorithm towards the underactuation-induced 
dynamic couplings using the nonlinear geometric analysis approach; 

3. Proposing kernel practical control indexes in the presence of viscoelastic 
property and jag problems, and construct an analytical motion trajectory with 
improved energy efficacy and characteristics in continuity and smoothness, 
which facilitate design of the tracking controller; 

4. Identifying qualitative variation laws of the viscoelastic parameter such that 
the system performance can be evaluated beforehand; 

5. Developing an analytical parameterization algorithm for optimization of the 
trajectory parameters; 

6. Constructing closed-loop feedback and adaptive control laws for trajectory 
tracking. 

The outline of this chapter is organized as follows. First, the description and 
dynamic modelling of the VDC system is presented in Section 4.2. Then the 
problem formulation is given in Section 4.3. The geometric analysis-based trajectory 
planning algorithm is studied in Section 4.4. In Section 4.5, trajectory tracking 
control algorithms are constructed. Simulation results are provided and discussed in 
Section 4.6 to establish the verification of the performance of the proposed system. 
The 3D design, experimental setup and experimental results are presented in Section 
4.7 to demonstrate and validate the locomotion of the proposed VDC model. Finally, 
conclusions are given in Section 4.8. 
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4.2 System Description and Mathematical Modelling 

4.2.1 Bio-Inspired Self-Propelled Robotic Model with Viscoelastic 
Property 

In this thesis, a self-propelled robotic model is proposed as shown in Figure 4.1 
(b) by drawing inspiration of the undulatory locomotion of the nematode worm in 
low Reynolds environments (Figure 4.1(a)). From the figure, the nematode worm 
can be split up into segments, including frictionless two-dimensional joints (as the 
dots in green) between weightless pendulums (as the rods in red).  

 

(a) 
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(b) 

Figure 4.1 The biological inspiration: (a) a four-segment C. elegans nematode 
(“Nematode,” 2017); (b) the proposed two-segment bio-inspired self-propelled 

model with viscoelastic property 

The internal fluid pressure of the worm is utilized through the viscoelastic 
property in the joint-space to form a firm but flexible actuated segment. Muscles of 
the worm act as simple passive actuators. The combination of the bio-inspired 
viscoelastic property of the muscles makes the worm quite compliant and allows the 
body to passively accommodate external constraints that physically increases the 
robustness of the locomotion system. The pendulum is employed as the first 
segment and the robot body is adopted as the second segment. Two segments are 
connected through an articulated joint with viscoelastic property. Undulations are 
propagated from the rotating pendulum to the robot body. It is noted that the 
nematode worm moves through undulation by pushing the obstacles around that 
relatively restricted applications into robotic design. In the proposed model, however, 
the unidirectional property of the ground is utilized as an always-existing ‘obstacle’ 
for the robot to propel itself through interactions with the physical environment, as 
such, the above limitation of the nematode worm is relaxed. Note also that 
propagation of undulations can vary in kinematic parameters such as coefficient of 
elasticity and viscosity, frequency, wavelength, amplitude. When characterizing the 
transition as a function of the environment, the qualitative behaviour changes need 
to be explicitly controlled against possible variations in the worm’s autologous and 
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exogenous microscopic physical environments. Therefore, a geometric-analysis 
based method is used to characterise the viscoelasticity of the bio-inspired model in 
this Chapter, and a prediction and analysis framework will be proposed to 
characterize the frictional interaction dynamics in Chapter 5. 

The proposed model has extensive applications such as capsule robots for 
minimally invasive diagnosis and intervention, autonomous systems for pipeline 
inspections, exploration for firefighting operations, etc. 

4.2.2 Vibro-Driven Cart System and Mathematical Modelling 

The bio-inspired self-propelled model contains a pendulum and a platform. A DC 
motor is mounted at the pivot on the platform to rotate the pendulum. The nonlinear 
interaction between the actuator and the pendulum is described by a linear 
viscoelastic pair of torsion spring and damper. The system works as follows. The 
platform is propelled over a surface rectilinearly via the interaction between the drag 
forces and the horizontal sliding friction, resulting into alternative sticking and 
slipping locomotion. Meanwhile, the elastic potential energy is stored and released 
alternatively in compatible with contraction and relaxation of the torsional spring. 
The motion of the platform starts with static state, and it moves when the magnitude 
of resultant force applied on its body in the horizontal direction exceeds the maximal 
value of friction force. This model is developed to exploit advisable friction control 
approach and stick-slip vibration to generate a periodic progression where the 
platform and the driving pendulum synchronize their motion harmoniously. 

Based on the proposed model in Subsection 4.2.1, a VDC system is shown in 
Figure 4.2. The wheels are passive with no actuation. The parameters of the system 
are defined as follows. 𝑀 and 𝑚 are the masses of the cart and the ball, respectively. 
𝑙 is the length from the pivot to the Centre of Mass (COM) of the ball, 𝜇 is the 
friction coefficient between the platform and ground, 𝑘 and 𝑐 are elastic coefficient 
of the torsion spring and viscous coefficient of the damper, respectively. 𝑓𝑐  denotes 
the horizontal sliding friction between the system and the ground. 𝑓𝑝  represents the 

motor viscous friction at the pivot. 𝜃 is the angular displacement measured from the 
vertical, 𝑥 is the displacement of the platform measured from the initial position, 𝜏 
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is the control torque applied to the pendulum by the DC motor. In what follows, for 

the sake of brevity, 𝑠𝜃, 𝑐𝜃 and 𝑆�̇� will be employed to denote the trigonometric 
function 𝑠𝑖𝑛𝜃, 𝑐𝑐𝑠𝜃 and the signal function 𝑆𝑖𝑔𝑛(�̇�), respectively. 

The main difference between the proposed model and the conventional cart-pole 
system is that the force is applied at the pivot to rotate the pendulum, which induces 
trajectory planning and tracking issues rather than the swinging-up or set-point 
stabilization problems. As an energy storage element, a torsional spring is employed 
to improve the energy efficacy through carefully designed motion trajectory of the 
pendulum which will discuss in Section 4.4. 

 

Figure 4.2 Schematic of the vibro-driven cart system 

 

Definitions of the sticking phase and the slipping phase are given as follows: 

Definition 4.1. The sticking phase is the moment when the magnitude of resultant 
force applied on the cart in the horizontal direction is less than the maximal static 
friction force. The cart keeps stationary in this phase. 

Definition 4.2. The slipping phase is the instant when the magnitude of resultant 
force applied on the cart in the horizontal direction is larger than the maximal static 
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friction force. When this condition is met, the sticking phase is annihilated and the 
cart starts to move. 

From the above definitions, it is evident that friction plays a vital role for 
optimal control of the stick-slip locomotion. Prior to the mathematical modelling of 
the proposed model, the following assumptions are given  

Assumption 4.1. The mass of the inverted pendulum is omitted comparing to the 
mass of the bob on its tip, thus the mass of the pendulum is centralized at the ball. 

Assumption 4.2. The COM of the cart coincides with the pivot axis such that the 
moment of inertia of the base can be omitted. 

Assumption 4.3. The motion of the cart is constrained on X-Y plane and no motion 
is allowed in the Z direction. 

Assumption 4.4. The Coulomb friction is assumed to act as the resistance force 
between the system and the sliding surface, gives 

𝑓𝑐 = �
𝜇(𝑀 + 𝐹𝑦)𝑆�̇� , 𝑓𝑐𝑇 �̇� ≠ 0 
𝑓0 ,                       𝑓𝑐𝑇 �̇� = 0                (4.1) 

where 𝐹𝑦 is the internal reaction forces applied on the pendulum by the platform in 

the vertical direction, 𝑓0 denotes the stiction force when the velocity of the cart is 
zero. 

Assume the moment of inertia 𝐼 = 𝑚𝑙2 . The ball’s position is uniquely 
described by 𝑥𝑏 and 𝑦𝑏 , chosen as the deflection of the geometric centre of the ball 
referenced from the medial axis. The position and velocity of the ball are given by 

 𝑥𝑏 = 𝑥 − 𝑙𝑠𝜃, 𝑦𝑏 = 𝑙𝑐𝜃                      (4.2a) 
 �̇�𝑏 = �̇� − 𝑙�̇�𝑐𝜃, �̇�𝑏 = −𝑙�̇�𝑠𝜃                     (4.2b) 

Based on the Newton’s law, let 𝐹 = [𝐹𝑚  𝐹𝑦]𝑇  and 𝑁 = [𝑁𝑚  𝑁𝑦]𝑇  be the 

internal reaction forces applied on the pendulum by the platform and the viscoelastic 
element, respectively. We have 

𝐹 = �
𝐹𝑚
𝐹𝑦
� = � 𝑚�̈�𝑏

𝑚�̈�𝑏 + 𝑚𝑔�+ �
𝑁𝑚
𝑁𝑦
� = �

−𝑚�̈� + 𝑚𝑙�̈�𝑐𝜃 −𝑚𝑙�̇�2𝑠𝜃 + 𝑁𝑚
𝑚𝑔 −𝑚𝑙�̇�2𝑐𝜃 − 𝑚𝑙�̈�𝑠𝜃 + 𝑁𝑦

�  (4.3) 
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where 𝑁𝑚 = (𝑘𝜃 + 𝑐�̇�)𝑐𝜃/𝑙 and 𝑁𝑦 = −(𝑘𝜃 + 𝑐�̇�)𝑠𝜃/𝑙. 

Based on the assumptions and definitions, the governing equations of the 
proposed model are then derived using Euler-Lagrangian’s method described as 

𝑑
𝑑𝑑

𝜕𝜕(𝑞𝑖,�̇�𝑖)
𝜕�̇�𝑖

− 𝜕𝜕(𝑞𝑖,�̇�𝑖)
𝜕𝑞𝑖

+ 𝑓 = 𝑄𝑚   𝑖 = 1,2              (4.4) 

where 𝑞𝑚(𝑡) = [𝜃 𝑥]𝑇 , 𝑖 = 1,2  represents the system state vector. 𝐿(𝑞𝑚, �̇�𝑚) =
𝐸(𝑞𝑚 , �̇�𝑚) − 𝑉(𝑞𝑚) is the Lagrangian function, 𝐸 and 𝑉  respectively denote the 
kinetic energy and potential energy, 𝑓 describes the resistant and dissipated forces, 
𝑄𝑚 is the generalized externally applied force or moment. The detailed expression 
for 𝐸, 𝑉, 𝑓 and 𝑄𝑚 are given by 

𝐸 = 1
2
𝑀�̇�2 + 1

2
𝑚[(�̇� − 𝑙�̇�𝑐𝑐𝑠𝜃)2 + (−𝑙�̇�𝑠𝑖𝑛𝜃)2]        (4.5a) 

𝑉 = 1
2
𝑘𝜃2 + 𝑚𝑔𝑙𝑐𝑐𝑠𝜃                   (4.5b) 

𝑓 = �
𝑓𝑝
𝑓𝑐
� = �𝑐�̇�𝑓𝑐

�, 𝑄𝑚 = �𝑢0�                 (4.5c) 

Therefore, the underactuated dynamics of the VDC model are derived as 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐾(𝑞)𝑞 + 𝐺(𝑞) = 𝐵𝑢 + 𝑓           (4.6) 

where 𝐷(𝑞) ∈ ℛ2×2  is the inertia matrix, 𝐶(𝑞, �̇�) ∈ ℛ2×2  denotes the 
Centripetal-Coriolis matrix, 𝐾(𝑞) ∈ ℛ2×2  is the generalized stifness matrix, 
𝐺(𝑞) ∈ ℛ2×1  represents the gravitational torques, 𝑢 ∈ ℛ1  denotes the control 
input applied to the system. The details of the aformentioned variables are shown as 
follows 

𝐷(𝑞) = � 𝑚𝑙2 −𝑚𝑙𝑐𝜃
−𝑚𝑙𝑐𝜃 (𝑀 + 𝑚)�, 𝐶(𝑞, �̇�) = � 0 0

𝑚𝑙𝑠𝜃�̇� 0�, 𝐾(𝑞) = �𝑘 0
0 0�, 

𝐺(𝑞) = [−𝑚𝑔𝑙𝑠𝜃 0]𝑇, 𝐵 = [1 0]𝑇, 𝑓 = [−𝑐�̇�  − 𝑓]𝑇 

 (4.7) 

where 𝑔 ∈ ℛ+ is the gravitational acceleration.  



Chapter 4: Geometric Analysis-Based Trajectory Planning and Tracking Control 
 

89 
 

The model dynamics are component of a actuated subsystem (pendulum) and a 
passive subsystem (cart), wherein the latter one composes the system kinematics that 
captures the coupling behaviour between the driving pendulum and the cart. The 
coupling behaviour and nonlinearity are resulted from the nonlinear frictions and the 
trigonometric functions. 

Remark 4.1. The contact interface is anisotropic, and asymmetry characteristic may 
arise due to physical and structural inconsistency of system parameters. It is plausible 

that the stiction force 𝑓0 exists with its value range falling into the threshold of the 
Coulomb friction [−𝜇(𝑀 + 𝐹𝑦)𝑆�̇� ,𝜇(𝑀 + 𝐹𝑦)𝑆�̇�  ]. This results from the sticking 

motion and largely relying on the magnitudes of the external forces. In this chapter, 
we assume that there is no friction force applied on the cart when it keeps stationary 

(�̇� = 0). The study on dynamic frictions will be reported in Chapter 5. 

Harmonic excited forces are typically adopted to generate periodic motions for 
capsule systems as studied in (Liu et al., 2013a, 2013b). On this occasion, forward 
and backward motions can be generated and controlled via proper tuning of the 

control parameters. Utilizing the harmonic force 𝑢 = 𝐴𝑐𝑐𝑠(Ω𝑡) with amplitude 𝐴 
and frequency Ω to excite the pendulum and introducing the characteristic time scale 

𝜔𝑛 = �𝑔/𝑙  and the characteristic length 𝑥0 = 𝑔/𝜔𝑛2 , the nondimensional 

equations of motion of the system can be obtained as 

[𝔻]�ℌ̈� + [ℂ]�ℌ̇� + [𝕂]{ℌ} + [𝔾] + [𝔽𝔡] = {℧}𝑢𝑑          (4.8) 

where [𝔻] = � 1 −𝑐𝛩
−𝑐𝛩 𝜆 + 1� , [ℂ] = � 0 0

𝑠𝛩�̇� 0� , [𝕂] = �𝜌 0
0 0� , [𝔾] = �−𝑠𝛩0 � , 

{℧} = �10�  and [𝔽𝔡] = �𝜐�̇�𝑓′ � , 𝑢𝑑 = ℎ𝑐𝜔𝜔  and 𝑓′ = 𝜇�(𝜆 + 1) − 𝑠𝛩�̈� − 𝑐𝛩�̇�2 −

�𝜌𝛩 + 𝜐�̇��𝑠𝛩�𝑆�̇�.  

The derivations above are conducted with respect to the dimensionless time 

𝜏 = 𝜔𝑛𝑡  and the configuration variables are transformed to {ℌ} = [𝜉1 𝜉2]𝑇 =
[𝛩  𝑋]𝑇. The dot ( ∙) in (4.8) denotes the derivative in dimensionless time coordinate. 
The rest of the non-dimensional quantities are defined as 
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𝑋 = 𝑥/𝑥0, 𝜆 = 𝑀/𝑚, 𝜔 = 𝛺/𝜔𝑛, 
𝜌 = 𝑘/(𝑚𝑙2𝜔𝑛2), 𝜐 = 𝑐/(𝑚𝑙2𝜔𝑛), ℎ = 𝐴/(𝑚𝑙2𝜔𝑛2)       (4.9)  

Remark 4.2. Nondimensionalization of the governing equations can simplify the 
analysis of the model through searching the dimensionless groups which control its 
solution patterns. Under the dimensionless coordinate, the physical meanings of the 

control parameters are captured as: 𝜆  is the mass ratio, 𝜌  and 𝜐  respectively 
denote the normalized elastic and viscous coefficients,  ℎ and 𝜔 are the normalized 
excitation amplitude and frequency. 

Remark 4.3. The control action is a rotational torque at the pivot. Due to the fact 
that the motion of the cart cannot be directly controlled, the proposed model is an 
interesting mechanical system with underactuation degree one. For motion systems, 
such as the proposed one, the friction between the cart and the surface plays a key 
role in the locomotion of the entire system. The optimal control of the friction will 
be investigated in trajectory planning in Section 4.4. 

4.3 Problem Formulation and Trajectory Planning 

4.3.1 Problem Formulation 

A typical time history of system performance after initial transients is presented in 
Figure 4.3, showing the cart displacement and pendulum angular velocity. It is 
evident that the net cart displacement during one cycle of excitation R is mainly 
determined by the ramp edges of the harmonic force in forward motion stage RF. 
However, such periodic motions are essentially not optimal, since for each motion 

cycle, the forward displacement obtained in RF is partly counteracted in the 
forthcoming backward motion stage RB, and excessive energy are consumed due to 
the backward journey. 
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Figure 4.3 Time histories of typical steady-state system performance 

Therefore, a two-stage motion trajectory needs to be constructed that optimally 
utilizes the ramp edges of the harmonic excitation in the forward motion stage and 
thereafter, sufficiently neutralize the backward motions via optimal control of the 
sticking phase and friction. The definitions are given as follows: 

Definition 4.3. (Initialization Stage and Re-initialization Stage) One cycle of 
progressive motion begins and ends with the initialization and re-initialization stages, 
respectively. In the initialization stage, the pendulum together with the torsional 
spring are constrained and kept stationary at a predesigned negative angle to the 
opposite direction of the retraction of spring, which stores potential energy such that 
more mechanical power is provided to system; at the end of the motion, the 
pendulum gradually returns to the initial position, the system then is reinitialized 
with stored elastic energy. 

Definition 4.4. (Progressive Stage) driving the pendulum with higher angular 
acceleration incorporating with the release of the elastic energy stored in the torsion 
spring that leads the cart to overcome the maximal static friction to generate a 

slipping motion (�̇� ≠ 0) .  

Definition 4.5. (Restoring Stage) returning the pendulum to initial position slowly 
to restore potential energy and prepare for the next cycle, the resultant force exerting 
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on cart in the horizontal direction is less than the maximum dry friction, that is, the 

cart is kept in the sticking phase in this stage (�̇� = 0). 

Based on practical control indexes and dynamic constraints associated with the 
stick-slip locomotion of the cart, the following principles are designed as objectives 
to be achieved to construct an optimal motion trajectory for the driving pendulum: 

Principle 4.1. For each motion cycle, the pendulum is constrained rotating within an 
advisable angle range, indicating that the upper and lower boundaries are given as 

|𝛩(𝜏)| ≤ 𝛩0                        (4.10) 

where 𝛩0 is the prescribed angular displacement of the driving pendulum. 

Principle 4.2. The angular velocity and angular acceleration of the driving 
pendulum need to be placed within bounded ranges, given by 

��̇�(𝜏)� ≤ 𝓋𝛩, ��̈�(𝜏)� ≤ 𝒶𝛩                  (4.11) 

where 𝓋𝛩 ∈ ℛ+  and 𝒶𝛩 ∈ ℛ+  are the absolute boundary values of angular 
velocity and acceleration, respectively. 

Principle 4.3. The cart is contacting with the sliding surface, in order to achieve a 
non-bounding motion, the constraint for the contact force needs to be satisfied, 
which means the contact force has to be always greater than zero, gives 

(𝜆 + 1) − 𝑠𝛩�̈� − 𝑐𝛩�̇�2 − (𝜌𝛩 + 𝜐�̇�)𝑠𝛩 > 0          (4.12) 

Principle 4.4. The cart has to be remained stationary after one cycle of forward 
motion to wait for the return of pendulum. In this occasion, the force of the driving 
pendulum applied on the cart in the horizontal direction has to be less than the 
maximal static friction, gives 

�𝑐𝛩�̈� − 𝑠𝛩�̇�2 + (𝜌𝛩 + 𝜐�̇�)𝑐𝛩� ≤ 𝜇[(𝜆 + 1)− 𝑠𝛩�̈� − 𝑐𝛩�̇�2 − �𝜌𝛩 + 𝜐�̇��𝑠𝛩] 

(4.13) 

Remark 4.4. Principles 4.1 and 4.2 are associated with the collocated subsystem 
which is prone to control and convenient to achieve, whilst Principles 4.3 and 4.4 
are of vital importance for the non-collocated cart locomotion and energy efficacy. 
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Therefore, as one major contribution, both principles are explicitly considered 
through the nonlinear geometric analysis method. 

4.3.2 Periodic Trajectory Synthesis and Construction 
In this subsection, the periodic motion principles are designed for synthesizing of 
the rotating pendulum and the viscoelastic components. In this thesis, it is 
considered that the existence of viscoelasticity is equivalent to the existence of a 
periodic trajectory manifold with corresponding arguments. Consequently, we 
analyse the motion generation of the VDC system by planning the rate of changes of 
pendulum angular position. 
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Figure 4.4 Schematic profile for the synthesized velocity trajectory 

 

The proposed model, in nature, is an underactuated system with non-collocated 
actuation and sliding friction, which means the pendulum can be directly controlled 
whilst the progression of the cart is in the indirect feedback loop. Thus, the objective 
of trajectory synthesis is to generate the periodic motion to drive the VDC system 
moving rectilinearly only by utilizing the rotational torque. Thus, we are motivated 
to consider the characteristic of viscoelasticity in trajectory synthesis.  
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Therefore, Figure 4.4 depicts the proposed two-stage velocity trajectory based 
on the indexes, objectives and synchronization considerations. As stated in the 
introduction, the actuator may experience lag problem, in this regard, we are 
motivated to introduce a transition function to cope with this problem and to 
synchronize the motion trajectory.  

The synthesized trajectory is described as 

�̇�(𝜏) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 𝑃1𝜔𝑠𝜔𝜔 ,                     𝜏 ∈ [0,𝜏1)
𝑃1𝜔,                         𝜏 ∈ [𝜏1, 𝜏2)
𝑃1𝜔𝑠𝜔𝜔−𝜔2,               𝜏 ∈ [𝜏2, 𝜏3)
𝜔3−𝜔
𝜔3−𝜔2

𝑃2,                    𝜏 ∈ [𝜏3, 𝜏4)
𝜔3−𝜔
𝜔4−𝜔3

𝑃3,                    𝜏 ∈ [𝜏4, 𝜏5)

−𝑃3,                          𝜏 ∈ [𝜏5, 𝜏6)
𝜔6−𝜔
𝜔5−𝜔6

𝑃3,                    𝜏 ∈ [𝜏6, 𝜏7)

       

         (4.14) 

where  𝑃1𝜔 and 𝑃3 are upper and lower trajectory boundaries, respectively. 𝑃2 is 
the critical boundary when the cart keeps stationary, 𝜔 is the frequency of excitation. 

Obviously, a parametric selection procedure is needed to obtain the 
time-varying reference motion trajectory (4.14), and accordingly a series of 
parameters including the time durations 𝜏1~𝜏7, the maximum angular velocity of 
the periodic trajectory in scaled coordinate 𝑃1, its minimum counterpart 𝑃2 as well 
as the critical angular velocity 𝑃3 when the cart begins to keep stationary. This 
optimal selection procedure will be investigated in Section 4.4. 

The explicit description of the synthesized desired angular velocity profile of 
the driving pendulum is as follows: 

Initialization. 𝜏 = 0 : 𝛩(𝜏) = 𝛩𝑚𝑚𝑛 = −𝛩0 , 𝑋(𝜏) = 0 , �̇�(𝜏) = 0 ,  �̇�(𝜏) =
0, �̈�(𝜏) = 0, �̈�(𝜏) = 0 The pendulum together with the torsion spring is kept 
stationary at a predesigned negative angle −𝛩0 to the opposite direction of the 
retraction of spring, which stores potential energy such that more mechanical power 
will be injected into the system. 



Chapter 4: Geometric Analysis-Based Trajectory Planning and Tracking Control 
 

95 
 

Phase I.  𝜏 ∈ (0, 𝜏1): 𝛩(𝜏) = 𝛩 > 0, 𝑋(𝜏) = 𝑥, �̇�(𝜏) > 0, �̇�(𝜏) > 0, �̈�(𝜏) ≫ 0, 
�̈�(𝜏) > 0 The torque motor begins to actuate under the synchronized angular 
velocity and simultaneously the stored potential energy is released from the 
stretched torsion spring, which results in a motion with maximal angular 
acceleration of the pendulum dragging the cart moving forward with a high 
acceleration. 

Phase II. 𝜏 ∈ [𝜏1, 𝜏2): 𝛩(𝜏) = 𝛩 > 0, 𝑋(𝜏) = 𝑥, �̇�(𝜏) > 0,�̇�(𝜏) > 0, �̈�(𝜏) = 0, 
�̈�(𝜏) > 0 It is noted that once the potential energy is released, a short period of time 
is required to let the potential energy fully transfer into kinetic energy, which leads 
to a more efficient energy consumption. Thus, a short period of uniform motion of 
the pendulum is designed. During this period, the pendulum swings forward with the 
maximal angular velocity while driving the base accelerating continuously. 

Phase III. 𝜏 ∈ [𝜏2, 𝜏3): 𝛩(𝜏) = 𝛩 > 0, 𝑋(𝜏) = 𝑥, �̇�(𝜏) > 0, �̇�(𝜏) > 0, �̈�(𝜏) < 0, 
�̈�(𝜏) < 0 The torque actuation exerts an opposing force under the synchronized 
angular velocity together with the contractility of the torsion spring, leading to a 
forward deceleration motion of the pendulum and the cart. 

Phase IV.  𝜏 ∈ [𝜏3, 𝜏4) : 𝛩(𝜏) = 𝛩𝑚𝑚𝑚 > 0 ,  𝑋(𝜏) = 𝑥 → 0 , �̇�(𝜏) → 0 ,  �̇�(𝜏) =
0, �̈�(𝜏) < 0, �̈�(𝜏) = 0 In this phase, a slow deceleration motion of the pendulum 
results in the stationary of the cart, which is subjected to the constraints under the 
dissipative force lie in the sliding surface and the pivot. Moreover, the angular 
displacement of the pendulum is constrained at 𝛩𝑚𝑚𝑚 to avoid over-actuation and 
system failure.  

Phase V. 𝜏 ∈ [𝜏4, 𝜏5): 𝛩(𝜏) = 𝛩 < 0, 𝑋(𝜏) = 𝑥, �̇�(𝜏) < 0, �̇�(𝜏) = 0, �̈�(𝜏) < 0, 
�̈�(𝜏) = 0 

Phase V is designed to be a short duration that a relatively low angular acceleration 
of the pendulum is generated while keeps the base stands still.  

Phase VI. 𝜏 ∈ [𝜏5, 𝜏6) : 𝛩(𝜏) = 𝛩 < 0 , X(𝜏) = 𝑝∆𝑥 , �̇�(𝜏) = −𝑃3 < 0 ,  �̇�(𝜏) =
0, �̈�(𝜏) = 0, �̈�(𝜏) = 0 A uniform angular velocity of the pendulum is designed for 
gradually stretching the torsion spring such that enough potential energy is restored 
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for the coming cycle. The base remains stationary in this stage. 𝑝∆𝑥 represents the 
net displacement of the cart after the 𝑝𝑑ℎ  cycle. 

Phase VII. 𝜏 ∈ [𝜏6, 𝜏7): 𝛩(𝜏) = 𝛩 < 0, 𝑋(𝜏) = 𝑝∆𝑥, −𝑃3 < �̇�(𝜏) < 0,  �̇�(𝜏) =
0 ,  �̈�(𝜏) > 0 , �̈�(𝜏) = 0  In phase VII, a low angular acceleration motion is 
generated in a short duration to accelerate the pendulum while the cart keeps 
stationary. 

Re-initialization. 𝜏 = 0 : 𝛩(𝜏) = 𝛩𝑚𝑚𝑛 = −𝛩0 , 𝑋(𝜏) = 𝑝∆𝑥 , �̇�(𝜏) = 0 ,  �̇�(𝜏) =
0 ,  �̈�(𝜏) = 0 , �̈�(𝜏) = 0  When the pendulum reaches to the initial angle, the 
torsional spring is constrained to 𝛩𝑚𝑚𝑛 such that enough elastic energy is stored for 
the coming new cycle. 

4.4 Nonlinear Geometric Analysis-based Trajectory 

Planning 

Definition 4.6. Poincaré maps: one considers a periodic orbit with initial conditions 
within a section of the space, samples the solution of a system according to an 
event-based or time-based rule, and then evaluates the stability properties of 
equilibrium points (or fixed points) of the sampled system (Westervelt et al., 2007). 

It is evident from (4.12) and (4.13) that Principles 3 and 4 are susceptible to elastic 

coefficient 𝜌  and viscous coefficient 𝜐 , which are vital factors for energy 
consumption. In this section, a novel approach is explored to characterize the 
coupling and identify the qualitative variation laws of the control parameters in the 
form of system performance, such that the optimal control parameters are selected 
beforehand and fed into parameterisation of the motion trajectory. Concretely, when 
the control indexes and non-collocated dynamic constraints are considered, the 
proposed geometric analysis-based trajectory planning algorithm is given by 

Algorithm 4.1. Construction and optimization of motion trajectory 

Step 1. Compute and project the underactuated dynamics onto the dimensionless 
phase plane and Poincaré maps through nonlinear geometric analysis approach; 
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Step 2. Describe and characterize coupling between the collocated and 
non-collocated subsystems, and identify the optimal control parameters through 
qualitative variation laws against the system locomotion-performance index; 

Step 3. Characterize the dynamic constraints for stick-slip progression through 
rigorous analytical analysis towards underactuation and internal coupling; 

Step 4. Compute the trajectory boundaries; 

Step 5. Optimize and parameterize the planned trajectory for each phase with 
identified optimal control parameters from Step 2, characterized conditions for 
optimal stick-slip progression from Step 3 and computed trajectory boundaries from 
Step 4. 

Remark 4.5. Poincaré maps can sample the solution of a system according to an 
event-based or time-based rule, and then evaluate the stability properties of 
equilibrium points (or fixed points) of the sampled system. The proposed algorithm 
utilizes the knowledge from both collocated and non-collocated subsystems to 
facilitate efficient locomotion of the proposed model. The computation and 
projection of dynamics onto an induced hyper-manifold of the closed-loop system 
enables convenient analysis and characterization of the underactuated couplings. 

4.4.1 Coupling Characterization and Viscoelastic Parameter 
Identification 

In dynamical systems, geometric representations of the qualitative changes in the 
dynamic behaviour induced by tiny smooth variations of the system parameter can be 
achieved through bifurcations, which give rise to the creations and annihilations of 
equilibria as well as the periodic solutions. The advantage is that it employs a visual 
interpretation of how the dynamic behaviours are affected by the system parameters 
and how the stability of solutions changes accompanied by the varying parameters. 
The main objective of the proposed VDC system is to be capable of rectilinear 
motion by utilizing the rotational torque, in the presence of friction or resistance force 
from the contacting environment. The solutions in this section are numerically 
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calculated using a modified first-order Euler’s method, for identifying the most 
suitable qualitative motion for the forward progression of the VDC system. 

In this following, coupling behaviour and qualitative variation laws induced by 
the viscoelastic parameters for the progressive stage are firstly characterized and 
identified. From the viewpoint of energy, it is evident that efficient utilizations of 
potential energy stored in the spring and dissipative energy in the dampers are 
crucial factors for energy efficacy. The average progression per period is 
characterized geometrically to examine the locomotion-performance index. 

      

(a) Angular displacement  
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(b) Average cart progression per period 

Figure 4.5 Qualitative variation laws of 𝜌 obtained for  ℎ = 0.8,  𝜔 = 1.7, 𝜈 =
0.8 and 𝜆 = 3.6 

The qualitative variation law of elastic coefficient 𝜌 is presented in Figure 4.5. 
The effects of 𝜌 on the pendulum and the cart subsystems are shown in Figures 4.5 
(a) and 4.5 (b), respectively. It is also observed in Figure 4.5 (a) that a grazing of 
angular displacement occurs at 𝜌 = 0.25, and thereafter the angular displacement 
largely decreases as 𝜌 increases. As a locomotion system, the average locomotion 
speed is of vital importance, in this regard, the average cart progression per period of 
excitation is characterized and shown in Figure 4.5 (b), in which the global 
maximum and minimum average progressions points are recorded at 𝜌 = 0.9 and 
𝜌 = 0.25, respectively. A pair of local maximal and minimal points of average 
progressions is also identified at 𝜌 = 0.65 and 𝜌 = 0.75. Time histories of the cart 
displacements for 𝜏 ∈ [370,400] are presented in Figure 4.6 to verify the identified 
variation laws. It indicates that for a smaller coefficient at 𝜌 = 0.1, the spring is 
insufficient to generate enough force to enhance the cart progression, accordingly 
the cart moves in vibrational motion around the starting point. Similarly, for a larger 

coefficient at 𝜌 = 2.0, the spring becomes sufficiently ‘hard’ to trap the VDC 
progression. For the values in between, the spring either contributes to the forward 
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motions of the cart (e.g. 𝜌 = 0.7, 0.9), or drags it backwards in the negative 
direction (e.g. 𝜌 = 0.3, 0.25). 

 

Figure 4.6 Time histories of the cart displacements 

   

(a) Angular displacement   
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(b) Average cart progression per period 

Figure 4.7 Qualitative variation laws of 𝜐 obtained for ℎ = 0.8,  𝜔 = 1.7,ρ = 0.9 
and 𝜆 = 3.6 

Figure 4.7 presents the qualitative variation law of viscous coefficient 𝜐. From 
Figure 4.7 (a), it is observed that as 𝜐 increases, the angular displacement decreases 
monotonously. However, it seems insufficient to identify and conclude the effects of 
𝜐 on the VDC performance through the observation on the pendulum subsystem. 
Therefore, the average cart progression per period of excitation is portrayed in 
Figure 4.7 (b), where the maximum average progression point is recorded at 

𝜐 = 1.3. Interestingly from Figure 4.7 (b), it is noted that for value 𝜐 ∈ (0, 1.3], the 
cart progression increases monotonically as 𝜐 augments; on the other hand, for  
𝜐 ∈ (1.3, 5.0], the viscosity acts negative roles by decreasing the cart’s forward 
progression. The identified optimal viscous value is critical for the system and 

controller design. Time histories of cart displacements for 𝜏 ∈ [370,400] are 
presented in Figure 4.8 to verify the qualitative variation laws. 
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Figure 4.8 Time histories of the cart displacements 

 

Remark 5. As shown in Figures 4.5 (a) and 4.7 (a), the performance of the 
collocated subsystem is convenient to be evaluated using conventional approaches 
via the affined projection, whilst it is a challenging task to evaluate the 
non-collocated subsystem. The proposed approach enables characterization of the 
internal dynamic couplings such that the cart performance can be evaluated 
beforehand through the locomotion-performance index. The optimal values of 
viscoelastic parameters can be identified conveniently. 

From Figures 4.6 and 4.8, it is shown that the existence of backward motions 
decreases the locomotion efficacy. To sufficiently suppress the effect of backward 
motions, the sticking phase needs to be controlled at the restoring stage through the 
dynamic interactions with friction, which will be discussed in the following 
subsections. 

4.4.2 Dynamic Constraints Characterization 

Conventional motion planning approaches is not directly applicable to the cart 
subsystem which is non-collocated, as a result, the dynamic constraints (4.12) and 
(4.13) imposed on the system locomotion need to be fully considered when planning 
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an efficient nominal forced trajectory. The following propositions are given to 
characterize the constrained stick-slip motions. 

A. Constraint for the Non-Bounding Motion (Phase 𝐼 to Phase 𝑉𝐼𝐼) 

The cart is contacting with the sliding surface, a constraint for the contact force need 
to be satisfied for the whole system to achieve a non-bounding motion, in other 
words, the contact force has to be greater than zero, which gives an inequality 
constraint in scaled coordinate as 

𝐹𝑦 = (𝜆 + 1) − 𝑠𝑖𝑛𝛩�̈� − 𝑐𝑐𝑠𝛩�̇�2 − 𝜌𝛩𝑠𝑖𝑛𝛩 > 0, 𝜏 ∈ [𝜏1, 𝜏7)    (4.17) 

Proposition 4.1. From Principle 3, the non-bounding motion for the cart can be 
achieved if the following condition is satisfied 

�̇�2�(�̈� + 𝜌𝛩 + 𝜐�̇�)� < 𝜛2/2               (4.18) 

where 

𝜛 = 𝜆 + 1 

Proof. From Principle 4.3, we have  

��̈� + 𝜌𝛩 + 𝜐�̇��𝑠𝛩 + �̇�2𝑐𝛩 < (𝜆 + 1)           (4.19) 

Using the auxiliary angle formula and enlarging the inequality gives a sufficient 
condition as 

���̈� + 𝜌𝛩 + 𝜐�̇��
2

+ �̇�4 < (𝜆 + 1)             (4.20) 

Then through the AM-GM inequality theorem yields 

�2�̇�2(�̈� + 𝜌𝛩 + 𝜐�̇�) < (𝜆 + 1)                (4.21) 

Therefore, we have 

�̇�2�(�̈� + 𝜌𝛩 + 𝜐�̇�)� < (𝜆 + 1)2/2               (4.22) 

∎ 
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B. Constraint for the Non-Sliding Motion (Phase 𝑉𝐼 to Phase 𝑉𝐼𝐼) 

In this duration, the cart remains stationary on the ground without any sliding. Thus 
the force of the inverted pendulum applied on the base in the horizontal direction has 
to be less than the maximal static friction, that is, 

|𝐹𝑚| ≤ 𝜇𝐹𝑦 ,  𝜏 ∈ [𝜏5, 𝜏7)                  (4.23) 

which gives a non-dimensionalized inequality constraint as 

�𝑐𝑐𝑠𝛩�̈� − 𝑠𝑖𝑛𝛩�̇�2 + 𝜌𝛩𝑐𝑐𝑠𝛩� ≤ 𝜇[(𝜆 + 1) − 𝑠𝑖𝑛𝛩�̈� − 𝑐𝑐𝑠𝛩�̇�2 − 𝜌𝛩𝑠𝑖𝑛𝛩] 

Furthermore, the interactive force from vertical 𝐹𝑦 is implicitly restricted to be 

non-negative under the constraint above, which essentially in virtue of the 
unidirectional property of the ground. 

Proposition 4.2. From Principle 4, the sticking motion for the platform in the 
restoring stage will be achieved if the following condition is satisfied 

�̈� + �̇�2 + 𝜌𝛩 + 𝜐�̇� ≤ 𝜛𝜗                     (4.24) 

where 

𝜛 = 𝜆 + 1,𝜗 = 𝜇/�𝜇2 + 1 

Proof. Utilizing the forces in horizontal and vertical directions, removing the 
absolute value sign and considering one side of the inequality that 

𝑐𝛩�̈� − 𝑠𝛩�̇�2 + (𝜌𝛩 + 𝜐�̇�)𝑐𝛩 ≤ 𝜇[(𝜆 + 1) − 𝑠𝛩�̈� − 𝑐𝛩�̇�2 − �𝜌𝛩 + 𝜐�̇��𝑠𝛩] 

(4.25) 

Reorganizing the formulation above, we have 

�𝜇𝑠𝛩�̈� + 𝑐𝛩�̈�� + �𝜇𝑐𝛩�̇�2 − 𝑠𝛩�̇�2� + [𝜇�𝜌𝛩 + 𝜐�̇��𝑠𝛩 + (𝜌𝛩 + 𝜐�̇�)𝑐𝛩] ≤ 𝜇(𝜆 + 1)  

(4.26) 

Using the auxiliary angle formula and enlarging the inequality gives a sufficient 
condition as 

�𝜇2 + 1(�̈� + �̇�2 + 𝜌𝛩 + 𝜐�̇�) ≤ 𝜇(𝜆 + 1)          (4.27) 
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Therefore, we have 

�̈� + �̇�2 + 𝜌𝛩 + 𝜐�̇� ≤ 𝜇(𝜆 + 1)/�𝜇2 + 1           (4.28) 

4.4.3 Trajectory Boundaries Computation 

Based on the constraints analysed above, the boundary conditions are defined below 

𝛩(𝜏)|𝜔=𝜔0 = 𝛩(𝜏)|𝜔=𝜔7 = −𝛩0 < 0,𝛩(𝜏)|𝜔=𝜔3 = 𝛩0, �̇�(𝜏)|𝜔=𝜔0 = 0,  

�̇�(𝜏)|𝜔=𝜔0 = �̇�(𝜏)|𝜔=𝜔3 = �̇�(𝜏)|𝜔=𝜔7 = 0 

Integrating VDC dynamics (4.8) once along one full motion cycle, we have 

(𝜆 + 1)�̇� + 𝜇(𝜆 + 1)𝑆�̇�𝜏 − �̇�𝑐𝛩 − 𝜇�̇�𝑠𝛩𝑆�̇� − 𝜇𝜌𝑆�̇� � 𝛩𝑠𝛩𝑑𝜏
𝜔

0
− � 𝜇𝜌ℎ𝑐𝜔𝜔𝑠𝛩𝑆�̇�𝑑𝜏

𝜔

0

+ 𝜇𝜐𝑆�̇� �𝛩𝑠𝛩 −� 𝛩𝑐𝛩𝑑𝜏
𝜔

0
� − � 𝜇𝜐ℎ𝜔𝑠𝜔𝜔𝑠𝛩𝑆�̇�𝑑𝜏

𝜔

0
− 𝐶1 = 0 

(4.31) 

The optimal values of elastic coefficient 𝜌  and viscous coefficient 𝜐  are 
identified using the qualitative analysis in the previous section. Recalling the desired 

periodic motion profile, in the duration[0, 𝜏3],  𝑃2 can be obtained through integral 
calculation of (4.8) under the consideration of 𝛩0 that if 𝑐𝛩 + 𝜇𝑠𝛩 ≠ 0. We have 

 𝑃2 = �̇�(𝜏)|𝜔=𝜔3 = 1
𝑐𝛩0+𝜇𝑠𝛩0

[𝜇(𝜆 + 1)𝜏3 − 𝜇𝜌 ∫ 𝛩𝑠𝛩𝑑𝜏
𝜔3
0 + 𝜇𝜐�𝛩𝑠𝛩 − ∫ 𝛩𝑐𝛩𝑑𝜏

𝜔3
0 �]               

  (4.32) 

Furthermore, the following relationships can be obtained utilizing the 
conservation of the energy demonstrated in Figure 4.3 

� 𝑃1𝜔1𝑠𝜔𝜔𝑑𝜏
𝜔1

0
+ 𝑃1𝜔1(𝜏2 − 𝜏1) +  � 𝑃1𝜔1𝑠𝜔1𝜔−𝜔2𝑑𝜏

𝜔3

𝜔2
−

1
2𝑃2[

𝑁𝑁
𝜔1

+ 𝜏2 − 𝜏3]

(4.33) 
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1
2

(−𝑃3)[(𝜏7 − 𝜏4) + (𝜏6 − 𝜏5)] = 1
2
𝑃2(𝜏4 − 𝜏3) + 2𝛩0      (4.34) 

Therefore, the lower and critical trajectory boundaries are obtained as 

𝑃2 = 2𝑃1�1−𝑐𝜔1𝜏1+𝜔1(𝜔2−𝜔1)+𝑐𝜔1𝜏2−𝑐𝜔1𝜏3−𝜏2�−4𝛩0
𝑁𝑁/𝜔1+𝜔2−𝜔3

        (4.35) 

𝑃3 = 4𝛩0+𝑃2(𝜔4−𝜔3)
(𝜔7−𝜔4)+(𝜔6−𝜔5)

                    (4.36) 

4.4.4 Trajectory Optimization and Parameterization 

Theorem 4.1. Consider the VDC system (4.8) with viscoelastic property and the 
planned trajectory (4.14) with dynamic constraints (4.10) - (4.13), if the trajectory 
parameters are chosen as 

𝜏1 =

𝜛2

2(𝑃1𝜔)3 − 𝜐

𝜌 , 𝜏2 = 𝜔𝜏3 − 𝑝𝑇𝑐𝑠 𝑃2
𝑃1𝜔

, 𝜏3 =
𝑁𝑁
𝜔 ,  

𝜏4 = −
𝑃2

𝜛𝜗 − 𝑃22 − 𝜌𝑃2𝜏3 − 𝜐𝑃2
+ 𝜏3, 𝜏5 =

𝜛𝜗 − 𝑃32 − 𝜐𝑃3
𝜌𝑃3

, 

𝜏6 = [4𝛩0+𝜔4(𝑃2+2𝑃3)−𝑃2𝜔3]
2𝑃3

 and 𝜏7 = (4𝛩0 − 𝑃2𝜏3 + 𝑃2𝜏4 + 2𝑃3𝜏5)/2𝑃3 

𝜏6 = [4𝛩0+𝜔4(𝑃2+2𝑃3)−𝑃2𝜔3]
2𝑃3

 and 𝜏7 = (4𝛩0 − 𝑃2𝜏3 + 𝑃2𝜏4 + 2𝑃3𝜏5)/2𝑃3 

(4.37) 

Then the following properties hold: 

(1) the planned trajectory (4.14) is analytical; 

(2) Principles 4.1-4.4 are satisfied; 

(3) the time per period of locomotion can be evaluated beforehand as 𝛵𝑑𝑡𝑑𝑚𝑡 =
∑ 𝜏𝑚7
𝑚=1 . 
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Proof. To optimally parameterize the motion trajectory, the dynamic constraints are 
explicitly utilized with the identified optimal viscoelastic parameters 𝜌 and 𝜐. 
Specifically, for Phase 𝐼, from Proposition 4.1, we have 

�̇�2(𝜏1)�(�̈�(𝜏1) + 𝜌𝛩(𝜏1) + 𝜐�̇�(𝜏1))� < 𝜛2/2           (4.38) 

where �̇�(𝜏1) = 𝑃1𝜔 , �̈�(𝜏1) = 0  and 𝛩(𝜏1) = 𝑃1𝜔𝜏1 . The upper boundary of 
Phase 𝐼 is obtained as 

𝜏1 = ( 𝜛2

2(𝑃1𝜔)3
− 𝜐)/𝜌                       (4.39) 

The formulation for Phase 𝐼𝐼  can be described as 𝑃1𝜔𝑠𝜔𝜔3−𝜔2 = 𝑃2 , 

accordingly its duration can be derived as 

𝜏2 = 𝜔𝜏3 − arc𝑠𝑃2/𝑃1𝜔                      (4.40) 

In view of the synchronization and smoothness consideration, the motion 
trajectory is designed to reach the amplitude of harmonic excitation at time 𝜏1 and 
keep it till time 𝜏2, and duration of this phase has to be half of the excitation period, 
which gives the duration Phase 𝐼𝐼𝐼 as 

𝜏3 = 𝑁𝑁/𝜔                          (4.41) 

During Phase 𝐼𝑉, the cart is kept stationary which allows a recovery process 
without any backward motion. Applying proposition 4.2 at time 𝜏3, gives 

�̈�(𝜏3) + �̇�(𝜏3)2 + 𝜌𝛩(𝜏3) + 𝜐�̇�(𝜏3) ≤ 𝜛𝜗            (4.42) 

where 𝛩(𝜏3) = 𝑃2𝜏3, �̇�(𝜏3) = 𝑃2 and �̈�(𝜏3) = −𝑃2/(𝜏4 − 𝜏3). 

Then the duration 𝜏4 can be obtained as 

𝜏4 = −𝑃2/(𝜛𝜗 − 𝑃22 − 𝜌𝑃2𝜏3 − 𝜐𝑃2) + 𝜏3             (4.43) 

In terms of Phase 𝑉, applying Proposition 4.2 at time 𝜏5, we have 

�̈�(𝜏5) + �̇�(𝜏5)2 + 𝜌𝛩(𝜏5) + 𝜐�̇�(𝜏5) ≤ 𝜛𝜗             (4.44) 

where �̈�(𝜏5) = 0, �̇�(𝜏5) = 𝑃3, 𝛩(𝜏5) = 𝑃3𝜏5. 

Accordingly, the maximal boundary of Phase 𝑉 is calculated as 
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𝜏5 = (𝜛𝜗 − 𝑃32 − 𝜐𝑃3)/𝜌𝑃3                   (4.45) 

Further relationship can be achieved in the duration of [𝜏4, 𝜏5] as 

𝑃2(𝜏5 − 𝜏4) = 𝑃3(𝜏4 − 𝜏3)                   (4.46) 

As for the trajectory profile for Phase 𝑉𝐼 and Phase 𝑉𝐼𝐼, it is noted that the 
durations of [𝜏4, 𝜏5]  and [𝜏6, 𝜏7] are accordant based on the design objectives, 
gives 

𝜏5 − 𝜏4 = 𝜏7 − 𝜏6                       (4.47) 

Combining (4.46) with (4.35), we have 

𝜏6 = [4𝛩0 + 𝜏4(𝑃2 + 2𝑃3) − 𝑃2𝜏3]/2𝑃3             (4.48) 

𝜏7 = (4𝛩0 − 𝑃2𝜏3 + 𝑃2𝜏4 + 2𝑃3𝜏5)/2𝑃3            (4.49) 

The trajectory parameterisation procedure (4.38) - (4.49) directly indicate the 
analytical property of the planned trajectory (4.14) and satisfaction of Principles 4.1 
and 4.2. The utilization of Propositions 4.1 and 4.2 indicate the satisfaction of 
Principles 4.3 and 4.4. Property (3) can be directly shown by adding the trajectory 
durations from (4.39), (4.40), (4.41), (4.43), (4.45), (4.48) and (4.49), i.e., 

𝛵𝑑𝑡𝑑𝑚𝑡 = ∑ 𝜏𝑚7
𝑚=1 . 

Remark 4.12. It is noted that the trajectory planning scheme proposed in this work 
can be adopted either in the open-loop control system design or as feedforward 
segment in the closed-loop control system formulation of the VDC systems. 
Admittedly, it is nearly impossible to implement trajectory planning algorithm 
merely in an open-loop control system to cope with the unexpected uncertainties 
(e.g. unstructured and unmodeled dynamics, external disturbances). Indeed, the 
proposed approach may be combined with advanced control schemes (e.g., robust 
and adaptive paradigms) to enhance robustness to disturbances and adaptability to 
parametric uncertainties with guaranteed performance of the proposed algorithm. 
The closed-loop feedback control and adaptive control of the proposed system will 
be studied in the next section. 
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4.5 Trajectory Tracking Control System Design 

In this section, we design the controller for the proposed system based on the control 
algorithms proposed in Chapter 3. The aim is to allow the pendulum trajectory to 
effectively track the periodic motion profile only by applying the torque actuation as 
the control input at the pivot of the pendulum. Based on the absence and presence of 
parametric uncertainties, two tracking control schemes are constructed. Specifically, 
the objective of designing the trajectory tracking controllers is two-folded. Firstly, to 
verify the superior performance of the VDC system with the proposed trajectory 
planning algorithm and to make convenient comparison with the conventional 
approach, a closed-loop feedback control scheme is designed using collocated PFL 
approach. On the other hand, an adaptive variable structure trajectory tracking 
control algorithm is constructed to cope with the parametric uncertainties. 

4.5.1 Closed-Loop Feedback Control Scheme 

Based on the dynamic model in (4.8) and after some calculations, we have 

�1− 1
𝜆+1

𝑐𝛩2� �̈� + 1
𝜆+1

�𝑐𝛩�𝑠𝛩�̇�2 + 𝑓′�� − 𝑠𝛩 + 𝜌𝛩 + 𝜐�̇� = 𝑢𝑑      (4.50) 

Define the trajectory tracking error and its derivatives as 

𝛩� = 𝛩 − 𝛩𝑑, 𝛩�̇ = �̇� − �̇�𝑑 and 𝛩�̈ = �̈� − 𝛩𝑑          (4.51) 

Remark 4.13. It is noted that the duration of each motion phase is fixed, using 
equations of motion (4.8) and the planned tracjectory (4.14), the prior knowledge of 
desired cart and pendulum trajectory for each sampling time can be obtained by 
convenient computation.  

Substituting (4.51) into (4.50) and conducting appropriate mathematical 
manipulation, we have the following system dynamics 

�1−
1

𝜆 + 1
c𝛩2� 𝛩�̈ = 𝑢𝑑 −

1
𝜆 + 1

�c𝛩�s𝛩�̇�2 + f ′��+ s𝛩 − 𝜌𝛩 − 𝜐�̇� − �1−
1

𝜆 + 1
c𝛩2� �̈�𝑑 

   (4.52) 
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Utilising the CPFL technique for the system dynamics in (4.52), a feedback 
linearizing controller can be designed as 

𝑢𝑑 = �1 −
1

𝜆 + 1 c𝛩2� �̈�𝑑 +
1

𝜆 + 1
�c𝛩�s𝛩�̇�2 + f ′�� − s𝛩 + 𝜌𝛩 + 𝜐�̇�

− 𝐾𝑣 �1 −
1

𝜆 + 1 c𝛩2�𝛩� − 𝐾𝑝 �1 −
1

𝜆 + 1 c𝛩2�𝛩�̇  

                      (4.53) 

where 𝐾𝑣 and 𝐾𝑝 are positive control gains selected by the designer. 

Substituting (4.53) into system (4.52) and after some convenient calculations, 
the closed-loop system can be obtained in the following form 

𝛩�̈ + 𝐾𝑣𝛩�̇ + 𝐾𝑝𝛩� = 0                     (4.54) 

Therefore, it is evident through the Routh-Hurwitz criterion that the system 
stability is guaranteed. 

4.5.2 Adaptive Robust Control Scheme with an Auxiliary Variable 

This subsection considers the condition with parametric uncertainties that the system 
base parameters are unknown. The main difficulty exists in the nonlinearity of 
collocated inverse dynamics w.r.t. the base parameters, which makes the applications 
of conventional adaptive control algorithms not directly available. The main idea in 
this thesis is to introduce an auxiliary control variable to closure the non-collocated 
subsystem and to construct online adaptive algorithms to estimate the system 
parameter values such that the tracking error and estimation error signals in the 
closed-loop system converge to zero asymptotically. 

In the following, new vector variables are defined as 

𝜚 = �
𝜚𝛩
𝜚𝑋� = �̇�𝑑 − Λ𝑞� = ��̇�𝑑 − Λ𝛩𝛩�

�̇�𝑑 − Λ𝑋𝑋�
�                (4.55a) 

𝛿 = �𝛿𝛩𝛿𝑋
� = ��̇� − 𝜚𝛩

�̇� − 𝜚𝑚
� = �𝛩

�̇ + Λ𝛩𝛩�

𝑋�̇ + Λ𝑋𝑋�
�                (4.55b) 
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where 𝛿 denotes the filtered error signal and describes the measure of tracking 
accuracy, 𝜚 is referred to as vector of the reference trajectory, Λ = [Λ𝛩  Λ𝑋]𝑇 are 
positive constants selected by designers and denoting for the bandwidth of the 
first-order filter. 

Alongside the definitions in (4.60), two sliding variables 𝛿𝛩  and 𝛿𝑋  are 
designed for the collocated and non-collocated subsystems, respectively. The 
dynamics in terms of the sliding variables can be derived from (4.8) and (4.55) as 

𝑀 ��̇�𝛩
�̇�𝑋
� + 𝐶 �𝛿𝛩𝛿𝑋

� = �𝑇 + 𝑁𝛩(𝑡)
𝑁𝑋(𝑡) �               (4.56) 

where 𝑁𝛩(𝑡)  and 𝑁𝑋(𝑡)  represent nonlinear functions with unknown base 
parameters detailed as follows: 

𝑁𝛩(𝑡) = −𝑚𝑙2�̇�𝛩 + 𝑚𝑙𝑐𝛩�̇�𝑋 − 𝑘𝛩 − 𝑐�̇� + 𝑚𝑔𝑙𝑠𝛩
= ��̇�𝛩  − 𝑐𝛩�̇�𝑋 𝛩 �̇�  − 𝑠𝛩�[𝑚𝑙2  𝑚𝑙  𝑘  𝑐  𝑚𝑔𝑙]𝑇 = −𝑌𝛩𝛼𝛩 

𝑁𝑋(𝑡) = 𝑚𝑙𝑐𝛩�̇�𝛩 − (𝑀 + 𝑚)�̇�𝑋 − 𝜇𝑁𝑆�̇� − 𝑚𝑙𝑠𝛩�̇�𝜚𝛩
= �−𝑐𝛩�̇�𝛩  �̇�𝑋 𝑁𝑆�̇� 𝑠𝛩�̇�𝜚𝛩�[𝑚𝑙  (𝑀 + 𝑚)  𝜇  𝑚𝑙]𝑇 = −𝑌𝑋𝛼𝑋 

Remark 4.13. The filtered error dynamics (4.56) satisfies Properties 4.1 and 4.2. 

Accounting for the parametric uncertainty existing in 𝑌𝜃𝛼𝜃  and 𝑌𝑚𝛼𝑚 , the 
following theorem presents an adaptive variable structure control scheme, based on 
the filtered error dynamics in (4.56), that ensure the adaptive asymptotic 
convergence of the closed loop signals. 

Theorem 4.2. Consider the VDC system modelled by (4.8) and introduce an 
auxiliary variable 𝜂 . If the following control system is designed to the 
underactuated VDC system with parametric uncertainty 

𝑢 = 𝑇𝑐 + 𝑇𝑛                       (4.57a) 

𝑇𝑐 = 𝑌𝛩𝛼�𝛩 − 𝐾1𝛿𝛩                   (4.57b) 

𝑇𝑛 = −𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖|𝜂| − 𝐾2𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖ −
(𝜂 + 1)𝛿𝛩𝛿𝑋𝑇𝐾3𝛿𝑋

‖𝛿𝛩‖2 + 𝛽

−
(𝜂 − 1)𝛿𝛩‖𝛿𝑋𝑇𝑌𝑋‖𝛼�𝑋

‖𝛿𝛩‖2 + 𝛽  
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(4.57c) 

�̇� = 𝜂
2𝑛+2
2𝑛+1

‖𝛿𝛩‖2

‖𝛿𝛩‖2+𝛽
(𝐾3‖𝛿𝑋‖2 + ‖𝛿𝑋𝑇𝑌𝑋‖𝛼�𝑋)           (4.57d) 

with the adaptation laws 

𝛼�̇𝛩 = −Γ1𝑌𝛩𝛿𝛩, 𝛼�̇𝑋 = −Γ2𝑌𝑋𝛿𝑋             (4.57e) 

where the subscripts “c” and “n” indicate the collocated and non-collocated, 
respectively. 𝐾1 ∈ ℛ1 , 𝐾2, 𝐾3 ∈ ℛ1  are diagonal, constant positive definite 
matrices, Γ1 ∈ ℛ1 and Γ2 ∈ ℛ1 are positive definite matrices determing the rate of 
adaptation. 𝛽 > 0  is a selected small constant. 𝛼�𝛩(𝑡) = 𝛼�𝛩(𝑡) − 𝛼𝛩(𝑡)  and 
𝛼�𝑋(𝑡) = 𝛼�𝑋(𝑡) − 𝛼𝑋(𝑡)  are parameter estimation errors. Then the following 
conclusions hold: 

(1) The system is globally asymptotically stabilized; 

(2) All signals in the closed-loop system are bounded and uniformly continuous ; 

(3) The asymptotical convergence of the error signals are guaranteed. 

Proof. Consider the following Lyapunov candidate function as 

𝑉 = 1
2
𝛿𝑇𝐷𝛿 + 1

2
𝛼�𝛩𝑇Γ1

−1𝛼�𝛩 + 1
2
𝛼�𝑋𝑇Γ2

−1𝛼�𝑋 + 2𝑛+1
2𝑛

𝜂
2𝑛

2𝑛+1        (4.58) 

Differentiating both sides of (4.58) and substituting the control laws (4.57), 
yields 

�̇� = 𝛿𝑇𝐷�̇� +
1
2 𝛿

𝑇�̇�𝛿 + 𝛼�̇𝛩𝑇Γ1
−1𝛼�𝛩 + 𝛼�̇𝑋𝑇Γ2

−1𝛼�𝑋 + 𝜂
−1

2𝑛+1�̇� 

= 𝛿𝑇(�𝑇−𝑌𝛩𝛼𝛩−𝑌𝑋𝛼𝑋
� − 𝐶𝛿) +

1
2 𝛿

𝑇�̇�𝛿 + 𝛼�̇𝛩𝑇Γ1
−1𝛼�𝛩 + 𝛼�̇𝑋𝑇Γ2

−1𝛼�𝑋 + 𝜂
−1

2𝑛+1�̇� 

Adopting the Property A.2 and substituting the auxiliary control variable in 
(4.57c) with its evolving law (4.57d), we have 

�̇� = 𝛿𝑇 �𝑇−𝑌𝛩𝛼𝛩−𝑌𝑋𝛼𝑋
�+ 𝛿𝑇(

1
2 �̇� − 𝐶)𝛿 + 𝛼�̇𝛩𝑇Γ1

−1𝛼�𝛩 + 𝛼�̇𝑋𝑇Γ2
−1𝛼�𝑋 + 𝜂

−1
2𝑛+1�̇� 
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= 𝛿𝑇

⎣
⎢
⎢
⎡𝑌𝛩𝛼�𝛩 − 𝐾1𝛿𝛩 − 𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖|𝜂| − 𝐾2𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖ −

          
(𝜂 + 1)𝛿𝛩𝛿𝑋𝑇𝐾3𝛿𝑋

‖𝛿𝛩‖2 + 𝛽 −
(𝜂 − 1)𝛿𝛩‖𝛿𝑋𝑇𝑌𝑋‖𝛼�𝑋

‖𝛿𝛩‖2 + 𝛽 − 𝑌𝛩𝛼𝛩
−𝑌𝑋𝛼𝑋 ⎦

⎥
⎥
⎤

+ 𝛼�̇𝛩𝑇Γ1
−1𝛼�𝛩

+ 𝛼�̇𝑋𝑇Γ2
−1𝛼�𝑋 + 𝜂

−1
2𝑛+1�̇� 

= [𝛿𝛩𝑇  𝛿𝑋𝑇]

⎣
⎢
⎢
⎡ 𝑌𝛩𝛼�𝛩 − 𝐾1𝛿𝛩 − 𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖|𝜂| −𝐾2𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖ −

           
(𝜂 + 1)𝛿𝛩𝛿𝑋𝑇𝐾3𝛿𝑋

‖𝛿𝛩‖2 + 𝛽 −
(𝜂 − 1)𝛿𝛩‖𝛿𝑋𝑇𝑌𝑋‖𝛼�𝑋

‖𝛿𝛩‖2 + 𝛽 − 𝑌𝛩𝛼𝛩
−𝑌𝑋𝛼𝑋 ⎦

⎥
⎥
⎤

+ 𝛼�̇𝛩𝑇Γ1
−1𝛼�𝛩

+ 𝛼�̇𝑋𝑇Γ2
−1𝛼�𝑋 + 𝜂

−1
2𝑛+1�̇� 

= −𝛿𝛩𝑇𝐾1𝛿𝛩 − 𝛿𝛩𝑇𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖|𝜂| − 𝐾2𝛿𝛩𝑇𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖ −
(𝜂 + 1)‖𝛿𝛩‖2𝛿𝑋𝑇𝐾3𝛿𝑋

‖𝛿𝛩‖2 + 𝛽

−
(𝜂 − 1)‖𝛿𝛩‖2‖𝛿𝑋𝑇𝑌𝑋‖𝛼�𝑋

‖𝛿𝛩‖2 + 𝛽 − 𝛿𝑋𝑇𝑌𝑋𝛼𝑋 + 𝛼�̇𝑋𝑇Γ2
−1𝛼�𝑋 + 𝜂

−1
2𝑛+1�̇� 

= −𝛿𝛩𝑇𝐾1𝛿𝛩 − 𝛿𝛩𝑇𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖|𝜂| − 𝐾2𝛿𝛩𝑇𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖ −
(𝜂 + 1)‖𝛿𝛩‖2𝛿𝑋𝑇𝐾3𝛿𝑋

‖𝛿𝛩‖2 + 𝛽

−
(𝜂 − 1)‖𝛿𝛩‖2‖𝛿𝑋𝑇𝑌𝑋‖𝛼�𝑋

‖𝛿𝛩‖2 + 𝛽 − 𝛿𝑋𝑇𝑌𝑋𝛼𝑋 + 𝛼�̇𝑋𝑇Γ2
−1𝛼�𝛩

+
𝜂‖𝛿𝛩‖2

‖𝛿𝛩‖2 + 𝛽 (𝐾3‖𝛿𝑋‖2 + ‖𝛿𝑋𝑇𝑌𝑋‖𝛼�𝑋) 

≤ −𝛿𝛩𝑇𝐾1𝛿𝛩 − 𝛿𝛩𝑇𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖|𝜂| − 𝐾2𝛿𝛩𝑇𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖ −
‖𝛿𝛩‖2𝐾3‖𝛿𝑋‖2

‖𝛿𝛩‖2 + 𝛽

+
‖𝛿𝛩‖2

‖𝛿𝛩‖2 + 𝛽
‖𝛿𝑋𝑇𝑌𝑋‖𝛼�𝑋 − 𝛿𝑋𝑇𝑌𝑋𝛼𝑋 + 𝛼�̇𝑋𝑇Γ2

−1𝛼�𝑋 

≤ −𝛿𝛩𝑇𝐾1𝛿𝛩 − 𝛿𝛩𝑇𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖|𝜂| − 𝐾2𝛿𝛩𝑇𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖ −
‖𝛿𝛩‖2𝐾3‖𝛿𝑋‖2

‖𝛿𝛩‖2 + 𝛽  

= −𝛿𝛩𝑇𝐾1𝛿𝛩 − ‖𝛿𝛩‖‖𝛿𝑋‖|𝜂| − 𝐾2‖𝛿𝛩‖‖𝛿𝑋‖ −
‖𝛿𝛩‖2𝐾3‖𝛿𝑋‖2

‖𝛿𝛩‖2 + 𝛽  

≤ −𝐾1‖𝛿𝛩‖2 −
‖𝛿𝛩‖2𝐾3‖𝛿𝑋‖2

‖𝛿𝛩‖2 + 𝛽 ≤ 0 

 (4.59) 
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From the definition of Lyapunov function 𝑉(𝑡) in (4.58), it is lower bounded 
by zero and decreases for any nonzero 𝛿 as shown from (4.59). It is evident from 
the above mathematical proof that the global uniform boundedness of the filtered 

tracking error of collocated subsystem 𝛿𝛩 and non-collocated subsystem 𝛿𝑋, the 
parameter estimation errors 𝛼�𝛩 and 𝛼�𝑋 are guaranteed. From the definition and 
assumption 1 of filtered tracking error 𝛿, it is evident that 𝛿 is bounded. The 
boundedness of control input is obvious from (4.57). It can be conclude that 

𝛿 = [𝛿𝛩 𝛿𝑋]𝑇 ∈ 𝐿2𝑛 ∩ 𝐿∞𝑛 , and it is obvious that �̇� ∈ 𝐿∞𝑛  from (4.55), thus, based on 
Barbalat’s Lemma, 𝛿𝛩 and 𝛿𝑋 are continuous and 𝛿𝛩 → 0, 𝛿𝑋 → 0 as 𝑡 → ∞, and 

𝜂 ∈ 𝐿∞. From (4.57), it can be shown that 𝛼�𝛩 ∈ 𝐿∞
𝑝 . This in turns implies that, 

based on the Property 3.1 and (4.55), �̇� ∈ 𝐿∞𝑛 , �̈� = [�̈�𝛩 �̈�𝑋]𝑇 ∈ 𝐿∞𝑛  and 𝑞� =
[𝑞�𝛩 𝑞�𝑋]𝑇 ∈ 𝐿∞2𝑛 . Therefore, 𝑞�𝛩  and 𝑞�𝑋  are uniformly continuous and 𝑞� =
[𝑞�𝛩 𝑞�𝑋]𝑇 ∈ 𝐿∞2𝑛, it is proofed that 𝑞� → 0 as 𝑡 → ∞.  

                  ∎ 

Remark 3.3. Based on the stability analysis, the feedback signal 𝐾2𝑠𝑔𝑛(𝛿𝛩)‖𝛿𝑋‖ 
designed in (4.57) enhances the robustness of the system. Beneficial from this 
inclusion, the trajectory tracking error will converge to zero in the presence of 
parametric uncertainties. 

4.6 Simulation Results 
In this section, a number of numerical simulations are conducted to verify the 
performance and efficiency of the proposed trajectory planning scheme and the 
adaptive tracking control scheme. In particular, the advantages of the planned 
trajectory such as smooth transition in progressive stage, superior efficiency in 
progression and energy consumption are presented. In the simulation, the rationality 
of the parameter values selection in this section is specified as follows: the system 
parameter values are configured from the studies in literature as reported in (Li et al., 

2006; Y. Liu et al., 2008, 2011) as 𝑀 = 0.5 𝑘𝑔 , 𝑚 = 0.138 𝑘𝑔 , 𝑙 = 0.3 𝑚 , 
𝑔 = 9.81 𝑚/𝑠2 , 𝜇 = 0.01 𝑁/𝑚𝑠  and the system natural frequency 𝜔𝑛 =
5.7184 𝑇𝑝𝑑/𝑠. Then, based on the optimal selection algorithms in Section 4, the 
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control parameters are configured as 𝑘 = 0.36 𝑁𝑚/𝑇𝑝𝑑 and 𝑐 = 0.0923 𝑘𝑔𝑚2/
𝑠𝑇𝑝𝑑  to obtain optimal steady-state motion. The initial conditions are set as 
𝜃(0) = 𝜃0 = 𝑁/3, �̇�(0) = 0, 𝑥(0) = 0 and �̇�(0) = 0. 

Firstly, in the absence of parametric uncertainty, comparative studies are 
performed with (Liu et al., 2014) (referred to as EPC system), in which a two-stage 
velocity trajectory is proposed using conventional approach with heristically chosen 
control parameters. To make convenient comparison, control scheme (4.53) is 
employed. Based on the trajectory planning algorithms in Section 4.4, the 
parameters for the constructed trajectory (4.14) and the trajectory in (Liu et al., 2014) 
are detailed in Table 4.1. 

Table 4.1 Trajectory parameters for numerical simulation (s) 

 

The simulation results are presented in Figure 4.9. It can be clearly observe 
from Figure 4.9(a) that the maximum angular velocity using the proposed method is 
about 7.8 rad/s, which is lower than the EPC system with 11 rad/s. The synchronized 
trajectory present better transient performance in terms of the overshoot and the 
maximum pendulum swing is about 68.75° (17.1° smaller than the EPC system). 
These results have good agreements with the trajectory planning indexes and 
principles. The average velocity with the proposed trajectory calculated from Figure 
4.9(c) for the first five cycles is 0.642cm/s, whereas it is 0.629cm/s for the EPC 
system. The transition functions inserted into progressive stage guarantee the 
smooth transition and thereafter a lower maximum input torqes as shown in Figure 
4.9(d) (0.5367 Nm compared with 0.6246 Nm of EPC system). This directly 
evidents a superior performance in energy efficacy. The backward motions are 
sufficiently supressed as can be seen from Figure 4.9(c). The results concludes that 
the friction-indcued stick-slip motions are precisely controlled through the proposed 
trajectory planning scheme, in a manner that the superior performance are garanteed. 
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(a) Trajectory tracking performance 

 

 

(b) Time histories of angular displacements for five motion cycles 
 

 

(c) Time histories of cart displacements for five motion cycles 
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 (d) Time histories of input torques for five motion cycles 

Figure 4.9 Simulation results of the proposed method (red solid line) and 
conventional method in EPC (blue dashed line) 

Subsequently, the adaptive tracking control scheme in (4.57) are evaluated in 
the presence of parametric uncertainty. The mass of the cart 𝑀 and the friction 
coefficient 𝜇  are assumed uncertain with known bounds, i.e., 0.45𝑘𝑔 ≤ 𝑀 ≤
0.55𝑘𝑔 and 0.009 𝑁/𝑚𝑠 ≤ 𝜇 ≤ 0.011𝑁/𝑚𝑠. This is under the consideration that 
the mass of cart body may vary when working in the environment with  high 
degree of viscosity, and the cart may be glued on environmental component such as 
water, mud, mucus, etc. And the sliding friction coefficient is undergoing changes at 
different substrate. The bandwidth of the first-order filter is set as Λ = [Λ𝜃 Λ𝑚]𝑇 =
[12 30]𝑇. The control gain used in the simulation are chosen to be 𝐾1 = 1.3, 
𝐾2 = 10  and 𝐾3 = 50 . As a result, the associated base parameters are 𝛼𝜃 =

[0.01424,0.0414,0.36,0.0923,0.40527]𝑇 and 𝛼𝑚 = [0.0414, 0.638, 0.01, 0.0414]𝑇. The 
adaptation gains are chosen as Γ1 = 0.1 and Γ2 = 0.1. The simulation result of 
trajectory tracking performance of the adaptive variable structure control scheme 
(4.5) are shown in Figure 4.10. The planned collocated trajectory (4.14) (red dashed 
line), the simulated trajectory (black solid line) in Figure 4.10(a) and the trajectory 
tracking error in Figure 4.10(b) are portrayed. It can be observed that the driving 
pendulum tracks the planned trajectory accurately and the maximum angular 
velocity is about 7.9 rad/s. The figure illustrates the effectiveness of the designed 
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control scheme. It is clear to see that the asymptotic convergence of the tracking 
error is achieved.  

 

(a) Trajectory tracking performance with tracked trajectory (black solid line) and 
planned trajectory (red dashed line) 

 (b) Trajectory tracking error 

 

(c) Control torque 

Figure 4.10 Simulation results of control scheme (4.57) under parametric uncertainty 

4.7 Robot Design and Experimental Results 

In this section, the 3D design of the the vibro-driven cart system, experimental setup 
and some preliminary results are presented.  

4.7.1 3D Robotic System Design 
The 3D robotic model for the vibro-driven system is built through SolidWorks (as 
shown in Figure 4.11), in which the connections between each component are 
detailed. The system contains two layers, the lower layer is contacting with the 
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ground and the upper layer is linked with a rotating pendulum. The system contains 
one DC servo motor as the main actuation mechanism and one steering engine for 
two-dimensional locomotion. A steering engine is fixed with the lower layer as 
shown in Figure 4.11(a) such that the direction of the robot on the flat plane can be 
adjusted to facilitate a two-dimensional locomotion. Two layers are firmly fixed 
together through four bearings as can be seen from Figure 4.11(b). From Figure 
4.11(c), a DC motor is installed and fixed on the upper layer. Alternative holes are 
designed for the mass ball as shown in Figure 4.11(d) such that the length and inertia 
of the pendulum becomes adjustable.  

   

(a) The lower layer (chassis) 

 

(b) The connected layers 
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(c) Motor installation 

DC servo 
motor

Steering 
engine

 

(d) The motor and steering engine 
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(e) The overall system 

Figure 4.11 The 3D prototype of the vibro-driven system 

4.7.2 Experiment Setup 

In this subsection, the experimental setup of the vibro-driven system is presented. 
The objective of the experiment here is to demonstrate and validate the proposed 
robotic model and its mobility. The experimental components of the vibro-driven 
system are shown in Figure 4.12. As shown in Figure 4.12(a), a DC servo motor 
driver RMDS-102 (“RMDS,” n.d.) is employed to drive the DC motor. RMDS-102 
is a high-performance DC motor driver which has 15 pins and 13 of them are used in 
this study. MT1 and MT2 connect the positive and negative terminal of the DC 
servo motor, respectively. CHB, +5V, CHA and GND are connected with the servo 
motor encoder. CANL and CANH are connected with corresponding pins in the 
controller. RS232 is used as communication mode. The main function of the motor 
is to control the rotation of the pendulum within a certain angular range, therefore 
the angular position and angular velocity need to be controlled. A DC servo motor 
produced by Globe Motor (“Globe Motors,” n.d.) as shown in Figure 4.12(d) is used 
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to rotate the pendulum. It has a double-channel encoder. A steering engine MG995 
(“Shenzhen Zvepower Technology Co., Ltd.,” n.d.) as shown in Figure 4.12(b) is 
used to steering system on the flat plane. It is noted that in this study, the main 
function of the steering engine is to control the rotation of the platform, therefore it 
is required to operate/rotate in a lower velocity. A STM32 Series microcontroller 
STM 32VET6 (“ STMicroelectronics,” n.d.) is used as the main controller as shown 
in Figure 4.12(c). The linear motor can be connected to the motion controller 
through wires and a connector. The motion controller provides power to the linear 
DC motor. 

 

    

              (a) DC servo motor driver          (b) Steering engine 

 
(c) Controller 
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(d) Globe motor 

Figure 4.12 Experimental components of the vibro-driven system 

 

 

Figure 4.13 Experimental rig of the vibro-driven system 
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Acrylic plates are used as materials for the upper and lower plates and the 
pendulum rod, which are shaped through laser cutting machine. During the assembly 
of the experimental rig, clearance fit is realised through fixed joints of nuts and bolts. 
The assembled experimental rig is shown in Figure 4.13. The main controller, motor 
driver and battery are not installed on-board to reduce the overall weight during 
locomotion. 

4.7.3 Motor Controller PID Tuning 

The DC servo motor controller RMDS-102 has the function of PID tuning. When 
tuning the PID parameters, the DC servo motor is connected with the motor 
controller, which is directly communicated with the upper computer through RS232 
interface. Therefore, the parameters are tuned through the communications between 
the upper computer and the motor controller.  

 

Figure 4.14 Motor no-load response curve 

 

Motor control is a relatively simple task when the DC servo motor is in no-load 
condition, and the control parameters are accurate. The motor response curve in 
no-load condition is shown in Figure 4.14, it is evident that the motor has a fast 
response in this circumstance, the PD parameters are chosen as P=10, D=200. When 
the motor output shaft is merged with an inverted pendulum, the load of the motor is 
in an eccentric state where the moment of inertia is changing. Besides, the inverted 
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pendulum is operating in the vertical plane, thus the gravity has an influence on the 
control of the motor. Figure 4.15 demonstrates the motor position response curves 
under certain parameter conditions. It can be concluded from the curves that the 
elimination of influence of gravity on the motor control is a tough task. The reason 
behind is the existence of the eccentric state of the robotic system, and the effect of 
gravity on the motor has different directions when the pendulum is rotating in the 
left and right half of the vertical plane. 

     

(a) P=10, D=200               (b) P=15, D=200 

   

(c) P=20, D=200            (b) P=20, D=400 
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(e) P=15, D=200             (f) P=12, D=400 

Figure 4.15 Motor position response curves under certain parameter conditions. 

 

4.7.4 Experiment Results 

Preliminary experiments have been done to validate the proposed robotic model and 
locomotion principle. The motion controller powers and controls the movement of 
the pendulum. The motion controller is programmed through a PC and the program 
is transferred to the motion controller memory through RS232 cable at a baud rate of 
57600. When the motion controller is powered the program is executed and the 
pendulum moves accordantly. Parameters of the vibro-driven system are listed as 
follows: mass of the cart is 0.523kg, mass of the pendulum is 0.119kg, length of the 
pendulum is 0.145m. The cart moves by the input signal from the driver. Input ports 
of the driver board are connected to the computer. Passive wheels with encoders are 
implemented to the cart to measure the distance that the cart travels. Quadrature 
encoders configured to count on both rising and falling A and B channel edges, 
therefore they are attached to the motor shaft and the cart wheels and position data is 
sampled with an angular resolution of 0.18。 to output the positions. The encoders 
measure the displacements of the pendulum and the cart. The pendulum is fixed at a 
starting angle and travels in an anti-clockwise motion. The encoder positions of the 
pendulum and the cart wheels are stored in the memory of the motion controller. 
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When the motion controller is connecting with the PC, the position data are captured 
and imported into the Excel for analysis and scaling.  

Figures 4.16(a) and 4.16(b) demonstrate the comparison of the experimental 
results with the simulation results. Figure 4.16(a) is drawn from the experimental 
data (blue solid line) and simulated data (black dashed line) for the movement of the 
pendulum. Figure 4.16(b) is portrayed from the experimental (blue solid line) and 
simulated data (black dashed line) for the locomotion of the cart on the dry surface 
of a wooden table. From the figures, we can clearly observe that the pendulum 
rotates in a certain angular range and the cart travels about 19.8cm during five 
motion cycles. It can be observed that although there are some differences between 
the simulated and the experimental results, the motion pattern of the robotic system 
follows the designed locomotion model. The experimental results of the pendulum 
and cart displacements are slightly delayed comparing to the simulation results. 
From Figure 4.16(b), we see that the cart experiences a delay of about 2s after five 
motion cycles in the experiments than the desired and simulation results. It is also 
observed from the figure that the backward motions (during restoring stage) of the 
cart for each cycle does not completely neutralized, meaning that after the 
progressive stage, the cart moves slightly toward the opposite direction. However, 
noted also that the experimental trajectories have similar pattern as the desired and 
simulation trajectories.  

Possible reasons that lead to these discrepancies are summarized as follows: (1) 
we adopt a simplified friction model (the Coulomb friction model) in the simulation, 
in which the viscous friction and Stribeck effect are omitted. The Coulomb model is 
a static model, whilst in the experiment and text, the friction could be more 
complicated and dynamic which relies not only on the velocity of the cart. (2) we 
only consider the cart’s dynamics, however, the dynamics of the actuator and the 
sensors are not considered in the system model and simulation. This makes the 
developed responses of the pendulum and the cart in the experiments slower than 
that in the simulation and thereafter a delay in the trajectory following is observed. 
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However, the preliminary experimental results have demonstrated the effectiveness 
of the proposed model and locomotion principle. 

 

 

(a) Angular displacements of the pendulum 

 

 

(b) Displacements of the cart 

Figure 4.16 Comparison of experiment (blue solid line) and simulation (black 
dashed line) results of the vibro-driven cart system 
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In order to minimize the discrepancy between the experimental and simulation 
studies, a more practical robotic model is under development that incorporates the 
actuator dynamics, sensor dynamics and a dynamic and robust friction model. It is 
also clearly necessary to identify the practical values and test the capability of 
adaptability and robustness of the proposed control algorithms in physical system. 
The effectiveness of the proposed algorithms is demonstrated using analytical 
studies, numerical simulations and preliminary experimental works. It is also of 
great significance to apply the design ideas and main findings to more real 
environment applications, such as embedded the bio-inspired model into a capsule 
shell and conduct field tests on various surfaces in different environment. Several 
aspects of future works are summarized as follows:  

(1) Identification of the bio-inspired viscoelastic parameters and comparison 
with the theoretical studies in this research, including the coefficients of the 
elasticity and viscosity;  

(2) The real-time position feedback control and evaluation of the computational 
complexity. This will take into consideration of both the collocated subsystem 
(pendulum angle) and the non-collocated subsystem (cart displacement). To realise 
real-time implementation, an online optimal trajectory generator will be developed 
based on improvement of the proposed off-line trajectory control model. An 
evaluation of computational complexity of the proposed algorithm will be conducted 
through real-time implementation. 

(3) Trajectory tracking of the robots on the surfaces with different friction 
coefficients, identification of the friction parameters, particularly in the tubular 
environments such as the gas and water pipes to test the performance of the adaptive 
control systems. 
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4.8 Conclusion 

In this chapter, we studied the issues of trajectory planning, optimization and 
tracking control of a novel 2-DOF bio-inspired VDC system with viscoelastic 
property. The bio-inspired self-propulsion has been elaborately described with a 
proposed robotic model. As one of the distinguished features of the proposed model, 
the key role of viscoelasticity has been revealed. Towards this end, in the first place 
in section 4.2, the mathematical model was established to describe the natures of 
non-collocated actuation and sliding friction of the proposed model.  

The problem of trajectory generation and synthesis was investigated in section 
4.3. A two stages motion trajectory was planned for the driving pendulum with 
seven phases. On the other hand, the employment of viscoelastic property in the 
system dynamics drives us to consider the characteristic of viscoelasticity into the 
generation of desired periodic motion trajectory. Towards this end, a synchronization 
and smoothness procedure was introduced. 

In Section 4.4, the geometric analysis-based trajectory planning algorithm was 
proposed and investigated in detail. The main idea is to reduce complexity and to 
characterize coupling by imposing a harmonic drive and then to compute the 
dynamics projection onto a hyper-manifold, such that the issue of trajectory 
planning is converted into geometric analysis and trajectory optimization. The 
non-collocated dynamic constraints were firstly considered into the control indexes, 
wherein it is found that characterization of viscoelastic interaction plays vital role in 
the optimal control of stick-slip propulsion and the energy efficacy. The qualitative 
variation laws of the control parameters were studied and identified through 
geometric and dynamic analysis. The dynamic coupling was characterized through 
rigorous analysis on the Poincaré maps. The two-stage analytical motion trajectory 
was constructed based on the control indexes and dynamic constraints, which were 
evaluated analytically, and the trajectory was optimized and parameterized via 
rigorous analysis. 
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In section 4.5, two trajectory tracking control schemes have been constructed. A 
closed-loop feedback controller was designed for the system with accurate model. 
An adaptive controller was proposed for the system with unknown base parameters, 
wherein an auxiliary control variable is designed to closure the non-collocated 
feedback loop. Asymptotic stability and convergence of time-varying reference 
trajectories for the system dynamics are shown by means of Lyapunov synthesis. 
The trajectory of the actuated sub-coordinate can be directly controlled through only 
one actuated DOF of the robot. The un-actuated (passive) part of the generalized 
coordinate, in turn, demonstrates the dynamic interaction between the trajectory of 
the actuated sub-coordinate and the dynamic behaviour of the proposed VDC 
system. 

Extensive simulation results were presented in Section 4.6 to verifying the 
effectiveness and evaluating the performances of proposed trajectory planning and 
tracking control approaches. The simulation was implemented in two cases. Firstly, 
in the absence of parametric uncertainty, comparative studies are performed with 
EPC system, in which a two-stage velocity trajectory is proposed using conventional 
approach with heuristically chosen control parameters. The results conclude that the 
friction-induced stick-slip motions are precisely controlled through the proposed 
trajectory planning scheme, in a manner that the superior performance is guaranteed. 
Subsequently, the adaptive tracking control scheme is evaluated in the presence of 
parametric uncertainty. The results illustrate the effectiveness of the designed control 
scheme. The asymptotic convergence of the tracking error is achieved. On the other 
hand, under the parametric uncertainty, the adaptive control scheme shows better 
tracking performances than the conventional method.  

The 3D design, experimental setup and experimental results were presented in 
Section 4.7 to demonstrate and validate the locomotion of the proposed VDC model. 
From the experimental results, the proposed robotic model has been shown, and the 
proposed robotic model and locomotion principles of the system have been validated. 
Comparison of the experiment and the simulation results has been given and 
precisely discussed. The system is propelled over a surface rectilinearly via the 
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interaction between the driving pendulum and the horizontal sliding friction, resulting 
into alternative sticking and slipping locomotion. 
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Chapter 5  

Analysis and Characterization of Dynamic 
Frictional Interactions 
 
 

5.1 Introduction 

Mobile Micro-Mechanical Systems (MMMS) that move overcoming the 
environmental resistance as a result of internal autogenetic forces have been the 
topics of active scientific research in robotics and control communities in recent 
years (Bolotnik and Figurina, 2008; Chernous’ ko, 2005; Chernous’ko, 2011; Li et 
al., 2006; Zhan and Xu, 2015; C. Zhang et al., 2014b). These systems, with hermetic 
structure and smooth surface, have extensive potential applications in medical 
endoscopy, engineering diagnosis, disaster rescues and seabed exploration, etc. 
Irrespective of the complex gear case and external protruding components, they are 
simple in mechanical structure and prone to control. As a result, they provide a 
promising insight into the proper designs of the dynamical model of MMMS and 
bionic-robotic systems. The primary principle is that rectilinear locomotion can be 
achieved through an internally vibration-driven mass interacting with main body, 
overcoming the resistance forces acting at the contacting surface. This feature 
enables the feasibility and applicability of so-called capsule systems that work in 
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restricted space and vulnerable media such as pipeline inspection in a narrow tube, 
minimally invasive inspection and drug delivery inside a human body (Fang and Xu, 
2011; Li et al., 2006; Liu et al., 2013a). For high fidelity engineering systems, 
accurate modelling or prediction of nonlinear friction force is a nontrivial while 
intractable aspect of scientific research. Conventionally, frictional instabilities are 
required to be eliminated or compensated through efficiently designed controllers. 
For instance, robust friction models are essentially required in practical engineering 
problems. Conversely, for self-propelled capsule systems, friction plays pivotal roles 
in capsule propulsion and locomotion, particularly for the vibro-driven 
underactuated system considered in this chapter, the dynamic coupling between the 
driving mechanism and the capsule are utilized to generate efficient stick-slip 
motions. Hence, accurate predictions of the dynamic interactions in the sticking, 
presliding as well as pure sliding regimes become crucial. 

Various friction models with an arbitrary degree-of-complexity (i.e. numbers of 
parameters to be identified and controlled) have been proposed in the literature 
which incorporates different physical phenomena corresponding to friction. 
Threefold of requirements (Al-Bender and Swevers, 2008) for the models are 
conventionally perused: simple to facilitate online utilization, sophisticate to 
describe all frictional characteristics, and limited number of parameters to be 
identified. The Coulomb friction is the simplest model describing as a function of 
the difference in velocities between contacting bodies (Armstrong-Hélouvry et al., 
1994), and it has been extensively adopted to study the motion of capsule systems 
(Chernous’ ko, 2002; Fang and Xu, 2011; Huda and Yu, 2015; Li et al., 2006; Liu et 
al., 2013b). Some significant studies on stick-slip motions of a single-module 
vibration-driven locomotion system have been devoted in (Fang and Xu, 2013; H. B. 
Fang, 2010). Recently, an analytical frictional resistance model of a capsule 
endoscope inside an intestine was investigated in (Kim et al., 2007), which considers 
the contact geometry and viscoelasticity of the lubricants on intestine surface and 
revealing the stress relaxation characteristics of intestine resulted in lower frictional 
force as the speed of capsule decreased. In (Zhang et al., 2012), viscoelastic 
deformation of intestinal wall, viscous friction and Coulomb frictions were 
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considered for a capsule robot inside an intestine, and the model prediction results 
was verified experimentally fitting into the situation in which the capsule velocity is 
below a sufficiently small value (20mms-1). It is plausible that the capsule moves as 
a stick-slip pattern with small magnitude of average velocity, and the environmental 
features such as viscoelasticity and villus-like structure inside the intestine affect the 
friction characteristics. However, an accurate representation of the dynamic 
frictional interaction for given practical applications of capsule systems is required 
to capture several experimentally observed dynamic phenomena reported in 
literature. The static friction models solely consider the relative velocity between the 
surfaces in frictional contact, and the dropping friction characteristics in low relative 
velocity regime and the hysteretic loops are not captured. These motivate the study 
here to model and analyse the dynamic interactions through the dominant 
components containing the static friction, presliding, breakaway force, stick-slip 
motion, the Stibeck effect, friction memory and the hysteretic effect. 

The drooping characteristic occurs when friction force falls into dynamic 
situations and is conventionally considered as a function of relative velocity of 
contacting bodies. The friction force becomes a single-valued function under this 
circumstance where reversible drooping is initiated to drive the friction force 
following the same path during the acceleration stage (AS) and the deceleration 
stage (DS). Nevertheless, conventional considerations do not have comprehensive 
agreements with the latter experimental observations in the unsteady environmental 
conditions (e.g. oscillations in relative velocity). Observed also in some engineering 
investigations that the friction curve may be a multi-valued velocity function and the 
friction force follows diverse ways for AS and DS to form a non-reversible curve 
(Becker and Mahin, 2013; Biswas and Chatterjee, 2014; Neis et al., 2011; Outirba 
and Hendrick, 2014; Stefański et al., 2006; Wojewoda et al., 2008). The reason 
behind is the temporal lag between respective changes in relative velocity and the 
friction force. Both clockwise (i.e. the friction force for AS is greater than that for 
DS) and anticlockwise drooping loops have been observed in pure sliding regime in 
engineering applications. Besides, ascribing to the spring-like-behaviour-induced 
contacting compliance between the asperities, hysteretic loops have been detected 
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experimentally during the regime of presliding (Casini et al., 2012; Giannini et al., 
2011). This gives rise to the phenomena of velocity overshooting between the bodies 
in contact during the initiation of stick-slip motion.  

Towards the friction-induced vibrations, single DOF mass-spring-damper 
systems resting on a moving belt are well-adopted in literature to explore the 
experimentally observed friction characteristics (Hetzler et al., 2007; Saha et al., 
2015). And also a majority of researches place their considerations on 2 DOF 
tangential-wise (typically linearly along the direction of motion) (Fang and Xu, 2011; 
Huda and Yu, 2015; Liu et al., 2013b; Y. Liu et al., 2015; Zhan and Xu, 2015) or 
norm-wise (Chowdhury and Helali, 2008; Pavlovskaia et al., 2015) vibrations with 
respect to the substrates. These ideas for self-propelled micro-mechanisms/robots 
have been well-employed. However, the combined (nonlinear) tangential-wise and 
norm-wise vibrations could perform as a pivotal propulsion mechanism for 
bidirectional locomotion which has not been reported in literature. It sheds light on a 
generic significance for the studies on capsule systems. Note also that towards the 
nonlinear friction, there are several seminal studies in the literature (Fang and Xu, 
2011, 2012, Liu et al., 2013a, 2013b; Y. Liu et al., 2015). These works are mainly 
focusing on the qualitative changes induced by control parameters with static (Fang 
and Xu, 2011, 2012) or quasi-dynamic friction (Liu et al., 2013a, 2013b; Y. Liu et al., 
2015) models. However, dynamic friction model and therefore friction-induced 
responses in sticking, presliding and pure sliding regimes have not been reported. 
And the previous analyses are mainly restricted into numerical rather than analytical 
investigations. And also in most studies on capsule dynamics such as (Liu et al., 
2013c, 2013b, 2015), for ease of numerical studies, the qualitative behaviour for the 
initial transient were omitted (the first 100 cycles in (Liu et al., 2013b) and 200 
cycles in (Liu et al., 2013b) and (Liu et al., 2015)). However, the transient response 
is a vital performance index to evaluate how quickly and accurately a dynamic 
system responds to changes. 

This chapter considers combined tangential-wise and norm-wise vibro-driven 
capsule systems for underactuated locomotion. The nonlinear interaction between 
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actuator and driving pendulum is characterized by a viscoelastic pair of torsional 
spring and viscous damper. Viscoelastic property is a promising feature for future 
bio-inspired robots, which enables efficient locomotion through natural oscillations. 
Many animals are able to reduce the metabolic cost of running considerably by 
utilizing the viscoelastic properties of muscles, tendons, and bones distributed in 
their bodies (Alexander et al., 1985) and limbs (Dimery et al., 1986; McMahon, 
1985). The study on relations between viscoelastic parameters and the system 
performance is beyond the scope of the thesis and will be reported in due course. 
Motivated by the experimental findings in the literature, the thesis studies the 
frictional forces described by the LuGre model (De Wit et al., 1995) (LM) and the 
Exponential model (Armstrong-Hélouvry et al., 1994) (EM). In the literature, there 
is a lack of understandings of dynamic frictional interactions between the capsule 
system and the substrate, towards this end, the non-reversible characteristics of 
friction force (drooping and hysteresis) are studied. The dynamic interactions are 
firstly modelled using a combined physics-based and analytical-based approach. 
Thereafter, the frictional limits for the static friction, presliding regime as well as 
pure sliding regime are identified. Dynamic analysis of the friction-driven 
vibrational responses is then conducted and the qualitative variations laws induced 
by the control parameter are identified. The analytical and numerical results have 
good agreements with the seminal findings in the literature. The proposed work is an 
advisable benchmark to exploit the challenges in friction compensation and control 
of underactuated micro-robotic systems.  

The rest of the chapter is organized as follows. Section 5.2 provides the 
mathematical modelling of capsule system and frictional interactions. Analysis of 
dynamic interactions is presented in Section 5.3. Finally, conclusions are outlined in 
Section 5.4. 
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5.2 Mathematical Modelling 

5.2.1 System Description 

Consider a 2-DOF capsule model as shown in Figure 5.1. The system contains a 

pendulum (with length 𝑙 and mass 𝑚) and a platform (with mass 𝑀) merged with a 
rigid massless capsule shell. A vibration actuator is mounted on the platform at the 
pivot and connected with the pendulum. The movable pendulum is connected with 
the capsule body and driven by a prescribed harmonically excited force generated by 
the actuator. The actuator model is simplified here and the interconnection between 
pendulum and capsule is represented by a linear viscoelastic pair of torsional spring 

with stiffness coefficient 𝑘 and viscous damper with damping coefficient 𝑐. 𝜃 and 
𝑥 respectively denote the absolute displacements of the driving pendulum and the 
capsule. It is assumed that the mass of pendulum is centralized at the ball and the 
centre of mass of the platform coincides with the pivot axis. And assume also that the 

sliding friction force 𝐹2 between the capsule and substrate is applied along the 
X-axis. 

 

Figure 5.1 Schematic of the vibro-driven underactuated encapsulated system 

 

The propulsion mechanism is on the strength of interaction between the 
centripetal torques excited by the platform-mounted vibration actuator and the 
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friction torques at the substrate. The capsule is propelled over a surface rectilinearly 
through this interaction. Meanwhile, the elastic potential energy is stored and 
released alternatively in compatible with the contraction and relaxation of the 
torsional spring. The pendulum is rotated back and forth and drives the capsule 
move via dynamic couplings. The capsule motion begins with static state, and it 
moves when the resultant force applied in the horizontal direction exceed the 
threshold of static friction force at the contacting surface. It is termed as the sticking 
phase when the above condition is not satisfied. At the instant when the condition is 
met, the sticking phase is annihilated and the capsule moves progressively, which 
falls into the fast motion called the pure sliding phase. The capsule model is 
developed to exploit advisable friction control approaches to manipulate the 
stick-slip effect and generate optimal steady-state progressive motions, in which the 
capsule and the driving pendulum synchronize their motion harmoniously.  

5.2.2 Dynamic Model 

Based on the derivation procedure presented in Section 4.2 of Chapter 4, the 
equations of motion of the encapsulated system are derived using Euler-Lagrangian 
method as 

𝑚𝑙2𝜃′′ − 𝑚𝑙𝑐𝑐𝑠𝜃𝑥′′ − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 + 𝑘𝜃 + 𝑐𝜃′ = 𝐴𝑐𝑐𝑠(𝛺𝑡)         (5.1) 

−𝑚𝑙𝑐𝑐𝑠𝜃𝜃′′ + (𝑀 + 𝑚)𝑥′′+ 𝑚𝑙𝑠𝑖𝑛𝜃𝜃′2 + 𝑁0Ϝ = 0          (5.2) 

where 𝐴 and 𝛺 are the amplitude and frequency of the harmonic force, 𝑁0Ϝ is 
the friction force at the substrate, 𝑁0 is the normal load and Ϝ is the friction 
function representing the friction force per unit of normal load. 

Introducing characteristic time scale 𝜔𝑛 = �𝑔/𝑙  and characteristic length 

𝑥0 = 𝑔/𝜔𝑛2  to facilitate convenient analysis, we have the following 
non-dimensional motions of equation as 

𝛩′′ − 𝑐𝑐𝑠𝛩𝑋′′ − 𝑠𝑖𝑛𝛩 + 𝜌𝛩 + 𝜐𝛩′ = ℎ𝑐𝑐𝑠(𝜔𝜏)             (5.3) 

−𝑐𝑐𝑠𝛩𝛩′′ + (𝜆 + 1) 𝑋′′+ 𝑠𝑖𝑛𝛩𝛩′2 + 𝑁𝑓 = 0              (5.4) 
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The prime ( ′ ) in (5.3) and (5.4) denotes the derivative in the normalized time 
coordinate 𝜏 = 𝜔𝑛𝑡 . The rest of the non-dimensional quantities are defined as 
𝑋 = 𝑥/𝑥0 , 𝜆 = 𝑀/𝑚 , 𝜌 = 𝑘/(𝑚𝑙2𝜔𝑛2) , 𝜐 = 𝑐/(𝑚𝑙2𝜔𝑛) , ℎ = 𝐴/(𝑚𝑙2𝜔𝑛2) , 
𝜔 = 𝛺/𝜔𝑛 and 𝑁 = 𝑁0/(𝑚𝑙𝜔𝑛2). 

Remark 5.1. In the normalized coordinate, the physical meanings of the control 
parameters are captured as: 𝜆 represents the mass ratio, 𝜌 and 𝜐 respectively 
denote the dimensionless spring and damping coefficients, ℎ  and 𝜔  are 
dimensionless excitation amplitude and frequency. 

5.2.3 Modelling and Characterization of the Frictional Interaction 
Dynamics 

A. The Physics-Based Analysis 

Friction arises at the physical interface between contact surfaces of different bodies 
in relative motions. It is plausible that the substrate is composed of a great number 
of tiny contacts on the surface irregularities, and the spring-like limit for a 
microscopic part of contacting area is far larger than that for bulk object. This 
consideration enables the feasibility that the contacting surfaces could have relative 
motion within a sufficiently small distance without destroying the transitory 
connections. And also the stretched irregularities gradually exert the elastic force to 
predominate the resisting friction force. It is noted that the above truisms have 
different patterns of manifestation governed by the relative velocity between 
contacting bodies. The reason behind is the bonds may remain undisrupted for a 
period of time. The time is equivalent to the maximum extension of the 
micro-connections divided by the average velocity (McMillan, 1997). For the 
relative velocity near zero, the hysteretic effect would appear, resulting from the tiny 
movement between the two bodies in the phase of sticking, which is also named as 
micro-slip. The increasing number of bonds being disrupted in a time period would 
be associated with an increasing friction force at a sufficiently fast average velocity. 
Hence, characteristics of the nonlinearity near zero relative velocities would be the 
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most significant to introduce the hysteretic effect, which is originated from the 
random distribution and size of asperities between the contacting bodies. 

Figure 5.2 demonstrates that the capsule model rests on the horizontal plane and 

is driven by a pendulum relative to the substrate with a velocity of 𝑋′(𝜏). For 
sufficiently small driving force in the horizontal direction, it is apparent that the 
interface between the capsule and the surface falls into sticking regime. The stiction 
force results from the tension in conjoint irregularities. The brush-like surface 
illustration represents the evolution of junction deflections between different 
asperities, as well as the tension on these connections. Nevertheless, as the driving 
force increases, the capsule is capable of moving, with the displacement larger than 
the maximum extension of the connections. From Figure 5.2(a), the capsule is 
initially standing still and the connections are un-tensioned with no friction torque 
resisting the motion. In Figure 5.2(b), after a short period of time under anticlockwise 
motion of the pendulum, relative velocity of the capsule is appeared to be slightly 
positive, and the bonds remain intactness. The threshold will be met during the 
sticking phase via opposing torque of the friction force.  

At this critical boundary as depicted in Figure 5.2(c), the capsule starts to slip 
with a kinematic friction force thereafter, which is characterized by a dramatic 
decrease. The clockwise motion of pendulum results into a deceleration of the 
capsule to a slightly positive velocity whilst it would keep slipping since the bonds 
need some time to reform (see Figure 5.2(d)). When the capsule decelerates through 

𝑋′(𝜏) = 0, see Figures 5.2(e) and (f), the connections are reformed and the sticking 
phase is arrived again. Backward motions of the capsule follow the argument through 
Figures 5.2(g) to (j). Following the above discussions, Figure 5.3 shows the curve of 
friction force as a function of average capsule velocity. 

 

 

 



Chapter 5: Analysis and Characterization of Dynamic Frictional Interactions 
 

142 
 

k

m

x′=0

k

m

x′=0+
(a) Sticking (b) Presliding

k

m

x′>0

m

x′=0+
(c) Pure sliding

m

x′=0

m

x′=0-
(f) Sticking

m

x′<0

k

m

x′=0-

m

x′=0

k

m

x′=0+
(j) Presliding

(d) Pure sliding

(e) Pure sliding

(g) Pure sliding (h) Pure sliding

(i) Pure sliding

 

Figure 5.2 Schematic of the capsule motion with interface deformation 
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The arguments above is based on the consideration that the friction force solely 
depends on the relative velocity of the contacting surfaces (Armstrong-Hélouvry et 
al., 1994), i.e. 𝑓(𝜏) = 𝑓(𝑋′(𝜏)), which results in the reversible characteristic of the 
friction force (black solid line) (McMillan, 1997) shown in Figure 5.3. This means 
the capsule slips back onto a lately travelled path where new asperities might have 
been reformed. This is originated from the unique value for a given relative velocity 
during the AS and DS. However, for dynamic frictional circumstance, it is necessary 

to consider the state variable(s) along with the average velocity 𝑋′(𝜏). The state 
variable may have different values for one relative velocity during AS and DS since 
they evolve with time by the description of differential equations. The arrows in 
green clearly depict the different acceleration and deceleration paths that the capsule 
follows, and accordingly a clockwise hysteretic loop in the pure sliding regime is 
characterised. 
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Figure 5.3 Schematic of the reversible (black solid line) (McMillan, 1997) and 
non-reversible (blue dashed line) characteristics of the friction forces 
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Remark 5.2. The phenomenon described above introduces non-reversible 
characteristic of the friction force which is demonstrated by different friction values 
during AS and DS (blue dashed line in Figure 5.3). Therefore, the friction-velocity 
curve following different paths for AS and DS gives rise to the hysteretic loops, such 
as the non-reversible friction characteristic for forced vibrations as shown in Figure 
5.3. Up to now, most investigations in frictional interactions towards capsule systems 
were confined into static or quasi-dynamic circumstance, where it is difficult to 
facilitate online utilization and control. This study aims to fill in the research gaps of 
modelling and analysing the dynamic interactions between the mobile capsule 
systems and the substrate. 

B. The Friction Models 

In this study, two friction models (LM and EM) are employed as first 
approximations for describing the tribological interactions between the capsule and 
the locomotion substrate in the tangential direction. LM (De Wit et al., 1995) models 
the spring-like bristles with damping using surface asperities existing between the 
contacting bodies. Thus, both of micro-slip in the presliding regime (tiny 
displacement) and the Stribeck effect in the pure sliding regime (large displacement) 
are included in the dynamic model. The bristles deform and reform alternatively 
affected by the external force, and certainly the friction force is the result related to 
the resultant bristles’ deflection and a linear viscous term associated with the relative 

velocity. The average bristle deflection 𝜉 is employed as an additional and internal 
variable. Hence, the friction force 𝑓  features two state variables, and 𝑓 =

𝑓𝜕𝐿�𝜉,𝑋′� is described as 

𝑓𝜕𝐿�𝜉,𝑋′� = 𝛿0𝜉 + 𝛿1
dξ�

dτ
+ 𝛿2𝑋′                  (5.5) 

where 𝜉 is the average bristle deflection, 𝛿0 and 𝛿1 are the stiffness and damping 
coefficients of the bristle, and 𝛿2 describes the viscous constituent of the resistant 
force. The evolution of the average bristle deflection is governed by 
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dξ�

dτ
= 𝑋′(1 − 𝛿0𝑑�

𝑔(𝑋′)
𝑠𝑔𝑛(𝑋′))                    (5.6) 

where 𝑔(𝑋′) = 𝑁(𝜂𝑐 + Δ𝜂𝑒−(𝑋′/𝑣𝑠)𝛼) dominates the Stribeck effect, Δ𝜂 = 𝜂𝑠 − 𝜂𝑐, 
𝜂𝑠 and 𝜂𝑐 respectively denote the level of static friction and the minimum level of 
Coulomb friction, 𝑣𝑠 represents the critical Sticbeck velocity and 𝛼 is the slope 
parameter to be tuned (𝑔(𝑋′) is referred to as the Gaussian friction model when 
𝛼 = 2). 

The second friction model (Hinrichs et al., 1998) is employed to define the 
friction force 𝑓 = 𝑓𝐸𝐿(𝑋′) induced by EM 

𝑓𝐸𝐿(𝑋′ ) = 𝑁(𝜂𝑐 + Δ𝜂𝑒−�𝑚�𝑋′��)𝑠𝑔𝑛(𝑋′)             (5.7) 

The equations of motion are allocated in state-space. Define state vectors in 

extended phase spaces including the evolutional vector 𝜉 as: for the capsule system 

with LM S1 ≔ (𝑦1, 𝑦2,𝑦3, 𝑦4,𝑦5) ∈ ℜ5×1 ≔ �𝛩,𝛩′,𝑋,𝑋′, 𝜉� ∈ ℜ5×1 ; for the 

capsule system with EM S2 ≔ (𝑦1,𝑦2, 𝑦3, 𝑦4) ∈ ℜ4×1 ≔ (𝛩,𝛩′,𝑋,𝑋′) ∈ ℜ4×1 . 
Decoupling and reorganizing (5.3) and (5.4), and incorporating with (5.5) and (5.7), 
the state-space representation in compatible with the defined state vector is derived as 

⎣
⎢
⎢
⎢
⎢
⎡𝑦1′𝑦2′
𝑦3′
𝑦4′
𝑦5′⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0 1 0 0 0
𝐴21/𝐵 𝐴22/𝐵 0 0 0

0 0 0 1 0
𝐴41/𝐵 𝐴42/𝐵 0 0 0

0 0 0 𝐴54 𝐴55⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡

0
∆1/𝐵

0
∆2/𝐵

0 ⎦
⎥
⎥
⎥
⎤
       (5.8) 

where 𝐴21 = −𝜌(𝜆 + 1) , 𝐴22 = −𝜐(𝜆 + 1)− 𝑠𝑖𝑛𝑦1𝑐𝑐𝑠𝑦1𝑦2 , 𝐴41 = −𝜌𝑐𝑐𝑠𝑦1 , 
𝐴42 = −𝜐𝑐𝑐𝑠𝑦1 − 𝑠𝑖𝑛𝑦1𝑦2 , 𝐵 = 𝜆 + 1 − 𝑐𝑐𝑠2𝑦1 . ∆1= (𝜆 + 1)ℎ𝑐𝑐𝑠(𝜔𝜏) +
(𝜆 + 1)𝑠𝑖𝑛𝑦1 − 𝑁𝑓𝑐𝑐𝑠𝑦1 , ∆2= 𝑐𝑐𝑠𝑦1ℎ𝑐𝑐𝑠(𝜔𝜏) + 𝑐𝑐𝑠𝑦1𝑠𝑖𝑛𝑦1 − 𝑁𝑓 . For the 
capsule with LM, 𝐴54 = 1 , 𝐴55 = −𝜎0𝑦4𝑠𝑔𝑛(𝑦4)/𝑔(𝑦4) , 𝑓 = 𝑓𝜕𝐿(𝑦4, 𝑦5) =

𝛿0𝑦5 + 𝛿1𝑦5′ + 𝛿2𝑦4 and 𝑔(𝑦4) = 𝑁(𝜂𝑐 + Δ𝜂𝑒−(𝑦4/𝑣𝑠)2); For the capsule with EM, 
𝐴54 = 0, 𝐴55 = 0 and 𝑓 = 𝑓𝐸𝐿(𝑦4) = (𝜂𝑐 + Δ𝜂𝑒−(𝑚|𝑦4|))𝑠𝑔𝑛(𝑦4). 

Remark 5.3. The additional state 𝜉 in S1 is the distinctive factor that governs the 
evolution of the dynamic friction forces, however, there limited studies in the 
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literature on how 𝜉  manipulates the dynamic frictional characteristics (e.g., 
drooping) of capsule systems during presliding and pure sliding. In this regard, the 

role of 𝜉 will be studied elaborately in the thesis. 

C. Dynamic Frictional Limit Analysis 

The microscopic elastic limits for the sticking, the presliding and the pure sliding 
phases are depicted in Figure 5.4. The friction at the sticking phase acts like springs 
which have been observed experimentally in the literatures. During the sticking, 
there exists a presliding displacement as shown in Figure 5.4(b) which can be 
approximated by linear function of the static friction. The breakaway occurs when a 
critical force is reached as shown in Figure 5.4(c) and simultaneously, the 
micro-connections are disrupted. Conventional studies on the friction-induced 
capsule dynamics are mainly restricted into either numerical analysis (Liu et al., 
2013a, 2013b) or analytical analysis (Fang and Xu, 2011, 2012) of the static or 
quasi-dynamic frictions, which are practically unattainable. In the thesis, we study 
the frictional limit analytically to reveal the non-reversible characteristic for the 
static friction, the presliding regime as well as the pure sliding regime, and the 
frictional limit boundaries are identified.  

 

Figure 5.4 Schematic of the microscopic elastic limit for sticking, presliding and pure 
sliding phases 
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From the friction models studied, it is apparent that to create slipping between 
the two contacting bodies, the friction force is initially strapping both parties together 
such that only microscopic deformations of the interface are initiated. As stated, the 

micro-connections would be disrupted until a limit of the friction is satisfied. 𝑔(𝑋′) 
describes that, for quasi-static phase wherein no macroscopic sliding exists, the 

bristle deflection evolved with state variable 𝜉 enlarges proportionally with the 
friction force. The critical condition for the bristles to break free is satisfied when 

𝜉 = 𝑔(𝑋′(𝜏)). Consequently, the maximum static friction force is obtained at the 
conditions of 𝑋′′(𝜏) = 0 and 𝜉′ = 0, and accordingly we have 

𝑔(𝑋′) = 𝑁
𝛿0

(𝜂𝑐 + (𝜂𝑠 − 𝜂𝑐)𝑒−(𝑋′/𝑣𝑠)𝛼)             (5.9) 

where 𝜂𝑠 denotes the maximum static friction in the presence of quasi-static motion. 

When the steady-state sliding is initiated, meaning that a relative sliding motion 
occur between the two contacting bodies, the deflecting rate of the bristles is held at 

zero (𝜉′ = 0). The friction force and its derivative are yielded as 

𝑓 = 𝛿0𝑔(𝑋′) + 𝛿2𝑋′ = 𝑁(𝜂𝑐 + (𝜂𝑠 − 𝜂𝑐)𝑒−(𝑋′/𝑣𝑠)𝛼) + 𝛿2𝑋′       (5.10) 

∂f
∂𝑋′

= −𝛼𝑁 𝑋′𝛼−1

𝑣𝑠𝛼
(𝜂𝑠 − 𝜂𝑐)𝑒−(𝑋′/𝑣𝑠)𝛼 + 𝛿2            (5.11) 

Comparing to the Stribeck velocity 𝑣𝑠, the first term on the right side of the 
above equation is negligible under the assumption that the capsule has sufficiently 
small or large average velocity. Consequently, it is reasonable to make supposition 

that for the sliding phase, two offset values of the average velocity labelled as 𝑋′𝑡 
(lower velocity) and 𝑋′ℎ  (higher velocity) are created. For the value range 
𝑋′(𝜏) ∈ (0,𝑋′𝑡) as well as 𝑋′(𝜏) ∈ (𝑋′ℎ ,𝑋′𝑚𝑚𝑚) (𝑋′𝑚𝑚𝑚 represents the maximum 
velocity the capsule can achieve), the friction force as a function of average velocity 
is a monotonically increasing curve. On the other hand, for the velocity belongs to 
𝑋′(𝜏) ∈ (𝑋′𝑡,𝑋′ℎ), a monotonically decreasing curve is obtained. At the offset points 
𝑋′(𝜏) = 𝑋′𝑡 and 𝑋′(𝜏) = 𝑋′ℎ, the slope of the curve becomes zero. This finding 
will be verified in the numerical analysis in Section 5.3. To obtain the values of  𝑋′𝑡 
and 𝑋′ℎ analytically, (5.11) is solved by letting ∂f/ ∂X′ = 0, and then we have 
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−𝛼𝑁 𝑋′𝛼−1

𝑣𝑠𝛼
(𝜂𝑠 − 𝜂𝑐)𝑒−(𝑋′/𝑣𝑠)𝛼 + 𝛿2 = 0             (5.12) 

It is noted that the lower velocity point 𝑋′(𝜏) = 𝑋′𝑡 is supposed to have a 
sufficiently small magnitude, since the velocity is extremely low, by setting 
(𝑋′/𝑣𝑠)𝛼 = 0, we have 

𝑋′𝑡 = 𝑣𝑠[ 𝛿2𝑣𝑠
𝛼𝑁(𝜂𝑠−𝜂𝑐)

]1/(𝛼−1)                  (5.13) 

For the higher velocity point 𝑋′(𝜏) = 𝑋′ℎ , it is considered that the value of 𝑋′ℎ 
stays adjacent to the value of the Stribeck velocity 𝑣𝑠 within a sufficiently small 
boundary. Therefore, it can be obtained recursively as 

(𝑋
′
ℎ

𝑣𝑠
)𝑛+1 = {ln [(𝛼𝑁(𝜂𝑠−𝜂𝑐)

𝛿2𝑣𝑠
)1/(𝛼−1)(𝑋

′
ℎ

𝑣𝑠
)𝑛]}1/2           (5.14) 

5.3 Analysis of Frictional Interaction Dynamics 

In this section, interaction dynamic responses of the capsule models with LM and 
EM are firstly analysed to reveal the nonlinear friction characteristics. Subsequently, 
effects of the control parameters are studied closely to identify the parameter 
dependence and the qualitative variation laws in capsule dynamics. The Gaussian 

friction model is adopted in this study as the exponential term in LM, i.e., 𝛼 = 2. 
The rationality of the parameters chosen in this section is specified as follows: the 
parameter values for LM and EM are configured from the dynamic friction studies 
in literature as reported in (Chatterjee, 2007; Olsson et al., 1998; Saha et al., 2015) 

( 𝛿0 = 100 , 𝛿1 = 10 , 𝛿2 = 0 , 𝑁 = 1 , 𝜂𝑐 = 0.15 , 𝜂𝑠 = 0.45 , 𝑣𝑠 = 0.1  and 
𝑝 = 10); the control parameter values and initial conditions of state variables are 
selected based on our works on identification of qualitative variation laws induced 
by control parameters ( 𝑦1(0) = 𝑁/3 , 𝑦2(0) = 0 , 𝑦3(0) = 0 , 𝑦4(0) = 0 
and 𝑦5(0) = 0.0026). The numerical studies in this section are based on the system 
dynamics (5.8). 
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5.3.1 The Responses of Friction-Induced Vibrations 

The dynamic response with LM and EM in time domain are shown in Figures 5.5 
and 5.6. Both models have negative slope characteristic which guarantees the system 
stability. EM can describe the Stribeck effect, however, it is a static friction model, 
in which no hysteretic behaviour is shown. LM falls into the categories of dynamic 
models and is qualified for predicting the hysteretic loops. The friction-induced 
dynamic responses for capsule systems with LM and EM are depicted in Figure 5.5. 
The capsule with LM exhibits similar variation patterns to the one with EM in 

angular displacement 𝛩, angular velocity 𝛩′, capsule displacement 𝑋 and capsule 
velocity 𝑋′. The main difference exists at the transitions between the sticking phase 
and the pure sliding phase. Influenced by the hysteretic characteristic of the friction 
force in the regime of presliding, the relative velocity does not completely drop to 
zero in sticking phase as depicted in Figure 5.5(d). It is noted that, in the absence of 
the hysteretic loop in EM in the presliding regime, the sticking phase poses a greater 
influence on EM than LM that the capsule velocity fluctuates around zero in such 
phase. It is observed from Figures 5.5(c) and 5.5(d) that the capsule gains a higher 
average velocity and larger displacement with EM than with LM, the reason behind 
is that the energy loss in the hysteretic loop is avoided with EM.  

 

(a) Angular displacements 

 

(b) Angular velocities 
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(c) Capsule displacements 

 
(d) Capsule velocity 

Figure 5.5 Friction-induced dynamic response with LM (red solid lines) and EM 

(blue dashed lines): (a) angular displacements 𝛩, (b) angular velocities 𝛩′, (c) 
capsule displacements 𝑋 and (d) capsule velocity 𝑋′, obtained for 𝜆 = 2.5, 

𝜌 = 2.0 and 𝜐 = 1.0 
 

Figure 5.6 shows that dynamic responses of internal state variable 𝜉  and 
friction force 𝑓 exhibit same variation law, indicating that the evolution of 𝑓 is 

governed by 𝜉. Specifically, 𝜉 decreases dramatically from a certain value at the 
onset of sticking phase and then increases monotonically to reach the same absolute 

value in opposite direction, and vice versa. The value of average bristle deflection 𝜉 
varies in both presliding and pure sliding regimes. It decreases with time in AS and 
subsequently increases with time in DS, repeatedly. This is directly originated from 

function 𝑔(𝑋′ ), which governs the evolution of internal state variable 𝜉 . The 
abrupt decline of friction force as described in Figure 5.6(b) manifests the onset of 
the sticking phase, after which the friction force increases monotonically in the 

sticking phase to reach the magnitude of the static friction force. These are how 𝜉 
manipulates the drooping characteristic in the pure sliding regime and the hysteretic 
behaviour in both presliding and pure sliding regimes. Interestingly, these findings 
in friction-induced vibrations confirm the results reported in (Astrom and 
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Canudas-De-Wit, 2008; Chatterjee, 2007; Saha et al., 2015), in which fully-actuated 
systems are studies. Since the capsule systems considered here are underactuated 
and the friction has indirect connection with the input, it in turn evident and verify 
the results presented here. 

 

(a) Internal state variable 𝜉 

 

(b) Friction forces 𝐹 

Figure 5.6 Friction-induced dynamic responses with LM (red solid lines) and EM 

(blue dashed lines): (a) internal state variable 𝜉 and (b) friction forces 𝑓, obtained 
for 𝜆 = 2.5, 𝜌 = 2.0 and 𝜐 = 1.0 

 

The examination on phase plane of the pendulum subsystem (𝛩 and 𝛩′) and 
the capsule subsystem (𝑋 and 𝑋′) are shown in Figure 5.7. It is clear to observe that 
the limit cycle of capsule system with EM is relatively larger in size compared to its 
counterpart with LM. The reason behind this phenomenon is the energy loss 
originated from the hysteresis characteristic of the friction force with LM. In both 
Figures 5.7(a) and 5.7(b) the step occurs in the loops when the relative velocity of 
capsule passes through zero and the friction falls into a stage of quasi-static. They 
portray slight discontinuities where imperfect overlap exists between the end and the 
beginning of limit cycle. The motion depicted here is not strictly periodic, whilst the 
phase portraits shown in Figure 5.7 are confined to reside within finite boundaries, 

60 65 70 75 80 85 90 95 100
-4

-2

0

2

4
x 10-3

τ

ξ

60 65 70 75 80 85 90 95 100-0.5

0

0.5

τ

F



Chapter 5: Analysis and Characterization of Dynamic Frictional Interactions 
 

152 
 

thus the motion in this stage is classified as quasi-periodic, which is associated with 
the hysteretic characteristic in the friction model.  

  
(a) 

 

(b) 
Figure 5.7 Phase portraits for capsule systems with EM (blue dashed lines) and LM 

(red solid lines): (a) the pendulum subsystem and (b) the capsule subsystem, obtained 
for 𝜆 = 2.5, 𝜌 = 2.0 and 𝜐 = 1.0 
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The hysteretic loops shown in Figure 5.8 are associated with the friction force as 
a function of average capsule velocity. The friction force with respect to EM is 
depicted in blue dash line for comparison, which apparently does not show any 
hysteretic behaviour. This cross-validates the findings in Figures 5.5 and 5.6 wherein 
relatively higher frequency of oscillations in time coordinates with EM than that with 

LM are observed. Under the same parameter values of the Coulomb friction level 𝜂𝑐, 
the stiction force level 𝜂𝑠 and the Stribeck velocity 𝑣𝑠, the maximum friction force 
in case of LM is lower than that for EM. The reason is that the dimension of limit 
cycle associated with LM is reduced. The arrows marked in Figure 5.8 demonstrate 
the changes of friction force with respect to the variation of average velocity for LM. 
It is observed in Figure 5.8 that during pure sliding regime for both forward and 
backward motions, irrespective of the regime near zero, the friction force is of 
relatively larger magnitude in AS than that in DS. Therefore, a clockwise hysteretic 
loop is taken place in pure sliding regime. On the other hand, the situation near zero 
relative velocity is totally different, wherein the magnitude of friction force in DS is 
relatively higher than that in AS. AS and DS are represented by the arrows associated 
with the increasing and decreasing values of relative velocity, respectively. Moreover, 
there exist offset points on the hysteretic curves near the regime of zero relative 
velocity when the friction force changes from small displacement to large 

displacement in AS and DS, respectively. 𝑀1  is the boundary point between 
presliding and pure sliding regimes for the forward motion of the capsule. The 
capsule escapes from presliding regime and enters into pure sliding regime at this 
point. The friction force firstly increases to a certain value within the maximal value 
of the Exponential friction force, then decreases monotonically along with the 
augmented average velocity, and subsequently overlaps with DS. The friction force 

between 𝑀1 and the terminal point for AS is always larger than that for DS. The 
situation between the offset point and 𝑀1 is reversed. More interestingly, the curves 
of LM and EM are almost coincided around 𝑀1. 
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(a) Friction curves 

 

(B) Enlarged friction curves 

Figure 5.8 Friction forces for capsule systems with EM (blue dashed lines) and LM 
(red solid lines) obtained for 𝜆 = 2.5, 𝜌 = 2.0 and 𝜐 = 1.0 
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origin, thus its average velocity is bounded and is capable of revealing the 

qualitative changes in the system responses. The average velocity 𝑋′ is plotted as a 
function of mass ratio 𝜆 to reveal the parameter dependence. The comparison of 
transient responses under variation of amplitude ℎ and frequency 𝜔 of excitation 
are firstly discussed. 

A. Analysis of the System Transient Responses 

The transient response of dynamic systems is one of the vital performance indexes 
to evaluate how quickly and accurately a dynamic system responds to changes. The 
settling time is defined as the time after which the output is within a specified 
percentage of value around the steady-state value (2% is adopted in the thesis). For 
the capsule system considered, the time required from initiation to steady-state 
motion is determined by the values of the control parameters. In this subsection, a 
sequence of numerical simulations is conducted to make comparison of the system 
transient responses under varying control parameters.  

The comparisons of transient responses are shown in Figure 5.9. The velocity 
increases and decreases monotonically with time and reaches steady-state values for 
stable motion. It is observed in Figures 5.9(a) and 5.9(b) that the maximum value of 
the capsule velocity in the initial transient increases from 0.4 to 0.75 in compatible 
with the increase of the amplitude, which leads to a rising of maximum overshoot 
accordantly. However, the steady-state values slightly decrease from 0.285 to 0.275 
as the same trend of the peak time, and the settling time is shortened dramatically by 
18 unit of dimensionless time for amplitude with larger magnitude. The variation of 
the frequency is depicted in Figures 5.9(a) and 5.9(c), it is observed that as the 
frequency increases, the maximum velocity value varies from 0.4 to 0.33 with a 
decreasing in the steady-state value to 0.213, which indicates an increasing in the 
maximum overshoot. The peak time is slightly reduced whilst the settling time is 
augmented approximately by 10 unit of dimensionless time for higher value of 
frequency.  
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(a) ℎ = 1.5, 𝜔 = 1.0 

 

(b) ℎ = 2.5, 𝜔 = 1.0 

 

(c) ℎ = 1.5, 𝜔 = 2.0 

Figure 5.9 Transient responses under the variation of amplitude and frequency of 

excitation with LM (red solid lines) and EM (blue dashed lines): (a) ℎ = 1.5, 
𝜔 = 1.0, (b) ℎ = 2.5, 𝜔 = 1.0 and (c) ℎ = 1.5, 𝜔 = 2.0, obtained for 𝜆 = 2.5, 

𝜌 = 2.0 and 𝜐 = 1.0 

 

B. Analysis of Parameter Dependence on the Mass Ratio 

The numerical study taken the mass ratio 𝜆 as the branching parameter is presented 
in Figure 5.10, wherein the average velocity is projected as a function of 𝜆 for 
capsule systems with LM (red dotted) and EM (blue dotted).  
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Figure 5.10 Bifurcation diagrams for capsule systems with LM (red dotted) and EM 

(blue dotted) constructed under variation of mass ratio λ, obtained for ℎ = 1.8, 
𝜔 = 1.0, 𝜌 = 4.0 and 𝜐 = 1.2 

 

It is noted from Figure 5.10 that periodic system responses are predicted for 𝜆 
considered here. And both of the curves have the characteristic of negative slope, 
wherein the magnitude of the negative slope for LM is comparatively smaller than 
that for EM. Numerical study also shows that the average velocity of the capsule, 
with both friction models, decreases monotonically along with the increase of 𝜆 for 
𝜆 ∈ [0.01, 8.1]. Boundary points at 𝑃1 (𝜆 = 1.18) and 𝑃2 (𝜆 = 4.36) are identified 
which differ the performances of capsules with LM and EM in average velocity. 

Before the boundary point 𝑃1, the capsule with EM has a relatively higher average 
velocity than that with LM. For the mass ratio between points 𝑃1 and 𝑃2 ranged as 
𝜆 ∈ [1.18, 4.36], the situation is completely reversed, wherein the magnitude of 
average velocity with LM is higher than that with EM. After point 𝑃2  for 
𝜆 ∈ [4.36, 8.1], EM overtakes the situation again with velocity near zero in negative 
direction. As can be seen in Figure 5.10, the capsule has positive average velocities 

for 𝜆 ≤  4.0  and 𝜆 ≤  2.2  with LM and EM, respectively. Negative average 
velocities are observed for 𝜆 ∈ [4.0, 8.1] with LM and for 𝜆 ∈ [2.2, 8.1] with EM. 
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The trajectory of driving pendulum on phase plane and time histories of capsule 
velocity are recorded in Figure 5.11. It is noticed that with the two models, the 
capsule has larger positive velocities for every period of excitation for 𝜆 ≤  4.0 and 
𝜆 ≤  2.2, and as 𝜆 increases, the magnitude of velocity dramatically declines in the 
positive direction. Therefore, the average velocities of the capsule are reduced below 
zero. It is also noted that the average velocity of the capsule can be controlled 
through tuning  𝜆 around the control point 𝑂1 at 𝜆 = 4.0 for LM and around the 
control point 𝑂2 at 𝜆 = 2.2 for EM. 
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(c) 𝜆 = 4.0 
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(d) 𝜆 = 6.0 

Figure 5.11 Trajectories on phase plane for the pendulum subsystem (y1 and y2) and 
on time coordinate for the capsule subsystem (progressive velocity y4), with LM (red 
solid lines) and EM (blue dashed lines): (a) 𝜆 = 0.5, (b) 𝜆 = 2.5, (c) 𝜆 = 4.0 and 

(d) 𝜆 = 6.0, obtained for ℎ = 1.8, 𝜔 = 1.0, 𝜌 = 4.0 and 𝜐 = 1.2 

 

Comparison of capsule progressions under variation of 𝜆 is shown in Figure 
5.12. It is clearly observed that, for the capsule systems with LM and EM, both their 
progressions decrease monotonically in compatible with the augmentation of 𝜆. 
Similarly, the amplitude of the displacement curves reduces as 𝜆 increases. On the 
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other hand, towards an increasing mass ratio, capsule displacement with EM exerts a 
greater decline rate than that with LM. The reason behind is the difference in the 
negative slopes of the average velocity curves as stated previously. 

 

(a) Capsule displacements with LM 
 

 

(b) Capsule displacements with EM 

Figure 5.12 Time histories of capsule displacements under varying mass ratio 
(λ = 0.8, 2.0 and 4.0): (a) with LM and (b) with EM, obtained for ℎ = 1.8, 

𝜔 = 1.0, 𝜌 = 4.0 and 𝜐 = 1.2 
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5.4 Conclusions 

Locomotion of the proposed vibro-driven capsule systems relies on the inherently 
nonlinear effects of dynamic frictions. The nonlinear friction forces are capable of 
triggering dynamic interactions between the systems and the contacting substrate. 
The friction models have negative slope characteristic which guarantees the stability 
of the system. The main difference exists in the transitions between the sticking 
phase and the pure sliding phase. As discussed in Section 5.3, influenced by the 
hysteretic characteristic of the friction force in the presliding regime, the relative 
velocity does not completely reduce to zero in the sticking phase. The capsule gains 
a higher average relative velocity and farther displacement with EM since energy 
loss in the hysteretic loop is avoided via the independence of the evolution of the 

internal variable 𝜉. It is observed that 𝜉 decreases dramatically from a certain 
value at the onset of the sticking phase and then increases monotonically to reach the 

same absolute value in the opposite direction, and vice versa. The role of 𝜉 in 
manipulating the drooping characteristic in the pure sliding regime and the 
hysteretic behaviour in both of the presliding and pure sliding regimes has been 
precisely discussed. It is observed that during the pure sliding regime for both 
forward and backward motions, the friction force is of relatively larger magnitude in 
AS than that in DS to form a clockwise hysteretic loop in the pure sliding regime, 
and the situation is reversed near zero relative velocity. The parameter dependence 
studies have revealed that the interaction models predict periodic responses for the 
parameters considered. The average velocity of the capsule decreases monotonically 

along with the increase of the mass ratio 𝜆, and control action can be applied 
through proper tuning of the control parameters. The studies on the capsule 
dynamics show the desirability of LM than EM in almost all the evaluations of the 
performance. The performance evaluations used for comparison of the friction 
models contain the capabilities of the caption of experimentally observed frictional 
characteristics, the quenching of friction-induced vibrations as well as the energy 
requirements. 
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Chapter 6  

Adaptive Control Systems for a Class of 
UMSs 
 
 

6.1 Introduction 

This chapter presents adaptive control systems for trajectory tracking of a class of 
UMSs with uncertainties and external disturbances, to obtain stability and 
convergence of time-varying reference trajectories for the system dynamics. The 
overall set of DOF is partitioned into two subsets, which referred to as collocated 
and non-collocated subsets. The cardinality of the collocated subset, which contains 
the actuated DOF, equals the number of control inputs. The non-collocated subset 
accounts for the unactuated (passive) DOF. As a result, the control objective is 
typically defined as the stabilization of either subset to desired values. The 
collocated and non-collocated adaptive control problem of UMSs is still a major 
concern for the control community. The main difficulty originates from the 
nonlinearity of the collocated and non-collocated inverse dynamics with respect to 
the base parameters, which prevents the direct application of existing prevailing 
adaptive control schemes. As a matter of fact, the collocated inverse dynamics is no 
longer linear with respect to the base parameters when expressed independently 
from the non-collocated accelerations. The existence of underactuation and other 
undesirable properties such as possessing an undetermined relative degree or being 
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in a non-minimum phase, give rise to complex theoretical problems and less 
generality in which conventional techniques are not directly applicable, particularly 
for the issues of trajectory planning and tracking control. Synthesis of the control 
systems for UMSs, according to the Brockett’s theorem, is always challenging due 
to the nonholonomic property, complicated internal dynamics and unavailability of 
feedback linearizability. In addition, the lack of actuation along with model 
uncertainties and matched and unmatched disturbances that include external 
disturbances and unmodeled dynamics significantly complexify the control problem 
associated with UMSs. 

The complexity of control problem related to UMSs can be reduced when the 
objective is to stabilize merely a subset of the system’s DOF. In the specialized 
literature, a great number of existing control system design for UMSs are based on 
the idea of linearization through partial feedback (Huda and Yu, 2015; Le et al., 
2012, 2014; Lee et al., 2013; Terry and Byl, 2014; Wu and He, 2016). Although 
linear systems could be suitably applied to capture the nonlinear dynamics at a 
certain local operation range, globally stabilization of the underactuated dynamics 
are still unavailable under this approach. Other prevailing techniques such as inverse 
dynamics (Blajer et al., 2011; Mistry et al., 2010), sliding mode/variable structure 
(Hwang et al., 2014; Xu et al., 2014; Yue et al., 2016), energy/passivity-based 
approaches (Cornejo and Alvarez-Icaza, 2011; Valentinis et al., 2015; Xin et al., 
2013) have been extensively exploited. Furthermore, practical requirements are 
raised from the current applications, in which the adaptability of UMSs is extremely 
crucial when facing environments with uncertainties. For instance, micororobotic 
systems operating in restricted space and vulnerable media for minimally invasive 
diagnosis, sensing and risk intervention in pipeline inspection, endoscopic assistance, 
underwater exploration, etc. However, it is difficult to get an exact dynamic model 
due to the presence of frictions, unknown disturbances, time-varying parameters, etc. 
As a result, adaptive control of generic underactuated systems has received great 
attentions from the control community. The leader-follower formation control 
problem of underactuated autonomous surface vehicles in the presence of 
uncertainties and ocean disturbances is studied in (Peng et al., 2013), the control 
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system is developed using neural network and dynamic surface control technique. 
An adaptive fuzzy hierarchical sliding mode control system is designed for uncertain 
underactuated systems in (Hwang et al., 2014), where different layers of sliding 
surface are constructed to cope with the uncertainties and disturbances and fuzzy 
models are designed to approximate the nonlinearities.  

It is evident that the descriptions of dynamic couplings between the actuated 
and passive subsystems of UMSs are typically highly nonlinear. Therefore, it is 
plausible to consider the employment of approximation approaches to map the 
coupling between the torques applied at the actuated subsystem and the resulting 
accelerations of the passive subsystem, with the intent of achieving control globally. 
As such, in this chapter, nonlinear control approach is investigated by employing 
multi-layer neural networks (NNs). NNs have versatile features such as learning 
capability mapping and parallel processing. An attractive feature of NNs is that their 
synaptic weights are online updated without any off-line learning phases. NNs have 
been widely used in various robotic systems to address the stabilization problem 
(Cong and Liang, 2009; Sazonov et al., 2003; Sprangers et al., 2015), where the 
robustness property of NNs was demonstrated using either simulations or real-time 
experiments. The problem of tracking control of robotic systems using NNs has 
attracted extensive attentions. A stochastic adaptive optimal control system was 
designed and applied to the Pendubot system in (J. Li et al., 2014) and also applied 
to a WIP system in (Yang et al., 2014). An adaptive neural network controller was 
designed in (He et al., 2016) for the robotic system with full-state constraints 
containing the Moore-Penrose inverse term. Two adaptive NN decentralized output 
feedback control schemes were designed for a class of systems with immeasurable 
states and unknown time delays in (Tong et al., 2011). In (Mohareri et al., 2012), 
adaptive tracking control for a nonholonomic wheeled mobile robot with unknown 
parameters and uncertain dynamics was studied. The gains of kinematic controller 
are tuned online to minimize the velocity error and improve the tracking 
performance. An adaptive neural network control for unknown cart-pendulum 
system was proposed in (Hsu, 2014), providing tracking control of the pendulum 
without considering the cart’s position. A NN-based control system with output 
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feedback was designed in (Ping, 2013) to address the tracking problem for a 
spherical inverted pendulum. A combined PID and neural network compensation 
approach was proposed in (Jung and Kim, 2008) to control a wheel-driven mobile 
inverted pendulum system, and the results were experimentally analysed. The 
literature above demonstrates that only a few works have addressed the problem of 
trajectory tracking control of underactuated systems. Furthermore, it is noted that 
very few reported studies on this subject have presented rigorous analysis of the 
closed-loop system trajectories. Therefore, the problem of trajectory tracking control 
of underactuated systems with uncertainties remains an open problem and requires 
in-depth investigations. 

Through the utilization of the unique physical properties of the UMSs, the 
overall underactuated system breaks down into two subsystems, where the first one 
is fully actuated and the other one is unactuated (passive). Radial basis neural 
network (RBFNN) has simple structure, fast convergence rate and it overvomes the 
local minimum problem, therefore it is utilized as a nonlinear function approximator 
of uncertain dynamics of the unactuated (passive) subsystem of the UMSs. The NN 
control has the ability of universal approximation, and it has been extensively 
studied in both discrete-time system (Liu et al., 2012; Y.-J. Liu et al., 2011; Xu et al., 
2011; H. Zhang et al., 2014) and continuous-time systems (Wang et al., 2016; H. 
Zhang et al., 2013, 2014; Zou et al., 2011). 

As stated, the existing and prevailing adaptive control schemes, which are 
mainly developed for fully actuated systems, are not directly applicable for UMSs. 
This research extends and enriches the existing control models to UMSs to stabilize 
the collocated and non-collocated state space. The main idea is to design an 
auxiliary state variable whose dynamics is considered to map the non-collocated 
subset and to define the sliding variable as the differences between the velocities of 
the system. RBFNN is adopted to approximate the system nonlinearities, the 
adaptive control algorithm is constructed to estimate the neural networks 
approximation error and the bounded unmatched disturbance. The combination of 
NN approximation, variable structure control and adaptive approach makes the 
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constructed new controller more robust, and as such, errors resulting from trajectory 
tracking, parameter uncertainties, unmatched external disturbances as well as NN 
approximation are sufficiently counteracted. Theoretical background of these 
methods is presented with rigorous analysis and developed in detail for two 
examples including a manipulation system and a locomotion system, which are two 
major research domains of control and robotics communities. The schemes promote 
the utilization of linear filters in the control input to improve the system robustness. 
Stability and convergence of time-varying reference trajectories for the system 
dynamics are shown by means of Lyapunov synthesis. In addition, adaptation laws 
for the weights of the proposed control systems are derived from this procedure. The 
main contributions of this chapter are listed as follows: 

1. For fully actuated mechanical systems, adaptive stabilization of 
time–varying reference trajectories can be achieved based on existing 
control schemes. However, the applications of these control models to the 
underactuated case is not straightforward. This chapter extends and 
enriches the existing adaptive control schemes to stabilize the state space of 
underactuated systems by designing auxiliary control variables that contain 
NN approximator and robust compensator. 

2. The existing control models for UMSs are mainly developed for 
uncertainties and matched disturbances which is associated with the 
collocated subset. The unmatched disturbances have been neglected in 
most of existing methods for the tracking control of underactuated systems. 
In this research, the parametric uncertainties, both matched and unmatched 
external disturbances are considered in the control scheme design, which 
feature a generic control model for underactuated systems.  

3. Employing the adaptive control approach, in cooperation with variable 
structure and NNs, all exact values of the parameters of the underactuated 
systems are not required to be known a priori. 

4. Designing robust compensators to counteract matched and unmatched 
disturbances, and function approximation error of NNs and nonlinear 



Chapter 6: Adaptive NN Control Systems for a Class of UMSs 
 

167 
 

frictions. The tracking error can be reduced as small as desired in finite 
time by selecting appropriate controller parameters. 

The rest of this chapter is organized as follows. In Section 6.2, notations, 
assumptions, the system dynamic model for UMSs, and preliminary knowledge of 
NN approximation are presented. Section 6.3 presents the main theoretical results 
concerning the adaptive NN-based control systems design for a class of UMSs. 
Validations of the effectiveness of the proposed approach are presented in Section 
6.4 through simulation studies on an underactuated manipulator and an 
underactuated VDC system. Finally, concluding remarks and perspectives are given 
in Section 6.5. 

6.2 Theoretical Preliminaries 

Let ‖∙‖ denotes any suitable vector Euclidean norm. Specifically, ‖∙‖𝑝 represents 
the 𝑝-norm of given vector. The Frobenius norm of the given matrix 𝛨 = [ℎ𝑚𝑖] ∈

ℛ𝑛×𝑚  is defined as ‖𝐻‖𝐹2 = 𝑇𝑇(𝐻𝑇𝐻) = 𝑇𝑇(𝐻𝐻𝑇) = ∑ ℎ𝑚𝑖2𝑚,𝑖  with 𝑇𝑇(∙) 

denoting the trace operator. The Frobenius norm is associated with the 2-norm in a 

manner that ‖𝐻𝑥‖2 ≤ ‖𝐻‖𝐹‖𝑥‖2  with 𝐻 ∈ ℛ𝑛×𝑚  and 𝑥 ∈ ℛ𝑚 . The trace 
operator has the property of 𝛢𝑇𝐵 = 𝑇𝑇(𝐴𝐵𝑇)  with ∀𝐴,𝐵 ∈ ℛ𝑛 . 𝜆𝑚𝑚𝑛(∙)  and 
𝜆𝑚𝑚𝑚(∙)  are the minimum and maximum eigenvalue of the given matrix, 
respectively. 𝐼𝑛 represents the identity matrix of dimension 𝑛 × 𝑛. 

6.2.1 Dynamic Model and Properties 

The dynamics of a n-DOF underactuated mechanical system can be expressed in the 
generalized coordinates via the Euler-Lagrangian approach, given by 

𝐷(𝑞,𝛼)�̈� + 𝐶(𝑞, �̇�,𝛼)�̇� + 𝐺(𝑞,𝛼) + 𝐹𝑣(𝛼)�̇� + 𝐹𝑐(𝑞, �̇�,𝛼) + 𝜏𝑑 = 𝐵(𝑞)𝜏  (6.1) 

with 𝑞 = [𝑞1, … ,𝑞𝑛]𝑇 ∈ ℛ𝑛  describes the vector of generalized configurations, 
𝛼 ∈ ℛ𝑝 is the vector of the unknown parameters of the system mainly including the 
base initial parameters and possible loading parameters (𝑝 indicates the number of 
uncertain parameters), 𝐷(𝑞,𝛼) ∈ ℛ𝑛×𝑛  is a symmetric, positive definite inertial 
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matrix, 𝐶(𝑞, �̇�,𝛼) ∈ ℛ𝑛×𝑛  is the vector of centripetal and Coriolis matrix, 
𝐺(𝑞,𝛼) ∈ ℛ𝑛 is the gravitational torque/force, 𝐹𝑣(𝛼) ∈ ℛ𝑛×𝑛 denotes the viscous 
friction coefficients which is a positive definite matrix, 𝐹𝑐(𝑞, �̇�,𝛼) ∈ ℛ𝑛 models the 
nonlinear friction torques, 𝜏𝑑  denotes bounded unknown disturbances and 
unmodeled dynamics, 𝐵(𝑞) ∈ ℛ𝑛×(𝑛−𝑚)  is the input transformation matrix and 
𝜏 ∈ ℛ𝑛−𝑚 represents the vector of control inputs to be constructed to obtain specific 
control objectives. 

The Lagrangian dynamic model of the underactuated mechanical system 
described by (6.1) have the following beneficial properties (Fang et al., 2012; Pucci et 
al., 2015; Yang et al., 2013) that are employed in the subsequent control laws design 
and analysis:  

Property 6.1. The inertia matrix 𝐷(𝑞,𝛼) is symmetric and positive-definite, i.e., 
𝐷(𝑞,𝛼) = 𝐷𝑇(𝑞,𝛼); it is uniformly positive definite, and has upper and lower 
boundaries, which implies 

0 < 𝜆𝑚𝑚𝑛(𝛼)‖𝑥‖2 ≤ 𝑥𝑇𝐷(𝑞,𝛼)𝑥 ≤ 𝜆𝑚𝑚𝑚(𝛼)‖𝑥‖2 < +∞,∀𝑥 ∈ ℛ𝑛−𝑚    (6.2) 

Property 6.2. The centripetal and Coriolis term 𝐶(𝑞, �̇�,𝛼)�̇� is quadratic in the 
generalized velocity �̇� and satisfies 

‖𝐶(𝑞, �̇�,𝛼)�̇�‖ ≤ 𝜆3(𝛼)‖�̇�‖                  (6.3) 

for some bounded scalar constant 𝜆3(𝛼). 

Property 6.3. The above matrixes  𝐷(𝑞,𝛼)  and 𝐶(𝑞, �̇�,𝛼)  have the following 
particular skew-symmetric interconnection  

𝑥𝑇��̇�(𝑞,𝛼)− 2𝐶(𝑞, �̇�,𝛼)�𝑥 = 0,   ∀𝑥 ∈ ℛ𝑛−𝑚          (6.4) 

under an appropriate definition of 𝐶(𝑞, �̇�,𝛼). This property is a matrix version of 
energy conservation. 

Property 6.4. The gravitational torque/force 𝐺(𝑞,𝛼) is bounded and satisfies 

‖𝐺(𝑞,𝛼)‖ ≤ 𝜆4(𝛼)                      (6.5) 

where 𝜆4(𝛼) is a bounded scalar constant. 
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Property 6.5. The dynamic model (1) can be rewritten in a linear form with respect 
to an appropriate selection of the system’s base initial parameters and load parameters 
𝛼. Furthermore, there exists a regressor matrix 𝑌(𝑞, �̇�, �̈�) and a vector 𝑌0(𝑞, �̇�, �̈�) 
which contain known functions, gives  

𝐷(𝑞,𝛼)�̈� + 𝐶(𝑞, �̇�,𝛼)�̇� + 𝐺(𝑞,𝛼) + 𝐹𝑣(𝛼)�̇� + 𝐹𝑛(𝑞, �̇�,𝛼) = 𝑌(𝑞, �̇�, �̈�)𝛼 + 𝑌0(𝑞, �̇�, �̈�)  

(6.6) 

where 𝑌(∙) ∈ ℛ(𝑛−𝑚)×𝑝 is the regressor matrix containing known functions. 

Remark 6.1. Based on Property 6.5, we introduce 𝛼� be the time-varying estimation 
of 𝛼 , and define 𝐷� , �̂� , 𝐺� , 𝐹�𝑣  and 𝐹�𝑛  be the corresponding affine matrices 
respectively estimated from 𝐷, 𝐶 , 𝐺 , 𝐹𝑣  and 𝐹𝑛  through substitution 𝛼� for the 
real 𝛼. Then the linear parameterization is given by 

𝐷�(𝑞,𝛼)�̈� + �̃�(𝑞, �̇�,𝛼)𝜚 + 𝐺�(𝑞,𝛼) + 𝐹𝑣� (𝛼)𝜚 + 𝐹𝑛� (𝑞, �̇�,𝛼)
= 𝑌(𝑞, �̇�,𝜚, �̈�)𝛼� + 𝑌0(𝑞, �̇�,𝜚, �̈�) 

(6.7) 

where 𝛼�(𝑡) = 𝛼�(𝑡) − 𝛼  is the parameter estimation error, and 𝜚 ∈ ℛ𝑛  is an 
arbitrary vector. 

Remark 6.2. Concretely, the unmodeled friction torque/force 𝐹 in (6.1) can be 
partitioned into two aspects as 

𝐹 = 𝐹𝑣(𝛼)�̇� + 𝐹𝑐(𝑞, �̇�,𝛼)                     (6.9) 

where 𝐹𝑣(𝛼)�̇� = [𝐹𝑣1(𝛼)�̇�1,𝐹𝑣2(𝛼)�̇�2, … ,𝐹𝑣𝑛(𝛼)�̇�𝑛]𝑇 is the viscous friction torque 
describing the linear part, 

𝐹𝑐(𝑞, �̇�,𝛼) = [𝐹𝑐1(𝑞1, �̇�1,𝛼),𝐹𝑐2(𝑞2, �̇�2,𝛼), … ,𝐹𝑐𝑛(𝑞𝑛 , �̇�𝑛 ,𝛼)]𝑇 denotes the nonlinear 
friction torques. 

Assumption 6.1. The matched and unmatched external disturbances are assumed to 
be bounded. 

Assumption 6.2. It is assumed that each subsystem is equipped with encoder and 
tachometer for the position and velocity measurement.  
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6.2.2 Radial Basis Function NN 

It has been well-established that the radial basis function neural network (RBFNN) is 

capable of universally approximation of any continuous function χ(𝑧):ℛ𝑛 → ℛ over 
a compact set Ω𝑑, the approximation capability of RBFNN can be expressed as  

χ(𝑧) = 𝑊∗𝑇𝜙(𝑧) + 𝜀(𝑧)  ∀𝑧 ∈ Ω𝑑 ⊂ ℛ𝑛 ,‖𝜀(𝑧)‖ ≤ 𝜀𝑁       (6.10) 

where 𝑧 ∈ Ω𝑑 ⊂ ℛ𝑛 denotes the input vector of dimension 𝑛, χ(𝑧) is the unknown 
function to be approximated, 𝑊∗ = [𝑊1

∗,𝑊2
∗, … ,𝑊𝑘

∗]𝑇 ∈ ℛ𝑘  is the bounded ideal 
synaptic weight vector with dimension (or the NN node number) 𝑘 > 1 (i.e., ∀  

positive constant 𝑊𝑁  such that ‖𝑊𝑘
∗‖ ≤ 𝑊𝑁  and 𝑡𝑇�𝑊𝑘

∗𝑇𝑊𝑘
∗� ≤ 𝑊𝑁 ), 𝜀(𝑧) ∈ ℛ 

is a bounded approximation error over the compact set, 𝜀𝑁  is an upper bound 
(positive constant) of the approximation error which satisfies 𝜀𝑁 = 𝑠𝑢𝑝‖χ�(𝑧,𝑊∗) −
χ(𝑧)‖ , 𝜙(𝑧) = [𝜙1(𝑧),𝜙2(𝑧), … ,𝜙𝑘(𝑧)]𝑇  is the NN basis function which is 
conventionally chosen as Gaussian functions as 

𝜙𝑚(𝑧) = exp �− ‖𝑑−𝐶𝑖‖2

2𝑏𝑖
2 � , 𝑖 = 1,2, … , 𝑘               (6.11) 

where vector 𝐶𝑚 and 𝑏𝑚 represent the centre and the width of the i-th receptive field. 

The Gaussian function is chosen as NN basis function, and it is well known that 
given sufficient number of neural networks nodes and properly adopted centres and 
the widths of the node, RBFNN can approximate any unknown nonlinearities to 
arbitrarily close to a compact set with any desired accuracy. Note that the 
approximation error 𝜀(𝑧) decreases along with the increase of the number of NN 
node 𝑘. 

It is noted that the bounded ideal weight matrix 𝑊∗ is merely a quantity utilized 

for analysis purposes, whilst in real control applications, its estimate 𝑊�  is utilized 
for practical approximation of unknown function χ(𝑧). Therefore, the estimation of 
χ(𝑧) is denoted by 

χ�(𝑧) = 𝑊� ∗𝑇𝜙(𝑧)                      (6.12) 
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Based on the neural network defined by (6.12), the function approximation error 
can be described as 

χ(𝑧) − χ�(𝑧) = 𝑊� 𝑇𝜙(𝑧) + 𝜀(𝑧)                 (6.13) 

where 𝑊� = 𝑊∗ −𝑊� . 

 

Figure 6.1 Structure of the RBF neural network 

 

Assumption 6.3. χ�(𝑧,𝑊∗) is the output of the NNs and continuous, there exists a 
sufficient small positive constant such that  

𝑚𝑝𝑥‖χ�(𝑧,𝑊∗) − χ(𝑧)‖ ≤ 𝜀0                 (6.14) 

where the ideal weight vector 𝑊∗ is usually defined as the optimal value of 𝑊 such 
that the approximation error 𝜀(𝑧) could be minimized for all 𝑧 ∈ Ω𝑑 as 

𝑊∗ ≔ arg min𝑊∈ℛ𝑘{sup 𝑑∈Ω𝑧‖χ(𝑧)−𝑊∗𝑇𝜙(𝑧)‖}          (6.15) 
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6.3 Controller Design and Stability Analysis 

Assuming that for system (6.1), there are only m control inputs are equipped with 

actuators, then the generalized coordinate vector 𝑞 can be partitioned into collocated 
and non-collocated vectors as 

𝑞: = [𝑞𝑐  𝑞𝑛]𝑇                     (6.16) 

where 𝑞𝑐 ∈ ℛ𝑚  and 𝑞𝑛 ∈ ℛ𝑛−𝑚  denote the actuated and unactuated coordinate 
vector, respectively.  

Without loss of generality, system (6.1) can be rewritten into the following 
partitioned form 

⎩
⎨

⎧
𝐷𝑐𝑐(𝑞,𝛼)�̈�𝑐 + 𝐷𝑐𝑛(𝑞,𝛼)�̈�𝑛 + 𝐶𝑐𝑐(𝑞, �̇�,𝛼)�̇�𝑐 + 𝐶𝑐𝑛(𝑞, �̇�,𝛼)�̇�𝑛

+𝐺𝑐(𝑞,𝛼) + 𝐹𝑣𝑐(𝛼)�̇�𝑐 + 𝐹𝑐𝑐(𝑞, �̇�,𝛼) + 𝜏𝑑𝑐 = 𝜏
𝐷𝑛𝑐(𝑞,𝛼)�̈�𝑐 + 𝐷𝑛𝑛(𝑞,𝛼)�̈�𝑛 + 𝐶𝑛𝑐(𝑞, �̇�,𝛼)�̇�𝑐 + 𝐶𝑛𝑛(𝑞, �̇�,𝛼)�̇�𝑛

+𝐺𝑛(𝑞,𝛼) + 𝐹𝑣𝑛(𝛼)�̇�𝑛 + 𝐹𝑐𝑛(𝑞, �̇�,𝛼) + 𝜏𝑑𝑛 = 0

     (6.17) 

where 𝜏𝑑𝑐  and 𝜏𝑑𝑛 denote the bounded unknown disturbances including unmodeled 
dynamics to the collocated and non-collocated subsystems, respectively. 

Let the reference trajectories for the collocated and non-collocated subsystems be 
descried by the vector-valued functions ‖𝑞𝑐𝑑‖∞ ≤ 𝜗1  and ‖𝑞𝑛𝑑‖∞ ≤ 𝜗2 , 
respectively, and assume that these functions are bounded in norm and uniformly 
continuous on ℛ+, and homogenously on the same set, its first and second order 
derivatives are well-defined, bounded and uniformly continuous. Introducing the 
trajectory tracking error as 

𝑞�𝑐 = 𝑞𝑐−𝑞𝑐𝑑, 𝑞�𝑛 = 𝑞𝑛−𝑞𝑛𝑑                   (6.18) 

which is to be stabilized to zero without the knowledge of the system parameters 𝛼. 
𝜗1 and 𝜗2 are positive upper bounds of the desired reference trajectories. Noted that 
the design of 𝜗1 and 𝜗2 has to satisfy the zero dynamics as 

𝐷𝑛𝑐(𝑞,𝛼)�̈�1 + 𝐷𝑛𝑛(𝑞,𝛼)�̈�2 + 𝐶𝑛𝑐(𝑞, �̇�,𝛼)�̇�1 + 𝐶𝑛𝑛(𝑞, �̇�,𝛼)�̇�2 + 𝐺𝑛(𝑞,𝛼)

+ 𝐹𝑣𝑛(𝛼)�̇�2 + 𝐹𝑐𝑛(𝑞, �̇�,𝛼) + 𝜏𝑑𝑛 = 0 

(6.19) 
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In the following, auxiliary kinematic vector variables 𝜚 = [𝜚𝑐  𝜚𝑛]𝑇  and 
𝛿 = [𝛿𝑐  𝛿𝑛]𝑇 are defined as 

𝜚𝑐 = �̇�𝑐𝑑 − Λ𝑐𝑞�𝑐, 𝜚𝑛 = �̇�𝑛𝑑 − Λ𝑛𝑞�𝑛               (6.20a) 

𝛿𝑐 = �̇�𝑐 − 𝜚𝑐 = 𝑞�̇𝑐 + Λ𝑐𝑞�𝑐, 𝛿𝑛 = �̇�𝑛 − 𝜚𝑛 = 𝑞�̇𝑛 + Λ𝑛𝑞�𝑛       (6.20b) 

where 𝜚𝑐 , 𝛿𝑐 ∈ ℛ𝑚  and 𝜚𝑛 , 𝛿𝑛 ∈ ℛ𝑛−𝑚 . 𝛿  denotes the filtered error signal and 
describes the measure of tracking accuracy, 𝜚 is referred to as vector of the reference 
trajectory, Λ = diag[Λ𝑐𝐼𝑚×𝑚 , Λ𝑛𝐼(𝑛−𝑚)×(𝑛−𝑚)]  with Λ𝑐  and Λ𝑛  be positive 

constants selected by designers. 𝐼𝑚×𝑚 denotes 𝑖 × 𝑖 identity matrix. The choice of 
Λ > 0 guarantees that (6.20b) is an exponentially stable system for 𝑞. Indeed, the 
trajectory 𝑞  converges to an adjacent of 𝑞𝑑  exponentially fast as long as the 
controller drives 𝛿 to an adjacent of zero. 

Applying the defined variables in the system dynamics (6.17), we have 

⎩
⎪
⎨

⎪
⎧ 𝐷𝑐𝑐(𝑞,𝛼)��̇�𝑐 + �̇�𝑐� + 𝐷𝑐𝑛(𝑞,𝛼)��̇�𝑛 + �̇�𝑛� + 𝐶𝑐𝑐(𝑞, �̇�,𝛼)(𝛿𝑐 + 𝜚𝑐)

+𝐶𝑐𝑛(𝑞, �̇�,𝛼)(𝛿𝑛 + 𝜚𝑛) + 𝐺𝑐(𝑞,𝛼) + 𝐹𝑣𝑐(𝛼)�̇�𝑐 + 𝐹𝑐𝑐(𝑞, �̇�,𝛼) + 𝜏𝑑𝑐 = 𝜏
𝐷𝑛𝑐(𝑞,𝛼)��̇�𝑐 + �̇�𝑐� + 𝐷𝑛𝑛(𝑞,𝛼)��̇�𝑛 + �̇�𝑛� + 𝐶𝑛𝑐(𝑞, �̇�,𝛼)(𝛿𝑐 + 𝜚𝑐)

+𝐶𝑛𝑛(𝑞, �̇�,𝛼)(𝛿𝑛 + 𝜚𝑛) + 𝐺𝑛(𝑞,𝛼) + 𝐹𝑣𝑛(𝛼)�̇�𝑛 + 𝐹𝑐𝑛(𝑞, �̇�,𝛼) + 𝜏𝑑𝑛 = 0

 

(6.21) 

The corresponding lumped error equation can be obtained as 

⎩
⎪
⎨

⎪
⎧ 𝐷𝑐𝑐(𝑞,𝛼)�̇�𝑐 + 𝐷𝑐𝑛(𝑞,𝛼)�̇�𝑛 + 𝐶𝑐𝑐(𝑞, �̇�,𝛼)𝛿𝑐

+𝐶𝑐𝑛(𝑞, �̇�,𝛼)𝛿𝑛 + 𝜏𝑑𝑐 = 𝜏 − 𝑌𝑐(𝑞, �̇�, �̇�𝑐 , �̇�𝑛 ,𝜚𝑐 , 𝜚𝑛)𝛼𝑐
𝐷𝑛𝑐(𝑞,𝛼)�̇�𝑐 + 𝐷𝑛𝑛(𝑞,𝛼)�̇�𝑛 + 𝐶𝑛𝑐(𝑞, �̇�,𝛼)𝛿𝑐

+𝐶𝑛𝑛(𝑞, �̇�,𝛼)𝛿𝑛 + 𝜏𝑑𝑛 = −χ(z)

       (6.22) 

where 𝑌𝑐(𝑞, �̇�, �̇�𝑐 , �̇�𝑛 ,𝜚𝑐 , 𝜚𝑛)𝛼𝑐 = 𝐷𝑐𝑐(𝑞,𝛼)�̇�𝑐 + 𝐷𝑐𝑛(𝑞,𝛼)�̇�𝑛 + 𝐶𝑐𝑐(𝑞, �̇�,𝛼)𝜚𝑐 +
𝐶𝑐𝑛(𝑞, �̇�,𝛼)𝜚𝑛 + 𝐺𝑐(𝑞,𝛼) + 𝐹𝑣𝑐(𝛼)�̇�𝑐 + 𝐹𝑐𝑐(𝑞, �̇�,𝛼) , χ(z) = 𝐷𝑛𝑐(𝑞,𝛼)�̇�𝑐 +
𝐷𝑛𝑛(𝑞,𝛼)�̇�𝑛 + 𝐶𝑛𝑐(𝑞, �̇�,𝛼)𝜚𝑐 + 𝐶𝑛𝑛(𝑞, �̇�,𝛼)𝜚𝑛 + 𝐺𝑛(𝑞,𝛼) + 𝐹𝑣𝑛(𝛼)�̇�𝑛 +
𝐹𝑐𝑛(𝑞, �̇�,𝛼) , and 𝛼𝑐 = 𝛼�𝑐 − 𝛼�𝑐 , 𝛼𝑛 = 𝛼�𝑛 − 𝛼�𝑛 . The input χ(z)  is adopted as 

z = [𝑞�𝑇 ,𝑞�̇𝑇 ,𝑞𝑑𝑇 , �̇�𝑑𝑇 , �̈�𝑑𝑇]. 

The estimation of nonlinear function χ(z) = −𝑌𝑛(𝑞, �̇�, �̇�𝑐 , �̇�𝑛 ,𝜚𝑐 ,𝜚𝑛)𝛼𝑛  is 
expressed as 
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χ�(𝑧) = 𝑊� 𝑇𝜙(𝑧)                        (6.23) 

where 𝑊�  is the NN adaptation law, 𝜙(𝑧) is the basis function.  

Accordingly, (6.22) evolves to the following form 

⎩
⎪
⎨

⎪
⎧ 𝐷𝑐𝑐(𝑞,𝛼)�̇�𝑐 + 𝐷𝑐𝑛(𝑞,𝛼)�̇�𝑛 + 𝐶𝑐𝑐(𝑞, �̇�,𝛼)𝛿𝑐

+𝐶𝑐𝑛(𝑞, �̇�,𝛼)𝛿𝑛 + 𝜏𝑑𝑐 = 𝜏 − 𝑌𝑐(𝑞, �̇�, �̇�𝑐 , �̇�𝑛 ,𝜚𝑐 , 𝜚𝑛)𝛼𝑐
𝐷𝑛𝑐(𝑞,𝛼)�̇�𝑐 + 𝐷𝑛𝑛(𝑞,𝛼)�̇�𝑛 + 𝐶𝑛𝑐(𝑞, �̇�,𝛼)𝛿𝑐
+𝐶𝑛𝑛(𝑞, �̇�,𝛼)𝛿𝑛 + 𝜏𝑑𝑛 = 𝑊� 𝑇𝜙 + 𝑊� 𝑇𝜙 + 𝜀

       (6.24) 

where 𝑊� = 𝑊∗ −𝑊� . 

Concretely, with these derivations, the adaptive control problem for 
underactuated mechanical systems can be formulated as follows: given the reference 
trajectories 𝑞𝑑 ∈ ℛ𝑛, find a nonlinear control law for 𝜏 such that for any 𝑞(0) ∈
ℛ𝑛 and in the presence of parameter variation and other uncertainties, the tracking 
error 𝑞� and its derivative tend to zero in finite time as 𝑡 → ∞. 

The following theorem presents NNs-based control laws that ensure the 
asymptotic convergence of the closed loop signals. 

Theorem 6.1. Consider the aforementioned properties, assumptions and definitions 
and apply the following control laws to the uncertain underactuated system (6.24) 

𝜏 = 𝜏𝑐 + 𝜏𝑛                          (6.25a) 

𝜏𝑐 = 𝑌𝑐𝛼�𝑐 − 𝐾1𝛿𝑐 − 𝜉, 𝜏𝑛 = −𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖|𝜂|− 𝐾2𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖     (6.25b) 

where the Adaptation Algorithm 6.1 for the collocated subsystem is designed as 

𝛼�̇𝑐 = −Γ𝑌𝑐𝛿𝑐                       (6.25c) 

and the auxiliary input 𝜂 in (6.25b) is constructed as 

�̇� = 𝜂
1

2𝑛+1�−𝐾3‖𝛿𝑛‖2 − ‖𝛿𝑛‖𝑊� 𝑇𝜙 + 𝛿𝑛𝑇𝜁�           (6.25d) 

with robust compensator 𝜁 for the non-collocated subsystem designed as 

𝜁 = − 𝛿𝑛
‖𝛿𝑛‖+𝜇

𝜅                       (6.25e) 

and its adaptation law 
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 �̇� = ‖𝛿𝑛‖2

‖𝛿𝑛‖+𝜇
                         (6.25f) 

where 𝐾1 ∈ ℛ𝑚×𝑚, 𝐾2, 𝐾3 ∈ ℛ(𝑛−𝑚)×(𝑛−𝑚) are diagonal, constant positive definite 
matrixes and Γ ∈ ℛ𝑝×𝑝 are positive definite matrixes. 𝜉 and 𝜁 are auxiliary robust 
compensator designed later for convenience of stability analysis of the closed-loop 
system, and they are designed to compensate for matched and unmatched 
disturbances, and function approximation error of NNs and nonlinear frictions. 𝜇 > 0 

is selected in a manner that ∫ 𝜇∞
0 𝑑𝑡 < ∞. Then the following conclusions hold: 

(1) 𝑡𝑇�𝑊� 𝑇𝑊� � ≤ 𝑊𝑁 holds. 

(2) The control objective of asymptotically stabilization can be achieved; 

(3) All signals within the closed-loop system are bounded and the trajectory tracking 

errors 𝑞� and 𝑞�̇ will converge to zero asymptotically. 

Proof. Consider the following candidate Lyapunov function 

𝑉 = 1
2
𝛿𝑇𝐷𝛿 + 1

2
𝛼�𝑐𝑇Γ−1𝛼�𝑐 + 1

2
𝑡𝑇�𝑊� 𝑇Υ−1𝑊� � + 2𝑛+1

2𝑛
𝜂

2𝑛
2𝑛+1 + 1

2
(𝜅 − 𝜀𝑇)2  (6.26) 

where 𝜀𝑇 ≥ ‖𝜀 − 𝜏𝑑𝑛‖  is the upper bound of the unmatched disturbance and 
approximation error. 

Differentiating both sides of (6.26) and applying the control laws (6.25), yields 

�̇� = 𝛿𝑇 ��
𝜏 − 𝑌𝑐𝛼𝑐
𝑊𝑇𝜙 + 𝜀� − 𝜏𝑑�+ 𝛼�̇𝑐𝑇Γ−1𝛼�𝑐 + 𝑡𝑇{𝑊� 𝑇Υ−1𝑊�̇ } + 𝜂

−1
2𝑛+1�̇� + (𝜅 − 𝜀𝑇)�̇� 

= [𝛿𝑐𝑇  𝛿𝑛𝑇] �
−𝐾1𝛿𝑐 − 𝑌𝑐𝛼�𝑐 − 𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖|𝜂| − 𝐾2𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖ − 𝜉

𝑊𝑇𝜙 + 𝜀 � − 𝛿𝑇𝜏𝑑

+ 𝛼�̇𝑐
𝑇
Γ−1𝛼�𝑐 + 𝑡𝑇 �𝑊� 𝑇Υ−1𝑊�̇ � + 𝜂

−1
2𝑛+1�̇� + (𝜅 − 𝜀𝑇)�̇� 

= −𝛿𝑐𝑇𝐾1𝛿𝑐 − 𝛿𝑐𝑇𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖|𝜂| − 𝛿𝑐𝑇𝐾2𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 + 𝛿𝑛𝑇(𝑊𝑇𝜙 + 𝜀)

− 𝛿𝑇𝜏𝑑 + 𝑡𝑇{𝑊� 𝑇Υ−1𝑊�̇ } + 𝜂
−1

2𝑛+1�̇� + (𝜅 − 𝜀𝑇)�̇� 
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= −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| −𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑇𝜏𝑑 + 𝛿𝑛𝑇𝜀 + 𝛿𝑛𝑇𝑊𝑇𝜙

+ 𝑡𝑇 �𝑊� 𝑇Υ−1𝑊�̇ � + 𝜂
−1

2𝑛+1�̇� + (𝜅 − 𝜀𝑇)�̇� 

= −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| −𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑇𝜏𝑑 + 𝛿𝑛𝑇𝜀 + 𝛿𝑛𝑇𝑊𝑇𝜙

+ 𝑡𝑇 �𝑊� 𝑇Υ−1𝑊�̇ � − 𝐾3‖𝛿𝑛‖2 − ‖𝛿𝑛‖𝑊� 𝑇𝜙 − 𝛿𝑛𝑇𝜁 + (𝜅 − 𝜀𝑇)�̇� 

= −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| − 𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝛿𝑛𝑇(𝜀 − 𝜏𝑑𝑛)

−
‖𝛿𝑛‖2

‖𝛿𝑛‖ + 𝜇 𝜅 − 𝐾3‖𝛿𝑛‖2 + 𝑡𝑇 �𝑊� 𝑇Υ−1(𝑊�̇ + Υ𝛿𝑛𝑇𝜙)� + (𝜅 − 𝜀𝑇)�̇� 

≤ −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| − 𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + ‖𝛿𝑛‖𝜀𝑇 −
‖𝛿𝑛‖2

‖𝛿𝑛‖ + 𝜇 𝜅

− 𝐾3‖𝛿𝑛‖2 + 𝑡𝑇 �𝑊� 𝑇Υ−1(𝑊�̇ + Υ𝛿𝑛𝑇𝜙)� + (𝜅 − 𝜀𝑇)�̇� 

(6.27) 

Towards the parameter drifting problem, the neural weight adaptation law for 𝑊�  
is constructed based on the projection algorithm, given by 

𝑊�̇ = −𝑊�̇ = �
Υ𝜙𝛿𝑛𝑇 −

𝛿𝑛𝑇𝑊� 𝑇Υ𝜙𝑊�

𝑊𝑁
,                      𝑖𝑓 𝑡𝑇�𝑊� 𝑇𝑊� � = 𝑊𝑁  𝑝𝑛𝑑 𝛿𝑛𝑇𝑊� 𝑇𝜙 ≤ 0;

Υ𝜙𝛿𝑛𝑇 ,   𝑖𝑓 𝑡𝑇�𝑊� 𝑇𝑊� � < 𝑊𝑁  𝑐𝑇 𝑖𝑓 𝑡𝑇�𝑊� 𝑇𝑊� � = 𝑊𝑁  𝑝𝑛𝑑 𝛿𝑛𝑇𝑊� 𝑇𝜙 > 0.
    

 (6.28) 

Corollary 6.1. Let 𝑉𝑑𝑡1 ≜ 𝑡𝑇�𝑊� 𝑇𝑊� �  and 𝑉𝑑𝑡2 ≜ 𝑡𝑇 �𝑊� 𝑇Υ−1(𝑊�̇ + Υ𝛿𝑛𝑇𝜙)�  and 

apply weight adaptation law (6.28), then the following results hold for the 

boundedness of 𝑊�  

1) 𝑉𝑑𝑡1 ≤ 𝑊𝑁                           (6.29) 

2) 𝑉𝑑𝑡2 ≤ 0                            (6.30) 

Proof. (1) Recalling (6.28), it is evident that 

(a) If 𝑉𝑑𝑡1 = 𝑊𝑁  and 𝛿𝑛𝑇𝑊� 𝑇𝜙 > 0, 

�̇�𝑑𝑡1 =  2𝑡𝑇 �𝑊� 𝑇𝑊�̇ �= 2𝑡𝑇�𝑊� 𝑇Υ𝜙𝛿𝑛𝑇� − 2𝛿𝑛𝑇𝑊� 𝑇Υ𝜙 = 0. 
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(b) If 𝑉𝑑𝑡1 = 𝑊𝑁  and 𝛿𝑛𝑇𝑊� 𝑇𝜙 ≤ 0,  

�̇�𝑑𝑡1 = 2𝑡𝑇�𝑊� 𝑇Υ𝜙𝛿𝑛𝑇� < 0. 

(c) If 𝑉𝑑𝑡1 < 𝑊𝑁, the result 1) holds by itself. 

(2) Adopting 𝑊�̇  in (6.28), it is apparent that  

(a) If 𝑉𝑑𝑡1 = 𝑊𝑁  and 𝛿𝑛𝑇𝑊� 𝑇Υ𝜙 > 0, 

𝑉𝑑𝑡2 =
𝛿𝑛𝑇𝑊� 𝑇Υ𝜙
𝑊𝑁

𝑡𝑇�𝑊� 𝑇𝑊� � ≤
𝛿𝑛𝑇𝑊� 𝑇Υ𝜙

𝑊𝑁
(
1
2 𝑡𝑇

�𝑊∗𝑇𝑊∗� −
1
2𝑊𝑁) ≤ 0 

(b) If 𝑊�̇ = Υ𝜙𝛿𝑛𝑇, we have 𝑉𝑑𝑡2 = 0.                                   ∎ 

Substituting (6.30) into (6.27), the time derivative of Lyapunov candidate 
function becomes 

�̇� ≤ −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| − 𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + ‖𝛿𝑛‖𝜀𝑇

−
‖𝛿𝑛‖2

‖𝛿𝑛‖ + 𝜇 𝜅 − 𝐾3‖𝛿𝑛‖2 + (𝜅 − 𝜀𝑇)�̇� 

= −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| −𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝐾3‖𝛿𝑛‖2 − 𝛿𝑐𝑇𝜏𝑑𝑐 + ‖𝛿𝑛‖𝜀𝑇

+ (𝜅 − 𝜀𝑇)��̇� −
‖𝛿𝑛‖2

‖𝛿𝑛‖ + 𝜇� −
‖𝛿𝑛‖2

‖𝛿𝑛‖ + 𝜇 𝜀𝑇 

≤ −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| −𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝐾3‖𝛿𝑛‖2 − 𝛿𝑐𝑇𝜏𝑑𝑐 + ‖𝛿𝑛‖𝜀𝑇

−
‖𝛿𝑛‖2

‖𝛿𝑛‖ + 𝜇 𝜀𝑇 

= −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| −𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝐾3‖𝛿𝑛‖2 − 𝛿𝑐𝑇𝜏𝑑𝑐 +
‖𝛿𝑛‖𝜇𝜀𝑇
‖𝛿𝑛‖ + 𝜇 

≤ −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂|− 𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝐾3‖𝛿𝑛‖2 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝜇𝜀𝑇 

≤ 𝐾1‖𝛿𝑐‖2 − 𝐾3‖𝛿𝑛‖2 − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝜇𝜀𝑇 

= −‖𝛿‖𝑇𝐾‖𝛿‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝜇𝜀𝑇 

 (6.31) 

where 𝐾 = �𝐾1 0
0 𝐾3

�. 
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When no disturbance exerts on the collocated subsystem (𝜏𝑑𝑐 = 0), i.e., the 
system is only subject to unmatched disturbances, we design the collocated robust 
compensator as 𝜉 = 0 and integrate both sides of (6.31) from 𝑡 = 0 to 𝑡 = 𝑇 as 

𝑉(𝑇)− 𝑉(0) ≤ −∫ ‖𝛿‖𝑇𝐾‖𝛿‖𝑇
0 𝑑𝑡 + 𝜀𝑇 ∫ 𝜇𝑇0 𝑑𝑡             (6.32) 

Considering that 𝑉(𝑇) ≥ 0 and ∫ 𝜇∞
0 𝑑𝑡 < ∞, we have 

lim𝑇→∞ 𝑠𝑢𝑝
1
𝑇 ∫ ‖𝛿‖2𝑇

0 𝑑𝑡 ≤ 1
𝐾
�𝑉(0) + 𝜀𝑇 ∫ 𝜇𝑇0 𝑑𝑡� lim𝑇→∞

1
𝑇

= 0      (6.33) 

From the definition of Lyapunov function 𝑉 in (6.26) and �̇� derived from (6.31) 
-(6.33), the global uniform boundedness of the filtered tracking error 𝛿𝑐  for 
collocated subsystem and 𝛿𝑛 for non-collocated subsystem, the parameter estimation 

error 𝑊�  are guaranteed. From the definition and assumption 1 of filtered tracking 
error 𝛿, it is evident that 𝛿 is bounded. The boundedness of control input is obvious 
from (6.25). It can be concluded that since 𝛿 = [𝛿𝑐  𝛿𝑛]𝑇 ∈ 𝐿2𝑛 ∩ 𝐿∞𝑛 , 𝛿𝑐 and 𝛿𝑛 are 
continuous and 𝛿𝑐 → 0, 𝛿𝑛 → 0 as 𝑡 → ∞, and 𝜂 ∈ 𝐿∞. From (6.25c), it can be 

shown that 𝛼�𝑐 ∈ 𝐿∞
𝑝 . This in turn implies, based on property 6.1 and (6.22), that 

�̇� ∈ 𝐿∞𝑛 , �̈� = [�̈�𝑐  �̈�𝑛]𝑇 ∈ 𝐿∞𝑛  and 𝑞� = [𝑞�𝑐  𝑞�𝑛]𝑇 ∈ 𝐿∞2𝑛 . Therefore, 𝑞�𝑐  and 𝑞�𝑛  are 
uniformly continuous and 𝑞� = [𝑞�𝑐  𝑞�𝑛]𝑇 ∈ 𝐿∞2𝑛, it is evident that 𝑞� → 0 as 𝑡 → ∞. 

Remark 6.3. One of the novelties of this chapter is the design and introduction of 
auxiliary control variable 𝜂  with the governing function in (6.25d) to map the 
non-collocated subset and enhance the robustness. It is noted that in the literature of 
control of UMSs, attentions have been extensively paid to find implicit control 
trajectory/action to indirectly control the passive dynamics, such as (Fang et al., 2012; 
M. Huang et al., 2010; Yang et al., 2013; X. Zhang et al., 2014). However, this work 
designs 𝜂 to overcome the underactuated properties. 

Remark 6.4. The NNs is adopted to approximate the unmatched system uncertainties, 
the adaptive control algorithm is constructed to estimate the NN approximation error 
and the bounded unmatched disturbance. The combination of variable structure 
control, NN approximation and adaptive approach makes the constructed new 
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controller more robust, and such errors resulting from trajectory tracking, parameter 
uncertainties, unmatched external disturbances as well as NN approximation are 
compensated. 

For the case 𝜏𝑑𝑐 ≠ 0  and ‖𝜏𝑑𝑐‖ < 𝛽𝑚 , i.e. the system is subject to both 
matched and unmatched disturbances, one can only conclude that 𝛿 is bounded from 

(6.26) and (6.31), but 𝛼�𝑐  and 𝑊�  may tend to be unbounded since (6.31) only 
contains a negative definite component of ‖𝛿‖2 and no negative terms of 𝛼�𝑐 and 

𝑊�  are apparently included. Hence, the system may become unstable. To improve the 
robustness of Theorem 1, the following adaptation algorithm is therefore proposed. 

Adaptation Algorithm 6.2. Consider the following algorithm for the adaptation law 

𝛼�̇𝑐 

𝛼�̇𝑐 = −Γ′𝛼�𝑐 − Γ𝑌𝑐𝛿𝑐                        (6.34) 

Corollary 6.2. For the error equation (6.22) with sliding surface designed in (6.20) 
under the adaptive NNs-based control law in (6.25), the following proposition holds: 

If adaptation algorithm 6.2 is adopted, the system error signals 𝑞� , 𝑞�̇  and 𝛼� 
converge to zero asymptotically. If 𝜏𝑑𝑐 ≠ 0 and ‖𝜏𝑑𝑐‖ < 𝛽𝑚, the system becomes 
globally uniformly ultimately stable and the boundedness depends on 𝜏𝑑𝑐 . 

Proof. Adopting Adaptation Algorithm 6.2 in the derivative of Lyapunov candidate 
function (6.27), we have 

�̇� = [𝛿𝑐𝑇  𝛿𝑛𝑇] �
−𝐾1𝛿𝑐 − 𝑌𝑐𝛼�𝑐 − 𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖|𝜂| −𝐾2𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖ − 𝜉

𝑊𝑇𝜙 + 𝜀 � − 𝛿𝑇𝜏𝑑

+ 𝛼�̇𝑐
𝑇
Γ−1𝛼�𝑐 + 𝑡𝑇 �𝑊� 𝑇Υ−1𝑊�̇ � + 𝜂

−1
2𝑛+1�̇� + (𝜅 − 𝜀𝑇)�̇� 

= −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| − 𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝛿𝑛𝑇(𝜀 − 𝜏𝑑𝑛)

−
‖𝛿𝑛‖2

‖𝛿𝑛‖ + 𝜇 𝜅 − 𝐾3‖𝛿𝑛‖2 + 𝑡𝑇 �𝑊� 𝑇Υ−1 �𝑊�̇ + Υ𝛿𝑛𝑇𝜙�� + (𝜅 − 𝜀𝑇)�̇�

− 𝛼�𝑐𝑇Γ′Γ−1𝛼�𝑐 
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≤ −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| − 𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + ‖𝛿𝑛‖𝜀𝑇 −
‖𝛿𝑛‖2

‖𝛿𝑛‖ + 𝜇 𝜅

− 𝐾3‖𝛿𝑛‖2 + 𝑡𝑇 �𝑊� 𝑇Υ−1(𝑊�̇ + Υ𝛿𝑛𝑇𝜙)� + (𝜅 − 𝜀𝑇)�̇� − 𝛼�𝑐𝑇Γ′Γ−1𝛼�𝑐 

≤ −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂|− 𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝐾3‖𝛿𝑛‖2 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝜇𝜀𝑇
− 𝛼�𝑐𝑇Γ′Γ−1𝛼�𝑐 

(6.35) 

�̇� ≤ −𝐾1‖𝛿𝑐‖2 − 𝐾3‖𝛿𝑛‖2 − Γ′Γ−1‖𝛼�𝑐‖2 − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝜇𝜀𝑇 

= −‖𝛿′‖𝑇𝐾′‖𝛿′‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝜇𝜀𝑇                    (6.36) 

where 𝐾′ = 𝑑𝑖𝑝𝑔[𝐾1,𝐾3, Γ′Γ−1] and 𝛿′ = [𝛿𝑐 ,𝛿𝑛 ,𝛼�𝑐]𝑇. 

It is evident that Γ′Γ−1 is a positive definite diagonal matrix since Γ′ and Γ−1 
are positive definite diagonal matrix. 

Case 6.1. For the case when 𝜏𝑑𝑐 = 0, design the collocated robust compensator as 
𝜉 = 0 and integrate both sides of (6.36) from 𝑡 = 0 to 𝑡 = 𝑇 as 

𝑉(𝑇)− 𝑉(0) ≤ −∫ ‖𝛿′‖𝑇𝐾′‖𝛿′‖𝑇
0 𝑑𝑡 + 𝜀𝑇 ∫ 𝜇𝑇0 𝑑𝑡            (6.37) 

Considering that 𝑉(𝑇) ≥ 0 and ∫ 𝜇∞
0 𝑑𝑡 < ∞, we have 

lim𝑇→∞ 𝑠𝑢𝑝
1
𝑇 ∫ ‖𝛿′‖2𝑇

0 𝑑𝑡 ≤ 1
𝐾′
�𝑉(0) + 𝜀𝑇 ∫ 𝜇𝑇0 𝑑𝑡� lim𝑇→∞

1
𝑇

= 0      (6.38) 

Case 6.2. For the case when 𝜏𝑑𝑐 ≠ 0  and ‖𝜏𝑑𝑐‖ < 𝛽𝑚 , the collocated robust 
compensator 𝜉 is designed to satisfy the following conditions  

� 𝛿𝑐𝑇𝜉 ≥ 0
𝛽𝑚‖𝛿𝑐‖ − 𝛿𝑐𝑇𝜉 ≤ 𝜌

                       (6.39) 

where 𝛽𝑚 is the upper bound of 𝜏𝑑𝑐  and 𝜌 is a positive design scalar. 

Theorem 6.2. Consider following control laws to the uncertain underactuated system 

𝜏 = 𝜏𝑐 + 𝜏𝑛                         (6.40a) 

𝜏𝑐 = 𝑌𝑐𝛼�𝑐 − 𝐾1𝛿𝑐 − 𝜉, 𝜏𝑛 = −𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖|𝜂|− 𝐾2𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖     (6.40b) 
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with the Adaptation Algorithm 6.2 designed in (6.34), and the collocated robust 

compensator 𝜉 designed using hyperbolic tangent function as 

𝜉 = 𝛽𝑚𝑡𝑝𝑛ℎ(𝑛𝜂𝑟𝛽𝑚𝛿𝑐
𝜌

)                      (6.40c) 

with 𝜂𝑡 is a gain constant chosen as 𝜂𝑡 = 0.2785 here, and the auxiliary input 𝜂 
in (6.40b) is constructed as 

�̇� = 𝜂
1

2𝑛+1�−𝐾3‖𝛿𝑛‖2 − ‖𝛿𝑛‖𝑊� 𝑇𝜙�             (6.40d) 

with the adaptation law for 𝑊�  based on the projection algorithm, given by 

𝑊�̇ = −𝑊�̇

= � Υ𝜙𝛿𝑛𝑇 − 𝛽Υ‖𝛿𝑛‖𝑊� −
𝛿𝑛𝑇𝑊� 𝑇Υ𝜙𝑊�

𝑊𝑁
,               𝑖𝑓 𝑡𝑇�𝑊� 𝑇𝑊� � = 𝑊𝑁  𝑝𝑛𝑑 𝛿𝑛𝑇𝑊� 𝑇𝜙 ≤ 0;

Υ𝜙𝛿𝑛𝑇 − 𝛽Υ‖𝛿𝑛‖𝑊� ,       𝑖𝑓 𝑡𝑇�𝑊� 𝑇𝑊� � < 𝑊𝑁  𝑐𝑇 𝑖𝑓 𝑡𝑇�𝑊� 𝑇𝑊� � = 𝑊𝑁  𝑝𝑛𝑑 𝛿𝑛𝑇𝑊� 𝑇𝜙 > 0.
 

(6.40e) 

Then it follows: 

(1) 𝑡𝑇�𝑊� 𝑇𝑊� � ≤ 𝑊𝑁 holds. 

(2) All signals in the collocated and non-collocated systems are UUB. 

Proof. Consider the following candidate Lyapunov function  

𝑉 = 1
2
𝛿𝑇𝐷𝛿 + 1

2
𝛼�𝑐𝑇Γ−1𝛼�𝑐 + 1

2
𝑡𝑇�𝑊� 𝑇Υ−1𝑊� � + 2𝑛+1

2𝑛
𝜂

2𝑛
2𝑛+1       (6.41) 

The derivative of Lyapunov candidate function is given by 

�̇� = [𝛿𝑐𝑇  𝛿𝑛𝑇] �
−𝐾1𝛿𝑐 − 𝑌𝑐𝛼�𝑐 − 𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖|𝜂| −𝐾2𝑠𝑔𝑛(𝛿𝑐)‖𝛿𝑛‖ − 𝜉

𝑊𝑇𝜙 + 𝜀 � − 𝛿𝑇𝜏𝑑

+ 𝛼�̇𝑐
𝑇
Γ−1𝛼�𝑐 + 𝑡𝑇 �𝑊� 𝑇Υ−1𝑊�̇ � + 𝜂

−1
2𝑛+1�̇� 

= −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| − 𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + 𝛿𝑛𝑇(𝜀 − 𝜏𝑑𝑛)

−𝐾3‖𝛿𝑛‖2 + 𝑡𝑇 �𝑊� 𝑇Υ−1 �𝑊�̇ + Υ𝛿𝑛𝑇𝜙�� − 𝛼�𝑐𝑇Γ′Γ−1𝛼�𝑐 
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≤ −𝛿𝑐𝑇𝐾1𝛿𝑐 − ‖𝛿𝑐‖‖𝛿𝑛‖|𝜂| −𝐾2‖𝛿𝑐‖‖𝛿𝑛‖ − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐 + ‖𝛿𝑛‖𝜀𝑇 − 𝐾3‖𝛿𝑛‖2

+ 𝑡𝑇�𝑊� 𝑇Υ−1(−Υ𝜙𝛿𝑛𝑇 + 𝛽Υ‖𝛿𝑛‖𝑊� + Υ𝛿𝑛𝑇𝜙)� − 𝛼�𝑐𝑇Γ′Γ−1𝛼�𝑐  

�̇� ≤ −𝛿𝑐𝑇𝐾1𝛿𝑐 − 𝐾3‖𝛿𝑛‖2 − Γ′Γ−1‖𝛼�𝑐‖2 + 𝛽‖𝛿𝑛‖𝑡𝑇�𝑊� 𝑇�𝑊 −𝑊� �� − 𝛿𝑐𝑇𝜉 − 𝛿𝑐𝑇𝜏𝑑𝑐
+ 𝛿𝑛𝑇𝜀𝑇 

(6.42) 

Let us decompose (6.42) into the following functions 

�̇�1 = −𝐾3‖𝛿𝑛‖2 + 𝛽‖𝛿𝑛‖𝑡𝑇�𝑊� 𝑇(𝑊 −𝑊� )� + 𝛿𝑛𝑇𝜀𝑇          (6.43a) 

�̇�2 = −Γ′Γ−1‖𝛼�𝑐‖2 − 𝛿𝑐𝑇𝐾1𝛿𝑐 − 𝛿𝑐𝑇𝜏𝑑𝑐 − 𝛿𝑐𝑇𝜉             (6.43b) 

We have 

(1) For �̇�1, considering that 

𝑡𝑇�𝑊� 𝑇(𝑊 −𝑊� )� = (𝑊� ,𝑊)𝐹 − �𝑊� �𝐹
2
≤ �𝑊� �𝐹‖𝑊‖𝐹 − �𝑊� �𝐹

2
        (6.44) 

Substituting (6.44) into (6.43a), we have 

�̇�1 ≤ −𝜆𝑚𝑚𝑛(𝐾3)‖𝛿𝑛‖2 + 𝛽‖𝛿𝑛‖�𝑊��𝐹 �𝑊𝑚𝑚𝑚 − �𝑊��𝐹� + 𝜀𝑇‖𝛿𝑛‖ 

= −‖𝛿𝑛‖(𝜆𝑚𝑚𝑛(𝐾3)‖𝛿𝑛‖ + 𝛽�𝑊� �𝐹 ��𝑊��𝐹 −𝑊𝑚𝑚𝑚� − 𝜀𝑇) 

Since 

𝜆𝑚𝑚𝑛(𝐾3)‖𝛿𝑛‖+ 𝛽�𝑊� �𝐹 ��𝑊��𝐹 −𝑊𝑚𝑚𝑚� − 𝜀𝑇

= 𝛽 ��𝑊��𝐹 −
𝑊𝑚𝑚𝑚

2 �
2

− 𝛽
𝑊𝑚𝑚𝑚

2

4 + 𝜆𝑚𝑚𝑛(𝐾3)‖𝛿𝑛‖ − 𝜀𝑇 

(6.45) 

To guarantee �̇�1 ≤ 0, the following inequality needs to be satisfied 

‖𝛿𝑛‖ > 𝛽𝑊𝑚𝑎𝑚
2 +4𝜀𝑇

4𝜆𝑚𝑖𝑛(𝐾3)
 or �𝑊� �𝐹 > 𝑊𝑚𝑎𝑚

2
+ �𝑊𝑚𝑎𝑚

2

4
+ 𝜀𝑇

𝛽
          (6.46) 
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Therefore, �̇�1  is negative outside a compact set. Based on the standard 

Lyapunov theorem extension, the UUB of both 𝛿𝑛 and �𝑊��𝐹  are demonstrated. 

    Through (6.43b), the time derivative of 𝑉2 can be given by 

�̇�2 ≤ −Γ′Γ−1‖𝛼�𝑐‖2 − 𝛿𝑐𝑇𝐾1𝛿𝑐 + 𝛽𝑚‖𝛿𝑐‖ − 𝛿𝑐𝑇𝜉           (6.47) 

Based on the above knowledge of the design requirement (6.39), the definition of 

𝑉 and �̇�2, as well as the assumption of boundedness of neural network weight, we 
substitute the collocated robust compensator (6.40c) into (6.43b), yields 

�̇�2 ≤ −Γ′Γ−1‖𝛼�𝑐‖2 − 𝛿𝑐𝑇𝐾1𝛿𝑐 + 𝜌 

= −𝜗𝑇𝐾4𝜗 + 𝜌 

≤ −𝜆𝑚𝑚𝑛(𝐾4)‖𝜗‖2 + 𝜌                      (6.48) 

where 𝐾4 = 𝑑𝑖𝑝𝑔{Γ′Γ−1,𝐾1} and 𝜆𝑚𝑚𝑛(𝐾4) is the minimum eigenvalue of matrix 
𝐾4. Therefore �̇�2 is strictly negative outside the following compact set Σ𝜗: 

Σ𝜗 = �𝜗(𝑡) �0 ≤ ‖𝜗‖ ≤ �
𝜌

𝜆𝑚𝑖𝑛(𝐾4)
�                 (6.49) 

Therefore, it is concluded that filtered tracking error 𝛿𝑐  for collocated 
subsystem and 𝛿𝑛for non-collocated subsystem, the parameter estimation error 𝑊�  
are the uniformly ultimately bounded. The tracking error of collocated subsystem 
decreases whenever 𝜗  is outside the compact set Σ𝜗 , and thus ‖𝜗‖  is UUB. 
Considering that all the signals involved in the controller (6.40) are UUB, it is 
therefore concluded that the control input (6.40) is uniformly ultimately bounded. 

6.4 Simulation Studies 

6.4.1 2-DOF Underactuated Manipulator 

To verify the effectiveness of the proposed control algorithms, simulation is firstly 
conducted from the case study of an underactuated manipulator as shown in Figure 
6.2. The two-link planar manipulator has its first link actuated and the second link 
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unactuated. Link 1 and link 2 are connected by two revolute joints, and link 1 is able 
to rotate 360 degrees in the horizontal plane.  

 

Figure 6.2 The planar underactuated manipulator with two revolute joints 

For the link 𝑖, 𝑖 = 1, 2, 𝑞𝑚 denotes the joint angle and serves as the generalized 
coordinate, 𝑚𝑚  and 𝑙𝑚  are the mass and length, respectively. 𝑙𝑐𝑚  represents the 
distance from the previous joint to the COM of link 𝑖, 𝐼𝑚 is the moment of inertia 
about the axis coming out of the page and coming through the COM of link 𝑖.  

The equation of motion can be derived using Lagrange’s approach, gives 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝐹𝑣�̇� + 𝐹𝑐(𝑞, �̇�) + 𝜏𝑑 = 𝜏       (6.50) 

where  

𝐷(𝑞) =

�𝑚1𝑙𝑐12 + 𝑚2(𝑙12 + 𝑙𝑐22 + 2𝑙1𝑙𝑐2𝑐𝑐𝑠𝑞2) + 𝐼1 + 𝐼2 𝑚2(𝑙𝑐22 + 𝑙1𝑙𝑐2𝑐𝑐𝑠𝑞2) + 𝐼2
𝑚2(𝑙𝑐22 + 𝑙1𝑙𝑐2𝑐𝑐𝑠𝑞2) + 𝐼2 𝑚2𝑙𝑐22 + 𝐼2

�, 

𝐶(𝑞, �̇�) = �−𝑚2𝑙1𝑙𝑐2𝑠𝑖𝑛𝑞2�̇�2 −𝑚2𝑙1𝑙𝑐2𝑠𝑖𝑛𝑞2(�̇�1 + �̇�2)
𝑚2𝑙1𝑙𝑐2𝑠𝑖𝑛𝑞2�̇�1 0 �, 

𝐺(𝑞) = �
(𝑚1𝑙𝑐1 + 𝑚2𝑙1)𝑔𝑐𝑐𝑠𝑞1 + 𝑚2𝑙𝑐2𝑔𝑐𝑐𝑠(𝑞1 + 𝑞2)

𝑚2𝑙𝑐2𝑔𝑐𝑐𝑠(𝑞1 + 𝑞2) �, 

𝐹𝑣�̇� + 𝐹𝑐(𝑞, �̇�) = �𝑓𝑣1�̇�1 + 𝑐1𝑠𝑔𝑛(�̇�1)
𝑓𝑣2�̇�2 + 𝑐2𝑠𝑔𝑛(�̇�2)�, 𝜏𝑑 = �𝑝1𝑠𝑖𝑛(𝑡)

𝑝2𝑠𝑖𝑛(𝑡)�, 𝜏 = �𝜏10 �. 
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It is assumed that the moments of inertia are calculated in the form of 𝐼𝑚 = 𝑚𝑖 𝑡𝑖
2

12
. 

The unknown parameters are chosen as 𝛼1 = 𝑚1𝑙𝑐12 + 𝑚2(𝑙12 + 𝑙𝑐22 ) + 𝐼1 + 𝐼2 , 
𝛼2 = 𝑚2𝑙1𝑙𝑐2 , 𝛼3 = 𝑚2𝑙𝑐22 + 𝐼2 , 𝛼4 = 𝑚1𝑙𝑐1 + 𝑚2𝑙1 , 𝛼5 = 𝑚2𝑙𝑐2 , then the 
uncertain parameter is 𝛼 = [𝛼1 𝛼2 𝛼3 𝛼4 𝛼5]𝑇 ∈ 𝑅5 . Based on the auxiliary 
kinematic vector variables defined in (6.20), the collocated regressor 𝑌𝑐 is therefore 
obtained as 𝑌𝑐 = [−�̇�1 𝑌𝑐2  − �̇�2 − 𝑔𝑐𝑐𝑠𝑞1 − 𝑔𝑐𝑐𝑠(𝑞1 + 𝑞2)]  with 𝑌𝑐2 =
−(2𝑐𝑐𝑠𝑞2�̇�1 + 𝑐𝑐𝑠𝑞2�̇�2 − �̇�2𝜚1𝑠𝑖𝑛𝑞2 − 𝑠𝑖𝑛𝑞2(�̇�1 + �̇�2)𝜚2). 

Generically, the adaptive NN-based tracking control scheme in (6.40) is 
evaluated in the presence of matched and unmatched uncertainties. The rationality of 
selection of the system parameter values of the manipulator in the simulation are 
configured from studies in literature as reported in (Pucci et al., 2015)  as follows: 
𝑚1 = 𝑚2 = 2𝐾𝑔 , 𝐼1 = 𝐼2 = 0.2528𝐾𝑔𝑚2 , 𝑙𝑐1 = 𝑙𝑐2 = 0.75𝑚 , 𝑙1 = 𝑙2 = 1.5𝑚 . 
The initial conditions are set as 𝑞(0) = [𝑞1(0) 𝑞2(0)]𝑇 = [0.09− 0.09]𝑇 , 
�̇�(0) = [�̇�1(0) �̇�2(0)]𝑇 = [0 0]𝑇, and the reference trajectory is given as 𝑞1𝑑(𝑡) =
 0.5𝑁(1 + sin (0.1𝑡)) (Pucci et al., 2015).  

The parameter values of friction and disturbance are chosen as 𝑐1 = 𝑐2 = 0.02, 
𝑝1 = 𝑝2 = 0.2. The bandwidth of the first-order filter is set as Λ = [Λ1 Λ2]𝑇 =
[12 30]𝑇. In the simulation, the controller parameters are chosen to be 𝐾1 = 2𝐼, 
𝐾2 = 5𝐼 and 𝐾3 = 20𝐼. The adaptation gains are chosen as Γ′ = 8𝐼 and Γ = 4𝐼. 
Parameter values for the collocated robust compensator are set as 𝛽𝑚 = 20, 𝜌 = 0.5. 
In addition, the weight tuning parameter of the proposed control system are selected 
as Υ = 0.005 and β = 0.1. The selection of the parameters is based on iterative 
simulations. 

The simulation results of trajectory tracking performance of the adaptive 
NN-based control system (6.40) are shown in Figures 6.3 to 6.8 with time-varying 
matched and unmatched disturbances. The reference trajectory (red solid line), the 
tracking trajectory performance of joint 1 (blue dashed line) in Figure 6.3, the 
trajectory of joint 2 in Figure 6.4, the trajectory tracking error in Figure 6.5, the 
control torque in Figure 6.6, the NN approximation performance in Figures 6.7 and 
6.8 are portrayed. We can see that the proposed approach demonstrates good 
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performance under the effects of the model uncertainties, frictions and time-varying 
external disturbances. It can be observed that the system tracks the reference 
trajectory accurately and the tracking error converges to a quite small and bounded 
compact set near zero in finite time from Figure 6.5 and the NNs approximate the 
nonlinear uncertainties χ(z) effectively from Figure 6.7. From the simulation studies, 
we can draw a conclusion that the proposed control scheme has the ability to adapt 
model uncertainties and is robust against matched and unmatched external 
disturbances.  

 

Figure 6.3 Trajectory tracking performance of joint 1 

 

Figure 6.4 Trajectory tracking performance of joint 2 
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Figure 6.5 Trajectory tracking error of joint 1 

 

Figure 6.6 Control torque 

 

Figure 6.7 χ(z) and χ�(z) 

0 20 40 60 80 100 120-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

Tr
ac

ki
ng

 E
rr

or
 (R

ad
)

0 20 40 60 80 100 120
-50

0

50

100

150

200

250

300

350

Time (s)

C
on

tro
l T

or
qu

e 
(N

m
)

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

Time (s)

χ 
an

d 
χ^

 

 

χ
χ^



Chapter 6: Adaptive NN Control Systems for a Class of UMSs 
 

188 
 

 

Figure 6.8 NN approximation error 

6.4.2 2-DOF Underactuated VDC System 

The case study in Subsection 6.4.1 considers an underactuated manipulator with its 
base mounted on the working surface under uncertain dynamics and environmental 
disturbances. The underactuated dynamics of the second link and the actuated 
dynamics of the first link are coupled in such a way that the unmodeled motions of 
the second link contribute additional time-varying inertia and nonlinearity to the 
description of the manipulator dynamics. In this subsection, we consider the context 
of a mobile robotic model proposed in the thesis—the underactuated VDC system as 
shown in Figure 4.2 for which the actuated and unactuated dynamics are strongly 
coupled. 

In the presence of matched and unmatched external disturbances, the 
underactuated dynamics of the VDC model are given based on the derivations 
discussed in Chapter 4, we have 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐾(𝑞)𝑞 + 𝐺(𝑞) + 𝐹 + 𝜏𝑑 = 𝐵𝑢        (6.51) 

where 𝐷(𝑞) = � 𝑚𝑙2 −𝑚𝑙𝑐𝜃
−𝑚𝑙𝑐𝜃 (𝑀 + 𝑚)� is the inertia matrix, 𝐶(𝑞, �̇�) = � 0 0

𝑚𝑙𝑠𝜃�̇� 0� 

denotes the Centripetal-Coriolis matrix, 𝐾(𝑞) = �𝑘 0
0 0� is the generalized stifness 

matrix, 𝐺(𝑞) = [−𝑚𝑔𝑙𝑠𝜃 0]𝑇represents the gravitational torques, 𝐹 = [𝑐�̇� 𝑓]𝑇  is 
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the friction forces, 𝜏𝑑 = [𝜏𝑑𝑐  𝜏𝑑𝑛]𝑇 = �𝑝1𝑠𝑖𝑛(𝑡)
𝑝2𝑠𝑖𝑛(𝑡)� denotes the external matched and 

unmatched disturbances,  𝐵 = [1 0]𝑇 is the input force matrix, 𝑢 ∈ ℛ1 denotes the 
control input applied to the system.  

In the simulation, the rationality of the parameter values selection in this section 
is specified as follows: the system parameter values are configured from the studies in 
literature as reported in (Li et al., 2006; Y. Liu et al., 2008, 2011) as 𝑀 = 0.5 𝑘𝑔, 
𝑚 = 0.138 𝑘𝑔, 𝑙 = 0.3 𝑚, 𝑔 = 9.81 𝑚/𝑠2, 𝜇 = 0.01 𝑁/𝑚𝑠. The initial conditions 
are set as 𝜃(0) = 𝜃0 = 𝑁/3, �̇�(0) = 0, 𝑥(0) = 0 and �̇�(0) = 0. The simulation is 
conducted in 6.6s which is one full motion cycle. The parameter values for the 
matched and unmatched external disturbances from the environments on the system 

are chosen as 𝑝1 = 𝑝2 = 0.2 . The bandwidth of the first-order filter is set as 
Λ = [Λ1 Λ2]𝑇 = [15 20]𝑇. In the simulation, the controller parameters are chosen to 
be 𝐾1 = 10𝐼 , 𝐾2 = 20𝐼  and 𝐾3 = 50𝐼 . The adaptation gains are chosen as 
Γ′ = 10𝐼 and Γ = 6𝐼. Parameter values for the collocated robust compensator are set 
as 𝛽𝑚 = 20, 𝜌 = 0.5. In addition, the weight tuning parameter of the proposed 
control system are selected as Υ = 0.005  and β = 0.1 . The rationality of these 
selections is configured using iterative simulations. The reference trajectory for the 
actuated subsystem is chosen as the planned trajectory in (4.14) of Chapter 4. 

The tracking performance of the actuated subsystem is shown in Figure 6.9, from 
which we see that, although the response of the proposed controller is slightly slower, 
the controlled pendulum trajectory tracks the desired trajectory. The response is due 
to the learning process of the adaptive controller to make the estimated parameters 
adapt to appropriate values. The tracking error is shown in Figure 6.10, from which 
the tracking error converges to a quite small and bounded compact set near zero in 
finite time. The trajectory of the VDC system is presented in Figure 6.11 that shows 
the cart travels at the speed about 7cm within 6.6s. The control torque is shown in 
Figure 6.12 that demonstrates the boundedness of the torque input. As clearly shown 
by the simulation results, in the presence of unknown system parameters and external 
disturbances, the proposed NN adaptive control scheme can guarantee exact tracking 
of the pendulum subsystem, while the cart subsystem is able to maintain a forward 
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velocity at some desired level. Therefore, the proposed control scheme is efficient in 
the presence of unknown nonlinear dynamic systems and environmental disturbances. 
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Figure 6.9 Trajectory tracking performance 

 

Figure 6.10 Trajectory tracking error 
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Figure 6.11 Performance of the VDC system 

 

Figure 6.12 Control torque 

6.5 Conclusions 

This chapter proposed a systematic adaptive control scheme for a class of UMSs 
with matched and unmatched disturbances. Coping with the internal uncertain 
dynamics and external disturbances, adaptive neural network control schemes have 
been developed with an auxiliary control variable to enhance the robustness. RBF 
neural networks have been employed to approximate the nonlinearities in the 
non-collocated subset, the adaptive control algorithm has been constructed to 
estimate the neural networks approximation error and the bounded unmatched 
disturbance. The combination of variable structure control, NN approximation and 
adaptive approach makes the constructed new controller more robust, and such 
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errors resulting from trajectory tracking, parameter uncertainties, unmatched 
external disturbances as well as NN approximation are compensated. The simulation 
studies on an underactuated manipulator and an underactuated VDC system have 
shown the effectiveness of the proposed adaptive control systems. 
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Chapter 7  

Conclusions and Future Works  
 
 

7.1 Conclusions 

This research has performed the investigations into underactuated mobile robotic 
systems towards trajectory planning, tracking control and analysis of dynamic 
interactions. The microrobotic systems proposed in this thesis have extensive fields 
of application working in restricted space and vulnerable media, such as minimally 
invasive sensing, diagnosis and intervention, medical endoscopy, engineering 
diagnosis, pipeline inspection, seabed exploration and disaster rescues.  

Key techniques and three main principles related to energy efficacy, dynamic 
compliance interactions and adaptability have been investigated. Towards this end, 
this research has presented four elaborate studies: (1) design of a novel bio-inspired 
self-propelled robotic model with viscoelastic property; (2) control systems design of 
2-DOF UMSs with underactuation one; (2) geometric analysis-based trajectory 
planning and control; (3) analysis and characterization of dynamic frictional 
interactions; and (4) adaptive neural network-based robust control systems. (1) was 
based on the coordinate transformation of the UMSs with PFL and PFL-free approach. 
The control problems of trajectory planning and tracking control of UMSs have been 
formulated. The control properties of partial integrability and complete integrability 
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of 2-DOF Class I, II UMSs have been investigated with some propositions. 
Subsequently, a trajectory planning scheme has been proposed for a class of UMSs 
with bio-inspired viscoelastic property based on the integrability. The planned motion 
trajectory is based on a rest-to-rest motion, wherein the unactuated subsystem is 
controlled by the planned trajectory of the actuated subsystem. Trajectory tracking 
control schemes have been proposed for UMSs with and without parametric 
uncertainties, respectively.  

A benchmark model for underactuated microrobotic systems has been proposed 
is this thesis, together with a novel geometric analysis-based trajectory planning 
algorithm with considerations of bio-inspired viscoelastic property. The main idea is 
to reduce the complexity and to characterize the coupling by imposing a harmonic 
drive and then to compute the dynamics projection onto a hyper-manifold, such that 
the issue of trajectory planning is converted into geometric analysis and trajectory 
optimization. An analytical two-stage velocity trajectory has been developed based on 
the control indexes and dynamic constraints. A locomotion-performance index has 
been proposed and evaluated to identify the optimal viscoelastic parameters. The 
trajectory was optimally parameterized through rigorous analytical analysis. 
Nonlinear tracking controllers have been designed using collocated partial feedback 
linearization and variable structure control with an auxiliary control variable, 
respectively. For the sake of efficiency in progression and energy, the proposed 
method provides a novel approach in characterizing and planning motion trajectory 
for underactuated VDC systems such that the optimal locomotion can be achieved. 

Towards underactuated vibro-driven capsule systems with bio-inspired 
viscoelastic property, this thesis proposed a novel method to analysis and characterise 
the dynamic frictional interactions. Up to now, most investigations in frictional 
interactions towards capsule systems were confined into static or quasi-dynamic 
circumstance, where it is difficult to facilitate online utilization and control. In this 
thesis, it is the first time the dynamic frictional characteristics (non-reversible 
drooping and hysteretic) have been studied towards the capsule systems. Primary 
attention was devoted to the modelling and characterization of frictional interaction 
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dynamics using a combined physics-based and analytical-based approach, in a 
manner that non-reversible characteristic for static friction, presliding as well as pure 
sliding regimes were revealed, and the frictional limit boundaries were identified. 
Subsequently, the studies were mainly focused on numerical analysis and comparison 
of friction-induced vibrational responses and qualitative changes triggered by the 
control parameters in capsule dynamics. It was found that the models predict periodic 
responses for the parameters considered and the average capsule velocity can be 
controlled through proper tuning of the control parameter around identified control 
points. 

This thesis also proposed advanced control schemes for a class of UMSs with 
matched and unmatched disturbances. Coping with the internal uncertain dynamics 
and external disturbances, adaptive neural network control schemes have been 
developed with an auxiliary control variable to close the unactuated feedback loops. 
RBF neural networks was adopted to approximate the unmatched system 
uncertainties, the adaptive control algorithm has been constructed to estimate the 
neural networks approximation error and the bounded unmatched disturbance. The 
combination of variable structure control, NN approximation and adaptive approach 
makes the constructed new controller more robust, and such errors resulting from 
trajectory tracking, parameter uncertainties, unmatched external disturbances as well 
as NN approximation are compensated. 

This thesis has demonstrated novel solutions in bio-inspired control for 
underactuated robotic systems in terms of energy efficacy, dynamic compliant 
interactions with the environment and adaptability. The rigorous theoretical analysis, 
analytical and numerical studies have validated the proposed schemes. 

7.2 Aims and Objectives Revisited 

This research aimed to study the principles for energy efficacy, compliant dynamic 
interaction and adaptability of underactuated robotic systems from the perspectives 
of bio-inspired viscoelastic property and bio-inspired control approaches. This 
research has successfully proposed benchmark vibro-driven models for microrobotic 
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systems with bio-inspired viscoelastic property. The research has developed the 
trajectory planning algorithm and tracking control systems. It has performed 
elaborate analytical and simulation studies towards the formulated problems. 

The objectives of the research are revisited individually as follows. 

1. To investigate the state-of-art in the UMSs and bio-inspired approaches and 
identify the theoretical challenges and common difficulties: the state-of-art 
and challenges has been presented from Section 2.2 to Section 2.4 of Chapter 
2, including the researches on modelling, bio-inspired design principles and 
bio-inspired motor/behaviour control approaches, periodic trajectory 
planning, and nonlinear control systems; The challenges have been identified 
in Section 2.5, which has focused on the optimal design with bio-inspired 
viscoelastic property, energy efficient underactuated operation/locomotion, 
dynamic coupling characterization with system performance, establishment 
of global controllability, planning of optimal motion trajectories, analysis and 
prediction of frictional interaction dynamics and dealing with uncertainties; 
The future trends and research directions have been summarized and 
presented. 

2. To study control systems for UMSs with underactuation degree one using 
coordinate transformation and decoupling: The control system design has 
been studied in Sections 3.5 and 3.6 of Chapter 3. The control problems of 
UMSs have been formulated. The control properties of partial integrability 
and complete integrability of 2-DOF Class I, II UMSs have been investigated 
with some propositions. 

3. To study the structural control properties of partial integrability and complete 
integrability of UMSs with underactuation degree one: the structural control 
properties of partial integrability and complete integrability have been 
studied in Section 3.4 for the ease of control systems construction. 

4. To propose a novel self-propelled robotic model that draws inspirations from 
the biological systems: A bio-inspired robotic model has been proposed 
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inspired by undulatory locomotion of the nematode worm in Section 4.2.1 of 
Chapter 4. 

5. To propose a novel and systematic algorithm for trajectory planning and 
control for a class of UMSs with bio-inspired viscoelastic property: The 
trajectory planning algorithm has been proposed in Section 4.4 of Chapter 4. 
The non-collocated dynamic constraints have been considered into the 
control indexes, wherein it was found that characterization of viscoelastic 
interaction plays vital role in the optimal control of stick-slip propulsion and 
the energy efficacy. The qualitative variation laws of the control parameters 
have been studied and identified through geometric and dynamic analysis. 
The dynamic coupling has been characterized through rigorous analysis on 
the Poincaré maps. The two-stage analytical motion trajectory has been 
constructed based on the control indexes and dynamic constraints, which 
have been evaluated analytically, and the trajectory has been optimized and 
parameterized via rigorous analysis. two trajectory tracking control schemes 
have been constructed in Section 4.5 of Chapter 4. A closed-loop feedback 
controller has been designed for the system with accurate model. An adaptive 
controller has been proposed for the system with unknown base parameters, 
wherein an auxiliary control variable is designed to closure the 
non-collocated feedback loop. Asymptotic stability and convergence of 
time-varying reference trajectories for the system dynamics have been shown 
by means of Lyapunov synthesis.  

6. To design 3D models and develop the prototype of the proposed vibro-driven 
model, and to conduct preliminary experimental studies to verify the robotic 
model and motion principle: the 3D design of the vibro-driven system has 
been presented in Subsection 4.7.1, the experimental setup and preliminary 
experimental results have been given in Subsections 4.7.2 to 4.7.4, 
respectively. Some basic experiments have been conducted to demonstrate 
the locomotion of the system and validate the motion principles. 

7. To perform combined physics-based and analytical analysis for the 
vibro-driven capsule system and develop mathematical model of the 
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frictional interaction dynamics: the dynamic frictional interactions have been 
studied using a combined physics-based and analytical-based approach in 
Subsection 5.2.3 of Chapter 5. Thereafter, the frictional limits for the static 
friction, presliding regime as well as pure sliding regime are identified. The 
mathematical model of the frictional interaction dynamics has been 
developed through the combined physics-based and analytical analysis and 
characterization of the interaction dynamics in Section 5.2 of Chapter 5.  

8. To conduct analytical and numerical studies on the frictional interaction 
dynamic of the vibro-driven capsule system: The non-reversible 
characteristics of friction force (drooping and hysteresis) have been studied 
in Section 5.3 of Chapter 5. Dynamic analysis of the friction-driven 
vibrational responses is then conducted and the qualitative variations laws 
induced by the control parameter are identified. The analytical and numerical 
results have good agreements with the seminal findings in the literature. The 
proposed work is an advisable benchmark to exploit the challenges in friction 
compensation and control of underactuated micro-robotic systems. 

9. To extends and encompasses the adaptive control schemes to stabilize the 
state space of a class of underactuated systems: The adaptive control systems 
have been designed using an auxiliary control variable and neural 
network-based approximation in Section 6.3. Asymptotic stability and 
convergence of time-varying reference trajectories for the system dynamics 
are shown by means of Lyapunov synthesis. Section 6.4 of Chapter 6 has 
presented the simulation studies on the trajectory tracking and NN estimation 
performance towards an underactuated manipulator case. The proposed 
approach has demonstrated good performance under the effects of the model 
uncertainties, frictions and time-varying external disturbances. It has been 
observed that the system tracks the reference trajectory accurately and the 
tracking error converges to zero in finite time. 

10. To counteract matched and mismatched disturbances, and function 
approximation error of a class of underactuated systems: Robust 
compensators are designed in Section 6.3 to counteract matched and 
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mismatched disturbances, and function approximation error of NNs and 
nonlinear frictions. The tracking error can be reduced as small as desired in 
finite time by selecting appropriate controller parameters. 

7.3 Future Works 

Future works along the direction of this research are described as follows. 

Further studies towards trajectory planning and tracking control   In this 
research, geometric-analysis based trajectory planning algorithm and tracking 
control systems have been developed. The flowing future works can be conducted to 
improve the ‘intelligence’ of the trajectory generator and tracking performance of 
the controllers 

1. Optimally on-line selection and tuning of the trajectory parameters. The 
proposed algorithm is off-line planning and tuning, therefore development of 
online selection and tuning algorithm can reduce the computation time and 
improve the tracking performance. 

2. To improve the robustness of the control algorithm and the efficiency of 
underactuated locomotion, the investigation of the vibro-impact dynamics of 
the actuator and the system can be conducted through studying the parameter 
dependence and exploring new motion/propulsion mechanism. 

3. To further investigate the bio-inspired morphological design strategies, 
analytical and experimental studies on bio-inspired viscoelastic property can 
be conducted, including optimization and identification. 

4. Optimal selection and determination of parameter values of the adaptive 
controllers. There is no systematic approach for the optimal selection and 
determination of controller parameter values. Conventionally, they are 
chosen using iterative simulations, and thus a trade-off between system 
response and control torques should be made. 

Further experimentations and applications   Experimental implementation of 
the vibro-driven robotic models proposed in this research is an essential part of the 
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development and evaluation of the proposed system. It is also clearly necessary to 
identify the practical values and test the robustness capability of the proposed 
control algorithms in physical system. The effectiveness of the proposed algorithms 
is demonstrated using analytical studies and numerical simulations. Preliminary 
experimental works have been conducted in this study. Hence, it is important to 
verify the theory through further practical experiments, which is the motivation for 
this research. It is also of great significance to apply the design ideas and main 
findings to real environment applications, such as embedded the bio-inspired model 
into a capsule shell and conduct field tests in different environment. The future 
experimental works can be conducted in the following aspects: 

1. Identification of the bio-inspired viscoelastic parameters and comparison 
with the theoretical studies in this research, including the coefficients of the 
elasticity and viscosity.  

2. Trajectory tracking and real-time position feedback control of the robots on 
the surfaces with different friction coefficients, identification of the friction 
parameters. This will take into consideration of both the collocated 
subsystem (pendulum angle) and the non-collocated subsystem (cart 
displacement). To realise real-time implementation, an online optimal 
trajectory generator will be developed based on improvement of the 
proposed off-line trajectory control model. An evaluation of computational 
complexity of the proposed algorithm will be conducted through real-time 
implementation. 

3. Trajectory tracking of the robots in the tubular environments such as the gas 
and water pipes to test the performance of the adaptive control systems. 
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Appendix A 
 
 

A.1 Underactuated Mechanical Systems 

A.1.1 Lagrangian Mechanical Systems 

The Euler-Lagrangian equation is a formalism providing fundamental laws to 
classical mechanical systems to describe how they move under the action of external 
forces, particularly towards the systematic representation of robotic dynamics 
(Arnold, 1989; Craig, 2005; Papastavridis, 2014; Spong et al., 2006). In terms of a 
classical mechanical system, the Lagrangian is expressed by the difference between 
kinetic energy and potential energy (Dutton et al., 1997), 

𝐿(𝑞, �̇�) = 𝑇(𝑞, �̇�) − 𝑉(𝑞) = 1
2
�̇�𝑇𝐷(𝑞)�̇� − 𝑉(𝑞)           (A.1) 

where 𝑞 = [𝑞1, … , 𝑞𝑛]𝑇 represent the generalized configuration vectors that belong 
to an 𝑛-dimensional configuration manifold 𝑄, �̇� = [�̇�1, … , �̇�𝑛]𝑇 are generalized 
velocities, 𝐷(𝑞) is a symmetric and positive-definite matrix of inertias. 𝑇(𝑞, �̇�) =
1
2
�̇�𝑇𝐷(𝑞)�̇�  and 𝑉(𝑞)  denote the kinetic energy and potential energy of the 

mechanical system, respectively.  

For an object system with n-DOF (n>1), the governing equation is given by 

𝑑
𝑑𝑑

𝜕𝜕(𝑞𝑖,�̇�𝑖)
𝜕�̇�𝑖

− 𝜕𝜕(𝑞𝑖,�̇�𝑖)
𝜕𝑞𝑖

= (𝐵(𝑞)𝑢)𝑚 , 𝑖 = {1,2 …𝑛}           (A.2) 
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where 𝑢 = [𝑢1, … , 𝑢𝑘]𝑇  denote the vector of 𝑘  external forces applied on the 
systems. 𝐵(𝑞) is the input force matrix and assumed to be of full column rank, 
together with 𝐵(𝑞)𝑢 describing the generalized forces resulting from the control 
inputs 𝑢. 

(Aneke, 2003; Olfati-Saber, 2000) rewrote (A.2) in an alternative way as 

∑ 𝑑𝑘𝑖(𝑞)�̈�𝑖𝑖 + ∑ Γ𝑚𝑖𝑘(𝑞)�̇�𝑚𝑚𝑖 �̇�𝑖 + 𝑔𝑘(𝑞) = 𝑝𝑘𝑇𝐵(𝑞)𝑢          (A.3) 

where 𝑘 = 1,2, … , 𝑛, 𝑝𝑘  is the 𝑘th standard basis in ℛ𝑛, 𝑑𝑘𝑖 is the element of 

inertia matrix, 𝑔𝑘(𝑞) = 𝜕𝑉(𝑞)
𝜕𝑞𝑘

, and 𝛤𝑚𝑖𝑘(𝑞) are so-called Christoffel symbols and is 

defined as 

𝛤𝑚𝑖𝑘(𝑞) = 1
2

(𝜕𝑑𝑘𝑘
(𝑞)

𝜕𝑞𝑖
+ 𝜕𝑑𝑘𝑖(𝑞)

𝜕𝑞𝑘
− 𝜕𝑑𝑘𝑖(𝑞)

𝜕𝑞𝑘
)               (A.4) 

The vector form of (A.4) can be obtained as 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝐵(𝑞)𝑢               (A.5) 

where 𝑐𝑚𝑖 = ∑ 𝛤𝑚𝑖𝑘(𝑞)�̇�𝑘𝑛
𝑘=1  is the element of 𝐶(𝑞, �̇�). Two types of terms are 

involved in 𝐶(𝑞, �̇�)�̇� ∈ ℛ𝑛 which are called Centrifugal terms (when 𝑖 = 𝑗) and 
Coriolis terms (when 𝑖 ≠ 𝑗), 𝐺(𝑞) represents the gravitational terms. 

A series of fundamental properties (Siciliano and Khatib, 2008; Slotine and 
Weiping, 1988; Yu, 1998; Yu and Lloyd, 1997) of Lagrangian mechanical systems, 
which advance the analysis and nonlinear control, are achieved from (A.5) as 

Property A.1. The initial matrix 𝐷(𝑞) is symmetric and positive-definite matrix of 
inertias with upper and lower boundaries, gives 

0 < 𝜀𝑚𝑚𝑛(𝑞)𝐼𝑛 ≤ 𝐷(𝑞) ≤ 𝜀𝑚𝑚𝑚(𝑞)𝐼𝑛 ≤ ∞          (A.6) 

Property A.2. The initial matrix 𝐷(𝑞) and the matrix 𝐶(𝑞, �̇�) are not independent. 
The matrix 𝐶(𝑞, �̇�)�̇� containing Centrifugal terms and Coriolis terms is uniquely 
defined, but it is not true for the matrix 𝐶(𝑞, �̇�). Therefore, a proper definition is 

employed for 𝐶(𝑞, �̇�), thus �̇�(𝑞)− 2𝐶(𝑞, �̇�) is skew-symmetric such that 
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𝑋𝑇��̇�(𝑞)− 2𝐶(𝑞, �̇�)�𝑋 = 0                 (A.7) 

where 𝑋𝑇  is the transposed matrix of 𝑋 ∈ 𝑅𝑛, which is an arbitrary vector.  

Property A.3. For conservative systems, introducing the total energy 𝐻(𝑞, �̇�) as 

𝐻(𝑞, �̇�) = 𝑇(𝑞, �̇�) + 𝑉(𝑞) = 1
2
�̇�𝑇𝐷(𝑞)�̇� − 𝑉(𝑞)           (A.8) 

Then the change rate of total energy can be obtained as follows 

�̇�(𝑞, �̇�) = �̇�𝑇[𝐵(𝑞)𝑢 − 𝜕𝑝(�̇�)
𝜕�̇�

]                   (A.9) 

A.1.2 Underactuated Mechanical Systems 

A control system described by equation (A.2) is referred as an underactuated system 
if 𝑚 =rank (𝐵(𝑞)) < 𝑛, which means it has fewer independent control inputs 𝑚 
than the degree of freedom 𝑛, and as such 𝑘 = 𝑛 − 𝑚 DOF cannot be directly 
actuated. Following the aforementioned principles of Lagrangian mechanical 
systems, the equations of motion for an UMS can be directly derived below 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝐵(𝑞)𝑢              (A.10) 

Assuming that 𝐵(𝑞) = [0, 𝐼𝑚]𝑇 , without loss of generality, (A.10) can be 
rewritten in a generic form and further partitioned as 𝑞 = [𝑞𝑝, 𝑞𝑚]𝑇 ∈ ℛ𝑛−𝑚 × ℛ𝑚, 
where 𝑞𝑝  and 𝑞𝑚  respectively represent the unactuated (passive) and actuated 

configuration vectors, we have 

�
𝐷𝑝𝑝(𝑞)  𝐷𝑝𝑝(𝑞)
𝐷𝑝𝑝(𝑞)  𝐷𝑝𝑝(𝑞)� �

�̈�𝑝
�̈�𝑝
� + �

𝐶𝑝(𝑞, �̇�)
𝐶𝑚(𝑞, �̇�)� �

�̇�𝑝
�̇�𝑚
� + �

𝐺𝑝(𝑞)
𝐺𝑚(𝑞)� = �0𝑢�      (A.11) 

where the inertia matrix 𝐷(𝑞) = �
𝐷𝑝𝑝(𝑞)  𝐷𝑝𝑝(𝑞)
𝐷𝑝𝑝(𝑞)  𝐷𝑝𝑝(𝑞)� is symmetric positive-definite, 

the matrix 𝐶(𝑞, �̇�) = �
𝐶𝑝(𝑞, �̇�)
𝐶𝑚(𝑞, �̇�)� ∈ �

ℛ𝑛−𝑚

ℛ𝑚 � contains the Centrifugal and Coriolis 

forces, 𝐺(𝑞) = �
𝐺𝑝(𝑞)
𝐺𝑚(𝑞)� represents gravitational forces applied respectively on the 

passive and actuated configurations. 
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