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Footprints preserve terminal Pleistocene hunt?
Human-sloth interactions in North America
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Predator-prey interactions revealed by vertebrate trace fossils are extremely rare. We present footprint evi-
dence from White Sands National Monument in New Mexico for the association of sloth and human trackways.
Geologically, the sloth and human trackways were made contemporaneously, and the sloth trackways show
evidence of evasion and defensive behavior when associated with human tracks. Behavioral inferences from
these trackways indicate prey selection and suggest that humans were harassing, stalking, and/or hunting
the now-extinct giant ground sloth in the terminal Pleistocene.
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INTRODUCTION
Evidence of predation from vertebrate fossil tracks, whatever the age, is
extremely rare (1, 2) and unknown for a human trackmaker. We pres-
ent such an example from the terminal Pleistocene. Ichnofossils of ex-
tinct Rancholabrean fauna at White Sands National Monument
(WHSA) in New Mexico comprise one of the largest concentrations
of Cenozoic vertebrate tracks in North America (Fig. 1) (3). The tracks
of interest here are visible only under specific moisture conditions
(Fig. 2, A and B). As a consequence, we pioneered detection by aerial
and geophysical survey, supplemented with excavation. These efforts
revealed tracks and trackways of Proboscidea (mammoth), Folivora
(ground sloth), Carnivore (canid and felid), and Artiodactyla (bovid
and camelid). The tracks occur close to the surface of a playa (Alkali
Flat) and are impressed into thinly bedded gypsiferous and siliciclastic
muds and sands, which interdigitate laterally with organic-rich de-
posits (figs. S1 and S2). These sediments were deposited along the
margins of Pleistocene Paleo-Lake Otero (4), located in the north-
south trending Tularosa Basin. Wind erosion of the former lake floor
excavated lacustrine and lakemargin deposits to the level of the current
playa and supplied sand to adjacent gypsumdunes (5). Here, we present
the first well-documented co-association of unshod human tracks with
those of extinct Pleistocene ground sloth in the Americas, and we infer
behavioral implications from these contemporaneous tracks.
RESULTS
The study area (60,000m2) is located on the western edge of Alkali Flat,
adjacent to a 5-m escarpment that rises above the playa surface (Fig.
1 and fig. S1). The tracks appear in negative (depressed) relief and are
infilled by reworked playa sediments. Deformation structures occur be-
neath most tracks (for example, small normal and listeric thrust faults,
folds, boudins, diapirs, and fluid-escape fractures) and suggest variable
substrate moisture conditions at the time of imprinting (fig. S2).
Unlikemodern tracksmade on the playa, which erode quickly, the fossil
tracks persist. Pore-water expulsion during compression, growth of
gypsum cements, and the remains (in the form of salt and iron laminae)
of algal mats all aid preservation (6).

The exact age of the track-making events remain unknown.Deposits
enriched in organic detritus outcrop in the playa-margin escarpment,
on the current playa surface, and below the surface exposed in the side-
walls of tracks and shallow excavations. This sediment is frequently re-
worked into thematerial infilling the tracks, posing problems for dating.
Radiocarbon dates for this organic sediment typically range from 20 to
33 thousand years (Ka) before present (BP) (dates are quoted uncali-
brated, unless otherwise stated), and age profiles in shallow excavations
show both vertical and lateral variability (fig. S2 and table S1). Sedi-
ments in the adjacent escarpment range from 33 to 10 Ka BP (fig.
S1). The uppermost lacustrine beds of Paleo-Lake Otero have been
dated to 15.56 Ka BP at two sites (4) and represent an approximate
age for the commencement of deflation of Alkali Flat to the current
level. Using summed radiocarbon dates for sloth extinction (7) and ar-
cheological sites with established ages or time-diagnostic artifacts (8, 9),
the density distribution overlap establishes a likely time for trackmaking
(Fig. 3A). Themost parsimonious interpretation of these data is that the
tracks were made sometime before 10 Ka BP and after 15.56 Ka BP
when the Paleo-LakeOtero lake bed began to erode (Fig. 3B). That period
correspondswith awetter climatic interval in theAmerican Southwest
(10) and coincides with the Clovis culture (11.05 to 10.8 Ka BP) (11),
although most of the Paleoindian finds in the Tularosa Basin represent
Folsom and more recent artifact styles (12).

The site consists of more than a hundred sloth and human tracks
(figs. S3 to S9 and table S2). Sloth tracks are readily distinguished from
human tracks based on their elongated kidney-shaped tracks and claw
marks. Sloth tracks vary from 30 to 50 mm deep, 300 to 560 mm long,
and 100 to 350 mm wide (13–15). The sloth tracks show evidence of
eversion, consistentwith biomechanics of the ground sloth (16).Mixtures
analysis of the length of unexcavated sloth tracks (L/W < 0.7; n = 251;
fig. S10) reveals three groups with means of 401, 492, and 595 mm,
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suggesting several individuals of varying age or sex, if sexual dimor-
phismexisted.AlthoughMegalonychidae (Megalonyx),Nothrotheriidae
(Nothrotheriops), andMylodontidae (Paramylodon) occur inNewMexico,
only the latter two genera are known from late Pleistocene faunas. Both
Nothrotheriops andParamylodon have been identified frombone fossils
in the vicinity of Paleo-LakeOtero. Although insufficient ground sloth
track data exist to identify the taxon of the trackmaker, both genera
have a pedolateral foot, which would produce a shape similar to the
WHSA tracks (17).

Barefoot human tracks atWHSA are typical inmorphology to those
associated with soft, compliant substrates (Fig. 2, D and F toH) (18, 19).
Foot length analysis of both excavated and unexcavated human tracks
suggests multiple individuals of varying age or sex (fig. S10 and table
S2). A number of human footprints (>10) are superimposed into sloth
tracks. The human footprints share the same long-axis orientation and
occur inside the sloth track outline, indicating that the human track-
maker was walking intentionally within the sloth track. These steps re-
quired the person to adjust her/his normal stride to accommodate the
longer stride of the sloth, which typically showed tracks spaced 0.8 and
1.1 m apart. Two superimposed sets of deformation and fluid-escape
Bustos et al., Sci. Adv. 2018;4 : eaar7621 25 April 2018
structures exist (fig. S2): The initial set associated with the sloth track
and the subsequent deformation structures from the human heel strike.
Similar pore-water conditions existed during both track-making events.
No expulsion of sediment or pondedwater (that is, ejecta or wash/scour
structures) resulted from the human foot strike, and little or no sedi-
ment lies between the two plantar surfaces. This relationship suggests
that the sloth tracks remained unfilled, either by water or by sediment,
when the human followed.

The sloth trackways show several circular (and elliptical) track
patterns that have never been reported (Fig. 2C and figs. S3 and S11).
They consist of one ormore deformed pes tracks surrounded by a circle
of irregular impressions, which show evidence of manus claw marks
(Fig. 2I). The manus impressions are distinctive, 120 to 140 mm long,
with pointed termini at both the distal and proximal ends, showing
evidence of one ormore claw scrapes (figs. S8L and S9,A,D, and F). The
pes impressions at the center of these circular patterns are irregular and
in some cases circular (figs. S8J and S9E), and they appear to represent
heel or pivot traces (fig. S13). In one case, a line of human toe impressions
leads to the circle center, suggesting that someone approached on raised
toes (fig. S11). In another, an adult human track occurs in themiddle of
Fig. 1. Map showing WHSA, Alkali Flat, and the study site. Digital elevation model is from the Shuttle Radar Topography Mission 1–arc sec data with the surficial
geology taken from U.S. Geographical Survey maps.
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one circle (fig. S11). These structures occur both independently and
in association with overlapped human-sloth trackways. Sloth track-
ways show sharp changes in the direction of travel. These inflections
are associated with concentrations of human tracks (fig. S3). In the
Bustos et al., Sci. Adv. 2018;4 : eaar7621 25 April 2018
absence of human tracks, sloth trackways progress in a straight or cur-
vilinear fashion. Measures of tortuosity (20) confirm this (fig. S12).

We have evidence for: (i) sloth and human tracks in close spatial
association, (ii) superimposed human and sloth tracks with geological
Fig. 2. Trackways and prints at WHSA. (A and B) Unexcavated sloth track. The track outlines are only visible during specific moisture conditions. (C) Flailing circle
made by a sloth reaching forward with its forelimbs and leaving knuckle and claw impressions. (D) Human unshod right foot, unexcavated, and 30 mm below current
surface. (E) Superimposed human and sloth track. (F to H) Unshod human feet. (I) Sloth pes track. (J and K) Human tracks superimposed in sloth tracks, indicating
contemporaneity. (L and M) Manus claw impression of a sloth.
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evidence that suggests temporal association, (iii) increased sloth trackway
tortuosity related to the presence of human tracks, and (iv) unusual cir-
cular sloth trackways. The challenge at any track site is to demonstrate
contemporaneity of the ichnites. There are two key tests for contempo-
raneity (21): (i) Geologically, tracksmust crosscut and be superimposed
with no evidence of a temporal break, and the associated sedimentolog-
ical conditions should remain constant for both track-forming events;
and (ii) if animals were on the landscape at the samemoment, then their
tracks should show interaction. The evidencemeets both tests. The sloth
Bustos et al., Sci. Adv. 2018;4 : eaar7621 25 April 2018
tracks were open and unfilled with water and/or sediment when the
human trackmaker followed, and the alignmentwas perfect. Pore-water
conditions demonstrate constancy during both track-forming episodes,
evidenced by the deformation structures present. In terms of the second
test, the tortuosity of sloth trackways increases when human tracks are
present, with sharp direction changes that suggest evasion (21). In addi-
tion, the circular sloth trackways are consistent with defensive behaviors
in which sloths reared on their hindlimbs, freeing their forelimbs for
defense.We termed these structures “flailing circles.” To be clear, the
human-sloth interactions are not limited to one sloth trackway (or track
size) but to several. It is, however, difficult to say definitively whether the
sloths were traveling as a group and therefore were being collectively
harassed or whether these features represent successive harassment
events. The co-location of these trackways favors the former, in which
case the results have implications for the social behavior of sloths.

We argue that the tracks evidence temporal and spatial associations
of sloths and humans and infer that humans actively stalked and/or
harassed sloths, if not hunted them. The absence of a carcass is not
surprising for several reasons. The vast majority of hunts by modern
hunter-gatherers are unsuccessful (for example, 94% for Hadza) (22).
Sloths are so densely muscled that an outright kill is unlikely. Even
if the hunt had been successful and the animal had died in the study
area, the wetting and drying cycles and high pH rapidly degrade bones;
thus, preservation of bones in the terminal Pleistocene therefore re-
mains improbable. In terms of alternative explanations, it is possible
that the human trackmaker was simply stepping in the sloth footsteps
to follow a preexisting path in soft terrain. We dismiss this interpreta-
tion because the step length results in a long and uncomfortable human
stride. The estimated stature of the human trackmaker (1.4 m; Tracks
TE-A-44, -45, and -46; table S2) yields a stride of 0.6m, contrasted with
the sloth stride of 0.8 to 1.1m. It is possible that the behavior was playful,
but human interactions with sloths are probably better interpreted in
the context of stalking and/or hunting. Sloths would have been formi-
dable prey. Their strong arms and sharp claws gave them a lethal reach
and clear advantage in close-quarter encounters.
DISCUSSION
Reported here is the first well-documented association of human and
sloth trackways in the Americas. Inference from the interaction of the
two species suggests that these trackways provide evidence of humans
harassing/stalking potentially lethal sloths (23) by choice, presumably in
an attempt at predation (24). This conclusion is consistent with subsist-
ence strategies used by hunter-gatherers throughout the Americas during
the terminal Pleistocene.During a timeof climate change, predation (suc-
cessful or not) may have contributed to the sloth’s extinction in North
America. The site is extraordinary in the ichnological record because it
demonstrates a predator-prey interaction. Furthermore, although the
tracks atWHSA and similar playa sites in North America are visible only
at certain times, we believe that the high track density and spatial scale
allow behavioral information to be revealed for the first time. This geo-
logical archive has the potential to revolutionize understanding of the
behavioral ecology and interaction of humans and megafauna.
MATERIAL AND METHODS
In accordance with the Archaeological Resources Protection Act and
Paleontological Resources Preservation Act, which empower the
National Park Service (NPS) to omit disclosure of specific information
Fig. 3. WHSA chronology. (A) Summed probability density curves for extinction
dates for ground sloth (8) and dates of human occupations in Southwestern United
States (9, 10). Track creation probably occurred in the overlap. (B) Sequence of events
on Alkali Flat.
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pertaining to the location of archeological and paleontological resources
to help preserve them, the exact latitude and longitude of the sites re-
ported here are withheld. Interested parties may apply to the NPS at
WHSA for further details. The study area was selected for its concen-
tration of what are known colloquially as “ghost tracks”; that is, tracks
that are visible only under specific moisture conditions. The site was
gridded into 5-m squares, and all tracks were mapped and measured.
Shallow excavations were dug, and available sections were described
(figs. S1 and S2). A camera elevated on a 5-m pole was used to create
an orthorectified map in Esri ArcMap (fig. S3). Individual tracks were
selected for excavation along some trackways and digitally captured via
photogrammetry using DigTrace (www.digtrace.co.uk). Locations of
the excavated tracks are shown in fig. S4, three-dimensional (3D)
models of most of these tracks are presented in figs. S5 to S9, and track
measurements and interpretations are given in table S2. Larger ortho-
rectifiedmosaics and digital elevationmodels were created in Agisoft Pro
(www.agisoft.com/). Because excavation was destructive, the excavated
tracks were also cast in plaster; these casts are held by the NPS atWHSA.
Radiocarbon and optically stimulated luminescence (OSL) dates are
presented in table S1. The stratigraphy of the bluff adjacent to the
track site is based on unpublished work conducted by B. Fenerty and
V. Holliday at the University of Arizona (fig. S1).

The summed probability curves in Fig. 3A were generated in
MATLAB using a Parzen density estimator function. Figure S12 shows
the excavated and unexcavated track lengths subjected to a mixtures
analysis to identify component populations. Using the paleontologi-
cal software package PAST (25), the normality of the data was con-
firmed [n = 328, Shapiro-WilkW = 0.9498, P (normal) < 0.001]. The
Akaike information criterion (AIC) is calculated with a small-sample
correction

AIC ¼ 2k� 2InLþ ð2kðkþ 1ÞÞ=ðn� k� 1Þ ð1Þ

where k is the number of parameters,n is the number of data points, and
L is the likelihood of the model given the data. A minimum AIC value
indicates the most likely number of groups the data represent. Individ-
ual data were assigned to groups with amaximum likelihood approach.
Ten repetitions were calculated to ensure reliable identification of foot-
prints into groups.

Making biometric inferences from tracks can be difficult (18). For
stature, foot-length ratio based on Native Americans was used (26).
That ratio was averaged across all tribes and both sexes (foot length
as a percentage of stature, 14.9). Stature estimates were made for exca-
vated tracks only. Age estimations for excavated human tracks were
based on data from the UMTRI/CPSC Child Anthropometry Study
(27). Excavated track lengths for human tracks showed a biomodal
association, probably representing adolescents and adults (fig. S10).
This age distributionmay not, however, represent the actual population
present. The unexcavated track measurements were evaluated; tracks
with L/W ratios less than 0.7 were included, and tracks with lengths
greater than 300mmwere excluded.Mixtures analysis reveals four com-
ponents that suggest a greater age range (fig. S10).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/4/eaar7621/DC1
fig. S1. Bluff section on the western edge of Alkali Flat adjacent to the study site.
fig. S2. Cross sections through tracks and geotrenches.
fig. S3. Map of part of the study site.
Bustos et al., Sci. Adv. 2018;4 : eaar7621 25 April 2018
fig. S4. Map of excavated tracks in part of the study site.
fig. S5. Orthorectified mosaic of part of the study site.
fig. S6. 3D point cloud models of excavated human tracks.
fig. S7. 3D point cloud models of excavated tracks.
fig. S8. 3D point cloud models of excavated tracks.
fig. S9. 3D point cloud models of excavated tracks.
fig. S10. Size and age estimations for excavated and unexcavated elongated tracks at and in
the vicinity of the study site.
fig. S11. (A) Orthorectified mosaic of part of the study site showing two “flailing circles” as well
as sloth and human composite tracks. (B) Interpretation of trackway trajectories are based
on ghost and excavated tracks.
fig. S12. Tortuosity of sloth tracks in presence/absence of human tracks.
table S1. Radiocarbon and OSL dates from WHSA.
table S2. Measurements and interpretations of excavated tracks at WHSA.
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