
Smart IoTs Based Urine Measurement

System

Bournemouth University

RUSHAN ARSHAD

A thesis submitted in partial fulfilment of the

Requirements of Bournemouth University

For the degree of Master by Research

November 2017

Department of Computing

Faculty of Science and Technology, Bournemouth University, UK

2

Copyright Statement

“This copy of the thesis has been supplied on condition that anyone who consults it

is understood to recognize that its copyright rests with its author and due

acknowledgment must always be made of the use of any material contained in, or

derived from, this thesis.”

3

Abstract

Smart IoTs Based Urine Measurement System

Urine Measurement is one of the most important processes for diagnosis

in the hospitals nowadays. Acute Kidney Injury (AKI) is usually

diagnosed by taking patient’s urine samples for a specific period of time.

It has been suggested that the average Urine Output of a patient depends

upon his weight. As we are all aware that currently the means to monitor

the major vital signs of the human body in the ICU (Intensive Care Unit)

or various clinical settings such as Heart Rate, Blood Pressure, Central

Pressure etc. is done by the means of a continuous recording of impulses

and its digital display. It is utmost necessary to record and continuously

monitor a patients’ fluid input, administered mostly by electronic devices

(e.g. Syringe infusion pumps). At the same time, it is also important to

monitor patients’ fluid outputs, in which, urine volume is one of the major

components. Currently, it is obtained intermittently (per hour) from urine

meters and urine collection bags, and a visual assessment is made and

recorded manually relying heavily on the nurse's capability and skills.

Therefore, even after so much technological advancement the

measurement of urine output is literally the only critical parameter

constantly recorded and monitored non-electronically by the medical

staff.

The references from Medical Professionals at Royal Bournemouth

Hospital clearly indicate a need for automated Urine Measurement

System for efficient diagnosis process. There are automated devices for

urine measurement, that are discussed in the Literature Review section,

but none of them is available commercially. Some have cost issues

whereas others are too complex to implement. We have found approx. 15

systems which have been patented by the inventors but none of them made

it to the market. Cost-efficiency, complexity, and reliability are the issues

we need to address, and we have tried to address in our project.

In this project, an integrated prototype based on IoT, that measures urine

volume in real time for both high and low flow is developed. The system

4

measures the urine coming from the patient through two different sensors,

Photo Interrupter Module and Hall-Effect based liquid sensor, and

transmits that data to a cloud-based application via WiFi. The Arduino

Yun micro-controller was used because of its built-in WiFi chip and more

robust performance as compared to other options. The measurement of

both high and low flow of liquid makes our system unique from the

existing systems.

The application at Cloud analyze the data from the sensors for

visualizations as mentioned by the doctors. MATLAB analytics facilities

will be used because it provides extended options for multiple real-time

visualizations. The data is sent in real-time, every 20 seconds and

visualizations are updated accordingly. The data is also available to view

on an Android App. The real-time stream of data on cloud and ease of

data accessibility distinguishes our system to those described in the

literature.

Series of experimentation was carried out for the prototype. Firstly, due

to a problem in Photo Interrupter sensor for drop by drop measurement,

the error was huge. Then, we developed an algorithm that solved the

problem of object detection and then the error came to below 10% for both

the high and low-flow measurement combined. This algorithm can be

used to improve the working of photo interrupter sensor in other scenarios

and it is one of the contributions of our project.

This system decreases the workload of the nursing staff as well as that of

the doctors. The human-error is minimized. The Data Analytics

application enables the doctors to have an in-depth understanding of the

condition of a patient at several different intervals of time. Hence, our

system is expected to benefit the medical industry and especially the staff

at the hospitals. Lastly, we have also found our concept to be helpful in

process industry also where the liquid measurement is used and we

presented this concept at EPSRC conference in Glasgow.

5

Contents

CHAPTER 1 .. 9

INTRODUCTION ... 9

Problem Statement ... 9

Aims and Objectives .. 13

Research Methodology .. 14

Exploring Research Database .. 15

CHAPTER 2 .. 18

LITERATURE REVIEW .. 18

Anti-reflux Based Systems .. 18

Ultrasonic Based Systems .. 20

Modern Micro-Controller Based Systems ... 21

Capacitance Based Systems ... 23

Challenges in Developing a Urine Measurement System .. 25

IoT Trends .. 30

Applications of IoT .. 31

Challenges of IoT ... 32

Discussion .. 34

CHAPTER 3 .. 35

PROTOTYPE DESIGN ... 35

Introduction to Prototyping .. 35

System Design ... 36

Design of Prototype ... 36

Internet of Things and our Prototype Design ... 39

Micro-Controller .. 40

WIFI Configuration of Arduino: .. 41

Summary: ... 45

CHAPTER 4 .. 46

PROTOTYPE DEVELOPMENT .. 46

Comparison of our Design to Literature .. 46

High-Flow Liquid Monitoring ... 48

Connection to Arduino ... 48

Low-Flow Measurement .. 51

Introducing Thing Speak Cloud ... 55

Summary: ... 64

6

CHAPTER 5 .. 65

RESULTS AND IMPROVEMENTS .. 65

Data Visualization .. 65

Results Evaluation: .. 68

Results Comparison with Existing System .. 71

Comparison of Costs, Accuracy, and Simplicity ... 71

Discussion .. 72

CHAPTER 6 .. 73

CONCLUSION AND FUTURE IMPLICATIONS... 73

Summary of the Invention: .. 73

Comparison of Complete System with the Current Literature: ... 74

Comparison with Commercial Bluetooth Flowmeters ... 75

Research Goals and Outcomes:.. 76

Future Work ... 77

Implications of our System in Industry 4.0: ... 77

Challenges for IIoT Implementation: ... 78

REFERENCES .. 82

APPENDICES ... 88

7

List of Figures

Figure 1 Anti-Reflux Based Mechanism((Chelsey Fontaine, Stephen Tully, 2013) 19

Figure 2 Ultrasonic Based System ((PAULSEN et al., 2016) ... 20

Figure 3 Modern Urine Measurement System (Otero et al. ((Otero, A.Panigrahi B, Palacios

F, Akhinfiev, T, R, 2009) ... 22

Figure 4 Capacitance Based System ((Ramos, O’Grady and Chen, 2016) 24

Figure 5 Taxonomy of Urine Measurement Systems ... 24

Figure 6 IoT Devices Projections .. 30

Figure 7 System Design Model ... 36

Figure 8 Prototype design .. 37

Figure 9 Architecture of The System ... 39

Figure 10 Arduino Yun Micro-Controller.. 40

Figure 11 Arduino Yun Network... 41

Figure 12 Arduino Yun Login .. 42

Figure 13 Arduino Installation ... 42

Figure 14 Mobile Hotspot Configuration ... 43

Figure 15 Arduino Restart .. 44

Figure 16 Configuration Complete ... 45

Figure 17 Urine Measurement System by Atigorn .. 47

Figure 18 Hall Effect Liquid Flow Sensor .. 48

Figure 19 Circuit Connections of Flow Sensor with Arduino ... 49

Figure 20 High-Flow Algorithm .. 51

Figure 21 Photo Interrupter Sensor ... 52

Figure 22 Low-flow Algorithm .. 52

Figure 23 Prototype Development .. 53

Figure 24 Create a New Channel.. 56

Figure 25 Channel Details .. 57

Figure 26 Liquid Data for July 18 .. 58

Figure 27 Manage Libraries .. 59

Figure 28 Adding Thing Speak Library .. 59

Figure 29 Sending Data to Thing Speak ... 60

Figure 30 Sending Data to Thing Speak ... 61

Figure 31 Sending Data to ThingSpeak .. 61

Figure 32 2-D Plot with Timestamp .. 62

Figure 33 Creating a New Visualization ... 63

Figure 34 MATLAB Code Editor .. 63

Figure 35 High-Flow Data ... 66

Figure 36 Low Flow Data .. 67

Figure 37 Android App High-Flow .. 67

Figure 38 Android App Low-Flow ... 68

Figure 39 New Algorithm for low-flow measurement ... 69

Figure 40 Data after Improvements... 70

Figure 41 Combined Average Liquid Data .. 70

Figure 42 Conceptual Model for Smart Factories and Industry 4.0 79

file:///C:/Users/Rushan/Downloads/Smart%20IoT%20Urine%20Measurement%20System-Rushan_Arshad-MRes-v2.5%20(1).docx%23_Toc515906846

8

Acknowledgments

First and Foremost, I’d like to thank Almighty God, the source of limitless love and countless

blessings. I would also like to extend my gratitude to my Supervisor, Prof. Hongnian Yu for

his support and mentorship throughout my project. I believe, under his supervision, I have

learned a lot more than the insightfulness and drive to be what I want to be and to achieve

what I want to achieve. Also, I would like to thank Dr. Simon McLaughlin for his insight on

the possible challenges and requirements of the project. I would like to thank my friends in

Bournemouth, I really had a great time with all of you and learned a lot from you. Dr. Shuang

Cang also helped me during my project with insights and arranging versatile workshops to

facilitate the research work and I want to thank her for that. I also want to thank my parents

and siblings for always being there for me and support me through thick and thin. Last but

not the least, I am thankful to be given the opportunity of studying on a project funded by

FUSION.

9

CHAPTER 1

INTRODUCTION

Electronic and automated monitoring of different aspects of the human body is

becoming very popular in the medical industry for the last decade. The rise in

popularity and efficiency of Information Technology has had its impact on the medical

industry (Sultan 2014). Although, in some situations, costs of treatment have increased

substantially,, the increase in efficiency has neutralized this effect. Instead of spending

hours of labor on manual readings, possibly reducing the accuracy in the process,

doctors and medical professionals are adopting and developing partnerships with

Information Technology (IT) industry (Devaraj et al. 2013).

Patients in Intensive Care Unit (ICU) need precise treatment and diagnosis should also

be done very precisely and accurately. Measurements like Heart Rate are usually

monitored in ICU to diagnose different diseases and to keep a close eye on patient’s

progress. The severity and complexity of the condition of the patient required the

drastic change in the Automated Systems for Heart Rate Monitoring. So, technology

was introduced and many systems have been developed for different situations (Jess

et al. 2016). Another system developed by Jess et al. (2016) monitored heart rate using

a non-contact device attached to chair where the patient’s heart rate was continuously

measured and sent to a remote location even when the patient was idle.

Problem Statement

Urine Measurement is one of the most important processes for diagnosis in the

hospitals nowadays. Acute Kidney Injury (AKI) is usually diagnosed by taking

patient’s urine samples for a specific period of time (Parikh, 2005). It has been

10

suggested by (De Melo Bezerra, Vaz Cunha, and Libório, 2013) that the average Urine

Output of a patient depends upon his weight. Currently, the means to monitor the

major vital signs of the human body in the ICU (Intensive Care Unit) or various

clinical settings such as Heart Rate, Blood Pressure, Central Pressure etc. is done by

the means of a continuous recording of impulses and its digital display (Hersch, Einav

and Izbicki, 2009). It is utmost necessary to record and continuously monitor a

patients’ fluid input, administered mostly by electronic devices (e.g. Syringe infusion

pumps). At the same time, it is also important to monitor patients’ fluid outputs, in

which, urine volume is one of the major components. Currently, it is obtained

intermittently (per hour) from urine meters and urine collection bags, and a visual

assessment is made and recorded manually relying heavily on the nurse's capability

and skills (Hersch, Einav and Izbicki, 2009). Therefore, even after so much

technological advancement the measurement of urine output is literally the only

critical parameter constantly recorded and monitored non-electronically by the

medical staff (Otero et al, 2009).

According to (Hersch, Einav and Izbicki, 2009), if we consider a situation where data

is collected electronically then there would be an immediate, accurate and efficient

assessment of the patients’ medical condition. There are also several additional

benefits such as efficient storage of information and access to that information later.

The manual devices and technique which are used to measure urine output today only

provides a rough estimate. Moreover, such a method requires constant nursing

attention, management, and handling difficulties. This whole process is very time-

consuming as well as laboring for the medical staff who are required to be in constant

contact with the devices such as recording the readings etc. Programmed and persistent

volume-flow recording of urine output may decrease human error, spare costly

11

medical staff time, and give an early alarm to approaching kidney or organ failure in

an intensive complex care condition (Grover and Barney, 2003).

A group of specialists in Kidney disorders recognized the importance of urinary output

in the detection of a renal failure. The severity grade of kidney dysfunction depends

upon the level of renal injury which is measured by serum creatinine or urinary output

or both (Bellomo et al., 2004). Now, the interesting thing to note is that serum

creatinine levels are seen only when at least 50 percent kidney function is impaired.

But if this parameter is combined with urine output then there is a chance to identify

patients earlier who are at risk of renal failure (Galley, 2000). This may save many

lives and increase the efficiency of early detection of kidney failure.

Kidney dysfunction is seen in 9-40 percent in patients with sepsis, among which the

mortality rate is >50 percent. There are various clinical manifestations commonly seen

in sepsis such as hypotension, hypovolemia etc. But our focus for this thesis are

conditions relying on monitoring of urinary output. Thus, we see that renal hypo

perfusion is a leading cause of Acute Renal Failure (ARF). A rise in a number of cases

of Sepsis or Septic shock is seen in the last few decades. Factors assigned to this

phenomenon could be an increasing number of immunocompromised patients,

diabetes, alcoholism, malignancies and Chronic Kidney Disease. After a profound

volume loss, the patient suffers from hypotension and start developing oliguria and

peripheral cyanosis. It is crucial at this stage to monitor urine output efficiently so that

prevention towards progression to MODS (Multi-Organ Dysfunction Syndrome) can

at least be attempted (Molitoris, 2015).

Even the mortality rates reported for critically ill children is 35-73% requiring dialysis.

It has been suggested that both accurate measurements of fluid input and output may

12

lead to improved outcomes (Ronco et al., 2010). Similarly, in postsurgical cases of

Acute Kidney Injury (AKI), a higher urinary output has to be maintained using

diuretics which needs to be continuously monitored (Ronco et al., 2010). If a person

undergoes Renal Replacement Therapy (RRT), it is important to consider the urinary

output which could be 1) Oliguria (urine output <200 ml/12 hours) or 2) Anuria (urine

output <50 ml/12 hours) (Murray, Brady and Hall, 2001). Similarly, for the cessation

of RRT in Intensive Care Unit, it is important to note that Urine output averages 1

ml/kg/h over a 24-hour period (Murray, Brady and Hall, 2001). It is important to

emphasize here that on both occasions an electronic urine output monitoring device

could revolutionize the treatment protocol.

Urine output has a prognostic value in patients with AKI. The general method to

monitor urine output as stated above by visual readings of the amount of urine

accumulated is often inaccurate and provides limited data (MacEdo et al., 2011).

Identification of decreased urine output with the help of a real-time integrated

monitoring tool could greatly improve management of critically ill patients (MacEdo

et al., 2011). In an ICU, the fluid gains or losses in a postoperative setting along with

total parenteral nutrition need to be recorded and quantified. The main focus is

hemodynamic changes, urinary output, volume assessment of fluid balance and

medications administered (Molitoris, 2015).

We visited Royal Bournemouth Hospital, our industry partner, to further investigate

the problems faced by medical staff related to the urine measurement systems. Dr.

Simon McLaughlin briefed us about the challenges they are facing when it comes to

noting down the readings from a scale of the urine container or from a small LCD

screen that shows the measurements of the patient’s urine output. After discussions

with Dr Simon and the nursing staff, we found out that apart from the extra burden on

13

the nursing staff, there is always a probability of human error in the readings. Dr.

Simon also pointed out that they need to measure the urine flow as low as 15-

20ml/hour. We also need to tackle the high flow which could be 100-150ml/hour or

higher.

The above references from Medical Professionals clearly indicate a need for

automated Urine Measurement System for efficient diagnosis process. There are

automated devices for urine measurement, which are discussed in the next chapter, but

none of them is available commercially. Some have cost issues whereas others are too

complex to implement. We have found approx. 15 systems which have been patented

by the inventors but none of them made it to the market. Cost-efficiency, complexity,

and reliability are the issues we need to address and we will try to address in our

project.

Aims and Objectives

The aim of this study is to investigate and propose an efficient solution for measuring

the urine-filled status by minimizing the cost of the hardware and improving the data

analysis for equipping the doctors with real-time information of the patient’s

condition. Another thing which we will try to investigate is the implementation of our

model in an industrial environment for liquid monitoring such as process industry. For

this purpose, we will add the high flow of liquid to our measurements as well. To

achieve our aims, we have outlined the following objectives:

OB1: Study the current work (Patents, Papers, Commercial work): We have

studied the current literature corresponding to our goal. We have studied the devices

that have been claimed in the form of patents for measuring the urine output.

14

Furthermore, we have also highlighted the problems in each device and the solutions

to overcome those problems in our scenario.

OB2: Design of Prototype: Initial Design of the prototype will be developed on the

computer to simulate the working of our actual prototype. This will help us in selecting

the hardware we will need, provide us the blueprint of the device the efficient

integration of that hardware for developing the actual physical prototype.

OB3: Select hardware and software: After the design phase, we will select and

purchase the hardware that we will use in developing the prototype. Moreover,

software architecture will also be developed which will be the basis of the application

that will be used in collaboration with the hardware to develop and efficient system.

OB4: Develop a prototype for Real-Time Urine measurement based on IoT: In

this stage, we will actually develop the prototype device and the software application

will also be developed.

OB5: Conduct validation and verification: We will perform experimentation in

different scenarios firstly at our end before going into the actual real-world scenario

and if needed, improvements will be made in the system.

OB6: Facilitate the doctors with interactive data visualizations: Data Analytics

like Graphs and data visualization will be added to the system to expand the horizons

of the system.

Research Methodology

Usually, there are two types of Research Methodologies used by researchers to

complete a specific research objective, namely Qualitative (Silverman, 2016) and

Quantitative (Hoy and Adams, 2015). There is also a hybrid method called a mixed

15

method of Research in which a researcher collects the data, analyses it, visualizes it

using the combination of Qualitative and Quantitative methods. Specifically, the

mixed method approach refers to the collection of data from the literature called

literature review. The challenges in the literature are highlighted and the solutions to

overcome the challenges are proposed. After that, the proposed solution is tested with

the help of experiments and then the results are compared with the literature to validate

our proposed solution. We will use mixed methods approach in our research.

After analyzing the challenges, aims, and objectives, we have learned that our research

poses the following research questions:

• What are the requirements of the user related to Urine Measurement System?

• What are the current practices in this environment?

• How are we going to design the prototype to minimize the complexity and to

improve Human-Computer Interaction?

• What is the approach for testing the prototype?

Exploring Research Database

For studying the existing Literature (described in detail in the 2nd chapter), there are

different methods used by researchers. Some people use Snowballing method

(Badampudi, Wohlin and Petersen, 2015) for systematic reviews. We used the

traditional method of literature review in which we elaborate the features and the

possible weak points of a study or system We used search string method (Stol, Ralph

and Fitzgerald, 2016) and the famous Journals like ACM, ScienceDirect etc were

searched. The main search tool used was Google Scholar. We will describe the search

string criteria below:

16

Search String The search string developed for searching Google Scholar Database

is: ((“Urine OR Liquid OR Fluid) AND (Monitoring OR Measuring OR Output) AND

(System OR Device”)). Based on this string, we collected relevant papers for the

literature review.

Inclusion and Exclusion Criteria After the search string, we were given a lot

of papers by Google Scholars. Now, to find papers that were closely related to our

project, we developed inclusion and exclusion criterion. For including a paper to our

own database, we followed the following criterion:

• The paper is explicitly about the system designed to monitor urine output in

hospitals.

• The paper proposes a system to measure liquid output in real time.

• The paper proposes an integrated system for any fluid monitoring and analysis.

We also developed an exclusion criterion to filter out the irrelevant papers, which are

described below:

• The paper was published before 2000.

• The paper was not relevant to liquid measurement.

The structure of our thesis is as follows:

Chapter 2 describes the extensive literature review of the technologies, sensors, and

systems that have been developed an used to measure urine output in real-time. We

have highlighted the pros and cons of all the systems and model and we have also

considered the commercial implications of the systems that have been proposed in the

current literature.

17

Chapter 3, depicts the prototype design, both hardware, and software, for

development of the integrated system for urine measurement. We have described in

detail the challenges we had to face in hardware selection and interfacing hardware

and software.

Chapter 4 has the details of the development of the prototype in detail as well as the

software design for data analysis.

Chapter 5 depicts the results of our prototype development and the improvements that

we have made to tackle some problems that we have faced during the testing of the

prototype.

Chapter 6 concludes our work and provides further suggestions to improve the system

and also provide the industrial implications of our work.

18

CHAPTER 2

 LITERATURE REVIEW

In this chapter, we will critically evaluate the current systems and literature proposed

for Urine Measurement Systems. We evaluate the models and systems based on their

performance in real time. Furthermore, we also indicate whether the hardware used in

the system is commercially available or not. In this way, we can find out if there are

commercial and market potential in the model or not. It is worth noting here that none

of the proposed models recently for urine measurement system is available as a

commercial device. Finally, we categorize the models into different categories based

on the techniques and hardware used. Detailed Taxonomy is depicted in Figure 1.

Anti-reflux Based Systems

A urine measurement system developed by (Chelsey Fontaine, Stephen Tully, 2013)

used an anti-reflux mechanism (see Figure 1) to measure the urine output. It used a

urine bag and a urine meter connected to a catheter or a urine input mechanism,

protected by a shield in the middle which prevents the flow of excessive urine from

the urine bag to the urine meter. However, this system measures the urine correctly to

some extent, it is still time-consuming and complex in nature. It also still requires

manual measurements to be taken.

19

Figure 1 Anti-Reflux Based Mechanism((Chelsey Fontaine, Stephen Tully, 2013)

A manual urine measuring device invented by (Sippel, Collin and Voges, 2000) used

a holder which is fixed to the bed of the patient. The holder has a measuring container

and a urine bag attached to it. The liquid comes from the catheter to the liquid container

and when it is filled completely or up to the desired level, it is then held at a specific

axis so that the container is emptied into the urine bag. However, it is comparatively

easy to handle but it requires more operation by the hospital staff apart from noting

down the readings, which could result in inefficient measurements.

(Voges, Sippel and Collin, 2002) developed a device to measure urine flow, consisting

of a dripping chamber and a measuring chamber. A tube, glued to the dripping

chamber assists in pouring the urine from the catheter into the dripping chamber. To

prevent solid material from entering the measuring chamber, an anti-reflux filter was

used. Although this system for measuring the urine output is inexpensive to build and

maintain, it cannot be used with modern micro-controller approach and does not ease

the workload of the staff.

20

Ultrasonic Based Systems

Benign Prostatic Hyperplasia (BPH) is a disease in which the patient experiences

symptoms like Low-Urine Frequency, weak stream or prolonged periods of no urine

excretion (Chughtai et al., 2016). To diagnose this disease and for treatment, Urine

Output Analysis is necessary. An integrated system to measure and analyze the flow

of urine was invented by (PAULSEN et al., 2016) with three different parts named as

Recording Unit, Analysing Unit and a Transmission Unit (see Figure 2). The recording

unit consists of sensors (Acoustic and Camera) connected to an incoming urine

catheter whereas analyzing unit consists of hardware and a software that helps in

analyzing the recorded data on different parameters. Finally, the transmission unit may

consist of wireless or wired communication to transmit the recorded data to a remote

PDA. Although, this is an integrated system that can increase efficiency use of acoustic

sensor and an optical device might affect the recorded data under certain conditions of

the noisy area.

Figure 2 Ultrasonic Based System ((PAULSEN et al., 2016)

21

A device to measure low-flow of urine was presented by (Ilan Paz, Gush EtZion (IL);

Harold Jacob, Cederhust, 2003) with the mechanism of drop by drop counting for

accurate measurement. Moreover, their system also had a mechanism of correction if

the drop size varies during the measurement. This correction made their system more

reliable. However, their device was standalone and could not be moved to another

location if the patient wants to move. Furthermore, there was no solution to centralized

data access which makes this system not suitable for the fully integrated environment.

Modern Micro-Controller Based Systems

Otero et al. ((Otero, A.Panigrahi B, Palacios F, Akhinfiev, T, R, 2009) developed a

fully integrated Urine Measurement System (see Figure 3) which consists two

containers, a small one of 15ml for precise measurement and a larger one of 60ml

long-term measurements. Each container was equipped with a float sensor which was

controlled by a Micro-Controller (Atmel AT89S52). With the help of Physicians,

hourly goals were set for a specific weighted patient and alarms were generated if

goals were not met. The software, developed in Java, controlled the data and generated

relevant alarms. This model was one of the very first which had practical implications

suitable for the medical environment but due to some legal reasons, this device never

went into the manufacturing industry.

22

Figure 3 Modern Urine Measurement System (Otero et al. ((Otero, A.Panigrahi B,

Palacios F, Akhinfiev, T, R, 2009)

The Siphon Principle is used to transfer the water or any liquid from a high-pressure

area to a low-pressure area (Garrett, 1991). Using the Siphon Principle, Otero et al.

(Otero et al., 2010) developed another device that consists of two containers. To empty

the container, the siphon principle was used. Reed switches were attached to the walls

of the containers. The measurement was recorded when the container was being

emptied and the liquid started to flow through the siphon mechanism and till the time

the container was completely empty. Like their previous prototype, a micro-controller

controlled the liquid sensor and the reed switches and sent the data via Bluetooth to a

remote PC where it was analyzed using the java based software. Although the system

worked fine, the complexity issue of the container design, the output tube size and the

connection between the two containers in some conditions were found to be

problematic. Due to these problems, manufacturing the device using the siphon

principle became almost impossible.

A fully automated, Internet of Things (IoT) based urine measurement system was

developed in (Atigorn, 2016) in which they have used two different approaches to

23

measure the Urine Output. Firstly, they used three different sensors (Ultrasonic, Photo

Interrupter, and Microphone based sensor) for measuring the urine from the patient

and they deduced that Photo Interrupter sensor produced the most accurate

measurements. Furthermore, they used only Photo Interrupter in the second

embodiment for measuring the urine in the drop by drop fashion. It is worth noting

that unlike most of the previous literature we have discussed, this system used modern

micro-controller Arduino and used the wireless medium to send the data to a remote

server where it was analyzed for the Physicians to understand.

A real-time urine measurement system developed in (Greenwald, 2012) measured

both high and low flow of urine simultaneously. This system had a processor to store

and transmit the data. Moreover, the inventors used the Radio Frequency (RF) based

sensor for low-flow measurement. However, due to non-availability of RF-based

sensors for low-flow measurement commercially, the commercial implications are

quite low for this device. Furthermore, the external conditions like sound waves may

hinder or change the measurements due to RF-based sensors.

Capacitance Based Systems

Capacitance-based measurement methods (see Figure 4) for urine were presented in

(Ramos, O’Grady and Chen, 2016) in which they claimed various systems to measure

the urine flow in real time. According to their claims, they used a liquid container with

which a capacitance sensor has the inter-digital electrode structure. The data from the

capacitance sensor transmitted through a wireless medium via micro-controller

reached the software where it was analyzed remotely. The complexity of design is the

only disadvantage of this system and may hinder the manufacturing of this device on

a commercial scale.

24

Figure 4 Capacitance Based System ((Ramos, O’Grady and Chen, 2016)

Figure 5 Taxonomy of Urine Measurement Systems

The main problems in the systems described in the literature are as follows:

• A standalone device that restricts data collection during movement of the

patient for tests within the hospital.

• Complex hardware that is difficult to commercialize.

25

• Inappropriate hardware that might pose health risks to patients

• In-accurate readings that may hinder the diagnosis process.

• Sophisticated hardware that is not commercially available.

• Poor Data analysis application that makes it difficult for nursing staff and

physicians to understand.

Challenges in Developing a Urine Measurement System

From the above literature, we have identified some challenges that are listed below.

Some of them are explicitly discussed in the literature and the others have been

identified by us.

• Data Privacy: As highlighted earlier, most modern systems for Urine Flow

Measurement will be based on IoT, so, data privacy is one of the biggest

challenges. The data, in this case, is critical and the security measures for Data

Security are more important than ever. However, when addressing this

concern, there is a possibility that you must compromise in the robustness of

the whole system which could result in a substantial difference in

measurements of the liquid.

• Hardware Selection: Selecting a hardware that is simple and effective is the

most challenging part of developing the automatic and integrated urine

monitoring system. There are many sensors that can do the job of collecting

the data from the liquid input and send it to the remote computer for processing

but keeping in consideration the conditions and surroundings of the hospital or

medical center, selecting the most feasible and accurate is the utmost

challenge. For example, an ultrasonic sensor can be used to measure the urine

26

output but, in the hospital, where the readings could be affected by the

surroundings, it is neither feasible nor accurate whereas the Photo Interrupter

Sensor is found to be more accurate in these conditions.

• Software Design: Software Design is also an integral part of the Urine

Measurement System. The staff who are going to use your system must be

consulted before developing the software. The Programming Language or

platform must be chosen with which the staff is comfortable with and it does

not require any extra skills to operate. The system should be simple and

accurate.

• Ethical Challenges: To develop a System for a hospital, the stakeholders

include patients, doctors and nursing staff, so, the data is both sensitive and

critical. This poses the challenge of managing the data accurately and securely.

Sending and storing the data using secure medium is one of the challenges that

are faced, both ethically and technically. It should be made sure that the

networking strategies used in the devices where this data will be stored should

also be secured.

• Health and Safety Issues: The primary goal of the automation of the urine

measurement system is to make it is easier for the Hospital Staff to measure

the urine output. But, in this case, patient’s health is at stake. It should be

ensured that the data that is recorded and sent is accurate so the decisions made

by a doctor for the treatment of the patient may not be false because it can be

dangerous for the patient. Moreover, the system that is going to be built should

not have any contact with patient’s body so that any harmful substances in the

hardware do not affect the patient’s condition. These are the health and safety

27

challenges that one may have to deal when they are developing this kind of

systems.

Reference Method Used Technique Used Novelty Issues

(Chelsey Fontaine,

Stephen Tully, 2013)

A Shield is used to

prevent excessive

flow to the

measurement

container.

Anti-Reflux

Mechanism

Prevention Mechanism for

Liquid Overflow.

Complex Hardware

Orientation, Laborious.

(Sippel, Collin and

Voges, 2000)

Liquid Container fills

up to the desired level

and it needs to be

held at an axis to

empty it.

Anti-Reflux

Mechanism

A measurement after a

desired level of liquid is

met.

Staff must note the

readings and empty the

container.

(Voges, Sippel and

Collin, 2002)

A tube is used to

move liquid to the

dripping chamber and

an anti-reflux filter is

used to prevent solids

from entering the

chamber.

Anti-Reflux

Mechanism

Separate containers for

liquid input and

measurement.

Inability to be used with

modern micro-controllers,

laborious for staff.

(PAULSEN et al.,

2016)

Hardware is divided

into 3 units named

recording, analyzing

and transmission.

Ultrasonic

Mechanism

Separate Units for

Recording, Measuring and

Analysing the Data,

Modern Micro-Controllers

and PDAs are used.

Due to Ultrasonic and

Acoustic Sensors,

measurements might be

affected under noisy

conditions.

Otero et al. ((Otero,

A.Panigrahi B,

Palacios F,

Modern Micro-

controller used to

control float sensors

Float Sensors

Mechanism

Modern Micro-Controllers

along with modern

programming language

Due to some legal issues

listed in the paper, the

28

Akhinfiev, T, R,

2009)

attached to the

containers.

was used, Staff workload

was minimized.

device never was

commercialized.

Otero et al. (Otero et

al., 2010)

The liquid was

measured when the

container was being

emptied using siphon

principle. Analysed

using Java language.

Siphon Principle The liquid was measured

by modern sensors using

siphon principle and

modern Bluetooth

technology was used to

transmit the data to the

remote computer.

The complex design of

containers and integration

of Reed Switches made the

design impossible to be

commercialized.

Atigorn (Otero et al.,

2010)

The liquid was

measured drop by

drop and the total

liquid was calculated

by the number of

drops. Average Drop

volume was

calculated.

Modern Micro-

Controller

Mechanism

The modern approach of

Arduino Micro-controller

along with commercially

available sensors was used.

Proper requirements from

Physicians were taken into

consideration and it was

tested in a real scenario

Software glitches and

hardware orientation were

notable issues which

would alter the

measurements in critical

conditions.

(Greenwald, 2012) Radio Frequency

based sensors were

used and drop

counting mechanism

was used.

Low-Flow

Measurement

Drop-by-drop

measurement, correction

mechanism if the size of

drop varies.

Standalone device, not

portable, no centralized

access to data.

 Table 1 Critical Review of Urine Measurement Systems

The above table shows the extensive findings of the literature review in a brief form.

It is worth noting here that none of the systems in the literature is available

commercially. They are either complex, expensive or have healthcare risks attached

to it. The main challenge is to simplify the process of urine measurement by using

cost-effective and felicitous technologies which we will try to address in this project.

29

Internet of Things (IoT) is a concept that envisages the connectivity between daily life

things by using different types of sensors like Radio-frequency identification (RFID)

(Sun, 2012), actuators that work collaboratively to sense, collect and transmit

important information from their surroundings on to the Internet. IoT is a term that

envisions connectivity between physical and digital world by using felicitous

technologies (Miorandi et al., 2012). IoT has been one of the hot topics in the

technology domain for the last few years and it is expected to revolutionize the world

similar to that the Internet itself did (Chase, 2013). Frost & Sullivan (2011) projected

the increase in RFID sales over the years and it is going to increase exponentially in

the next few years. If the predictions are even closely accurate, then the energy

consumption concerns are going to arise because Active RFIDs (Zhang et al., 2014)

need battery powered energy and to handle this issue we need to make the IoT

technology Green by implementing various strategies. Some of them are discussed in

the later sections. It could be observed that the number of Internet-connected devices

is growing at a very fast pace. The mechanism of IoT consists of several elements such

as Identification, sensing, communication, computation, services, and semantics.

Identification is the most important one as it ensures that the required data or service

reaches to the correct address. Sensing deals with the collection of the information

from different resources and this information is then sent to data centers. This data is

then analyzed using different conditions and parameters for the purpose of various

services. The sensors can be used to collect humidity, temperature etc. Communication

in IoT performs the combination of heterogeneous objects to offer specific services.

Communication is usually performed by using Wi-Fi, Bluetooth etc. Computation is

performed by different microcontrollers, microprocessors, Field Programmable gate

arrays and many software applications. Services can be related to identity, information

30

aggregation, collaborative or ubiquitous. Lastly, Semantics deals with the intelligent

knowledge gathering to make decisions (Zhu et al., 2015).

Now, we are going to discuss the techniques that can be used to make IoT a green

technology. This research is made part of this thesis because the use of IoT on a large

scale can have a negative impact on the environment. Therefore, introducing Green

IoT is the need of the hour. The conceptual model described in the Future Work

Section, which can be used on a large scale, needs to integrate Green IoT.

To make the IoT green, there is a need to study more state-of-the-art techniques and

strategies that can fulfill the energy hunger of billions of devices. Here, we aim to

provide a comprehensive overview of energy saving practices and strategies for the

green IoT. We consider a case study of smart phones to show that how different

stakeholders can play their roles for the green IoT.

IoT Trends

The current era is considered to be fully Internet-based. Our dependence on the

Internet and the devices is rapidly increasing. How does IoT influence in routine

things? This is the main question to be addressed in the subsequent section.

Figure 6 IoT Devices Projections

0

2

4

6

8

10

2009 2010 2011 2012 2013 2014 2015 2016

D
ev

ic
es

 in
 B

ill
io

n
s

Years

31

Applications of IoT

IoT is revolutionizing our daily life activities by tracking different scenarios and

making intelligent decisions to improve our lifestyle and to protect our environment.

There are numerous applications of IoT in daily life. We explore several of them below

• Smart Homes: As described by (Li, Xu and Zhao, 2015), by equipping our home

or office with the IoT technologies like RFIDs, we can track the activities of in-

habitants in the building and can make decisions that can save energy, money and

whole environment in the process. For example, a smart fridge can have RFIDs on

every item inside it and we can decide when to go shopping and what we need to

buy on the basis of information provided by the sensors attached on the items.

• Food Supply Chains (FSC): IoT can have a huge impact on the business industry.

Using IoT technologies, vendors can track the production of their products from

the farm to the end users. A framework for such an application is proposed by

(Pang et al., 2015). It proposes a Business-oriented model of IoT for FSC which

can enhance food security and can be used to collect the data related to production

processes and that data can be manipulated to make better decisions regarding the

business process model.

• IoT in Mining Industry: IoT technology can be used to ensure safety for miners

and can provide Mining Companies with important information regarding mining

process which can help them in enhancing the current practices (Xu, He and Li,

2014). RFIDs, Wi-Fi, and sensors can be deployed to improve communication

between miners and their employers. Furthermore, diagnosis of different diseases

in miners can be done by collecting symptoms using these sensors.

• IoT in Transportation: IoT is revolutionary in the Transportation and Logistics

industry. We can track vehicles and products using RFIDs and sensors from source

32

to destination in real-time. A DNS architecture (Xu, He and Li, 2014) is developed

for IoT where large-scale operations enhance the capabilities of IoT in supply

chain management.

• IoT in Garments: A new type of E-Thread (KIOURTI, Lee and Volakis, 2015)

envisions the idea of collecting data from clothes. This can help in collecting real-

time data to track the activities of a patient without using any extra device.

• Smart Cities: One of the most scintillating and emerging applications for IoT is

Smart Cities (Caragliu, Del Bo and Nijkamp, 2011) which has gained popularity

in the last few years. A smart city is a combination of different smart domains like

Smart Transportation, Smart Energy Saving Mechanism, Smart Security (Zanella

et al., 2014) and many more which provide the users with latest technological

facilities all under one umbrella.

Challenges of IoT

IoT is at its cutting edge and could prove to be revolutionary in the IT industry, but

everything comes at a cost. There are many challenges posed by the IoT technologies

like Security and Privacy challenges as described by (Weber, 2010), as one of the key

areas that experts need to work on in order to gain the trust of the users (Singh and

Jara, 2014). The cited paper described that the RFID tags can follow a person without

this consent or information and this could lead to a very serious distrust among the

people. However, the most significant challenge that we will face in the

implementation of IoT will be energy. It has been predicted by National Intelligence

Council of US that by 2025, daily life objects such as food items, pens etc. will be a

part of the Internet. This means that there could be billions of devices connected to

the Internet.

33

Paper Method Novelty Issues Application

(Pang et al.,

2015).

Installing

RFIDs

Tracking of

Food

Products

Data Privacy

can be violated

Food Supply

Chain

(Xu, He and

Li, 2014)

Deploying

Sensors to

track miners

and

activities

Activity

Tracking and

reporting

Due to extreme

situations, data

might be

delayed in

communication

Mining

Industry

(Xu, He and

Li, 2014)

RFIDs

Installation

Keeping

Track of

transportation

and goods

Possible High

energy

consumption

Transportation

Industry

(KIOURTI,

Lee and

Volakis,

2015)

RFIDs and

other

wearable’s

installation

Keeping

track of

Garment

Production

Some garments

might be

contaminated

by sensors’

material

Garments

Industry

Table 2 Applications of IoT

According to (Lee, Kim and Kim, 2014), each active RFID needs a small amount of

power to operate depending on its functionality and active RFIDs are necessary for

the efficient services. Therefore, imagine billions of such devices consuming energy

on daily basis and millions of GBs of data transmitted by the sensors needs to best or

edited by huge Data Centers thus huge processing and analytics capabilities are

34

needed (Tsai et al., 2014)(Mukherjee et al., 2014), which consume a lot of energy

resources, and to further deepen the crisis, we are running short of traditional energy

sources. Moreover, emission of CO2 due to ICT products is increasing rapidly which

is damaging our environment (Gelenbe and Caseau, 2015) and it is projected to do so

if sufficient measures are not taken to address this concern. To solve these critical

problems, the Green IoT is an important topic.

Discussion

In this chapter, we have tried to identify the challenges in the current systems used for

Urine Measurement. In Table 1, it is very clear that the systems that have been claimed

so far are either very complex in nature, are inaccurate, not suitable for hospital

environment or all of these. Furthermore, the challenges that we have listed in this

chapter clearly depicts the need of a comprehensive research that should be carried out

in determining the suitable hardware, software and the environment in which the

systems should be developed. Particularly, if we look into the complexity issue, which

is the biggest issue, need to be solved because the hospital staff is not trained and

equipped enough with the knowledge of ICT and other electronic devices. Therefore,

a team of diverse experts needs to collaborate to solve these issues to develop a modern

technologies based urine measurement system.

35

CHAPTER 3

PROTOTYPE DESIGN

In this chapter, we will describe in detail our System design for the IoTs based Urine

Measurement System. Moreover, we will also describe in detail the challenges we

faced during the design of the system. It is worth noting here that this system is just

used to depict our proof of concept and it is kept simple to avoid any manufacturing

challenges. But firstly, we will glance through the basics of Prototyping and how it is

beneficial for depicting a proof of concept.

Introduction to Prototyping

Prototyping is a widely used method to depict the concept or a system without having

to build the entire system. We chose to adopt the prototyping because of its ease,

robustness and fast development to have detailed information about the user’s

requirements. Another reason why we used prototype is that the user does not know

the exact requirements and possible implications of different scenarios in the

beginning. So, by prototyping, we can easily test the initial requirements and proceed

with the further development based on the initial results.

(Cho, Chung and others, 2007) seconds our argument and further emphasizes that

instead of developing the whole system first with high costs and valuable equipment

and then test it with possibilities of changing the whole system altogether, we should

go for the prototyping which is much cheaper and fast to develop. The problem in

hand was developing an automated urine measurement system for which we chose to

36

use the cheap off-the-shelf sensors to develop a prototype and to depict our proof of

concept.

System Design

In this section, we propose a model of the system that is used to measure the Urine

flow in real-time. Our proposed model is depicted in Figure 7. In the proposed system

design, there are four layers; The Physical Layer consists of two sensors, one measures

high-flow of liquid and the other measures low-flow. The next layer is Data Layer

which deals with the data filtration. Moreover, the data communication from the

sensors is done in communication layer and the data analysis and representation is

done in the information layer.

Figure 7 System Design Model

Design of Prototype

The design of the prototype is a part of the physical layer of our system design. To

measure the urine output, we first evaluated our design strategy. In that process, we

evaluated different sensors that we can use to measure the urine. During our research,

we found that there are very few sensors available that could serve our purpose and

develop a new sensor was out of the scope of our time-frame. As we have to measure

both high and low flow of urine, we opted for the following sensors:

• For high-flow, we selected Hall-effect based sensor, which generates 9.5

pulses per second per ml of liquid.

37

• For low-flow, we selected Photo Interrupter Module, which will be attached

with a dropper to measure each drop passing through it.

Figure 8 Prototype design

Our prototype design can be seen in Figure 8. The main idea behind the design is that

the urine input will come from the patient via a catheter into the urine container (could

be a normal bottle). Then, there are two sensors attached. The low-flow sensor is

attached with a dropper (attached to the urine container) which measures the drop by

drop flow of water and counts the number of drops, through which we can count the

amount of liquid passed through it. Another sensor, which measures the high-flow of

urine, is attached on the lower side of the bottle. If the liquid is of high-flow then it

will reach the high-flow sensor quickly and it will get measured from that and if the

38

flow is slow, drop counter sensor will measure it. In the end, we can combine both the

measurements and we will get the total measurement of the urine. This prototype

design was chosen to minimize the manufacturing challenges and to depict our proof

of concept and novelty in a better way. The fact that our device can measure both high

and low-flow of liquid, distinguishes it from the literature.

Once we get the data from the sensors, Arduino Micro-Controller will send that data

through Bluetooth or Wi-Fi to a cloud server, where it will get analyzed in the form of

graphs. The graphical representation will be hourly, 8 hourly and 24 hourly. The

doctor can analyze how much urine a patient has produced in the last day and at any

specific hours or a number of hours. In this way, we can eliminate the human error

and can relieve the burden of the hospital staff. The complete system architecture can

be seen in Figure 9.

The process of data collection and visualization depicted in figure 9 has three main

parts: Data Read, Data Transmit, and Data Visualization. The combination of Arduino,

Sensors, and Libraries help us in data collection. Then, using ThingSpeak Library for

Arduino, the collected data is sent through wifi to the Public Cloud. Finally, the built-

in service of ThingSpeak aided by our MATLAB coding analyses the data in the form

of graphs.

39

Figure 9 Architecture of The System

Internet of Things and our Prototype Design

Internet of Things (IoT) is defined by Rushan et al. (2017) as the connection of daily

life objects to the Internet and the ability of ‘things’ to talk and listen to and from the

digital world. Our prototype design is based on the similar concept. In our case, a urine

container has sensors attached to it and these sensors then transmit the data from

physical objects to the digital world via a transmission medium such as WIFI. There

is another part of the IoT in which the sensors, actuators communicate with each other

but in our case, it is not necessary. The future implication of our prototype could use

40

this concept as more than two devices are connected with each other and they can

communicate the data between each other.

Micro-Controller

The sensors are connected to a micro-controller which is responsible for transmitting

the readings on to the cloud server. Generally, there are two most famous types or

brands of Micro-controllers; Raspberry Pi and Arduino. Both are open source and have

huge support in form of individuals and volunteers. In our project, we used Arduino

Micro-Controller (depicted in Figure 10). There are different models of Arduino

available in the market. Arduino Uno, Arduino Genuino, and Arduino Yun are the

most famous ones.

Arduino Yun has some advantages over the other models such as built-in Wi-Fi

module which lets us connect to any server through a local Wi-Fi network. These are

the reasons we preferred Arduino Yun over others.

Figure 10 Arduino Yun Micro-Controller

Arduino Yun is based on Atheros processor which supports a Linux distribution

known as Lininio OS. The support of Linux makes Arduino Yun a powerful device.

Some experts say it’s a whole new machine itself that can perform various tasks, even

can be used as a server machine. It has built-in WIFI and ethernet support and has

41

several Digital and Analog Pins to connect sensors and devices. It can be powered by

either USB or 4-6 AA batteries can also be used. The complete setup guide will be

provided later in this chapter.

WIFI Configuration of Arduino:

To transmit the data from sensors to a public cloud via WIFI using Arduino Yun, we

first have to configure the internal WIFI module of Arduino using our Mobile Hotspot

(Dong et al., 2013). The following are the steps for configuration of Arduino Yun Wi-

Fi module:

1. Connect a new Arduino Yun (or Reset Wi-Fi of an older one) to a power supply

such as USB or a Battery. After a couple of minutes, a network named as

Arduino-XXXXXX will appear on your networks list as shown in Figure 11.

Connect to that network.

2. After connecting to that network, go on to the browser and type 192.168.240.1

which is the IP address of the Arduino Yun. After hitting the enter button, a

window similar

Figure 11 Arduino Yun Network

42

Figure 12 Arduino Yun Login

to Figure 12 will appear. If you are using Arduino Yun for the first time, the

default password is Arduino. Enter the password and hit enter.

3. After your password is deemed correct by the system, you will be taken into

the Arduino Configuration Wizard similar to Figure 13.

Figure 13 Arduino Installation

43

4. Press Next Button and you will see a screen depending on the model and

version of Arduino Yun you are using.

Figure 14 Mobile Hotspot Configuration

Here you can change the name of your Arduino Yun to anything you are comfortable

with or you can keep the default name Arduino. You can also set the time zone you

are in and change the password if you would like. This is very important as some

public clouds will not show the data properly if your time zone is not set correctly as

discussed in the Arduino Forums.

5. After entering all the details, press Next button and it will take you to the

Wireless network settings as depicted in Figure 14. At this step, you need to

turn on the mobile hotspot. Select the Wi-Fi network of your mobile hotspot

and enter its password and press next button. If your network is not on the list,

you should scan and it would appear in the list.

44

Figure 15 Arduino Restart

6. After entering the details accurately, you will be asked to save and restart the

Arduino Yun.

7. After you save and restart, the Arduino will start to apply the settings and

restart itself. After a couple of minutes, you will be asked to connect your

computer to the network of your mobile hotspot as shown in Figure 15.

8. After you connect your system to your mobile hotspot, the Arduino will

redirect to the address with Arduino.local shown in Figure 16. This address

can change depending on your name selection of your Arduino Yun.

9. Now, your Arduino Yun is connected to internet and you can upload any code

sending or receive data from cloud servers and it should work fine.

45

Figure 16 Configuration Complete

Summary:

In this chapter, we described in detail our design for the prototype for urine

measurement. Firstly, we presented a simple design for our prototype that takes the

input from the liquid source, stores it in the container. The sensors attached to the

dropper and container measure the data and with the help of a micro-controller,

transmit that data to the public cloud through wifi. Moreover, we also presented our

design of the whole system that includes reading the data through sensors,

transmitting the data using Arduino libraries, communication channels involved and

the data visualization techniques. Finally, we described in detail, the process of

configuration of the micro-controller with Wifi and Mobile Hotspot. This is a

necessary step to make our prototype completely wireless.

46

CHAPTER 4

PROTOTYPE DEVELOPMENT

In this chapter, we will describe in detail the development of the prototype for IoT

based Urine Measurement System. The idea is to combine both high and low-flow

sensors, to record and save the data from both the sensors and calculate the total output

of urine. For achieving this task, we conducted a thorough research of the sensors that

could serve our purpose. The options included Ultrasonic sensors, microphone based

sensors Photo Diodes, Photo Interrupter sensor and module etc.

Firstly, we will discuss High-Flow and Low-Flow sensors separately and then we will

combine both to develop the full prototype. The readings for both the sensors will be

combined to calculate the total volume of the Liquid. As mentioned above, for high-

flow, we used Hall-effect based sensor.

Comparison of our Design to Literature

The Urine Measurement System described in the literature that is the closest to our

system was developed by Atigorn Sanguansri and Team (see Figure 17) at the

Bournemouth University a couple of years ago. During their experiments, they showed

that among the ultrasonic, photo diodes and photo interrupter sensors, the photo

interrupter produced the best results. Atigorn used the photo interrupter and weight

sensors to verify the measurements from the photo interrupter. As we can see from

Figure 16 that liquid first passes through the dropper and then there is another dripping

chamber placed just above the urine bag. Firstly, the drops have to pass through more

47

tubes and part of liquid might be lost by attaching to the tube due to the adhesive force

of the liquid molecules and some data might be lost. Secondly, when the urine flow is

fast, the drop frequency increases and photo interrupter is not able to detect the drops

everytime it passes and the measurements is considered to vary. Therefore to solve

these challenges, we used two sensors instead of one. One measures the drops when

the flow is slow and if the flow increases, the liquid passes through the high-flow

sensor and it is measured separately.

Figure 17 Urine Measurement System by Atigorn

48

High-Flow Liquid Monitoring

Hall-effect principle refers to the induction of voltage difference in a conductor across

the electric current and a magnetic field is thus produced perpendicular to it. In this

sensor (delineated by figure 18) hall-effect is used by placing a rotor in the way of the

flowing liquid. When the liquid is passed through that rotor, it rotates and produces a

magnetic field and pulses are generated.

The number of pulses generated per second for one liter of liquid flown through the

sensor varies through different companies and measuring compacity of the sensor.

Some sensors can measure as low as 0.1L per minute and some have the lowest

capacity of several liters. It is worth noting here that our prototype will have wider

implications and applications across the process industry as well as a medical industry

because it would be able to measure the high flow of liquid. The sensor we used could

measure from 0.1L per minute to 10L per minute.

Figure 18 Hall Effect Liquid Flow Sensor

Connection to Arduino

The liquid sensor has 3 pins which are usually of Red, Black, and Yellow colors. The

red wire is connected with 5V on the Arduino, Yellow with the number 3 digital pin

49

and to complete the circuit, the black wire is connected to GND (ground) pin. The

circuitry is shown in Figure 19.

Figure 19 Circuit Connections of Flow Sensor with Arduino

The sensor we used generated 9.5 pulses per second for each liter of liquid passed

through it in a minute. Here we should consider an important point that we noticed

through experimentations. Sometimes, due to the difference in pressure of the liquid,

the number of pulses written in the datasheet differs from what it produces in the real

scenario. For example, for liquid from a pipe in a garden, the sensor generates 9.5

pulses per second whereas the same sensor when attached to a bottle, generates less

than 9.5 pulses. So, for ensuring the readings, we must calculate the pulses for our

own case study and experiments.

The cross-sectional area of the pipe is constant and already known so to determine the

pulse frequency, the following formula is used:

𝑓 = 9.5𝑄

Where 9.5 is the pulses generated per second and Q is the flow of liquid in liters. So,

we can get the approximate total number of pulses generated by keeping the time log

and measuring the liquid on our end. Although this seems to be a time consuming and

hectic work but it is only done a couple of times for a sensor. After that, we can rely

50

on our readings without any doubt. According to experts and our own experiments,

for large amounts of liquid, this sensor gives the readings with up to 10% error which

is very much acceptable.

The complete code is not provided in this section (provided in Appendix) but one can

get the main idea how we can get the main idea of how the liquid volume is calculated.

This, however, gives only the liquid volume on serial monitor in the Arduino

Integrated Development Environment (IDE). What we intend to do in this project is

to visualize the output in such a way that is both convenient and interactive to the

users. Moreover, for this program to execute, the serial port must be used and the idea

of wireless connectivity and interaction, which is the main feature of Arduino Yun,

remains unutilized. So, for this purpose, we wrote another algorithm that used the

WIFI module of Arduino Yun to send the data to a cloud server.

Now, we will describe the algorithm that we used to measure the high-flow of the

liquid (see Figure 20). First of all, we set the time of the fluid measurement to every

20 seconds as the data is transmitted every 20 seconds to the cloud. To calculate the

flow-rate we use the pulseCount and calibration factor. pulseCount is the number of

pulses that are generated for the flowing liquid and the calibration factor is 9.5 as

described above. Once we get the flow-rate, we can easily calculate the total milli-

liters of liquid that has been flown through the sensor in the last 20 seconds. After that,

every 20 seconds, number of milli-liters of liquid is sent to the cloud using a specific

channel number and its API Key. It is worth noting here that flow-rate calculated is

per minute, to which we then converted to per 20 seconds by dividing it by 3.

51

Figure 20 High-Flow Algorithm

Low-Flow Measurement

Now, we will discuss the low-flow measurement of the liquid using the Photo

Interrupter Sensor, shown in Figure 21. The main idea behind this experiment is that

the sensor will be attached to a dropper and with each drop falling, the sensor will

generate the voltage between 0-5V (0-1023 Analog reading). By measuring the

fluctuations in the readings, we can count the number of drops passing through the

sensor. According to the estimations and experiments were done by (Atigorn

Sanguansri 2016), one drop is approximately equal to 0.05ml.

To calculate this parameter, we take 100ml of water. Then, by counting the drops from

the photo interrupter sensor we have the total drop count for the 100ml of liquid.

Finally, by using the following equation, we can calculate the volume of one drop, V

52

= L/N, where L is the total liquid and N is the total number of drops. In our case, the

total drop count was 1892. If we apply our data to the above equation, the volume of

one drop is 0.05ml.

So, by multiplying the counted number of drops by the volume of one drop, we can

easily count the total volume of the liquid passing through the sensor in unit time.

Figure 21 Photo Interrupter Sensor

For low-flow measurement, we developed an algorithm (shown in figure 22) in which

we kept a record of the readings of the analog sensor. After series of experiments, we

found out that when the drop passes through the sensor, the analog reading is greater

than 450. So, if the reading is greater than 450, the drop counter is increased by 1,

otherwise, it remained the same. And by multiplying the number of drops by 0.05, we

calculated the total liquid passed.

Figure 22 Low-flow Algorithm

53

The data from the low-flow sensor goes to the ThingSpeak cloud where it is analyzed

in the form of graphs. A sample data from the cloud is shown in Figure 24 It is worth

noting here that the data sent to the cloud is calculated at the Arduino end with the

help of an algorithm written by the authors to facilitate the interactive visualizations

at the cloud end. The prototype at our lab is shown in Figure 23.

Figure 23 Prototype Development

54

Comparison of Data Analysis Mechanism with the Literature

Here, we compare our Data Analysis design with the one developed by Atigorn at the

Bournemouth University a couple of years ago. Atigorn used TEMBOO library to

send the data from Arduino to Google Cloud. Firstly, the library just provides a trial

version and it needs to be licensed to use it on a large scale. Secondly, there is a tedious

process of authentication first at TEMBOO and then at Google Cloud which might

slow down the data transmission process. Furthermore, the data was sent every 10

minutes to the cloud which cannot be classified as real-time. Finally, the process of

including credentials such as OAuth, and other IDs from TEMBOO on the Arduino

programs makes it complex to manage and update the code.

So, we came up with a much simpler solution for this. We used ThingSpeak cloud

service that is based on MATLAB for data analysis specifically designed for IoT Data

Analytics. The data from Arduino is sent every 20 seconds because this is the

minimum time interval after which the data can be sent from Arduino to the Cloud,

so, the chance of data loss or corruption is low. This time interval is the closest we can

get to the real time. Instead of complex credentials, we just have to add Channel ID

and API Key to our program and the data is sent smoothly. Furthermore, the data is

easily accessible via a smart phone application that has the option to optimize and

select the data range that we want to see. The details are shown in the next chapter.

It is worth noting here that our system runs much more smoothly and it is easy to

update the code and change the series of data according to our requirements. Although

it is a public cloud service but it was sufficient enough and efficient enough to depict

our proof of concept and novelty which is the main objective here.

55

Introducing Thing Speak Cloud

Thing Speak is a cloud service that uses MATLAB for data visualizations. It facilitates

the IoT based applications to access data remotely from anywhere at any time. The

most fascinating feature of Thing Speak is its integration with MATLAB which is

considered by Data Scientists as one of the most powerful tools for data analysis and

data visualizations. We used Thing Speak for our project with Arduino which sent data

every 20 seconds to Thing Speak private channel. We then wrote the algorithm for

creating visualizations with MATLAB on the cloud (shown in Figure 25).

Data Collection (Data Layer)

This process is a part of Data Layer of our system model in which the data is collected

and then filtered based on the parameters set out in the programs described by Figures

20, 22 and 39. The data is filtered when the drops are not passing but the low-flow

sensor still sends the readings. The solution of which is given in Figure 39. A channel

at Thing Speak cloud is a container which stores the data. We can create as many

channels we want, and we can keep data of similar type or project in one channel. A

channel can be Private and Public. A private channel has API keys for reading and

writing to a channel along with a unique ID. A public channel can be accessed by

anyone who has the channel ID or the public link shared by the channel creator or

moderator. To create a channel, we can follow the following steps:

• Assuming the account has already been created at thingspeak.com, go to the

‘Channels’ tab and press the New Button. (see Figure 24)

56

Figure 24 Create a New Channel

• After that, you will have a screen similar to Figure 25. Enter the Channel’s

name and the fields you want to add. A field is a small container that stores a

specific data from one sensor and visualizes it. You can choose a total of 8

fields within one channel.

57

Figure 25 Channel Details

• We can add other information to your channel also like a website link, a

YouTube or vimeo video that may depict the experimentation of our project.

58

Figure 26 Liquid Data for July 18

The graph (see Figure 26) shows the data points for July 18, 2017 data from our liquid

sensor. The x-axis shows the timestamp and the Y-axis shows the volume of liquid

that passed through the sensor. The volume of the liquid is in milliliters. Each data

point represents the liquid passed through the sensors in one interval which is 20

seconds. If we add up all the data points, we can get the daily total volume of liquid.

In this way, we can create as much visualization with different conditions using

powerful MATLAB tool.

Data Transmission from Arduino to Thing Speak

Data is transmitted from Arduino to Thing Speak using a Thing Speak library that is

specifically built for Arduino. This process of data transmission is a part of

Communication Layer where Arduino Library is used and the data is transmitted using

59

Mobile Hotspot through WiFi. We can install this library through Arduino IDE with

the help of following steps:

• Go to the sketch tab, and then to Include Library and then select Manage

Libraries (see Figure 27)

Figure 27 Manage Libraries

Figure 28 Adding Thing Speak Library

60

• Then search ‘Thing Speak’ from the filter search space and you will see the

latest version of the Thing Speak library from Math works (see Figure 28) on

your screen. Install the library from here and the code for Data Transmission

to Thing Speak cloud should work smoothly.

Now that the Thing Speak library is installed in the Arduino IDE, we have to write the

algorithm to send the data to Thing Speak. The complete code is provided in the

appendix section, but we will glance through a few important and necessary parts

of the algorithm with an example.

For example, we want to send any type of Data from Arduino Yun to Thing Speak

Cloud; firstly, Yun should have been assigned an IP address by Mobile Hotspot.

As we can see from Figure 29, in the Arduino code, we have to enter the SSID and

Password of the network that Arduino is connected to.

Figure 29 Sending Data to Thing Speak

 Then from Figure 29, we can see that the Channel ID and Write API Key of the

channel are required to write the data to that channel. The same process can be

61

repeated to Read the data by replacing Write API Key with the Read API Key of

the channel you want to read the data from.

Furthermore, you can send multiple types of data from one program of Arduino just

by sending the data to different fields of the same channel. Before this, you will need

to create different fields when you are creating the channel which is shown in the

previous section. From Figure 30, you can see how can the data be sent from multiple

sensors to a single channel.

Figure 30 Sending Data to Thing Speak

Figure 31 Sending Data to ThingSpeak

62

MATLAB Visualizations

One of the most powerful features of Thing Speak Cloud is the visualization facility

provided by MATLAB in co-operation with Thing Speak team. There are many

sample codes and templates provided by Thing Speak for us to play with and we can

extend those templates according to our requirements with few tinkering with the

MATLAB code. The range of graphics that we can add is the most fascinating thing

about MATLAB visualizations. Some of the examples are given below:

Creating a Plot with Labels of Years:

We can create the 2-D line plot with a few lines of MATLAB code and we can also

label the axes with timestamps like shown in figure 32.

Figure 32 2-D Plot with Timestamp

Creating a New Visualization on Thing Speak Cloud:

To create a new Visualization using MATLAB on Thing Speak, we follow the

following steps:

63

• Open the MATLAB Visualization App which depicts the examples and

templates like Figure 33.

Figure 33 Creating a New Visualization

• When we press the Create button, it takes us into the MATLAB code editor

where we can write our own code or play with the default templates like

shown in Figure 34.

Figure 34 MATLAB Code Editor

64

Summary:

In this chapter, we described in detail our development phase of the prototype. The

algorithms developed for measuring both high and low-flow of the liquid has been

separately explained. The Data transmission mechanisms like ThingSpeak library of

Arduino and the public cloud for Data Visualization are thoroughly discussed.

Furthermore, usage of MATLAB in analyzing the data at the public cloud is

highlighted. Finally, the fully developed prototype at our lab is depicted and described

in detail.

65

CHAPTER 5

RESULTS AND IMPROVEMENTS

In this chapter, we will show the complete results from combing the data from the two

sensors depicted in the previous sections. For this thing, we explore the powerful

feature of MATLAB visualizations on the Thing Speak cloud platform. We developed

our own code in MATLAB which explores and stores each data point from the sensors

into a new container.

Data Visualization

In this final phase, the part of Information Layer, we depict the data that is analyzed

using the ThingSpeak Cloud application. The data from the high-flow liquid is shown

in Figure 35. The curve shows the data points which depict the amount of liquid passed

every 20 seconds as the data is updated every 20 seconds from Arduino to Thing Speak

Cloud. As we can see, when the data is not passing through the sensor, the curve goes

to 0 and it suddenly goes up the moment liquid started flowing. This ensures that the

data is recorded in real time.

66

Figure 35 High-Flow Data

Now, we look at the low-flow data depicted in Figure 36. It is worth noting that the

data points in this figure represent the drops of the liquid. From one drop is 0.05ml, so

one data point here represents 0.05ml of liquid which passes through the sensor.

This data is also accessible from the Android Smart Phone, depicted in Figure 37 and

Figure 38. The data accessibility and availability on the go using different smart

devices and the cost-effectiveness of the whole system makes it a unique fully

integrated system for urine flow monitoring. As we can see in Figure 36, it is very

easy to search the data for any custom period of time as well as hourly data and daily

data.

67

Figure 36 Low Flow Data

Figure 37 Android App High-Flow

68

Figure 38 Android App Low-Flow

Results Evaluation:

After combining and visualizing the data, we noted down a problem in the hardware

configuration. As due to the cost constraints, we had to use the off-the-shelf sensors,

there were some drawbacks of the photo interrupter sensor. Due to the small size of

the slot, we had to place it within the dropper and the liquid would pass through it.

During our lengthy experiments, we noted that sometimes, the drop of the liquid

touches the sensor and after that, even if the drops are not flowing, the sensor gave a

positive reading means it counted the drops when there weren’t any. We tried many

hardware and mechanical solutions, but none were convincing. So, we developed a

software solution (see figure 39) for that. The algorithm maintains the record of the

latest reading of analog sensor and the fluctuation in the reading. When the

fluctuations increase or decrease by a certain amount, then the drop is counted,

otherwise not.

69

Figure 39 New Algorithm for low-flow measurement

During experimentation, we noted that the analog readings fluctuated with a minimum

of 40 points when the drops passed through the sensor and when the drops weren’t

passing, the fluctuations were very small. So, from this observation, we set the

minimum fluctuation to 40 points from the current reading to make sure the drops

passed. We maintain records of current and previous readings with the algorithm. So,

as a result of this algorithm, we found out that now we could minimize the detection

of the droplets in their absence by a considerable amount and this reduced our error to

below 10%. The data after these improvements can be seen in Figure 40.

70

Figure 40 Data after Improvements

We then developed our own Plugin at Thing Speak Cloud, with the help of which, we

could easily extract data from the two sensors using data points for any specific hour

relative to the current time. For example, if we want to extract the data of last 5 hours

we can simple write 5 in the hour's column and the data will be populated in the form

of a graph depicting the milliliters of liquid at any specific time. One sample data is

shown in Figure 41.

Figure 41 Combined Average Liquid Data

0

20

40

60

80

100

120

19/07/2017 19/08/2017 19/09/2017

Li
q

u
id

 (
m

l)

Liquid Data

High-Flow

Low-Flow

0

50

100

150

200

250

01/07/2017 01/08/2017 01/09/2017

Li
q

u
id

 (
m

l)

Date

Total Liquid

Total Liquid

71

The above figure shows a line graph depicting the total liquid passed through the

sensors on a day. With the above experiments and results, we have tried to prove our

concept of using prototyping technique and IoT platform to develop and fully

integrated urine measurement system.

Results Comparison with Existing System

In this section, we will compare the results of our system with the system developed

by Atigorn at Bournemouth University a couple of years ago. The results shown by

their system were also very impressive and the error difference was minimal, but we

believe and our experiments and results prove that by developing the algorithm shown

in Figure 38, we have improved the working of the low-flow sensor. The drop counting

mechanism of the low-flow sensor is not very efficient when it comes to the

continuous flow of liquid. But, with the help of our algorithm, we have been able to

improve the measurements and hence the error was reduced. Therefore, the algorithm

we developed is a significant contribution to the literature and it can be used in any

scenario with the low-flow sensor we used in precise measurements.

Comparison of Costs, Accuracy, and Simplicity

In comparison with Atigorn’s system, which is the closest to our system, the cost of

our device is approximately £80 which is close to Atigorn’s system. But, we used two

sensors (for Low-flow and High-flow) and the reliability of our system is higher than

the previous systems. In terms of accuracy, both systems have similar accuracy as

presented in Atigorn’s thesis (both approximately 90%). But, we figured out a problem

in the Photo Interrupter Sensor (for drop counting) that the sensor readings that to be

optimized for accurate readings (Solution is given on Page 67) and to the best of our

knowledge, Atigorn did not discuss this problem (the same photo interrupter sensor

72

was used). So, we believe, our system has more reliable accuracy. Finally, when

simplicity is under consideration, we believe both systems have their advantages and

disadvantages. In our system, the main concern was to test the concept and make sure

the data is being measured accurately. We achieved this aim while using simple

procedures and the data can be accessed in real time from the mobile application. This

was done in a much more complicated way in the system in comparison where the

data accessibility was not as simple and Google Scripts and Google Spreadsheets were

used. We understand that to deploy our system completely in a hospital, it needs some

manufacturing changes and a state of the art cyber security mechanism.

Discussion

The prototype and the software application developed on the cloud measured the

amount of liquid passing through the sensors (low-flow and high-flow). The two

sensors, connected to the Arduino micro-controller sent the data in real time to the

public cloud. We optimized the sensors data by first mechanical and then by the

software solution. There was a significant improvement made in the data of the low-

flow sensor, solving the possible flaw of detecting the drops when there weren’t any

liquid passing through it. An algorithm was developed to solve that issue by recording

the previous and current readings of the sensor and by continuous monitoring of the

fluctuation of the sensor both when the drops are passing and when they are not. By

recording the fluctuations for more than 12 hours, we came to a mean fluctuation point

of 40 points in the analog sensor used for drop counting. If the fluctuation between

two points is more than 40 points, only then the drop has passed and this algorithm

helped us by reducing the error by more than 5% which is a significant achievement.

This algorithm can be used along with this sensor in other applications such as object

detection, light detection etc.

73

CHAPTER 6

CONCLUSION AND FUTURE IMPLICATIONS

There are many systems and devices that have been proposed and claimed over the

past few years, but none have been able to meet the standards of the commercial

market and industry requirements. Some were too complex to be implemented and

some were not accurate enough.

In this chapter, we will review the research goals set out and the extent to which they

have been achieved. Furthermore, we compare our system with the existing systems

described in the literature review section. Finally, we highlight our contribution to the

research and the future implications and applications of our proposed system.

Summary of the Invention:

The system proposed here conceptualizes the phenomenon of an integrated system of

liquid measurement through felicitous technologies like IoT and Cloud Computing.

We used very simple and basic concepts of IoT and software engineering to develop

an efficient and automated system for urine or liquid measurement. Firstly, it is worth

noting that none of the previous systems have been successful in designing a system

that can measure the low as well as high-flow of liquid simultaneously. Furthermore,

we also used modern concept of cloud computing to display and visualize the data that

is accessible through all the smart devices like smart phones and tablets etc.

74

We used the hall-effect based sensor for high-flow measurement and a photo

interrupter sensor for low-flow. The high-flow measurements and low-flow

measurements were below 10% error which is acceptable according to the

requirements provided by the doctors at Royal Bournemouth Hospital. This accuracy

is rarely found in any literature to the best of our knowledge. It is also worth noting

that we performed tests for up to 6 hours repeatedly for both the sensors.

We tested two scenarios for IoT based architecture for our prototype. We test the

sensors individually by attaching them with different Arduino Micro Controllers and

powered them with AA batteries and transmitted the data using Mobile Hotspot,

making the prototype completely wireless. This was also not found in the literature

making our design unique. Furthermore, after initial tests, we combine the algorithms

for two different sensors and burned them on a single Arduino Yun. The results from

both sensors were combined to give a total amount of liquid. The whole idea of making

the device easy, simple and completely wireless distinguishes it from the current

literature. Although this system still can be improved with improvements in sensor

accuracy and compactness for commercialization, it does give a concept with proof

that can be taken as a platform to proceed with further development.

Comparison of Complete System with the Current Literature:

The closest system from the literature to our prototype is developed by Atigorn. That

system also used photo interrupter sensor but it only measured the low-flow of the

liquid accurately and when the liquid flow is high, it was not equipped enough to

measure it accurately. Whereas our system used two different sensors for high and

low-flow of liquid, this makes our system much more reliable and accurate.

75

The system in comparison used Google Spreadsheets to analyze the data using a public

library called TEMBOO. This library gives a trial version to use and needs to subscribe

for permanent use and it also requires writing extensive code to analyze the data

properly. On the other hand, we used Thing Speak which has better functionality and

simpler process of data transmission through WIFI in real-time and it uses MATLAB

which gives us the power to make advanced and extensive visualizations.

Comparison with Commercial Bluetooth Flowmeters

In this section, we will draw a comparison between our system and the commercially

available device(s) for measuring liquid flow. Orcas 1, a Bluetooth enabled flow meter

by Sound Water Ltd which measures the liquid flow through pipes and displays the

output on a smart phone application via Bluetooth. The hardware device is attached to

the pipe through which the liquid flows and the measurements are sent directly to the

application via Bluetooth. This system is quite efficient in the applications where the

flow rate is high as the minimum flow rate supported by this system 0.03m/s which is

very high. Another system manufactured by Sierra2 is also used to measure the high

flow rate of liquids flowing through pipes. The accuracy is very high for this system,

claimed to be up to 0.25% but the minimum flow rate is 0.49m/s. However, our system

can measure the flow as low as 20ml/hr which is not possible with the flow meters

manufactured by Sound Water Ltd and Sierra Ltd. Our application demands very low

flow measurements, so, the commercial systems are deemed not suitable. We believe,

to the best of our knowledge, there is no commercially available system that can

measure the low-flow of liquid as achieved by our system.

1 https://www.ayyeka.com/img/kits/SE00051_Semi-Permanent-Ultrasonic-Flow-
Meter_SoundWater-Technologies_Orca_Datasheet.pdf
2 http://www.sierrainstruments.com/products/210-portable-tablet.html

76

Research Goals and Outcomes:

Our first two Research Questions were to understand the requirements of the user, in

this case, the hospital or the industry where the fluids need to be monitored and the

current practices in the real world. Through thorough literature review and our visit to

the Royal Bournemouth Hospital, we investigated the current practices and

technologies and also the shortcomings of the current systems deployed or claimed to

measure the liquid flow.

Furthermore, our second set of research questions included the design and testing of a

simplified prototype to improve human-computer interaction and to ease the workload

of the nursing staff. By using off-the-shelf sensors and combining felicitous

technologies like IoT and Cloud Computing, we made sure that the data collection and

visualization is simple and efficient.

Hence, as described above, we achieved our research goals and developed an

integrated system that is both efficient and accurate. But, we faced challenges and our

system also have some shortcomings which will be highlighted the below:

Although this system has many advantages over the current systems described in the

literature, it has some short comings which we must highlight to give the directions

for the future development and improvements. These are as follows:

• The high-flow sensor is not accurate enough and development of a new sensor

specifically to measure the liquid flow must be carried out.

• The device is not compact as it has micro-controller and two sensors for which

the orientation is difficult to set up in the first place which needs an

understanding of the engineering technologies. This might create some

77

problems for the hospital staff. But, once set up, it does not need any further

mechanical changes.

• Research must be carried out for the development of a hybrid sensor to measure

both the high and low-flow of liquid to minimize the complexity of the current

system.

Future Work

In this section, we have presented the future work for the researchers especially the

implications of our model in the Industry 4.0 and Industrial IoT. This future work is

an extension of our proposed model in Chapter 3 (Figure 7). The model that we have

proposed needs validation by implementing it in the Industrial IoT scenario. The main

improvements in this model are the security aspects that need to be addressed which

were beyond the scope of our current project.

Implications of our System in Industry 4.0:

The term Industrial Internet of things (IIoT) or Industrie 4.0, announced by German

Federal Government as one of the most important initiatives of modern era (Hermann,

Pentek and Otto, 2016), is being widely used today for the revolution of the industry

using Internet of Things, Business Intelligence, Data Analytics etc. Conservative

estimations made by experts suggest that by 2030, $15 Trillion of the World GDP will

be spent on the IIoT (Waitzinger, Ohlhausen, and Spath, 2015). The Industry 4.0

Initiative by Germany, called a 4th Industrial revolution, may revolutionize the

industrial norms for better product and process customization. So, to turn Industrie 4.0

into reality, industrial practices need the efficient integration of novel technologies

mentioned above.

78

A 5-step framework based on Cyber-Physical Systems (CPS) (Lee, Bagheri and Kao,

2015) was proposed for realizing the concept of Industrie 4.0. Their 5C concept had

Physical Components, Data to Information Conversion, Clustering, Information

Visualization and Self-awareness. Each step has its own significance and all the steps

combined portrayed an efficient framework for the implementation of the smart

factories and Industrie 4.0.

A framework for a smart factory in compliance with Industry 4.0 described in (Wang

et al., 2016) and (Schuh et al., 2014) has four components. Physical Objects which

includes machines and smart things which communicate with each other via Industrial

Network. Enterprise Resource Platform (ERP) is implemented on Cloud which has all

the available data from the Smart Things. The whole system is supervised by

Terminals for Supervision and Control which helps in decision making regarding the

product customization and process management. This whole system conforms with

CPS (Drath and Horch, 2014) in which Physical Objects and Information Analytics

are interconnected.

In this section, we propose a conceptual model that can be used for the implementation

of IIoT for smart factories and Industry 4.0. Moreover, we also discuss our ongoing

project for development of an integrated system for urine measurement in hospitals

based on IoT.

Challenges for IIoT Implementation:

• Selection of Distributed Sensors that can efficiently perform the required tasks.

Sometimes, the sensors are not commercially available, so, development of

sensors and other hardware is needed.

79

• Data Filtration is another task that is the need of every industrial application.

The data that is surplus to requirements should be eliminated.

• Data Privacy and Security should also be guaranteed because of the stiff

competition in the market. If any data related to business model or production

process is leaked, it can have serious financial consequences.

• Data Analytics also hold an important position in the implementation of IIoT

or smart factories. The non-technical people need the data in the form that they

can understand and can make decisions based on that. So, data should be

analyzed according to the requirements.

Our proposed concept depicted in Figure 42 is based on the framework presented by

(Wang et al., 2016) with some changes to meet the challenges of Smart Factories and

Industrie 4.0. Our conceptual model consists of 5 layers: Physical Layer, Information

Layer, Cyber Security, Data Analytics and Data Visualization.

Figure 42 Conceptual Model for Smart Factories and Industry 4.0

Physical Layer consists of a distributed network of sensors deployed according to the

requirements of a specific factory. Each sensor has its own defined function and

responsibility. The data collected from these sensors might not be clean and

representable straight away. So, this data is then sent to the next layer that is

80

Information Layer where this data is filtered and converted into valuable information.

The data is mostly confidential and must be secured. So, there is a Cyber Security

Layer which deals with the security and privacy of the data. Data Analytics deals with

the analysis of data in a certain way to show the relevant authorities with the

information that they need to make efficient decisions about improving the production

process or business process model of the factory. Data Visualization as clear from the

name has the responsibility of representing the data to show the non-technical people

the analyzed data in the previous layer.

We are in the process of implementing our conceptual model on a real-world industrial

application. We are developing a urine measurement system for the use in hospitals

for monitoring the urine output of the patients automatically using sensors and with

the help of a micro-controller that data is then sent to a remote computer where it is

analyzed for the physicians to monitor.

Due to the specific requirements of our application, we have modified our initial model

to increase the efficiency. On the Physical Layer, we have deployed two sensors that

will measure the high and low flow of the urine that is being collected from patients

in a container using the catheter. Instead of Data Filtration at this stage, we first

ensured the secure transmission of our data to a remote computer via Ethernet and Wi-

Fi. On the remote computer, we are developing an analytics application that converts

the signals from the sensors into meaningful information (Urine Volume) and analyze

it based on hourly and daily requirements of the Doctors. Lastly, this information can

be accessed remotely through Laptops and Mobile Phones through a web application.

81

Although, we are in process of finalizing the prototype, we anticipate that the results

will be efficient enough for the device to be implemented in a real scenario.

This model can improve the diagnosis process in the hospitals and reduce the burden

of the nursing staff, which, at present, collect the readings on hourly basis manually.

Furthermore, our model has the potential to improve the healthcare process and can

increase the reliability of the diagnosis.

82

REFERENCES

Badampudi, D., Wohlin, C. and Petersen, K. (2015) ‘Experiences from using snowballing

and database searches in systematic literature studies’, Proceedings of the 19th International

Conference on Evaluation and Assessment in Software Engineering - EASE ’15, pp. 1–10.

doi: 10.1145/2745802.2745818.

Bellomo, R., Ronco, C., Kellum, J. A., Mehta, R. L. and Palevsky, P. (2004) ‘Acute renal

failure–definition, outcome measures, animal models, fluid therapy and information

technology needs: the Second International Consensus Conference of the Acute Dialysis

Quality Initiative (ADQI) Group’, Critical care. BioMed Central, 8(4), p. R204.

Caragliu, A., Del Bo, C. and Nijkamp, P. (2011) ‘Smart Cities in Europe’, Journal of Urban

Technology, 18(2), pp. 65–82. doi: 10.1080/10630732.2011.601117.

Chase, J. (2013) ‘The Evolution of the Internet of Things’, Texas intrument. Texas

Instruments, p. 7.

Chelsey Fontaine, Stephen Tully, L. S. (2013) ‘Anti-reflux mechanism for urine collection

systems’, US8357105 B2. doi: 10.1021/n10602701.

Cho, I. S., Chung, E. J. and others (2007) ‘Assessment of a Prototype Diagnostic Nursing

Decision Support System for Inpatients with Type II Diabetes Mellitus’, in Medinfo 2007:

Proceedings of the 12th World Congress on Health (Medical) Informatics; Building

Sustainable Health Systems, p. 2167.

Chughtai, B., Forde, J. C., Thomas, D. D. M., Laor, L., Hossack, T., Woo, H. H., Te, A. E.

and Kaplan, S. A. (2016) ‘Benign prostatic hyperplasia’, Nature Reviews Disease Primers.

Macmillan Publishers Limited, 2, p. 16031. Available at:

http://dx.doi.org/10.1038/nrdp.2016.31.

Devaraj, S., Ow, T. T. and Kohli, R. (2013) ‘Examining the impact of information

technology and patient flow on healthcare performance: A Theory of Swift and even Flow

83

(TSEF) perspective’, Journal of Operations Management. Elsevier B.V., 31(4), pp. 181–

192. doi: 10.1016/j.jom.2013.03.001.

Dong, J., Ou, Z., Ylä-Jääski, A. and Cui, Y. (2013) ‘Mobile hotspots cooperation towards

better energy efficiency’, 2013 IEEE Globecom Workshops, GC Wkshps 2013, pp. 760–765.

doi: 10.1109/GLOCOMW.2013.6825080.

Drath, R. and Horch, A. (2014) ‘Industrie 4.0: Hit or hype?’, IEEE Industrial Electronics

Magazine, 8(2), pp. 56–58. doi: 10.1109/MIE.2014.2312079.

Galley, H. F. (2000) ‘Can acute renal failure be prevented?’, Journal of the Royal College of

Surgeons of Edinburgh, 45(1).

Garrett, R. E. (1991) ‘Principles of Siphons’, Journal of the World Aquaculture Society.

Blackwell Publishing Ltd, 22(1), pp. 1–9. doi: 10.1111/j.1749-7345.1991.tb00710.x.

Gelenbe, E. and Caseau, Y. (2015) ‘The impact of information technology on energy

consumption and carbon emissions’, Ubiquity, 2015(June), pp. 1–15. doi: 10.1145/2755977.

Greenwald, F. F. (2012) ‘REAL TIME URINE MONITORING SYSTEM’, 2(12), p. 1799.

Grover, C. and Barney, K. (2003) ‘Operating safely in surgery and critical care with

perioperative automation’, Journal of healthcare information management: JHIM, 18(3), pp.

56–61.

Hersch, M., Einav, S. and Izbicki, G. (2009) ‘Accuracy and ease of use of a novel electronic

urine output monitoring device compared with standard manual urinometer in the intensive

care unit’, Journal of Critical Care. Elsevier Inc., 24(4), p. 629.e13-629.e17. doi:

10.1016/j.jcrc.2008.12.008.

Hoy, W. K. and Adams, C. M. (2015) Quantitative research in education: A primer. Sage

Publications.

Ilan Paz, Gush EtZion (IL); Harold Jacob, Cederhust, N. (2003) ‘DROPLET COUNTER

84

FOR LOW FLOW MEASUREMENT’, 2(12).

Jess, G., Pogatzki-Zahn, E. M., Zahn, P. K. and Meyer-Frieem, C. H. (2016) ‘Monitoring

heart rate variability to assess experimentally induced pain using the analgesia nociception

index’, European Journal of Anaesthesiology, 33(2), pp. 118–125. doi:

10.1097/EJA.0000000000000304.

KIOURTI, A., Lee, C. and Volakis, J. (2015) ‘Fabrication of Textile Antennas and Circuits

with 0.1 mm Precision’, IEEE Antennas and Wireless Propagation Letters, PP(99), pp. 1–1.

doi: 10.1109/LAWP.2015.2435257.

Lee, C. S., Kim, D. H. and Kim, J. D. (2014) ‘An energy efficient active RFID protocol to

avoid overhearing problem’, IEEE Sensors Journal, 14(1), pp. 15–24. doi:

10.1109/JSEN.2013.2279391.

Lee, J., Bagheri, B. and Kao, H. A. (2015) ‘A Cyber-Physical Systems architecture for

Industry 4.0-based manufacturing systems’, Manufacturing Letters. Society of

Manufacturing Engineers (SME), 3(December), pp. 18–23. doi:

10.1016/j.mfglet.2014.12.001.

Li, S., Xu, L. Da and Zhao, S. (2015) ‘The internet of things: a survey’, Information Systems

Frontiers, 17(2), pp. 243–259. doi: 10.1007/s10796-014-9492-7.

MacEdo, E., Malhotra, R., Claure-Del Granado, R., Fedullo, P. and Mehta, R. L. (2011)

‘Defining urine output criterion for acute kidney injury in critically ill patients’, Nephrology

Dialysis Transplantation, 26(2), pp. 509–515. doi: 10.1093/ndt/gfq332.

De Melo Bezerra, C. T., Vaz Cunha, L. C. and Libório, A. B. (2013) ‘Defining reduced

urine output in neonatal ICU: Importance for mortality and acute kidney injury

classification’, Nephrology Dialysis Transplantation, 28(4), pp. 901–909. doi:

10.1093/ndt/gfs604.

Miorandi, D., Sicari, S., De Pellegrini, F. and Chlamtac, I. (2012) ‘Internet of things: Vision,

85

applications and research challenges’, Ad Hoc Networks. Elsevier B.V., 10(7), pp. 1497–

1516. doi: 10.1016/j.adhoc.2012.02.016.

Molitoris, B. A. (ed.) (2015) Critical Care Nephrology, Critical Care Clinics. Remedica.

doi: 10.1016/j.ccc.2015.07.001.

Mukherjee, A., Paul, H. S., Dey, S. and Banerjee, A. (2014) ‘ANGELS for distributed

analytics in IoT’, 2014 IEEE World Forum on Internet of Things, WF-IoT 2014, pp. 565–

570. doi: 10.1109/WF-IoT.2014.6803230.

Murray, P. T., Brady, H. R. and Hall, J. B. (eds) (2001) Intensive Care Nephrology, Journal

of the American Society of Nephrology. doi: 10.1016/B978-1-4160-6640-8.00036-1.

Otero, A.Panigrahi B, Palacios F, Akhinfiev, T, R, F. (2009) A Prototype Device to measure

and supervise urine output of critical patients. doi: 10.5772/60142.

Otero, A., Palacios, F., Akinfiev, T. and Apalkov, A. (2010) ‘A low cost device for

monitoring the urine output of critical care patients’, Sensors, 10(12), pp. 10714–10732. doi:

10.3390/s101210714.

Pang, Z., Chen, Q., Han, W. and Zheng, L. (2015) ‘Value-centric design of the internet-of-

things solution for food supply chain: Value creation, sensor portfolio and information

fusion’, Information Systems Frontiers, 17(2), pp. 289–319. doi: 10.1007/s10796-012-9374-

9.

Parikh, C. R. (2005) ‘Urine IL-18 Is an Early Diagnostic Marker for Acute Kidney Injury

and Predicts Mortality in the Intensive Care Unit’, Journal of the American Society of

Nephrology, 16(10), pp. 3046–3052. doi: 10.1681/ASN.2005030236.

PAULSEN, L., Elliott, S., McAdams, S., Fenoglietto, F. L. and Pisansky, A. (2016) Devices,

systems, and methods for obtaining and analyzing urine flow rate data using acoustics and

software. Google Patents. Available at: https://www.google.com/patents/US20160029942.

Ramos, R., O’Grady, M. and Chen, F. (2016) ‘Urine Monitoring Systems and Methods’.

86

Google Patents. Available at: https://www.google.com/patents/US20160051176.

Ronco, C., Costanzo, M. R., Bellomo, R. and Maisel, A. S. (eds) (2010) Fluid Overload

Diagnosis and Management. S. Karger AG.

Schuh, G., Pitsch, M., Rudolf, S., Karmann, W. and Sommer, M. (2014) ‘Modular sensor

platform for service-oriented cyber-physical systems in the european tool making industry’,

Procedia CIRP. Elsevier B.V., 17, pp. 374–379. doi: 10.1016/j.procir.2014.01.114.

SENSOR-INTEGRATED URINE BAG FOR REAL-TIME MEASURING Atigorn Sanguansri

A thesis submitted in partial fulfilment of the requirements of Bournemouth University for

the degree of Master by Research May 2016 Bournemouth University (2016).

Silverman, D. (2016) Qualitative research. Sage.

Singh, D. and Jara, A. J. (2014) ‘A survey of Internet-of-Things : Future Vision ,

Architecture , Challenges and Services’, IEEE World Forum on Internet of Things (WF-IoT),

pp. 287–292.

Sippel, M., Collin, R. and Voges, K. F. (2000) ‘Urine measuring device’. Google Patents.

Available at: https://www.google.com/patents/US6129684.

Stol, K., Ralph, P. and Fitzgerald, B. (2016) ‘Grounded Theory in Software Engineering

Research : A Critical Review and Guidelines’, Proceedings of the 38th International

Conference on Software Engineering - ICSE ’16, (Aug), pp. 120–131. doi:

http://dx.doi.org/10.1145/2884781.2884833.

Sultan, N. (2014) ‘Making use of cloud computing for healthcare provision: Opportunities

and challenges’, International Journal of Information Management. Elsevier Ltd, 34(2), pp.

177–184. doi: 10.1016/j.ijinfomgt.2013.12.011.

Sun, C. (2012) ‘Application of RFID Technology for Logistics on Internet of Things’,

AASRI Procedia, 1, pp. 106–111. doi: 10.1016/j.aasri.2012.06.019.

87

Tsai, C. W., Lai, C. F., Chiang, M. C. and Yang, L. T. (2014) ‘Data mining for internet of

things: A survey’, IEEE Communications Surveys and Tutorials, 16(1), pp. 77–97. doi:

10.1109/SURV.2013.103013.00206.

Voges, K. F., Sippel, M. and Collin, R. (2002) ‘Urine measuring device’. Google Patents.

Available at: https://www.google.com/patents/US6348046.

Waitzinger, S., Ohlhausen, P. and Spath, D. (2015) ‘The industrial internet: Business models

as challenges for innovations’, 23rd International Conference for Production Research,

ICPR 2015. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84949668461&partnerID=tZOtx3y1.

Wang, S., Wan, J., Li, D. and Zhang, C. (2016) ‘Implementing Smart Factory of Industrie

4.0: An Outlook’, International Journal of Distributed Sensor Networks, 2016. doi:

10.1155/2016/3159805.

Weber, R. H. (2010) ‘Internet of Things – New security and privacy challenges’, Computer

Law & Security Review. Elsevier Ltd, 26(1), pp. 23–30. doi: 10.1016/j.clsr.2009.11.008.

Xu, L. Da, He, W. and Li, S. (2014) ‘Internet of things in industries: A survey’, IEEE

Transactions on Industrial Informatics, 10(4), pp. 2233–2243. doi:

10.1109/TII.2014.2300753.

Zanella, a, Bui, N., Castellani, a, Vangelista, L. and Zorzi, M. (2014) ‘Internet of Things

for Smart Cities’, IEEE Internet of Things Journal, 1(1), pp. 22–32. doi:

10.1109/JIOT.2014.2306328.

Zhang, D., Yang, L. T., Chen, M., Zhao, S., Guo, M. and Zhang, Y. (2014) ‘Real-Time

Locating Systems Using Active RFID for Internet of Things’, IEEE Systems Journal, pp. 1–

10. doi: 10.1109/JSYST.2014.2346625.

Zhu, C., Leung, V., Shu, L. and Ngai, E. (2015) ‘Green Internet of Things for Smart World’,

IEEE Access, pp. 1–1. doi: 10.1109/ACCESS.2015.2497312.

88

APPENDICES

Appendix I Code for High-Flow-Sensor

#include "ThingSpeak.h"

//#define USE_WIFI101_SHIELD

#if defined(ARDUINO_AVR_YUN)

 #include "YunClient.h"

 YunClient client;

#else

 #if defined(USE_WIFI101_SHIELD) || defined(ARDUINO_SAMD_MKR1000) ||

defined(ARDUINO_ARCH_ESP8266)

 // Use WiFi

 #ifdef ARDUINO_ARCH_ESP8266

 #include <ESP8266WiFi.h>

 #else

 #include <SPI.h>

 #include <WiFi101.h>

 #endif

 char ssid[] = "<shani>"; // your network SSID (name)

 char pass[] = "<Rushan11>"; // your network password

 int status = WL_IDLE_STATUS;

89

 WiFiClient client;

 #elif defined(USE_ETHERNET_SHIELD)

 // Use wired ethernet shield

 #include <SPI.h>

 #include <Ethernet.h>

 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};

 EthernetClient client;

 #endif

#endif

 unsigned long myChannelNumber = 303355;

 const char * myWriteAPIKey = "YSKR6BO7B4DCSCXM";

 byte statusLed = 13;

 byte sensorInterrupt = 1; // 0 = digital pin 2

 byte sensorPin = 3;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per

// litre/minute of flow.

float calibrationFactor = 7.5;

volatile byte pulseCount;

float flowRate;

 unsigned int flowMilliLitres;

 int totalMilliLitres;

90

unsigned long oldTime;

int count=0;//for Low-Flow

float liquid=0;

int sensorPina = A0; // select the input pin for LDR

int sensorValue = 0;

int prevReading = 0;// variable to store the value coming from the sensor

int currReading = 0;

//int count = 0;

int minReading = 450; // minimum reading needed to count

int minFluctuation = 20;

void setup() {

 #ifdef ARDUINO_AVR_YUN

 Bridge.begin();

 #else

 #if defined(ARDUINO_ARCH_ESP8266) || defined(USE_WIFI101_SHIELD) ||

defined(ARDUINO_SAMD_MKR1000)

 WiFi.begin(ssid, pass);

 #else

 Ethernet.begin(mac);

 #endif

91

 #endif

 ThingSpeak.begin(client);

 pinMode(statusLed, OUTPUT);

 digitalWrite(statusLed, HIGH); // We have an active-low LED attached

 pinMode(sensorPin, INPUT);

 digitalWrite(sensorPin, HIGH);

 pulseCount = 0;

 flowRate = 0.0;

 flowMilliLitres = 0;

 totalMilliLitres = 0;

 oldTime = 0;

 attachInterrupt(sensorInterrupt, pulseCounter, FALLING);

void loop() {

//int sensorValue = analogRead(sensorPin);

 if((millis() - oldTime) > 20000)

 {

 // Disable the interrupt while calculating flow rate and sending the value to

 // the host

 detachInterrupt(sensorInterrupt);

 // Because this loop may not complete in exactly 1 second intervals we calculate

92

 // the number of milliseconds that have passed since the last execution and use

 // that to scale the output. We also apply the calibrationFactor to scale the output

 // based on the number of pulses per second per units of measure (litres/minute in

 // this case) coming from the sensor.

 flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;

 pulseCount=0;

 detachInterrupt(sensorInterrupt);

 // Note the time this processing pass was executed. Note that because we've

 // disabled interrupts the millis() function won't actually be incrementing right

 // at this point, but it will still return the value it was set to just before

 // interrupts went away.

 oldTime = millis();

 // Divide the flow rate in litres/minute by 3 to determine how many litres have

 // passed through the sensor in this 20 second interval, then multiply by 1000 to

 // convert to millilitres.

 flowMilliLitres = (flowRate / 3) * 1000;

 // Add the millilitres passed in this second to the cumulative total

 //totalMilliLitres += flowMilliLitres;

 ThingSpeak.writeField(myChannelNumber, 1, (long) flowMilliLitres, myWriteAPIKey);

 attachInterrupt(sensorInterrupt, pulseCounter, FALLING);

 //unsigned int frac;

93

 // Serial.print("Flow rate: ");

 //Serial.print(int(flowRate)); // Print the integer part of the variable

 //Serial.print("."); // Print the decimal point

 // Determine the fractional part. The 10 multiplier gives us 1 decimal place.

 //frac = (flowRate - int(flowRate)) * 10;

 // Enable the interrupt again now that we've finished sending output

 //Serial.print(frac, DEC) ; // Print the fractional part of the variable

 //Serial.print("L/min");

 // Print the number of litres flowed in this second

 //Serial.print(" Current Liquid Flowing: "); // Output separator

 //Serial.print(flowMilliLitres);

 //Serial.print("mL/Sec");

 // Print the cumulative total of litres flowed since starting

 //Serial.print(" Output Liquid Quantity: "); // Output separator

 //Serial.print(totalMilliLitres);

 //Serial.println("mL");

 }

 //ThingSpeak.writeField(myChannelNumber, 2, liquid, myWriteAPIKey);

 //unsigned long tl = totalMilliLitres;

}

94

void pulseCounter()

{

 // Increment the pulse counter

 pulseCount++;

}

Appendix II Code for Low-Flow Sensor

#include "ThingSpeak.h"

//#define USE_WIFI101_SHIELD

#if defined(ARDUINO_AVR_YUN)

 #include "YunClient.h"

 YunClient client;

#else

 #if defined(USE_WIFI101_SHIELD) || defined(ARDUINO_SAMD_MKR1000) ||

defined(ARDUINO_ARCH_ESP8266)

 // Use WiFi

 #ifdef ARDUINO_ARCH_ESP8266

 #include <ESP8266WiFi.h>

 #else

 #include <SPI.h>

 #include <WiFi101.h>

95

 #endif

 char ssid[] = "<shani>"; // your network SSID (name)

 char pass[] = "<Rushan11>"; // your network password

 int status = WL_IDLE_STATUS;

 WiFiClient client;

 #elif defined(USE_ETHERNET_SHIELD)

 // Use wired ethernet shield

 #include <SPI.h>

 #include <Ethernet.h>

 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};

 EthernetClient client;

 #endif

 #endif

 unsigned long myChannelNumber = 303355;

 const char * myWriteAPIKey = "YSKR6BO7B4DCSCXM";

 int count=0;

 float liquid=0;

 int Led = 13; // define LED Interface

 int sensorPin = A0; // define the photo interrupter sensor interface

//int val; // define numeric variables val

96

//int sensorPin = A0; // select the input pin for LDR

int sensorValue = 0;

int prevReading = 0;// variable to store the value coming from the sensor

int currReading = 0;

//int count = 0;

int minReading = 400; // minimum reading needed to count

int minFluctuation = 5; // minimum fluctuation to count

void setup() {

 #ifdef ARDUINO_AVR_YUN

 Bridge.begin();

 #else

 #if defined(ARDUINO_ARCH_ESP8266) || defined(USE_WIFI101_SHIELD) ||

defined(ARDUINO_SAMD_MKR1000)

 WiFi.begin(ssid, pass);

 #else

 Ethernet.begin(mac);

 #endif

 #endif

 ThingSpeak.begin(client);

pinMode(Led, OUTPUT); // define LED as output interface

 Serial.begin(9600); //sets serial port for communication

97

 prevReading = analogRead(sensorPin);

 // use this if you want to wait until reading

 // reaches a threshold, else delete it

 while (analogRead(sensorPin) < minReading)

 {

 Serial.println("Waiting ... ");

 }

}

void loop() {

 currReading = analogRead(sensorPin);

 Serial.println(currReading); //prints the values coming from the sensor on the screen

 // calculate fluctuation, watch for negative

 int fluctuation = (currReading > prevReading) ? currReading - prevReading : prevReading -

currReading;

 // if reading is over minimum and fluctuation is large enough to count

 if ((currReading > minReading) && (fluctuation > minFluctuation))

 {

 // add to count

 count++;

98

 Serial.print("Count: ");

 Serial.println(count);

 liquid = count*0.05;

 } else {

 // flucuation too small

 // uncomment for debugging

 // if(fluctuation <= minFluctuation)

 // {

 // Serial.print("Fluctation too small: ");

 // Serial.println(fluctuation);

 // }

 // reading too small

 // uncomment for debugging

 // if(currReading <= minReading)

 // {

 // Serial.print("Reading too small: ");

 // Serial.println(currReading);

 // }

 } // else

 // current reading becomes previous reading

99

 prevReading = currReading;

 ThingSpeak.writeField(myChannelNumber, 2, liquid, myWriteAPIKey);

 delay(3000);

}

Appendix III ThingSpeak Library for Arduino

/*

 ThingSpeak(TM) Communication Library For Arduino and ESP8266

 Enables an Arduino or other compatible hardware to write or read data

to or from ThingSpeak,

 an open data platform for the Internet of Things with MATLAB analytics

and visualization.

 ThingSpeak (https://www.thingspeak.com) is an analytic IoT platform

service that allows you to aggregate, visualize and

 analyze live data streams in the cloud.

 Copyright 2017, The MathWorks, Inc.

 See the accompaning licence file for licensing information.

*/

/**

 @mainpage

 *

 * \ref ThingSpeakClass "For technical documentation, visit this page"

 *

 * ThingSpeak offers free data storage and analysis of time-stamped

numeric or alphanumeric data.

 * Users can access ThingSpeak by visiting http://thingspeak.com and

creating a ThingSpeak user account.

 *

 * ThingSpeak stores data in channels. Channels support an unlimited

number of timestamped observations (think of these as rows in a

spreadsheet).

 * Each channel has up to 8 fields (think of these as columns in a

speadsheet). Check out this <a

href="http://www.mathworks.com/videos/introduction-to-thingspeak-

107749.html">video for an overview.

 *

100

 * Channels may be public, where anyone can see the data, or private,

where only the owner and select users can read the data.

 * Each channel has an associated Write API Key that is used to control

who can write to a channel.

 * In addition, private channels have one or more Read API Keys to

control who can read from private channel.

 * An API Key is not required to read from public channels. Each

channel can have up to 8 fields. One field is created by default.

 *

 * You can visualize and do online analytics of your data on ThingSpeak

using the built in version of MATLAB, or use the desktop version of

MATLAB to get

 * deeper historical insight. Visit https://www.mathworks.com/hardware-

support/thingspeak.html to learn more.

 *

 * <h3>Compatible Hardware</h3>

 * * Arduino/Genuino or compatible

using a WiFi101 or Ethernet shield (we have tested with Uno and Mega)

 * * Arduino

Yun running OpenWRT-Yun Release 1.5.3 (November 13th, 2014) or

later. There are known issues with earlier versions. Visit [this

page](http://www.arduino.cc/en/Main/Software) to get the latest version.

 * * Arduino

MKR1000

 * * ESP8266 (tested with SparkFun ESP8266 Thing -

Dev Board and <a href="http://www.seeedstudio.com/depot/NodeMCU-v2-

Lua-based-ESP8266-development-kit-p-2415.html">NodeMCU 1.0 module)

 *

 * <h3>Examples</h3>

 * The library includes several examples to help you get started. These

are accessible in the Examples/ThingSpeak menu off the File menu in the

Arduino IDE.

 * * CheerLights: Reads the latest CheerLights color on ThingSpeak,

and sets an RGB LED.

 * * ReadLastTemperature: Reads the latest temperature from the

public MathWorks weather

station in Natick, MA on ThingSpeak.

 * * ReadPrivateChannel: Reads the latest voltage value from a

private channel on ThingSpeak.

 * * ReadWeatherStation: Reads the latest weather data from the

public MathWorks weather

station in Natick, MA on ThingSpeak.

101

 * * WriteMultipleVoltages: Reads analog voltages from pins 0-7

and writes them to the 8 fields of a channel on ThingSpeak.

 * * WriteVoltage: Reads an analog voltage from pin 0, converts

to a voltage, and writes it to a channel on ThingSpeak.

 */

#ifndef ThingSpeak_h

#define ThingSpeak_h

//#define PRINT_DEBUG_MESSAGES

//#define PRINT_HTTP

#if defined(ARDUINO_ARCH_AVR) || defined(ARDUINO_ARCH_ESP8266) ||

defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_SAM)

 #include "Arduino.h"

 #include <Client.h>

#else

 #error Only Arduino MKR1000, Yun, Uno/Mega/Due with either WiFi101 or

Ethernet shield. ESP8266 also supported.

#endif

#define THINGSPEAK_URL "api.thingspeak.com"

#define THINGSPEAK_IPADDRESS IPAddress(184,106,153,149)

#define THINGSPEAK_PORT_NUMBER 80

#ifdef ARDUINO_ARCH_AVR

 #ifdef ARDUINO_AVR_YUN

 #define TS_USER_AGENT "tslib-arduino/1.3 (arduino yun)"

 #else

 #define TS_USER_AGENT "tslib-arduino/1.3 (arduino uno or mega)"

 #endif

#elif defined(ARDUINO_ARCH_ESP8266)

 #define TS_USER_AGENT "tslib-arduino/1.3 (ESP8266)"

#elif defined(ARDUINO_SAMD_MKR1000)

 #define TS_USER_AGENT "tslib-arduino/1.3 (arduino mkr1000)"

#elif defined(ARDUINO_SAM_DUE)

 #define TS_USER_AGENT "tslib-arduino/1.3 (arduino due)"

#elif defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_SAM)

 #define TS_USER_AGENT "tslib-arduino/1.3 (arduino unknown sam or

samd)"

#else

 #error "Platform not supported"

#endif

#define FIELDNUM_MIN 1

#define FIELDNUM_MAX 8

#define FIELDLENGTH_MAX 255 // Max length for a field in ThingSpeak is

255 bytes (UTF-8)

#define TIMEOUT_MS_SERVERRESPONSE 5000 // Wait up to five seconds for

server to respond

#define OK_SUCCESS 200 // OK / Success

102

#define ERR_BADAPIKEY 400 // Incorrect API key (or invalid

ThingSpeak server address)

#define ERR_BADURL 404 // Incorrect API key (or invalid

ThingSpeak server address)

#define ERR_OUT_OF_RANGE -101 // Value is out of range or

string is too long (> 255 bytes)

#define ERR_INVALID_FIELD_NUM -201 // Invalid field number

specified

#define ERR_SETFIELD_NOT_CALLED -210 // setField() was not called

before writeFields()

#define ERR_CONNECT_FAILED -301 // Failed to connect to

ThingSpeak

#define ERR_UNEXPECTED_FAIL -302 // Unexpected failure during

write to ThingSpeak

#define ERR_BAD_RESPONSE -303 // Unable to parse response

#define ERR_TIMEOUT -304 // Timeout waiting for server to

respond

#define ERR_NOT_INSERTED -401 // Point was not inserted (most

probable cause is the rate limit of once every 15 seconds)

/**

 * @brief Enables an Arduino, ESP8266 or other compatible hardware to

write or read data to or from ThingSpeak, an open data platform for the

Internet of Things with MATLAB analytics and visualization.

 */

class ThingSpeakClass

{

 public:

 ThingSpeakClass()

 {

 resetWriteFields();

 this->lastReadStatus = OK_SUCCESS;

 };

 /**

 * @brief Initializes the ThingSpeak library and network settings

using a custom installation of ThingSpeak.

 * @param client EthernetClient, YunClient, TCPClient, or

WiFiClient created earlier in the sketch

 * @param customHostName Host name of a custom install of

ThingSpeak

 * @param port Port number to use with a custom install of

ThingSpeak

 * @return Always returns true

 * @comment This does not validate the information passed in, or

generate any calls to ThingSpeak.

 * @code

 #include <SPI.h>

103

 #include <Ethernet.h>

 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};

 EthernetClient client;

 #include "ThingSpeak.h"

 void setup() {

 Ethernet.begin(mac);

 ThingSpeak.begin(client,"api.thingspeak.com", 80);

 }

 * @endcode

 */

 bool begin(Client & client, const char * customHostName, unsigned

int port)

 {

#ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::tsBegin (client: Client URL: ");

Serial.print(customHostName); Serial.println(")");

#endif

 this->setClient(&client);

 this->setServer(customHostName, port);

 resetWriteFields();

 this->lastReadStatus = OK_SUCCESS;

 return true;

 };

 /**

 * @brief Initializes the ThingSpeak library and network settings

using a custom installation of ThingSpeak.

 * @param client EthernetClient, YunClient, TCPClient, or

WiFiClient created earlier in the sketch

 * @param customIP IP address of a custom install of ThingSpeak

 * @param port Port number to use with a custom install of

ThingSpeak

 * @return Always returns true

 * @comment This does not validate the information passed in, or

generate any calls to ThingSpeak.

 * @code

 #include <SPI.h>

 #include <Ethernet.h>

 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};

 EthernetClient client;

 #include "ThingSpeak.h"

 void setup() {

 Ethernet.begin(mac);

 ThingSpeak.begin(client,IPAddress(184,106,153,149),

80);

 }

 * @endcode

104

 */

 bool begin(Client & client, IPAddress customIP, unsigned int

port)

 {

#ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::tsBegin (client: Client IP: ");

Serial.print(customIP); Serial.println(")");

#endif

 this->setClient(&client);

 this->setServer(customIP, port);

 resetWriteFields();

 this->lastReadStatus = OK_SUCCESS;

 return true;

 };

 /**

 * @brief Initializes the ThingSpeak library and network settings

using the ThingSpeak.com service.

 * @param client EthernetClient, YunClient, TCPClient, or

WiFiClient created earlier in the sketch

 * @return Always returns true

 * @comment This does not validate the information passed in, or

generate any calls to ThingSpeak.

 * @code

 #include <SPI.h>

 #include <Ethernet.h>

 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};

 EthernetClient client;

 #include "ThingSpeak.h"

 void setup() {

 Ethernet.begin(mac);

 ThingSpeak.begin(client);

 }

 * @endcode

 */

 bool begin(Client & client)

 {

#ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::tsBegin");

#endif

 this->setClient(&client);

 this->setServer();

 resetWriteFields();

 this->lastReadStatus = OK_SUCCESS;

 return true;

 };

105

 /**

 * @brief Write an integer value to a single field in a

ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to write

to.

 * @param value Integer value (from -32,768 to 32,767) to write.

 * @param writeAPIKey Write API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Visit https://thingspeak.com/docs/channels for more

information about channels, API keys, and fields. ThingSpeak limits the

number of writes to a channel to once every 15 seconds.

 * @code

 void loop() {

 int sensorValue = analogRead(A0);

 ThingSpeak.writeField(myChannelNumber, 1,

sensorValue, myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int writeField(unsigned long channelNumber, unsigned int field,

int value, const char * writeAPIKey)

 {

 char valueString[10]; // int range is -32768 to 32768,

so 7 bytes including terminator, plus a little extra

 itoa(value, valueString, 10);

 return writeField(channelNumber, field, valueString,

writeAPIKey);

 };

 /**

 * @brief Write a long value to a single field in a ThingSpeak

channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to write

to.

 * @param value Long value (from -2,147,483,648 to 2,147,483,647)

to write.

 * @param writeAPIKey Write API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

106

 * @remark Visit https://thingspeak.com/docs/channels for more

information about channels, API keys, and fields. ThingSpeak limits the

number of writes to a channel to once every 15 seconds.

 * @code

 void loop() {

 int sensorValue = analogRead(A0);

 ThingSpeak.writeField(myChannelNumber, 1,

sensorValue, myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int writeField(unsigned long channelNumber, unsigned int field,

long value, const char * writeAPIKey)

 {

 char valueString[15]; // long range is -2147483648 to

2147483647, so 12 bytes including terminator

 ltoa(value, valueString, 10);

 return writeField(channelNumber, field, valueString,

writeAPIKey);

 };

 /**

 * @brief Write a floating point value to a single field in a

ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to write

to.

 * @param value Floating point value (from -999999000000 to

999999000000) to write. If you need more accuracy, or a wider range,

you should format the number using <tt>dtostrf</tt> and writeField().

 * @param writeAPIKey Write API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Visit https://thingspeak.com/docs/channels for more

information about channels, API keys, and fields. ThingSpeak limits the

number of writes to a channel to once every 15 seconds.

 * @code

 void loop() {

 int sensorValue = analogRead(A0);

 float voltage = sensorValue * (5.0 / 1023.0);

 ThingSpeak.writeField(myChannelNumber, 1, voltage,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

107

 */

 int writeField(unsigned long channelNumber, unsigned int field,

float value, const char * writeAPIKey)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::writeField (channelNumber: ");

Serial.print(channelNumber); Serial.print(" writeAPIKey: ");

Serial.print(writeAPIKey); Serial.print(" field: ");

Serial.print(field); Serial.print(" value: "); Serial.print(value,5);

Serial.println(")");

 #endif

 char valueString[20]; // range is -999999000000.00000 to

999999000000.00000, so 19 + 1 for the terminator

 int status = convertFloatToChar(value, valueString);

 if(status != OK_SUCCESS) return status;

 return writeField(channelNumber, field, valueString,

writeAPIKey);

 };

 /**

 * @brief Write a string to a single field in a ThingSpeak

channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to write

to.

 * @param value String to write (UTF8 string). ThingSpeak limits

this field to 255 bytes.

 * @param writeAPIKey Write API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Visit https://thingspeak.com/docs/channels for more

information about channels, API keys, and fields. ThingSpeak limits the

number of writes to a channel to once every 15 seconds.

 * @code

 void loop() {

 int sensorValue = analogRead(A0);

 if (sensorValue > 512) {

 ThingSpeak.writeField(myChannelNumber, 1,

"High", myWriteAPIKey);

 }

 else {

 ThingSpeak.writeField(myChannelNumber, 1,

"Low", myWriteAPIKey);

 }

 delay(20000);

 }

108

 * @endcode

 */

 int writeField(unsigned long channelNumber, unsigned int field,

const char * value, const char * writeAPIKey)

 {

 return writeField(channelNumber, field, String(value),

writeAPIKey);

 };

 /**

 * @brief Write a String to a single field in a ThingSpeak

channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to write

to.

 * @param value Character array (zero terminated) to write

(UTF8). ThingSpeak limits this field to 255 bytes.

 * @param writeAPIKey Write API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Visit https://thingspeak.com/docs/channels for more

information about channels, API keys, and fields. ThingSpeak limits the

number of writes to a channel to once every 15 seconds.

 * @code

 void loop() {

 int sensorValue = analogRead(A0);

 String meaning;

 if (sensorValue < 400) {

 meaning = String("Too Cold!");

 } else if (sensorValue > 600) {

 meaning = String("Too Hot!");

 } else {

 meaning = String("Just Right");

 }

 ThingSpeak.writeField(myChannelNumber, 1, meaning,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int writeField(unsigned long channelNumber, unsigned int field,

String value, const char * writeAPIKey)

 {

 // Invalid field number specified

 if(field < FIELDNUM_MIN || field > FIELDNUM_MAX) return

ERR_INVALID_FIELD_NUM;

109

 // Max # bytes for ThingSpeak field is 255

 if(value.length() > FIELDLENGTH_MAX) return

ERR_OUT_OF_RANGE;

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::writeField (channelNumber: ");

Serial.print(channelNumber); Serial.print(" writeAPIKey: ");

Serial.print(writeAPIKey); Serial.print(" field: ");

Serial.print(field); Serial.print(" value: \""); Serial.print(value);

Serial.println("\")");

 #endif

 String postMessage = String("field") + String(field) +

"=" + value;

 return writeRaw(channelNumber, postMessage, writeAPIKey);

 };

 /**

 * @brief Set the value of a single field that will be part of a

multi-field update.

 * To write multiple fields at once, call setField() for each of

the fields you want to write, and then call writeFields()

 * @param field Field number (1-8) within the channel to set

 * @param value Integer value (from -32,768 to 32,767) to set.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setLatitude(), setLongitude(), setElevation(),

writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

110

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setField(unsigned int field, int value)

 {

 char valueString[10]; // int range is -32768 to 32768,

so 7 bytes including terminator

 itoa(value, valueString, 10);

 return setField(field, valueString);

 };

 /**

 * @brief Set the value of a single field that will be part of a

multi-field update.

 * To write multiple fields at once, call setField() for each of

the fields you want to write, and then call writeFields()

 * @param field Field number (1-8) within the channel to set

 * @param value Long value (from -2,147,483,648 to 2,147,483,647)

to write.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setLatitude(), setLongitude(), setElevation(),

writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

111

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setField(unsigned int field, long value)

 {

 char valueString[15]; // long range is -2147483648 to

2147483647, so 12 bytes including terminator

 ltoa(value, valueString, 10);

 return setField(field, valueString);

 };

 /**

 * @brief Set the value of a single field that will be part of a

multi-field update.

 * To write multiple fields at once, call setField() for each of

the fields you want to write, and then call writeFields()

 * @param field Field number (1-8) within the channel to set

 * @param value Floating point value (from -999999000000 to

999999000000) to write. If you need more accuracy, or a wider range,

you should format the number yourself (using <tt>dtostrf</tt>) and

setField() using the resulting string.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setLatitude(), setLongitude(), setElevation(),

writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

112

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setField(unsigned int field, float value)

 {

 char valueString[20]; // range is -999999000000.00000 to

999999000000.00000, so 19 + 1 for the terminator

 int status = convertFloatToChar(value, valueString);

 if(status != OK_SUCCESS) return status;

 return setField(field, valueString);

 };

 /**

 * @brief Set the value of a single field that will be part of a

multi-field update.

 * To write multiple fields at once, call setField() for each of

the fields you want to write, and then call writeFields()

 * @param field Field number (1-8) within the channel to set

 * @param value String to write (UTF8). ThingSpeak limits this

to 255 bytes.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setLatitude(), setLongitude(), setElevation(),

writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

113

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setField(unsigned int field, const char * value)

 {

 return setField(field, String(value));

 };

 /**

 * @brief Set the value of a single field that will be part of a

multi-field update.

 * To write multiple fields at once, call setField() for each of

the fields you want to write, and then call writeFields()

 * @param field Field number (1-8) within the channel to set

 * @param value String to write (UTF8). ThingSpeak limits this

to 255 bytes.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setLatitude(), setLongitude(), setElevation(),

writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

114

 */

 int setField(unsigned int field, String value)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setField (field: ");

Serial.print(field); Serial.print(" value: \""); Serial.print(value);

Serial.println("\")");

 #endif

 if(field < FIELDNUM_MIN || field > FIELDNUM_MAX) return

ERR_INVALID_FIELD_NUM;

 // Max # bytes for ThingSpeak field is 255 (UTF-8)

 if(value.length() > FIELDLENGTH_MAX) return

ERR_OUT_OF_RANGE;

 this->nextWriteField[field - 1] = value;

 return OK_SUCCESS;

 };

 /**

 * @brief Set the latitude of a multi-field update.

 * To record latitude, longitude and elevation of a write, call

setField() for each of the fields you want to write, setLatitude() /

setLongitude() / setElevation(), and then call writeFields()

 * @param latitude Latitude of the measurement (degrees N, use

negative values for degrees S)

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setField(), setLongitude(), setElevation(), writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

115

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 setLatitude(42.2833);

 setLongitude(-71.3500);

 setElevation(100);

 delay(20000);

 }

 * @endcode

 */

 int setLatitude(float latitude)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setLatitude(latitude: ");

Serial.print(latitude,3); Serial.println("\")");

 #endif

 this->nextWriteLatitude = latitude;

 return OK_SUCCESS;

 };

 /**

 * @brief Set the longitude of a multi-field update.

 * To record latitude, longitude and elevation of a write, call

setField() for each of the fields you want to write, setLatitude() /

setLongitude() / setElevation(), and then call writeFields()

 * @param longitude Longitude of the measurement (degrees E, use

negative values for degrees W)

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setField(), setLatitude(), setElevation(), writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

116

 ThingSpeak.setField(4, timeRead);

 setLatitude(42.2833);

 setLongitude(-71.3500);

 setElevation(100);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setLongitude(float longitude)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setLongitude(longitude: ");

Serial.print(longitude,3); Serial.println("\")");

 #endif

 this->nextWriteLongitude = longitude;

 return OK_SUCCESS;

 };

 /**

 * @brief Set the elevation of a multi-field update.

 * To record latitude, longitude and elevation of a write, call

setField() for each of the fields you want to write, setLatitude() /

setLongitude() / setElevation(), and then call writeFields()

 * @param elevation Elevation of the measurement (meters above

sea level)

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setField(), setLatitude(), setLongitude(), writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

117

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

 setLatitude(42.2833);

 setLongitude(-71.3500);

 setElevation(100);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setElevation(float elevation)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setElevation(elevation: ");

Serial.print(elevation,3); Serial.println("\")");

 #endif

 this->nextWriteElevation = elevation;

 return OK_SUCCESS;

 };

 /**

 * @brief Set the status of a multi-field update.

 * To record a status message on a write, call setStatus() then

call writeFields(). Use status to provide additonal

 * details when writing a channel update. Additonally, status

can be used by the ThingTweet App to send a message to

 * Twitter.

 * @param status String to write (UTF8). ThingSpeak limits this

to 255 bytes.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

118

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, timeRead);

 ThingSpeak.setStatus(sensor3Meaning);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setStatus(const char * status)

 {

 return setStatus(String(status));

 };

 /**

 * @brief Set the status of a multi-field update.

 * To record a status message on a write, call setStatus() then

call writeFields(). Use status to provide additonal

 * details when writing a channel update. Additonally, status

can be used by the ThingTweet App to send a message to

 * Twitter.

 * @param status String to write (UTF8). ThingSpeak limits this

to 255 bytes.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, timeRead);

119

 ThingSpeak.setStatus(sensor3Meaning);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setStatus(String status)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setStatus(status: ");

Serial.print(status); Serial.println("\")");

 #endif

 // Max # bytes for ThingSpeak field is 255 (UTF-8)

 if(status.length() > FIELDLENGTH_MAX) return

ERR_OUT_OF_RANGE;

 this->nextWriteStatus = status;

 return OK_SUCCESS;

 };

 /**

 * @brief Set the Twitter account and message to use for an

update to be tweeted.

 * To send a message to twitter call setTwitterTweet() then call

writeFields()

 * @param twitter Twitter account name as a String.

 * @param tweet Twitter message as a String (UTF-8) limited to

140 character.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Prior to using this feature, a twitter account must be

linked to your ThingSpeak account. Do this by logging into ThingSpeak

and going to Apps, then ThingTweet and clicking Link Twitter Account.

 * @see writeFields(),getLastReadStatus()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

120

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, timeRead);

 ThingSpeak.setTwitterTweet("YourTwitterAccountName",sensor3Meanin

g);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setTwitterTweet(const char * twitter, const char * tweet)

 {

 return setTwitterTweet(String(twitter), String(tweet));

 };

 /**

 * @brief Set the Twitter account and message to use for an

update to be tweeted.

 * To send a message to twitter call setTwitterTweet() then call

writeFields()

 * @param twitter Twitter account name as a String.

 * @param tweet Twitter message as a String (UTF-8) limited to

140 character.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Prior to using this feature, a twitter account must be

linked to your ThingSpeak account. Do this by logging into ThingSpeak

and going to Apps, then ThingTweet and clicking Link Twitter Account.

 * @see writeFields(),getLastReadStatus()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

121

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, timeRead);

 ThingSpeak.setTwitterTweet("YourTwitterAccountName",sensor3Meanin

g);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setTwitterTweet(String twitter, const char * tweet)

 {

 return setTwitterTweet(twitter, String(tweet));

 };

 /**

 * @brief Set the Twitter account and message to use for an

update to be tweeted.

 * To send a message to twitter call setTwitterTweet() then call

writeFields()

 * @param twitter Twitter account name as a String.

 * @param tweet Twitter message as a String (UTF-8) limited to

140 character.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Prior to using this feature, a twitter account must be

linked to your ThingSpeak account. Do this by logging into ThingSpeak

and going to Apps, then ThingTweet and clicking Link Twitter Account.

 * @see writeFields(),getLastReadStatus()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

122

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, timeRead);

 ThingSpeak.setTwitterTweet("YourTwitterAccountName",sensor3Meanin

g);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setTwitterTweet(const char * twitter, String tweet)

 {

 return setTwitterTweet(String(twitter), tweet);

 };

 /**

 * @brief Set the Twitter account and message to use for an

update to be tweeted.

 * To send a message to twitter call setTwitterTweet() then call

writeFields()

 * @param twitter Twitter account name as a String.

 * @param tweet Twitter message as a String (UTF-8) limited to

140 character.

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Prior to using this feature, a twitter account must be

linked to your ThingSpeak account. Do this by logging into ThingSpeak

and going to Apps, then ThingTweet and clicking Link Twitter Account.

 * @see writeFields(),getLastReadStatus()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

123

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, timeRead);

 ThingSpeak.setTwitterTweet("YourTwitterAccountName",sensor3Meanin

g);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setTwitterTweet(String twitter, String tweet){

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setTwitterTweet(twitter: ");

Serial.print(twitter); Serial.print(", tweet: "); Serial.print(tweet);

Serial.println("\")");

 #endif

 // Max # bytes for ThingSpeak field is 255 (UTF-8)

 if((twitter.length() > FIELDLENGTH_MAX) ||

(tweet.length() > FIELDLENGTH_MAX)) return ERR_OUT_OF_RANGE;

 this->nextWriteTwitter = twitter;

 this->nextWriteTweet = tweet;

 return OK_SUCCESS;

 };

 /**

 * @brief Set the created-at date of a multi-field update.

 * To record created-at of a write, call setField() for each of

the fields you want to write, setCreatedAt(), and then call

writeFields()

 * @param createdAt Desired timestamp to be included with the

channel update as a String. The timestamp string must be in the ISO

8601 format. Example "2017-01-12 13:22:54"

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Timezones can be set using the timezone hour offset

parameter. For example, a timestamp for Eastern Standard Time is: "2017-

01-12 13:22:54-05". If no timezone hour offset parameter is used, UTC

time is assumed.

 * @see setField(), writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

124

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

 ThingSpeak.setCreatedAt("2017-01-06T13:56:28");

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setCreatedAt(const char * createdAt)

 {

 return setCreatedAt(String(createdAt));

 }

/**

 * @brief Set the created-at date of a multi-field update.

 * To record created-at of a write, call setField() for each of

the fields you want to write, setCreatedAt(), and then call

writeFields()

 * @param createdAt Desired timestamp to be included with the

channel update as a String. The timestamp string must be in the ISO

8601 format. Example "2017-01-12 13:22:54"

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark Timezones can be set using the timezone hour offset

parameter. For example, a timestamp for Eastern Standard Time is: "2017-

01-12 13:22:54-05". If no timezone hour offset parameter is used, UTC

time is assumed.

 * @see setField(), writeFields()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

125

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

 ThingSpeak.setCreatedAt("2017-01-06T13:56:28");

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int setCreatedAt(String createdAt)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setCreatedAt(createdAt: ");

Serial.print(createdAt); Serial.println("\")");

 #endif

 // the ISO 8601 format is too complicated to check for

valid timestamps here

 // we'll need to reply on the api to tell us if there is

a problem

 // Max # bytes for ThingSpeak field is 255 (UTF-8)

 if(createdAt.length() > FIELDLENGTH_MAX) return

ERR_OUT_OF_RANGE;

 this->nextWriteCreatedAt = createdAt;

 return OK_SUCCESS;

 }

 /**

 * @brief Write a multi-field update.

126

 * Call setField() for each of the fields you want to write,

setLatitude() / setLongitude() / setElevation(), and then call

writeFields()

 * @param channelNumber Channel number

 * @param writeAPIKey Write API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @see setField(), setLatitude(), setLongitude(), setElevation()

 * @code

 void loop() {

 int sensor1Value = analogRead(A0);

 float sensor2Voltage = analogRead(A1) * (5.0 /

1023.0);

 String sensor3Meaning;

 int sensor3Value = analogRead(A2);

 if (sensor3Value < 400) {

 sensor3Meaning = String("Too Cold!");

 } else if (sensor3Value > 600) {

 sensor3Meaning = String("Too Hot!");

 } else {

 sensor3Meaning = String("Just Right");

 }

 long timeRead = millis();

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

 setLatitude(42.2833);

 setLongitude(-71.3500);

 setElevation(100);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int writeFields(unsigned long channelNumber, const char *

writeAPIKey)

 {

 String postMessage = String("");

 bool fFirstItem = true;

 for(size_t iField = 0; iField < 8; iField++)

 {

 if(this->nextWriteField[iField].length() > 0)

 {

127

 if(!fFirstItem)

 {

 postMessage = postMessage +

String("&");

 }

 postMessage = postMessage + String("field")

+ String(iField + 1) + String("=") + this->nextWriteField[iField];

 fFirstItem = false;

 this->nextWriteField[iField] = "";

 }

 }

 if(!isnan(nextWriteLatitude))

 {

 if(!fFirstItem)

 {

 postMessage = postMessage + String("&");

 }

 postMessage = postMessage + String("lat=") +

String(this->nextWriteLatitude);

 fFirstItem = false;

 this->nextWriteLatitude = NAN;

 }

 if(!isnan(this->nextWriteLongitude))

 {

 if(!fFirstItem)

 {

 postMessage = postMessage + String("&");

 }

 postMessage = postMessage + String("long=") +

String(this->nextWriteLongitude);

 fFirstItem = false;

 this->nextWriteLongitude = NAN;

 }

 if(!isnan(this->nextWriteElevation))

 {

 if(!fFirstItem)

 {

 postMessage = postMessage + String("&");

 }

 postMessage = postMessage + String("elevation=") +

String(this->nextWriteElevation);

 fFirstItem = false;

 this->nextWriteElevation = NAN;

 }

 if(this->nextWriteStatus.length() > 0)

128

 {

 if(!fFirstItem)

 {

 postMessage = postMessage + String("&");

 }

 postMessage = postMessage + String("status=") +

String(this->nextWriteStatus);

 fFirstItem = false;

 this->nextWriteStatus = "";

 }

 if(this->nextWriteTwitter.length() > 0)

 {

 if(!fFirstItem)

 {

 postMessage = postMessage + String("&");

 }

 postMessage = postMessage + String("twitter=") +

String(this->nextWriteTwitter);

 fFirstItem = false;

 this->nextWriteTwitter = "";

 }

 if(this->nextWriteTweet.length() > 0)

 {

 if(!fFirstItem)

 {

 postMessage = postMessage + String("&");

 }

 postMessage = postMessage + String("tweet=") +

String(this->nextWriteTweet);

 fFirstItem = false;

 this->nextWriteTweet = "";

 }

 if(this->nextWriteCreatedAt.length() > 0)

 {

 if(!fFirstItem)

 {

 postMessage = postMessage + String("&");

 }

 postMessage = postMessage + String("created_at=")

+ String(this->nextWriteCreatedAt);

 fFirstItem = false;

 this->nextWriteCreatedAt = "";

 }

129

 if(fFirstItem)

 {

 // setField was not called before writeFields

 return ERR_SETFIELD_NOT_CALLED;

 }

 return writeRaw(channelNumber, postMessage, writeAPIKey);

 };

 /**

 * @brief Write a raw POST to a ThingSpeak channel

 * @param channelNumber Channel number

 * @param postMessage Raw URL to write to ThingSpeak as a string.

See the documentation at

https://thingspeak.com/docs/channels#update_feed.

 * @param writeAPIKey Write API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark This is low level functionality that will not be

required by most users.

 * @code

 void loop() {

 const char postMessage[] =

"field1=23&created_at=2014-12-31%2023:59:59";

 ThingSpeak.setField(1, sensor1Value);

 ThingSpeak.setField(2, sensor2Voltage);

 ThingSpeak.setField(3, sensor3Meaning);

 ThingSpeak.setField(4, timeRead);

 ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int writeRaw(unsigned long channelNumber, const char *

postMessage, const char * writeAPIKey)

 {

 return writeRaw(channelNumber, String(postMessage),

writeAPIKey);

 };

 /**

 * @brief Write a raw POST to a ThingSpeak channel

 * @param channelNumber Channel number

130

 * @param postMessage Raw URL to write to ThingSpeak as a String.

See the documentation at

https://thingspeak.com/docs/channels#update_feed.

 * @param writeAPIKey Write API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return HTTP status code of 200 if successful. See

getLastReadStatus() for other possible return values.

 * @remark This is low level functionality that will not be

required by most users.

 * @code

 void loop() {

 String postMessage =

String("field1=23&created_at=2014-12-31%2023:59:59");

 ThingSpeak.writeRaw(myChannelNumber, postMessage,

myWriteAPIKey);

 delay(20000);

 }

 * @endcode

 */

 int writeRaw(unsigned long channelNumber, String postMessage,

const char * writeAPIKey)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::writeRaw (channelNumber: ");

Serial.print(channelNumber); Serial.print(" writeAPIKey: ");

Serial.print(writeAPIKey); Serial.print(" postMessage: \"");

Serial.print(postMessage); Serial.println("\")");

 #endif

 if(!connectThingSpeak())

 {

 // Failed to connect to ThingSpeak

 return ERR_CONNECT_FAILED;

 }

 postMessage = postMessage + String("&headers=false");

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print(" POST

\"");Serial.print(postMessage);Serial.println("\"");

 #endif

 postMessage = postMessage + String("\n");

 // Post data to thingspeak

 if(!this->client->print("POST /update HTTP/1.1\r\n"))

return abortWriteRaw();

 if(!writeHTTPHeader(writeAPIKey)) return abortWriteRaw();

 if(!this->client->print("Content-Type: application/x-www-

form-urlencoded\r\n")) return abortWriteRaw();

131

 if(!this->client->print("Content-Length: ")) return

abortWriteRaw();

 if(!this->client->print(postMessage.length())) return

abortWriteRaw();

 if(!this->client->print("\r\n\r\n")) return

abortWriteRaw();

 if(!this->client->print(postMessage)) return

abortWriteRaw();

 String entryIDText = String();

 int status = getHTTPResponse(entryIDText);

 if(status != OK_SUCCESS)

 {

 client->stop();

 return status;

 }

 long entryID = entryIDText.toInt();

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print(" Entry ID

\"");Serial.print(entryIDText);Serial.print("\"

(");Serial.print(entryID);Serial.println(")");

 #endif

 client->stop();

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.println("disconnected.");

 #endif

 if(entryID == 0)

 {

 // ThingSpeak did not accept the write

 status = ERR_NOT_INSERTED;

 }

 return status;

 };

 /**

 * @brief Read the latest string from a private ThingSpeak

channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to read

from.

 * @param readAPIKey Read API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return Value read (UTF8 string), or empty string if there is

an error. Use getLastReadStatus() to get more specific information.

 * @code

132

 void loop() {

 String message =

ThingSpeak.readStringField(myChannelNumber, 1, myReadAPIKey);

 Serial.print("Latest message is: ");

 Serial.println(message);

 delay(30000);

 }

 * @endcode

 */

 String readStringField(unsigned long channelNumber, unsigned int

field, const char * readAPIKey)

 {

 if(field < FIELDNUM_MIN || field > FIELDNUM_MAX)

 {

 this->lastReadStatus = ERR_INVALID_FIELD_NUM;

 return("");

 }

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::readStringField(channelNumber:

"); Serial.print(channelNumber);

 if(NULL != readAPIKey)

 {

 Serial.print(" readAPIKey: ");

Serial.print(readAPIKey);

 }

 Serial.print(" field: "); Serial.print(field);

Serial.println(")");

 #endif

 return readRaw(channelNumber, String(String("/fields/") +

String(field) + String("/last")), readAPIKey);

 }

 /**

 * @brief Read the latest string from a public ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to read

from.

 * @return Value read (UTF8), or empty string if there is an

error. Use getLastReadStatus() to get more specific information.

 * @code

 void loop() {

 String message =

ThingSpeak.readStringField(myChannelNumber, 1);

 Serial.print("Latest message is: ");

 Serial.println(message);

 delay(30000);

 }

133

 * @endcode

 */

 String readStringField(unsigned long channelNumber, unsigned int

field)

 {

 return readStringField(channelNumber, field, NULL);

 };

 /**

 * @brief Read the latest float from a private ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to read

from.

 * @param readAPIKey Read API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return Value read, or 0 if the field is text or there is an

error. Use getLastReadStatus() to get more specific information. Note

that NAN, INFINITY, and -INFINITY are valid results.

 * @code

 void loop() {

 float voltage =

ThingSpeak.readFloatField(myChannelNumber, 1, myReadAPIKey);

 Serial.print("Latest voltage is: ");

 Serial.print(voltage);

 Serial.println("V");

 delay(30000);

 }

 * @endcode

 */

 float readFloatField(unsigned long channelNumber, unsigned int

field, const char * readAPIKey)

 {

 return

convertStringToFloat(readStringField(channelNumber, field, readAPIKey));

 };

 /**

 * @brief Read the latest float from a public ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to read

from.

 * @return Value read, or 0 if the field is text or there is an

error. Use getLastReadStatus() to get more specific information. Note

that NAN, INFINITY, and -INFINITY are valid results.

 * @code

 void loop() {

 float voltage =

ThingSpeak.readFloatField(myChannelNumber, 1);

134

 Serial.print("Latest voltage is: ");

 Serial.print(voltage);

 Serial.println("V");

 delay(30000);

 }

 * @endcode

 */

 float readFloatField(unsigned long channelNumber, unsigned int

field)

 {

 return readFloatField(channelNumber, field, NULL);

 };

 /**

 * @brief Read the latest long from a private ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to read

from.

 * @param readAPIKey Read API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return Value read, or 0 if the field is text or there is an

error. Use getLastReadStatus() to get more specific information.

 * @code

 void loop() {

 long value = ThingSpeak.readLongField(myChannelNumber,

1, myReadAPIKey);

 Serial.print("Latest value is: ");

 Serial.print(value);

 delay(30000);

 }

 * @endcode

 */

 long readLongField(unsigned long channelNumber, unsigned int field,

const char * readAPIKey)

 {

 // Note that although the function is called "toInt" it really

returns a long.

 return readStringField(channelNumber, field,

readAPIKey).toInt();

 }

 /**

 * @brief Read the latest long from a public ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to read

from.

 * @return Value read, or 0 if the field is text or there is an

error. Use getLastReadStatus() to get more specific information.

135

 * @code

 void loop() {

 long value = ThingSpeak.readLongField(myChannelNumber,

1);

 Serial.print("Latest value is: ");

 Serial.print(value);

 delay(30000);

 }

 * @endcode

 */

 long readLongField(unsigned long channelNumber, unsigned int

field)

 {

 return readLongField(channelNumber, field, NULL);

 };

 /**

 * @brief Read the latest int from a private ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to read

from.

 * @param readAPIKey Read API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return Value read, or 0 if the field is text or there is an

error. Use getLastReadStatus() to get more specific information.

 * @remark If the value returned is out of range for an int, the

result is undefined.

 * @code

 void loop() {

 int value = ThingSpeak.readIntField(myChannelNumber, 1,

myReadAPIKey);

 Serial.print("Latest value is: ");

 Serial.print(value);

 delay(30000);

 }

 * @endcode

 */

 int readIntField(unsigned long channelNumber, unsigned int field,

const char * readAPIKey)

 {

 return readLongField(channelNumber, field, readAPIKey);

 }

 /**

 * @brief Read the latest int from a public ThingSpeak channel

 * @param channelNumber Channel number

 * @param field Field number (1-8) within the channel to read

from.

136

 * @return Value read, or 0 if the field is text or there is an

error. Use getLastReadStatus() to get more specific information.

 * @remark If the value returned is out of range for an int, the

result is undefined.

 * @code

 void loop() {

 int value = ThingSpeak.readIntField(myChannelNumber,

1);

 Serial.print("Latest value is: ");

 Serial.print(value);

 delay(30000);

 }

 * @endcode

 */

 int readIntField(unsigned long channelNumber, unsigned int field)

 {

 return readLongField(channelNumber, field, NULL);

 };

 /**

 * @brief Read the latest status from a private ThingSpeak

channel

 * @param channelNumber Channel number

 * @param readAPIKey Read API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return Value read (UTF8 string). An empty string is returned

if there was no status written to the channel or in case of an error.

Use getLastReadStatus() to get more specific information.

 * @code

 void loop() {

 String value = ThingSpeak.readStatus(myChannelNumber,

myReadAPIKey);

 Serial.print("Latest status is: ");

 Serial.print(value);

 delay(30000);

 }

 * @endcode

 */

 String readStatus(unsigned long channelNumber, const char *

readAPIKey)

 {

 String content = readRaw(channelNumber,

"/feeds/last.txt?status=true", readAPIKey);

 if(getLastReadStatus() != OK_SUCCESS){

 return String("");

 }

137

 return getJSONValueByKey(content, "status");

 };

 /**

 * @brief Read the latest status from a public ThingSpeak channel

 * @param channelNumber Channel number

 * @return Value read (UTF8 string). An empty string is returned

if there was no status written to the channel or in case of an error.

Use getLastReadStatus() to get more specific information.

 * @code

 void loop() {

 String value = ThingSpeak.readStatus(myChannelNumber,

myReadAPIKey);

 Serial.print("Latest status is: ");

 Serial.print(value);

 delay(30000);

 }

 * @endcode

 */

 String readStatus(unsigned long channelNumber)

 {

 return readStatus(channelNumber, NULL);

 };

 /**

 * @brief Read the created-at timestamp associated with the

latest update to a private ThingSpeak channel

 * @param channelNumber Channel number

 * @param readAPIKey Read API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return Value read (UTF8 string). An empty string is returned

if there was no created-at timestamp written to the channel or in case

of an error. Use getLastReadStatus() to get more specific information.

 * @code

 void loop() {

 String value =

ThingSpeak.readCreatedAt(myChannelNumber);

 Serial.print("Latest update timestamp is: ");

 Serial.print(value);

 delay(30000);

 }

 * @endcode

 */

 String readCreatedAt(unsigned long channelNumber, const char *

readAPIKey)

138

 {

 String content = readRaw(channelNumber,

"/feeds/last.txt", readAPIKey);

 if(getLastReadStatus() != OK_SUCCESS){

 return String("");

 }

 return getJSONValueByKey(content, "created_at");

 };

 /**

 * @brief Read the created-at timestamp associated with the

latest update to a private ThingSpeak channel

 * @param channelNumber Channel number

 * @return Value read (UTF8 string). An empty string is returned

if there was no created-at timestamp written to the channel or in case

of an error. Use getLastReadStatus() to get more specific information.

 * @code

 void loop() {

 String value =

ThingSpeak.readCreatedAt(myChannelNumber);

 Serial.print("Latest update timestamp is: ");

 Serial.print(value);

 delay(30000);

 }

 * @endcode

 */

 String readCreatedAt(unsigned long channelNumber)

 {

 return readCreatedAt(channelNumber, NULL);

 };

 /**

 * @brief Read a raw response from a public ThingSpeak channel

 * @param channelNumber Channel number

 * @param URLSuffix Raw URL to write to ThingSpeak as a String.

See the documentation at https://thingspeak.com/docs/channels#get_feed

 * @return Response if successful, or empty string. Use

getLastReadStatus() to get more specific information.

 * @remark This is low level functionality that will not be

required by most users.

 * @code

 void loop() {

 String response = ThingSpeak.readRaw(myChannelNumber,

String("feeds/days=1"));

 Serial.print("Response: ");

139

 Serial.print(response);

 delay(30000);

 }

 * @endcode

 */

 String readRaw(unsigned long channelNumber, String URLSuffix)

 {

 return readRaw(channelNumber, URLSuffix, NULL);

 }

 /**

 * @brief Read a raw response from a private ThingSpeak channel

 * @param channelNumber Channel number

 * @param URLSuffix Raw URL to write to ThingSpeak as a String.

See the documentation at https://thingspeak.com/docs/channels#get_feed

 * @param readAPIKey Read API key associated with the channel.

If you share code with others, do _not_ share this key

 * @return Response if successful, or empty string. Use

getLastReadStatus() to get more specific information.

 * @remark This is low level functionality that will not be

required by most users.

 * @code

 void loop() {

 String response = ThingSpeak.readRaw(myChannelNumber,

String("feeds/days=1"), myReadAPIKey);

 Serial.print("Response: ");

 Serial.print(response);

 delay(30000);

 }

 * @endcode

 */

 String readRaw(unsigned long channelNumber, String URLSuffix,

const char * readAPIKey)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::readRaw (channelNumber: ");

Serial.print(channelNumber);

 if(NULL != readAPIKey)

 {

 Serial.print(" readAPIKey: ");

Serial.print(readAPIKey);

 }

 Serial.print(" URLSuffix: \"");

Serial.print(URLSuffix); Serial.println("\")");

 #endif

 if(!connectThingSpeak())

140

 {

 this->lastReadStatus = ERR_CONNECT_FAILED;

 return String("");

 }

 String URL = String("/channels/") + String(channelNumber)

+ URLSuffix;

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print(" GET

\"");Serial.print(URL);Serial.println("\"");

 #endif

 // Post data to thingspeak

 if(!this->client->print("GET ")) return abortReadRaw();

 if(!this->client->print(URL)) return abortReadRaw();

 if(!this->client->print(" HTTP/1.1\r\n")) return

abortReadRaw();

 if(!writeHTTPHeader(readAPIKey)) return abortReadRaw();

 if(!this->client->print("\r\n")) return abortReadRaw();

 String content = String();

 int status = getHTTPResponse(content);

 this->lastReadStatus = status;

 #ifdef PRINT_DEBUG_MESSAGES

 if(status == OK_SUCCESS)

 {

 Serial.print("Read: \"");

Serial.print(content); Serial.println("\"");

 }

 #endif

 client->stop();

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.println("disconnected.");

 #endif

 if(status != OK_SUCCESS)

 {

 // return status;

 return String("");

 }

 // This is a workaround to a bug in the Spark implementation of

String

 return String("") + content;

 };

 /**

 * @brief Get the status of the previous read.

141

 * @return Generally, these are HTTP status codes. Negative

values indicate an error generated by the library.

 * Possible response codes:

 * * 200: OK / Success

 * * 404: Incorrect API key (or invalid ThingSpeak server

address)

 * * -101: Value is out of range or string is too long (> 255

characters)

 * * -201: Invalid field number specified

 * * -210: setField() was not called before writeFields()

 * * -301: Failed to connect to ThingSpeak

 * * -302: Unexpected failure during write to ThingSpeak

 * * -303: Unable to parse response

 * * -304: Timeout waiting for server to respond

 * * -401: Point was not inserted (most probable cause is the

rate limit of once every 15 seconds)

 * @remark The read functions will return zero or empty if there

is an error. Use this function to retrieve the details.

 * @code

 void loop() {

 String message =

ThingSpeak.readStringField(myChannelNumber, 1);

 int resultCode = ThingSpeak.getLastReadStatus();

 if(resultCode == 200)

 {

 Serial.print("Latest message is: ");

 Serial.println(message);

 }

 else

 {

 Serial.print("Error reading message. Status

was: ");

 Serial.println(resultCode);

 }

 delay(30000);

 }

 * @endcode

 */

 int getLastReadStatus()

 {

 return this->lastReadStatus;

 };

private:

 String getJSONValueByKey(String textToSearch, String key)

 {

142

 if(textToSearch.length() == 0){

 return String("");

 }

 String searchPhrase = String("\"") + key +

String("\":\"");

 int fromPosition = textToSearch.indexOf(searchPhrase,0);

 if(fromPosition == -1){

 // return because there is no status or it's null

 return String("");

 }

 fromPosition = fromPosition + searchPhrase.length();

 int toPosition = textToSearch.indexOf("\"",

fromPosition);

 if(toPosition == -1){

 // return because there is no end quote

 return String("");

 }

 textToSearch.remove(toPosition);

 return textToSearch.substring(fromPosition);

 }

 int abortWriteRaw()

 {

 this->client->stop();

 return ERR_UNEXPECTED_FAIL;

 }

 String abortReadRaw()

 {

 this->client->stop();

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.println("ReadRaw abort - disconnected.");

 #endif

 this->lastReadStatus = ERR_UNEXPECTED_FAIL;

 return String("");

 }

 void setServer(const char * customHostName, unsigned int port)

 {

143

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setServer (URL: \"");

Serial.print(customHostName); Serial.println("\")");

 #endif

 this->customIP = INADDR_NONE;

 this->customHostName = customHostName;

 this->port = port;

 };

 void setServer(IPAddress customIP, unsigned int port)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setServer (IP: \"");

Serial.print(customIP); Serial.println("\")");

 #endif

 this->customIP = customIP;

 this->customHostName = NULL;

 this->port = port;

 };

 void setServer()

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("ts::setServer (default)");

 #endif

 this->customIP = INADDR_NONE;

 this->customHostName = NULL;

 this->port = THINGSPEAK_PORT_NUMBER;

 };

 void setClient(Client * client) {this->client = client;};

 Client * client = NULL;

 const char * customHostName = NULL;

 IPAddress customIP = INADDR_NONE;

 unsigned int port = THINGSPEAK_PORT_NUMBER;

 String nextWriteField[8];

 float nextWriteLatitude;

 float nextWriteLongitude;

 float nextWriteElevation;

 int lastReadStatus;

 String nextWriteStatus;

 String nextWriteTwitter;

 String nextWriteTweet;

 String nextWriteCreatedAt;

 bool connectThingSpeak()

 {

 bool connectSuccess = false;

 if(this->customIP == INADDR_NONE && NULL == this-

>customHostName)

144

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print(" Connect to

default ThingSpeak URL...");

 #endif

 connectSuccess = client-

>connect(THINGSPEAK_URL,THINGSPEAK_PORT_NUMBER);

 if(!connectSuccess)

 {

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print("Failed. Try default IP...");

 #endif

 connectSuccess = client-

>connect(THINGSPEAK_IPADDRESS,THINGSPEAK_PORT_NUMBER);

 }

 }

 else

 {

 if(!(this->customIP == INADDR_NONE))

 {

 // Connect to the server on port 80 (HTTP) at

the customIP address

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print(" Connect to

");Serial.print(this->customIP);Serial.print("...");

 #endif

 connectSuccess = client->connect(this-

>customIP,this->port);

 }

 if(NULL != this->customHostName)

 {

 // Connect to the server on port 80 (HTTP) at

the URL address

 #ifdef PRINT_DEBUG_MESSAGES

 Serial.print(" Connect to

");Serial.print(this->customHostName);Serial.print(" ...");

 #endif

 connectSuccess = client-

>connect(customHostName,this->port);

 }

 }

 #ifdef PRINT_DEBUG_MESSAGES

 if (connectSuccess)

 {

 Serial.println("Success.");

 }

145

 else

 {

 Serial.println("Failed.");

 }

 #endif

 return connectSuccess;

 };

 bool writeHTTPHeader(const char * APIKey)

 {

 if(NULL != this->customHostName)

 {

 if (!this->client->print("Host: ")) return false;

 if (!this->client->print(this->customHostName))

return false;

 if (!this->client->print("\r\n")) return false;

 }

 else

 {

 if (!this->client->print("Host:

api.thingspeak.com\r\n")) return false;

 }

 if (!this->client->print("Connection: close\r\n")) return

false;

 if (!this->client->print("User-Agent: ")) return false;

 if (!this->client->print(TS_USER_AGENT)) return false;

 if (!this->client->print("\r\n")) return false;

 if(NULL != APIKey)

 {

 if (!this->client->print("X-THINGSPEAKAPIKEY: "))

return false;

 if (!this->client->print(APIKey)) return false;

 if (!this->client->print("\r\n")) return false;

 }

 return true;

 };

 int getHTTPResponse(String & response)

 {

 long startWaitForResponseAt = millis();

 while(client->available() == 0 && millis() -

startWaitForResponseAt < TIMEOUT_MS_SERVERRESPONSE)

 {

 delay(100);

 }

 if(client->available() == 0)

 {

146

 return ERR_TIMEOUT; // Didn't get server response

in time

 }

 if(!client->find(const_cast<char *>("HTTP/1.1")))

 {

 #ifdef PRINT_HTTP

 Serial.println("ERROR: Didn't find

HTTP/1.1");

 #endif

 return ERR_BAD_RESPONSE; // Couldn't parse

response (didn't find HTTP/1.1)

 }

 int status = client->parseInt();

 #ifdef PRINT_HTTP

 Serial.print("Got Status of

");Serial.println(status);

 #endif

 if(status != OK_SUCCESS)

 {

 return status;

 }

 if(!client->find(const_cast<char *>("\r\n")))

 {

 #ifdef PRINT_HTTP

 Serial.println("ERROR: Didn't find end of status

line");

 #endif

 return ERR_BAD_RESPONSE;

 }

 #ifdef PRINT_HTTP

 Serial.println("Found end of status line");

 #endif

 if(!client->find(const_cast<char *>("\n\r\n")))

 {

 #ifdef PRINT_HTTP

 Serial.println("ERROR: Didn't find end of

header");

 #endif

 return ERR_BAD_RESPONSE;

 }

 #ifdef PRINT_HTTP

 Serial.println("Found end of header");

 #endif

 String tempString = client->readString();

 response = tempString;

 #ifdef PRINT_HTTP

147

 Serial.print("Response:

\"");Serial.print(response);Serial.println("\"");

 #endif

 return status;

 };

 int convertFloatToChar(float value, char *valueString)

 {

 // Supported range is -999999000000 to 999999000000

 if(0 == isinf(value) && (value > 999999000000 || value <

-999999000000))

 {

 // Out of range

 return ERR_OUT_OF_RANGE;

 }

 // assume that 5 places right of decimal should be

sufficient for most applications

 #if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_SAM)

 sprintf(valueString, "%.5f", value);

 #else

 dtostrf(value,1,5, valueString);

 #endif

 return OK_SUCCESS;

 };

 float convertStringToFloat(String value)

 {

 // There's a bug in the AVR function strtod that it

doesn't decode -INF correctly (it maps it to INF)

 float result = value.toFloat();

 if(1 == isinf(result) && *value.c_str() == '-')

 {

 result = (float)-INFINITY;

 }

 return result;

 };

 void resetWriteFields()

 {

 for(size_t iField = 0; iField < 8; iField++)

 {

 this->nextWriteField[iField] = "";

 }

 this->nextWriteLatitude = NAN;

 this->nextWriteLongitude = NAN;

 this->nextWriteElevation = NAN;

 this->nextWriteStatus = "";

 this->nextWriteTwitter = "";

148

 this->nextWriteTweet = "";

 this->nextWriteCreatedAt = "";

 };

};

extern ThingSpeakClass ThingSpeak;

#endif //ThingSpeak_h

