Skip to main content

Modelling, analysis and design of MAC and routing protocols for wireless body area sensor networks.

Akbar, M. S., 2018. Modelling, analysis and design of MAC and routing protocols for wireless body area sensor networks. Doctoral Thesis (Doctoral). Bournemouth University.

Full text available as:

[img]
Preview
PDF
AKBAR, Muhammad Sajjad_Ph.D._2017.pdf

3MB

Abstract

The main contribution of the thesis is to provide modeling, analysis, and design for Medium Access Control (MAC) and link-quality based routing protocols of Wireless Body Area Sensor Networks (WBASNs) for remote patient monitoring applications by considering saturated and un-saturated traffic scenarios. The design of these protocols has considered the stringent Quality of Service (QoS) requirements of patient monitoring systems. Moreover, the thesis also provides intelligent routing metrics for packet forwarding mechanisms while considering the integration of WBASNs with the Internet of Things (IoTs). First, we present the numerical modeling of the slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) for the IEEE 802.15.4 and IEEE 802.15.6 standards. By using this modelling, we proposed a MAC layer mechanism called Delay, Reliability and Throughput (DRT) profile for the IEEE 802.15.4 and IEEE 802.15.6, which jointly optimize the QoS in terms of limited delay, reliability, efficient channel access and throughput by considering the requirements of patient monitoring system under different frequency bands including 420 MHz, 868 MHz and 2.4 GHz. Second, we proposed a duty-cycle based energy efficient adaptive MAC layer mechanism called Tele-Medicine Protocol (TMP) by considering the limited delay and reliability for patient monitoring systems. The proposed energy efficient protocol is designed by combining two optimizations methods: MAC layer parameter tuning and duty cycle-based optimization. The duty cycle is adjusted by using three factors: offered network traffic load, DRT profile and superframe duration. Third, a frame aggregation scheme called Aggregated-MAC Protocol Data Unit (A- MPDU) is proposed for the IEEE 802.15.4. A-MPDU provides high throughput and efficient channel access mechanism for periodic data transmission by considering the specified QoS requirements of the critical patient monitoring systems. To implement the scheme accurately, we developed a traffic pattern analysis to understand the requirements of the sensor nodes in patient monitoring systems. Later, we mapped the requirements on the existing MAC to find the performance gap. Fourth, empirical reliability assessment is done to validate the wireless channel characteristics of the low-power radios for successful deployment of WBASNs/IoTs based link quality routing protocols. A Test-bed is designed to perform the empirical experiments for the identification of the actual link quality estimation for different hospital environments. For evaluation of the test-bed, we considered parameters including Received Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), packet reception and packet error rate. Finally, there is no standard under Internet Engineering Task Force (IETF) which provides the integration of the IEEE 802.15.6 with IPv6 networks so that WBASNs could become part of IoTs. For this, an IETF draft is proposed which highlights the problem statement and solution for this integration. The discussion is provided in Appendix B.

Item Type:Thesis (Doctoral)
Additional Information:If you feel that this work infringes your copyright please contact the BURO Manager.
Uncontrolled Keywords:MAC protocols; quality of service
Group:Faculty of Science & Technology
ID Code:31049
Deposited By: Symplectic RT2
Deposited On:24 Jul 2018 08:28
Last Modified:09 Aug 2022 16:04

Downloads

Downloads per month over past year

More statistics for this item...
Repository Staff Only -