
Physics-based Modelling,

Simulation, Placement and

Learning for Musculo-Skeletal

Animations

Fabio Turchet

A thesis submitted in partial fulfillment of the requirements

of Bournemouth University for the degree of Doctor of

Engineering

Supervisors: Dr Oleg Fryazinov,

Dr Sara Schvartzman

January, 2018



Copyright statement

This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright rests with its

author and due acknowledgement must always be made of the use of any

material contained in, or derived from, this thesis.

i



Contents

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . xv

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

I Introduction and Background 1

1 Introduction 2

1.1 Research Problems overview . . . . . . . . . . . . . . . . 2

1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . 4

1.3 Character Effects Pipeline . . . . . . . . . . . . . . . . . 5

1.3.1 Musculo-skeletal Systems . . . . . . . . . . . . . . 7

1.4 The Companies . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Prime Focus World . . . . . . . . . . . . . . . . . 9

1.4.2 MPC . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3 Experience at Prime Focus in a nutshell . . . . . 10

1.4.4 Experience at MPC in a nutshell . . . . . . . . . 11

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 15

2.1 Anatomy Background . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Bones . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Muscles . . . . . . . . . . . . . . . . . . . . . . . 16

ii



2.1.3 Tendons . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Fascia . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.5 Fat . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.6 Skin . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.7 Veins . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Muscle systems background . . . . . . . . . . . . . . . . 22

2.3 Solvers and Methods for Deformable Objects . . . . . . . 23

2.3.1 Offline Physics-Based Methods . . . . . . . . . . 26

2.3.2 Interactive and Real-Time Methods . . . . . . . . 29

2.3.3 Procedural Methods . . . . . . . . . . . . . . . . 30

2.3.4 Methods based on acquisition and machine learning 31

II Projects 38

3 Muscle Modelling 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Muscle Primitives fixing . . . . . . . . . . . . . . 41

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Fibre Curves . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Tendon Reconstruction . . . . . . . . . . . . . . . 46

3.3.3 Generation of muscles geometry . . . . . . . . . . 48

3.3.3.1 Elastic Model and Forces . . . . . . . . 49

3.3.4 Fibre Field . . . . . . . . . . . . . . . . . . . . . 52

3.4 Implementation and Results . . . . . . . . . . . . . . . . 53

4 Musculo-skeletal Simulation 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Test 1: current MPC’s muscle system . . . . . . . 59

4.2.2 Test 2: only fat layer . . . . . . . . . . . . . . . . 59

4.2.3 Test 3: simulated passive muscles . . . . . . . . . 60

4.2.4 Test 4: simulated “active” muscles . . . . . . . . 61

4.2.5 Test 5: fascia driven by ”active” muscles and fat

layer driven by fascia . . . . . . . . . . . . . . . . 61

iii



4.2.6 Analysis of the tests . . . . . . . . . . . . . . . . 62

4.3 Solver and Material Models . . . . . . . . . . . . . . . . 63

4.3.1 Simulation Model Construction . . . . . . . . . . 63

4.3.2 Solver . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Constitutive Material Model . . . . . . . . . . . . 70

4.3.4 Boundary Conditions (Constraints) . . . . . . . . 75

4.3.4.1 Springs view . . . . . . . . . . . . . . . 76

4.3.4.2 Constrained Dynamics view . . . . . . . 77

4.4 Implementation and Results . . . . . . . . . . . . . . . . 78

4.4.1 Bones . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Muscles and Tendons . . . . . . . . . . . . . . . . 79

4.4.3 Fascia, Fat and Skin . . . . . . . . . . . . . . . . 85

5 Muscle Placement 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Initial muscle data preparation . . . . . . . . . . 100

5.3.2 Muscle placement . . . . . . . . . . . . . . . . . . 101

5.3.3 Sculpting . . . . . . . . . . . . . . . . . . . . . . 103

5.3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Implementation and Results . . . . . . . . . . . . . . . . 105

6 Implicit Skinning Extension 108

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.1 Angle Fields Preparation . . . . . . . . . . . . . . 112

6.3.2 Curve Creation . . . . . . . . . . . . . . . . . . . 113

6.3.3 Wrinkle Field . . . . . . . . . . . . . . . . . . . . 115

6.3.4 Projection . . . . . . . . . . . . . . . . . . . . . . 116

6.3.5 Parameters . . . . . . . . . . . . . . . . . . . . . 117

6.4 Implementation and Results . . . . . . . . . . . . . . . . 118

7 Pilot Study on Deep Learning for Deformable Objects 126

iv



7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.1.1 Background . . . . . . . . . . . . . . . . . . . . . 127

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4.1 Method based on images / UV . . . . . . . . . . 134

7.4.2 Geodesic Convolution . . . . . . . . . . . . . . . . 136

7.5 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . 137

7.5.1 Constraints . . . . . . . . . . . . . . . . . . . . . 138

7.5.2 Future frames data augmentation . . . . . . . . . 139

7.5.3 Future frames partial derivatives accumulation . . 139

7.5.4 RNN . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.5.5 Unsupervised Loss Function . . . . . . . . . . . . 141

7.5.6 SpatioTemporal Convolution . . . . . . . . . . . . 141

7.6 Training and Testing Process . . . . . . . . . . . . . . . 142

7.7 Implementation and Results . . . . . . . . . . . . . . . . 146

III Conclusions and Future Work 168

8 Conclusions and Future Work 169

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.1.1 Muscle primitives modelling . . . . . . . . . . . . 171

8.1.2 Muscle simulation framework . . . . . . . . . . . 172

8.1.3 Placement of simulation-ready muscles . . . . . . 172

8.1.4 Procedural wrinkles . . . . . . . . . . . . . . . . . 173

8.1.5 Deep learning for deformable objects . . . . . . . 174

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 174

References 178

A List of publications 192

B Material Derivation 193

B.1 Muscle material. Energy formula . . . . . . . . . . . . . 193

C Material Derivation (cont.) 200

v



C.1 Derivation of dPdF for StVk material . . . . . . . . . . . 200

D EngD Experience Conclusions 204

vi



List of Figures

1.1 Simplified 3D movie production pipeline. . . . . . . . . . 5

2.1 Skin anatomy. From top to bottom: epidermis (skin),

dermis, fat tissue, muscle c© (Massage Research 2013). . 16

2.2 Hierarchical structure of a striated muscle (Lee et al. 2012).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Types of muscles based on their shape and internal fibres

architecture (Lee et al. 2012). . . . . . . . . . . . . . . . 18

2.4 Fascia at work c© (Fortier 2013). . . . . . . . . . . . . . 19

2.5 c© Fascia fibres (Myotherapies 2013). . . . . . . . . . . 20

2.6 Front, back and side muscles of arm and torso (MPC mus-

cles generated from anatomical sheets). . . . . . . . . . . 24

3.1 A slice of the arm muscle primitives showing intricate in-

tersections. . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 (a) intersecting geometries of the forearm; (b) solved in-

tersections, (c) highlighted fixed areas. . . . . . . . . . . 42

3.3 Overview of the pipeline. (a) Input skin mesh and skele-

ton; (b) sketched patches of superficial muscles; (c) in-

flated output muscles (opacity used to show underlying

structures) ; (d) associated fibres . . . . . . . . . . . . . . 44

3.4 Frames at progressive times of the extension of fibre curves

for tendon reconstruction via the use of a flocking system. 46

vii



3.5 Top: initial bicep patch segmented from the character’s

skin; initial fibre curves in green; point sets SP and EP

in magenta and cyan; target point sets ASP and AEP in

red and blue, respectively; bottom: tendon reconstruction

via flock simulation. . . . . . . . . . . . . . . . . . . . . . 47

3.6 (a) Deltoid extruded patch; (b) inflated muscle; (c) new

rest shape after smoothing and relaxation. . . . . . . . . 48

3.7 (a) Deltoid extruded patch with collision objects; (b) par-

tial inflation; (c) full inflation. . . . . . . . . . . . . . . . 50

3.8 Slices at different depth of the inflated muscles of the arm.

Depth of the slicing plane increasing progressively from (a)

to (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 (a) Generated bicep muscle; (b) Fibre curves and interpo-

lated internal fibres; (c) Rest pose mesh; (d) Embedded

mesh of deformed pose obtained using a tetrahedral FEM

simulation with anisotropic material (isometric contrac-

tion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 (a) Slice of the full volumetric model; (b) Renderable skin 58

4.2 (a) Shrunk fascia; (b) fat volumetric layer . . . . . . . . 59

4.3 (a) Skeleton ; (b) Attached muscles; (c) Muscle deformation 60

4.4 (a) Line muscles with driving sphere volumes for attach-

ment (in yellow) . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Deformation of (a) Muscles; (b) Fascia; (c) Fat; (d) Ren-

derable skin . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Anatomical geometry for prototype testing. On the left

the renderable/embedded mesh from which its conforming

volumetric counterpart is generated (right). . . . . . . . . 65

4.7 Transverse isotropy . . . . . . . . . . . . . . . . . . . . 70

4.8 Material response of muscle fibre (active), tendons (pas-

sive) and their combination. (Teran et al. 2003) . . . . . 72

4.9 Temporal frames extracted from an animation of the humerus

rotating with biceps brachii having non activated fibres. . 81

4.10 Temporal frames extracted from an animation of the humerus

rotating with biceps brachii having activated fibres. . . . 82

viii



4.11 Full arm simulation. View 1. . . . . . . . . . . . . . . . . 88

4.12 Full arm simulation. View 1. (cont.) . . . . . . . . . . . 89

4.13 Full arm simulation. View 2. . . . . . . . . . . . . . . . . 90

4.14 Full arm simulation. View 2. (cont.) . . . . . . . . . . . 91

4.15 Full arm simulation. View 3. . . . . . . . . . . . . . . . . 92

4.16 Full arm simulation. View 3. (cont.) . . . . . . . . . . . 92

4.17 Full arm simulation layers. View 1. Muscles in red, fascia

in yellow and fat/skin in blue. . . . . . . . . . . . . . . . 93

4.18 Full arm simulation layers. View 1. Muscles in red, fascia

in yellow and fat/skin in blue. (cont.) . . . . . . . . . . . 94

4.19 Full arm simulation layers. View 2. Muscles in red, fascia

in yellow and fat/skin in blue. . . . . . . . . . . . . . . . 95

4.20 Full arm simulation layers. View 2. Muscles in red, fascia

in yellow and fat/skin in blue. (cont.) . . . . . . . . . . . 96

5.1 Main steps of the system for a scene with biceps brachii

and brachialis muscles. From left to right: (a) rest shape

of a muscle; (b) dynamic placement; (c) context-aware

sculpting of intersection-free geometry with tetrahedral

cage deformation; (d) simulation with contraction of the

newly created muscle. . . . . . . . . . . . . . . . . . . . . 100

5.2 Input tetrahedral and embedded meshes for the biceps

brachii. Highlighted in green and with a semi-transparent

shader is the low resolution tetrahedral cage. In dark gray

the underlying high resolution embedded mesh. . . . . . 100

5.3 Placement of the tendon handles in place over the humerus

bone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Sculpting tool interface in Maya. . . . . . . . . . . . . . 103

5.5 Some steps of the sculpting process in which the mesh is

pushed out but collides with an existing adjacent muscle

(in gray). The red circle represents the Maya brush gizmo.

The wrap deformer acts in real-time at each brush stroke,

in this figure from the embedded mesh in red onto the

cage in pink. . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



5.6 Some steps of the simulation process, in which the bending

of the elbow joint activates the contraction of the biceps

brachii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Overview of the workflow of the system. (a) Angle field

gradients; (b) Seeds and curves; (c) Final result (meshes

are subdivided); (d) Real example of a left thumb. . . . . 108

6.2 In pink f1 and blue f2, two HRBF fields; angles between

their gradients are shown in yellow. . . . . . . . . . . . . 111

6.3 Angle field generation using one-ring neighbours (a) and

connected vertices (b). . . . . . . . . . . . . . . . . . . . 121

6.4 Wrinkles generated from the fields in Figure 6.3. . . . . . 122

6.5 Plugin Parameters. . . . . . . . . . . . . . . . . . . . . . 123

6.6 (a) Default Dual Quaternion skinning; (b) Implicit Skin-

ning; (c) Angle gradient field (non biased); (d) Seeds and

curves; (e) Wrinkles after projection; (f) Picture of a real

thumb. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7 Comparison of the results obtained for an arm. (a)-(d)

front and back views using topology biased field; (e)-(h)

front and back views using normal, non biased field. . . 125

7.1 Lee et al. (2011) . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Low and high resolution plane geometries used for the

dataset creation, with constraining objects on two of the

sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 One frame of the animations for the scenes of the dataset. 132

7.4 Architecture of the convolutional neural network. . . . . 134

7.5 Input velocity field in UV space . . . . . . . . . . . . . . 135

7.6 Input velocity field in UV space in Voronoi style . . . . . 135

7.7 Training (blue) and testing (red) curves for low res loss

with future samples. . . . . . . . . . . . . . . . . . . . . 143

7.8 Training (blue) and testing (red) curves for low res loss

with future partial derivatives. . . . . . . . . . . . . . . . 144

7.9 Training (blue) and testing (red) curves for low res loss

with RNN. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

x



7.10 Training (blue) and testing (red) curves for high res loss

with future samples. . . . . . . . . . . . . . . . . . . . . 147

7.11 Training (blue) and testing (red) curves for high res loss

with future partial derivatives. . . . . . . . . . . . . . . . 148

7.12 Training (blue) and testing (red) curves for high res loss

with RNN. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.13 Training (blue) and testing (red) curves for high res loss

with unsupervised loss function. . . . . . . . . . . . . . . 149

7.14 Training (blue) and testing (red) curves for high res loss

without future samples for images. . . . . . . . . . . . . 150

7.15 Training (blue) and testing (red) curves for high res loss

with future samples for images. . . . . . . . . . . . . . . 150

7.16 Training (blue) and testing (red) curves for high res loss

with future partial derivatives. . . . . . . . . . . . . . . . 151

7.17 Training (blue) and testing (red) curves for high res loss

with RNN for images. . . . . . . . . . . . . . . . . . . . . 151

7.18 Training (blue) and testing (red) curves for high res loss

with spatio-temporal convolution for images. . . . . . . . 152

7.19 Low res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for RNN. 153

7.20 Low res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for partial

derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.21 Low res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for future

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.22 High res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for RNN. 157

7.23 High res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for partial

derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.24 High res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for future

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xi



7.25 High res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for un-

supervised loss. . . . . . . . . . . . . . . . . . . . . . . . 160

7.26 High res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene without

future samples (images). . . . . . . . . . . . . . . . . . . 161

7.27 High res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for future

samples (images). . . . . . . . . . . . . . . . . . . . . . . 162

7.28 High res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for partial

derivatives (images). . . . . . . . . . . . . . . . . . . . . 163

7.29 High res pairs of results (predicted, ground truth) for sam-

pled frames in range 100-160 of the testing scene for RNN

(images). . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.30 High res pairs of results (predicted, ground truth) for

sampled frames in range 100-160 of the testing scene for

spatio-temporal (images). . . . . . . . . . . . . . . . . . 165

7.31 UVs. Nodes corresponding to the rendered 2D mesh for

field values interpolation in green. . . . . . . . . . . . . . 166

B.1 Formulas reproduced from Blemker 2005 paper. . . . . . 197

xii



List of Tables

1.1 List of contributions . . . . . . . . . . . . . . . . . . . . 14

2.1 Comparison of deformable objects methods . . . . . . . . 32

xiii



Abstract

In character production for Visual Effects, the realism of deformations

and flesh dynamics is a vital ingredient of the final rendered moving im-

ages shown on screen. This work is a collection of projects completed

at the hosting company MPC London focused on the main components

needed for the animation of musculo-skeletal systems: primitives mod-

eling, physically accurate simulation, interactive placement. Comple-

mentary projects are also presented, including the procedural model-

ing of wrinkles and a machine learning approach for deformable objects

based on Deep Neural Networks. Primitives modeling aims at proposing

an approach to generating muscle geometry complete with tendons and

fibers from superficial patches sketched on the character skin mesh. The

method utilizes the physics of inflatable surfaces and produces meshes

ready to be tetrahedralized, that is without compenetrations. A frame-

work for the simulation of muscles, fascia and fat tissues based on the

Finite Elements Method (FEM) is presented, together with the theoreti-

cal foundations of fiber-based materials with activations and their fitting

in the Implicit Euler integration. The FEM solver is then simplified in or-

der to achieve interactive rates to show the potential of interactive muscle

placement on the skeleton to facilitate the creation of intersection-free

primitives using collision detection and resolution. Alongside physics

simulation for biological tissues, the thesis explores an approach that

extends the Implicit Skinning technique with wrinkles based on convo-

lution surfaces by exploiting the gradients of the combination of bones

fields. Finally, this work discusses a possible approach to the learning of

physics-based deformable objects based on deep neural networks which

makes use of geodesic disks convolutional layers.

xiv
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Introduction and Background
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Chapter 1

Introduction

Visual Effects (VFX) is a rather unique area of modern audio-visual pro-

ductions: in the same medium art and technology are blended together

to give the audience an emotional experience, ultimately supporting the

story that the director wants to tell. This thesis focuses on one of the

stages of the movie VFX production and in particular on the methods

and techniques used to make digital characters in motion look realistic.

In order to achieve this desired level of realism, physics-based animation

(PBA) is applied in such a way that the motion created by the animators

is enhanced by the physically plausible deformation of anatomical tissues

(muscles, fascia, fat and skin). This deformation makes the character

look alive through effects such as jiggling, wrinkles and bulging, which,

overall, contribute to bridge the gap towards crossing the so-called un-

canny valley. In this chapter, topics such as the VFX pipeline, physics

solvers and anatomy are introduced to provide the necessary background

to follow the work and frame it in the global setting of movie production.

1.1 Research Problems overview

There are many reasons why a visual effects company specializing in

digital creatures should invest in innovation towards a physically-based

character deformation pipeline. First of all, the level of realism that
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can be achieved is much higher than standard methods: the world is

volumetric, objects including bodies and tissues are not hollow (as mod-

elled typically in VFX), but dense and respond to the laws of physics,

collisions and contacts. Movies nowadays contain massive amount of

computer generated characters and it is important to not disappoint the

main customers of this industry: the people and the fans going to the

cinemas or paying for streaming services to watch amazing, thrilling mov-

ing pictures. Therefore it is crucial to deliver visually stunning, plausible

and integrated computer generated content.

Because we are immersed in our 3D world and our brains are so special-

ized in detecting anomalies in dynamic behaviours that conflict with our

internal expectation of physics, producing unrealistic deformations for

the body and the face of a character in motion would ruin the sense of

immersion of the beholder and these anomalies would be quickly picked

up, consciously or unconsciously. Our perception is tuned to the laws

of physics since childhood: for instance, in real-time we make inferences

and predictions about the trajectory that an object is taking or the jig-

gling of a body in motion, based on visual clues, structure and prior

knowledge about the material properties. This leads us to make predic-

tions that put in words would be for instance: “This character looks fat

and with a lot of mass therefore will move slower than a muscular and

fit one” , or: “This ball shot by a cannon looks like metal so it will not

bounce much when impacting with the ground”. Therefore, even though

an excessive stress on the physical accuracy of the simulations is not the

real goal pursued by Visual Effects artists, a physics-based approach to

anatomical simulation provides many benefits. Visual plausibility and

being faithful to the director’s vision are priority instead and it would be

an overkill adopting blindly a medical level accuracy in VFX, considering

the computation times and artistic effort required.

In practice, the choice of which character pipeline to adopt boils down to

deciding where to put the complexity of the process. Procedural deform-

ers and standard skinning techniques allow achieving quickly visually

good results, but require a lot of artistic effort in sculpting blend shape

correctives (i.e. deformed shapes with the same topology but different
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vertex positions that get interpolated); dynamics have to be achieved

with simulations on top of the cached geometry or with fast deformers

that “fake” secondary movements. Despite giving great level of control,

the problem of this approach is that it relies exclusively on the artist’s

ability to animate, with several constraints such as volume preservation.

On the other hand an approach purely physics-driven instead puts the

complexity at the beginning of the chain. Even though artists have to

spend significant effort setting up the inputs of the system such as skele-

ton, muscles, fascia, and fat layer geometries, they can benefit at a later

stage from the use of realistic materials and accurate, predictable results.

Nevertheless, in practice the problems of this approach are at least as

many as its benefits: being so dependent on the accuracy of the inputs,

when changes have to be made at the beginning of the chain, often the ex-

pensive simulations have to be recomputed. In addition, controlling the

behaviour of the solver (which has to solve for collisions, material model

forces, constraints) and the shape of the resulting anatomical model is

not a trivial task, especially in a production environment.

1.2 Aims and Objectives

This work aims to avoid the drawbacks of purely physics-based ap-

proaches and is not intended to achieve medical level results. Rather

than focusing only on improving the speed of the solver itself by switch-

ing from FEM to other alternatives (Projective Dynamics (Bouaziz et al.

2014), PBD (Müller et al. 2007) and more recently XPBD (Macklin et al.

2016)), this work shows how to cope with the problems of complexity

arising from the rest of the pipeline, in particular its inputs. We can

say, using a mathematics metaphor, that the optimal character pipeline

is a weighted average of the costs and benefits of all the aforementioned

methods that maximizes the visual realism of the output and minimizes

its production cost by considering parameters such as: computation time,

difficulty to setup, effort required to correct the output, artistic control,

stability.
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Figure 1.1: Simplified 3D movie production pipeline.

The objectives of this work can be summarized as follows:

O1 To research and develop physics-based volumetric simulation meth-

ods for characters.

O2 To demonstrate that ad-hoc physics-based methods are a good so-

lution to the problem of the production of realistic deformations in

Visual Effects.

O3 To show that new tools and approaches are needed to overcome

the drawbacks of physics-based methods such as input primitives

creation and anatomy placement.

O4 To present possibilities of applying machine learning to the genera-

tion of physically plausible deformations, with the intent of avoid-

ing computationally expensive solver operations.

1.3 Character Effects Pipeline

In this section a typical character production pipeline is briefly described,

positioning it in the context of the production of the whole movie.

Creating a movie which combines live action plates with computer-generated

imagery (CGI) in a realistic seamless way is an extremely complex, time

consuming and challenging task. Hundreds of artists, technical directors,

animators, engineers, developers and producers have to work on some-

times thousands of shots, ensuring that the resulting moving images are
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consistent across the whole movie and that the story is conveyed at its

best. Figure 1.1 shows a simplified version of the pipeline of any 3D

moving picture production that uses computer generated assets. This is

briefly described in the following paragraphs.

Character production is just a part of the pipeline and like everything

else in the world of creative industries, it starts with an idea often in the

form of a description by words or rough sketches. Taking that initial idea,

the art department provides detailed concepts, proportions, exact mea-

surements, comparative scale sheets and scans (when available) in order

for the modellers to start creating initial versions of a mesh. The depart-

ments of interest for the scope of this work are Rigging and TechAnim.

Rigging is responsible for the creation of three kinds of setups: a low res-

olution puppet rig usable in real time by the animators; a facial setup;

a high resolution final quality rig comprising anatomy (skeletal bones,

dynamic muscles, fat, dynamic skin effects such as wrinkles). A variety

of solvers, deformers and techniques allow the completion of this task

for which the goal is to deliver to the next stages of the VFX pipeline

a high resolution mesh cache which deforms in a realistic way (a cache

is a file containing the encoding of the vertex positions per frame). The

rigging department collaborates closely with TechAnim who take care

of solving character effects problems that need ad-hoc solutions such as

contacts with other characters and objects and extra dynamics on the

tissues. This is often done on a shot by shot basis. After TechAnim, the

pipeline continues to lighting, shading and rendering. The sets produced

by layout, the digital matte paintings by the art department, the digital

effects (particles, fluids, destructions,explosions etc) and the curves by

the groom department and the animations are combined to produce the

final pixels of the images we admire on the screen.

The creation of a 3D character setup is often a long and iterative process.

In the case of digital doubles (perfect 3D digital versions of a real actor)

the anatomy is known a priori and the rigging process can start from a

human-like template. For a fantastic creature the process is similar, but

a greater amount of conceptualization work is needed to come up with

a plausible inner anatomy for it, often creating a unique set of bones
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and muscles that never existed before. This task is informed by existing

anatomies of natural world species, often combining different parts of

them (for example in the case of a dragon-like creature the references

could be snakes, lizards, dinosaurs).

1.3.1 Musculo-skeletal Systems

There are areas of the Visual Effects pipeline that have received a lot

of attention since the early years of computer graphics research. In par-

ticular the simulation of natural phenomena such as water, gase and

fracturing of materials. Deformable objects have also been researched

for at least thirty years, but their application to anatomical simulation

and character effects is relatively recent, pushed and pioneered in par-

ticular by companies such as Weta Digital (Clutterbuck & Jacobs 2010),

MPC, ILM (Comer et al. 2015) and Framestore, who have to produce

photo-realistic CGI. “Muscle systems” as a broad term refers to a set

of techniques and workflows intended to reproduce in 3D the internal

anatomy shape and physical behaviour of human-like or fictional charac-

ters, with the goal of obtaining dynamic deformation of skin, flesh and

other biological tissues which is indistinguishable from reality. For a dis-

cussion of these tissues from an anatomical point of view, please refer to

Chapter 2.

A physics-based system for flesh simulation comprises various iterative

stages to be completed. First, based on anatomy atlases and previous

knowledge or scan data, modelling artists create the geometry of:

• Skeletal bones

• Muscles and tendons (mainly the superficial ones)

• Internal organs (optional)

• Fat tissue

• Skin (renderable geometry)

• Veins (optional)
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• Facial blend shapes

This geometry should be ideally intersection-free, one of the reasons be-

ing that intersections would generate unwanted initial spurious contact

forces during simulation. For this purpose asset checking tools can be

used before sending the meshes down the pipeline. This problem is dis-

cussed in more detail along with potential solutions in Chapter 3 in

which a workflow for muscle placement that prepares simulation-ready

anatomical geometry is presented. Once the geometry is approved, rig-

gers place skeletal joints where articulation is needed, take care of the

skinning of the mesh to these transformation points, add deformers to

achieve procedural effects for sliding, contact and jiggling and custom

setups for props. Riggers also create the set of control gizmos for body

and face that animators will keyframe and from which animation curves

will be later exported.

One additional advantage of using an anatomy-based approach is con-

nected to the fact that rigging and character effects are just a part of

the larger movie VFX pipeline. In fact having the geometry and the

deformation of internal organs, veins, muscles, tendons, bones and fat

allows the rendering stage to achieve extremely visually realistic results,

by assigning different shaders (procedural programs that describe how

the light should interact with the geometry to render a desired mate-

rial look) to each layer and using complex subsurface scattering diffusion

algorithms for the outer skin. This, when paired with physically-based

rendering of materials, conveys a level of realism that requires less effort

than using geometry without internal anatomy. Research on anatomy-

based approaches constitutes the core of this work which was carried out

in two London based companies.

1.4 The Companies

My Engineering PhD (EngD) experience with the Centre of Digital En-

tertainment began with the first of two companies in which I completed

the 4 years programme. Prime Focus World gave the opportunity to
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work on a variety of Research and Development (RnD) projects at their

London studio. A bit after the end of the first year though, the company

underwent a series of structural and business changes which led to lose

the researcher job position and forced to search for a new hosting com-

pany. After some interviews, I got offered a position at MPC London

to continue the EngD. Even though the topics of the research changed

after the transition, the main area stayed the same and MPC provided a

better research environment. Below is a summary of the two companies

and a brief description of the experience in terms of completed projects.

1.4.1 Prime Focus World

Prime Focus World (PFW) is a film-making partner to international stu-

dios and film production companies, providing world-class creative ser-

vices, pioneering technology services and intelligent financial solutions

on a global scale. From script to screen, PFW partners with produc-

tion companies and brands to develop and deliver animated CG content,

offering the scale and experience to deal with projects of any size. An-

imation credits include a number of full-length feature films and over

forty episodes of a fully CG animated TV show for a major global toy

brand. In 2014, PFW merged its VFX business with Double Negative

(Dneg), an Academy Award winning VFX industry leader with facilities

in London, Vancouver and Mumbai. PFW was the first company in the

world to convert a full Hollywood film from 2D to 3D, and its patented,

award-winning stereo conversion process has been used on more block-

buster Hollywood films than any other.

1.4.2 MPC

The Moving Picture Company (MPC) is a London based VFX house. It

has been one of the global leaders in VFX for over 25 years and count-

ing, with industry-leading facilities in London, Vancouver, Montreal, Los

Angeles, New York, Amsterdam, Bangalore and Mexico City. Some of

their most famous projects include blockbuster movies such as Godzilla,
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the Harry Potter franchise, X-Men, Prometheus, Life of Pi, Guardians of

the Galaxy and The Jungle Book. The services they provide include con-

cept design, pre-viz, shoot supervision, 2D compositing, 3D/CG effects,

animation, motion design, software development, digital & experiential

production, colour grading for advertising and any combination of these

services.

1.4.3 Experience at Prime Focus in a nutshell

From October 2013 to early January 2013 I worked at Prime Focus on the

development of Nuke plugins for the View-D department. This depart-

ment is the one that focuses on the technology for the stereo conversion

of movies to stereoscopic 3D through proprietary software, in particu-

lar custom nodes for Eyeon Fusion. Therefore my initial tasks were to

convert some of these nodes to The Foundry’s Nuke compositing pack-

age. I developed various nodes (plugins) that were tools to analyze single

frames and sequences of images in order to visually and numerically de-

tect spurious pixels. These nodes were used for disparity maps and were

aimed to help the artist to find anomalies in sequences generated by

Ocula. One of these nodes made use of QT drawing tools to integrate

a dynamic histogram to facilitate the artist setting thresholds on a UI

rather than via float inputs. In that period I had the opportunity to learn

Nuke C++ NDK (API) and deepen my knowledge of QT. Starting from

mid January 2014, I could concentrate more on actual research and ex-

ploration of relevant topics. Therefore I started studying literature about

the techniques used in computer graphics for soft body deformation and

fracturing. The idea was to find ways to express materials in terms of

their microstructures to solve the problem of the lack of detail in the

internal parts of fractured objects. From there the interest shifted to the

modelling and simulation of heterogeneous materials because of the need

to approximate real world materials with more accuracy. Anisotropy is

a characteristic of many interesting real world materials and its appli-

cation to computer graphics is still somewhat limited, therefore worth

exploring. Towards the third quarter of the year, so around June 2014
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the company proposed 2 topics:

• creation of huge vegetation landscapes and scenarios with opti-

mization both for modelling and rendering in mind. The system

had to be extremely efficient and user friendly and support effects

like wind and contact from characters, ideally crowds;

• large scale cloud simulation with fluids and control.

Therefore I started researching the simulation of clouds as a fluid and

other atmospheric effects. Unfortunately a few months later I lost the po-

sition because of the restructuring of the company and the clouds project

remained at the level of literature review and very early implementation.

1.4.4 Experience at MPC in a nutshell

At MPC there was the need to prototype a system to prove the potential

of the physics-based techniques developed in engineering and academic

settings. The first months at the company were spent implementing in

Maya and extending the Implicit Skinning framework (Vaillant et al.

2013), a procedural method that makes use of distance fields. This

proved to be a really good way to get used to the company tools and

practices. Also, it introduced me to the positive collaboration with my

Industrial Supervisor and the rest of the RnD team. Procedural meth-

ods are in general fast and work well for secondary characters, but hero

characters with detailed anatomy require more advanced techniques, es-

pecially to achieve good dynamics effects such as skin sliding and fat

jiggling. Therefore, the research proceeded towards the extension of an

open source Finite Elements library (Sin et al. 2013a) to create a system

for tissue simulation, equipped with constraints and fibre activation. It

gave the foundations and showed the path to use physics for other parts

of the character pipeline which constituted problems in a practical pro-

duction environment. In particular, even if the system showed good

potential, it became clear that the inputs of the systems and the way to

create rigs in this new anatomical manner were problematic and needed

to be addressed. In fact, in a real production, the solver itself constitutes
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a necessary but not sufficient condition to achieve the results that rig-

gers and Effects Technical Directors (FX TDs) envision for the human or

creature under consideration. What makes the difference is not only the

presence of tools and methods to prepare the setup needed by the solver,

but also to control the behaviour of the solver (artistic control). This

constituted the motivation to carry on research for the primitive mod-

elling tool based on inflation and the interactive placement tool which, as

a by-product, led to publication. Another motivation for the shift from

the central importance of the solver and simulation method towards side

tools and techniques to help artists in the anatomical inputs work was

the fact that, concurrently to my experience at MPC, an external player

came to the market with a plugin for tissue simulation (Jacobs et al.

2016). The plugin was not adopted by MPC, a fact that confirmed the

will of the company to push instead on the existing proprietary internal

technology (successfully used for the Oscar-winning movie ’The Jungle

Book’ ) and carrying on Research and Development (RnD) on the tools

needed to ensure a proper transition to physics-based character anima-

tion. In that period towards the end of the third year, my industrial

supervisor changed.

In the final period of the EngD, driven both by personal interest and

MPC’s awareness of its growing potential, I started to focus on ma-

chine learning. Encouraged by some very recent existing research on

data-driven fluid simulation and other researchers in the mother com-

pany Technicolor, I dedicated my time towards a project using the now

popular Deep Neural Networks running on powerful Graphics Processing

Units (GPUs) with the goal of learning the physics of deformable objects

simulation. The outcomes of the project are described in Chapter 7.

Even though the prototypes developed have not been used in production,

at the end of this experience some valuable lessons have been learned to

improve future systems as discussed in part III.

In addition to the publications listed in appendix A, three software de-

partment presentations were given at MPC and one at a conference of a

leading company in rendering technology held in Sofia, Bulgaria (Chaos
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Group 2015).

1.5 Contributions

Table 1.1 summarizes some of the problems described above; it contains

also the outcomes of the work in terms of public engagement and publi-

cations. The contributions consist of:

1. The creation of a custom simulation framework using FEM built

on top of the VEGA library to help the company in testing a

new physically-based approach to character deformation. Formu-

las were derived to implement muscle activations for a constitutive

material enriched with fibres. Constraints and collisions were also

added to the framework, contributing to the creation of a usable

prototype.

2. The creation of a novel method consisting of an interactive physics-

based design of muscle anatomical geometries ready to be simu-

lated.

3. The development of tools and techniques to interactively place mus-

cle geometries on a skeletal bones rig taking into consideration col-

lisions.

4. A procedural method for skinning using implicitly-defined scalar

fields was extended to create wrinkle effects.

5. The investigation of the application of Deep Learning to the sim-

ulation of deformable objects with the aim of improving the speed

of a standard solver.

The list of publications is presented in appendix A.

The five projects listed above are united by the common denominator

of the research and development of techniques to improve the realism of

character deformations in a movie pipeline. In fact, the muscle primitives

obtained with the superficial patch system can provide the input for both

the physics engine and the placement tool. The procedural wrinkle effects
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Problem Contribution Publication/Outcome

Transition to PBA Tissue framework FMX 2015 presentation

Input setup Superficial patches Eurographics 2017

Artistic Control Muscle placement Siggraph 2016

Procedural Deformers Wrinkles for Implicit Skinning
CVMP 2015 and
Siggraph Asia 2015

Speed of the solver Deep learning Internal Presentation

Table 1.1: List of contributions

could be added as a post process on a coarse simulated geometry and the

pilot machine learning approach could be used at the end of the pipeline

to speed up the whole deformation system.

Besides this input/output logical connection, exploring procedural ap-

proaches as first project (in a chronological sense), also gave the possi-

bility of qualitatively evaluating the results later against physics based

approaches obtained with the simulator.

1.6 Thesis Outline

This thesis is structured as follows. In part I this first chapter provides

an introduction to the hosting companies, the character effects pipeline

adopted in modern movie production and an overview of the projects

completed; chapter 2 gives the necessary background on anatomy and a

general literature review on physics solvers. Part II describes five projects

(chapters 3-7) in a portfolio style: each one contains its own related

work and conclusions, explaining the relation and connection with the

other projects in an organic way. Part III discusses the results from

a global perspective and draws conclusions on the work done, together

with all the future work to improve the presented methods. Finally, a

list of publications and detailed derivations of formulas are shown in the

appendices.
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Chapter 2

Background

The problems that this work tackle lie at the intersection of multiple

disciplines: anatomy, biomechanics, computer science, art production.

Therefore in this chapter some foundational knowledge on these areas

and notions will be given. First, the foundations of muscle and tissue

anatomy are given. In fact, the observation and the study of how re-

ality looks and works at a micro and macro level, inform the choices

of computer graphics techniques and algorithms. After presenting the

main anatomical components which are the scope of this research, the

chapter gives a broad level overview of what a muscle system is and its

use in Visual Effects. The chapter then continues by giving mathemati-

cal foundations of the equations governing the dynamics of motion in a

physics solver, in particular its standard and variational forms. Finally,

an extensive literature review of the existing approaches and methods

to deformable objects is given, dividing them in four main categories:

offline, interactive, procedural and learned methods.

2.1 Anatomy Background

There are over 650 muscles and 206 bones in the human body, with

the addition of various kinds of soft tissues presenting various degrees of

elastic material properties. The interaction of all these components dur-
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ing motion increases the complexity of the resulting dynamics because

connected tissues are coupled and forces propagate in this intricate bi-

ological structure. In this research deep muscles that have negligible

effect on the surface appearance are simplified and discarded, bringing

the number down to about 110 and 100 relevant muscles and bones, re-

spectively.

Figure 2.1: Skin anatomy. From top to bottom: epidermis (skin),
dermis, fat tissue, muscle c© (Massage Research 2013).

Below are described, from inside to outside, the main layers modelled in

this work and their function in the body (Figure 2.1).

2.1.1 Bones

Bones are strong but lightweight components of the skeleton. Their

material is composite and internally they resemble a matrix structure.

Bones are connected at their joints by cartilage tissue and present some

elastic characteristics to prevent fractures. At the interacting joints,

bone heads present generally irregular shape which often results in a

roto-translational movement.

2.1.2 Muscles

Muscles can be considered as an organized set of contractile units called

sarcomeres. At the micro level, sarcomeres contain two important pro-

16



Figure 2.2: Hierarchical structure of a striated muscle (Lee et al. 2012).

teins called actin and myosin which chemically bind and overlap on

each other during contraction, thus being ultimately responsible for the

bulging look at a macro level, together with the conservation of volume

due to the contraction happening in a closed area made of incompressible

material (mostly water).

Muscles present a hierarchical structure: sarcomeres are grouped into

myofibrils, which make muscle fibres; in turn muscle fibres group into

fascicles. Fascicles are separated one from each other by the endomy-

sium. The epimysium is a dense connective tissue that wraps the muscle

and protects it from friction with neighbouring components. Figure 2.2

shows a representation of the aforementioned components.

Muscles present various configurations of fibres and internal architec-

tures, based on their shape (Figure 2.3). For example, the gluteus max-

imum has a pennate architecture while the bicep brachii has a fusiform

one. These characteristics must be taken into account in a simulation

system.

When activated, muscles bulge and their shape depends on the rest pose

configuration (i.e. the initial vertex position prior to any deformation),

the fibre density, their internal fibre architecture and the fact that they

interact with the surrounding muscles and fascia. Bodybuilders know

very well that the range and kind of exercises for specific muscles in-

fluence determined fibre areas. For instance, bicep curls that are more

or less extended (in terms of arm angle) can shape the bicep brachii

differently because different fibre groups are exercised (broken and re-

paired) (Siegel, Jeffrey 2015). Moreover, it is important to distinguish
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the bulging due to activation from the one due to the growth caused by

physical training.

Figure 2.3: Types of muscles based on their shape and internal fibres
architecture (Lee et al. 2012).

Muscles are complex in structure and physiology and therefore pose inter-

esting challenges in terms of modelling and simulation. In fact “[...]mus-

cle tissue has a highly complex material behaviour - it is a nonlinear, in-

compressible, anisotropic, hyperelastic [and heterogeneous ] material[...]”

(Teran et al. 2003). The meaning of these terms is as follows:

Nonlinear: the stress/strain relationship is not linear like for example

the one for rubber.

Incompressible: volume must be preserved to avoid visual artifacts.

Anisotropic and active: the simplest materials are isotropic. This

means they respond equally to transversal and longitudinal forces, but

since fibres in muscles grow in defined patterns, the deformation they

undergo is different for stresses applied in different directions.

Hyperelastic: soft elastic material that undergoes large deformations.

Heterogeneous: a combination of different layered tissues with differ-

ent material properties that interact with each other in a limited amount

of space.

2.1.3 Tendons

Tendons are made of multi-stranded fibrous connective tissue (mainly

a protein called collagen which “glues” components together) and they

constitute the extremities of the muscles in the region where they attach

firmly to bones to support contractile tension. Tendons are often mod-
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elled as completely inextensible, but they are actually flexible and stiff at

the same time. In fact their elastic properties are important not only for

transmitting forces to the bones and allowing the muscles to bulge, but

in some cases they behave like springs to store and release energy during

motion for efficiency (like the Achille’s tendon during the stride). The

Hill-type model (Zajac 1989a) takes this behaviour into consideration.

Tendons are visible on the skin in particular in superficial areas of the

hand, wrist and foot where they can be seen sliding and convey overall

sense of tension.

2.1.4 Fascia

Figure 2.4: Fascia at work c© (Fortier 2013).

Fascia is an extremely important component of the musculo-skeletal sys-

tem. In a broad sense it is the soft tissue webbing of the body. It can

take the form of sheets, but in general is a 3D network of connective tis-

sue. Its main function is to hold muscles, organs and other components

together. Without fascia our body parts would literally fall apart. Fas-

cia connects muscles to other muscles. The fibres constituting the fascia

keep forming and breaking all the time, but with lack of movement tend

to make the muscles stick together too much (a process called adhesion)

and create dragging forces one on another, something that reduces the

natural sliding and augments friction (Stecco 2012)

Keeping in mind that fascia is a global system, it can be subdivided

for simplicity into superficial and deep. Superficial fascia is the layer of

viscoelastic subcutaneus loose connective tissue that mainly determines
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Figure 2.5: c© Fascia fibres (Myotherapies 2013).

the shape of a body. Deep fascia takes different names based on the

location of the connective fibres: epimysium when acts as a coat of a

single muscle and endomysium when continues towards the interior of the

muscle holding the fascicles together. Its function is not only to contain

and stabilize, but thanks to its fibre connections it can transmit the

tensional forces coming from the underlying fibres to the neighbouring

components so that parts of a limb at a distance can be organized by

one single movement. In addition, some parts of the fascia can slide over

the fibres to transmit force to the limbs while other parts are attached to

them and are actioned by the fibres. This mechanism allows the creation

of synchronizations between muscles.

What really matters in computer graphics is that the superficial fascia

can slide freely over the deep one. In reality it is not the skin that is

sliding (Clutterbuck & Jacobs 2010), (WETA Digital 2013), but because

there are various layers that can shear, the epidermal fat is compressed

by the underlying bulging muscles (or moving bone) that slide under this

elastic sheet and the effect is a travel of the skin features visible to the

naked eye.
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2.1.5 Fat

Between the fascia and the epidermis (skin) there is a more or less thick

layer of adipose tissue. It is present almost everywhere on the body but

it accumulates more in certain areas, typically the belly, the arm and

the gluteal region. While the muscles mainly give the basic deformation

and silhouette of a character, it is the fat layer which gives most of the

interesting secondary effects such as jiggling, wave propagation due to

impact and sense of inertia.

2.1.6 Skin

Skin can be approximated as an elastic sheet that can wrinkle under

compression of the underlying tissues. When stretched it tends to return

to its original configuration with a nonlinear delay. Skin is of primary

importance in computer graphics because, except for particular cases

where seeing the underlying anatomical geometry is needed, it is the

layer that is visible and renderable.

2.1.7 Veins

Veins form an indispensable network for the circulatory system. In

graphics, even if often neglected, they are particularly important to con-

vey realism. In fact veins are always visible and they stand out not

only for their blueish colour, but also for their displacement. When

muscles contract and undergo a medium-high effort, veins become more

pronounced for the larger amount of blood that flows in and out the

fibres and the higher pressure. For this reason they should be taken into

account for maximum realism.
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2.2 Muscle systems background

In the VFX pipeline, at the stage of muscle simulation, rigging starts

to blend with character FX: the anatomical tissues have to be combined

into layers and be simulated in each shot. For that purpose, muscles

are first constrained to the bone geometry at their attachment points

(proximal and distal insertions of the tendons) and to each other with

a combination of hard, soft and sliding constraints. A non-volumetric

geometry component is then procedurally generated from the outline of

the bones and muscles: it wraps them tightly and that functions as the

anatomical fascia. The fascia is responsible for holding the deforming

muscles together and forming a clear separation from the volumetric

outer layer that constitutes the fat directly attached to the renderable

skin. All these layers interact with each other and are (ideally) simulated

all at once to obtain physics coupling. This is computationally expensive

so a common strategy is to simulate the layers separately generating a

geometry cache for each to drive the next. Despite being more flexi-

ble, the drawback of this approach is that it cannot obtain a physically

and visually correct coupling or bidirectional transfer of inertia during

animation (Jacobs et al. 2016). By placing constraints and specifying

correct material properties (Young’s modulus, Poisson ratio, stiffness),

the solver of choice will compute forces, stresses, contacts and collisions.

The result is an anatomical mesh that follows the animation of the char-

acter, but is enriched with fibre activations, muscle and bones sliding

under the fat, skin wrinkles and jiggling effects which add that level of

realism highly sought after and appreciated in Visual Effects. In real

productions, the process described above is highly nonlinear and heavily

iterative.

As mentioned earlier this approach is not free from problems that have

to be carefully considered. For example given the effort needed to obtain

the anatomical muscles for a character, transferring algorithms have to

be developed and practical tools given to artist when, for production

reasons, the skin and proportions of the character have to be changed.

Similarly, when for a shot the muscle and fat simulations result in shapes

22



that are anatomically correct but do not convey the director’s creative

intention, shapes have to be corrected and coexist with the simulation

pipeline. These kind of situations are the “bread and butter” of everyday

VFX movie production.

While muscle systems are generally intended for the body, research is ad-

vancing their use for facial animation, an area where simulation is being

adopted especially for blend shape-based tetrahedral rigs (Kozlov et al.

(2017), Ichim et al. (2017)). Facial muscle systems are more challenging

than the body ones because detailed facial expressions require extreme

amount of detail (i.e. wrinkles), high levels of controllability are diffi-

cult to be provided and also because the face contains very thin muscles

which pose problems for the solvers.

Specifically at MPC riggers take care of the generation of the muscle ge-

ometry, via a custom procedural system that from 2D morphable sheets

skinned to the joints generates an approximation of muscle anatomical

shapes (Fig. 2.6). After controlling that the character deforms correctly,

a mass-spring system adds approximated dynamics to the muscles which

are connected to the skin via a custom skin deformer that roughly be-

haves like a highly controllable quasi-static cloth simulation, producing

secondary effects such as wrinkles. Because of the lack of fibre-based

mesh contraction, the rig is equipped with “sensors” of compression and

extension based on joint angles and impact zones that activate custom

sculpted blend shapes (flex-shapes). While this solution is very art-

directable, Rigging and Techanim needed a system that produced more

physically-based realistic results which constitutes one of the motivations

behind the proposed methods and tools described in this work.

2.3 Solvers and Methods for Deformable

Objects

Muscle systems are modelled as deformable objects. Here some back-

ground and mathematics for deformable objects will be presented.
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Figure 2.6: Front, back and side muscles of arm and torso (MPC mus-
cles generated from anatomical sheets).

To give some initial basic definitions, the deformation of a mesh element

(i.e. triangle or tetrahedron) expressed as a vector of vertex positions in

rest pose X to a deformed configuration x can be defined by a function

Φ(x). The Jacobian of this function constitutes a basic description of the

severity of the deformation (variation with respect to the rest pose) and

it is called the deformation gradient, widely indicated in the literature

as F.

A physics solver’s task is to provide at each timestep a solution to the

partial differential equation of motion:

Ma +∇xW(X,x) = fext (2.1)

where M is the mass matrix, a is the acceleration, fext are the external

forces (gravity, wind, constraints, contact forces) and W is an elastic

potential that typically expresses the kind of material to be simulated.

Different materials have different properties: in this work we will focus on

hyperelastic materials and in particular the St Venant-Kirchhoff (StVK)

invertible model (Bonet & Wood 1997).

There are mainly two ways to solve this equation in time for a deformable

object:

1. Using an integration scheme for the PDE and solving the resulting

nonlinear system

2. Transforming 1. into an equivalent energy minimization problem

The first approach integrates the discretized differential equations of mo-
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tion by solving a nonlinear system for which the solution is the velocity

at the next state. The most stable and popular way to do this is us-

ing Implicit Backward Euler integration. Given the state of the system

(qn, vn) at time n, Implicit Euler adopts the following update rule:

qn+1 = qn + hvn+1

vn+1 = vn + hM−1(fint(qn+1) + fext)

where h is the time step size (discretization of time). The fully implicit

nonlinear equation therefore becomes:

M(qn+1 − qn − hvn) = h2(fint(qn+1 + fext))

As will be shown in chapter 4, the solver used in this work instead adopts

a semi-implicit integration scheme, that linearizes fint through its gra-

dient with respect to the nodal positions which is called the tangent

stiffness matrix K.

The second approach is to express the Implicit Euler integration as a

minimization problem and therefore takes advantage of a long tradition

of research in the mathematical optimization field:

min
qn+1

1

2h2
‖M

1
2 (qn+1 − qn − hvn − h2M−1fext)‖2F +

∑
i

Wi(qn+1)

which expresses the fact that the solution (positions at time n + 1) is a

compromise between the momentum potential plus external forces (first

term) and the total elastic potential (second term). Chapter 7 shows

that this potential can become a suitable loss function for a machine

learning algorithm.

The resulting nonlinear system of equations is generally solved with one

or more iterations of the Newton-Raphson method. The linearization of
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the equation via the Newton procedure leads to a sparse positive definite

linear system that can be solved with a Preconditioned Conjugate Gra-

dient (PCG) solver or direct solvers (Sifakis & Barbic 2012). Existing

work on solvers and methods for deformable objects is presented below,

divided for convenience into four macro categories: offline, interactive,

procedural and machine-learning based methods.

2.3.1 Offline Physics-Based Methods

Deformable models have been studied in computer graphics for nearly

30 years now, starting with seminal works (Terzopoulos et al. (1987),

Terzopoulos & Fleischer (1988)) which showed the potential of computa-

tional physics to simulate fracture, deformation, viscoelasticity and plas-

ticity using mainly a finite differences discretization. To deal with large

deformations, O’Brien & Hodgins (1999) and O’Brien (2002)) used a

St.Venant-Kirchhoff (StVK) nonlinear material model based on quadratic

Green strain. Müller & Gross (2004) contributed to solve the prob-

lem of linear elasticity artifacts for large deformations by introducing in

the framework of the Finite Element Method (FEM) (Sifakis & Barbic

2012), (Bonet & Wood 1997) the popular corotational method (warped

stiffness) that extracts the rotation of the deformation gradient F via po-

lar decomposition (alternatively, QR decomposition). In fact rotational

modes have to be filtered out so that they do not contribute to internal

forces. Volume preservation was addressed in (Irving et al. 2007).

The coupling of computer graphics with biomechanics in recent years has

led to a more anatomically “conscious” approach to character animation.

The underlying assumption of the following methods is that an accurate

geometry representation of the internal anatomical components, coupled

with physics-based simulation, gives the most realistic results. Teran

et al. (2005b) and Teran et al. (2003)) simulate muscles and flesh from

the Visible Human data set using a variation of classic FEM, the Finite

Volume Method, supporting: active and passive components (tendons),

an effective constitutive model based on fibres and degenerate and in-

verted tetrahedra (via SVD decomposition that diagonalizes F (Irving
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et al. 2004)). After these works had shown the approach as being very

promising, other researchers concentrated on the physics-based simula-

tion of the human hand (Sueda et al. 2008), the upper body (Lee et al.

2009) and human swimming coupled with fluid dynamics using Lattice

Deformers (Si et al. 2014), (Patterson et al. 2012).

Forces in elementary muscle units (sarcomers) have been represented

classically through the Hill-Zajac model (Zajac 1989b) which is an ac-

ceptable 1D simplification of the macroscopic forces. Biomechanics started

relatively recently to adopt 3D muscle simulation (Blemker & Delp 2005),

to predict shapes during contraction and internal stresses to prevent in-

juries in a much more accurate way than before (Comas et al. 2008),

(Delp et al. 2007). Non-volumetric muscles are also used for control of

animation, often in conjunction with quadratic programming techniques

to resolve contacts (Tan et al. 2012), (Geijtenbeek et al. 2013)

The price to pay to have accuracy is quite high in computational terms

and methods to trade speed for physical correctness are an area of active

research. In fact typical full body models can easily reach 1 million

tetrahedral elements. Moreover such biomechanical systems are difficult

to model, setup and control without dedicated tools which generally are

very different from the ones present in traditional Visual Effects rigging

pipelines.

Recently, McAdams et al. (2011) created a production-ready system

for the deformation with contacts of characters that works both quasi-

statically and with dynamics. Using a conforming hexahedral lattice

built from the mesh, the method corrects the indefiniteness of the stiff-

ness matrix to fix instabilities of the warped stiffness method and makes

use of a fast multigrid solver which achieves near-interactive performance.

A new approach to deformation that is inspired by fluid dynamics meth-

ods is Eulerian Solids in which deformable objects are simulated on a

grid through material coordinates mapping and advection (Levin et al.

2011). Its advantages are that it handles collisions well, preserves volume

in large deformations and does not need remeshing to avoid instabilities

(something needed for Lagrangian methods, subject to mesh tangling).
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The method has been applied successfully to muscles simulation (Fan

et al. 2014) and its extension, called Eulerian-on-Lagrangian method,

allows the simulation of skin sliding (Li et al. 2013) and tendon biome-

chanics (Sachdeva et al. 2015). Some of the drawbacks are that an ex-

plicit mesh has to be mapped and there is no current implementation of

internal fibres.

Not only the body but also the face has been the object of study in terms

of achieving more realistic dynamics. Kozlov et al. (2017) enrich blend

shape animations with secondary motion and other physical effects with

a FEM simulation based on the minimization framework by Martin et al.

(2011). The method utilizes volumetric blend shapes and per-frame rest

poses to guarantee fidelity to the artist’s animation.

Ichim et al. (2017) embed simple muscle geometries in a tetrahedral mesh

of the face dividing the tetrahedra (tets) that are passive from the active

ones and attaching the mesh to the skull with pin and sliding constraints

controlled by a map. Muscle activations are obtained from the blend

shape animation solving an inverse problem and the muscle model is

translation and rotation invariant. Simulation is done by minimizing a

set of non-linear potential energies using an interior point solver.

In terms of artistic control of these simulations, Martin et al. (2011)

propose an example-based approach where an artist can sculpt a set of

target shapes which are interpolated during a physical simulation very

smoothly. Each example acts as an additional elastic force but with-

out introducing visible spurious violation of energy conservation. This

art-directable way of controlling the simulation avoids tedious parame-

ter tweaking and was extended by Schumacher et al. (2012) to support

plasticity and application to a bending muscular arm using pose based

dynamics. The development of these methods is fundamental in the

context of musculo-skeletal simulation.

Even though all these works achieve stunning results, there are still gaps

in the literature for papers that perform dynamic simulation of the com-

bination of all the layers and showing realistic results on the renderable

skin of tendons, wrinkles, fascia, self collisions etc.
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2.3.2 Interactive and Real-Time Methods

Videogames and interactive applications require new methods to simu-

late deformable objects at real-time and near-real-time rates. For this

purpose the simplest approaches use tetrahedral springs (Mollemans

et al. 2003). Müller et al. (2005) introduced the shape matching tech-

nique, a mesh-free method that is particularly suited for real time ap-

plications and produces plausible deformations although its accuracy is

limited by not being physically-based. Kim & Pollard (2011) achieve

interactive rates for skeleton-driven non-linear deformation of charac-

ters through clever optimizations and parallelizations. Careful algorith-

mic solutions, often aiming at exploiting GPU architectures, lead to so-

phisticated real-time surgical simulators and efficient muscle simulation

(Mitchell et al. 2015). Model reduction techniques (Barbič & James

2005) aim at expressing deformations as combination of displacement

fields (modes).

Position Based Dynamics (PBD) (Müller et al. 2007) is a method that

operates directly on the positions of the nodes. In a first step positions

are guessed using explicit integration and then validated/corrected by

applying distance, bending, volume and collision constraints. Upon val-

idation these values are integrated to new positions. Although it comes

at the price of reduced accuracy, this has several advantages: it is easy

to implement; it is very controllable; vertex positions can be directly

manipulated in real time; constraints and collisions are handled quite

easily. The limitations of PBD, in particular the constraint stiffness de-

pending on time step and iteration count, have been addressed recently

in the work by Macklin et al. (2016). XPBD extends its predecessor

by formulating the constraints in a way that has correspondence with

elastic energy potentials and by using total Lagrange multipliers. The

result is a fast and stable solver that supports arbitrary elastic potentials

(materials).

Recently, Projective Dynamics (Bouaziz et al. 2014), extending the work

on fast mass springs by Liu et al. (2013), introduced a new solver that

combines FEM with PBD. The solver treats elastic potentials as projec-
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tions of position configurations on a constraint manifold. This results in a

particular form of the potential energy that is minimized via local/global

alternated solves. It also supports a wide variety of energy-based con-

straints.

Projective Dynamics limitations have also been overcome in the work

by Liu et al. (2017) by considering it as a quasi-Newton method which

allows it to simulate any hyperelasic material and be 10 times faster than

one iteration of Newton’s method.

Saito et al. (2015) propose a method, built on the Projective Dynamics

solver, to simulate the biological growth processes of muscles and fat

on a volumetric model. They achieve this by initially decomposing the

deformation gradient in growth and elastic components and crafting an

ad-hoc potential energy. Even if the results achieved are remarkable

and the technique interactive, the system does not cover the possibility

for the growth process to fit an existing target mesh, something highly

desirable in Visual Effects.

2.3.3 Procedural Methods

Skinning refers to a general class of procedural techniques which are very

computationally efficient and commonly used to obtain fast deformations

of skeleton-based characters. Geometric/Procedural skinning techniques

have been developed in computer graphics for a long time. Shape inter-

polation and example-based approaches (Lewis et al. 2000), (Sloan et al.

2001) are used in the industry on a daily basis (called blend shapes)

while Linear Blend skinning (Magnenat-Thalmann et al. 1988) and dual

quaternion (Kavan et al. 2008) have well known issues such as loss of

volume or excessive bulging at joints. Jacobson et al. (2011) calculate

bounded biharmonic weights for 2D and 3D objects by Laplacian energy

minimization subject to bound constraints in a shape-aware, localized

manner and with the use of quadratic programming.

More recently Vaillant et al. (2013) proposed the Implicit Skinning with

contact technique, followed by its improvement to support skin elasticity
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with convincing results (Vaillant et al. 2014). These methods have the

advantage of being fast, but they generally fail in robustly handling self

and external collisions, volume preservation and nonlinear deformations,

in addition to the fact that dynamics are often faked.

Deformers are important tools used in the visual effects industry on a day

to day basis, especially in Rigging. One of such widely used deformers is

the Free Form Deformation technique (Sederberg & Parry 1986), which

uses a cubic lattice grid of points to intuitively edit the shape of an

embedded mesh. Another popular method to edit shapes is the Laplacian

deformer (Sorkine et al. 2004), which has the advantage of preserving well

geometric details.

Procedurality and automatisms are also important for transferring of

shapes from one character to another. Ali-Hamadi et al. (2013) create a

system that can transfer volumetric anatomical models across different

target shapes using harmonic energy minimization (Laplacian interpo-

lation) and anatomy rules as constraints. Cong et al. (2015) present a

morphing algorithm to transfer anatomy including muscles across faces

of different characters, based on feature points and feature curves corre-

spondences.

2.3.4 Methods based on acquisition and machine

learning

In recent years other ways to deal with deformable object have been

developed. In particular the application of techniques from other areas

of Computer Science, such as machine learning and other statistical-

based approaches from Artificial Intelligence, have started to become

increasingly popular.

Sifakis et al. (2005) acquire activation levels for a volumetric muscle

based facial system from sparse marker data. SCAPE (Anguelov et al.

2005) learns from several body scans of people and creates a model de-

pendent on both body shape and pose of the articulated skeleton. Bickel

et al. (2009) create a deformable model of heterogeneus materials by
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finding material parameters given force and strain sample measurements

as inputs. Neumann et al. (2013) model the statistical variations of

fine scale muscle deformations from reconstructed surfaces of a subject’s

arms. Their model also supports force application which expresses iso-

metric contraction effects. Zhu et al. (2015) learn anthropometric pa-

rameters from point cloud data of a subject’s arm acquired with depth

sensors and matches a deformed anatomical model containing bones and

skinning (but no muscles). DYNA (Pons-Moll et al. 2015) in addition

to SCAPE predicts soft-tissue deformations by learning a second-order

auto-regressive model based on 40000 scans of 10 subjects.

Data-driven models have become very advanced in recent years. How-

ever, in general they can suffer from incomplete input data (due to occlu-

sion) or can be not robust when parameters go far beyond the range the

system was trained for. In Visual Effects it is common to have charac-

ters performing highly risky actions or movements which are not realistic

to acquire and can be very dissimilar from the training set. Moreover

there are gaps in the research regarding highly controllable deformation

models (at the vertex level).

Machine Learning, and in particular Deep Learning, have been applied

recently to the learning of physical models and in particular fluid simu-

lation. Tompson et al. (2016) obtain very convincing results for smoke

simulations using a tailored Deep Neural Network operating on a vol-

umetric grid. The system, unsupervised, is trained to approximate the

solution of the linear system to compute the pressure equation, minimiz-

ing the divergence of the velocity field. Ladický et al. (2015) also use a

data-driven approach to learn fluid dynamics but adopt regression forests

in a supervised manner for the regression of acceleration of particles at

a given time step.

Table 2.1 provides a qualitative comparison of most of the main methods

in the literature and puts in evidence their advantages and disadvantages.

Table 2.1: Comparison of deformable objects methods

METHOD PROs CONs
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Physically - based-

methods

Classic linear FEM

(Bonet and Wood 1997)

- easy to implement - no large deformations

- loss of volume

Corotational linear

FEM

(stiffness warping)

(Muller et al. 2003

2004)

- supports large defor-

mations

- efficient

- some loss of volume

(up to 50%)

- inexact force differen-

tials instability

Invertible FEM and ex-

tensions

(polar SVD)

(Irving et al 2004 2007)

- recovers degenerate

and

inverted tetrahedra

- Volume preservation

FEM for muscle biome-

chanical

simulation

(Lee et al. 2009, Teran

et al. 2005)

- supports anisotropic

materials

- transversely isotropic

muscle constitutive

model

- several methods to-

gether,

including inversion han-

dling

- because of embedding

not all details are simu-

lated

- high complexity

Finite Volume Method

(Teran 2003)

- can be used with any

constitutive model

- easy to implement
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Efficient elasticity

(McAdams et al. 2011)

- quasi-static and dy-

namics

- multigrid solver

- self collisions

- near interactive

- parallel on multicore

- speed

- implementation

- no near-

incompressible ma-

terials

- complex to under-

stand

Eulerian solids

(Levin et al. 2011 2014)

- handles well collisions

and contacts

- preserves volume

- stable for inversions

and large

deformations

- no remeshing needed

- relatively easy to im-

plement

- GPU

- big matrix to invert

- no internal fibers ar-

chitecture

- too many grids so need

system to make them

collide

- no explicit mesh

(solved)

Position Based Dynam-

ics

(Muller et al. 2007)

- easy to implement

- very controllable

- positions can be di-

rectly

manipulated in real

time

- constraints and colli-

sions

are handled quite easily

- less accuracy

- result dependent

on number of iter-

ations (solved by

XPBD)
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Lattice deformers

(Patterson et al. 2012)

- regular structure

optimization

- no need for a mesh per

muscle

- accurate volume

preservation with gen-

eral

treatment of incom-

pressibility

- quasi-static and dy-

namics

- some voxelization arti-

facts are noticeable

- complex to under-

stand

- no collision treatment

(yet)

- small scale topology

- no direct manipulation

of mesh

Procedural / Geo-

metric methods

Linear Blend skinning

(Magnenat-Thalmann

et al. 1988)

- fast

- no collisions

- loss of volume

- candy wrap effect

Dual Quaternion skin-

ning

(Kavan et al. 2008)

- fast

- no collisions

- bulge at joints

Steklov-Poincare skin-

ning

(Gao et al. 2014)

- interactive

- physically based

- supports collisions

- pose dependent, no

need to

correct indefiniteness of

stiffness matrix

- quasistatic only (pos-

sible extension)

- probably not suitable

for deep and strong con-

tacts

- not implicit time inte-

gration (yet)
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Elastic Implicit skin-

ning

(Vaillant 2013,2014)

- no skin weights paint-

ing

- automatic free form

operators generation

- art directable to mimic

muscle activation

- seems very stable

- still quite slow for

large meshes, depends

on timestep choice and

efficiency of GPU solver

Shape interpolation

(blendshapes) (Lewis et

al. 2000)

- fast to calculate - lot of manual work to

generate

Bounded Biharmonic

Weights

(Jacobson et al. 2011)

- shape awareness and

locality

- support concave

boundaries

- automatic weights

- no support for contact

(yet)

Elasticity-Inspired De-

formers

for Character Articula-

tion

(Kavan and Sorkine

2012)

Shape Matching

(Muller et al. 2005)

- simple to compute

- stable

- meshless

- memory efficient

- less accuracy

- not physically moti-

vated
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Mass-springs systems

(Nealen et al. 2006)

- easy to implement - difficult to obtain real

materials

behaviour, lots of

tweaking

What emerges from this analysis of the current state of the art is that to

build a good character deformation pipeline, compromises and choices

about complexity have to be done. In fact no method is free from draw-

backs. Moreover, the advantages of a computational method (solver)

have to be coupled by tools that assist the artists in their day to day

job and necessarily abstract low-level details. The successful production-

ready results presented in this review have all in common exactly this

attention to the whole pipeline and to the end user, not only to the

computational efficiency. Lastly, often the literature presents new effi-

cient methods on a very specific component of a deformation system, but

what is needed is their combination in a common framework. The work

presented in this thesis tries to unify different techniques in the same

pipeline and also presents solutions for the artists in the form of tools.

All these approaches have in common the fact of being physically-based

at their core.

The following part of this thesis presents five research projects completed

during the period spent at MPC London. The projects are not presented

in chronological order, but in a logical way that respects the stages of

the pipeline from modelling to simulation.

The videos and supplemental material associated to the projects can be

accessed at http://www.fabioturchet.com/supplemental_material.

zip.

37

http://www.fabioturchet.com/supplemental_material.zip
http://www.fabioturchet.com/supplemental_material.zip


Part II

Projects

38



Chapter 3

Muscle Modelling

3.1 Introduction

In recent years, physics-based muscle simulation has become increasingly

popular in the Animation and Visual Effects industry. Examples of ex-

cellent Research and Development from companies which was applied to

specific movie productions include the FEM Tissue System at Weta Dig-

ital (WETA Digital 2013), PhysBam-based Zeno at ILM (Comer et al.

2015), the PhysGrid-based system at Disney (Milne et al. 2016) and the

interactive system for skin sliding at Method Studios based on ADMM

and Projective Dynamics (Saito & Yuen 2017). This work takes inspira-

tion also from those results.

The muscle system which is used for these purposes usually contains the

following components:

• Anatomically correct muscle geometries;

• A fibre field defined on them;

• A constitutive model supporting fibre activation for contraction;

• A skeleton model on which the muscles attach via constraints;

• A physics solver that computes the dynamics of the system.

This chapter focuses on the first component of the list. In fact one of
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the most time-consuming steps of a character simulation pipeline is the

initial setup of the input model.

Muscle geometries can be generated in various ways: sculpted per-character

by trained artists, created from MRI and CAT scan data as in Jacobs

et al. (2016), or transferred from an existing template. However, the

sculpting process is time-consuming because it requires ad-hoc work for

each character, the data scans are not always available and the fitting

of templates to new characters presents challenges when dealing with

non-humanoid or fantastic creatures which have atypical features, body

proportions and body mass distribution. Moreover the result is gen-

erally not simulation-ready because of the interpenetrations present in

the input meshes, i.e. intersections of various mesh objects representing

different muscles.

In this work the complexity of the sculpting process is reduced by in-

troducing methods that allow artists to create volumetric muscle shapes

complete with tendons from sketches of muscle silhouettes (patches) de-

fined on the external surface of a character (skin) and attachment points

corresponding to the insertion and origin of anatomical muscles on the

skeleton. By using an artist-led physically-based simulation framework

that includes shape inflation in the direction of the skeleton and muscle-

to-muscle and muscle-to-bone collision handling, a user can design plau-

sible volumetric reconstructions. As a result the shape of the muscle and

the corresponding fibre field are obtained, both ready for further simu-

lations. The key idea of the system is to exploit the information of the

sculpted or scanned skin of a character such as detailed areas (patches)

that correspond to superficial muscles and use them to generate plausible

volumetric reconstructions which are interpenetration-free. The results

obtained show how using these patches can reduce the complexity of the

sculpting process, while guaranteeing that output meshes are suitable for

simulation.
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Figure 3.1: A slice of the arm muscle primitives showing intricate in-
tersections.

3.1.1 Muscle Primitives fixing

One of the motivations behind research in muscle modelling is that at

the beginning of the exploration for solutions at MPC, a very accurate

anatomical model was not available. The belief was that fixing the primi-

tives (shown in Figure 2.6) of the existing rigging system would have been

enough to create simulation-ready volumes. The intersections severity to

be fixed varied from superficial to deep (Figure 3.1).

However, the assumption was not entirely correct as it became very hard

or even impossible to fix (i.e. to free from intersections) all the muscles

in the general case. The small and medium cases were successfully fixed

by converting geometry to signed distance fields and using interactive

marching of the vertices in the normal direction, a method similar to

implicit skinning described in more detail in chapter 6. An example

of successful muscle fixing is shown in Figure 3.2. However for deep

intersections, for example when meshes of small muscles were completely

inside meshes of other muscles, automatic fixing was not possible.

Another solution to the problem of fixing primitives could be apply-

ing physical-based approaches. Geometries could for example be moved

apart from each other like in an exploded view and then animated back

41



(a) (b)

(c)

Figure 3.2: (a) intersecting geometries of the forearm; (b) solved inter-
sections, (c) highlighted fixed areas.

to their original positions solving for collisions quasi-statically when they

occur. Just like the case of the wrong projections problem in Implicit

Skinning solved in Vaillant et al. (2014), the solution would thus emerge

by taking advantage of the time variable. It should be noted that the

problem of fixing intersecting geometries can be avoided if riggers are pro-

vided with tools to model muscles interactively with the help of physics:

this chapter explores exactly that direction.
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3.2 Related Work

Previous research work containing methods to produce muscle primitives

relies mainly on existing anatomical data. Teran et al. (2005a) create

tetrahedral meshes from the Visible Human dataset via level sets and are

able to reconstruct missing tendon information using Constructive Solid

Geometry. More recently, the work by Jacobs et al. (2016) reconstructs

very accurate musculature of a full body female subject via segmented

cross sectional MRI data for simulation purposes. Saito et al. (2015) in-

stead utilize a commercially available anatomical model and focus on the

physics-based modelling of different body shapes by growing or shrink-

ing muscles and fat. In a production setting such as at MPC, because

of the complexity of modelling muscles, a popular way to create them is

by using either parametric surfaces or procedural primitives controllable

with numerous parameters.

The fibre field in Teran et al. (2005a) is obtained with B-spline solids and

used to simulate muscle contraction with the Finite Elements Method

and a transversely isotropic constitutive model, while the more recent

work of Choi & Blemker (2013) focuses on obtaining the fibre field by

solving a Laplace equation subject to flux boundary conditions in the

tendon regions.

Following the popularity gained by muscle systems in recent years, re-

searchers also started to focus on the problem of transferring anatomical

templates between characters. Previous work (Sumner & Popović 2004)

focused mainly on registration and deformation transfer of superficial

meshes, but not of internal information except for the skeleton. However,

the transfer of complex internal anatomical structures require ad-hoc so-

lutions. The works by (Ali-Hamadi et al. 2013) for the body and by

(Cong et al. 2015) for the face fill this gap by transferring procedurally

complex template models across similar characters, with the possibility

of affecting the result with artist input. These solutions speed up char-

acter production, but in some cases can produce unwanted deformations

when source and target shapes are substantially different. The inspi-

ration for the work in this Chapter came by the field of computational

43



Figure 3.3: Overview of the pipeline. (a) Input skin mesh and skeleton;
(b) sketched patches of superficial muscles; (c) inflated output muscles
(opacity used to show underlying structures) ; (d) associated fibres .

design: the work of Skouras et al. (2012), which computes the rest shape

a balloon must have in order to achieve a desired target when inflated,

and the work of Skouras et al. (2014), which simulates inflatable struc-

tures made of flat panels sketched on a target geometry. These methods

are based on physics-based interactive optimization.

3.3 Method

Figure 3.3 illustrates the main steps of the method. The steps are:

1. User sketches patches of superficial muscles

2. Tendons are reconstructed

3. The muscles geometry is created by using fibre curves

4. Patches are extruded and inflated

5. The fibre field is reconstructed

The inputs of the system are a character model, its skeleton geometry,

patches to be inflated and tendon attachment points. A patch Pi is a

segmented subset of the input character mesh and follows the silhouette

of the visible muscles under the skin. Users can manually segment the

outer skin by placing on it nodes of a closed spline curve using their

anatomical knowledge and surface details; the enclosed mesh is then cut
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and extracted (see Fig. 3.3b). For each muscle that a patch represents,

attachment points are positions on the input skeleton where its tendons

attach (see section 3.3.2). This approach has limitations when the skin

of the character doesn’t present clear enough anatomical features of the

muscles. This happens for example when the adipose tissue (fat) smooths

out the details and tends to flatten out the curvature on the skin. In

these cases the application of the method is still possible, but does not

necessarily produce organic shapes of the muscles. However, the ad-

vantage of sketching the input patches from the surface guarantees that

there is a clear separation between the muscles at the superficial level,

while the internal non-intersection is guaranteed by the tendon creation

rules first (collision avoidance), and by the inflating physical simulation

later.

3.3.1 Fibre Curves

The initial polygonal patch is dependent on the input skin topology by

construction. This means that in general the edges are not following the

ideal fibre flow of the patch shape, therefore the simulation can suffer

from unaligned and non uniform elements. For this reason the patch is

first converted to an intermediate parametric representation for which

the topology is controllable. This is achieved by first sketching a series

of fibre curves along the desired flow. Specifically, after defining a set of

starting points SP and ending points EP on the borders corresponding

to where the tendons would attach, a fibre curve fibj connects a point

spj ∈ SP to a corresponding end point epj ∈ EP on the opposite border

(see Fig. 3.5 top). This operation can be performed manually (as in

this work), or alternatively one can use the method in Choi & Blemker

(2013). One of the differences is that in this work the curves are explicitly

created, while in their work they need to be traced from a vector field.

The advantage of the approach in Choi & Blemker (2013) is that the field

is generated automatically. Integrating a similar method to generate the

curves fast would be highly beneficial.

The fibre curves, after a resampling step, produce a parametric NURBS

45



Figure 3.4: Frames at progressive times of the extension of fibre curves
for tendon reconstruction via the use of a flocking system.

surface through a process of lofting; the result can then be converted

back to polygons keeping full control of the resolution. These operations

provide a mesh with clean topology and edge flow that follows the fibre

directions.

3.3.2 Tendon Reconstruction

The retopologized patches are still missing the tendons that connect the

muscle to the bone. This missing geometry is reconstructed by running

a sequential flock simulation, using as agents (boids) particles that are

positioned at the points of SP/EP and with velocity equal to the tan-

gent of fibj at those points. Boids have been chosen for their ability to

generate smooth curves automatically that follow the edge flow of the

mesh and for being able to maintain an offset distance between each

other, something important for the following steps of mesh generation.

The twisting of the resulting curves depends only on the target positions

of the goals, which are editable in case of unwanted twisting.

Boids are subject to the classic rules of cohesion, separation, steering to-

wards target, alignment and collision avoidance as discussed in Reynolds
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Figure 3.5: Top: initial bicep patch segmented from the character’s
skin; initial fibre curves in green; point sets SP and EP in magenta
and cyan; target point sets ASP and AEP in red and blue, respectively;
bottom: tendon reconstruction via flock simulation.

(1987). Given target attachment point sets ASP and AEP specified on

the skeletal bone geometries as input, the steering rule is responsible for

driving the boids starting from spj and epj towards their corresponding

goals (see Fig. 3.4 and 3.5).

These boids define curves that extend the initial input fibre curves in

both directions. They can then be lofted and turned into a polygonal

surface, as explained in section 3.3.1 to produce the final patch geometry.

By varying the weight of the output vectors of the rules, the user has

control over the smoothness, curvature and ultimately shape of the ge-

ometry connected to the patch. For example, by increasing or decreasing

the initial velocity of the boids at the starting points, the attachment to

the mesh can be made more or less sharp. The curvature of the tendon is

also controlled with the magnitude of the parameter that influences the

goal rule: smaller magnitudes produce smoother curves because the boids

steer towards the target more slowly in their trajectory. The velocity of

the boids can be reduced after entering a minimum distance from the

target to produce a better trajectory and therefore shape of the tendon

near the bone. Additionally, a collision rule is introduced that prevents

tendons from intersecting each other by steering away from other ten-

dons. A boid i checks if its distance from an object is less than a safety
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Figure 3.6: (a) Deltoid extruded patch; (b) inflated muscle; (c) new
rest shape after smoothing and relaxation.

offset d and steers away from it using the vector:

steericoll = projTan(ni
closest, (pbary − pi))− vi

where pbary is the barycenter of the rest of the flock, pi and vi are the

current position and velocity of boid i and projTan is a function that

returns the tangent component of an input vector given the normal at

the closest point on the mesh ni
closest. The magnitude of steericoll is

clamped to a maximum allowed value.

3.3.3 Generation of muscles geometry

The initial patches are three-dimensional open manifolds. The next step

of the method is to find a way to turn these surfaces into closed meshes

obtaining plausible muscle shapes. The patches are, by construction,

very close to each other but not intersecting. Therefore the desired rest

closed configuration of the patch is forced to be very thin. The approach

one can take to create a closed volumetric mesh approximating the shape

of a muscle is to use a hole-filling algorithm with fairing (Liepa (2003)),

to triangulate the patch hole and then deflate it until it collides with

the patch itself. The problem with this approach is that the topology of

the filled part is not easily controllable and the triangulation does not

respect the desired edge flow.

Instead this method proceeds by extruding the initial patch by a very

small controllable offset. By extrusion it is meant that every vertex is
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moved in the normal direction and the offset controls the distance by

which the vertex is moved. Then in a first phase pressure is applied to

the extruded vertices and a simulation without collisions is run until full

inflation. Using the resulting mesh, a new rest shape is generated by

applying alternated Laplacian smoothing iterations and tangential mesh

relaxations only on the inflated vertices (see Fig. 3.6). The iterations

continue until an initial estimate of the volume is reached. This step is

needed so that the resulting mesh is much less likely to create unwanted

folds when inflated. In a second phase, the actual simulation with colli-

sions is run in which final muscles are created. At the very start of the

simulation, the vertex positions of the initial extruded vertices constitute

the initial conditions applied to the rest shape created in the first phase,

so there is a non-negative elastic potential.

Inspired by the physics of rubber balloons (Skouras et al. 2012), increas-

ing pressure forces are applied to the nodes of the closed elastic patch,

towards the skeleton. During inflation, the vertices of the initial patch

with tendons are set fixed as Dirichlet boundary conditions and are not

allowed to move in order to obey the user input. In this process de-

formable meshes collide with other inflating patches and with the rigid

skeletal bones (see Fig. 3.7). The inflation continues until a desired vol-

ume amount is achieved or until a specified percentage of the total area

is in contact.

When inflating, artistic control is important to direct how the shape

evolves in time. For this reason artists have full control over the pressure

parameters of individual muscles. Even if not implemented, it would be

simple to integrate the support for painted spatial pressure weight maps

(per vertex) to give even greater control.

3.3.3.1 Elastic Model and Forces

The forces involved in the simulation are the stretching and pressure

forces. Inspired by the work of Wang et al. (2011), the rest pose of

the inflatable patches is represented in a two dimensional material space

computing for each triangle material coordinates of undeformed and de-
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Figure 3.7: (a) Deltoid extruded patch with collision objects; (b) partial
inflation; (c) full inflation.

formed configurations. In-plane stretching forces are calculated using

a simple model for the elastic energy. Given the deformation mapping

x = Φ(x) : Π ⊂ R2 describing the deformation of a point x in 2D para-

metric space with material coordinates (u,v) to a point x in 3D world

space with components (x,y,z), then the deformation gradient is defined

as:

∂Φ(x)

∂x
=


∂Φ1

∂u
∂Φ1

∂v
∂Φ2

∂u
∂Φ2

∂v
∂Φ3

∂u
∂Φ3

∂v


At the initialization stage, 2D material space coordinates are calculated

for each element. For a triangle element with nodes in undeformed (x1,

x2, x3) and deformed configurations (x1,x2,x3) the discretized deforma-

tion gradient F of dimension 3x2 is defined as:

F =


(x2 − x1) (x3 − x1)

(y2 − y1) (y3 − y1)

(z2 − z1) (z3 − z1)

 ·
[

(x2 − x1) (x3 − x1)

(y2 − y1) (y3 − y1)

]−1

From F the right Cauchy-Green tensor is computed, defined as C = FTF.

With it the Green’s nonlinear tensor is derived:

G =
1

2
(C− I)
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From Hooke’s law, the in-plane stress is calculated using a linear stress-

strain relationship:

σ = B · ε

where B is a precomputed 3x3 symmetric stiffness tensor that depends

on Young’s modulus E and Poisson’s ratio ν (Müller & Gross 2004) while

σ and ε are expressed in Voigt form.

Considering that the surface should not present transverse shearing re-

sistance, B can be simplified from the original 9 parameters to 5 as in

Wang et al. (2011).

B =


b11 b12 0

b12 b22 0

0 0 b33

 =


E

1−ν2 ν E
1−ν2 0

ν E
1−ν2

E
1−ν2 0

0 0 E
1−ν2 (1−ν

2
)


The elastic potential energy density per triangle can then be defined as:

Ee =

∫
Ve

1

2
(G : B : G)dv =

1

2
(G : σ) · Aeh

where Ae is the area of the undeformed element, h its thickness and

Ve = hAe its volume. The total stretching energy of the deformable

patch is obtained by summing up the contributions of all the elements:

Estretch =

faces∑
i

Ei
e

Finally, stretching forces and the Hessian (needed for implicit integra-

tion) are obtained by analytical derivation solving: −∇x(Estretch) and

−∇x(∇x(Estretch)), respectively.

As described in Skouras et al. (2012), muscles inflate thanks to a discrete

nodal pressure force defined as:

fi =
∑
j∈Ni

1

3
· pi · Ajnj

where Ni are the neighbouring triangles of vertex i, Aj and nj the area
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and normal of triangle j, and pi is the base pressure per vertex. In

practice, small triangles present in the tendon region result in small

pressure forces, which prevent the tendon from fully inflating. Therefore

a unit area Aj for all triangles is used. Adapting a topology-independent

method such as the one presented in Cong et al. (2015) would be also

beneficial. Pressure per-vertex is increased linearly over time. When a

node collides, its pressure value is frozen to its last value, in order to

improve the solver’s stability.

Note that bending forces can be disregarded in the simulation because

the progressive pressure increments that define the shape over time cause

stretching forces to be very large and the most influential. When inflat-

ing, artistic control is important to direct how the shape evolves in time.

For this reason artists have full control of the single muscles pressure and

material parameters (E and ν) parameters by painting a spatial weight

map to create variations in the inflating behaviour.

3.3.4 Fibre Field

Having a volumetric fibre field segmented by muscles is very important

for a subsequent physics based simulation of a tetrahedral mesh with an

anisotropic constitutive model capable of contraction. Alternatively the

muscle geometries themselves can be tetrahedralized and simulated with

fibre activations and intercollisions.

One of the advantages of generating the closed patch by extrusion is that

the creation of the fibre field of the inflated muscle is greatly simplified.

In the method of this work, first the fibre curves are duplicated and

translated by the same extrusion offset. Triangle barycentric coordinates

are calculated for each control node of the curve so that the inflation

deformation can be transferred to the curves. The result is a set of

deformed fibre curves that follow the muscle (see Fig. 3.3d). From these

curves a three dimensional vector field of fibre directions is generated.

It is then stored on a grid that can be interpolated trilinearly inside the

volume.
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Figure 3.8: Slices at different depth of the inflated muscles of the arm.
Depth of the slicing plane increasing progressively from (a) to (f).

3.4 Implementation and Results

The physics system is implemented as an Autodesk Maya plugin in C++,

while the flocking system is a Python custom tool. The smoothing and

relaxation steps of section 3.3.3 utilize standard Maya nodes. All the

patches in this paper were generated manually. Experiments have shown

that for best results it is useful to maintain a minimum distance between

one patch and another so that the subsequent steps do not create inter-

sections in the rest pose. For collision detection and response during in-

flation the system implements iterative constraint anticipation (Otaduy

et al. 2009) with spatial hashing (chapter 4).

As a use case the presented method was tested on a full arm of a muscular

human character (see Fig. 3.3). A real arm consists of about 25 muscles;

12 of them were used (including one pectoral muscle) for the simulation
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as the rest are not superficial or do not contribute substantially to the

deformation. Thanks to the constraints represented by the still vertices

of the input patches, inflation produces reconstructions that the artist

can expect and control. To test performance, for simplicity the arm was

split in upper arm (8 muscles) and forearm (7 muscles) and simulated

separately (some shared muscles were duplicated for collision purposes).

In both cases inflating objects collide with each other and with the 6

rigid bones. Slices of the inflated resulting shapes are shown in Figure

3.8.

The test consists of a 400 frames long simulation computing 1 substep

per frame with a small timestep of 0.0005s and additive pressure in-

crease factor of 0.01 per frame. On an Intel Xeon X3470, the non-

optimized code runs on a single thread and takes a cumulative time of

904ms and 1222ms per substep for the 12K and 15K elements of fore-

arm and arm respectively. This result can be greatly improved with

multi-threading and, if desired, by trading the accuracy provided by a

constrained based collision system for a faster approach using penalty

forces (see Chapter 4). The validation has been done mainly at the qual-

itative and visual level, which was found satisfactory for the goals of the

project. A more rigorous approach would be to compare the arm mesh

simulated under the contraction of the fibres generated from sculpted

anatomical muscles from a template, with the mesh simulated thanks

to the active fibres obtained with the method in this Chapter. The

muscles and associated fibres produced with the method, despite not

being fully anatomically correct, present organic shapes that are usable

directly for the simulation of the character (for muscle contraction and

secondary effects) (see Fig. 3.9 and please refer also to the videos at

http://www.fabioturchet.com/supplemental_material.zip).

A method has been presented to generate volumetric muscles based on

input patches sketched on the surface geometry of a character. The

result is the ability to obtain simulation-ready muscle shapes along with

fibre fields to be used for further simulations. Having presented a way
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Figure 3.9: (a) Generated bicep muscle; (b) Fibre curves and interpo-
lated internal fibres; (c) Rest pose mesh; (d) Embedded mesh of deformed
pose obtained using a tetrahedral FEM simulation with anisotropic ma-
terial (isometric contraction).

to generate anatomical volumetric models, the next chapter describes

in detail the structure and theoretical foundations of the solver used to

simulate the tetrahedral meshes.

55



Chapter 4

Musculo-skeletal Simulation

4.1 Introduction

In Visual Effects one of the main requirements for computer-generated

creatures and humans is to look realistic, believable and fully integrated

in the context and world of the movie. One of the ways to convey this

realism is through realistic deformations of muscles, fat and skin.

In this chapter, the methods used to realistically deform anatomical mus-

cle shapes are discussed and, in particular, how fibre-activated materials

are integrated in the physics solver. In the first part of the chapter some

preliminary exploratory studies with existing technology conducted at

MPC will be presented followed by the custom framework that over-

comes the limitations encountered will follow.

4.2 Background

This work is based on the idea of applying an engineering approach

to character deformation. In an engineering context the Finite Element

Method is the most popular choice when simulating complex hyperelastic

behaviour of materials. Being in essence a method to find approximate

solutions to Partial Differential Equations, its theory has been very well

studied for decades.
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After considering the various deformable models presented in Chapter 2

and with the desire to obtain plausible and stable results, a Lagrangian

representation with standard Finite Elements was chosen. This choice

was motivated by:

• The availability of a ready-to-use C++ open-source library for high

quality deformable objects called VEGA (Sin et al. (2013a)). Ex-

tending it and not coding it from scratch seemed a good idea

to speed up the implementation. Containing already classic hy-

perelastic materials (linear and corotational elasticity, StVk, neo-

Hookean, orthotropic), its interface made it quite easy to introduce

the anisotropic muscle material presented in section 4.3.3.

• The awareness that at the time of choice, existing interactive /

real-time methods were not mature enough, difficult to implement,

not accurate or not fully suitable for muscle simulation.

• A wide literature and documentation available on FEM for graph-

ics, including clear mathematical definitions of materials from en-

gineering research.

• The idea of using a top-down approach in the sense of first building

a system that is computationally complex but can achieve a desired

level of accuracy and progressively simplifying it to get a speed

trade-off. In this way it is made available a ground truth which

sets the baseline for comparison with later simplifications.

At MPC, FEM was very well known because of the existence of an in-

ternal destruction toolkit called Kali for the creation of effects such a

disintegration, fracturing and demolitions. Kali is an API built on top

of Pixelux’s Digital Molecular Matter (DMM) (Parker & O’Brien 2009)

and provides the artist with a set of tools and scripts to integrate DMM

into the FX pipeline to do mainly shots involving destructions, explo-

sions, fracturing and erosion.

However it soon became apparent, as detailed below, that Kali only

matches some of the requirements for muscle simulation and it was there-

fore discarded for the project. The limitation was not posed by FEM

57



itself, but rather by the lack of an adequate constitutive material model

to obtain volume-preserving active contractions of the deformable ob-

jects that represent muscles.

(a) (b)

Figure 4.1: (a) Slice of the full volumetric model; (b) Renderable skin

The tests described below were performed using existing technology at

MPC (i.e. Kali) to expose the necessity of research and development

on the flesh material and on the interaction of the different anatomical

layers. The goal of the following list of tests was in fact to prove that

what is achievable with the current simulation toolset at MPC is not

sufficient to achieve the desired quality of deformation. For simplicity

the focus has been put only on one part of the body, in particular the left

arm of a muscular male such as the one of a bodybuilder (Figure 4.1).

At the beginning of this process the muscle primitives of the existing

procedural system were fixed from all the intersections both with each

other and with the outer skin. Various amendments to the anatomy,

which in some cases was lacking accuracy at distal and proximal tendon

insertions, also had to be made. These changes were needed because

in the rest pose muscles should not have interpenetrations even if they

are in tight contact, otherwise the solver would start the simulation by

resolving those collisions, thus introducing spurious forces.
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4.2.1 Test 1: current MPC’s muscle system

In order to have comparable results, a simple animation of an arm lifting

followed by a forearm flexion was initially created and used for all the

tests. This involved the animation of an existing rig of a muscular body

type character which is made of procedural muscle primitives and a fascia

geometry shrinked and projected onto the muscles to take their shape

(Figure 4.2a). The results were generated with and without dynamics

using the existing muscle system without any blend shape activated. In

this system, the renderable skin is wrapped barycentrically directly to

the muscles.

4.2.2 Test 2: only fat layer

(a) (b)

Figure 4.2: (a) Shrunk fascia; (b) fat volumetric layer

For the next and following tests the Kali toolkit was used. In the first

test with Kali, the attempt was to simulate the fat layer.

The fat is created by tetrahedralization of the offset between the fascia

geometry and the skin geometry. The fascia is then deformed with linear

blend skinning, cached for efficiency, and acts as a Kali driver for the fat

layer. A driver is a polygonal object in Kali that has a falloff radius

of influence on nearby tets. The fat layer simulated this way shows self

collisions at work and convincing dynamics.
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4.2.3 Test 3: simulated passive muscles

(a) (b)

(c)

Figure 4.3: (a) Skeleton ; (b) Attached muscles; (c) Muscle deformation

In this test each muscle primitive was first tetrahedralized, detaching

their connections from the procedural system to keep only the geometry.

Then these muscles were constrained at their extremities through drivers

(the attachment points corresponding to the tendons) and fed into the

solver. The result is a set of deformable wobbly objects colliding with

each other but not really expressing the characteristics of muscles (Figure

4.3). The simulation was then transferred directly to the outer skin layer

with a wrap deformer.
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(a)

Figure 4.4: (a) Line muscles with driving sphere volumes for attach-
ment (in yellow)

4.2.4 Test 4: simulated “active” muscles

The next test used the same setup as in the previous one, described

in 4.2.3. The main difference is that for muscles internal drivers were

added which are animated geometries to which the surrounding mesh is

attached barycentrically. However, the implementation of a fibre con-

stitutive model was not possible because of Kali being a closed-source

product. Therefore an internal activation was attempted by procedurally

shrinking the existing muscle primitives to very thin cylinders (Figure

4.4) and using those as drivers with very small falloff. This approach

gave promising but not fully satisfying results: the effect of contraction

was visible on the flesh, but limited only to the deep vertices in contact

with the driver and transferred via inertia to the superficial ones which

remained de facto passive.

4.2.5 Test 5: fascia driven by ”active” muscles and

fat layer driven by fascia

As final test (Figure 4.5), test 4 was extended with the fat layer, by first

simulating the muscles, then wrapping the fascia to them and finally

using it as driver for the fat like in test 2. In this and previous tests, the
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(a) (b)

(c) (d)

Figure 4.5: Deformation of (a) Muscles; (b) Fascia; (c) Fat; (d) Ren-
derable skin

bones are tetrahedralized as well and treated as rigid bodies. This setup

produced the most realistic results.

4.2.6 Analysis of the tests

What emerged from all these experiments was in part expected. First

of all it is clear that muscles cannot be simulated with just position

constraints and an isotropic material. They need a fibre-embedded di-

rectional material model to behave realistically. In addition to this basic

requirement, the results obtained are convincing in terms of dynamics

and shape: separating the jiggle of the muscles from the jiggle of the fat

seems to give more realism and also the self collisions seem to add a lot

to the flesh look of the arm. The ulna colliding with the skin gives a nice

shape to the elbow (Figure 4.5d).
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It became apparent that not only is a good anatomical model with prop-

erly placed constraints essential, but also that biomechanical require-

ments should be formalized and implemented carefully. For example,

the radius/ulna rotation should be treated carefully to avoid problems

during pronation and supination such as artifacts on the final renderable

skin. Problems due to the initial rest shape also appeared in the exam-

ple with the brachialis muscle in which the model was provided as two

disjoined mesh objects. As a consequence, during forearm flexion and

extension its geometry created a depression on the skin.

One of the limitations of these tests is that a different stiffer material

was not assigned to the part of the geometry belonging to tendons. The

examples clearly demonstrate the need for a more advanced system that

supports features such as: sliding of the components under the fascia

and the skin, activations, multiple constraints types, fascia simulation.

Tests also show the fact that it is necessary to create the connective

tissue constraints between muscles to keep them together during ballistic

motion. Muscles in fact should behave as a whole during high-inertia

animations such as jumps.

4.3 Solver and Material Models

The approach taken aims at achieving high levels of realism by simulating

ordered layers of biological tissues, from the inside to the outside, so that

the interesting looking nonlinearities that result from their interaction

can be captured. This means that the simulation will be split in different

stages, each one outputting an intermediate product of the final result

(layers). This makes the system modular and more controllable, but at

the same time makes the coupling of the forces more difficult to achieve.

4.3.1 Simulation Model Construction

In order to test the hypothesis that anatomy-based character simulation

is a potentially beneficial technique to be adopted by the company, a
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working prototype is needed. The aim of the prototype is also to find

the weaknesses and the possible points of improvement from a practi-

cal point of view. This process begins by choosing the musculo-skeletal

model to be simulated. Even though there are commercially available

solutions such as Zygote (Zygote 2016), for the use case scenario of in-

terest the choice goes to the model of an arm (CGCircuit 2016) obtained

by retopologizing scans from a database of real muscles complete with

tendons (see Fig. 4.6). The models therefore are very accurate and the

mesh clean. Skeleton geometry is obtained in the same way. The model

consists of 4 bones and 14 muscles. It is important to have a mesh

with regular polygons to facilitate the subsequent generation of regular

tetrahedra out of them and improve the collision response accuracy. As

shown in the previous section, the option of converting the procedural

muscle primitives used in the rigging department was excluded because

the shape was is not anatomically accurate enough. For simplicity some

of the muscles were merged in bigger groups easier to handle, but still

keeping the superficial details. In particular this was done for some of the

many thin adjacent muscles of the forearm such as extensors and flexors

which are approximated to be working together (see section 4.4.2). Fewer

muscles also mean fewer computations for a collision system and fewer

constraints between them. Therefore the decision taken is to trade-off

the accuracy of interaction of muscles for speedup. These triangle meshes

are then converted into a volumetric tetrahedral representation using in-

ternal tools available from the Kali toolset which allow the control of

various aspects of the tetrahedralization: number of elements, confor-

mity, custom density via weight maps.

4.3.2 Solver

The solver is the core part of any simulation system. On it directly

depend desirable qualities such as speed, accuracy of the output, stability

of the simulation. In the context of this thesis it has to integrate a

partial differential equation (PDE) expression of Newton’s second law,

commonly known in continuum mechanics as the Cauchy momentum
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Figure 4.6: Anatomical geometry for prototype testing. On the left the
renderable/embedded mesh from which its conforming volumetric coun-
terpart is generated (right).

equation which relates the acceleration of a point in a medium with the

forces it receives from the surrounding material:

ρ
dv(X)

dt
= ∇ · σ + ρb

where ρ represents the density of the material, v(X) the velocity of a

material particle in the object, σ the Cauchy stress distribution (force

associated with the deformation of the object) and b the body forces

(gravity, collision response etc).

When testing a solver, it is common in the literature (McAdams et al.

2011) to first study the physics of deformable objects in a quasistatic

setting, meaning finding the configuration that brings in equilibrium the

forces of the system excluding gravity and inertial effects. By equilibrium

it is implied that the sum of all the forces equals zero. This is the
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approach also followed in this work for the deformation of muscles, while

dynamics are introduced in a second stage.

In this work objects (meshes) are intended to be defined as a connected

collection of nodes and elements. The nodes are the points for which

positions and velocities need to be calculated given the current inertial

motion of the object, its material and the presence of external forces. In

the Finite Element Method and elasticity theory, objects are first dis-

cretized into surface (triangles) or volumetric (tetrahedra) elements on

which physical properties such as forces are defined and calculated. In

a second stage the method takes the contributions of each element and

assembles them in a global system matrix that expresses the accumula-

tion of the elastic forces on each node, shared by multiple elements. A

deformation can be formalized at each material point of an object as a

function that maps a point in material space x ∈ R3 to a point in world

space X ∈ R3:

Φ : Ω→ R3

x = Φ(X)

As mentioned before, a deformation metric has to be chosen. The ba-

sic deformation quantifier is the deformation gradient F, a 3x3 matrix

defined as the Jacobian of the deformation function:

Fij = ∂Φi/∂Xj (4.1)

In practice other metrics dependent on F are used such as Green’s strain

E (used in this work) which, despite being more computational expen-

sive, is independent of the rotation of the element:

E =
1

2
(FTF− I) (4.2)

Knowing the severity of deformation is just one of the ingredients needed

to define the physics of deformable objects.
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Using E it is in fact possible to define a material model that expresses

the relationship between stress and strain and captures the elastic energy

accumulated in a deformed state at a certain time. At a mathematical

level a material is an energy density function Ψ that represents the elastic

energy of an element. The total elastic energy in a continuous setting is

just the integral over the elements of this density function:

Wtot =

∫
ω

Ψ(X,F(X))dX

A real world example of such a function is the one for St. Venant-Kirchoff

materials:

Ψ(F) = µE : E + λtr2(E) (4.3)

where µ and λ are the Lame’ coefficients which are related to standard

material properties used in continuum mechanics such as Young’s Mod-

ulus Y (measure of stretch resistance) and Poisson ratio ν (measure of

incompressibility):

µ =
Y

2(1 + ν)

λ =
Y ν

(1 + ν)(1− 2ν)

The strain tensor is a quantity that measures the amount of normalized

displacement with respect to a rest configuration. It can also be seen

as expressing how much the deformation gradient F differs from the

identity:

ε =
∂(x−X)

∂X
= F− I

The (Cauchy) stress tensor instead is a quantity that expresses how much

force f acts on a cross sectional surface area of a solid and depends on

the direction of the surface:

σ · ñ = f̃

It can also be thought as the sum of two components: a mean (or dila-
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tional) tensor (responsible for volume changes) and a deviatoric tensor

which is actually responsible for distortion and deformation.

In material science literature the properties of a material subject to in-

creasing loading are often visualized through a strain/stress plot that

describes the relation of deformation to accumulated stress for a mate-

rial constitutive model.

After applying FEM theory to the equation of motion (Eq. 2.1), ex-

pressing it in terms of positions (displacements) and adding a velocity

damping term it becomes:

Mq̈ + Dq̇ + fint(q) = fext

where q ∈ R3m are the displacements of the m mesh vertices from the

rest configuration, D = αM + βK(q) + D̄ is the damping matrix, fint

represents the internal elastic forces (gradient of the elastic energy) and

its gradient with respect to u, K, is the tangent stiffness matrix.

In order to timestep this equation, in VEGA the Implicit Backward Euler

integration scheme is adopted, in its semi-implicit form (Baraff & Witkin

1998):

qn+1 = qn + hvn+1

vn+1 = vn + hM−1(fext − fint(qn+1)−Dvn+1)
(4.4)

By linearizing the nonlinear fint via Taylor expansion:

fint(qn+1) = fint(qn) + K(qn+1 − qn)

The equation becomes linear:

(M + hD = h2K)(vn+1 − vn) = h(fext − fint(qn)−Dvn − hKvn)

By knowing the stress that an element undergoes, it is possible to com-
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pute the internal forces acting on it. In VEGA this is done by using the

first Piola-Kirchoff stress tensor P defined as:

P(F) = ∂Ψ(F)/∂F

Once P(F) is computed, the force on a vertex of a tetrahedron is obtained

by multiplying P(F) with its area-weighted normal:

G = PBm (4.5)

where G is the matrix having the forces acting on each vertex of a tetra-

hedron and Bm is the matrix having as vectors the area-weighted normals

(Irving et al. 2004).

Therefore, in order for the method to work, for each element the stiffness

matrix K has to be computed. K is defined as the gradient of the internal

forces, but in practice its implementation makes use of P (Sin et al. 2011):

K =
∂G

∂q
=
∂G

∂F

∂F

∂q
= (

∂P

∂F
Bm)

∂F

∂q

Details on the derivations can be found in Sifakis & Barbic (2012).

In production, it is highly desirable to give technical artists a fast initial

approximation of the results they will get so that they can do more

iterations of creative work. To this purpose the solver should support

mechanisms to trade-off speed for accuracy and be consistent in relation

to sub-frames and resolution variation.

One of the standard techniques adopted in this work to achieve this and

to reduce the computation time is called mesh embedding, in which the

momentum equation is not solved on all the nodes of a high-resolution

mesh, but on a coarse version of the same. The final, renderable mesh is

then deformed from this low-res version using barycentric coordinates.

Moreover, it is possible to reduce the number of elements (tetrahedra)

of the volume by allowing one tetrahedron to share different materials.

This approach, not implemented in this work, is used in (Saito et al.

2015) where the quantities of each material are calculated with Monte-
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Carlo integration. Another practical solution would be to integrate into

the rig blend shapes obtained with simulation.

4.3.3 Constitutive Material Model

Given their structure and specific properties typical of most biological

tissue, muscles have been described by an incompressible, transversely

isotropic, hyperelastic material. Transversely isotropic means that its

physical properties are symmetric with respect to an axis which is per-

pendicular to an isotropy plane (see Figure 4.7): the properties are the

same on the same plane in all directions.

Figure 4.7: Transverse isotropy

One of the materials for muscles found in the literature (Teran et al. 2003)

and implemented in this work has an uncoupled energy form, separating

the material response due to isotropic passive connective tissue and to

active components:

W(I1, I2, λ, a0, α) = F1(I1, I2) + U(J) + F2(λ, α) (4.6)

where:

• C = J−
2
3 FTF is the right Cauchy-Green deformation tensor
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• I1 = tr(C) is the deviatoric (non-volumetric) invariant of the strain

• I2 = 1
2
((tr(C))2 − tr((C2))) is the isotropic invariant of the strain

(does not vary in magnitude when measured in different directions).

An invariant is the same for different orientations of the coordinate

system chosen)

• λ =
√

a0 ·Ca0: a strain invariant associated with transverse isotropy.

Transverse isotropy indicates that physical properties are approx-

imately the same along a plane (it equals the deviatoric stretch

along the fibre direction)

• a0 is the fibre direction vector that doesn’t depend on F

• α represents the level of activation in the tissue

• F1 is a Mooney-Rivlin rubber-like model that encapsulates the

behaviour of the isotropic tissues in muscle that embed the fascicles

and fibres. In this work the StVk model is used instead

• J = det(F) is the measure of relative volumetric deformation of

the element.

• U(J) is a term expressing incompressibility

• F2 is the active and passive muscle fibre response. It depends on a0,

the deviatoric stretch in the along-fibre direction λ, the nonlinear

stress-stretch relationship in muscle and α.

This material is popular in muscle simulation literature and is intended to

capture the force-length nonlinear relationship obtained experimentally

from the study of individual fibre response (Teran et al. 2003) (Figure

4.8)

In this work, it is assumed that the stress P and the stiffness matrix K

are composed of isotropic and anisotropic summable parts:

P = Piso + Paniso

K = Kiso + Kaniso
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Figure 4.8: Material response of muscle fibre (active), tendons (passive)
and their combination. (Teran et al. 2003)

In order to compute the first Piola-Kirchoff stress, the energy in equation

4.6 must be derived with respect to F once to get P and a second time

to get ∂P
∂F

. Below some of the steps of the derivation are presented (for

the full derivation please refer to appendix D).

Derivation of the anisotropic part F2(λ, α) is done applying the chain

rule and considering the λ variable as just another independent variable

to derive:

∂F2(λ, α)

∂F
=
∂F2(λ, α)

∂λ

∂λ

∂F
(4.7)

The rightmost term can be developed as:

∂λ

∂F
=
∂
√

a0 ·Ca0

∂F
=
∂

√
a0 · J

−2
3 FTFa0

∂F
=

=
1

2λ
[
−2

3
det(F)

−2
3 (F−T)tr((Fa)(Fa)T) + 2det(F)

−2
3 F(aaT)]

=
J
−2
3

2λ
[
−2

3
(F−T)tr((Fa)(Fa)T) + 2F(aaT)] =
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=
J
−2
3

λ
[
−1

3
(F−T)tr((Fa)(Fa)T) + F(aaT)] (4.8)

The anisotropic term F2 is defined in Blemker et al. (2005) as

F2(λ, α) = αFactive(λ) + Fpassive(λ)

where Factive and Fpassive are defined as a piecewise combination of

simple linear and exponential functions, therefore it’s enough to take

their analytical derivatives.

In order to support invertible elements recovery (Irving et al. 2004),

the diagonalized version of F is F = UF̂VT which allows carrying out

substitutions in the formula:

F⇒ F̂

F̂T = F̂

a0 = VTa0

The last line is needed to rotate the anisotropic terms using V, as sug-

gested in Irving et al. (2004), so that the final formula becomes:

Paniso =
∂F2(λ, α)

∂F
=
∂F2(λ, α)

∂λ

(
1

2λ
VTa0 · 2(−1

3
J2F̂ + J−

2
3 F̂Ones)VTa0

)
(4.9)

with

λ =

√
VTa0 · J

−2
3 F̂2VTa0

J = det(F̂)

In order to compute the anisotropic part of the stiffness matrix, P has to

be derived a second time yielding the formula (using Einstein’s notation):
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∂Paniso

∂F
=− 2

9
J
−2
3 (F−T)ij(a0 · J

−2
3 FTFa0)

−1
2
lm (F−T)ij(Fa)k(Fa)k

− 2

3
J
−2
3 (F−T)ij(a0 · J

−2
3 FTFa0)

−1
2
lm (Fa)iaj

(4.10)

The incompressibility term of the energy is defined in Teran et al. (2003)

as:

U(J) = K ln(J)2

and its derivative becomes:

∂U(J)

∂F̂
=
∂U(J)

∂J

∂J

∂F̂
=

2K ln(J)

J
det(F̂)F̂−T = 2K ln(det(F̂))F̂−1

However, in this work the incompressibility term U(J) is already incor-

porated in term F1 which is in fact represented by an isotropic StVK

material. Expressions for ∂Piso/∂F are implemented in VEGA, but not

in their analytical efficient form. Therefore the formulation was derived

by hand (shown below). Full derivation is given in appendix C.

Piso = P(F) = F[2µE + λtr(E)I] (4.11)

∂Piso(F)

∂F
=
∂(F[2µE + λtr(E)I])

∂F
=

= µ(δipF
TF)qj + (FTF)piδjq + FT

qiFpj − δipδjq)+

+
1

2
λ(2FpqFij + δipδjqtr(F

TF)− 3δipδjq)

(4.12)

which is a 4th order tensor with indices (i, j, p, q).

Once Piso and Paniso are computed, using equation 4.5 the forces can be

calculated and also the final combined stiffness matrix, sum of Kiso and

Kaniso, for Implicit Euler integration.
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4.3.4 Boundary Conditions (Constraints)

In practical applications a deformable body does not serve any particular

purpose if it is just free moving. Most of the interesting behaviour of

physical objects derives from their interaction with other objects, user

manipulation and fixed or moving constraints of some of their parts.

Formally this translates into adding initial and boundary conditions and

constraints to be taken into account when solving the PDE of motion.

For instance vertices of the mesh could be required to keep a fixed posi-

tion in space or to follow a position at an offset relative to another object

(like muscles relative to bones), or they could be required to slide over

another object, or again to not compenetrate other meshes. In addition

to the uses described above, constraints are really important in the con-

text of this work because they allow the composition and interconnection

of anatomical layers, coupling them between each other to transfer across

inertia.

In terms of collision/self-collision resolution and response, typical cases

arise when muscles of different groups or fat get in contact: during an

arm flexion for example the lateral bulging is due to the pushing of soft

tissues against each other and to the physiological muscle bulging due

to contraction. Moreover, when two or more characters are interacting

(during a fight for example), the effect of collision forces is very evident

and the result on the skin contributes the level of drama in the action,

especially in slow-motion shots where contacts cause wave propagation

of the stress on the tissues. More details about the implementation and

the data structures used for the collision system are given in chapter 3.

The framework developed for musculo-skeletal simulation is based on

VEGA with custom implementations of constraints and collision re-

sponse. The first version of this framework models constraints and col-

lisions using elastic spring potentials. At a later stage this version was

successively improved using a constraint-based dynamics approach (the

framework which was used in Chapter 3). The results on muscle simu-

lation presented in this chapter were obtained using the first version of

the framework. Below details on the two methods are given.
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4.3.4.1 Springs view

Spring constraints consist of two mass points connected by a virtual

spring characterized by parameters such as rest length and stiffness con-

stant (Nealen et al. 2006). When the vector q connecting start and end

of the spring is different in magnitude than the rest length r, an elastic

response force dependent on the elastic coefficient ks is generated.

W(q) = ks|||q| − r||2 (4.13)

Position and sliding constraints can be hard or soft. Hard con-

straints can be thought as infinitely stiff springs, keeping the end points

always at the same initial distance. Soft constraints instead are springs

with a stiffness constant low enough to produce “bouncy” behaviour. At

each frame the new positions of the end points are read from the mesh

data structure, and their distance is used to compute the Jacobian of the

energy:

f(q) = ks(|q| − r)
q

|q|
(4.14)

Indicating with I the identity matrix, the Hessian of the spring potential

(Choi & Ko 2002) becomes:

∂f

∂q
= ks

[(
1− r

|q|

)
I +

r

(|q|)
qqT

]
(4.15)

The constraints force contributions are accumulated in the external forces

vector and the Hessians are added to the global stiffness matrix. Slid-

ing constraints differ from the position ones for the fact that the x, y, z

coordinates of one of the end points is determined using a closest point

query from one object to the other.

The offending vertices on which collision forces are computed are the

ones of the high resolution embedded mesh, but the solver deals internally

with simulation of the tetrahedral mesh only. Therefore using barycentric

coordinates the forces are distributed to the tetrahedral nodes.

Collision/self-collision constraints implemented as springs are based
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on the penalty method. After a collision is detected, to prevent mesh

compenetrations in the next timestep a response has to be generated in

the form of repulsion force. The penalty method tries to prevent a vertex

of a mesh entering another mesh by checking if the point lies within a

threshold distance from the object and if so, instantiating a zero-length

spring that applies a penalty force proportional to the penetration depth

d. This method is not fully free of self-penetrations. In order to have

more responsive collisions, in this work the penalty force is an exponential

function of d.

4.3.4.2 Constrained Dynamics view

The other way to treat collision responses is by incorporating mathemat-

ically defined constraints of the form C(x) = 0 into the dynamics system

matrix and solve the resulting Linear Complementarity Problem (LCP).

With this system it is in theory impossible that the constraints are vio-

lated and the output is velocities of the deformable object’s vertices that

are guaranteed to not intersect.

For position and sliding constraints the mathematical form is:

C(pA, pB) = nT (̇pA − pB) ≥ 0

where the normal for the position type is:

n =
pA − pB
|pA − pB|

for the sliding type is n = nobjectB and for the collision/self-collision

type n is the collision normal.

A constrained dynamics system was implemented at MPC after the work

produced in this Chapter by an intern student (Haapaoja 2016) and

successively improved by me and used in Chapter 3. Please refer to

Haapaoja (2016) for in-depth details on the collision system used. More

details on constrained dynamics can be found in Otaduy et al. (2009)

and Tournier et al. (2015).
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4.4 Implementation and Results

In this section the details of the setup and simulation of the prototype

anatomical arm example are presented, in particular the layered ap-

proach inspired by previous work (Lee et al. (2009), Comer et al. (2015)

and Clutterbuck & Jacobs (2010)).

The formulation presented in the previous sections was ported to code

following the interfaces provided by the library VEGA and extending

classes IsotropicMaterial, isotropicHyperelasticFEM, isotropicHyperelas-

ticFEMForceModel. In particular, the simulation loop algorithm can be

summarized as follows:

1: for each element do
2: Compute F from its vertex positions (eq. 4.1);
3: Compute dP/dF (eq. 4.12 and eq. 4.10);
4: Compute Kiso and Kaniso (eq. 4.3.2);
5: Accumulate result to global stiffness matrix;
6: end for
7: for each spring constraint (if any) do
8: Compute its K and accumulate to global stiffness matrix;
9: end for
10: Prepare multibody system matrix A using Implicit Euler;
11: Solve for velocities ∆v;
12: for each constraint expressed as C(x) = 0 (if any) do
13: Add its contribution to Jacobian matrix;
14: end for
15: Solve LCP and add ∆v to unconstrained velocities;
16: Use new velocities to compute new positions;

Algorithm 1: Pseudo code for the simulation loop

In terms of contact detection, the method in McAdams et al. (2011)

could also be implemented. In it the high-resolution mesh is sampled

(proxy points xp). For each sample, first its barycentric coordinates

with respect to the closest deformed tetrahedra containing it are calcu-

lated. The iso-value of the material point obtained is then calculated

for a level set in the undeformed configuration and the closest point on

the undeformed surface selected. This point xs is then queried back in

the deformed configuration so that the penetration depth and normal
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are |xs − xp| and (xs−xp)

|xs−xp| respectively. When a collision is detected, zero

length anisotropic springs are created between xs and xp so that there

is a sliding effect on the plane perpendicular to the penetration direction.

4.4.1 Bones

Bones are treated as articulated rigid bodies, inheriting exactly the same

transformation as the corresponding Maya bone in the driving rig. The

shape of bones at their extremities is generally irregular and the cor-

responding joints are simplified using models common in robotics. For

example the elbow is represented with hinge joints, assuming the rotation

happens on one constant axis; the humerus is a ball-socket joint. The

underlying rig implements rotation of the radius over the ulna during

pronation and supination of the forearm. In the examples of this section

the skeletal bones used are: scapula, humerus, radius, ulna of the right

arm/forearm.

4.4.2 Muscles and Tendons

The 3D muscles in the prototype are represented as a set of volumetric

elements with embedded fibre directions that follow the transformation

of the bones they are attached to. The 14 muscles simulated in the

examples below are:

• Biceps Brachii, Lateral Triceps Brachii, Medial-long Triceps Brachii,

Brachialis, Anconeus

• Superficial extensors (combo of brachioradialis, Extensor Carpi Ra-

dialis Longus, Extensor Carpi Radialis Brevis), Extensor Digito-

rum, Extensor Digitorum, Pronator Teres, Flexor Carpi Ulnaris,

• Flexors (combo of Flexor Carpi Radialis, Palmaris Longus, Flexor

Carpi Ulnaris), Extensor Carpi Ulnaris, Flexor Digitorum Superfi-

cialis, Flexor Carpi Ulnaris, Abductor Pollicis Longus.
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In this setup, muscles are attached to the bones geometry typically at

two points, proximal (origin) and distal (insertion) following anatomical

references found in medical literature and online (Zygote Body 2016).

To this aim, vertices of the tetrahedral mesh are pinned to the bone

mesh via position (hard) constraints. Some muscles like the deltoid, bi-

ceps brachii, triceps or the gastrocnemius (calf) have two or three heads

with which they attach to two or more bones they span: these muscles

are a unique mesh but often they are modelled as separate geometries

because splitting them enhances modularity and finer control of defor-

mation over specific parts. On the other hand, given the vast number of

superficial muscles on the forearm, it is also beneficial for the purpose

of faster simulation times to group adjacent muscles together. These

simplifications are generally decided beforehand and in general they do

not affect the visual result: muscles are tightly packed together and for

many movements they move in sync.

Once the models are created, tetrahedralized and attached to the bones

using anatomically-based constraints, the next step is to continue the pre-

processing by defining the per-element fibre directions. The anisotropic

material defined in section 4.3.3 has to express the state of the fibres that

can be active or passive. The peculiar characteristic of the muscle tissue

is its ability to contract and assume different shapes as a consequence.

The visual appearance of muscles bulging is determined at the micro

level by the activation of a huge number of fibres that slide over each

other due to biochemical firing processes. Muscles bulge in fact because

these fibres overlap one on each other during contraction, shortening the

muscle belly and stretching the tendons. Moreover, blood permeates the

tissues therefore, being a fluid, volume has to conserve.

In practice these requirements translate into an extension of the passive

volumetric model with an embedded 3D fibre field that can be thought

of as a flow from tendon origin(s) to tendon end(s) and which makes the

material stiffer in their direction when activated (anisotropy). Initially

the fibres were intended to be modelled semi-automatically as explained

in (Saito et al. 2015): solving a Laplace flow equation from the origin to

the insertion positions on the tendon with mixed boundary conditions
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Figure 4.9: Temporal frames extracted from an animation of the
humerus rotating with biceps brachii having non activated fibres.

(i.e. the flow through the epimysium set to null). Even though this solu-

tion would be highly effective, in the case of the arm the muscles involved

are generally fusiform therefore for each muscle the vector connecting in-

sertion and origin points is calculated and its direction assigned to each

tet of the associated muscle. This method would not work for muscles

such as the trapezius.

The importance of the fibre-activated material is not only limited to the

shape. During an animation in fact some muscles will be fully contracted,

while others will stay passive and others will be partially activated. The

activation level determines the stiffness of the material and it is in general

not uniform across all the fibres. In visual terms this means that a
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Figure 4.10: Temporal frames extracted from an animation of the
humerus rotating with biceps brachii having activated fibres.

contracted muscle appears to jiggle much less than a relaxed one. In the

example of a male athlete running, his pectorals appear very dynamic

because of the momentum of the soft tissue due to gravity and also due to

the balancing forces applied back in response to stepping on the ground;

but if he keeps them voluntarily contracted they appear much stiffer

and the noticeable jiggle is due mainly to the superficial adipose tissue.

Figures 4.9 and 4.10 illustrate this behaviour: the same animation of a

muscle constrained to rotating bones looks different if the fibres are not

firing (passive material) or are activated (material becomes stiffer and so

is less governed by inertial motion).

Muscle activations are a fundamental parameter of the anisotropic mate-
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rial. Their value is time-varying and in these examples this was controlled

by manually created animation curves. An automatic approach instead

would be the one in (Teran et al. 2003) or analogue method that outputs

a real number between 0 and 1 based on the angles and poses of the

skeleton. MPC rigs already have such a system to control flex shapes

therefore it would be technically easy to plug that in. Activation levels

can additionally be tweaked by technical animators in actions that in-

volve for instance heavy lifting, pushing of heavy objects and in general

isometric contractions, where the muscles bulge but the pose does not

change in time.

The Young’s modulus material parameters for the simulation were in-

spired by the literature but in practice tweaked to achieve visually pleas-

ant results. This is common in every day Visual Effects dynamics pro-

duction in which the goal is to achieve good looking results and stay

physically plausible even and often at the cost of using non physical pa-

rameters. As a general principle, flesh (muscles), tendons and fat should

have all different Young’s modulus. For the same tet mesh therefore

it is common to have an heterogeneus combination of different material

properties. Tendons for example are not separated from the main muscle

body mesh and have a much stiffer material on the tetrahedra belong-

ing to them. The parameter values used in the solver presented in this

chapter are:

• Muscle: density 1000 Kg/m3, Young’s modulus 9 ∗ 106, Poisson

ratio 0.45

• Tendon: density 1000 Kg/m3, Young’s modulus 15 ∗ 106, Poisson

ratio 0.45

• Fat: density 1000 Kg/m3, Young’s modulus 1 ∗ 106, Poisson ratio

0.45

Tendons of the hand are not modelled in these examples even though they

are very important visually. They are generally modelled in biomechanics

using the strand model (Sachdeva et al. (2015)). Recently, they have

been modelled accurately in the Eulerian-on-Lagrangian framework (Pai
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et al. 2014), even though their effect on the skin due to collision and

sliding was not modelled.

In Teran et al. (2005a) the connections between different muscles are

expressed through links (line segments). In the rest pose some points of

a source geometry are sampled (~xsamp) and for each one its closest point

~xanch (anchor) on all the neighbouring muscle surfaces is associated. Dur-

ing simulation the link with the closest anchor point becomes active and

determines the collision response force (with springs for example). At

each time step, the positions and the normal velocity components of a

sample are set to match the ones of its anchor:

~x
′

samp = ~xsamp + α[(~xanch − ~xsamp) · ~N ] ~N

~v
′

samp = ~vsamp + β[(~vanch − ~vsamp) · ~N ] ~N

where ~N indicates the normal at the surface point and α, β are control

coefficients. After having tried a similar approach for sliding, i.e. setting

explicitly the normal velocity of the sliding nodes (Warburton 2014),

for this work it was decided to use general spring sliding constraints

which served the purpose. Even though the framework supports colli-

sions, these were used at a minimum in the examples. Not only do they

considerably increase the computations, but in practice they revealed to

be not necessary for contact of adjacent muscles in the same groups. It

is enough in fact to use just sliding constraints between them. Collision

handling was necessary though for contact between muscles in different

groups such as the biceps brachii and the brachioradialis to obtain the

compression of the tissues when the forearm flexes.

Figures 4.11, 4.13 and 4.15 show the simulation results of an animation of

the right arm performing a flexion of 130 degrees followed by a pronation

and a supination (twisting of the forearm left and right). No gravity was

used. Muscles slide over each other, an effect particularly evident for

the biceps brachii on the brachialis. Muscles also slide and collide with

the rigid bones as shown by the tendons wrapping around them during

twisting. Very thin muscles such as the anconeus presented particular
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challenges especially for the collision system because it is constantly in

contact with multiple bones and it undergoes large amount of stress

in the elbow region. This required making its material softer (Young’s

modulus 5∗106) and the increasing the spring stiffness constants for that

area.

4.4.3 Fascia, Fat and Skin

The deep fascia holds single muscles together and keeps them closer the

underlying skeleton during motion. In the approach by (Teran et al.

2005a) an extra term is added to the energy distribution to encourage

resistance to stretching only on the surface; in practice this is done by

injecting a linearly elastic stress in the diagonalized form of the constitu-

tive model during elongation. In the work by (Comer et al. 2015), which

considers it as an adaptive tangential tensegrity model (Myers,T. 2013),

the tensive and compressional material of the deep fascia are modelled

with biphasic springs (i.e. having different constants in extension and

compression). The concept of tensegrity is essential in biomechanics and

means that every part of the body is subject to either pushing or pulling.

In this work the deep fascia that wraps single muscles was not explicitly

modelled as it was not considered very influential in the visual look of

the simulation.

As far as the superficial fascia is concerned, it is represented geometri-

cally as a mesh wrapping the union of all the muscles geometries. This

mesh can be generated by a cloth simulation with negative pressure as in

CGCircuit (2016) or can be obtained by projecting the renderable skin

on the muscles in the normal direction. With this method it could be

necessary to fix artifacts such as vertex crossings in the armpit region,

non homogeneous distribution of vertices (large versus small polygons)

or mesh crumpling in region with highly discontinuous surface curvature.

During simulation, a custom MPC wrap-deformer makes the triangular

fascia geometry follow the muscles by binding it smoothly to the closest

detected points. This layer is essential, as noted in Saito et al. (2015),

to create separation with the next layer: the fat.
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The tetrahedral fat layer is obtained using MPC’s Kali toolset as the

volumetric offset space between the fascia and the skin. It is driven

by the fascia and attached to it via soft sliding constraints (zero-length

springs) distributed regularly. Its typical jiggly behaviour is modelled

using a passive isotropic material (StVK in the examples).

Figures 4.17 and 4.19 show the interaction of all the 3 layers together

(please refer also to the videos at http://www.fabioturchet.com/supplemental_

material.zip). In red colour are the simulated muscles, in yellow the

wrapped fascia and in blue the fat/skin layer. The fascia was cached

and serves as driving geometry: there is no coupling because the 3 layers

were simulated separately. As can be seen (and especially in the videos),

the desired sliding effect of the muscles and the bones under the adipose

tissue was obtained, while self-collisions contribute to the lateral bulging

in the folding region of the elbow joint. It is exactly these subtleties and

nuances that make the skin look “alive”. At this point, an optional last

pass for the triangular geometry of the skin on top of the fat layer can

be performed to generate the final renderable mesh with high-resolution

and higher frequency wrinkles (Li & Kry 2014).

This chapter has presented the approach that was taken to the musculo-

skeletal physical simulation of the layered tissues present in a human

arm. Even if this work takes inspiration from the techniques presented

in Teran et al. (2003) and Teran et al. (2005b), there are some differ-

ences. First of all they don’t use a fascia layer to drive the fat, but

directly connect the muscles to the fat geometry which doesn’t highlight

effects such as sliding of the skin over the bones and the muscles. Sec-

ondly they do not integrate dynamics in the muscle simulation, which is

kept quasi-static. In this work instead the framework supports inertial

effects at the solver level and their effect is controllable with material, ac-

tivation and damping parameters. Moreover, muscle-to-muscle collisions

are not explicitly computed in this work and their effect replaced by the

use of sliding spring constraints. On the fat layer instead self-collisions

are computed explicitly with a point/tetrahedron collision test. At the

material level, the material model used in Teran et al. (2003) adopts
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Mooney-Rivlin equations for the isotropic part, while here STVK is im-

plemented. Lastly, an explicit analytical formulation has been derived

in this work for the fiber-activated constitutive model so that it can be

integrated in modern FEM solvers such as VEGA.

In the next chapter, the creation of a customized version of the same

solver and tools for artists are presented such that the task of placing

anatomical meshes from a template library is made more efficient and

interactive.
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Figure 4.11: Full arm simulation. View 1.

88



Figure 4.12: Full arm simulation. View 1. (cont.)
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Figure 4.13: Full arm simulation. View 2.
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Figure 4.14: Full arm simulation. View 2. (cont.)
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Figure 4.15: Full arm simulation. View 3.

Figure 4.16: Full arm simulation. View 3. (cont.)
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Figure 4.17: Full arm simulation layers. View 1. Muscles in red, fascia
in yellow and fat/skin in blue. 93



Figure 4.18: Full arm simulation layers. View 1. Muscles in red, fascia
in yellow and fat/skin in blue. (cont.)
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Figure 4.19: Full arm simulation layers. View 2. Muscles in red, fascia
in yellow and fat/skin in blue. 95



Figure 4.20: Full arm simulation layers. View 2. Muscles in red, fascia
in yellow and fat/skin in blue. (cont.)
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Chapter 5

Muscle Placement

5.1 Introduction

As shown in Chapter 4, one of the main techniques adopted nowadays in

the industry to simulate deformable objects is the Finite Element Method

(FEM). Despite the life-like results, the setup cost to generate and tweak

volumetric anatomical models for a FEM solver is not only very high,

but it cannot easily guarantee the quality of the models either, in terms

of simulation requirements. Unless a system such as the one presented

in Chapter 3 is used, in a production environment in fact models often

require additional processing in order to be ready for FEM simulations

(see section 3.1.1). For example, self-intersections or interpenetrations in

the rest pose may result in unwanted forces from the collision detection

and response algorithms that negatively affect the simulation at its start.

In this chapter a prototype framework and toolset are presented, imple-

mented as a Maya plugin and based on the 3D deformable object FEM

library VEGA (Sin et al. 2013b). The goal is to assist artists and tech-

nical directors (TDs) in the creation of simulation-ready muscle models

in a production environment. Current 3D authoring applications (such

as Autodesk Maya or SideFX Houdini) do not explicitly provide efficient

solutions for this task. Therefore a way to minimise the number of iter-

ations between geometry modelling and production of simulation-ready
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meshes is proposed, which allows the artist to see the simulated result of

contracting muscles interactively. As a result the efficiency of modelling

targeted to simulation is increased.

5.2 Related Work

Interactivity is a crucial part of any design system that aims to speed

up the artistic process. Existing literature focuses on the application of

fast deformation algorithms to the authoring of deformable objects with

specific desired properties, fast prototyping, design of organic objects

such as vegetation and user control. For example Barbič et al. (2012)

propose an animation editing tool leveraging on the power of model

reduction and the computational efficiency of linearized elasticity that

allows the direct manipulation of vertices of a simulated geometry at

any frame with instant adjustment of the full animation in response.

Constraints and physics are respected via a space-time optimization.

One of the main advantages of interactive methods is that they amplify

the creative possibilities of the artists by allowing the exploration of a

vast space of designs in a short time and provide instant feedback on the

constraint choices. One example of this characteristic is represented in

the work by Xu et al. (2015b) in which the user can design nonlinear

isotropic and anisotropic materials for soft-body simulation intuitively

and interactively by editing spline curves in an interface. The system

works by expressing internal forces and a stiffness matrix in the space of

principal stresses (the singular values of the deformation gradient F) and

using separable strain elastic energies. As a result this gives much free-

dom in the definition of material properties because the user directly edits

the stress/strain curve. Xu et al. (2015a) instead use model reduction

to greatly increase optimization speed while calculating heterogeneous

material properties for deformable objects. The user specifies desired

displacements and internal forces which allows the calculation for exam-

ple of accurate contact forces in fabrication (inverse) design. This means

that the user is freed from the tedious work of setting material param-

98



eters and can instead follow a goal-oriented approach ’starting from the

end’: the optimization will take care of finding the physical parameters

that during simulation lead to the desired result. Similarly, Xu & Barbič

(2017) describes a method to design example-based linear or nonlinear

damping properties for a simulation, by controlling a spline curve.

An interesting complex application of interactive design is represented

by vegetation. Similar in spirit to this work’s goal to produce simulation-

ready meshes, Zhao & Barbič (2013) propose a method that applies do-

main decomposition to the processing of a polygonal “soup” representing

a tree and outputs separated geometries ordered in hierarchy for fast sim-

ulation with minimal user input. From a user selection of triangles into

basic classes, the system automatically builds a domain graph and uses

model reduction for a fast authoring of simulated plants, including pre-

decided fracturing. Hädrich et al. (2017) produce stunning results for

climbing plants authoring using a meshless based representation, specif-

ically anisotropic oriented particles. In this way the system is not only

very fast because of its parallelism, but also supports a multitude of

operation such as bending, breaking, physically and biologically based

growth. Using a similar method, Pirk et al. (2017) propose a system for

the interactive simulation and artistic control of wood combustion for

botanical tree models.

Recently, neural networks and, specifically, conditional generative ad-

versarial networks have also been applied to help artists accelerate the

design process (Guérin et al. 2017), opening a promising new direction

for the application of machine learning in Visual Effects.

5.3 Method

A typical workflow in the system presented in this chapter consists of

the following macro steps (illustrated in Figure 5.1):

• Import of an existing muscle template from a library of meshes or

existing muscle rigs;
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Figure 5.1: Main steps of the system for a scene with biceps brachii
and brachialis muscles. From left to right: (a) rest shape of a muscle;
(b) dynamic placement; (c) context-aware sculpting of intersection-free
geometry with tetrahedral cage deformation; (d) simulation with contrac-
tion of the newly created muscle.

Figure 5.2: Input tetrahedral and embedded meshes for the biceps
brachii. Highlighted in green and with a semi-transparent shader is the
low resolution tetrahedral cage. In dark gray the underlying high resolu-
tion embedded mesh.

• Interactive physics-based placement of the muscle geometry through

manipulation handles;

• Sculpting of the muscle automatically avoiding interpenetration

with surrounding objects;

• Simulation and contraction preview of the newly generated shape.

5.3.1 Initial muscle data preparation

A typical muscle simulation such as the one presented in Chapter 4

requires a tetrahedral mesh, a high resolution triangular mesh for ren-

dering, collision objects and constraints (boundary conditions). As dis-
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cussed before in Chapter 4, a mesh for rendering is embedded by using

barycentric coordinates or similar methods and collision objects can be

either rigid, for example, geometry for bones, or deformable, i.e. other

muscle geometry. In addition, the tetrahedral mesh contains volumetric

vector attributes such as a fibre field, continuum mechanics materials

and activation levels used during contraction.

The system assumes the existence of a template library of pre-sculpted

anatomical models of bones, muscles and skin (Figure 5.2). The source

models for the library can be taken from commercially available collec-

tions, as well as reconstructed from freely available medical MRI/CAT

scans and muscles from existing characters. This work makes use of an

adapted 3D model from (CGCircuit 2016) which in turn builds on the

scans of real subjects.

5.3.2 Muscle placement

Once the model is selected from the library, the muscle placement stage

begins. The goal here is to place muscle attachments of the template

model near the bones via an interactive user-controlled simulation. Mus-

cle attachments are sets of vertices (typically of the tendon geometry)

hard-constrained to a driving handle mesh (such as a simple sphere).

One of the main features of this system is that it solves for collisions

with nearby muscles and bones during the placement process, elastically

adapting the muscle to preserve its volume. In this way the framework

differs from standard 3D modelling tools which do not provide these fea-

tures and which result in plastic deformations that can hardly produce

a simulation-ready mesh.

To control the placement, the user can add hard constraints on specified

nodes of the mesh which serve as 6-DOFs manipulators. In the inte-

grator, which implements Implicit Backward Euler (Eq. 4.4), the con-

strained nodes inherit position and velocity of these manipulators, rather

than being directly solved. This produces a change of the deformation

gradient that triggers elastic deformation. Rayleigh stiffness damping
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Figure 5.3: Placement of the tendon handles in place over the humerus
bone.

(Sin et al. 2013a) and zero gravity are used to limit the effects of sec-

ondary motion; a quasistatic version of the solver could be alternatively

used, that is a version without inertial effects and where the solution

positions satisfy the equilibrium of all forces, i.e. their sum is equal to

zero. In placement mode all surrounding objects remain rigid (Figure

5.3). For fast intersection and response tests with static objects such

as bones Signed Distance Fields (SDF) are used (Sanchez et al. 2012).

For collision detection and response queries with dynamic objects, such

as other muscles present in the scene, SDFs would be too slow because

of the re-building of the field. Therefore a fast distance approximation

with a BVH spatial data structure is used instead. Collision detection is

based on the method described in Teran et al. (2003).

As mentioned in Chapter 4, collision response is performed using a simple

penalty-based method in which objects have a small collision offset hull

around them. For each colliding vertex of the embedded mesh, a virtual

spring is instantiated in the penetration direction and its dampened force

is implicitly applied at each substep to the closest corresponding node

on the cage. In the executed tests an isotropic nonlinear St Venant-

Kirchhoff constitutive model was used (Equation 4.3), however a faster

yet less accurate linear corotational material could also be used at this

stage.
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Figure 5.4: Sculpting tool interface in Maya.

5.3.3 Sculpting

Once the placement process is complete, the artist might still require

further adjustments of the muscle shapes to fulfill creative and func-

tional requirements. For this purpose the toolset builds on top of stan-

dard Maya sculpting tools by providing a specialized intersection resolu-

tion node, acting on the high-resolution embedded shape (see Figure 5.4

and please refer also to the videos at http://www.fabioturchet.com/

supplemental_material.zip).

After two consecutive sculpting operations s1 and s2, the vertices of the

new deformed mesh Vs2 are compared against the vertices of Vs1 to detect

which ones have changed. After a broad-phase collision detection based

on bounding boxes that finds surrounding objects, the vectors between

the old Vs1 and new vertex positions Vs2 define the directions for ray-

triangle intersection tests. The intersection tests can be accelerated if a

static BVH is used. As intersections are solved at each operation, this

ensures that in the next operation the first hit point is where the vertex

is stopped. In addition, the sculpting tool can optionally apply to the

point the same collision offset parameter used during simulation (Figure

5.5). The plastic deformation performed by the sculpting process is not

used to generate a blend shape (i.e. a new deformed mesh with the
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Figure 5.5: Some steps of the sculpting process in which the mesh is
pushed out but collides with an existing adjacent muscle (in gray). The
red circle represents the Maya brush gizmo. The wrap deformer acts in
real-time at each brush stroke, in this figure from the embedded mesh in
red onto the cage in pink.

same topology but different vertices positions that gets interpolated) for

a pose, but results in a mesh that becomes a new rest pose (i.e. a new

initial undeformed pose) used by the solver to compute elasticity and

perform further simulations.

Note that the artist sculpts the embedded mesh, but the solver needs

the volumetric cage for simulation (i.e. the tetrahedral mesh). In order

to avoid additional expensive tetrahedralizations, the framework uses a

custom wrap deformer based on closest point distances and adjustable

falloff (action radius). The wrap deformer’s job is to deform a mesh

with another mesh having different topologies. This deformer is used to

deform the internal nodes of the cage mesh and the associated fibre field.

As a normal approach in FEM to save computation time, the tetrahedral

volume has fewer degrees of freedom compared to the embedded mesh.

Therefore the wrapping process cannot guarantee that the cage perfectly

contains the new geometry as before the sculpting stage. This has not

been a problem for the embedding process because the embedding works

with barycentric coordinates (Vince 2006).
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Figure 5.6: Some steps of the simulation process, in which the bending
of the elbow joint activates the contraction of the biceps brachii.

5.3.4 Simulation

Once the new sculpted muscle is completed, the barycentric coordinates

have to be recomputed and the solver is re-initialized with the new tetra-

hedral mesh rest shape to preview the contraction of the muscle in an

animation. In the simulation step the same solver as in the muscle place-

ment stage is used, which allows the integration of the same data struc-

tures seamlessly as a part of the same framework.

The muscle material can be changed from a pure isotropic material to a

transversely isotropic material that makes use of the fibre directions field.

In particular, as discussed in Chapter 4 the constitutive model presented

in Teran et al. (2003) was implemented, with active and passive stress

response, with different Young modulus for tendons and muscle body

materials. In the simulation stage the system supports not only hard

constraints, but also soft and sliding constraints. This allows the creation

of the interconnected network of connective tissue known as fascia which

keeps the muscles packed together during motion.

5.4 Implementation and Results

The solver and the sculpting tool are implemented as C++ multi-threaded

Maya plugins. The solver extends the Maya class MPxNode. Its in-

put connections are a time node, the tetrahedral and embedded meshes
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and various parameters such as gravity vector, iterations number, self-

collisions flag which are editable from Maya’s Attribute Editor. Its out-

put is the tetrahedral mesh. Every time one of the inputs changes, the

node graph is recomputed and the compute function of the solver is

called, executing a timestep. Other solver parameters such as the ma-

terial model are contained in an input file specific to each deformable

object which follows VEGA’s configuration file format. The sculpting

tool also extends MPxNode and executes at any mesh editing operation

performed by the user for instance using the Artisan sculpting toolbox

and brushes. The wrap deformer node mentioned in this chapter is the

standard one available in Maya. The initial tetrahedralization is per-

formed using TetGen and is stored in .veg files, while the SDFs are stored

using OpenVDB. The code can be greatly optimized performance-wise.

For simplicity, the prototype was tested on a basic two-muscles setup in

which a user places biceps brachii over brachialis by moving constraint

handles attached to each tendon end. In a real use case the scene could

contain many muscles that would be placed in layers from the internal

to the most external ones. This would not considerably affect the perfor-

mance because the existing placed muscles would be kept as static rigid

objects and only the data structure for collisions would grow in size.

Performance would drop if multiple muscles would be moved at once.

For the placement part the material used is the isotropic StVk, while

for the contraction preview it switches to anisotropic. After the bicep

is placed by translating and rotating its handles in a position which

resembles its real anatomical position on the character, the user sculpts

its central body by making it much bigger and finally previews its new

shape in an animation that activates the contraction (5.6).

In terms of performance, one muscle made of 400 tetrahedra, subject to

15 hard constraints and 100 collision constraints, interacting with one

bone and one other muscle, can be placed interactively at ∼15 fps using

a timestep of 0.01s. Because the accuracy in this kind of design appli-

cations is secondary over performance, the parameter or the maximum

number of iterations performed by the PCG solver was kept low (10-20).
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The next chapter presents a procedural technique based on continuous

scalar fields that doesn’t use physics, but allows the addition of wrinkles

as a post-process effect.
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Chapter 6

Implicit Skinning Extension

6.1 Introduction

Figure 6.1: Overview of the workflow of the system. (a) Angle field
gradients; (b) Seeds and curves; (c) Final result (meshes are subdivided);
(d) Real example of a left thumb.

Skinning is one of the most important areas in the field of computer

animation and visual effects, where character realism and believability

are essential. A large number of methods exist and are implemented in

modern animation systems (Gain & Bechmann 2008). One of the recent

advancements in the area which produces believable results is the Implicit

Skinning technique (Vaillant et al. 2013). Unlike other methods which

only use surface (vertices and triangles) data, Implicit Skinning makes

use of implicitly-defined continuous scalar fields, in particular Hermite

Radial Basis Functions (HRBF). This helps in solving the drawbacks

that linear blend skinning and dual quaternion skinning exhibit: loss of

volume, lack of collisions and unwanted bulging.

During animation, the fields associated with each skeleton bone are
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rigidly transformed and the mesh vertices march in the direction of the

gradient of the combined field until they reach the isovalue they had in

the rest pose. This allows better preservation of the initial shape and

better deals with self collisions in the folding region, either by stopping

the marching at gradient discontinuities or by using a contact operator

(Vaillant et al. 2014). The framework also allows the creation of interest-

ing effects through the use of gradient-based operators, for example the

bulge in contact which approximates volume preservation. Nevertheless,

to the author’s knowledge, important secondary effects such as wrinkling

have not been previously investigated for this technique.

In this chapter it is described the extension of implicit skinning to gen-

erate plausible and temporally-coherent wrinkles for skeleton-driven 3D

animated characters. The technique benefits from the available trans-

formed scalar fields: from their interaction a vector field that resem-

bles plausible wrinkle directions is generated, hence creating a hybrid

polygon-implicit approach.

The main contributions of this work are:

1. A technique for the creation of wrinkle curves based on the implicit

skinning method.

2. A large set of parameters to allow users to procedurally tune the

behaviour of the wrinkles and thus obtain the desired result.

6.2 Related work

Despite being considered a secondary effect in skin simulation systems

(Clutterbuck & Jacobs 2010), wrinkling has been attracting the attention

of both academia and industry as an important detail to add realism to

Computer Generated (CG) characters. Elastic thin sheets like cloth or

skin create wrinkles when compression forces are applied, to preserve

material and isometry (the property of being inextensible) of the rest-

pose object.

Current approaches can be categorized as artist-driven, in which drawn

109



wrinkles maps are blended (Jimenez et al. 2011), procedural, based on

textures (Kimmerle et al. 2004), and physics based, often using a bend-

ing energy formulation in a specialized cloth solver (Bridson et al. 2003).

An accurate way to measure stretching and compression is via the stretch

tensor as presented in Rohmer et al. (2010). Their work is focused on

augmenting coarse mesh cloth simulations with fine details such as wrin-

kles and refining the tessellation in localized areas through adaptivity.

The rest mesh is parametrized to a plane in order for the triangles to

have a common frame of reference and the stretch tensor is calculated as

defined in (Talpaert 2010). This is then diagonalized and its eigenvalues

and eigenvectors give the magnitude and direction of the wrinkle vector

field, respectively. Wrinkles are then generated as convolution surfaces

from this field’s streamlines by growing curves from seeds with the high-

est vector magnitude. The technique presented in this chapter follows

the same procedural approach for curve generation but substitutes the

stress field by the gradient of a scalar angle field, without using planar

parametrization. In this way the properties of the fields are exploited

instead of calculating the stress tensor.

Recent works on skin in particular make use of physics-based simulation.

Rémillard & Kry (2013) presents an approach in which thin shells are

embedded in coarser finite element meshes to simulate the wrinkling ef-

fects of hard skin surrounding soft objects. The key idea is the use of

frequency based position constraints, modelled as discretized continuous

functions, that allow wrinkle formation only at wavelengths matching

physical material properties. The work by Li & Kry (2014) extends this

technique by adding multi-layer support for heterogeneous materials and

creating extremely fine and realistic skin details trough the use of adap-

tive meshes, for which normal or displacement maps can be exported.

Warburton (2014) in his work successfully applies a variation of the Fi-

nite Element method to the simulation of realistic forehead wrinkles on

the GPU. Wrinkles as part of a larger simulation framework were pre-

sented in Weta’s proprietary Tissue system (WETA Digital 2013) that

uses finite elements to simulate fascia/fat/skin layers and constraints to

solve wrinkling problems.

110



Biomechanics and bioengineering studied in depth the phenomenon of

wrinkling on human skin. Joodaki & Panzer (2018) review its general

properties such as nonlinearity, viscoelasticity, anisotropy and loading

history dependency, in addition to specific constitutive material models.

Lejeune et al. (2016) derive an accurate analytical solution for the pre-

diction and control of multi-layer wrinkling initiation. Yin et al. (2010)

study the behaviour of wrinkling due to water immersion and in particu-

lar wrinkle-to-wrinkle distance (wavelength), wrinkle depth (amplitude)

and critical wrinkling stress/strain. They compare an analytical and a

FEM method to evaluate predictions. The consequence of aging on the

skin was studied by Flynn & Mccormack (2009), who use a multi-layer

FEM model to simulate the effect of changes in physical properties such

as moisture content and dermal collagen fibre density. Paes et al. (2009)

investigate the reasons for the differences of wrinkling in the mouth re-

gion between men and women, at the histological (tissue) level.

6.3 Method

Figure 6.2: In pink f1 and blue f2, two HRBF fields; angles between
their gradients are shown in yellow.

The method presented here works in the Implicit Skinning framework

(Vaillant et al. 2013), as a post-process following the projection step

that moves the vertices to reach their rest-pose isovalue. The following

subsections detail the steps to generate plausible wrinkles for a mesh

deformed with the implicit skinning algorithm. The required inputs are
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therefore the continuous scalar fields of the segmented mesh of which

value and gradient are used.

The method is based on the post-processing technique presented by

(Rohmer et al. 2010). The difference with their approach is that here the

stretch tensor is replaced with a discrete scalar field calculated from the

single fields associated with each bone. Its value at each vertex is defined

as the angle between the gradients of two adjacent fields. This avoids

the parametrization of the mesh in planar space while taking full advan-

tage of the implicitly-defined scalar field. The key observation is that

the gradient of this angle field resembles the direction in which human

skin wrinkles in bending fingers or arms.

6.3.1 Angle Fields Preparation

The vector field representing wrinkle directions, constrained on the sur-

face, is a gradient field of the discrete scalar angle field and it is calculated

by taking the finite differences in the local frame of each vertex. In prac-

tice, for production-ready meshes, it can be approximated by taking the

finite differences on the one-ring neighbours of the vertex, as described

below.

The generation of a discrete scalar field for each pair of adjacent joints

in the skeleton hierarchy will now be defined formally. Let f1 and f2

be two consecutive fields with compact support. During animation of a

bending joint chain f1 and f2 will rotate rigidly towards each other. For

each vertex in f1 ∩ f2 the angle between the gradients of f1 and f2 can

be calculate straightforwardly as (see Figure 6.2):

angle(f1, f2) = arccos
(
∇f1 · ∇f2

)
where gradient vectors are assumed to be normalised.

Once an angle field fA is defined, its gradient is approximated with finite

differences by searching in the one-ring neighbours the position with
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minimum value pmin. For a source vertex p the gradient is then:

∇fA = pmin − p

In practice, the user can choose to use a version of this field in which the

gradients are biased towards one of the connected edge vectors. Based on

the quality of the deformed topology, in this way more regular anisotropic

patterns can be achieved if desired (Figure 6.3. To generate fields less de-

pendent on the mesh resolution the search can be done in ring neighbours

of levels greater than one, which are pre-stored for efficiency. Consider-

ing three hierarchical fields f1, f2 and f3 in which f2 is child of f1 and

f3 child of f2, they can interoperate in such a way that f1 can create

wrinkles with field f2, but not with f3.

6.3.2 Curve Creation

The wrinkle curves are grown from the potential seeds selected from

the vertices satisfying the user-controlled parameters and which are pro-

cessed in a priority queue based on their associated angle. For each new

seed a curve is grown in both the directions determined by the maximum

gradients of its surrounding neighbours. Temporal coherence is achieved

by keeping curves from the previous frame and deleting them if their

corresponding seeds do not satisfy specific criteria for the current frame.

Depending on the extension of the local support of the implicit skinning

fields, wrinkles could also appear both in the rest pose and on undesired

regions of the mesh. This problem is solved by creating a seed only

if the corresponding joint is bent more than a specified threshold. In

addition, a subset of the initial vertices is precomputed by excluding

those not in the folding region. This is obtained by thresholding based

on the dot product between the vertex normal and the up vector of the

associated bone’s local rotation frame. Finally, the vertices forming a

curve are displaced in their normal direction by a controllable amount.

This approach works for both static frames and animations.

At each frame every vertex is processed and inserted in a priority queue
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based on its angle value. The curve generation algorithm begins by

selecting a seed from the top of the queue (red dots in Figure 6.6(d));

starting from it, vertices are added to the curve by iteratively choosing

the next candidate in the one-ring neighbourhood N that has edge vector

most similar to the gradient of the field at the source point. This process

is repeated for the newly added point.

As in (Rohmer et al. 2010) the curve is grown in both directions, with

the addition that for each seed we invert the gradient at that point to

grow the second half of the curve. By indicating with q a candidate

neighbour and by e = q − p the edge vector, the next vertex to add to

the curve is calculated as:

pnext = min
q∈N

(arccos
(
e · ∇fA))

after normalizing vectors in arccos. The generated angle field has gradi-

ents pointing in plausible wrinkles directions because the angles decrease

moving further away from the folding region, where their values are sim-

ilar to the joint bending angle.

Every time a new point is added, its Euclidean distance is checked against

all the current curves to enforce the constraint that all of them must stay

at a minimum user-defined distance. The curve points loop terminates

when a point’s angle is under a user-set threshold or when it ends up

outside of the allowed internal region of the mesh. Due to the fact that

for dense meshes the number of curve points can be high and would nega-

tively influence performance, a resampling of the curve can be performed

which in practice corresponds to a simple pruning.

In order to maintain temporal coherence between consecutive frames, the

active curve list is kept from one frame to another and a curve removed

from it if its corresponding seed ends up outside one of the associated

fields, which can be defined by checking the isovalue against the thresh-

old. Therefore the curves are not grown again from their associated seed

after they are generated. This is in line with the observation that for

human skin in particular, wrinkles tend to form at the same position

for multiple repetitions of the same movement (fingers are a typical ex-
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ample), a feature exploited for instance by Cao et al. (2015) for their

wrinkle likelihood map generation.

During animation, fields rigidly rotate and interpenetrate one another

which causes configurations for which a field (the one associated to a

finger phalanx for example) happens to be “immersed” into another field.

This becomes problematic because seeds will be selected from the whole

mesh segment and wrinkles would appear in unwanted regions, like the

nail. Therefore, as a precomputation step, only the vertices on the same

side of the joint bending direction are selected for wrinkle generation.

This is done easily by thresholding based on the dot product between the

vertex normal and the up vector of the associated bone’s local rotation

frame.

6.3.3 Wrinkle Field

The curves created as described in section 6.3.2 are a set of line segments

connecting vertices of the mesh. These segments are transformed into

convolution surfaces wi and the sum of their field contributions gets

thresholded:

vwrinkles =
∑
i

(wi)− T

In this method the convolution surfaces used are with line segments as

skeletons and Cauchy kernel as a potential function. This surface for

line segment with position vector ai, normalized direction di and length

l has the following closed-form formulation (McCormack & Sherstyuk

1998):

wi(x) =
n

2p2(p2 + s2n2)
+
l − n
2p2q2

+
1

2sp3
(atan[

sn

p
] + atan[

s(l − n)

p
])

where n = (x− ai) · di, p2 = 1 + s2(|x− ai|2 − n2) and q2 = 1 + s2(|x−
ai|2 + l2 − 2ln)

The following default parameters (empirically chosen) are used for the

convolution surface: T = 0.5 and s = 0.85.

The advantage of using convolution surfaces is that the segments smoothly
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blend-in and they can be integrated straightforwardly with the existing

HRBF fields. Because there is no stretch information per face in this

method, the radius of each segment gets modulated by a factor that

depends on the angle magnitude at each curve point. This in general

makes the wrinkle thicker at the center of the field and smoothly nar-

rower at the edges. For fast value query each segment’s bounding box is

also inserted in a KD-tree.

6.3.4 Projection

After obtaining vertex positions from the last step of implicit skinning

and wrinkle fields vwrinkles, the HRBF field and wrinkles field are com-

bined. Thus, the value vcomb at an arbitrary point pw is:

vcomb(pw) = max(vHRBF (pw)− 0.5, vwrinkles(pw))

It can be seen that here a simple set-theoretic operation is used, yet more

complex blend operators can be adopted as well. Vertices get projected

to this combined field by using Newton’s iterations (Figure 6.4). Dur-

ing projection collisions are not calculated using gradient discontinuities.

Instead, to avoid evident mesh interpenetrations, the smoothing coeffi-

cients generated in the main implicit skinning step are reused to exclude

from the displacement the vertices in the colliding folding region.

Unfortunately the equivalence between the decomposed stretch tensor’s

eigenvalues and the angles magnitude cannot be used to activate the

wrinkles because already in the rest-pose the angle values are not zero

and during animation noisy fluctuations in the angle field are experi-

enced. Therefore, in order to produce a smooth appearance for the

wrinkles, the depth of the curve is modulated by the offset between

the current and the rest-pose’s joint activation angles, in a fashion sim-

ilar to how a pose-based deformation works. The gradual appearance

is achieved by placing the curve vertices initially under the surface at

a distance R corresponding to the radius of the segment and smoothly

moving them upwards in the normal direction.
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For fast preview purposes, a simplified procedure can be applied. Instead

of projecting the vertices to the wrinkles field, a simple displacement of

the vertices corresponding to the curve points can be executed. However

in this case the wrinkles radius is not controllable and wrinkles appear

to be too sharp and uniform.

6.3.5 Parameters

The presented system is procedural and allows the user to control the

appearance of the wrinkles by tweaking basic parameters (see Figure

6.5), some of which are described below (please refer also to the videos

at http://www.fabioturchet.com/supplemental_material.zip).

Wrinkle Radius: the base radius for the convolution surfaces

Direction Threshold: the minimum angle that the gradients at two

consecutive points of a curve must form. This parameter helps to achieve

a more organic look and longer wrinkles as it allows the curves to be

approximately straight.

Seed Angle Threshold: the minimum angle that a seed point must

have to be selected. This allows wrinkles to also start forming at the

edges.

Field Threshold: minimum isovalue that a seed vertex must have to

be selected

Angle Threshold: the minimum angle that any curve point must have;

this controls the termination of the curve growth process

Seed Distance: keeps the seeds at a minimum Euclidean distance

Displace Strength: controls how deep the convolution surfaces stay

under the mesh so as to modulate bigger or smaller displacements

Ramp Control: a smooth spline that controls how fast and linear the

wrinkle appearance is

Appearance Time: activation time, expressed in frames or joint angle

degrees

Topology Bias: this parameter forces the angle field calculation to

examine only the connected vertices.
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6.4 Implementation and Results

The method is implemented as a C++ Maya 2015 plugin. Both value and

gradient of the rest-pose HRBF fields are stored as OpenVDB textures

because their evaluation is computationally too expensive as it requires

solving a linear system per frame. This means that at each frame the

HRBF field is not recomputed but the inverse matrix of the joint trans-

formations is used instead to read the value in the rest-pose.

As the angle calculation is independent per vertex, this step can be

parallelized. The angle field computation and the vertex projection are

in fact multi-threaded, but could also be implemented on the GPU, for

example using the Fabric Engine framework (Fabric Engine 2015). The

code could be further optimized, but performance highly depends on the

number of iterations in the projection steps which in turn determines the

number of accesses to the textures. On a quad-core Intel Xeon X3470

machine, for the thumb mesh with 15K vertices, 15 curves and 4 joints

the framerate is ∼ 10fps (including implicit skinning projection and

smoothing).

Tests of the technique were conducted mainly on cylindrical objects such

as fingers, arms and legs and achieved believable results. Figure 6.6 shows

the detail of a thumb which is particularly interesting due to the various

wrinkle patterns of different sizes. This example uses constant radius

and the field used is the non biased one: note how the curves develop

independently of the mesh connectivity because of the higher degree of

freedom in terms of possible neighbour directions.

Even though the technique does not always produce full wrinkle curves

from one edge of the finger to the other (due to discontinuities or noise in

the field), it still creates an organic and believable look. Note the use of

the smoothing coefficients to avoid wrinkle displacement where vertices

collide (Figure 6.6 (e)). The patterns are comparable to a real example

(Figure 6.6 (f)). Moreover, close wrinkles are blending in quite naturally

because of the convolution surfaces formulation. Figure 6.7 shows com-

parative results between biased and non biased fields for the mesh of an
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arm: the topology-biased field produces more believable wrinkles.

In some cases unwanted bulges can appear: this is due to curves which are

too short or whose curvature is too high in some of their segments. This

could be addressed by filtering out these cases from the final used set. In

addition, it was noticed that the 3D texture resolution can strongly con-

dition the quality of the angle fields due to interpolation approximations.

In general better results were achieved using 4 or more ring-neighbour

levels, especially for high resolution meshes; even though this improves

the accuracy of the vector field, it also consequently slows down the

system because more vertices have to be processed.

During animation the technique behaves as expected in terms of temporal

coherence, with wrinkle curves that do not pop between frames and slide

thanks to the underlying deformation. If the curves were retraced at each

frame from the seeds, the result would be unstable and non coherent,

mainly because of the differences in two temporally consecutive fields.

Nevertheless, the behaviour of the technique during animation could be

further improved. Dynamic appearance is still not convincing enough,

in fact the wrinkles appear too suddenly: this could be improved by

tweaking the activation curve manually or deriving it from experiments.

Self collisions between the convolution surfaces (using a bulge-in-contact

operator) would also prove beneficial to the overall fleshy look and dy-

namism of the deformation. The reproduction of properties of the skin,

such as the ones due to aging, have not been considered yet and consti-

tute interesting direction for future work.

The validation and evaluation of the technique has been done at the vi-

sual quality level and not through rigorous objective comparisons with

physical based models as some of the work presented in section 6.2. Ac-

curate measurements of visual quality such as local wrinkle density and

height from previous work and from images of real skin would help to

evaluate the model more objectively. To validate the system further at

a more general level, it would be ideal to survey artists feedback in the

testing and reproduction of different wrinkle patterns. The variation

could come from photographs of subjects in different poses and facial
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expressions of varying gender and age.

In this chapter a technique that allows wrinkles creation within the Im-

plicit Skinning framework has been presented. The technique creates

convenient and plausible results visually similar to the ones obtained

with physically accurate stretch-based methods. The results show the

potential of the technique for applications within a production pipeline.

The next chapter presents the last project of this thesis. Its goal is

to apply machine learning to the simulations of deformable objects in

order to save computation time and substitute the solver in controlled

constrained scenes with a GPU-based Deep Neural Network.
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(a) Original angle gradient field

(b) Topology-biased gradient field

Figure 6.3: Angle field generation using one-ring neighbours (a) and
connected vertices (b).
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(a) Original field’s wrinkles

(b) Topology-biased field’s wrinkles

Figure 6.4: Wrinkles generated from the fields in Figure 6.3.
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Figure 6.5: Plugin Parameters.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: (a) Default Dual Quaternion skinning; (b) Implicit Skin-
ning; (c) Angle gradient field (non biased); (d) Seeds and curves; (e)
Wrinkles after projection; (f) Picture of a real thumb.
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Figure 6.7: Comparison of the results obtained for an arm. (a)-(d)
front and back views using topology biased field; (e)-(h) front and back
views using normal, non biased field.
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Chapter 7

Pilot Study on Deep Learning

for Deformable Objects

7.1 Introduction

The work presented in this chapter describes how Deep Learning ar-

chitectures can be applied as powerful regressors to the prediction of

physics states for elastic objects, accelerating and potentially substitut-

ing traditional physics solvers. In modern physics-based animation elas-

tic objects are simulated using the Finite Elements Method by solving

Newton’s differential equations of motion in the form of a sparse linear

system. Typically Preconditioned Conjugate Gradient is used for this

task. Even though state of the art methods that are both fast and stable

exist (Bouaziz et al. 2014), a data-driven approach could be a competi-

tive alternative.

The initial purpose of this project was to first understand how to learn a

model to express the dynamics of a physics-based cloth animation with

constraints in the form of a toy problem. After that first stage the goal

was to extend the system to support volumetric (tetrahedral) objects

and apply convolutional neural networks to the learning of constrained

muscle simulation. The motivation driving the project was that a cloth

simulation is in general very detailed and fast changing while muscles
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deform in a much more stable manner therefore they would be easier to

learn by a machine learning algorithm. It will be shown how solving the

first stage turned out to be very problematic (due for instance to the nov-

elty of application of the geodesic convolution) and the complexity of the

recalculation of one of the inputs of the network hindered the advance-

ment to the second stage for volumetric objects. These challenges paved

the way to an understanding of the main limitations of the proposed

approach and the solutions that will constitute the future work.

7.1.1 Background

Here a brief introduction to neural networks terminology is given for a

much more complete reference please refer to Andrej Karpathy (2017).

A Neural Network (NN) is a set of interconnected units called neurons.

Each neuron’s job is to output a value by multiplying its inputs by a

weights matrix (which constitute the learnable parameters) and passing

the result through an activation function which is nonlinear (examples

are the sigmoid, softMax, tanh, ReLU functions). This nonlinearity is

what allows the network to learn complex real world functions: a NN

can be in fact considered a universal functions approximator which finds

patterns in complex unstructured data.

In terms of architecture, a NN is an acyclic graph and neurons can be

grouped and organized in layers. In a layer connections are not between

the same layer’s neurons, but between layers. When all neurons of one

layer are pairwise connected to the ones of the next layer, it is called

a fully connected layer (FC). Apart from input and output layers, the

ones in the middle are called hidden layers and the fact that they can be

cascaded and be many in number gave rise to the term Deep Learning.

At each layer the network learns to represent internally some features of

the input and deeper layers learn a hierarchical representation of high

level global features. In the case of images of faces for example, in the

early layers simple contrasted edges are detected while in more deep ones

these edges are assembled in more meaningful patterns corresponding
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Figure 7.1: Lee et al. (2011)

to features such as ear or nose and even further down the full face is

considered as a global abstract feature (Figure 7.1).

A particular kind of NNs are the so called Convolutional Neural Networks

(CNN) created to make the learning of input images very efficient. They

are based on the assumption that an image should be analysed spatially

and not interpreted as a linear vector with no relation between neigh-

bouring pixels. To this end the convolution operation takes the input

and uses filters with kernel weights and extracts the activation of this

filters by sliding them as a window across the image. This operation is

defined mathematically (Goodfellow et al. 2016) and the filter weights

constitute the learnable parameters. The layers of a ConvNet are in 3D

(width, height and depth) and each layer transforms 3D input volumes

to 3D output volumes of neuron activations.

A CNN learns by performing a sequence of forward and backward passes.

The goal of the NN is to minimize a loss function (in literature also called

cost, or objective function) which is peculiar to each problem and rep-

resents the error that should be minimized. In the forward pass the

network takes an input and passes it through its layers; based on the

filters that it learned during training some neurons will be excited and

activate more than others and their contribution will globally produce

an output. For a classifier this could be as simple as telling if an image

belongs to Dogs or Cats classes and with which probability. In the back-

ward pass the actual learning happens (called backpropagation). The

gradient of the loss function with respect to the parameter weights (par-

tial derivatives) is computed given a training input sample and it is used
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by algorithms such as Stochastic Gradient Descent (SGD) to understand

in which direction the function decreases. ADAM is a very popular vari-

ation of this algorithm (Kingma & Ba 2014). From the output layer back

to the first hidden layer the filter weights are therefore updated in such

a way that the loss function is minimized. This constitutes the training

process and is repeated a certain number of epochs (in an epoch all the

training samples are processed by the network).

One of the main problems when doing machine learning is the risk of a

behaviour commonly called overfitting : this happens when the network

learns the training data very well but performs poorly on the new test

data. There are many techniques that go under the common class name

of regularization which are used to try to avoid this negative effect. L2

regularization for example penalizes the squared magnitude of all pa-

rameters directly in the loss function. Dropout (Srivastava et al. 2014)

instead consists in keeping a neuron active during training only with

some probability p and setting it to zero otherwise (effectively disabling

it). Another technique is called early stopping which consists in termi-

nating the training process when the accuracy of the test set starts to

diverge. This behaviour is clearer if looking at the curve plots shown in

the following sections (for example Figure 7.9): when the accuracy and

training cost curves are closest or intersect, the corresponding epoch is

the one to stop at. Because in this work’s implementation the weights

are saved every time there is progress in the minimization of cost, they

can be chosen manually by looking at the curves over a longer number

of epochs.

Recurrent Neural Networks (RNN) are a version of NN particularly in-

dicated for time-sequences. They contain a feedback loop: the input

of the network is not only the one at current time t but also the one

of the hidden layer at previous time t − 1. This allows the network to

have a “memory”. The learning process is now time-dependent and it is

performed via backpropagation through time (BPTT).
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7.2 Related Work

Machine Learning is nowadays ubiquitous. The main tech companies

such as Google, Apple, Microsoft and Facebook use machine learning

and other methods in artificial intelligence as a core of their technolog-

ical solutions. A subclass of Artificial Intelligence called Deep Learning

has been having an extraordinary growth in recent years thanks to the

availability of implementations that run on distributed and affordable

parallel Graphics Processing Units (GPUs). This approach makes neural

networks algorithms applicable on huge datasets in acceptable compu-

tational times, something that was not possible before. Almost every

field in the Sciences can benefit from the generalisation power of deep

convolutional neural networks (CNNs), including computer graphics.

Existing work that applies Deep Learning to geometrical objects deals

mainly with their volumetric representation as voxels (Wu et al. 2014),

but the main drawback of this method is its extremely high memory

footprint while using models with relatively small details, which is nor-

mal for Games and Visual Effects. In particular it will be shown how

a convolution can be performed on vector and scalar fields defined on

deformable geometries. This is a non-trivial operation which requires a

custom technique based on geodesic disk filters (Masci et al. 2015a). Af-

ter describing how the dataset is generated, an architecture of a regressor

implemented as a Deep Neural Network in Theano is presented, inspired

by recent work on fluid simulation (Tompson et al. 2016). This net-

work is applied to the prediction of cloth simulations and ideas on how

the technique could be extended to volumetric tetrahedral deformable

objects are discussed. For an in-depth survey and course on geometric

deep learning please refer to Bronstein et al. (2016).

The core of the method is the definition of the loss function to be mini-

mized. Two such functions are considered in this work: the first makes

use of supervised learning (ground truth) and calculates the squared er-

ror for predicted velocities and positions. The second is an unsupervised

approach which is derived directly from the variational Implicit Euler

formulation (Martin et al. 2011) for the integration in time and takes
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Figure 7.2: Low and high resolution plane geometries used for the
dataset creation, with constraining objects on two of the sides.

into account both elastic and inertial forces. In addition to the version

with geodesic disks, another approach to the problem that makes use of

standard convolution on images was used. In this later approach posi-

tions and velocities are triplets defined per node which are interpreted

as RGB colours and “flow” at each frame over a grid defined by the UV

textures coordinates in 2D.

7.3 Dataset

As initial test, a relatively simple example was chosen: a cloth simulation

of a square shape mesh. The dataset which was generated for this initial

example is prepared accordingly. Two versions of a testing object were

prepared: the low-resolution mesh and the high-resolution mesh. The

rationale behind these two versions was that the low version is much

faster to compute and to prototype the loss functions. On the other hand

the high resolution version presents much more interesting details (i.e.

wrinkles) but they are also harder to learn. The low resolution version

has 25 vertices, 10 constraints and 32 triangles. The high resolution one

has 196 vertices, 28 constraints and 338 triangles (Figure 7.2).

The plane is simulated as a cloth with animated pinned vertices (hard

constraints) using the solver for triangular element meshes of Chapter

3 without collision objects or self-collisions. Various animations of the

left, right or both constraining geometries (handles) are generated in

Maya and constitute a scene. Each scene has random translations and
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Figure 7.3: One frame of the animations for the scenes of the dataset.

rotations of the handles sampled from a defined range (Figure 7.3).

For the low-res version the dataset was split into training and testing

sets as follows:

• 36 scenes of 350 frames each

• Training: 12600 frames, sampled every 2 (6300 frames)

• Testing: 350 frames

For the high-res instead:

• 21 scenes of 350 frames each

• Training : 7350 frames, sampled every 2 (3675 frames)

• Testing: 350 frames

The number of frames differs because the high resolution version is much

more computationally expensive. In a preprocessing stage, for each scene

and for each frame, positions and velocities of the vertices are saved out

to file to be used in the training as feature descriptors.

It is common practice in machine learning to preprocess the data in order

to facilitate the training task (data normalization). To this purpose the
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global mean and standard deviation on the six x,y,z coordinates of posi-

tion and velocity were calculated from all the samples of the training set,

then from each sample the mean was subtracted and the result divided

by the standard deviation. However for this specific problem the data

normalization did not improve the results therefore the dataset was left

as it is.

7.4 Architecture

The network architecture consists of 3 Convolutional layers (CL) followed

by a Fully Connected layer (FCL) used to reshape the output dimension.

The number of filters (output channels) are 64, 128 and 128 for the first,

second and third CLs respectively and 3 for the FCL (Figure 7.4).

Each CL uses Rectified Linear Units (ReLU) as activation functions.

Max pooling was not implemented because the meshes are not very high

resolution and also because it would imply using a decimation algorithm

between the layers.

The input of the network is a tensor data structure (multi-dimensional

array) of dimension [ number of vertices, 6 ], obtained as the result

of the stacking of two matrices of dimension [ number of vertices, 3 ]

representing the x,y,z components of positions and velocities. In the

case of the Recurrent Neural Network (RNN) implementation, the input

includes the time dimension and is a tensor of dimension [ sequence

length, number of vertices, 6 ]. The first 3 channels are the positions

and the ones from 4 to 6 are the velocities (x,y,z components). Given

the input at frame t, the output produced by the network is a tensor of

dimension [ number of vertices, 3 ] representing the predicted velocities

of the nodes at frame t+ 1 which are used to compute the new predicted

positions.
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Figure 7.4: Architecture of the convolutional neural network.

7.4.1 Method based on images / UV

One way to allow a neural network to perform learning on deformable

objects is to consider the deformation happening in the 2D parametric

space instead of 3D world space. This solution was considered to remove

the dependency on the disks (described in the next subsection) which is

a heavy precomputation step and also slows down the training process.

Exactly like the dual and equivalent approach used in fluid simulation

(Eulerian and Lagrangian views), here the UV (or texture) space is con-

sidered as a grid of points on which the deformation “flows” in the form

of position and velocity quantities. Therefore every frame of the simula-

tion is equivalent to an image having 6 channels (position and velocity

for x,y,z) changing over time on a fixed UV coordinate space. Figure 7.5

shows an example of velocity input image overlaid on the UV mesh. An

alternative representation was considered as shown in Figure 7.6: each

vertex of the UV grid constitutes a solid cell without colour interpola-

tion in the style of Voronoi graphs. Even though this version is in theory

easier for pattern detection and explicitly expresses that the information

is associated to the mesh nodes, the efficiency of this version was compa-

rable with the interpolated one while additional effort was required for

preparing this representation. Therefore for all the presented examples

the interpolated version was used.

This 2D representation makes the system independent of the disk inputs

and allows taking advantage of very well established methods existing in

Deep Learning for images. The neural network receives images as input

and then the UV mapping is used for transferring the vertex dynamics
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Figure 7.5: Input velocity field in UV space

Figure 7.6: Input velocity field in UV space in Voronoi style
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data from 2D image space to 3D world space coordinates of the vertices

of the mesh. UVs can be assumed to be always present for an asset

in a Visual Effects production and can be generated semi-automatically

by modelling artists. This idea was tested and its results will be dis-

cussed in the following sections. The advantages over the version with

disks are that it offers rapid prototyping, allows faster training times and

resolution is more controllable.

7.4.2 Geodesic Convolution

The method described in the previous subsection makes use of standard

convolution layers. In order to operate directly on geometries defined in

3D world space, this work adopts a custom version of convolution lay-

ers specialized for meshes, introduced in Masci et al. (2015a). Given a

vector or scalar field defined on the vertices of the mesh, a geodesic disk

(patch) is defined per-vertex as a set of spatial kernel weights in geodesic

polar coordinates, by dividing the local neighbourhood into discrete bins.

Geodesic distances are the real distances from point to point on a mesh

for curved surfaces, as opposed to Euclidean distances which are just

the magnitude of the vector connecting two points. This disk, when

applied to the input field, extracts a local descriptor of it at a radius

distance (patch operator) in the form of a sparse matrix. A layer that

performs this kind of special convolution is called the Geodesic Convo-

lution Neural Network layer (GCNN). The disks, because are defined by

construction using geodesic distances, must be recomputed every time

the mesh deforms. As will be shown, this is one of the main limitations

of the method. In order to take advantage of the temporal coherence

of the inputs, the network is equipped with a skip connection from the

input to the output velocities: the input is summed to the predicted

values so that it already gives a good initial approximation instead of

being random, making the network learn de facto a velocity residual.

136



7.5 Cost Functions

The first basic cost function analysed here is the supervised single frame

loss. It tries to minimize the squared difference between a prediction and

the ground truth for positions and velocities given as input the pairs of

values at frame t and t+ 1.

It is defined as:

fobjsingle
= λp||pt+1 − p̂t||2 + λv||vt+1 − v̂t||2 + λrreg

where the “hat” symbol on position p and velocity v indicates a pre-

dicted value and reg is a regularization term. It represents the mean

squared error (MSE) calculated on each vertex for which its contribu-

tion is averaged. λ symbols are multiplicative constants used to bias and

weight each term. In the tests they take these values: λp = λv = 1.0 and

λr = 1e−5.

This function behaves well during testing only for the task of predict-

ing single ’gap frames’ in a sequence, but it is not sufficient to obtain

predictions with high future accuracy because the error accumulates. In

fact during the testing loop the output of the network becomes an input

for the next prediction. This makes it an inherently ill-posed problem,

given that an accurate ground truth for these future frames does not

exist: the network never “saw” those examples because the input frame

was generated by the model itself. If one wanted to use the correct

ground truth, at each loop the predicted input should be passed to the

real physics solver (used to generate the dataset) and advanced n frames

from those new initial conditions. This is definitely not efficient during

training time and would constitute a huge bottleneck; moreover it would

require significant engineering effort given that the physics solver exists

only as a Maya plugin, therefore this approach was avoided.

For the aforementioned reasons the objective function has to be extended

to obtain better long-term accuracy. Four supervised approaches (de-

scribed in the following sections) were developed and tested for this pur-

pose:
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• Future frames data augmentation

• Future frames partial derivatives accumulation

• Recurrent Neural Network

• SpatioTemporal convolution (for images version only)

All these objectives share the same limitations, as will be discussed in

the following sections.

7.5.1 Constraints

Constraints, intended as imposed boundary conditions by the user on

positions and velocities, play a very important role both in the simu-

lation and learning phase. Initially they were modelled as zero-length

spring energy potentials (see Chapter 4) so the system would penalize

the squared distance between the predicted and ground truth positions

if greater than zero. The problem with this approach for positional hard

constraints is that because it is an extra energy potential term (defined

in Section 4.3.4.1) added to the basic cost function’s objective, there

is the possibility that it will not be fully minimized. This means that

the network could not completely learn that some vertices should fol-

low the constraining objects. Therefore it was decided to not model the

constraints and instead pass the positions and velocities of the pinned

vertices in the input tensor.

In practice at preprocess stage all constrained vertices at time t are

overridden with the values of the ones of the ground truth at t + 1. In

the same way, at testing time, the predictions for the pinned vertices

are overwritten to follow the constraining objects. The ultimate decision

was to compute the objective function mask at training time only for the

unconstrained vertices. This allowed not only implementing constraints,

but also to simplify computations.
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7.5.2 Future frames data augmentation

In the future frames approach a form of data augmentation is performed,

meaning that the dataset was extended procedurally at training time.

For each sample frame, during training the network is stepped forward

in the future 5 times and the predicted result is added to the training

samples using as ground truth the existing value of the sequence. If n

is the length of the sequence (350 in this work), then new samples are

added up to the frame n-5 of the sequence because the future frames after

that do not exist. In this approach the cost function stays the same as

for the single frame, just the dataset is extended on-the-fly at training

time.

7.5.3 Future frames partial derivatives accumula-

tion

In Tompson et al. (2016) the accumulation of future frames partial

derivatives is used to minimize the long term divergence of the veloc-

ity field. A similar technique is used in the approach described in this

section. In the same way as described in the previous subsection, at

each call of the training function for a sample, the network is stepped

forward 5 times, but the difference with the previous approach is that

the history in the forms of a computational graph of this future frame

is kept. This means that it is possible to do backpropagation through

time by first computing the partial derivatives (gradients) of the future

frame loss function and then accumulating (summing) them to the ones

of the current frame sample (see Tompson et al. (2016)). In practice this

is equivalent to minimizing in parallel the error that the network would

make in the future if outputting the current single frame prediction. The

gradients are necessary for the optimization algorithm to minimize the

objective via Stochastic Gradient Descent. In this work the adopted

descent algorithm is Adam (Kingma & Ba 2014).
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7.5.4 RNN

A Recurrent Neural Network is able to keep a memory of what it has

“seen” in a sequence for a specified temporal window size. This allows it

to learn better patterns and features that evolve in time, making it par-

ticularly suitable for instance in Natural Language Processing and words

prediction in a sentence. For this reason, considering that a physics sim-

ulation is exactly a temporally coherent sequence of frames governed by

a law, it seems very appropriate to try this approach. While in the archi-

tectures presented before the input was a single pair of frames (t, t+ 1),

here the input is constituted by sequences of pairs of contiguous frames.

For example if the window size is 10 frames, the input is two sequences

10 samples long. An RNN can be thought of as a loop (recurrence) in

which at each step a new input of the sequence gets in and the output

feeds back into the network itself as a new hidden state (the equivalent

of a deep layer), in this way carrying along a memory. In this case the

layers are convolutional (GCNN) and the objective function is equivalent

to the previous ones.

To combat the long-term error accumulation all these strategies have

to use as inputs new samples generated on-the-fly at the previous time

step which means that new disks have to be recomputed. The reason is

that the new predicted frame geometry could be very different from the

existing ground truth of the dataset at that time. Therefore there is an

inherent error made when, instead of recomputing the disks, the existing

ones of the scene are used. But recomputing these disks n times (in this

case 5 steps in the future) for all the samples is computationally very

expensive, mainly because of the costly geodesic distances recalculation.

An alternative would be to use Euclidean distances, but for heavily de-

formed meshes this would introduce approximations that are too big and

consequently errors. For the exact method used to compute the geodesic

disks refer to Masci et al. (2015a).
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7.5.5 Unsupervised Loss Function

By observing that a neural network is essentially a structured complex

optimizer and that the integration of the equations of motion can be seen

as an energy minimization, it seems logic trying to let the network learn

in a completely unsupervised manner. The objective function is defined

as:

fobjunsup = λdEdeform + λrreg (7.1)

with

Edeform =
1

2h2
‖M

1
2 (pn+1 − pn − hvn − h2M−1fext)‖2F +

∑
i

Wi(pn+1)

which indicates the compromise that the optimization algorithm should

make between two terms. The first term expresses the momentum poten-

tial, that is the state the object will reach in a timestep if no internal or

external forces were acting on it. The second one is the elastic potential

energy (derivation of this formula is given in Bouaziz et al. (2014). This

formula, as mentioned in Chapter 2, follows by mathematically proving a

problem equivalence which results in what is called Variational Implicit

Euler in the literature. The goal is to find through a powerful regressor

(such as a deep neural network) the best configuration of vertex positions

such that the cost is minimized.

7.5.6 SpatioTemporal Convolution

In case the deformation happens in parametric space and the data is

packed into images as discussed in 7.4.1, the time component in the

learning process can be introduced by tweaking the input such that mul-

tiple frames are sent in order at the same time. This consists in stacking

position and velocity frames along the time component so that the con-

volution becomes spatio-temporal and is performed in three dimensions

with a 3D filter instead of just two. Assael et al. (2016) use this data
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packing for video frames. The input data therefore becomes a tensor

of dimensions [ width, height, 3 * stack size]. The size of the stack, or

temporal window, is a parameter that can be chosen prior to training.

7.6 Training and Testing Process

The training process consists of the adjustment of the network weights

(filters) via backpropagation, using the gradients of the cost function for

each sample. The network is trained for a specified number of epochs;

an epoch consists in a loop in which all the samples are shown once to

the network. As is standard practice when dealing with neural network

training, the learning rate that is initialized at 0.001 is multiplied by

a factor of 0.8 every 10 epochs of no progress (i.e. no decrease of the

cost function), otherwise when there is progress the weights are saved

out to be used at testing time as the best result. Another regulariza-

tion technique adopted here is called dropout, which consists in setting

to zero the activation functions of some stochastically determined units

(neurons) of the network, a randomization that in practice is extremely

effective.

To improve generalization, the samples are never sent in the same order

during training, but randomly shuffled at each epoch. Moreover train-

ing is in general improved by using minibatches, consisting of groups of

samples minimized in the same backpropagation step: in this work the

batches are intended as groups of disk images on which to perform a

standard convolution and therefore are numberofvertices in size.

Gradient clipping was also used to prevent the phenomenon of gradients

explosion which could arise given the complex dataset.

As far as the testing phase is concerned, the important thing to notice

about dropout is that it must be disabled for the output to be determin-

istic. As mentioned earlier, at testing time disks are recomputed: even

if this contradicts with the purpose of creating a fast alternative to a

solver, it was the only way to test the validity of the technique.

142



Figure 7.7: Training (blue) and testing (red) curves for low res loss
with future samples.
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Figure 7.8: Training (blue) and testing (red) curves for low res loss
with future partial derivatives.
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Figure 7.9: Training (blue) and testing (red) curves for low res loss
with RNN.
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Figures 7.7 - 7.18 show the training and testing losses for each of the cost

functions discussed above, for both low and high resolution datasets and

for the version with images. It should be noted that the graph plots do

not represent the accuracy loss of frames in the future, but the one of

frames at time t and t+ 1.

In particular for the low res version, Figure 7.7 shows that the data

augmentation of the future samples does not improve the accuracy. In

fact the training and loss curves don’t even touch, something evident

also for Figure 7.8. The graph for the RNN low res instead shows that

until epoch 80 the training improves the accuracy and after that point

a small amount of overfitting is present but does not increase over time.

For the high resolution version, the same analysis can be given for the

graphs in Figures 7.10 - 7.12.

As far as the graphs for the image version are concerned, the version

without future samples in Figure 7.14, even though is quite noisy shows

that accuracy increases but never enough and not in a stable way. The

addition of future samples in Figure 7.15 makes the training very unsta-

ble and does not improve the accuracy. Figure 7.16 with future partial

derivatives as well is just very chaotic and it is clear that the line of

accuracy (in red) does not decrease much over time. Better training

is obtained instead with the RNN in Figure 7.17 and with the spatio-

temporal version in Figure 7.18 in which the accuracy improves over

time. Figure 7.13 shows how the training for the unsupervised version

gets stuck almost immediately in a local minimum.

7.7 Implementation and Results

The results in this section were produced using the weights obtained in

the training process for the different loss function types on the datasets

for low, high and images versions. Results represent the predictions of a

testing scene that the network never trained on, which was used to test

generalization. Iteratively after each frame prediction, the constraints

were overridden with the ground truth values and resulting samples saved
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Figure 7.10: Training (blue) and testing (red) curves for high res loss
with future samples.
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Figure 7.11: Training (blue) and testing (red) curves for high res loss
with future partial derivatives.
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Figure 7.12: Training (blue) and testing (red) curves for high res loss
with RNN.

Figure 7.13: Training (blue) and testing (red) curves for high res loss
with unsupervised loss function.
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Figure 7.14: Training (blue) and testing (red) curves for high res loss
without future samples for images.

Figure 7.15: Training (blue) and testing (red) curves for high res loss
with future samples for images.
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Figure 7.16: Training (blue) and testing (red) curves for high res loss
with future partial derivatives.

Figure 7.17: Training (blue) and testing (red) curves for high res loss
with RNN for images.

151



Figure 7.18: Training (blue) and testing (red) curves for high res loss
with spatio-temporal convolution for images.

to disk to become new input for the subsequent loop.

Figures of the results (see Figures 7.19 - 7.30) seem to indicate that the

future frames inclusion in the training is crucial for a good outcome for

the predicted simulation. Moreover they suggest that without accurate

disks the network is learning a wrong projection, demonstrated by the

fact that for all the cases, after about 15 frames the error just keeps ac-

cumulating until distorting heavily the mesh. This seems unfortunately

the price to pay for the use of the precomputed disks during training,

disks that are associated to a mesh that differs from the predicted one.

Another reason why the network is not learning a good projection could

be that the adopted dataset is still too small and not diverse enough.

In terms of dynamics prediction quality, the RNN gives the most promis-

ing results (Figures 7.19 and 7.22) confirming the supposition that a tem-

poral sequence in the input helps the network infer time-varying prop-

erties and patterns better. However, because the RNN does not adopt

any long-term error reduction strategy, it still produces very distorted

meshes.

The unsupervised loss function does not produce the expected results.

A test was performed in which the minimization of one frame done by

the network is compared with the result obtained by substituting in
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Figure 7.19: Low res pairs of results (predicted, ground truth) for sam-
pled frames in range 100-160 of the testing scene for RNN.

Equation 7.1 the ground truth frame t+ 1: the network converges to the

same result, but when trying to minimize all the frames of the scenes it

simply gets stuck (Figures 7.13 and 7.25). One of the possible reasons

is that the minimization should lead to different positive scalar values

of the loss function for each frame because the elastic energy depends

on the shape and the momentum potential from the inertia at that time

frame and is almost never equal to zero.

As far as the version with images is concerned, a qualitative and vi-

sual analysis of the results shows that all tests except the RNN do not

produce satisfying behaviour: the dynamics are plausible only for the
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Figure 7.20: Low res pairs of results (predicted, ground truth) for sam-
pled frames in range 100-160 of the testing scene for partial derivatives.
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Figure 7.21: Low res pairs of results (predicted, ground truth) for sam-
pled frames in range 100-160 of the testing scene for future samples.
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recurrent version (Figure 7.29) in which the mesh follows the inertia of

the constraints, even if the quality of the mesh deteriorates quickly and

creates undesired crumpling effects. One of the possible reasons why at

testing time the results are not satisfactory is that it could be possible

in theory that the network is mixing up the various dynamics of discon-

nected scenes so in its hidden space the results are correct but they look

visually wrong.

It should be noted that as mentioned in Battaglia et al. (2016), the goal

of this work is not to obtain an exact frame-by-frame correspondence

with the ground truth, especially because at each frame slight pertur-

bations and variations of the initial conditions at the beginning of the

timestep will propagate and lead to very different results (something

that happens with a normal solver as well). Therefore plausibility of

the behaviour and response to the constraints positions were the metrics

used to visually measure the quality of the results. In some of the tests

that took the longest times per epoch (up to 2 hours), the training was

stopped manually at relatively early epochs (30-50) because there was no

sign of improvement (something indicated by the continuous oscillation

of the cost function).

The implementation is based on opensource code made available online

by the authors of Masci et al. (2015b). Their implementation of GCNN

makes use of the Lasagne framework which in turn wraps calls to the

Theano deep learning API, written in Python. Their code was cus-

tomized and extended for example by coding the loss functions and the

RNN implementation to support multiple inputs (the position-velocity

tensor and the associated disk).

The version using fields in UV space required custom implementation

for the preprocessing and generation of the inputs. In order to represent

the fields as 6-channels inputs, OpenGL was used to rasterize a mesh

obtained from the UVs of the cloth. In the case of the squared shape

it was a simple planar projection as shown in Figure 7.31. For each tri-

angle, the velocity and position triplets at its nodes are passed to the

renderer in order to be interpolated on the GPU and obtain a smooth

image. The images are not rendered to screen but to two separate Frame
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Figure 7.22: High res pairs of results (predicted, ground truth) for
sampled frames in range 100-160 of the testing scene for RNN.
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Figure 7.23: High res pairs of results (predicted, ground truth) for sam-
pled frames in range 100-160 of the testing scene for partial derivatives.
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Figure 7.24: High res pairs of results (predicted, ground truth) for
sampled frames in range 100-160 of the testing scene for future samples.
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Figure 7.25: High res pairs of results (predicted, ground truth) for
sampled frames in range 100-160 of the testing scene for unsupervised
loss.
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Figure 7.26: High res pairs of results (predicted, ground truth) for sam-
pled frames in range 100-160 of the testing scene without future samples
(images).
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Figure 7.27: High res pairs of results (predicted, ground truth) for
sampled frames in range 100-160 of the testing scene for future samples
(images).
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Figure 7.28: High res pairs of results (predicted, ground truth) for sam-
pled frames in range 100-160 of the testing scene for partial derivatives
(images).
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Figure 7.29: High res pairs of results (predicted, ground truth) for
sampled frames in range 100-160 of the testing scene for RNN (images).
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Figure 7.30: High res pairs of results (predicted, ground truth) for
sampled frames in range 100-160 of the testing scene for spatio-temporal
(images).
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Figure 7.31: UVs. Nodes corresponding to the rendered 2D mesh for
field values interpolation in green.

Buffer Objects as signed floats, after disabling clamping. During train-

ing and prediction, the renderer is called to override the triangles that

contain constrained vertices because the predicted and constrained node

values need to be re-interpolated. Another possible explanation of the

problems appearing in the results is the relatively low resolution of the

images. In the implementation it was 128x128 pixels.

Training was done on a NVIDIA Titan Xp and on a laptop NVIDIA

GTX 780M.

The work presented in this chapter on machine learning concludes the

part on the projects completed during the EngD in the hosting com-
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panies. The next and last part of this thesis draws the conclusions,

discusses limitations and proposes future work for all the projects previ-

ously described.
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Part III

Conclusions and Future Work
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Chapter 8

Conclusions and Future Work

This thesis has discussed possible new directions and approaches that

can be taken towards the production of realistic deformations for digital

characters in a modern movie production pipeline. This chapter draws

both specific (i.e. by project) and general conclusions based on the work

completed, together with avenues for future work.

8.1 Conclusions

Active research on methods for the deformation of musculo-skeletal sys-

tems is a vital part of modern VFX. On the one hand the needed

plausible and visually realistic results can be obtained with stable, ac-

curate and computationally efficient deformation algorithms. On the

other hand these technical improvements must be inserted in an artist-

driven pipeline in which many software programs and technologies co-

exist. Artists often need to abstract from underlying technicalities and

need interactive tools in order to express their creative intent in an envi-

ronment characterized by continuous iterations. This work was therefore

motivated by the need to improve both these two aspects related to the

problem of obtaining visually convincing animated characters, bringing

contributions to a specific part of the movie creation pipeline.

In this work several techniques covering different aspects of muscle defor-
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mation and, in general, physically-based animation have been presented:

• The creation of a custom simulation framework using FEM built

on top of the VEGA library to help the company to test a new

physically-based approach to character deformation. Formulas were

derived to implement muscle activations for a constitutive material

enriched with fibres. Constraints and collisions were also added to

the framework contributing to the creation of a usable prototype.

• The creation of a novel method consisting of the interactive physics-

based design of anatomical muscle geometries ready to be simu-

lated. This method responds to the need for faster systems to

model volumetric anatomically-plausible shapes.

• The development of a tool and a workflow, based on the simulation

framework previously created, focused on the interactive placement

of muscle geometries on a skeletal bones rig which takes into con-

sideration collisions.

• A procedural method for skinning that uses implicitly-defined scalar

fields to create wrinkle effects.

• The investigation of the application of Deep Learning to the sim-

ulation of deformable objects with the aim of improving the speed

of a standard solver.

Except for the last pilot study on deep learning, the results obtained in

each of the projects were mainly successful and even though they were

not directly used in production, the tools and software developed are at

the working prototype stage. Considering that most of them are already

in the form of a Maya plugin, they can be deployed to the real pipeline

without significant difficulties.

The subsections below present conclusions for each of the projects con-

tained in this thesis, in order of appearance.
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8.1.1 Muscle primitives modelling

The muscle primitives modelling described in Chapter 3 produced re-

sults that matched the initial goals of the project. Instead of sculpting

each muscle separately using anatomy references, the goal was to find an

alternative semi-automatic way to obtain plausible volumetric muscles

by taking advantage of the benefits of a simulated approach. The pro-

posed physics-based approach demonstrated to be a valid way to produce

volumetric models and their associated fibre field from a limited input

sketched directly on the surface of the character. The system was ap-

plied to the production-inspired use case of a muscular human arm and

obtained realistic output contractions.

Despite the promising results, the system has some limitations and space

for improvement. The areas at the borders of the patch are in fact still

quite sharp and could be made smoother by adding custom energy terms,

using greater resolution or turning the constrained vertices at the border

into soft constraints. Some produced muscles, because of the flatness

of the source patch, do not always fill all the available interior space

and leave gaps between them and the bones. One could increase the

pressure, use a softer material or run the inflation process for a longer

time to improve on these issues. In the examples the presence of a fat

layer between muscles and skin was discarded, considering the specific

3D model of a lean muscular body type examined. As an effect it was

easier to sketch patches on the visible skin and the resulting muscle

primitives are bigger than they should be. An offset based on a specified

3D texture could be applied per patch to take the fat into account (Saito

et al. (2015)).

An alternative to the manual sketch of the patches, provided that the

mesh contains texture mapping with UV coordinates, would be to use a

texture template containing a representation of the muscle anatomy; the

initial patches could be automatically generated based on segmentation

of RGB colour values which could be used to transfer them between

characters. This would also be an efficient way to bootstrap the patches

because even though for lean and muscular characters the details on the
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skin are enough to distinguish most of the superficial muscles, the fat

layer often present in characters smooths out these details and hides the

underlying anatomy.

8.1.2 Muscle simulation framework

The muscle simulation framework described in chapter 4 produces very

convincing results which demonstrate that a modern character produc-

tion pipeline should include simulation to obtain visually plausible defor-

mations with dynamics. The goal of proposing to the hosting company

an evolution from the existing the semi-procedural system to one fully

based on physics was at least in part achieved, through the development

of a working prototype that showed detailed effects such as muscle and

bones sliding, active muscle contractions and colliding biological tissues.

The use case on which the framework was tested was the animation of

a human arm. Their generality means that the same methods are appli-

cable to CG animals or fantasy creatures having the same or a different

combination of anatomical layers.

In addition to the complexity needed to have a good anatomical model,

which can be mitigated but is still present, the limitations of the proposed

framework are represented by the speed of simulation especially in the

presence of many collision constraints and by the lack of an intuitive

user interface. Moreover, in the presence of very highly constrained and

compressed areas in contact (in a real character for example in the armpit

region), the stability of the solver could suffer if a very small timestep is

not used.

8.1.3 Placement of simulation-ready muscles

Chapter 5 presented a workflow aimed at helping the modelling of simulation-

ready muscles in a production environment for the Visual Effects indus-

try. It showed very promising results by proposing an integrated solution

to a practical problem that rigging artists face while creating complex
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muscle systems. An artist in general spends a good amount of time plac-

ing complex organic shapes and then fixing their interpenetrations so

this system would be beneficial.

One of the limitations is that the system was developed as a proof-of-

concept prototype and is therefore yet to be fully tested before going into

the production pipeline to test its effective advantage over an already well

established workflow. The scalability to a full character was not tested;

however because already placed muscles are static and their contact is

computed fast, this is not likely to be a real problem. Finally it should

be noted that to use the system effectively an artist would need to invest

time on initial basic training because a physics-based approach is a new

modelling paradigm that needs to be learned and developed like any

other skill.

8.1.4 Procedural wrinkles

The technique presented in Chapter 6 to obtain wrinkles creates plausible

results even comparable with physically accurate stretch-based methods.

The initial goal of extending an existing procedural method by exploit-

ing its constitutive parts was achieved and its generalization properties

tested. The results show its potential for applications within a produc-

tion pipeline.

Despite its potential, the technique for procedural wrinkles has some

limitations. For example, being the output of the deformation time-

dependent, finding the right parameters could require various iterations,

something that makes it close in spirit to a simulation. Nevertheless,

the user can always tweak single frames without rerunning the whole

animation; in this case wrinkles will form following only the field at the

current frame. In addition, it should be noticed that the quality of the

fields tends to depend on the input shape, something that might limit

the technique to cylindrical limbs and prevent the application to, for

instance, face wrinkles generation.
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8.1.5 Deep learning for deformable objects

The last project presented in this thesis in Chapter 7 did not fully meet

the initial goals and expectations, but nevertheless constituted a great

learning opportunity. In fact the objective was to obtain in a relatively

short time convincing predictions for a toy problem such as a cloth simu-

lation and at a later stage extend the system to muscle dynamics regres-

sion. Inspired by recent research, a variety of neural network architec-

tures and loss functions (supervised and unsupervised) were tested and

compared, but produced dynamic predictions with a medium-low level

of accuracy; this fact prevented its extension to muscles.

One of the main limitations of the work on Deep Learning for deformable

objects is that the system did not learn properly how to compensate for

future errors therefore the quality and length of the predictions is limited

to 20-30 frames and correct dynamics were not fully accomplished. More-

over, a simulation using a different mesh with different topology whould

require in principle a new training of the network. However, as noted

in Tompson et al. (2016), because the network is fully-convolutional the

size of the input domain could be changed at inference time while train-

ing on a single resolution. This property was not verified in this work.

Because of the bottleneck constituted by the disks, a comparison of exe-

cution times with a GPU physics solver was not done. This would have

required a porting of the existing CPU based solver used to generate the

dataset.

8.2 Future Work

The techniques proposed in this thesis constitute a small part of the

ideal framework that is necessary in a real production, therefore they

are not complete or in their final form. Below will be given directions

for improvement and future work for each of the projects in order of

appearance in this thesis.

For the muscle primitives modelling project, in addition to extending the
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system to the full body and trying out methods of transferring patches

across characters, it would be an interesting future direction to test the

application of a plasto-elastic material model and adaptive meshes.

Regarding the actual simulation system of chapter 4, even though the

results are realistic and appreciated in the hosting company, a lot can

be done to improve the realism, the usability of the framework and the

efficiency. For example in the presented examples the coupled action

between muscles and skin was mostly ignored: not only the skin should

stretch and deform due to the underlying contracting muscles, but in

turn it should produce a containing effect back onto the muscles in the

form of an elastic forces response. To obtain this, the layers should be

simulated all at once and not separately cached. To add even more re-

alism, veins could be modelled from anatomy references as curves and

their geometry could be merged with the skin or used as a displacement

map. During simulation they could deform together with the skin layer

and their thickness could be animated based on the muscle activation

level and isometric contraction duration. In terms of artistic control, to

direct the physics simulation a technique such as the one described in

Martin et al. (2011) could be used, in which custom shapes are inserted

in the dynamics of the solver and work as force attractors interpolated

in strain space. This method seems to work very well, even though one

of the drawbacks is that if the artist creating the shapes is not accu-

rate enough, constraints such as volume preservation could be violated

and the system could not be aware of it. Another possibility would be

to inject custom shapes as new per-frame rest poses of the solver as in

Kozlov et al. (2017). Also, tools to allow artists to groom complex net-

works of fibres to control the muscle shape would be greatly beneficial.

One of the areas of research that would bring huge benefit to the indus-

try is the development of a unified solver with coupling that stably and

accurately supports deformable objects, hair, particles, cloth, and rigid

bodies simulation. In fact a digital character almost always contains

parts or accessories that can be modelled and simulated in one of those

ways.

As far as the muscle placement system is concerned, there are many ar-
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eas of improvement on which to focus. First of all, it would be desirable

to adapt a constraint-based dynamics approach to avoid the problems

of stability of penalty forces when high stiffness makes the system ma-

trix poorly conditioned. To increase the user experience and make the

simulation more closely resemble the desired results, it would be also

beneficial to add an external skin mesh representing the superficial fas-

cia as a boundary condition surface on which both the sculpting tool and

the simulation can collide against. For the placement stage, it would be

useful to add a plastic deformation functionality directly integrated in

a fast solver as in Saito et al. (2015) , in which a decomposition of the

deformation gradient is used to grow the muscles. A seamless integration

of the modelling and placement plugins, now separated, would avoid a

context-switch problem that can absorb time from the creative process.

Moreover in terms of performance the code could be parallelized much

more (for example for the internal force computation) and a simplified

GPU version of the solver would boost the speed even more. Finally, be-

cause a FEM solver could be an too computationally expensive for this

problem, other solvers based on PBD or XPBD may be a better option

to consider.

For the Implicit Skinning project, as future work, the intention is to

integrate adaptive tessellation technology. Even though in a production

pipeline it is not common to have varying topology, the performance

would benefit by having more detail only where needed, with the option

to export displacement maps for rendering. It would also be useful to

investigate ways to make the convolution surfaces look less cylindrical

and more organic, not restricted only to circular profiles; for example

noise could be added, or segments with different radius could be layered.

Moreover, another interesting future direction inspired by Cao et al.

(2015) would be to combine the proceduralism of the method with a

trained approach in order to learn the space of input parameters for

a closer match to the physical appearance of acquired data. Finally, a

better falloff of the radius per curve would be desirable as wrinkles should

fade away the further they are from the joint.

In terms of the machine learning project in chapter 7, given the un-
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derstanding of some of the reasons why the system is underperforming,

various avenues for future work can be taken. First of all there is clearly

a need to research improvements on the speed of disk computation, with

the aim of real-time performance. Progress in this direction is being made

in the work by Monti et al. (2016). The computation of the disks using

Euclidean distances was not tested to measure the actual performance

and accuracy, therefore it would be useful for comparison. Alternatively,

the on-the-fly recomputation of geodesic distances could be done only for

some random samples of the training set. Minibatches of frames should

also be used to improve the training, while at the moment the batches

have dimension the number of vertices, containing one image per vertex.

Max pooling is another technique used to improve generalization and

performance during training that would be appropriate to implement.

After each convolution the output dimension is halved multiple times

so the most significant features remain. However this downsampling

would be applied on the mesh topology by a decimation algorithm and

it is yet to be demonstrated if it would benefit the learning process. In

terms of improvements to the loss functions, extra terms considered for

future work would be the volume (area) preservation for the predicted

triangles using the determinant-based formulation found for example in

Ichim et al. (2017) and a term to preserve an amount of smoothness of

the mesh to avoid heavy distortions. Finally, research is needed to extend

the convolution to support tetrahedral volumetric objects via spherical

coordinates disks so that the learning method can be applied to geome-

tries representing muscles and fat.

As a final closing note, it should be always kept in mind that technologies

and consequently workflows evolve fast and this is true especially for

Visual Effects, considering the recent and current industry trends. In

fact if I could start my EngD again I would focus predominantly on

real-time and interactive methods rather than using FEM just because

it is accurate. The Visual Effects industry is going through a major
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revolution in which game engines are more and more a fundamental part

of movie production stages such as pre-visualization, camera motion,

interactive design of environments, look development and lighting. The

coming wave of Virtual and Augmented Reality (VR/AR) also requires

that realistic character deformation must happen in real time. The idea

of contributing to the creation of illusive but magical, emotional and

immersive experiences constitutes the beauty of doing research in this

exciting field.
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Y. Zhao & J. Barbič (2013). ‘Interactive Authoring of Simulation-Ready

Plants’. ACM Trans. on Graphics (SIGGRAPH 2013) 32(4):84:1–

84:12.

L. Zhu, et al. (2015). ‘Adaptable Anatomical Models for Realistic Bone

Motion Reconstruction’. Comput. Graph. Forum 34(2):459–471.

190

http://www.fxguide.com/fxguidetv/fxguidetv-166-weta-digitals-tissue-system/ 
http://www.fxguide.com/fxguidetv/fxguidetv-166-weta-digitals-tissue-system/ 


Zygote (2016). ‘Zygote’. https://www.zygote.com/.

Zygote Body (2016). ‘Zygote’. https://www.zygotebody.com/.

191



Appendix A

List of publications

Fabio Turchet, Oleg Fryazinov, Sara Schvartzman, 2017, Physically-based

Muscles and Fibers modelling from Superficial Patches , Eurographics

2017 - Short Papers.DOI: http://dx.doi.org/10.2312/egsh.20171008

Fabio Turchet, Marco Romeo, and Oleg Fryazinov. 2016. Physics-aided

editing of simulation-ready muscles for visual effects. In ACM SIG-

GRAPH 2016 Posters (SIGGRAPH ’16). ACM, New York, NY, USA, ,

Article 80 , 2 pages. DOI: https://doi.org/10.1145/2945078.2945158

Fabio Turchet, Oleg Fryazinov, and Marco Romeo. 2015. Extending im-

plicit skinning with wrinkles. In Proceedings of the 12th European Con-

ference on Visual Media Production (CVMP ’15). ACM, New York, NY,

USA, Article 11, 6 pages.DOI: https://doi.org/10.1145/2824840.2824849

Fabio Turchet, Oleg Fryazinov, and Marco Romeo. 2015. Procedural

wrinkles generation in the implicit skinning framework. In SIGGRAPH

Asia 2015 Posters (SA ’15). ACM, New York, NY, USA, , Article 16 , 1

pages. DOI: https://doi.org/10.1145/2820926.2820937

192



Appendix B

Material Derivation

B.1 Muscle material. Energy formula

We need to derivate this energy:

Ψ(I1, I2, λ, a0, α) = F1(I1, I2) + U(J) + F2(λ, α)

with respect to F,

where a0 is a direction vector that doesn’t depend on F and α is the

muscle activation level,

λ =
√

a0 ·Ca0 ,

C = J−
2
3 FTF ,

I1 = tr(C) ,

I2 = 1
2
((tr(C))2 − tr((C2))) ,

J = det(F).
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Note: I assume vectors to be column vectors.

Because we are using the inverted elements framework (Irving 2004), F

(the deformation gradient) should be F̂, that is its diagonalized version

(via a modified SVD). Using F̂ should also allow more simplifications.

The result should be something similar to the terms in Teran 2003, page

5 bottom (stress formula).

Applying the chain rule as in the Sifakis notes and considering the λ

variable as another variable to derive, we consider only the anisotropic

part F2(λ, α):

∂F2(λ, α)

∂F
=
∂F2(λ, α)

∂λ

∂λ

∂F
(B.1)

developing only the rightmost term for now:

∂λ

∂F
=
∂
√

a0 ·Ca0

∂F
=
∂

√
a0 · J

−2
3 FTFa0

∂F
= (B.2)

applying chain rule because composition of functions and the derivative

of the dot product

=
1

2
(a0 · J

−2
3 F TFa0)

−1
2 [a0 · (

∂(det(F )
−2
3 F TFa0)

∂F
) + 0] = (B.3)

Passing everything to components representation:

=
1

2
(a0 · J

−2
3 F TFa0)lm

−1
2 (a0 · (

∂(det(F )
−2
3 F TFa0)

∂Fij
))lm = (B.4)

=
1

2
(al(J

−2
3 F TFa0)m)

−1
2 (al(

∂(det(F )
−2
3 F TFa0)

∂Fij
)m) = (B.5)

194



=
1

2
((alJ

−2
3 F TF )lmam)

−1
2 (al(

∂(det(F )
−2
3 F TF )

∂Fij
)lmam) = (B.6)

=
1

2
((J

−2
3 F TF )lmalam)

−1
2 ((

∂(det(F )
−2
3 F TF )

∂Fij
)lmalam) = (B.7)

=
1

2λ
((
∂(det(F )

−2
3 F TF )

∂Fij
)lm)alam = (B.8)

=
1

2λ
[(
∂(det(F )

−2
3 )

∂Fij
(F TF )lm + det(F )

−2
3
∂(F TF )lm
∂Fij

]alam = (B.9)

=
1

2λ
[
−2

3
det(F )

−5
3 (
∂(det(F ))

∂Fij
(F TF )lm+det(F )

−2
3 (Filδmj+Fimδlj)]alam =

(B.10)

Now using the known equality ∂det(A)
∂A

= det(A)[A−1]T :

=
1

2λ
[
−2

3
det(F )

−5
3 det(F )(F−T )ij(F

TF )lm+det(F )
−2
3 Filδmj+det(F )

−2
3 Fimδlj)]alam =

(B.11)

=
1

2λ
[
−2

3
det(F )

−2
3 (F−T )ijFklFkm+det(F )

−2
3 Filδmj+det(F )

−2
3 Fimδlj)]alam =

(B.12)

=
1

2λ
[
−2

3
det(F )

−2
3 (F−T )ijFklFkmalam+det(F )

−2
3 Filalaj+det(F )

−2
3 Fimajam)] =

(B.13)
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=
1

2λ
[
−2

3
det(F )

−2
3 (F−T )ijFklFkmalam+det(F )

−2
3 (Fa)iaj+det(F )

−2
3 (Fa)iaj)] =

(B.14)

=
1

2λ
[
−2

3
det(F )

−2
3 (F−T )ij(Fa)k(Fa)k+det(F )

−2
3 (Fa)iaj+det(F )

−2
3 (Fa)iaj)] =

(B.15)

=
1

2λ
[
−2

3
det(F )

−2
3 (F−T )ij(Fa)k(Fa)k + 2det(F )

−2
3 (Fa)iaj)] = (B.16)

Now passing back to no-components representation:

=
1

2λ
[
−2

3
det(F )

−2
3 (F−T )tr((Fa)(Fa)T ) + 2det(F )

−2
3 F (aaT )] = (B.17)

=
J
−2
3

2λ
[
−2

3
(F−T )tr((Fa)(Fa)T ) + 2F (aaT )] (B.18)

=
J
−2
3

λ
[
−1

3
(F−T )tr((Fa)(Fa)T ) + F (aaT )] (B.19)

which is a matrix (one part of the stress P)

Now, let’s derive the first term.

Note that F2(λ, α) = αFactive(λ) + Fpassive(λ) and are defined piecewise

in Blemker 2005 paper (see table below and refer to paper for parameter

values). So it’s enough to take simple derivatives of the formulas in the

table.

Now in order to use the paper Irving 2004 for invertible elements, let’s use

the diagonalized version of F that is F = F̂ which implies that F̂ T = F̂
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Figure B.1: Formulas reproduced from Blemker 2005 paper.
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Given the diagonalization F = UF̂V T , we set a0 = V Ta0 as described in

Irving 2004 paper (section 6.1) to rotate the anisotropic terms using V.

∂F2(λ, α)

∂λ

(
1

2λ
V Ta0 · 2[(−1

3
J2F̂ + J−

2
3 F̂Ones]V Ta0

)

with λ =

√
VTa0 · J

−2
3 F̂2VTa0, J = det(F̂ ) and Ones a matrix with

only 1’s.

Another term of the energy as defined in Teran 2003 paper is

U(J) = K ln(J)2

∂U(J)

∂F
=
∂U(J)

∂J

∂J

∂F
=

2K ln(J)

J
det(F )F−T = 2K ln(J)F−T

then using F̂ :

= 2K ln(det(F̂ ))F̂−1

regarding the F1 term of the energy, in Teran 2003 is an incompressible

Mooney-Rivlin like material:

F1(I1, I2) = AI1 +BI2

but in this work a StVk isotropic material is used, as already imple-

mented in VEGA.

Second derivative

Deriving a second time the result of ∂F2(λ,α)
∂F

using the same rules, the

4th order tensor is obtained:
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∂2F2(λ, α)

∂F 2
=

= −2

9
J
−2
3 (F−T )ij(a0 · J

−2
3 F TFa0)

−1
2
lm (F−T )ij(Fa)k(Fa)k

− 2

3
J
−2
3 (F−T )ij(a0 · J

−2
3 F TFa0)

−1
2
lm (Fa)iaj
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Appendix C

Material Derivation (cont.)

C.1 Derivation of dPdF for StVk material

Derivation of the Piola stress for StVk stress P(F):

P(F) = F[2µE + λtr(E)I] (C.1)

Some known identities used:

∂Fij

∂Fpq

= δipδjq

where δmn is the Dirac’s delta that evaluates to 1 IFF m = n , 0 other-

wise.

Trace in index notation:

tr(FTF) = tr((FTF)lm) = tr(FT
lkFkm) = FT

lkFkl = FklFkl

Derivative of the trace:

∂tr(FTF)

∂F
=
∂FklFkl

∂Fpq

=
∂Fkl

∂Fpq

Fkl +
∂Fkl

∂Fpq

Fkl = 2δkpδlqFkl = 2Fpq

Which is correct considering that in Sifakis notes it results 2F .
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Derivative of FTF

∂(FTF)

∂F
=
∂(FTF)lm
∂Fpq

=
∂(FT

lkFkm)

∂Fpq

=
∂(FT

lk)

∂Fpq

Fkm +
∂(Fkm)

∂Fpq

FT
lk =

= δkpδlqFkm + δkpδmqFkl = δlqFpm + δmqFpl

Full derivation :

∂P(F)

∂F
=
∂(F[2µE + λtr(E)I])

∂F
= (C.2)

∂(2µFE + λtr(E)F)

∂F
= (C.3)

∂(2µF1
2
(FTF− I) + λ1

2
tr(FTF− I)F)

∂F
= (C.4)

∂(µF(FTF− I) + λ1
2
tr(FTF− I)F)

∂F
= (C.5)

µ
∂(F(FTF− I))

∂F
+

1

2
λ
∂(tr(FTF− I)F)

∂F
= (C.6)

At this point let’s call A the first term and B the second and solve them

separately.

A:

µ
∂(F(FTF− I))

∂F
= (C.7)

µ
∂(FFTF− F)

∂F
= (C.8)
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Now passing to component notation, using Einstein summation conven-

tion

µ
∂((FFTF)ij − Fij)

∂Fpq

= (C.9)

µ
∂(Fil(F

TF)lj − Fij)

∂Fpq

= (C.10)

µ
∂Fil(F

TF)lj
∂Fpq

− ∂Fij

∂Fpq

= (C.11)

Now applying the product rule to the first term:

µ
∂Fil

∂Fpq

(FTF)lj +
∂FTF)lj
∂Fpq

Fil −
∂Fij

∂Fpq

= (C.12)

µ(δipδlqF
TF)lj + (Fplδjq + Fpjδlq)Fil − δipδjq) (C.13)

µ(δipF
TF)qj + (FplδjqFil + FpjδlqFil)− δipδjq) (C.14)

µ(δipF
TF)qj + (FplF

T
liδjq + FT

liFpjδlq)− δipδjq) (C.15)

µ(δipF
TF)qj + (FTF)piδjq + FT

qiFpj − δipδjq) (C.16)

which is a 4th order tensor with indices (i, j, p, q). Now for the B term.

B:

1

2
λ
∂(tr(FTF− I)F)

∂F
= (C.17)

1

2
λ
∂((tr(FTF)− tr(I))F)

∂F
= (C.18)
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1

2
λ(
∂tr(FTF)F

∂F
− ∂tr(I)F

∂F
) = (C.19)

Apply product rule on first term

1

2
λ(
∂tr(FTF)

∂F
F +

∂F

∂F
tr(FTF)− ∂3F

∂F
) = (C.20)

Passing to component notation

1

2
λ(
∂tr(FTF)

∂Fpq

Fij +
∂Fij

∂Fpq

tr(FTF)− 3
∂Fij

∂Fpq

) = (C.21)

1

2
λ(2FpqFij + δipδjqtr(F

TF)− 3δipδjq) (C.22)

which is again a 4th order tensor with indices (i, j, p, q).
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Appendix D

EngD Experience Conclusions

As a general conclusion, overall the experience of doing an engineering

doctorate (EngD) was extremely valuable, mostly for the fact of being

immersed in a production environment which was the right ecosystem

to develop research ideas that could have a real life impact. Below are

summarized some of the lessons learned in my journey, together with

recommendations for future students who intend to take the research

path of an EngD.

Unless strictly necessary, it is advisable to not start coding from scratch

neither basic nor complex libraries that have already an efficient open

source implementation, especially for research papers: an EngD is not a

programming exercise. The reason is that writing really efficient APIs

not only requires extremely solid software engineering expertise, but also

takes significant time which would be subtracted from the real occupation

of any researcher: doing research. Luckily there are numerous open

source projects in the computer graphics community which are freely

available under different kinds of licenses.

At the same time though, it is of capital importance to start implement-

ing prototypes as soon as possible and win the temptation of first reading

and studying every single paper on the topic. A good initial literature

review is essential to put order and hierarchy of importance in the vast

amount of knowledge available on a research topic, but thinking that a
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good innovative idea will come only after an exhaustive analysis of all the

papers is just an illusion. The most productive and original ideas come

generally either after long term focus on a very narrow area or through

the influence of research developed in other fields, often totally different

from computer graphics (i.e. biology, chemistry, artificial intelligence).

When doing Research and Development (RnD) it is easy to isolate one-

self from the rest of the team because complex problems require persis-

tent mental effort spread often across several months. It is fundamental

though to keep maintaining the feedback loop between supervisors and

especially people involved in production bouncing off ideas regularly.

This can be obtained through daily or weekly scrums and regular video

calls. It is common to arrive at dead ends in research: it was often the

case in my experience to get new fresh perspectives and valuable sug-

gestions from people working in other departments of the company, not

biased about the problem I was trying to solve.

When choosing a research project and during the inevitable iterations

and adjustments that will follow, it is important to always try and see

the implications of the work on the long term in the future and its place

in the global pipeline. The output of the character deformation stage for

example affects deeply the grooming department stage so keeping the

big picture in mind helped taking some technical decisions over others.

For this reason I recommend creating flexible plans and revise them with

supervisors regularly, making sure that every week brings some form of

progress towards either a new goal or the resolution of existing problems.

In general, the persistent awareness that it is necessary to fail early and

often while being at the same time ”micro-ambitious”, constituted the

main mindset I adopted in the many and inevitable periods of setbacks.
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