
VIVO: a Secure, Privacy-Preserving, and Real-Time
Crowd-Sensing Framework for the Internet of Things

Luca Luceria,b, Felipe Cardosoa, Michela Papandreaa, Silvia Giordanoa,
Julia Buwayac, Stéphane Kundigc,

Constantinos Marios Angelopoulosc,e, José Rolimc,
Zhongliang Zhaob, Jose Luis Carrerab, Torsten Braunb,

Aristide C. Y. Tossoud, Christos Dimitrakakisd, Aikaterini Mitrokotsad

aSUPSI, Switzerland
bUniversity of Bern, Switzerland

cUniversity of Geneva, Switzerland
dChalmers University, Sweden
eBournemouth University, UK

Abstract

Smartphones are a key enabling technology in the Internet of Things (IoT)

for gathering crowd-sensed data. However, collecting crowd-sensed data for re-

search is not simple. Issues related to device heterogeneity, security, and privacy

have prevented the rise of crowd-sensing platforms for scientific data collection.

For this reason, we implemented VIVO, an open framework for gathering crowd-

sensed Big Data for IoT services, where security and privacy are managed within

the framework. VIVO introduces the enrolled crowd-sensing model, which al-

lows the deployment of multiple simultaneous experiments on the mobile phones

of volunteers. The collected data can be accessed both at the end of the exper-

iment, as in traditional testbeds, as well as in real-time, as required by many

Big Data applications. We present here the VIVO architecture, highlighting

its advantages over existing solutions, and four relevant real-world applications

running on top of VIVO.

Keywords: Mobile Crowd-Sensing, Internet of Things, Big Data

This work is supported by the Swiss National Science Foundation via the SwissSenseSyn-
ergy project, grant number 154458.

Preprint submitted to Elsevier September 25, 2018



1. Introduction

Smartphones have completely revolutionized our life, work, and free time

with the tremendous growth of novel resources and services. Smartphones are

truly portable, personal, and highly connected devices: as such, they are a

key enabling technology in the Internet of Things (IoT), where people produce5

crowd-sensed data. However, collecting such data for research is not simple;

contributors need to be actively enrolled in a campaign, and thus issues related

to device heterogeneity, security, and privacy need to be considered. Such dif-

ficulties have prevented the rise of crowd-sensing platforms for scientific data

gathering. Similarly, the use of previously gathered crowd-sensed data is hard.10

Rarely such data are appropriate for the intended study, and thus require fur-

ther assumptions and filtering. Thus, many potential crowd-sensing services

have not (yet) been recognized due to the lack of adequate testing data.

To this aim, we implemented VIVO, an open framework for crowd-sensed Big

Data gathering, where security and privacy are managed within the framework15

at the client side. VIVO allows to test and validate IoT services that use social,

physical, and environmental information. The collected data can be accessed

both at the end of the experiment, as in traditional testbeds, and in real-time,

as required by many big data applications. Yet, VIVO differs from traditional

testbeds as testing experiments can be scheduled and run in real-time on the20

mobile phones of volunteers. Here, we present the following contributions:

• the introduction of the enrolled crowd-sensing model that allows the de-

ployment of several experiments simultaneously, as opposed to the tradi-

tional usage of crowd-sensing for a single experiment;

• a paradigm-shift from (i) taking care of the whole experiment cycle, i.e.,25

from the experiment design up to the data provision, to (ii) managing only

the experiment application, with built-in security and privacy capabilities;

• the VIVO architecture definition and implementation, its performance

evaluation and, as an example, four relevant real-world applications.

2



2. Background and Motivation30

Mobile Crowd-Sensing (MCS) is an emerging paradigm based on the sens-

ing capabilities of mobile devices [1]. MCS lies at the intersection between the

IoT and the volunteer/crowd-based scheme [2]. In particular, MCS extends IoT

services relying on data collected from a large number of individuals’ portable

sensing devices, such as smartphones. Potential MCS applications span a wide35

spectrum in terms of application domain [3], ranging from environmental moni-

toring [4, 5, 6], traffic estimation [7, 8, 9], and place categorization [10] to smart

cities [11, 12, 13] or buildings [14], and social trend detection [15, 16]. Though

these applications were established to pursue specific purposes, efforts have also

been made towards formally characterizing the operation of MCS systems in an40

application-agnostic way. These approaches offer more flexibility by supporting

a variety of experiments in different settings, ranging from participatory to op-

portunistic sensing, depending on the user involvement in the data collection

scheme [17, 18, 19]. In [20, 21], we identified basic design issues of MCS systems

and investigated some characteristic challenges. In [22], authors recognize the45

opportunity of fusing information from populations of privately-held sensors as

well as the corresponding limitations due to privacy issues.

Inspired by this fruitful ensemble of works, we introduce a novel crowd-

sensing testbed, referred to as VIVO. The key point of our proposed solution

consists in allowing an easy development and deployment of experimental soft-50

ware on mobile devices. More precisely, similarly to PhoneLab [23] and Smart-

Lab [24], VIVO experiment developers (i.e., application developers who need

to collect data) can dynamically deploy their own application on each VIVO

volunteer device. However, while PhoneLab [23] requires volunteers to run a

modified version of the Android OS on their mobile phone, thus limiting the set55

of potential participants, VIVO experimental applications run on standard An-

droid versions, without any extra-hardware requirements and pre-deployment

testing. SmartLab [24] is an architecture for managing a cluster of real and

virtual devices. Users can install executables on devices, capture their screen,

3



Table 1: Testbeds Comparison

LiveLabs NetSense PhoneLab IoTLab VIVO

standard smartphone OS 3 3 7 3 3

simultaneous experiments 7 7 3 3 3

open range of applications 7 7 3 7 3

real-time data collection 3 7 7 3 3

embedded security 3 3 7 7 3

privacy-preserving 3 3 7 3 3

fixed and mobile sensors 7 7 7 3 3

and issue UNIX shell commands. While Smartlab is targeted towards scenarios60

requiring low-level control over smartphones, e.g., deployment and debugging,

VIVO is a framework focused on the gathering of crowd-sensed data.

Recent similar efforts are LiveLabs [25], NetSense [26], and IoT Lab [27].

Livelabs [25] is a mobile testbed that continuously collects sensor data from

participant personal devices in four public spaces in Singapore. The goal of65

this data collection is to analytically extract context information to trigger con-

sumer trials provided by retailers or service providers. NetSense [24] aims to

understand the impact of the digital world (mobile communications and online

social networks) on social relationships by collecting sensor data from instru-

mented smartphones distributed to hundreds of students at the University of70

Notre Dame. IoT Lab [27] has been developed with the purpose of researching

the potential of crowd-sensing as an extension to the traditional IoT infrastruc-

ture. Through a smartphone application, the crowd was allowed to participate

in experiments by contributing with sensory data and knowledge.

Unlike these previous efforts, where a single static application is installed on75

each smartphone to constantly save data collected from sensors, VIVO allows

the deployment of multiple simultaneous experiments introducing an enrolled

crowd-sensing model. In such a model, developers are not limited to a fixed set of

experiments but they can build their own application without any constraint, in

a more agnostic and generic way. Table 1 compares VIVO with existing solutions80

in the literature. Differently from other approaches, the data collected through

4



VIVO can be accessed both at the end of the experiment, as in traditional

testbeds, as well as in real-time, as needed by several Big Data applications. This

enables a broad range of applications that require low latency communication,

e.g., navigation, monitoring, and recommendation.85

One of the key features of VIVO concerns the security and privacy of volun-

teer data. As we leverage private smartphones, it becomes crucial to ensure that

any deployed applications do not compromise the private data of the users and

the regular behavior of their private applications. To deal with this issue, we

manage security and privacy within the framework, at the client side. We pro-90

vide an API with all the methods necessary to secure and privatize the collected

data before they leave the smartphone. Clearly, we cannot prevent malicious

behaviors, but these are legally prosecutable as a contract violation.

Moreover, VIVO is a human- and sensor-based testbed. It integrates two

components: a crowd-sensing scheme composed of mobile devices (volunteer95

smartphones), and Syndesi [28], an IoT framework for smart buildings, which

includes multiple fixed sensors. This integration empowers the seamless com-

bination of resources coming from different sources, which (i) allows to study

the interaction between human beings and the surroundings, analyzing their

behavior with varying environmental conditions, and (ii) enables a big number100

of experiments, where users and the sensor-based infrastructure rely on each

other, e.g., indoor navigation and smart actuations in the environment [29].

Finally, VIVO allows a paradigm shift from (i) taking care of the whole

experiment cycle, i.e., from the experiment design up to the data provision, to

(ii) managing only the experiment application, with built-in security and pri-105

vacy capabilities. In fact, it provides to experiment developers a compact unified

framework to collect data, from the architecture (e.g., server, data management,

and security) to the mobile sensing nodes, i.e., volunteer smartphones.

Volunteer recruitment is a typical issue in crowd-sensing platforms. Thus,

crowd incentives, as well as ensured Quality of Information (QoI) of crowd-110

sensed data, are considerably important aspects for the success of MCS appli-

cations [30, 31, 32]. To reward volunteer involvement in VIVO experiments

5



Figure 1: VIVO Architecture

we considered two strategies. First, we launched the context “Volunteer of the

Year”, where each participant is encouraged to participate in the largest number

of experiments to win a prize. As a second step, we are working on a reward-115

based mechanism that allows the experiment developer to advertise prizes to

the volunteers according to their involvement in the experiment.

The additional provisioning of trust and privacy along with its capability of

supporting heterogeneous data (also in real-time) makes VIVO suitable for a

range of diverse experiments, e.g., predicting human behavior [33], monitoring120

environmental conditions to examine their relation with user actions [28], or

performing navigation in indoor environments [34, 35], where GPS is not usable.

3. Architectural Overview

VIVO architecture is displayed in Fig. 1. At the top level, we see the VIVO

experiment developers, i.e., individuals (e.g., researchers) that employ VIVO to125

run an experiment for collecting a dataset or testing an application. VIVO ex-

periment developers (from now on simply referred to as developers) constitute

the target group for whom VIVO has been conceived. They exploit VIVO data

storage and data collection capabilities as well as VIVO volunteers and their mo-

bile devices to deploy their applications. Volunteers are people equipped with130

6



personal smartphones who accept to participate in VIVO experiments. For each

experiment, volunteers can choose whether participate or not using the VIVO

Client application. By means of a Web Interface1, developers have the possi-

bility to define new experiments, upload the source code of the corresponding

applications, and download the collected data. Experiments uploaded to the135

VIVO testbed are checked and validated, during an alpha testing phase, with

regard to respecting privacy and trust issues. Only accepted experiments can

be deployed on volunteer devices. The alpha testing is performed during the

pre-deployment phase and it checks the impact of the experiment on the overall

system performance and on the user’s privacy. We utilize Portable Opensource140

Energy Monitors (POEM) [36] to measure the energy overhead of the application

and an extension of the Mockingbird platform [37] to monitor the information

leakage. Mockingbird performs an on-device evaluation to retrieve the informa-

tion accessible from the experiment application, e.g., when and how many times

it access the file systems, the sensors, the contacts, etc. This platform produces145

an access-report that is compared with the experiment description in order to

detect access patterns not compliant with the application task.

VIVO consists of three main components, which will be discussed in turn,

namely VIVO Server, VIVO Client, and VIVO Client API.

The VIVO Server is the main back-end platform of the architecture. It con-150

trols the creation of new experiments, the notification to volunteers, and the

experiments data upload. The VIVO Server uses Google Firebase to push noti-

fications to the volunteer devices to notify the availability of new experiments.

The data collected from the volunteers are periodically sent to the VIVO Server,

which handles the data upload from the devices and their storage on the VIVO155

Database (VIVO DB). Once an experiment is terminated, the VIVO Server

allows the developer to download the collected data through the web page.

VIVO is enhanced by the functionalities of the Syndesi IoT testbed. Syndesi

[28] is a framework interconnecting heterogeneous devices from wireless sensor

1The VIVO Web Interface is reachable at http://vivo.dti.supsi.ch:3000/

7

http://vivo.dti.supsi.ch:3000/


(a) VIVO Client (b) VIVO Client API

Figure 2: VIVO Client and VIVO Client API

networks as well as mobile devices, providing central resource management and160

user-personalized smart automation. It is implemented in the premises of the

University of Geneva, although it has been designed to support portability. One

of its functionalities is the gathering of environmental data, such as tempera-

ture, illuminance and humidity from the devices possessing sensors that are

registered in its resource registry. The data are written into a database (Syn-165

desi DB) hosted by the Syndesi server. The integration between VIVO and

Syndesi is performed at the web service level. In particular, after terminating

an experiment, the developer can download the data collected by the experi-

ment as well as the data collected by Syndesi environmental sensors, within the

experiment time window.170

The VIVO Client enables the communication between volunteers and the

VIVO Server. Volunteers contributing to the VIVO testbed are required to

install and run the VIVO Client application on their devices. In particular, by

means of the VIVO Client application, each volunteer can register in VIVO and

run several experiments on their smartphones. The Client application displays175

the list of available experiments updated in real-time and allows volunteers to

8



manage the experiment life-cycle in a very straightforward and user-friendly

manner (one-click operation). As depicted in Fig. 2a, the VIVO Client acts as

a middle layer between VIVO experiments and the VIVO Server. It gathers data

collected by all the experiments running on the volunteer devices and manages180

their forwarding to the VIVO Server. All the data handled by the VIVO Client

application are compressed and encrypted, as explained in Section 4.

The VIVO Client API is a fundamental component of VIVO and enables

the key features of the proposed architecture, such as security, privacy, and real-

time data collection. Developers are requested to use the VIVO Client API in185

their application as a requirement to use VIVO and its features. The API is

represented in Fig. 2b. In the Processing Layer, it provides all the tools neces-

sary to compress (Compression Tool), encrypt (Encryption Tool), and privatize

(Privacy Module) the collected data before the transmission from the volunteer

device. As depicted in Fig. 2a, each experiment exploits the Transmission Layer190

of the VIVO Client API to forward the collected data to (i) the VIVO Server

via the VIVO Client Interface, or to (ii) a Custom Server (configured by the

developer) through the Real-Time Interface. The VIVO Client Interface is des-

tined for offline data collection, while the Real-Time Interface, and in turn the

Custom Server, enables real-time applications. In both cases, the VIVO API195

provides the underlying tools to encrypt, compress, and privatize the data.

4. Implementation

This section provides a detailed description of each component of the VIVO

architecture, providing details on the functionalities, implementation choices,

and technologies utilized in the system design. Section 4.1 describes the VIVO200

Client component, while Section 4.2 depicts the features of the VIVO Client

API. Finally, in Section 4.3, we detail the VIVO Server.

4.1. VIVO Client

The VIVO Client is an Android application (compatible with OS version 4.2

or above) for volunteers to interact with the VIVO platform. The VIVO Client205

9



(a) Login (b) Experiment List (c) Experiment Details

Figure 3: VIVO Client Activities

also provides synchronization of the collected data with the VIVO Server.

4.1.1. User Interface (UI)

The VIVO Client UI is the interaction point between the VIVO Server and

the volunteers. The UI allows them to monitor the experiments available and

running on VIVO, as well as managing their participation in each experiment.210

Fig. 3 shows three screen shots related to the main foreground components

of the UI. After installing the VIVO Client application, volunteers are asked to

register or log-in through the Login page (Fig. 3a). Once logged in, volunteers

can explore all the available experiments from the Experiment List page (Fig.

3b). Each entry in this list includes the identification parameters of the cor-215

responding experiment (e.g., name and author), and the experiment status on

the volunteer smartphone. An experiment can be: (i) available for download

and installation on the volunteer devices; (ii) installed and ready for launch;

(iii) running on the volunteer smartphone. Additional information along with

a detailed description of each experiment are available on the Experiment De-220

tails page (Fig. 3c). Through this page volunteers can manage the experiment

life-cycle, starting, stopping, and un-installing it any time they want to. The

10



VIVO Client continuously monitors the status of the experiments and displays

notifications every time an experiment is created or terminated.

4.1.2. VIVO Client Data Collection225

The UI has a key function in the interaction between volunteers and VIVO,

nonetheless the VIVO Client performs several fundamental tasks in the back-

ground. These tasks are related to the data collection process. The VIVO Client

is in charge of all the processing necessary for sending the experiment data from

volunteer smartphone to the VIVO Server. Experiment data are sent to the230

VIVO Client, through the VIVO Client API, in the format of data blocks. A

data block is a structure of data containing three fields: data, timestamp, and

type. The field data contains an encrypted and compressed version of the data

(details on data preprocessing will be given in Section 4.2.3). The timestamp

is the time at which the data was collected, while the type field is used for235

differentiating the types of data and is defined by the developer during the ex-

periment development phase. There are no restrictions on the type of data that

can be collected (i.e., string, number, custom structure). To receive data from

the running experiments, the VIVO Client instantiates a Service component

named Data Receiver. This represents the VIVO Client connection with the240

VIVO Client API. Every time this component receives a data block from the

VIVO Client API, it (i) verifies whether the data sender is an authorized ap-

plication by checking its package name, (ii) extends the data block by adding a

field named experiment ID, which identifies the experiment that generated the

data, and (iii) temporarily stores the data block into the local database until245

the synchronization with the VIVO Server is performed.

To perform the synchronization we utilize the Android Sync Adapter compo-

nent, which provides a smart way to manage data synchronization and battery

consumption. Each time a synchronization is performed, a batch of data is sent

to the VIVO Server. In this phase, a field named device ID is added to the250

data block to identify the device that collected the data. Every time the VIVO

Server receives the data, it returns an acknowledgement and the data is deleted

11



from the local database of the VIVO Client.

4.2. VIVO Client API

The VIVO Client API is a software component needed for a VIVO experi-255

ment in order to interact with the VIVO Client. An Experiment Development

Tutorial is available on the VIVO website: it guides developers throughout the

integration of existing or new Android applications with the VIVO Client API.

The API is the core enabler of the VIVO architecture. Besides the interaction

with the VIVO Client for forwarding the collected data, the API provides these260

additional features: (i) an interface for storing data on the VIVO Server; (ii)

an interface for sending data to a custom server in real-time; (iii) tools for data

compression and encryption; (iv) a privacy module to privatize the data.

The VIVO Client API is an Android Library and has the same minimum OS

requirements as the VIVO Client. The API does not interact with mobile sensors265

and does not require any permission, thus, device heterogeneity does not affect

its functionality. Thereby, developers should handle experiment dependencies

by ensuring in their code whether volunteer devices meet the given requirements.

4.2.1. VIVO API Data Collection

The VIVO API Data Collection is the main function of the API, providing270

an interface to the VIVO Client for secure data transactions. In fact, this feature

benefits from one of the main tools embedded into the API: a module for data

compression and encryption. In our context, encryption is necessary because

the collected data is exposed to security risks during both the API-Client and

the Client-Server transmission. We address this issue by encrypting the data275

block locally (within the application), before sending it to the VIVO Client. To

accomplish this task, the API makes use of asymmetric cryptography. As this

technique can encrypt a limited block of data each time, the API compresses the

data before encryption. In such a way, a larger amount of data can be encrypted

in a single block. Experiment developers have to create a public-private key pair280

and configure the API for the usage of the public key.

12



Figure 4: Sequence diagram of the VIVO API (offline) data collection

Fig. 4 shows a diagram representing the sequence of actions performed

by each component of the system in a data collection scenario, where (i) the

collected data is compressed and encrypted by means of the Processing Layer

of the VIVO Client API, (ii) the data is encapsulated in a data block in the285

Transmission Layer and then forwarded to the VIVO Client application, which

(iii) accumulates data blocks in a batch of data until the synchronization with

the VIVO Server is accomplished.

4.2.2. Real-Time Data Collection

Data collected in the VIVO DB is suitable for offline data post-processing290

and analysis. However, this solution does not fit real-time data processing and

applications with low latency requirements. As the Sync Adapter framework of

the VIVO Client does not assure real-time synchronization, it is not guaranteed

that the collected data reaches the VIVO Server with a short delay. To enable

real-time data collection and low-latency applications, we propose a simple in-295

terface, named Real-Time Interface, for integrating a Custom Server endpoint

into the architecture. The developer should only set the Custom Server ad-

dress in the VIVO API settings to perform HTTP requests with the Real-Time

Interface, without configuring any server-side API. Different levels of request

customization are available, ranging from a simple request with only raw data300

to a highly customized HTTP request. Parameters available for customization

are: request body, headers, path, and callback on response.

13



Figure 5: Sequence diagram of the VIVO API (real-time) data collection

Fig. 5 shows a sequence diagram representing a real-time data collection

scenario. In this figure, we depict the optional sequence of actions required to

perform data anonymization, which can be implemented also in the offline sce-305

nario. The Processing Layer of the VIVO Client API is in charge of anonymiz-

ing, compressing, and encrypting data before the transmission to the Custom

Server. Differently from the offline scenario - where a data block is buffered in

a batch of data and then transmitted according to the Sync Adapter policy -

in the real-time scenario each data block is sent to the Custom Server without310

any buffering and additional delay.

4.2.3. Compression and Encryption Tools

Compression and encryption are fundamental tools in the proposed architec-

ture. These features are bundled in a utility Class and use only Java standard

libraries. To compress data we use the Deflate algorithm, while for the en-315

cryption we adopt asymmetric encryption implemented by the RSA algorithm.

Developers can freely decide the key size for the RSA algorithm2. This encryp-

tion technique is highly secure if a large key size is selected but it supports a

limited data block size at each encryption, which in turn depends on the key

size. Thus, developers should take into account the size of the data before using320

2We strongly suggest to use a key size of at least a 3072-bit as recommended by NSA:

https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf

14

https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf


the API. The maximum block size b can be computed as: b = k − p, where k is

the key size (in byte) and p is the padding size (currently fixed at 11 byte).

4.2.4. Privacy Module

One of the key points of the proposed architecture is to ensure security and

privacy at the client side. The privacy module provides routines to anonymize325

data by removing any personal information from identifiers collected during an

experiment. First, we created a simple tool, which consists of an Anonymous

ID Generator. Given a set of IDs that can potentially be used to identify a

user, it produces a new set of IDs using the SHA-256 algorithm [38]. This

simple anonymization is, however, generally insufficient to preserve privacy, as330

any personal information can be used to identify a user. For this reason, we have

implemented an interface for supporting differentially private computations.

Differential privacy [39] is a property that provides an upper bound on the

information a third party can obtain from the data after the release. Consider

the experiment example of a simple survey composed of some yes-or-no ques-335

tions. If we use a differentially private method to collect and analyze volunteer

answers, then any third person that sees a statistical result over the answers

(e.g., the proportion of participants saying yes) would not be able to identify

the answers of individuals up to a certain specified privacy parameter called

the privacy loss. The simplest method available is the Laplace Mechanism [40],340

which can be used when the statistic of interest is a real number. We also im-

plemented the Hybrid Mechanism [41], which can be seen as an extension of the

Laplace Mechanism for streaming computations, and the Randomized Response

[40] mechanism, which is applicable to any type of multiple-choice question.

The differential private methods available in the API are usable - both for345

offline and real-time settings - for experiments that can be reduced to a survey.

Any experiment can be reduced to a survey, when the collected data belongs to a

bounded set of numbers that correspond to possible answers. As an example, we

consider a crowd-sensing application that collects the heart rate of volunteers.

This experiment can be viewed as a multiple choice survey where the sensors350

15



act as participants and the sensor measurements represent votes.

4.3. VIVO Server

The VIVO Server is a Node.js web application based on the KeystoneJS

Framework. It is backed by the VIVO DB, which is a MongoDB database.

This architecture provides a versatile and flexible No-SQL backend solution355

suitable for the scale of this project. The VIVO Server supports the overall

architecture handling the experiments, the notification mechanism, the data

collection engine, and the integration with the Syndesi IoT testbed.

4.3.1. Experiment Management

A VIVO experiment is an instance of an Android application that is built360

considering the guidelines in the development tutorial. In particular, the devel-

oper needs only to (i) integrate and configure the VIVO Client API as a library

in the application project, and (ii) name the application package with a fixed

string. An experiment can be deployed only once. If developers want to run an

experiment multiple times, they have to create new experiments based on the365

same application. Once a developer has been approved by the administrator,

she/he can upload applications and manage experiments from the experiment

page. Every time the developer instantiates an experiment, a dedicated page is

created on the web interface for experiment management. From this page the

developer can request the administrator approval, start, and stop the experi-370

ment. Once the approval is granted, the experiment will be made available to all

the volunteers through the VIVO Client application. Finally, when developers

stop the experiment they can download (from the experiment page) all the data

collected from the experiment instances installed on volunteer devices.

4.3.2. Notifications375

The VIVO Server makes use of Firebase Cloud Messaging (FCM)3 to man-

age notifications. FCM is a cross-platform messaging solution for delivering

3https://firebase.google.com/docs/cloud-messaging/

16

https://firebase.google.com/docs/cloud-messaging/


notification messages at a very reduced cost to drive user re-engagement. By

means of FCM, the VIVO Server sends notifications to the VIVO Client appli-

cations about new and finished experiments. FCM is also integrated with the380

VIVO Client. Each time an FCM message arrives at the VIVO Client, a system

notification is issued and displayed on the notification bar.

4.3.3. VIVO Server Data Collection

The data collection system manages the collected data in the VIVO Server,

which periodically receives data blocks from volunteer devices. As described in385

Section 4.1, a single data block is composed of: data, type, timestamp, exper-

iment ID, and device ID. Every time a device is synchronized with the VIVO

Server, a batch of data blocks are sent in a JSON structure. A batch may con-

tain data from different experiments. The VIVO Server dispatches each block to

the correct database based on the experiment ID. Every time an experiment fin-390

ishes, the VIVO Server creates a JSON structure that combines the experiment

data, which the developers can download from the experiment page.

4.3.4. Syndesi Integration

The VIVO Server supports the integration with the Syndesi IoT testbed.

Syndesi continuously collects environmental data from multiple sensors in a395

smart office environment at the University of Geneva. Developers can choose to

utilize the above environmental measurements along with data collected in their

experiments by enabling the “Environmental Data” option in the experiment

page. This allows the developer to download, at the end of the experiment,

Syndesi sensor data generated during the experiment duration. Integration400

of Syndesi resources with the VIVO platform is accomplished via designated

APIs, which use secure HTTP connections to expose the database resources in

the form of JSON files. A customized parser at the receiving end, i.e., in the

VIVO Server, utilizes the above APIs to integrate the resources in Syndesi with

VIVO, and provide them to the developers in a JSON format.405

17



5. Example Scenarios

Through the VIVO testbed, some real-world applications have been already

successfully implemented. Here, we overview the experiments and the usage of

VIVO features in these application scenarios.

5.1. Human Behavior Data Collection (HBDC)410

The HBDC experiments aim to collect large-scale data of human beings

with the objective of understanding and predicting the subjects’ behavior and

the social dynamics among them. The purpose is to investigate the forces that

drive people aggregation in groups (or communities) [42] and to examine the

factors that mostly affect individuals’ decisions and actions. Our ultimate goal415

is to analyze subjects’ interplay for modeling social influence among them and

predicting their behavior [33]. This experiment demonstrates the flexibility

of VIVO in collecting heterogeneous (type of) data. In fact, for HBDC, we

developed an application that collects from volunteer smartphones:

• physical information: subject position and activity detected by GPS and420

the Google activity recognition API, respectively;

• social information: subject social relationships revealed by contacts and

call logs from the smartphone, and by social connections in Online Social

Networks, such as Facebook, Twitter, and Google Plus;

• environmental information: weather based on the location of the subject,425

and sensor measurements from the Syndesi framework;

• personal information: subject profile information through a survey.

5.2. Indoor Localization in Environmental Crowd-Sensing (ILECS)

The ILECS application enables experiments to track volunteer positions in

an indoor environment in real-time. We have integrated the developed smart-430

phone indoor localization system [34] with the Syndesi framework in an appli-

cation for environmental crowd-sensing. This application enables volunteers to

18



register to the Syndesi server and contribute to its environmental monitoring

scheme by sending measurements from their smartphone sensors. The sensed

data are associated with an estimated indoor location before being sent back to435

the server. As user-location is sensitive information, we use the VIVO API to

anonymize the user ID before the transmission to the VIVO Server.

In order to feed the smartphone-based indoor localization algorithm with

the required inputs, the following data must be collected:

1. The RSSI from all the visible WiFi access points;440

2. Smartphone on-board inertial sensor measurements;

3. Indoor floor map to constrain the estimation of the user’s indoor location.

The smartphone on-board calculation combines the above information and

produces online location estimates.

The application’s overall functionality lifecycle is: (i) sensor data are queried445

from the smartphone sensors, e.g., temperature, illuminance, etc., depending on

the smartphone model based on the polling scheme; (ii) location at the time of

measurements is estimated via the localization algorithm; (iii) the sensed data

are packaged along with the estimated location, the timestamp, and the user

ID; (iv) depending on polling rate and other constraints, such as battery level450

and network availability, the data are synced back with the VIVO Server.

5.3. NoiseBay

In the context of the development of the VIVO platform, we launched an

experiment to create a public online map of noise levels within the San Fran-

cisco Bay area using data recorded by the smartphones of private citizens4. The455

special focus of the experiment was to test load balancing and task allocation al-

gorithms in mobile crowd-sensing applications [43], [44]. Volunteers were asked

to submit non-public information about their availabilities and to download our

4http://crowd.unige.ch/noiseMapSF

19

http://crowd.unige.ch/noiseMapSF


NoiseBay app to collect anonymous noise levels. In the experiment, we fol-

lowed a Volunteered Geographic Information (VGI) approach, where users are460

aware and actively provide data. This encourages volunteer trust towards the

experiment [45] and saves the smartphone battery resources. The experiment

contained several testing phases in which volunteers would either randomly col-

lect data or were asked to collect data according to an optimized schedule. The

NoiseBay app is based on the open source project NoiseCapture [46] and was465

adjusted to evaluate the applied load balancing algorithms. After the initial

testing phase in San Francisco, a version of the NoiseBay app was enhanced by

the compression and encryption tools available in the VIVO Client API. VIVO

is especially suited for the NoiseBay app as it simplifies the distribution of the

experiment and of the task schedule to volunteers. The volunteer management470

through the VIVO platform is an important asset if compared to an alternative

distribution, e.g., via standard application download platforms.

5.4. Differential Privacy Survey (DPS)

In the DPS experiment, we deployed a server to create surveys and release

aggregated statistics about the results while preserving differential privacy. Each475

survey can have many multiple choices questions. For each question, we release

the number of participants who voted for a specific choice utilizing two privacy

techniques (both implemented in the VIVO API): the Randomized Response

and the Hybrid Mechanism. To give some insights on the effect of these tech-

niques, we built an application survey that asks volunteers whether they like480

VIVO or not. We simulated 218 participants, which voted YES with probability

0.6, and NO with probability 0.4. To privately compute the sum of YES votes,

we employ the Hybrid Mechanism implemented in the VIVO Client API. This

results in a type of private count. As the Hybrid Mechanism is randomised, we

also make the private count consistent5 using the transformation described in485

5A consistent count in our example must output integer counts, and furthermore, the count

must increase by either 0 or 1 after each vote.

20



[41]. Then, we compare the absolute error between the true count and the pri-

vate one, for two settings of acceptable privacy loss ε = 1 and ε = 0.1 . Finally,

we run the hybrid mechanism 1000 times and compute the worst absolute error.

The error rate measured for both privacy loss settings is quite small. The abso-

lute error is lower than 400, whereas a simple private counting mechanism [41]490

would incur an absolute error proportional to 218 to achieve the same privacy

loss. Additionally, we noticed that the error rate is inversely proportional to the

privacy loss, which means that the privacy loss should be kept to a reasonable

level to make the counts useful. Nevertheless, the two privacy loss considered in

our experiments provide strong guarantees. Thus, we proved that the private495

count mechanism provided by the VIVO API is quite useful for experiments

while significantly limiting the amount of privacy that participants lose.

6. System Performance

To validate the functionality and to evaluate the performance of the pro-

posed architecture, we developed different test-applications. In Section 6.1, we500

examine the scalability of VIVO by distributing an experiment to a group of

volunteers scattered over the whole Switzerland. In Section 6.2, we present a

comparison of the performance of the VIVO Client API with legacy solutions

through a large suite of benchmarks. Finally, in Section 6.3 we compare the

battery consumption of real-time upload with offline data collection.505

6.1. Scalability Test

In this test, we examine the functionality and the scalability of VIVO by dis-

tributing an experiment to a group of forty volunteers scattered over the whole

Switzerland. Further, this test allowed us to evaluate the robustness of VIVO

by analyzing the integrity and the correctness of the collected data during the510

whole life-cycle, and the presence of anomalies or bugs in the implementation.

In the experiment, we gather accelerometer measurements from volunteer

smartphones every minute in both offline and real-time settings. Volunteers

21



installed the experiment from the VIVO Client, which worked without any issue.

The VIVO Server handled well both the experiments and the volunteers, without515

any loss of data and any performance degradation. In the current version of the

architecture, the VIVO Server is designed to run on a single node as a monolithic

web application and, thus, it does not scale automatically on a cluster of multiple

nodes. The VIVO Server instance runs on a machine with a CPU Intel(R)

Pentium(R) D, dual core at 3.00GHz, 8GB DDR3 RAM, and 200GB HDD520

disk. To properly evaluate VIVO scalability, we should consider that the VIVO

Server is a Node.js web application. Node.js operates on a single thread using

non-blocking I/O calls. Thereby, it supports much more concurrent connections

with respect to traditional web-serving techniques. Node architecture works

well for tasks with non-intensive CPU computation, as for the VIVO Server,525

which performs light tasks at each synchronization. Concurrent connections

capability can be computed taking into account the amount of RAM [47]. As

an example, a traditional web server with 8GB of RAM can support at most few

thousands of concurrent connections, while Node architecture can handle tens

of thousands of simultaneous connections with the same amount of memory.530

6.2. VIVO Client API Performance

To guarantee security in the data transaction, the VIVO Client API performs

data compression and encryption. It is crucial to ensure that this data processing

does not affect the performance and the proper operation of VIVO, both in the

real-time and in the offline settings. Low latency in the data processing is535

mandatory for real-time applications, while a moderate battery consumption is

fundamental to support volunteer involvement.

To this end, we developed two classes of experiments. First, we evaluate

the delay introduced by compression and encryption at varying key size. As

VIVO developers decide the size of the RSA key during the API configuration,540

we aim to quantify the impact of this choice in terms of additional delay. To

perform these measurements, we used a Nexus 5X running OS version 8.1.0.

We compare our proposed solution, i.e., compression and encryption, with a

22



1 2 3 4 5 6 7 8 9

Key Size [kb]

0

5

10

15

T
im

e
 [

m
s

]

Time vs. Key Size

Encryption
Compression and Encryption

Figure 6: Data processing time vs. key size

standard security solution based only on encryption. Fig. 6 represents the

time measured on the VIVO Client API to perform (i) only encryption and (ii)545

both compression and encryption on packages of 100 byte at varying encryption

key size (2048, 3072, 4096, and 8192 bits). Our proposed solution closely ap-

proaches the processing time required by the standard security solution. Data

compression allows encoding information using fewer bits than the original rep-

resentation, while requiring, on average, only 5% of additional time if compared550

to the standard security solution.

Second, we created a suite of benchmarks to measure both latency and bat-

tery consumption, comparing three processing scenarios: (i) raw data (does

not perform any data processing), (ii) compression, and (iii) compression and

encryption (VIVO Client API). We performed a set of 27 benchmarks varying555

the three processing scenarios, the block size (50, 500, and 5000 byte), and the

frequency (1, 10, and 50 Hz). Each benchmark performs, for a given amount

of time (fixed to 30 minutes), multiple data processing operations based on the

frequency, which in turn determines the number of data processing operation

performed in a second. We empirically choose the values of the parameters to560

exploit as much as possible the hardware resources at our disposal.

Fig. 7 compares the average latency over the processing instances of the

three scenarios as a function of block size and frequency. As it can be observed

in these figures, and contrarily from what we expected, for every data processing

scenario, the higher the frequency the lower is the latency. Our hypothesis is that565

an optimization system dynamically adapts the resource allocation according to

the throughput of the benchmark. We strongly believe that this optimization

23



(a) Raw Data (b) Compression (c) VIVO Client API

Figure 7: Latency of the three processing scenarios

(a) Raw Data (b) Compression (c) VIVO Client API

Figure 8: Battery consumption of the three processing scenarios

is performed by a Kernel component of the OS: the CPU Governor, which

controls the CPU frequency in response to the demands of the running processes.

Thereby, when the data processing frequency is low, the Governor maintains a570

lower CPU frequency - taking more time to process the data - with respect

to the case of a higher data processing frequency. While the block size does

not affect the raw data processing, in the other two scenarios we observe that

the larger the block size the higher is the latency. An interesting behavior can

be noticed in the VIVO Client API scenario, where encryption limits the data575

block size. In this experiment, we used a key size of 8192 bits, which allows to

encrypt up to 1013 byte of data. Thereby, in case of larger blocks (e.g., 5000B),

the API splits the data in smaller blocks introducing a computational overhead,

as it can be appreciated in Fig. 7c. Finally, we observe that every parameter

combinations produces an acceptable delay in every processing scenario.580

The battery consumption as a function of the benchmark parameters can be

seen in Fig. 8. As we expected, for every data processing scenario, the battery

consumption increases with the benchmark frequency. Note in particular that

24



1 10 50 100 1000

Queue Size

0

20

40

60

80

100

B
a
tt

e
ry

 C
o

n
s
u

m
p

ti
o

n
 [

m
A

h
]

Battery Consumption

1Hz
10Hz
50Hz

Figure 9: Battery consumption as a function of queue size and frequency

in a real experiment the frequency is set by the developer and depends on the

purpose and on the requirements of the experiment itself. Further, block size585

does not significantly affect battery consumption in every scenario.

Overall, through these two classes of experiments, we proved that the VIVO

API introduces a large suite of tools at the cost of a slightly larger latency and

a moderate battery consumption if compared to legacy solutions.

6.3. Battery Consumption in Data Synchronization590

In this section, we compare the offline data collection with the real-time

upload in terms of battery consumption. In the former scenario, a batch of

data is sent at irregular intervals based on the Sync Adapter policy, whereas in

the latter, data is forwarded without any buffering. The Sync Adapter aims to

transfer data while limiting the battery consumption according to the current595

network usage and the device sleep state. As the synchronization mechanism is

strongly affected by the usage of the device, which in turn is a stochastic process,

we forced the transmission every time a batch of fixed size, referred to as queue,

is filled. In such a way the resulting consumption will be an upper bound of

the real battery consumption, as the Sync Adapter manages the transmission600

more efficiently. In this test, we evaluate queue sizes ranging from 1 (real-time

scenario) to 1000 elements. For each queue size, we performed a benchmark of

90 minutes sending data block of 50 byte at a frequency of 1, 10, and 50Hz.

Fig. 9 shows the battery consumption as a function of queue size and fre-

quency. As it was expected, short queues consume more energy than longer605

25



ones as the system requires more frequently network infrastructure and commu-

nication. In particular, the battery consumption in case of long queues achieves

almost the same value. Our hypothesis is that, in such scenarios, the battery

consumption converges to a lower bound, which does not depend on the fre-

quency and on the queue size of the data upload.610

7. Conclusions

We presented the VIVO framework built onto the enrolled crowd-sensing

model, which allows the deployment of several experiments simultaneously.

VIVO also provides a paradigm-shift from (i) taking care of the whole experi-

ment cycle, i.e., from experiment design up to data provision, to (ii) managing615

only the experiment application, with built-in security and privacy capabilities

and the possibility to access data in real-time. We have defined and implemented

VIVO architecture, and evaluated its performance. Further, we demonstrated

its usability and effectiveness with four relevant real-world applications.

References620

[1] B. Guo, Z. Yu, X. Zhou, D. Zhang, From participatory sensing to mobile

crowd sensing, in: PERCOM Workshops, 2014 IEEE.

[2] J. Liu, H. Shen, X. Zhang, A survey of mobile crowdsensing techniques: A

critical component for the internet of things, in: ICCCN, 2016, IEEE.

[3] M. Tsvetkova, T. Yasseri, E. T. Meyer, J. B. Pickering, V. Engen, P. Wal-625

land, M. Lüders, A. Følstad, G. Bravos, Understanding human-machine

networks: A cross-disciplinary survey, in: ACM Comput. Surv., 2017.

[4] S. Kim, C. Robson, T. Zimmerman, J. Pierce, E. M. Haber, Creek watch:

pairing usefulness and usability for successful citizen science, in: Conference

on Human Factors in Computing Systems, ACM, 2011.630

26



[5] P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett,

A. Woodruff, Common sense: participatory urban sensing using a network

of handheld air quality monitors, in: Sensys, ACM, 2009.

[6] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, W. Hu, Ear-phone: an

end-to-end participatory urban noise mapping system, in: IPSN, 2010.635

[7] P. Mohan, V. N. Padmanabhan, R. Ramjee, Nericell: rich monitoring of

road and traffic conditions using mobile smartphones, in: Sensys, 2008.

[8] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,

H. Balakrishnan, S. Madden, Cartel: a distributed mobile sensor computing

system, in: Sensys, ACM, 2006.640

[9] B. Pan, Y. Zheng, D. Wilkie, C. Shahabi, Crowd sensing of traffic anomalies

based on human mobility and social media, in: SIGSPATIAL, ACM, 2013.

[10] Y. Chon, N. D. Lane, F. Li, H. Cha, F. Zhao, Automatically characterizing

places with opportunistic crowdsensing using smartphones, in: Ubicomp,

ACM, 2012.645

[11] L. Bedogni, M. Di Felice, L. Bononi, By train or by car? detecting the

user’s motion type through smartphone sensors data, in: WD, IFIP, 2012.

[12] F. J. Villanueva, D. Villa, M. J. Santofimia, J. Barba, J. C. Lopez, Crowd-

sensing smart city parking monitoring, in: WF-IoT, IEEE, 2015.

[13] F. Montori, L. Bedogni, A. Di Chiappari, L. Bononi, Sensquare: A mobile650

crowdsensing architecture for smart cities, in: WF-IoT, IEEE, 2016.

[14] C. M. Angelopoulos, O. Evangelatos, S. Nikoletseas, T. P. Raptis, J. D.

Rolim, K. Veroutis, A user-enabled testbed architecture with mobile crowd-

sensing support for smart, green buildings, in: ICC, IEEE, 2015.

[15] B. Guo, H. Chen, Z. Yu, X. Xie, S. Huangfu, D. Zhang, Fliermeet: a mobile655

crowdsensing system for cross-space public information reposting, tagging,

and sharing, in: IEEE Transactions on Mobile Computing, 2015.

27



[16] Z. Xu, L. Mei, K.-K. R. Choo, Z. Lv, C. Hu, X. Luo, Y. Liu, Mobile

crowd sensing of human-like intelligence using social sensors: A survey, in:

Neurocomputing, 2018.660

[17] R. K. Ganti, F. Ye, H. Lei, Mobile crowdsensing: current state and future

challenges, in: IEEE Communications Magazine, 2011.

[18] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,

M. B. Srivastava, Participatory sensing, 2006.

[19] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A. T. Campbell,665

A survey of mobile phone sensing, in: Communications magazine, 2010.

[20] C. M. Angelopoulos, S. Nikoletseas, T. P. Raptis, J. D. Rolim, Character-

istic utilities, join policies and efficient incentives in mobile crowdsensing

systems, in: Wireless Days (WD), 2014 IFIP, IEEE, 2014.

[21] C. M. Angelopoulos, S. Nikoletseas, T. P. Raptis, J. Rolim, Design and670

evaluation of characteristic incentive mechanisms in mobile crowdsensing

systems, in: Simulation Modelling Practice and Theory, Elsevier, 2015.

[22] A. Krause, E. Horvitz, A. Kansal, F. Zhao, Toward community sensing, in:

Proceedings of the 7th international conference on Information processing

in sensor networks, IEEE Computer Society, 2008.675

[23] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao,

S. Y. Ko, G. Challen, Phonelab: A large programmable smartphone

testbed, in: Workshop on Sensing and Big Data Mining, ACM, 2013.

[24] G. Larkou, M. Mintzis, S. Taranto, A. Konstantinidis, P. G. Andreou,

D. Zeinalipour-Yazti, Demonstration abstract: Sensor mockup experiments680

with smartlab, in: Information Processing in Sensor Networks, IEEE, 2014.

[25] R. K. Balan, A. Misra, Y. Lee, Livelabs: Building an in-situ real-time

mobile experimentation testbed, in: HotMobile, ACM, 2014.

28



[26] A. Striegel, S. Liu, L. Meng, C. Poellabauer, D. Hachen, O. Lizardo, Lessons

learned from the netsense smartphone study, in: ACM SIGCOMM, 2013.685

[27] J. Fernandes, M. Nati, N. Loumis, S. Nikoletseas, T. P. Raptis, S. Krco,

A. Rankov, S. Jokic, C. M. Angelopoulos, S. Ziegler, Iot lab: Towards

co-design and iot solution testing using the crowd, in: RIoT, IEEE, 2015.

[28] O. Evangelatos, K. Samarasinghe, J. Rolim, Syndesi: A framework for

creating personalized smart environments using wireless sensor networks,690

in: Distributed Computing in Sensor Systems, IEEE, 2013.

[29] Z. Zhao, S. Kuendig, J. Carrera, B. Carron, T. Braun, J. Rolim, Indoor

location for smart environments with wireless sensor and actuator networks,

in: Conference on Local Computer Networks, 2017.

[30] Y. Chen, H. Chen, S. Yang, X. Gao, F. Wu, Jump-start crowdsensing: A695

three-layer incentive framework for mobile crowdsensing, in: IWQoS, 2017.

[31] F. Restuccia, N. Ghosh, S. Bhattacharjee, S. K. Das, T. Melodia, Quality

of information in mobile crowdsensing: Survey and research challenges, in:

ACM Trans. Sen. Netw., 2017.

[32] G. Han, L. Liu, S. Chan, R. Yu, Y. Yang, Hysense: A hybrid mobile crowd-700

sensing framework for sensing opportunities compensation under dynamic

coverage constraint, in: IEEE Communications Magazine, 2017.

[33] L. Luceri, T. Braun, S. Giordano, Social influence (deep) learning for hu-

man behavior prediction, in: Proceedings of CompleNet’, Springer, 2018.

[34] J. L. Carrera, Z. Zhao, T. Braun, Z. Li, A. Neto, A real-time robust indoor705

tracking system in smartphones, in: Computer Communications, 2017.

[35] M. J. Abadi, L. Luceri, M. Hassan, C. T. Chou, M. Nicoli, A collaborative

approach to heading estimation for smartphone-based pdr indoor localisa-

tion, in: IPIN, IEEE, 2014.

29



[36] A. Ferrari, D. Gallucci, D. Puccinelli, S. Giordano, Detecting energy leaks710

in android app with poem, in: PerCom Workshops, IEEE, 2015.

[37] A. Ferrari, D. Puccinelli, S. Giordano, Managing your privacy in mobile

applications with mockingbird, in: PerCom Workshops, IEEE, 2015.

[38] National Institute of Standards and Technology (NIST), Fips-180-2: Secure

hash standard, 2002, [www.itl.nist.gov/fipspubs].715

[39] C. Dwork, Differential privacy, in: ICALP, Springer, 2006.

[40] C. Dwork, A. Roth, The algorithmic foundations of differential privacy, in:

Foundations and Trends in Theoretical Computer Science, 2013.

[41] T. H. Chan, E. Shi, D. Song, Private and continual release of statistics, in:

Automata, Languages and Programming, Springer, 2010.720

[42] L. Luceri, A. Vancheri, T. Braun, S. Giordano, On the social influence in

human behavior: Physical, homophily, and social communities, in: Confer-

ence of Complex Networks and their Applications, Springer, 2017.

[43] J. Buwaya, J. D. P. Rolim, Atomic routing mechanisms for balance of costs

and quality in mobile crowdsensing systems, in: DCOSS, 2017.725

[44] J. Buwaya, J. D. P. Rolim, Mobile crowdsensing from a selfish routing

perspective, in: IPDPS Workshops, 2017.

[45] I. Bilogrevic, M. Ortlieb, If you put all the pieces together...: Attitudes

towards data combination and sharing across services and companies, in:

Conference on Human Factors in Computing Systems, ACM, 2016.730

[46] G. Guillaume, A. Can, G. Petit, N. Fortin, S. Palominos, B. Gauvreau,

E. Bocher, J. Picaut, Noise mapping based on participative measurements,

in: Noise Mapping, 2016.

[47] M. Abernethy, Just what is node. js, in: IBM Developer Works, 2011.

30


	Introduction
	Background and Motivation
	Architectural Overview
	Implementation
	VIVO Client
	User Interface (UI)
	VIVO Client Data Collection

	VIVO Client API
	VIVO API Data Collection
	Real-Time Data Collection
	Compression and Encryption Tools
	Privacy Module

	VIVO Server
	Experiment Management
	Notifications
	VIVO Server Data Collection
	Syndesi Integration


	Example Scenarios
	Human Behavior Data Collection (HBDC)
	Indoor Localization in Environmental Crowd-Sensing (ILECS)
	NoiseBay
	Differential Privacy Survey (DPS)

	System Performance
	Scalability Test
	VIVO Client API Performance
	Battery Consumption in Data Synchronization

	Conclusions

