
Contemporary Issues in Interactive Storytelling
Authoring Systems

Daniel Green, Charlie Hargood, and Fred Charles

Bournemouth University, UK
{dgreen, chargood, fcharles}@bournemouth.ac.uk

Abstract. Authoring tools for interactive narrative abstract underly-
ing data models to allow authors to write creative works. Understanding
how our program and interface design decisions alter the User Experience
design could lead to more robust authoring experiences. We contribute
a taxonomy of authoring tools with identified program and User Expe-
rience observations with discussion into their impact on the authoring
experience as well as reflection on two detailed experiments. We then
present our own authoring tool, Novella, and discuss how it has im-
plemented the lessons learned from the analysis and how it approaches
solving the identified challenges.

Keywords: Interactive Narrative · Authoring Tools · User Experience.

1 Introduction

The design of interactive narrative authoring tools is an emergent process from
the underlying narrative data model that the tool supports. While this makes
sense from a structural point of view it is possible that we are ignoring the
User Experience (UX) impact of a variety of design decisions and interface
paradigms. Without well-designed UX, accessibility is reduced and systems be-
come restricted to users with the appropriate technical know-how, which can
result in a frustrating user experience and can contribute to a reduced rate of
adoption by interactive fiction communities. It is also possible that there may
be repeated UI trends in the design of these authoring tools that may have an
unforeseen impact on the resulting stories.

In this paper, we survey the current state of the art and present a catego-
rized taxonomy of authoring tools for interactive fiction, a listing of what we
believe to be the prominent challenges facing the interactive fiction authoring
tools community accompanied by a more in-depth considering of two commonly
used tools: Twine [11] and inklewriter [7]. We also present progress on our own
authoring tool, Novella, which implements our previous model [18] and attempts
to target some of these challenges. Our analysis focuses on authoring tools for
structural and choice-based narratives rather than simulated or generative ones.



2 D. Green et al.

2 State of the Art

In our survey of the state of the art, we have considered 29 authoring tools. 14
were sourced from academically published research. 4 are developed and sold
as commercial products. The remaining 11 come from other non-commercial,
non-academic sources, such as open-source or otherwise free projects. We have
found this distinction to be important, as the purpose of these tools differs based
on their origin; commercial products are created with a different end-goal than
academic systems, for instance, which can impact the focus and quality.

Delivery Methods & Interface Paradigms

These tools can be broadly categorized by their delivery methods (Standalone,
Web-based, Integrated) and high-level interface design paradigms (Form,
Graph, or Text-based).

Standalone tools offer a dedicated application which is independent from
additional software other than the host platform. A drawback of such approaches
is the difficulty of cross-platform support, although this is becoming less prob-
lematic. The Emo-Emma [15] authoring tool, for instance, provided a Windows
binary, but does not support any other systems. Some standalone applications
are able to export to generic or specific formats, which increases the usability
of the tool. articy:draft [4], for example, can export to Unity [12] as well as
providing an API for integration into arbitrary systems.

Web-based tools provide a browser-based solution which comes with the ad-
vantage of being mostly platform independent and easily accessible. Editors such
as StoryPlaces and inklewriter present web interfaces for authoring, testing, and
publishing of interactive fiction. Twine, which is based on web technologies, pro-
vides both a browser interface and a wrapped standalone multi-platform desktop
application, which increases its accessibility and availability.

Integrated tools are built directly into host software such as game engines,
having the advantage of being able to communicate directly with and be tailored
to a given system. Fungus [5], for instance, is built as a Unity plugin, requiring
no other software and being able to integrate directly with Unity’s systems.

Table 1 presents an incomplete but representative taxonomy of authoring
tools for interactive narrative classified by their method(s) of delivery.

Authoring tools can also be broadly grouped by the paradigms used in the
interface with abstraction of data. It is to be noted that these paradigms are not
mutually exclusive, and many tools make use of one or more in their design.

Form-based interface design is the most common interface paradigm by a
large margin. These are atomic user interface controls that are often mapped
closely or directly to a data model. For instance, a character editing interface
using a form-based approach may contain text fields directly mapped the char-
acter’s attributes. These kinds of fields are necessary in essentially any tool that
requires data input. Their danger lies within misuse, as creating an interface



Contemporary Issues in Interactive Storytelling Authoring Systems 3

Standalone Integrated Web

Academic

ASAPS [24], DraMachina [16],
Emo-Emma [15], FearNot! [25],
GAIA [23], NM2 [31],
PaSSAGE [30], Scenejo [17],
StoryTec [20], SVC Editor [32],
Virtual Human [21]

GHOST [19],
Story World
Builder [28]

StoryPlaces [22]

Commercial

articy:draft 3 [4], HyperCard [1],
Storyspace [2] Tinderbox [14]

None None

Other

Inform [6], Quest [8], Ren’Py [9],
Squiffy [10], TADS [29],
TextureWriter [26], Twine [11]

Fungus [5] Genarrator [3],
inklewriter [7], Playfic [13],
Quest [8], Squiffy [10],
Twine [11]

Table 1: Authoring tools sorted by their method(s) of delivery.

purely of atomic controls can be difficult to maintain good UX, and can have lit-
tle tangible benefit other than basic accessibility when it comes to abstraction of
an underlying model for the layperson. The GAIA authoring tool [23] displayed
in Fig. 1a demonstrates heavy use of a form-based editing approach.

Graph-based editors abstract the structure of data into visual graphs, the
most common being a node-line graph. They may be for pure visualization pur-
poses, such as in inklewriter, or as a core part of the actual editing experience, as
in Twine. This abstraction of connected data into a more visual form provides a
tangible benefit that is not possible with simpler form-based approaches. Fig. 3b
shows the Twine editor’s graph view, which provides an overview of the story
data and its connectedness in a node-line style editable interactive graph.

Text-based systems feature an augmented plain text editor as their core
interface paradigm, providing additional features such as autocomplete, syntax
highlighting, and other markup. This approach is commonly found partnered
with a domain-specific, or other form of scripting language. For instance, the
GUI application of Inform [6] is centered on a plain text editor with integration
into the Inform language such as markup and simple debugging support. The
Inform interface in Fig. 1b shows an augmented text-based implementation with
full syntax highlighting based on the Inform language.

It is important to consider the way in which accessibility can be affected when
choosing a delivery method. Standalone distributions, for instance, empower the
possibility of native performance and can offer a homogenous experience within
the host platform, but do so at the expense of difficulties encountered with cross-



4 D. Green et al.

(a) (b)

Fig. 1: GAIA (a) and Inform (b) using form-based and text-based designs.

platform native development. Supporting only a single platform can reduce ac-
cessibility of a system. Web-based systems, on the other hand, have increased
accessibility due to their platform independence, although are faced with cross-
browser complications and lesser performance. As technologies advance, however,
cross-platform development difficulties and performance gaps, among other im-
pediments, are shrinking, resulting in more freedom of choice with regards to
delivery methods. Integrated solutions can tie closely into existing systems, but
in doing so restrict themselves in scope.

2

6

21

Web

12
5

4
2

21
Standalone

Form

Graph

Text

Fig. 2: Distribution of interface paradigms for Standalone and Web delivery
methods. Integrated is not included as it has only 3 form and graphs, which
both overlap.

Fig. 2 shows Venn diagrams of the interface paradigms for standalone and
web-based authoring tools. Each paradigm presents its own advantages and dis-
advantages to the authoring process. Using a given paradigm does not necessar-
ily mean that the UX will be a certain way, as this is largely dependent upon
the implementation. We can, however, conclude general observations of trends



Contemporary Issues in Interactive Storytelling Authoring Systems 5

regarding accessibility when these paradigms are used. Based on our analysis,
we found that text-based interfaces provide the most power to the user due to
their exposing of a narrative grammar for authoring, but do so at the expense
of usability. Authors must first learn the grammar and have little to no assis-
tance beyond highlighting and documentation, which can make the authoring
process tedious, especially for new or non-technical authors. On the other hand,
we found that graph-based systems were the most accessible due to their prowess
at data visualization, which is an ideal match for complex intertwining stories
that are difficult to represent visually in text-based systems. This does come at
the cost of losing some control that is provided by text-based systems due to
the abstraction provided by graphs. Form-based approaches are variable, reliant
on the visual presentation of the atomic controls. If well done, they can provide
a good abstraction of the story data with reasonable levels of control, albeit
less than a text-based approach. Caution must be taken when using form-based
approaches to present meaningful data in a meaningful way, and to not overload
authors with too much at once. This is evident by the number of systems, not
only in interactive narrative, that appear to be designed by technical users for
other technical or power users, rather than what the author really needs to see.

We summarize by concluding that these three paradigms (Form, Graph,
or Text) play different roles in the design of interactive fiction authoring tools
but that each has an impact on the UX - principally on Accessibility (the ease
of use to construct a story), Author Power (the degree to which the author
is able to express more detailed systems), and Content Fidelity (the accuracy
with which the paradigm presents narrative structure or content specifics). Our
survey already highlights potential trends in these design paradigms - Graph
interfaces demonstrating a lower degree of Author Power than Text interfaces,
but higher Accessibility - or Graph interfaces demonstrating good Content Fi-
delity at the structural level but potentially less at the specific content level than
Form interfaces. A comprehensive review of the exact nature of the impact in
these paradigms must form part of the future work in this area.

Availability

When evaluating the availability of an authoring tool, we looked at its presence
online through official websites and third-party mentions (such as Redcap1), as
well as the accessibility of both binaries and source code.

The availability and longevity of a tool directly affects its rate of adoption and
its ability to be additionally developed or used otherwise for further research.
Systems that have long become dormant, for instance, can become devalued
relative to their initial contribution, and are unlikely to be adopted in the long
term by interactive fiction authoring communities. Inform, for example, has been
used and developed since 1993, but due to its online presence and community-
driven development, remains a strong contender even today.

1 http://redcap.interactive-storytelling.de

http://redcap.interactive-storytelling.de


6 D. Green et al.

Online presence is an area that academic authoring tools struggle to maintain.
Of the sampled tools, only six ever had a dedicated website, of which only four
are functional today and are seldom updated. Temporary websites often result
in unreachable links and are not a suitable substitute for a dedicated page where
tools can be publicized. To illustrate, an article of Emo-Emma2 provides links
to academic papers and binaries, but all links reside on a university staff page
that no longer exists, making it difficult to source the original contribution.

Another related area that academic works struggle with is the distribution
of binaries and source code. Some projects are understandably protected intel-
lectually, but those that are not should attempt to share their work in order to
best maximize its chance of adoption and provide an opportunity for further re-
search to be conducted. Of the fourteen sampled tools, only five offered binaries
at some point, with only one remaining available (StoryPlaces [22] which offers
both the application and source code). Sometimes software is available upon
request from the authors. StoryTec [20], for instance, used to provide a software
request form, but has since removed it in 2015. The authors followed protocol
outlined by ASAPS [24] website for requesting the software, but were unsuc-
cessful in obtaining it. This highlights the need for care to be taken to ensure
that if software is intended for public use, that it is made available, and remains
easily available, otherwise any traction gained could be rapidly negated. The
lack of availability of academic software also has serious research implications
for this community, as it prevents the reproduction of any experimental results
and hinders their study so that the community might incrementally improve and
iterate on their work, or form a greater understanding of this area. While some
conclusions can be drawn from documenting articles this is not a replacement
for the software itself, and software availability and sustainability can be seen as
a notable challenge for this community to overcome.

User Experience

In order to better understand the UX of select authoring tools, we participated
in a reflective autoethnography by taking a story segment from Life is Strange3

and recreating it using inklewriter and Twine. The chosen story segment4 con-
sisted of multiple choice discourse with some looping pathways and certain op-
tions becoming available only once set conditions were met (i.e. a given pathway
node was experienced). We firstly familiarized ourselves with the tools by cre-
ating sample stories containing all of the features of our chosen story segment
(i.e. how to branch, loop, present multiple choices, and lock choices until condi-
tions are met). Each experiment was timed and narrated, and both audio and
video were captured for further reflection on the authoring experience. Following
the completion of the authoring process, UX laws and heuristics were applied,

2 http://redcap.interactive-storytelling.de/authoring-tools/emo-emma/
3 Life Is Strange, Dontnod Entertainment, 2015
4 Section titled Conversation with Juliet from the game’s script: http://

life-is-strange.wikia.com/wiki/Episode_1:_Chrysalis_-_Script.

http://redcap.interactive-storytelling.de/authoring-tools/emo-emma/
http://life-is-strange.wikia.com/wiki/Episode_1:_Chrysalis_-_Script
http://life-is-strange.wikia.com/wiki/Episode_1:_Chrysalis_-_Script


Contemporary Issues in Interactive Storytelling Authoring Systems 7

and any sources of usability frustration were noted. Each story was also tested
to ensure accuracy, which is included in the recorded timing. To evaluate the
UX of authoring systems, we applied a selection of heuristics as described by
Nielsen [27], as well as the listing of the Laws of UX5.

inklewriter is a web-based authoring tool of interactive narrative shown in
Fig. 3a. In the central pane, texts are displayed as detached segments, each of
which can be edited inline. There is also a content browser for texts, and a static
node-link graph view for better visualizing the flow of the story.

The Doherty Threshold states that system feedback should be ≤400ms else
user attention and productivity can suffer. However, the text segments in inklewriter
animate before being presented, which takes around one second. While this may
seem insignificant, if working on a large project that requires lots of navigation,
the extra time can add up and reduce the overall authoring experience.

The Law of Similarly advises elements of differing functionality to be visually
dissimilar, and those that are similar to be treated as related or as a group
regardless of physical separation. In inklewriter, segments are accompanied by
informative red italic text describing things such as the number of incoming
or outgoing links. However, errors are also presented in the same visual style.
Differentiating between information and errors can reduce potential confusion for
users and help them focus on authoring rather than understanding the system.

Hick’s Law suggests reducing complexity where possible, as the time it takes
to make decisions or take actions is altered by the number and complexity of
options available. In order to delete an unwanted segment, it must be first un-
linked from surrounding segments, and then becomes detached. Then it must
be located in the content explorer and manually removed. While this is likely
by design in order to retain discarded texts, the complexity involved for the de-
sired removal of such texts is high and could be reduced significantly. Keeping
complexity low can aid UX and increase productivity.

Two of Nielsen’s heuristics state that shortcuts should be included in order
to satisfy experienced users, and that actions made should be easily reversible,
or warned if they are not. inklewriter does not provide notable shortcuts and
does not has the ability to undo changes beyond in text fields.

The total time spent authoring the story was 17m20s. This is reasonable
given the size of the story, but could have been improved, even if only a little,
by the interface being less delayed.

Twine is a web and desktop authoring tool displayed in Fig. 3b. It uses a con-
nected node graph for visualization and editing of the narrative texts. Content
is edited through modal popups that fill the screen.

Jakob’s Law specifies consistency in an array of manners, one of which is
standardized and recognizable icons. While Twine’s icons are largely consistent

5 https://lawsofux.com by Jon Yablonski. Many of the laws are grounded in research,
and the few that are not are widely accepted heuristics.

https://lawsofux.com


8 D. Green et al.

with those commonly used, its icon for ’find and replace’ represents a list rather
than something that would obviously indicate searching. Where possible, we
should reuse common or recognizable adaptions of icons to reduce users having
to guess functionality and to take advantage of already learned connections.

Miller’s Law focuses on reducing cognitive load. Twine makes no major vi-
olations as such, but entering links, which is done manually, could be improved
by providing autocomplete of existing nodes in order to reduce the number of
items a user has to memorize at once and help mitigate errors.

The Zeigarnik Effect is about informing users of task progress. When a node
in Twine defines a connection to another node that doesn’t yet exist, it is replaced
with a bold red X, indicating the incomplete state of the task. This could be
improved, as regardless of the number of missing links, only one X is displayed.
Showing multiple corresponding with the number of missing links would better
implement this rule. Additionally, Parkinson’s Law - the saving of time within
a given task - could also be implemented here by allowing missing nodes to be
created and linked by clicking the corresponding X.

The same two of Nielsen’s heuristics that failed for inklewriter are likewise not
implemented here. Accelerators are not provided beyond overriding a warning
message when deleting nodes. Since Twine relies so heavily on a visual graph, it
is ideal to include accelerators such as context menus to speed up development.
Similarly, reversal of actions is not supported outside of modal content editing
dialogs, which is scoped to the current modal session. After closing and reopening
a modal dialog, the undo state resets, and requesting undo will delete all of the
node’s content. When implementing reversal of actions, we must ensure that
they successfully return to a previous state.

The total time spent authoring the story was 20m48s. This is significantly
longer than inklewriter. It is likely that this is due to Twine requiring each node
to have a unique name, and for the links to be manually typed using the exact
names. Supporting autocomplete or adding an accelerator to create named nodes
could potentially decrease the authoring time.

While the scope of our analysis is limited, we can still draw observations
on the common problematic areas encountered. Authoring flow is an important
concept and we must design our UX to minimize interruptions. In the case of
Twine, having to manually open and rename each passage, and then remember
the names to setup the links creates cognitive friction and can obstruct the au-
thoring experience. With inklewriter, the delay for elements to enter the author’s
view, while less of a factor, can still contribute to slowing down the authoring
process. We must consider our design decisions and prevent, or at least mitigate
potential blocks in disrupting the authoring flow. Effective state communication
ensures that the system and author are on the same page with regards to the
story state; if there is a misunderstanding of state, it could leave the author
guessing. Supporting the ability to undo and redo story state changes facilitates
and encourages experimentation, which is important with creative works. Twine
could better support experimentation if it better supported undoing, and had
less faults when reverting textual content. In inklewriter, information and errors



Contemporary Issues in Interactive Storytelling Authoring Systems 9

(a) (b)

Fig. 3: A segment of Life is Strange written in (a) inklewriter and (b) Twine 2.

being conveyed in the same visual manner result in possible confusion for the
author as to the current state of the story, making it difficult to differentiate
mistakes from information. In a similar manner, we must strive to maintain the
drafting process than an author expects by avoiding things that disrupt editing
expectations. For instance, inklewriter’s graph system at first appears as an al-
ternative editing method, but is actually a static preview of the story state and
connectedness.

3 Novella

We have taken the new game-centric model of interactive narrative from our
previous work [18] and implemented it alongside an accompanying standalone
authoring tool prototype. This model focuses on game-specific narrative struc-
ture, but can readily represent traditional interactive fiction also. The authoring
tool incorporates the UX lessons we have learned from this analysis, and repre-
sents a first prototype towards solving the challenges we have identified. Fig. 4
demonstrates an example of the editing interface.

Our standalone tool primarily incorporates a graph-based paradigm, but also
includes elements of both form and text-based solutions. The majority of the
authoring is done through the central node-line graph. This was chosen as we
felt that graphs provide the most accessible visualization of connectedness. Each
node represents some form of narrative element from our model, such as describ-
ing discourse, providing context, and so on. Content of nodes is edited through
detachable popover windows, reducing UI clutter. Variables and Entities are
edited through separate interfaces accessible from the toolbar.



10 D. Green et al.

Fig. 4: Life is Strange story segment created in our own tool, Novella.

We should always strive to present our stories and their states as clearly as
possible to reduce cognitive friction of authors and help them focus on writing
rather than figuring out the system. Providing visual aids and reducing task
complexity can contribute to maintaining author focus.

In Novella’s graph system, each node has a distinctly colored flag in the
top-left corner that represents the abstracted data from the internal model. For
instance, dialog nodes are always colored teal, and delivery nodes orange (Fig. 5).
These colors are used consistently throughout the interface which eases recog-
nition at a glance of which kind of data is being handled thanks to the Law of
Similarity. These flags follow the Serial Position Effect, where extremities are
often more likely to be observed and remembered. Similarly, the green trian-
gle in the top-right, representing that a given node is an entry point, likewise
implements this law.

If nodes have outgoing links, we append a disconnected floating pinboard
which appears grouped with the node due to the Law of Proximity (Fig. 5b).
Pinboards contain pins representing each outgoing link. Pins are bordered to
separate them from their neighbors, which is especially important for branch
links, which have two pins (true/false). The pins and their curves are colored
based on the type of node they connect to. This means that the type of node
that follows can be rapidly identified at a glance based on the color of the pin
and its curve. In dense graphs where curves are difficult to follow, this becomes
especially useful. To further reduce complexity following curves in dense graphs,
selecting a node will highlight all of its pins and curves to make them stand out



Contemporary Issues in Interactive Storytelling Authoring Systems 11

c

d

a

b

Fig. 5: Some Novella node UX features. a) A selected node. b) A pinboard of
outgoing links. c) An incomplete link. d) An unnamed node.

from the rest of the graph. These efforts are to aid the author’s identification of
the story state.

It is also important to convey and highlight incomplete states to authors. In
Novella, we use the Zeigarnik Effect to remind users of incomplete links without a
destination by not coloring in the pins (Fig. 5c). As connected pins are filled and
brightly colored, those that are not filled in stand out. Similarly, we distinguish
nodes that are not named with placeholder text that is lighter than the normal
font to signal an incomplete state (Fig. 5d), although node names are optional
in Novella.

Challenges

To ensure Novella’s accessibility and longevity, the project’s complete source
code is available on GitHub6. Releases will be subsequently available, accompa-
nying the source code as development continues.

Steps have been taken to reduce the interruption of authoring flow and to
diminish UI clutter to ensure that writers can maintain focus on authoring rather
than UI management without hindrance. Content for nodes is edited in popovers
that can be temporarily opened and easily dismissed without using too much
screen real-estate, which contributes to a reduction in UI clutter. Popovers can
be optionally detached so that their presence is maintained if the author prefers.
Animations in the interface, in particular with popovers, have been scoped to
reasonable times as to not disrupt the authoring experience. Hiding the Story
Preview, Variable Editor, and Entity Editor windows, which are lesser used than
the primary graph editing interface, also helps to reduce UI clutter.

Communication of story state has been crafted to better inform the author in
various ways, many of which we have discussed above. Additionally, Novella has
a trashing feature akin to an operating system’s recycle bin. Most content within

6 https://github.com/KasumiL5x/novella

https://github.com/KasumiL5x/novella


12 D. Green et al.

the interface can be trashed before it is deleted. When items are trashed, they
appear a color that is consistent with disabled UI elements, and most interactions
are not available. This allows for visualization of removal without committing
such changes instantly, and therefore the state communication must be clear.

The creative process an author takes is not linear; stories are not entered
line-by-line without mistake and experimentation is integral to the authoring
experience, especially with interactive storytelling where choices matter. To re-
duce cognitive friction and help authors maintain focus on writing, nodes need
not be named as they do in Twine, but instead rely on unique identifiers hidden
from the author. This means that nodes can be rapidly created, edited, and con-
nected without having to manually book-keep the names of nodes. Additionally,
undoing of actions is widely supported throughout our system, which helps to
facilitate experimental works. Without such a feature, authors would have to
rely on backups or even short-term memory, which would significantly limit and
disrupt the authoring workflow and hinder experimenting.

4 Conclusion & Future Work

In this paper we have presented a categorized taxonomy of authoring tools for
interactive narrative. We also identified methods of delivery as well as various
interface design paradigms, and discussed the effect they have on the accessi-
bility and UX of authoring tools. We then detailed at length challenges at the
interactive fiction authoring tools research community faces, accompanied by an
in-depth experiment. Concluding, we briefly presented our own authoring tool,
Novella, and explained how the UX lessons we had learned were implemented in
its interface design, and how it approaches the challenges we had identified.

In future work, we intend to further explore detailed analysis of the existing
corpus of authoring tools to verify the observations made in this paper. Our
own authoring tool will continue to be refined through further development and
usability experiments.



Contemporary Issues in Interactive Storytelling Authoring Systems 13

References

1. HyperCard. Apple Computer, Inc. (1987)
2. Storyspace. Eastgate Systems, Inc. (1987)
3. Genarrator. Genarrator (2015), www.genarrator.org
4. articy:draft 3. articy Software GmbH & Co. KG (2017), www.nevigo.com
5. Fungus. Snozbot (2017), www.fungusgames.com
6. Inform 7. Community (2018), www.inform7.com
7. inklewriter. inkle Ltd. (2018), www.inklestudios.com
8. Quest. Community (2018), www.textadventures.co.uk
9. Ren’Py. Community (2018), www.renpy.org

10. Squiffy. Community (2018), www.textadventures.co.uk
11. Twine. Community (2018), www.twinery.org
12. Unity. Unity Technologies (2018), www.unity3d.com
13. Baio, A., McHatton, C.: Playfic (2018), www.playfic.com
14. Bernstein, M.: Collage, composites, construction. In: Proceedings of the fourteenth

ACM conference on Hypertext and hypermedia. pp. 122–123. ACM (2003)
15. Cavazza, M., Pizzi, D., Charles, F., Vogt, T., André, E.: Emotional input for

character-based interactive storytelling. In: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1. pp. 313–
320. International Foundation for Autonomous Agents and Multiagent Systems
(2009)

16. Donikian, S., Portugal, J.N.: Writing interactive fiction scenarii with DraMachina.
In: Technologies for Interactive Digital Storytelling and Entertainment. pp. 101–
112. Lecture Notes in Computer Science, Springer (2004)

17. Glock, F., Junker, A., Kraus, M., Lehrian, C., Schäfer, A., Hoffmann, S., Spierling,
U.: ”office brawl”: A conversational storytelling game and its creation process.
In: Proceedings of the 8th International Conference on Advances in Computer
Entertainment Technology. pp. 88:1–88:2. ACE ’11, ACM (2011)

18. Green, D., Hargood, C., Charles, F., Jones, A.: Novella: A proposition for game-
based storytelling. In: Narrative and Hypertext 2018. ACM (July 2018)

19. Guarneri, A., Ripamonti, L.A., Tissoni, F., Trubian, M., Maggiorini, D., Gadia, D.:
GHOST: A GHOst STory-writer. In: Proceedings of the 12th Biannual Conference
on Italian SIGCHI Chapter. pp. 24:1–24:9. CHItaly ’17, ACM (2017)

20. Göbel, S., Salvatore, L., Konrad, R.: StoryTec: A digital storytelling platform for
the authoring and experiencing of interactive and non-linear stories. In: 2008 Inter-
national Conference on Automated Solutions for Cross Media Content and Multi-
Channel Distribution. pp. 103–110 (2008)

21. Göbel, S., Schneider, O., Iurgel, I., Feix, A., Knöpfle, C., Rettig, A.: Virtual human:
Storytelling and computer graphics for a virtual human platform. In: Technologies
for Interactive Digital Storytelling and Entertainment. pp. 79–88. Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg (2004)

22. Hargood, C., Weal, M.J., Millard, D.E.: The storyplaces platform: Building a web-
based locative hypertext system. In: Proceedings of the 29th ACM Conference on
Hypertext and Social Media. HT ’18, ACM (2018)

23. Kim, S., Moon, S., Han, S., Chan, J.: Programming the story: Interactive story-
telling system. Informatica 35(2) (2011)

24. Koenitz, H.: Extensible tools for practical experiments in IDN: The advanced
stories authoring and presentation system. In: Proceedings of the 4th Interna-
tional Conference on Interactive Digital Storytelling. pp. 79–84. ICIDS’11, Springer
(2011)

www.genarrator.org
www.nevigo.com
www.fungusgames.com
www.inform7.com
www.inklestudios.com
www.textadventures.co.uk
www.renpy.org
www.textadventures.co.uk
www.twinery.org
www.unity3d.com
www.playfic.com


14 D. Green et al.

25. Kriegel, M., Aylett, R.: An authoring tool for an emergent narrative storytelling
system. In: AAAI Fall, Symposium on Intelligent Narrative Technologies (2007)

26. Leinonen, J., Munroe, J.: TextureWriter (2018), www.texturewriter.com
27. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems. pp.
152–158. CHI ’94, ACM (1994)

28. Poulakos, S., Kapadia, M., Schüpfer, A., Zünd, F., Sumner, R.W., Gross, M.:
Towards an accessible interface for story world building. In: Eleventh Artificial
Intelligence and Interactive Digital Entertainment Conference (2015)

29. Roberts, M.: TADS (2013), www.tads.org
30. Thue, D., Bulitko, V., Spetch, M., Wasylishen, E.: Interactive storytelling: A player

modelling approach. In: Proceedings of the Third AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment. pp. 43–48. AIIDE’07, AAAI
Press (2007)

31. Ursu, M.F., Cook, J.J., Zsombori, V., Kegel, I.: A genre-independent approach to
producing interactive screen media narratives (2007)

32. Zünd, F., Poulakos, S., Kapadia, M., Sumner, R.W.: Story version control and
graphical visualization for collaborative story authoring. In: Proceedings of the
14th European Conference on Visual Media Production (CVMP 2017). pp. 10:1–
10:10. CVMP 2017, ACM (2017)

www.texturewriter.com
www.tads.org

	Contemporary Issues in Interactive Storytelling Authoring Systems

