
Bournemouth University

Towards Effective Live Cloud
Migration on Public Cloud IaaS

by

Ibrahim Ejdayid A.Mansour

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computing at Bournemouth University

November 2018

University Web Site URL Here (include http://)
imansour@bournemouth.ac.uk
Department or School Web Site URL Here (include http://)

”Success is getting what you want, Happiness is wanting what you get”

Abstract
Cloud computing allows users to access shared, online computing resources. However,
providers often offer their own proprietary applications, APIs and infrastructures, re-
sulting in a heterogeneous cloud environment. This environment makes it difficult for
users to change cloud service providers and to explore capabilities to support the au-
tomated migration from one provider to another. Many standards bodies (IEEE, NIST,
DMTF and SNIA), industry (middleware) and academia have been pursuing standards
and approaches to reduce the impact of vendor lock-in.

Cloud providers offer their Infrastructure as a Service (IaaS) based on virtualization to
enable multi-tenant and isolated environments for users. Because, each provider has its
own proprietary virtual machine (VM) manager, called the hypervisor, VMs are usually
tightly coupled to the underlying hardware, thus hindering live migration of VMs to
different providers. A number of user-centric approaches have been proposed from
both academia and industry to solve this coupling issue. However, these approaches
suffer limitations in terms of flexibility (decoupling VMs from underlying hardware),
performance (migration downtime) and security (secure live migration).

These limitations are identified using our live cloud migration criteria which are rep-
resented by flexibility, performance and security. These criteria are not only used to
point out the gap in the previous approaches, but are also used to design our live cloud
migration approach, LivCloud. This approach aims to live migration of VMs across
various cloud IaaS with minimal migration downtime, with no extra cost and without
user’s intervention and awareness. This aim has been achieved by addressing differ-
ent gaps identified in the three criteria: the flexibility gap is improved by considering
a better virtualization platform to support a wider hardware range, supporting various
operating system and taking into account the migrated VMs’ hardware specifications
and layout; the performance gap is enhanced by improving the network connectivity,
providing extra resources required by the migrated VMs during the migration and pre-
dicting any potential failure to roll back the system to its initial state if required; finally,
the security gap is clearly tackled by protecting the migration channel using encryption
and authentication.

This thesis presents: (i) A clear identification of the key challenges and factors to suc-
cessfully perform live migration of VMs across different cloud IaaS. This has resulted
in a rigorous comparative analysis of the literature on live migration of VMs at the
cloud IaaS based on our live cloud migration criteria; (ii) A rigorous analysis to distil
the limitations of existing live cloud migration approaches and how to design efficient
live cloud migration using up-to-date technologies. This has led to design a novel live
cloud migration approach, called LivCloud, that overcomes key limitations in currently
available approaches, is designed into two stages, the basic design stage and the en-
hancement of the basic design stage; (iii) A systematic approach to assess LivCloud on

different public cloud IaaS. This has been achieved by using a combination of up-to–
date technologies to build LivCloud taking the interoperability challenge into account,
implementing and discussing the results of the basic design stage on Amazon IaaS, and
implementing both stages of the approach on Packet bare metal cloud.

To sum up, the thesis introduces a live cloud migration approach that is systematically
designed and evaluated on uncontrolled environments, Amazon and Packet bare metal.
In contrast to other approaches, it clearly highlights how to perform and secure the
migration between our local network and the mentioned environments.

Acknowledgements

This PhD thesis is the supervision of Prof. Hamid Bouchachia. My time at Bournemouth

University has been influenced and guided by a number of people to whom I am deeply

indebted. Without their help, friendship and support, this thesis would likely never have

seen the light of day.

I would like to thank my thesis supervisor, Prof. Abdelhamid Bouchachia for his in-

sights and guidance. I feel most fortunate to have had the opportunity to receive their

support. My supervisor, Prof. Abdelhamid Bouchachia has had the greatest impact on

my academic development during my thesis. He taught me how to do research, how to

ask the right questions and how to answer them, how to have a clear vision and strategy.

I was also indeed fortunate to have Dr. Kendra Cooper as my second supervisor for

limited time. I feel exceedingly privileged to have had her guidance and I owe her a

great many thanks.

My deepest gratitude and appreciation are reserved for my wife, my brother, Ramadan

Mansour and my daughters, Hiba, Arwa, Yara and Mais. Without their love, consistent

support and patience, I would never have been able to produce this thesis. I dedicate

this thesis to them. Thanks again to my brother and his endless support.

iv

Contents

Abstract ii

Acknowledgements iv

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1
1.1 Background . 2
1.2 Cloud interoperability benefits and issues 6
1.3 Cloud interoperability approaches . 7

1.3.1 Provider-centric approaches 8
1.3.2 User-centric approaches . 8

1.4 Research questions . 8
1.5 Contributions . 9
1.6 Structure of the thesis . 10
1.7 List of publications . 11

2 Literature review and live cloud migration analysis 13
2.1 Approaches to live cloud migration . 13

2.1.1 A proposal for interconnecting the clouds (Supercloud project) . 19
2.2 Live cloud migration criteria . 21
2.3 Analysis of three related approaches 22

2.3.1 Supercloud: . 23
2.3.2 Kangaroo: . 24
2.3.3 HVX: . 25
2.3.4 Summary of analysis results 26

2.4 Live migration in technologies related to cloud computing 27
2.4.1 Containers . 27
2.4.2 Fog computing . 28

v

Contents vi

2.4.3 Software Defined cloud computing 30
2.5 Conclusion . 31

3 LivCloud Architecture 32
3.1 Introduction . 32
3.2 Related work . 34

3.2.1 Paravirtualization . 34
3.2.2 Binary translation . 35

3.3 LivCloud architecture . 35
3.3.1 The basic design stage: nested virtualization and network con-

nectivity . 37
3.3.2 The enhancement of the basic design stage: performance, flex-

ibility and security . 38
3.4 Preliminary experimental evaluation 40

3.4.1 Experiment setup . 40
3.4.2 Experiment motivation . 41
3.4.3 Experiment results discussion 41

3.5 Conclusion . 43

4 The basic design of LivCloud on Amazon EC2 44
4.1 Introduction . 45
4.2 LivCloud architecture on Amazon EC2 46
4.3 Implementing LivCloud on Amazon EC2 47

4.3.1 Envision Amazon Ubuntu instance as 32 bit operating system . 47
4.3.2 Linux bridge issue . 49
4.3.3 Enabling nested virtualization on C4 instance using KVM and

VMware workstation . 51
4.4 Configuring HQEMU to implement LivCloud on EC2 52

4.4.1 Experiment setup . 53
4.5 Experiment results and discussion . 54

4.5.1 Live migration with shared disk 55
4.5.2 Live migration without shared disk 55

4.6 Possible solutions to enable nested virtualization on EC2 56
4.6.1 Recompiling Amazon C4 Linux instance’s kernel 56
4.6.2 Compiling Bareflank on Amazon EC2 57
4.6.3 Running a C script on Amazon EC2 58

4.7 Conclusion . 58

5 The basic design of LivCloud on Packet 59
5.1 Introduction . 60
5.2 Related work . 61
5.3 LivCloud architecture on Packet . 61
5.4 Experimental design . 63

5.4.1 Experimental setup . 64
5.5 Experimental results . 65

Contents vii

5.5.1 Achieving flexibility criteria F1, F2 & F3 65
5.5.2 Achieving performance criterion, P1 66
5.5.3 Achieving security criteria, S1 & S2 68
5.5.4 Discussion . 69

5.6 Conclusion . 71

6 The enhancement of the basic design on Packet 72
6.1 Introduction . 73
6.2 The final configurations of LivCloud 74
6.3 Live cloud migration scenarios . 76

6.3.1 The general experimental setup 76
6.3.2 Scenario 1: . 79
6.3.3 Scenario 2: . 81
6.3.4 Simulation results . 83

6.4 Conclusion . 85

7 Conclusions and Future Work 87
7.1 Contributions . 87
7.2 Main outcome . 89
7.3 Future work . 90

7.3.1 The limitations of scenarios 90
7.3.2 Future scenario 1: . 91
7.3.3 Future scenario 2: . 92

A 96
A.1 C4 instance specifications . 96
A.2 Networking . 98
A.3 HQEMU configuration issues . 100

B 102
B.1 OpenSwan configuration on Packet . 102
B.2 Screenshots of live migration attempts 103

C 105
C.1 IPtables configurations on Cloud-Host 105

Bibliography 107

List of Figures

1.1 A taxonomy on cloud interoperability approaches [1] 7

2.1 Interconnected cloud stack architecture [2] 20
2.2 Supercloud architecture [2] . 21
2.3 Container and VMs architecture [3] 28
2.4 Fog computing architecture [4] . 29
2.5 Software-defined cloud computing architecture [5] 31

3.1 Paravirtualization Architecture [6] . 35
3.2 Binary translation Architecture [6] . 35
3.3 A reference Architecture of live cloud migration 36
3.4 LivCloud Architecture . 37
3.5 Virtual Manager’s connection to all hosts 40
3.6 LivCloud’s connection to Amazon . 41
3.7 Results statistics . 42

4.1 LivCloud’s implementation on Amazon EC2 46
4.2 KVM warning message on Amazon instance 48
4.3 Live migration between the two Ubuntu systems 48
4.4 32-bit Ubuntu desktop with VT-x enabled 49
4.5 32-bit Ubuntu desktop with no VT-x 49
4.6 Linux bridge ideal configurations of on Amazon (Cloud host) 50
4.7 The configurations on C4 at this development stage 52
4.8 EPT message on Amazon . 52
4.9 Virtual manager’s connection to both hosts 53
4.10 Latency comparison between Internet connection and IPsec VPN 54
4.11 Migrated Ubuntu VM’s kernel panic 55
4.12 Migrated Ubuntu VM’s halt state . 55
4.13 Hardware-assisted virtualization features disabled on EC2 56
4.14 Recompiling the EC2 instance’s kernel 57
4.15 The output of running the script on C4 instance 58

5.1 The basic design architecture of LivCloud [7] 62
5.2 The basic design implementation on Packet 63
5.3 Virtual manager connections to both hosts 64
5.4 NFS server connections to both hosts 66
5.5 Securing the migration channel via IPsec and SSH 69

viii

List of Figures ix

5.6 A direct ping latency & IPsec VPN latency 69
5.7 Results statistics . 70

6.1 The final configuratrion of LivCloud [7] 76
6.2 The enhancement implementation on Packet 77
6.3 A direct ping latency & IPsec VPN latency 80
6.4 The enhancement implementation on Packet using OpenVPN 82
6.5 The connection between OFM and ODL [8] 82
6.6 Simulation outcome . 84

7.1 The potential solution on Packet . 91
7.2 LivCloud future architecture [9] . 93
7.3 The future implementation of LivCloud 94

A.1 C4 instance specifications . 98
A.2 Network configuration of the hosted instance, C4 99
A.3 Network configuration of a migrated VM, XP on C4 instance 100
A.4 The Linux commands to recompile the kernel prior to HQEMU config-

uration . 101

B.1 Live migration of Ubuntu VM at various points of time 104

List of Tables

2.1 Summary of various related work . 19
2.2 Live cloud migration criteria [1] . 23
2.3 Summary of analysis results . 27

4.1 Comparison between various Ubuntu architectures 50
4.2 Amazon C4 instance’s specifications 51

5.1 Migrated VMs’ specifications and DNS names 65

6.1 Migrated VMs’ specifications and DNS names 79
6.2 Summary of analysis results . 85

7.1 Summary of analysis results . 88

x

Abbreviations

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

CaaS Container as a Service

VMM Virtual Machine Manager

KVM Kernal Virtual Machine

QEMU Quick Emulator

LAN Local Area Network

VPN Virtual Private Network

API Application Programming Interface

AWS Amazon Web Services

EC2 Elastic Compute Cloud

MPLS MultiProtocol Label Switching

SDN Software Defined Networking

NFV Netwotking Function Virtualization

NFS Network File System

OvS Open vSwitch

ODL OpenDayLight

SDNi SDN controller interconnection

OFM OpenFlow Manager

LISP Locator Identifier Separation Protocol

EID Endpoint IDendtifier

RLOC Routing LOCators

OOR Open Overlay Router

UDT UDP-based Data Transfer

SLA Service Level Agreement

xi

Abbreviations xii

VPC Virtual Private Cloud

EPT Extended Page Table

VT-x Virtual Technology extension

AMI Amazon Machine Image

EBS Elastic Block Storage

LDAP Lightweight Directory Access Protocol

xTR ingress/egress Tunnel Routers

REST REpresentational State Transfer

MR Map-Resolver

MS Map-Server

GUI Graphical User Interface

D-H Diffie-Hellman

AES Advanced Encryption Standard

RTT Round Trip Time

DBT Dynamic Binary Translation

APT Advanced Persistent Threats

NIC Network Interface Card

ARP Adress Resolution Protocol

Dedicated to my parents, my beloved wife, lovely daughters
and my supportive brother

xiii

Chapter 1

Introduction

There is a growing trend in adopting cloud computing services. The IDC’s (Inter-

national Data Corporation) Worldwide Semiannual Public Cloud Services Spending

Guide reported that cloud services were predicted to increase from $70 billion in 2015

to more than $203 billion in 2020. This significant increase is about sevenfold of over-

all IT spending growth [10]. In 2017, RightScale conducted cloud computing trends

survey in which 1,002 IT professionals at large and small enterprises were interviewed

about their adoption of cloud infrastructure and related technologies [11]. 85 percent of

enterprises deploy multi-cloud services, up from 82 percent in 2016. However, private

cloud adoption decreased from 77 percent to 72 percent as enterprises focus more on

public cloud services. Despite the notable upwards trend, there are still concerns about

cloud computing security, interoperability and managing cost [11, 12]. However, the

security concerns fell from 29 to 25 percent in comparison with 2016.

In 2013, Amazons US-EAST availability region remained unavailable for 59 minutes,

resulting in users in U.S.A. and Canada not accessing Amazon.com and Audible.com.

The reported loss was about $1,100 in net sales per second [13]. Moreover, Google

reported that a 500ms delay in website page loading caused a 20% drop in traffic and

revenue [14]. In 2018, Lloyd’s of London and AIR Worldwide provides report and

estimates on the losses from a major cloud services outage. According to this report, a

cyber attack impacted the operations of one of the top three public cloud providers in

the U.S. for three to six days. The total losses are estimated up to $19 billion. Only $1.1

to $3.5 billion can be insured, leaving organizations left to cover the rest of the costs

[15].

1

2

If customer services had been able to rapidly become available by migrating to another

provider, then the consequences would have been less disastrous and resources could

have been saved. There are a number of advantages offered by live migration [16]:

1. High flexibility to change service providers, thereby, alleviating vendor lock-in.

2. Low-price services offered by certain providers.

3. Offering service continuity in case of ceasing due to various reasons including

natural disasters.

4. Reducing latency by connecting cloud users to the nearest datacentre, regardless

of the provider.

5. Choice to process sensitive data on a private trusted cloud, while processing less

sensitive on a public cloud.

6. Borrowing resources from other providers in case of over-utilization or limited

resources at the current provider.

In order to introduce the challenges of live migration, we organize the rest of this chapter

as follows. Section 1.1 is a background on cloud computing IaaS and its related issues.

Section 1.2 introduces cloud computing interoperability issues and benefits. Section 1.3

reviews the possible solutions to achieve cloud interoperability. Section 1.4 presents the

aim and research questions of the thesis and it shows how the thesis reflects on these

research questions. Section 1.5 discusses the major contributions of the thesis. The

structure of the thesis is presented in Section. 1.6. A list of the publications on which

the thesis is based is shown in Section. 1.7.

1.1 Background

Live cloud migration of VMs at IaaS is an active research area [10], working to over-

come the lack of cloud interoperability among providers. Zhang et al. [12] conducted

a survey on the lack of interoperability within the cloud at the IaaS level, open source

cloud projects (i.e., OpenStack and OpenNebula), cloud standards, and a user-centric

solution called Xen-Blanket [17]. The survey presented taxonomy of cloud infrastruc-

ture interoperability. However, the survey did not include any live cloud migration crite-

ria at cloud infrastructure to assess previous live cloud migration approaches. Similarly,

3

Nadjaran et al. [16] conducted a broad survey on cloud interoperability for all levels, In-

frastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS) within the cloud and related open source projects (i.e. RESERVOIR, mOSAIC

and OpenStack [18]). However, the survey did not evaluate any user-centric approach

to facilitate interoperability or other approaches that could support live migration of

VMs and lacked some important references such as [19] related to Ubuntu OpenStack.

In 2015, OpenStack interoperability press announced that 32 companies signed up to

adhere to OIL guidelines. Moreover, being one of the widely deployed open source

cloud projects, OpenStack is supported by about 500 companies and 23,000 individuals

across over 150 countries [19].

Much work has been done to provide live migrations of VMs to and within the cloud

with minimum service interruption [20–22]. Live migration often requires the following

[23]: memory state transfer between anonymous hosts, access of VMs to the storage at

the destination host, without sharing storage among source and destination hosts; and

access of the VM to the host’s LAN at the destination without sharing the LAN. Virtual-

ization is the foundation of the cloud IaaS. It allows cloud users to exploit multi-tenant

resources (compute, network and storage) from a secure Cloud IaaS [21]. Virtualization

is the conversion of a physical machine to individual isolated spaces (VMs) that can be

used by multiple users as per their needs. The isolation and resources provision is pro-

vided by a hypervisor [24]. Nested virtualization runs a VM inside another VM. The

outer VM is run on the physical hardware, whereas the insider VM is run in the outer

VM [25].

Nested virtualization has been the main solution for separating VMs from underlying

hardware in both legacy system and cloud IaaS despite the fact that it is not enabled on

public cloud IaaS [17, 22, 26]. It was first proposed and refined in the 1970s [17] and

now has become available on most platforms such as VMware [27]. In the context of

this thesis, Citrix Xenserver [28] and VirtualBox hypervisors have been tested to evalu-

ate thier support of running nested virtualization, but both hypervisors failed to enable

a second virtualized layer. Public cloud IaaS is often described as a heterogeneous en-

vironment due to the fact that each cloud provider has their own hypervisor. Providers

such as Amazon EC2 and Rackspace use the hypervisor Xen; while Fractus and Google

Compute Engine rely on KVM. Windows Azure, on the other hand, uses the Microsoft

hypervisor, Hyper-V [2, 20].

Despite that many providers leverage the same hypervisors for virtualization (e.g. Google

and HP both use KVM), live cloud migration of VMs between those providers is still

4

challenging [20]. Every provider has been developing their own APIs and proprietary

features to their selected hypervisor. This has made it difficult for cloud users to live

migrate VMs to other providers - one aspect of vendor lock-in with substantial conse-

quences [16].

Security and interoperability are the main challenges to cloud computing [11, 12]. How-

ever, according to [10], there are other challenges to cloud computing, such as resource

management and scheduling, sustainability and usability. Despite the importance of

these challenges, they are out side the scope of this research.

The main focus of this research is on a number of challenges that have direct impact on

live cloud migration. They are as follows [10].

1. Heterogeneity and interconnected clouds

It is still challenging to design an independent cloud platform that integrates and

manages heterogeneity at all three levels, IaaS, PaaS and SaaS. Another challenge

is related to the development of application software and APIs that are compatible

with heterogeneous resources and that can be open-source and independent of

the underlying hardware. However, cloud platforms still deliver their services

independently. On the other hand, cloud interconnection is very demanding as it

is about interfacing various clouds to enable communication [29].

Although there are a number of standardization initiatives, the existing Cloud

services are heterogeneous and not standardized [16]. Among such initiatives,

Open Grid Forum’s (OGF), Open Cloud Computing Interface (OCCI), Storage

Networking Industry Association’s (SNIA) Cloud Data Management Interface

(CDMI), Distributed Management Task Force’s (DMTF) Cloud Infrastructure

Management Interface (CIMI), DMTF’s Open Virtualization Format (OVF), IEEE’s

InterCloud and National Institute of Standards and Technology’s (NIST) Feder-

ated Cloud [10, 16].

2. Security and privacy

They are among the major challenges in cloud computing in terms of securing the

providers’ as well as the users’ data and maintaining confidentiality, integrity and

availability. Today providers maintain confidentiality by encrypting data before

the storing process [10]. However, encryption affects the support of query evalu-

ation at the provider side. To address such issue, encrypted database designs al-

lowing SQL queries over encrypted data and indices associated with the encrypted

5

data are being developed [10, 30, 31]. There is another issue associated with con-

fidentiality of data when cloud-based applications are utilized (e.g., applications

for accurate social services, enhanced healthcare and discovering phishing) that

access data over various sources across multiple domains. A major challenge of

such applications is to preserve privacy, as data mining tools with across different

domains may expose more personal information than needed, therefore deterring

organizations to share their data [32]. Many approaches aiming to maintain data

confidentiality assume that any legitimate user, who has the decryption key, can

access the whole data. This assumption is not always correct because different

users have various level of authorization. As a result, better solutions are needed

to encrypt data according to their sensitivity [33].

In terms of integrity, various approaches including digital signatures and Provable

Data Possession allow discovering of unauthorized modifications of data stored

the cloud provider. Testing the integrity of stored data by authorized users is

only one aspect of integrity. When multiple writers and queries are performed

on data, this leads to change data dynamically which cause disruption to data in-

tegrity. A number of solutions have been investigated deploying authenticated

data structures (deterministic approaches) or insertion of integrity checks (prob-

abilistic approaches) [34] to maintain data integrity. Moreover, data security and

privacy remain a concern with rules and regulations being increasingly imposed

by different governments [35].

With respect to the availability, SLAs are predfined between the cloud provider

and the cloud user. However, advanced cyberattacks in the cloud represent a se-

rious breach that may compromise confidentiality, integrity and availability. The

Advanced Persistent Threats (APTs) are an emerging class of cyberattacks. They

are well-organized, technically-advanced, stealthy and persistent. Red October

and Flame are examples of APTs. It is estimated that there will be a 50% increase

of security budgets to avoid such a threat [36].

3. Data management

It is one of the key selling points of Cloud computing is offering reliable and elas-

tic storage. Also, cloud providers offer reliability and availability through mul-

tiple copies that are maintained transparently, along with disaster recovery with

storage that can be replicated in various regions. A number of storage abstrac-

tions are also offered to accommodate certain needs. File-based storage (Amazon

Simple Storage Service (S3), Azure File), block storage services (Azure Blob,

6

Amazon Elastic Block Store (EBS)) of a disk volume, and logical HDD (Hard

Disk Drive) and SSD (Solid-State Drive) disks that are attached to VMs are com-

mon examples. Network latencies and bandwidth between VMs, and from VM

to storage can be variable, causing bottlenecks in the local datacentres and across

WAN. Different approaches such as Software Defined Networking (SDN) and

Network Functions Virtualization (NFV) can provide better mechanisms to en-

hance the network and bandwidth issues [10].

4. Networking

cloud networking is quite complicated and modern cloud datacentres face similar

challenges to build the Internet due to their data capacity and the number of cloud

users. The virtualized environment of these centres is also provoking different

issues that have always existed within multi-tenant infrastructure. For example in

terms of scalability, VLANs (Virtual Local Area Network) are limited to 4,096

segments. Thus, the scale is limited to approximately 4,000 tenants. In terms of

IP address version 4, cloud providers such as Microsoft Azure reported that they

ran out of addresses. This means that cloud networking needs technologies that

offer high performance, robustness, reliability, scalability and security. Technolo-

gies such as SDN and NFV provide potential solutions of networking issues in

the cloud. They can maintain traffic engineering mechanisms within and across

different cloud providers’ networks [37].

1.2 Cloud interoperability benefits and issues

One of the greatest challenges facing longer-term adoption of cloud computing services

is interoperability, as this is necessary to provide cloud providers’ services such as cloud

federation, servers underutilization, maintenance and cease operations [13, 38]. To pro-

vide these services, live VMs migration is required within and between the clouds.

Cloud interoperability can be viewed as a multi-layered model, where every layer has

to interoperate with the next layer and with its counterpart in another provider. Cloud

interoperability at the Platform as a Service (PaaS) and Software as a Service (SaaS)

levels depends on the Infrastructure as a Service (IaaS) level. This indicates that inter-

operability at the IaaS level is of key importance [12].

Interoperability and portability have many aspects to a number of different components

in the cloud architecture, each of which needs to be considered in its own right. These

7

Figure. 1.1 A taxonomy on cloud interoperability approaches [1]

include standard interfaces, portable data formats and applications and international

standards for service quality and security. The transparent provision, management and

configuration of cross-site virtual networks to interconnect the on-premise cloud and

the external provider resources is still an important challenge that is slowing down the

full adoption of this technology [39]. Challenges in this area concern how to go beyond

the minimum common denominator of services when interoperating across providers

(and thus enabling richer Cloud applications); how to coordinate authorization, access,

and billing across providers; and how to apply inter-cloud solutions in the context of

Fog computing, IoT and other emerging trends [10].

1.3 Cloud interoperability approaches

Various approaches have been proposed to improve cloud interoperability for all the

three levels (IaaS, PaaS and SaaS) [1, 12, 16]. Figure 1.1 illustrates a taxonomy orga-

nized around provider-centric and user-centric approaches [16].

8

1.3.1 Provider-centric approaches

Provider-centric approaches rely on the provider’s agreement to adopt specific stan-

dards to achieve a specified level of interoperability. The development and widespread

adoption of a set of standards is a long term vision for the community to support cloud

federation, cloud bursting and hybrid clouds [16]. Cloud federation may be facilitated

through network gateways that connect public, private clouds and/or community clouds,

creating a hybrid cloud computing environment. Cloud bursting uses of a set of public

or private cloud-based services to augment and handle peaks in IT system requirements

at start-up or during runtime [40]. Hybrid clouds use of a combination of private and

public clouds [41].

1.3.2 User-centric approaches

As standardization efforts proceed, alternative user-centric approaches to achieve cloud

interoperability are being proposed to come up with more immediate and practical solu-

tions. User-centric approaches do not rely on a provider’s (standards based) agreement

because cloud users either rely on their own in-house IT personnel or a third party (cloud

broker) to achieve interoperability. There are two main possibilities. The first is a cloud

broker, which provides a single interface through which users can access and manage

cloud services across multiple providers [42]. The second is a multi-cloud, in which

users may develop a separate layer to handle heterogeneity in cloud environments [12].

For example, a user may require deploying an adapter layer to communicate with dif-

ferent APIs or a cloud application may need an abstraction library, such as jcloud and

LibCloud libraries [16].

1.4 Research questions

This research investigates effective live cloud migration for VMs at cloud IaaS with

minimal service interruption. In particular, it attempts to address the following research

questions:

Q1: What are the key challenges and factors to successfully perform live migration of

VMs across different cloud IaaS?

9

This research addresses Q1 by introducing the live migration benefits to the cloud users

and how cloud interoperability helps reduce the impact of live migration challenges,

such as heterogeneous virtualization and networking complexity. Moreover, the key

factors are clearly identified as the live cloud migration criteria to assess the effective-

ness of any live cloud migration approach.

Q2: What are the limitations of existing live cloud migration approaches and how to

design efficient live cloud migration using up-to-date technologies?

The research addresses Q2 by analysing previous live cloud migration approaches based

on live cloud migration criteria to define the limitations of these approaches. Further-

more, a novel live cloud migration approach, LivCloud is designed based on these cri-

teria to address the limitations resulted from the analysis.

Q3: Given a new live migration approach, how can it be assessed on different public

cloud IaaS?

The research addresses Q3 by implementing and configuring LivCloud on two differ-

ent cloud IaaS, Amazon EC2 and Packet bare metal cloud. Also, benchmark tools are

carefully selected to help the assessment of approach’s network throughput, network

latency, CPU overhead and disk I/O performance.

1.5 Contributions

The major contribution of this research is design and develop a novel live cloud mi-

gration approach that live migrates VMs across various public cloud IaaS. Furthermore,

answering the research questions helps highlight the other research contributions, which

are distilled as follows.

1. Answering the first research question by identifing key factors to maintain cloud

interoperability and benefits that are maintained from achieving cloud interoper-

ability. Also, designing live cloud migration criteria at cloud IaaS.

2. These criteria have been effectively materialized to assess previously proposed

live migration approaches. The assessment results have significantly contributed

10

to designing a fully functional prototype, LivCloud. This is the answer of the sec-

ond research question. LivCloud is implemented into two stages. Firstly, the basic

design which shows the two fundamental features to establish the live migration

process, nested virtualization and network connectivity. Secondly, the enhance-

ment of the basic design guarantees improving network throughput, maintaining

existing VMs connections, reserving required migration resources and securing

the migration process.

LivCloud is the live cloud migration approach that:

• is flexible, supporting multiple Operating Systems (OS) in comparison to

current solutions (e.g., [20, 21]).

• provides rapid response time performance in comparison to current solu-

tions (e.g., [20–22]).

• provides secured, private migration (e.g., Amazon VPC VPN IPsec peering

& OpenSwan VPN IPsec [43, 44]).

3. The implementation of LivCloud in a test environment using open source appli-

cations and protocols is answering the third research question. Some of these

technologies have never been used in this context, such as Cisco OpenFlow Man-

ager and Zodiac OpenFlow Switch. Also, open-source technologies should help

introducing LivCloud as a user-friendly system in terms of configuring and nav-

igating the system’s components. Moreover, the approach has been empirically

evaluated in the test environment using a comprehensive collection of studies.

This evaluation process provides a collection of repeatable benchmark migration

tests, results for the community to adopt.

1.6 Structure of the thesis

The structure of this thesis is as follows:

• Chapter 2 summarises the related work on live migration of VMs at both legacy

and public cloud IaaS. It highlights the live cloud migration criteria that serve as

a reference for requirements of live migration. The criteria are flexibility, perfor-

mance and security.

11

• Chapter 3 introduces LivCloud guided by the set of requirements introduced in

Chapter 2. Technologies and applications that are needed to fulfil the require-

ments have been clarified in this chapter. Also, it illustrates in particular LivCloud

to enable live migration of VMs across various hypervisors within LAN environ-

ment. Moreover, an evaluation study is proposed to highlight the effectiveness of

LivCloud design.

• Chapter 4 discuses the implementation of LivCloud basic design stage on Ama-

zon EC2 instances, m3.2xlarge and c4.2xlarge in particular. Furthermore, it high-

lights alternative solutions to successfully implement this stage.

• Chapter 5 shows the results of testing the basic stage on Packet bare metal cloud

using Linux Bridge, KVM networking NAT and OpenSwan VPN IPsec. Packet

has an advantage over Amazon, which is nested virtualization enabled by default.

• Chapter 6 discuses the implementation of LivCloud enhancement stage on Packet.

This chapter evaluates this stage using two different scenarios. Both scenarios ar-

chitecture are explained in more detail in this chapter.

• Chapter 7 concludes this thesis and proposes a better scenario to implement a

live cloud migration approach without any downtime and better flexibility, per-

formance and security.

1.7 List of publications

A number of publications have emerged from this research work with some of them still

under review.

• The following publication is based on Chapter 2:

– Ibrahim Mansour, Reza Sahandi, Kendra Cooper and Adrian Warman. 2016.

Interoperability in the Heterogeneous Cloud Environment: A Survey of Re-

cent User-centric Approaches. In proceedings of the ACM International

Conference on Internet of things and Cloud Computing (ICC2016).

• The following publication is based on Chapter 3:

12

– Ibrahim Mansour, Kendra Cooper and Hamid Bouchachia. ”Effective Live

Cloud Migration”. In proceedings of The IEEE 4th International Conference

on Future Internet of Things and Cloud (FiCloud 2016).

• The following publication is based on Chapter 4:

– Ibrahim Mansour, Hamid Bouchachia and Kendra Cooper. ”Exploring Live

Cloud Migration On Amazon EC2”. In proceedings of The IEEE 5th In-

ternational Conference on Future Internet of Things and Cloud (FiCloud

2017).

• The following publication is based on Chapter 5:

– Ibrahim Mansour and Hamid Bouchachia. ”Interoperability and Live Mi-

gration of VMs across Heterogeneous Cloud IaaS”. Journal of Network and

Computer Applications, Elsevier. Under review

• The following publication is based on Chapter 6:

– Ibrahim Mansour and Hamid Bouchachia. ”Enhancement of LivCloud for

live cloud migration”. In proceedings of The IEEE/ACM 11th International

Conference on Utility and Cloud Computing (UCC 2018). Accepted

Chapter 2

Literature review and live cloud
migration analysis

This chapter summarises previous five cloud migration approaches, explains the design

of live cloud criteria based on the related work, analyses certain popular approaches

based on these criteria. This analysis helps design our live cloud migration approach,

LivCloud [7]. Furthermore, a number of technologies related to cloud computing is

discussed in the context of live cloud migration.

This chapter fulfils and answers the second research question that aims to state the

limitations of the existing approaches. The organization of this chapter is as follows.

Section 2.1 provides an elaborated description of the prominent live cloud migration

approaches. Section 2.2 explains the design of live cloud migration criteria. Section 2.3

introduces an analysis of certain popular live cloud migration approaches based on these

criteria. Section 2.4 discuses live migration in technologies related to cloud computing,

containers, fog computing and Software Defined Networking. Finally, Section 2.5 con-

cludes the chapter.

2.1 Approaches to live cloud migration

The literature review reveals that there are a number of approaches that aim to achieve

live cloud migration at public cloud IaaS. In the following, we discus some of them to

give a clearer insight.

13

14

In [20], a user-centric approach is introduced which is implemented on top of a num-

ber of cloud providers, including Amazon EC2, Rackspace and HP Cloud. It uses nested

virtualization (Xen-Blanket [17] that overcomes cloud heterogeneity. Xen-Blanket lever-

ages the paravirtualization (PV-on-HVM) drivers on Xen. However, Xen paravirtualiza-

tion cannot run unmodified operating systems (i.e., Windows) [17]. Paravirtualization

is an enhancement of virtualization technology in which a guest OS is recompiled prior

to installation inside a virtual machine. Paravirtualization allows an interface of various

hardware drivers that can differ somewhat from that of the underlying hardware to be

exposed to the virtual machine [45].

The approach achieves relatively acceptable performance, about 1.4 seconds migration

downtime [17]. The downtime is the time when services hosted on a VM become un-

avaliable as the VM is being moved to a new physical host [46]. Disk I/O drivers

overhead caused by Xen-Blanket reached 30%, which may affect the physical machine

and the other VMs residing on that machine [47]. Also, a security mechanism is not

used during the process, so it opens the system to security attacks. As a result, the

transmission channel is insecure and data flow is vulnerable to attacks, such as, ARP/

DHCP/DNS poising and IP/route hijack [48]. The approach relies on Xen as its nested

virtualization platform, which has a number of issues. The Xensploit [48] tool is de-

veloped to execute man-in-the-middle attack during VM migration. It can modify the

sshd memory segment to bypass sshd authentication. With such a tool, VM might be

accessed and the system confidentiality and integrity may be compromised.

Another user-centric approach in [21] is implemented on OpenStack-based infrastruc-

ture. It uses a virtual switch and a Linux container (LXC) to live migrate nested VMs

within the cloud. The approach cannot run on a variety of OS (i.e., Windows) because

the containers (LXC) are Linux-based [49]. The study claims migrating a running ap-

plication between the approach’s infrastructure and Amazon within a few minutes and

without any downtime [21]. The nested VMs in the study have a 3.2 GB virtual disk,

which is migrated using OpenStack block migration. The disk size is not practical and

small to run full Linux or Windows operating systems [7].

The last user-centric approach is presented in [22]. It is HVX hypervisor that can run

unmodified operating systems (i.e., Windows). It is similar to VMware because both

virtualization platforms use binary translation. Binary translation transfers the VM in-

structions directly to the underlying system and dynamically converts them to native

x86 during runtime. However, the lack of a popular open-source binary translation hy-

pervisor has allowed other approaches such as paravirtualization to be more popular

15

[20, 50]. The approach manages to incorporate various virtualization hypervisors, such

as QEMU, Xen paravirtualization, KVM and VMware ESX. It can decouple the VM

from underlying hardware [22]. This approach is the only one to run on a modified

OS (Linux) and an unmodified OS (Windows). It is, nevertheless, seen as proprietary

and it cannot be evaluated because it is protected by End User Agreement (EUA) [50].

It is described as robust and reliable because it leverages binary translation to achieve

a better performance in a nested virtualization environment [22]. Nevertheless, many

experts do not agree with the performance statement, as this technique imposes extra

overhead on the guest kernel [20, 51].

In [52], a provider-centric approach is designed and evaluated in a controlled environ-

ment. It needs the provider’s agreement to be implemented on their IaaS. It introduces

Dichotomy which uses a new nested virtualization technology (ephemeral virtualiza-

tion). This technology transfers control of VM between a layer one hypervisor (the

cloud provider’s hypervisor) and a second lightly modified hypervisor using memory

mapping techniques. Dichotomy is implemented and tested in QEMU-KVM [52]. Di-

chotomy cleanly splits the role of the hypervisor into two parts, the hyperplexor and

featurevisor. The hyperplexor is controlled by the cloud provider. It is a secure stable

hypervisor designed only to multiplex physical hardware and support featurevisors. A

featurevisor is a lightly-modified hypervisor that runs on top of the hyperplexor to allow

cloud users managing their VMs [52].

There are other examples from literature review that aim to achieve live cloud migration

using SDN technologies such as OpenFlow protocol [20]. In [53], an SDN architec-

ture named, LIME, is introduced to live-migrate VMs and virtual switches. It is built

on Floodlight controller. It runs and clones the virtual switches on multiple physical

switches simultaneously. If this process is not implemented correctly, it may lead to ser-

vices corruption. This architecture needs the provider’s agreement to be implemented

on top of public cloud IaaS. In [20], an interesting approach is discussed previously

which is implemented on top of a number of cloud providers, including Amazon EC2,

Rackspace and HP Cloud. It is claimed that OvS was used in, but without any details.

Another approach proposed in [54] uses an open LISP implementation for public trans-

portation based on Open Overlay Router with an SDN controller, OpenDayLight. This

approach is implemented on an emulated environment, GNS3 [55]. The real challenge

is how to implement such design on uncontrolled environment, such as Amazon EC2

because the provider’s networking system is highly complicated [56]. Also, networks

are hard to manage because their configurations change during VMs re-instantiation on

16

the new location. In [57], migration of a VM cluster to various clouds is suggested

based on different constraints such as computational resources and better economical

offerings. It is designed based on SDN OpenFlow protocol and allows VMs to be paired

in cluster groups that communicate with each other independently of the cloud IaaS. It

separates the VM internal network from the cloud IaaS network. Consequently, VMs

can be migrated to different clouds overcoming network complexity such as static IPs.

The design also adopts SDN architecture for rerouting traffic when VMs relocation mi-

gration occurs. The design is evaluated on the OpenStack environment.

Finally, virtual network migration is designed and tested on the Global Environment

for Networking Innovation (GENI) [58, 59] which is Wide-Area SDN-enabled infras-

tructure. The migration in this study is the process of remapping the virtual network to

the physical network to dynamically allocate the resources during migration, manage

hosts connected to the virtual network and minimize packet loss. However, maintaining

transparent migration to the users and the running applications is still challenging.

In the following we provide a more elaborate description of some prominent approaches.

These approaches are explained in the table below.

Reference Year of
publication

Virtualization
technology

Approach
type

Description

Inter-Cloud
Mobility of
Virtual Machines
[23]

2011 Legacy nested
virtualization

Provider-
centric

The live migration of
VMs with their virtual
disks is carried out
between three
open-source clouds’
IaaS within
RESERVOIR project
[22]. The approach
has not been tested on
an uncontrolled
environment such as
Amazon EC and
Google Compute
Engine [10, 20, 22].

RetroVisor:
Nested
Virtualization for
Multi IaaS VM
Availability [60]

2013 Legacy nested
virtualization

Provider-
centric

It runs VMs across
various hypervisors
within a controlled
environment, which is
less challenging than
public cloud IaaS [10].

17

VirtualWire for
Live Migration
Virtual Networks
across Clouds
[61]

2013 Paravirtualization
(Xen-Blanket)

User-
centric

It leverages
Xen-Blanket as its
nested virtualization
technique to live
migrate VMs with its
networks between
Cornell University’s
IaaS and Amazon’s
IaaS. It inherits the
same limitations of
supercloud approach,
which is discussed in
Section 2.1.1.

Inception:
Towards a
Nested Cloud
Architecture [26]

2013 Legacy nested
virtualization

Provider-
centric

It introduces a nested
IaaS for live migration
of VMs across cloud
IaaS (Amazon &
Rackspace). The
design is relatively
complicated, because
the migrated VMs
need at least three
network cards and
public IP addresses. It
is a provider-centric
approach that needs
the cloud provider’s
agreement to be
deployed.

Time-
Constrained Live
VM Migration in
Shared-Nothing
IaaS-Clouds [62]

2014 Legacy nested
virtualization

User-
centric

It introduces
MigrateFS that live
migrates VM with its
disk within the same
administration domain
and predicts the
resources required by
the process. It
envisions any potential
failure by monitoring
the network
congestion. However,
It is configured and
implemented in an
uncontrolled
environment within
one datacentre not
across various
datacentres.

18

Software
Defining System
Devices with the
Banana
Double-Split
Driver Model
[63]

2014 Paravirtualization
(Xen-Blanket)

User-
centric

It is similar to
VirtualWire [61] in
terms of the design.
Both achieve
migration downtime of
1.4s. It inherits the
same limitations of
supercloud approach,
which is discussed in
Section 2.1.1.

ViNO: SDN
Overlay to Allow
Seamless
Migration Across
Heterogeneous
Infrastructure
[64]

2015 Customized
legacy
virtualization

User-
centric

ViNO connects
OpevSwicthws and
VMs using an overlay
network based on
VxLAN
encapsulation.It
creates VMS by
customizing APIs calls
to the underlying
cloud IaaS. ViNO can
migrate Linux services
across VMs with low
downtime, but
migrating Windows
services is not clear if
this approach is
capable of performing
this migration.

Minimizing Live
VM Migration
Downtime Using
OpenFlow based
Resiliency
Mechanisms [65]

2016 Legacy
virtualization

Provider-
centric

This study proposes
several networking
architectures based on
OpenFlow features
including stateful
forwarding. Theses
architectures aim to
fast restoration of
network connectivity
of the migrated VMs.
It is a provider-centric
approach that needs
the cloud provider’s
agreement to be
deployed.

19

SDN-based IaaS
for Mobile
Computing [66]

2017 Legacy
virtualization

Provider-
centric

An IaaS framework
with regional
datacentres for mobile
clouds is proposed in
this study. The
framework is designed
based on
software-defined
networking (SDN) to
address impacts on
QoS during mobility
by serving mobile user
via the optimum
datacenter. The
testbed is developed
and implemented
based on Mininet [67]
and KVM hypervisor.
It is a provider-centric
approach that needs
the cloud provider’s
agreement to be
deployed.

Table. 2.1 Summary of various related work

2.1.1 A proposal for interconnecting the clouds (Supercloud project)

In [2], an architecture to interconnect various cloud providers through an abstract layer

is explained. Vendor lock-in is still out of reach of cloud users. Public cloud providers

continue offering different interfaces for the same types of resources services. Differ-

ent providers may run different virtual machine hypervisors with incompatible virtual

machine images, different hardware with slightly different instruction sets and hetero-

geneous storage interfaces. As mentioned in Chapter 1, there have been calls for stan-

dardization to agree on a particular hardware and software platform. Networking faced

similar issues in the 1960s to achieve interconnectivity between various operating sys-

tem. The adoption of the layered design, The Open Systems Interconnection model

(OSI model) that based on the Internet protocol (IP) layer helped abstract network hard-

ware and applications and encouraged different networking provider such as Cisco and

Juniper to develop unique services on top of this abstraction layer [68]. This abstraction

20

Figure. 2.1 Interconnected cloud stack architecture [2]

layer is thin in comparison to the other layers because it provides minimal communica-

tions with the upper and the lower layers. It supported a successful industry of hardware

vendors, Internet providers, web services and eventually flourishing cloud industry [2].

Similarly, the cloud environment needs a thin layer to interconnect all these cloud plat-

forms together into a standard infrastructure. This research [2] calls this layer, the Cloud

Abstraction Layer (CAL). This layer is designed as simple as possible to host virtual

resources for computation and storage (In form of data blobs) which all are connected

by virtual network links. Cloud users will have the ability to choose their locations of

the virtual resources to control latency, reliability, privacy or price.

This architecture has VMs and virtual storage blobs that can be controlled and migrated

between various providers IaaS. CAL networking is considering the advancement of

Software Defined Networking (SDN) [69]. Figure 2.1 highlights the architecture of

interconnected cloud stack based on the IP stack. The lower layer has the available

hardware and the next one is a thin layer of software that utilizes the available hardware

resources. Then, the CAL that provides VMs, storage blobs and a software-defined

internetwork layer that supports VMs migration. On top of this layer, operating systems

and databases can be deployed and connected together with network protocols such as

the transmission control protocol (TCP). Various applications, including cloud services

and the IoT are provided on the top layer [2].

21

Figure. 2.2 Supercloud architecture [2]

At Cornell Uiversity, a prototype of the CAL has been implemented and is called the Su-

percloud [14, 70]. The Supercloud can be run across different availability zones of the

same provider as well as availability zones of various cloud providers and private clus-

ters as shown in Figure 2.2. To implement this design, there are two layers of hardware

virtualization, the lower layer is the infrastructure managed by an IaaS cloud provider

such as Amazon Elastic Compute Cloud (EC2). This layer provides VMs, storage and

networking. The upper layer is a virtualization layer on top of the abstraction layer

and is managed by the Supercloud. It leverages resources from the cloud provider and

provides a single interface of OpenStack for the cloud users.

The link layer has the cloud provider’s hypervisor. The CAL is implemented using Xen-

Blanket [17] which provides a consistent Xen-based paravirtualized interface. There-

fore, all major hypervisors including Xen, KVM, Hyper-V, and VMware are supported.

Supercloud can be run on the major cloud providers including Amazon EC2, Rackspace,

MicrosoftAzure, and Google Compute Engine [20].

2.2 Live cloud migration criteria

Based on a thorough analysis of the related work, we design our own live cloud migra-

tion. Our approach, LivCloud is designed based on our criteria which is explained in

Table 2.2 [1]. Moreover, we use the criteria to compare our approach to a number of

previous live cloud approaches [20–22]. There are three general categories of the crite-

ria: flexibility, performance and security. In terms of flexibility criteria, we distinguish

three subcriteria:

22

• F1: decouple the migrated VM from underlying system hardware by supporting

wide range of hardware drivers, such as CPU drivers.

• F2: support various OS on the migrated VM, for instance, Windows.

• F3: consider the migrated VMs’ specifications and architecture, including RAM

and virtual disk sizes.

There are also three performance criteria:

• P1: live migration must be imperceptible to the migrated VM and its users.

• P2: predict the required resources to decide whether or not to proceed with live

migration.

• P3: monitor resource utilization to avoid overutilization and to predict any possi-

ble failure.

With respect to security, the following criteria are considered:

• S1: maintain data privacy during live migration using encryption.

• S2: impose authentication during migration.

2.3 Analysis of three related approaches

To select the approaches for inclusion in the analysis, a thorough review of the literature

is conducted to identify recent live user-centric migration approaches that explicitly ad-

dress one or more of the live cloud criteria criteria. The sources used in the literature

review included electronic databases (IEEE, ACM Digital Library, USENIX The Ad-

vanced Computing Systems Association and Springer). Three user-centric approaches

are found that have successfully designed and implemented live cloud migration:

23

Table. 2.2 Live cloud migration criteria [1]

Criterion Criterion Description Details
Flexibility

F1 Supporting multiple hardware
platforms

Wide range of hardware drivers
(CPU architecture and storage)

F2 Supporting mulitple Operating
Systems (OS)

Unmodified OS /Modified OS

F3 Considering the migrated
VMs’ specifications and
architecture

RAM, virtual disk sizes & 32 or 64
bit

Performance
P1 Migration is imperceptible to

VM and VM users
Acceptable / Unacceptable

P2 Predicting provision of re-
quired resources to decide
whether or not to proceed with
migration

Estimate resources, Reserve re-
sources, both

P3 Monitoring resource utiliza-
tion to avoid overutilization
and to predict a potential fail-
ure

CPU overhead, network bandwidth
consumption, disk I/O drivers over-
head, memory dirty pages, downtime
migration and total time migration

Security
S1 Privacy (Channel encryption). Advance Encryption Standard (AES)
S2 Authentication Hash-based Message Authentication

Code using the SHA1 (HMAC-
SHA-1)

2.3.1 Supercloud:

In [20], an approach is developed using resources from a number of major cloud providers,

including Amazon EC2, Rackspace, HP Cloud and other private clouds. It is named,

Supercloud and it uses nested virtualization (Xen-Blanket [17]).

(a) Flexibility

F1: decouple VM from underlying system is achieved by using Xen-Blanket

approach [17].

F2: Xen paravirtualization cannot run unmodified operating systems (i.e., Win-

dows) [17].

F3: in this approach, the migrated VMs specifications and architecture are not

clear.

24

(b) Performance

P1: the approach achieves relatively acceptable performance, about 1.4 seconds

migration downtime [17].

P2: disk I/O drivers overhead caused by Xen-Blanket reached 30%, which may

affect the physical machine and the other VMs residing on that machine [17, 22,

47].

P3: due to data size, security, cost saving and load balancing, a shared storage

accessible by both source and destination is used during the live migration. This

exposes the VM to overhead to access its disk over the network [7, 47]. The

transport protocol used in the migration is TCP/IP. TCP has a slow start that can

affect the migration process and impose extra overhead on the edge equipment.

Consequently, it may affect the application’s performance [71].

(c) Security

S1: the approach does not utilize an encryption algorithm. Also, a security mech-

anism is not used during the process, so it opens the system to security attacks

[48].

S2: the approach does not utilize an authentication algorithm. The approach

relies on Xen as its nested virtualization platform, which has a number of issues

[48, 72].

2.3.2 Kangaroo:

In [21], there is an OpenStack-based infrastructure approach, called Kangaroo that uses

a virtual switch and a Linux container (LXC) to live migrate nested VMs within the

cloud.

(a) Flexibility

F1: decouple VMs is achieved by using nested virtualization (Qemu & LXC)

[21].

F2: the approach cannot run on a variety of O/S (i.e., Windows) because the

containers (LXC) are Linux-based.

F3: in this approach, only the size of the VM’s vdisk is mentioned, but the VM

architecture is not clear whether 32 or 64bit.

25

(b) Performance

P1: the study claims migrating a running application between the approachs local

deployment and Amazon within a few minutes and without any downtime [21].

P2: the nested VMs in the study have a 3.2 GB virtual disk, which is migrated

using OpenStack block migration. The disk size is not practical and small to run

a full Linux or Windows operating systems [62].

P3: despite the achieved performance, the transporting protocol is still TCP/IP. In

case of larger virtual disk, big data and low WAN connection bandwidth, it might

be difficult to achieve the same result with such a protocol and without any load

balancing tools for example [73].

(c) Security

S1: the approach does not utilize an encryption algorithm.

S2: the approach does not utilize an authentication algorithm. As the approach

uses a layer 2 tunnelling technology to connect VMs, it has the same issues as the

previous approach.

2.3.3 HVX:

In [22], an other interseting approach that introduces HVX hypervisor. HVX can run

unmodified operating systems (i.e., Windows). It is similar to VMware because both

virtualization platforms use binary translation. However, the lack of a popular open-

source binary translation hypervisor has allowed other approaches (such as paravirtual-

ization) to be more popular [17, 51].

(a) Flexibility

F1: the approach manages to incorporate various virtualization hypervisors, such

as, Qemu, Xen paravirtualization, KVM and VMware ESX, therefore, it is able

to decouple the VM from underlying hardware [22].

F2: this approach is the only one to run on a modified O/S (Linux) and an unmod-

ified O/S (Windows). Despite, it is seen as a proprietary product and it cannot be

evaluated [20].

F3: In this approach, the migrated VMs specifications and architecture are not

clear.

26

(b) Performance

P1: there is not a quantitative evaluation of the approachs speed, but rather it is

mentioned as robust and reliable [22].

P2: as for the storage migration, the study introduces a storage abstraction layer

that copes with cloud storage heterogeneity. However, with large data size, which

is most likely to reach a couple of hundreds of gigabytes, the approach may need

optimization techniques, such as data compression [7].

P3: as the approach leverages binary translation to achieve a better performance

in a nested virtualization environment, many experts do not agree with perfor-

mance statement as this technique imposes extra overhead on the guest kernel

[20, 51]. HVX introduces its own user-defined L2 overlay network (hSwitch).

Yet, the transporting protocol is UDP, which is a best effort, connectionless pro-

tocol, but unreliable and it is not clear if the study uses a mechanism to recover

lost packets due to use such a protocol [74]. Also, the layer 2 network is subject

to broadcast storm as multiple clouds may span over the network.

(c) Security

S1: the approach does not utilize an encryption algorithm.

S2: the approach does not utilize an authentication algorithm.

2.3.4 Summary of analysis results

Table 2.3 provides a summary of the analysis results. Overall, the analysis shows that

in order to gain a better performance, security mechanisms are not implemented. As

a result, approaches, such as Supercloud approach proposes tinc VPN as a security

mechanism to protect the migration channel because it has less implication on the per-

formance and the local network can be extended across to the cloud using this VPN

tunnel [20]. Despite security criteria (S1 and S2) and some performance criteria (P2

and P3) have not been considered, these solutions are still applicable to move VMs

hosting publicly visible data (e.g., a Web Server that maintains a catalogue of books for

sale). In such a scenario, security (especially, encryption) is not a main concern and in

case of a web server migration failure, cloud users might be tolerant to longer time to

access the corporate website.

27

Table. 2.3 Summary of analysis results

Supercloud [20] Kangaroo [21] HVX [22]
Criteria

Identifier
Assessment

Values
Criteria

Identifier
Assessment

Values
Criteria

Identifier
Assessment

Values

F1 X
Heterogeneous Hardware

(CPU architecture
(i.e. flags) & Disk I/O drivers)

F1 X

Heterogeneous Hardware
(CPU architecture
(i.e. flags & Disk

I/O drivers)

F1 X

Heterogeneous Hardware
(CPU architecture
(i.e. flags) & Disk

I/O drivers)

F2 × Only modified O/S
(Linux) F2 × Only modified O/S

(Linux) F2 X
Modified (Windows) &

Unmodified (Linux)

F3 × - F3 X
Only VM’s
vdisk size F3 × -

P1 X
Relatively acceptable

(∼ 1.4 seconds downtime) P1 X
acceptable

(no downtime) P1 X
acceptable

(no downtime)
P2 × - P2 × - P2 × -
P3 × - P3 × - P3 × -
S1 × - S1 × - S1 × -
S2 × - S2 × - S2 × -

2.4 Live migration in technologies related to cloud com-

puting

Cloud computing has led to several advancements in technologies such as containers

and fog computing. They have their own issues and challenges, such as live migration

of containers and VMs across various fog computing providers. In the next section, con-

tainers and fog computing architectures as well as some prominent issues are discussed.

Moreover, Software Defined Networking (SDN) is discussed as a potential solution to

tackle many of the issues facing live cloud migration such as networking challenges.

2.4.1 Containers

A container is lightweight, stand-alone software that has the needed packages to run it,

including code, runtime, and system libraries.It is the technology that has been widely

adopted in academia and industry [10]. Containers rely on modern Linux operating

systems’ kernel facilities such as cgroups, LXC and libcontainer. Many cloud providers

offer container as a service (CaaS), which allows a wide selection of containers based

applications to be available online, such as UberCloud [35, 75]. Containers are fast

at the start up and they are ready in less than a second. Also, in comparison to VMs,

containers are faster because they consume a very small amount of hardware resources.

Docker is the de facto container technology, uses Linux kernel’s cgroups and names-

paces to run isolated containers within a physical machine. cgroups provide isolation

of resources such as CPU, memory, block I/O and network. On the other hand, names-

paces isolate an application’s view of the operating system environment [76].

28

Figure. 2.3 Container and VMs architecture [3]

Although the container provides many benefits, there are still a number of challenges in

order to fully adopt containers as a better alternative to VMs. First, due to the sharing

of kernel, the isolation and security of containers is weaker than VMs [35] that permit

workloads to be isolated from one another and for the resource usage to be controlled.

As result, cloud computing relies extensively on the use of VMs than containers. Sec-

ond, containers still need better capabilities to migrate from one physical machine to

another in real time without affecting the applications running underneath. Figure 2.3

shows the general architecture of both VMs and containers [3].

The migration of a container is needed under the circumstances of balancing the load,

updating OS and replacing or maintaining the hardware. There are issues (e.g., security

and compatibility) for users when using old kernels. Moreover, containers’ capability

is not only in their individual value, but also in their collective functionality to build

services with multiple building blocks [76]. There is an ongoing effort to build cluster-

level management for containers. Docker Swarm [77] is a Docker-native clustering

system that aims at exposing a cluster of Docker hosts as a single virtual host. However,

Docker-Swarm is still in its incubation phase and it does not natively offer support for

the availability of the Docker instances.

2.4.2 Fog computing

Fog computing paradigm is a key technology for the internet of things (IoT) by bringing

the cloud services to the users regardless of their location with low latency [78]. Fog

computing extends the cloud computing by integrating another layer between the clouds

29

Figure. 2.4 Fog computing architecture [4]

and the users’ mobile devices. This new architecture is known as device-fog-cloud. It

contains a fog computing node which is a small to medium size computing device. It is

usually located at the premises close to the users (e.g. shopping centres and airports).

Also, there is a fog instance that is a physical or a virtualized resource on top of the

fog node infrastructure to run users’ customized applications. It is accessed by mobile

devices over the wireless network. Moreover, different fog nodes can be connected to

a cloud centre that provides coordination between various fog infrastructures and other

services, such as extra computing capacity and large database management [9, 78].

Figure 2.4 shows the fog computing’s architecture [4]. The architecture layers are de-

scribed as follow: Terminal layer which consists of various users’ mobile devices. Fog

layer that has large number of fog nodes, which may include routers, gateways, switches

and wireless access points. These fog nodes are geographically distributed between the

end devices and cloud. The low latency can be achieved in this layer. Moreover, the

fog nodes are also connected with cloud data center by IP core network and they are re-

sponsible for interaction with cloud to obtain extra computing and storage capabilities.

30

Cloud layer which consists of multiple high performance servers and storage devices to

provide various services, such as smart home and smart transportation.

Fog computing shares many of the cloud computing challenges, including security, pri-

vacy and common standards to develop a unified and interoperable platform to manage

fog computing from different providers. The Open Fog consortium is the first step in

this direction [79, 80]. Similar to cloud computing, fog computing is a virtualized plat-

form that offers proprietary computing, networking and storage services between cloud

computing and end mobile devices. This has led to a heterogeneous fog computing en-

vironment. In such an environment, it is still challenging to support live migration of

VMs across various providers [80].

2.4.3 Software Defined cloud computing

Software Defined Network (SDN) proposes isolating control planes from forward planes

in network traffic. This is achieved by integrating a new control layer between appli-

cations and the infrastructure. This layer is known as the SDN controller that sends

configurations and instructions to the equipment in the infrastructure layer. SDN and

Network Functions Virtualization (NFV) have been adopted in cloud computing to op-

timize and automate configuration and physical resources abstraction by extending the

concept of virtualization to all resources in a datacentre including compute, storage and

network. Figure 2.5 shows software-defined cloud computing architecture [5].

SDN aims to overcome the limitations of traditional networks, such as multi-tenant

environments where computing, storage, and network resources must be offered in-

dependent and isolated from one another [81, 82]. SDN decouples data forwarding

functions from network control plane, which enables the network to become centrally

manageable, programmable and facilitate live migration of services and VMs across

different cloud providers [83]. Eramo et al. [84] proposed a consolidation algorithm

based on a migration policy of virtualized network function instances to reduce energy

consumption. Google adopted SDN in its B4 network to interconnect its Cloud Dat-

aCentres(CDC) with a globally-deployed software defined WAN [85]. SDN has been

utilized in many previous approaches to facilitate VMs live migration across the WAN

and the various cloud providers [20, 54, 58, 64, 66, 66]. SDN can be configured to create

layers of network abstraction that can be used to run multiple separate, discrete virtual-

ized network layers on top of the physical network. This configuration provides security

benefits and eliminates IPv4 address limitations during VMs relocating [64, 66].

31

Figure. 2.5 Software-defined cloud computing architecture [5]

2.5 Conclusion

We overview the related work of live cloud migration of VMs across cloud IaaS. Fur-

thermore, we propose live cloud criteria in this chapter and analyse a number of exist-

ing approaches based on live cloud migration criteria. This analysis reveals the existing

gap in these approaches in terms of the migration downtime (performance), decoupling

VMs from underlying systems (flexibility) and securing live migration channel (secu-

rity). Although, all approaches managed to deploy nested virtualizations (Xen-Blanket,

LXC and HVX), but they cause notable performance degradation to the underlying sys-

tems and limit VMs from running different operating systems (i.e., Windows). None of

these approaches provide adequate security capabilities. moreover, some technologies

that related and share many concerns with cloud computing are discussed. In the next

chapter, we discuss the design of our live cloud migration approach, LivCloud. The

design of this system is reliant on the mentioned criteria, performance (P1, P2 & P3),

flexibility (F1, F2 & F3) and security (S1 & S2).

Chapter 3

LivCloud Architecture

Cloud providers offer their IaaS services based on virtualization to enable multi-tenant

and isolated environments for cloud users. Currently, each provider has its own propri-

etary virtual machine (VM) manager, called the hypervisor. This has resulted in tight

coupling of VMs to their underlying hardware hindering live migration of VMs to dif-

ferent providers. This chapter proposes a new approach, called LivCloud, to overcome

the limitations of previous approaches as explained in Chapter 2. An open-source cloud

orchestrator, a developed transport protocol, overlay network and secured migration

channel are crucial parts of LivCloud to achieve effective live cloud migration. More-

over, an initial evaluation of LAN live migration in nested virtualization environment

and between different hypervisors has been considered to show the migration impact on

network throughput, network latency and CPU utilization.

The organization of this chapter is as follows. Section 3.1 presents an introduction. We

discuss the related work and the motivation behind our work in Section 3.2. We de-

scribe LivCloud Architecture in Section 3.3. The experimental evaluation of LivCloud

is described in Section 3.4. Section. 3.5 concludes this chapter.

3.1 Introduction

Cloud computing has been providing considerable capabilities for scalable, highly re-

liable, and easy-to-deploy environments. Live cloud migration of VMs at IaaS is an

active research area, working to overcome the lack of cloud interoperability among

32

33

providers. Virtualization is the foundation of the cloud IaaS. It allows cloud users to ex-

ploit multi-tenant resources (compute, network and storage) from a secure Cloud IaaS

[21]. Virtualization is the conversion of a physical machine to individual isolated spaces

(VMs) that can be used by multiple users as per their needs. The isolation and resources

provision is provided by hypervisor [24]. Public cloud IaaS is often described as a

heterogeneous environment due to the fact that each cloud provider has their own hy-

pervisor. Providers such as Amazon EC2 and Rackspace use the hypervisor Xen; while,

Fractus and Google Compute Engine rely on KVM. Windows Azure, on the other hand,

uses the Microsoft hypervisor, Hyper-V [20].

Despite that many providers leverage the same hypervisors for virtualization, for ex-

ample Google and HP both use KVM, live cloud migration of VMs between those

providers is still challenging [20]. Every provider has been developing their own APIs

and proprietary features to their selected hypervisor. This has made it difficult for cloud

users to live migrate VMs to other providers - one aspect of vendor lock-in with sub-

stantial consequences [16].

This chapter introduces LivCloud to address the limitations in the existing approaches

with respect to flexibility, performance and security. Nested virtualization and network

connectivity are the basic requirements of flexibility criteria to successfully start the live

cloud migration. The performance criteria are defined by maintaining the connectivity

to the migrated VM, the migrated VM’s connections and configurations, reserving the

necessary resources to the migration process and predicting any potential failure during

the migration to save the process by rolling back to the original state. With respect to

security criteria, these criteria ensure authenticating and authorizing the legitimate users

and processes to interact with the migration. Tables 2.2 and 2.3 show these criteria and

applying these criteria on specific live cloud migration approaches. Also, this chap-

ter highlights a reference model of the key factors to successfully achieve live cloud

migration.

LivCloud proposes to use different technologies, some of which have never been used in

live cloud migration, such as the User Datagram Protocol based data transfer, -known as

UDP-based data transfer or UDT, and inter-Software Defined Network (SDN) controller

communication (ODL SDNi) [74, 86]. Moreover, it uses KVM for the first time to

enable nested virtualization on the cloud IaaS as well as securing the migration channel,

which has not been considered in live cloud migration [1]. A preliminary experimental

study as well as benchmarking criteria are presented to validate and evaluate the design.

Also, to demonstrate that the migration is successful, a live video on the migrated VM

34

will continue running if the process is completed correctly. This chapter reflects on the

second question that aims to identify how to design an effective live migration approach.

3.2 Related work

Nested virtualization has been used to decouple the VM from public IaaS [16, 17, 21].

Nested virtualization is configuring one hypervisor (in the upper layer) within a virtual

machine hosted by another hypervisor [25]. Most of legacy hypervisors, such as KVM,

Xen, and VMware can run nested virtualization [26, 27, 86]. However, public cloud

hypervisors do not allow running nested virtualization [17]. Two main techniques have

been used to enable nested virtualization on the top of cloud IaaS, paravirtualization and

binary translation. The Xen hypervisor can be configured to run paravirtualization con-

cept, while VMware and hypervisor, HVX run binary translation [20, 22]. KVM is lim-

ited in running paravirtualization. However, OPENFV has been developing KVM for

running Network Function Virtualization (NFV), which will help overcoming KVMs

limitations [87]. A brief discussion of both paradigms is presented in the following.

3.2.1 Paravirtualization

It is a lightweight virtualization technique introduced by the Xen Project team, later

adopted by other virtualization solutions such as KVM. It does not require virtualiza-

tion extensions from the host CPU and thus enables virtualization on hardware architec-

tures that do not support Hardware-assisted virtualization. Therefore, it allows different

hardware architecture to be exposed to the VM. However, the VMs kernel has to be

modified prior to OS installation, thus it does not support Windows OS [17].

Xen-Blanket is an academic approach is designed using Xen hypervisor. Paravirtulaiza-

tion significantly helped Xen-Blanket enabling nested virtualization on Amazon EC2 in-

stance. Xen-Blanket has been used by many academic live cloud migration approaches

like in [20, 61, 63]. These approaches inherited drawbacks of Xen-Blanket, including,

significant downtime during live migration (1.4 seconds) [17], overhead (∼ 30%) on

drivers I/O [47] and difficulty to run unmodified OS (Windows) [17]. Furthermore,

securing live migration has not been taken into account due to extra latency caused by

encryption and authentication [88]. Figure 3.1 shows the paravirtualization architecture.

35

Figure. 3.1 Paravirtualization Architecture [6]

3.2.2 Binary translation

It transfers the VM instructions directly to the underlying system and dynamically con-

verts them to native x86 during runtime. As instance of binary translation, HVX is

a proprietary hypervisor designed by Ravello systems [22]. This hypervisor enables

nested virtualization on the top of Amazon EC2 and Google Compute engine [22]. The

main drawback of HVX is its proprietary status which hinders evaluating its perfor-

mance. Many experts are sceptical about the performance of binary translation, because

it imposes extra overhead on the guest kernel [20]. Moreover, security which has not yet

been implemented could be done using IPsec VPN [22]. Figure 3.2 shows the binary

translation architecture.

Figure. 3.2 Binary translation Architecture [6]

3.3 LivCloud architecture

LivCloud aims to achieve effective live cloud migration for VMs at cloud IaaS with

minimal services interruption. It is similar to NFV Hypervisor-KVM Architecture us-

ing KVM as hypervisor and ODL as the SDN controller [87]. Figure 3.3 illustrates a

36

reference architecture of a successful live cloud migration.

Figure. 3.3 A reference Architecture of live cloud migration

LivCloud is designed based on previously proposed criteria [1], which are in three gen-

eral categories: performance, flexibility and security. There are three flexibility criteria;

F1 decoupling the migrated VM from underlying system by supporting wide range of

hardware drivers, such as CPU drivers; F2 supporting various OS on the migrated VM,

for instance, Windows; F3 considering the migrated VMs specifications such as RAM

and hard disk size and their architectures (64 or 32 bit). There are three performance

criteria, denoted as- P1 live migration must be imperceptible to the migrated VM and its

users; P2 predicting the required resources to decide whether or not to proceed with live

migration; P3 monitoring resource utilization to avoid over utilization and to predict any

possible failure. With respect to security, there are two security criteria, S1 maintaining

data privacy during live migration using encryption; S2 imposing authentication during

migration.

To support effective live cloud migration, the design needs a foundation that supports

nested virtualization to decouple VMs from the cloud IaaS and connect hypervisors on

the IaaS in order to facilitate live migration back and forth. In addition to this, the design

needs to optimize live migration performance, prevent any potential failure, and protect

the process against hijacking and penetration. Figure 3.4 illustrates LivCloud technical

architecture.

37

Figure. 3.4 LivCloud Architecture

3.3.1 The basic design stage: nested virtualization and network
connectivity

Two fundamental features are necessary to establish network connectivity between Liv-

Cloud and the cloud IaaS. Firstly, nested virtualization needs a particular hypervisor

installed and configured on source and destination machines. LivCloud uses KVM as a

Layer one hypervisor on the source and the destination and as a Layer two installed on

certain VMs. Linux virtual manager is a user interface for managing virtual machines

mainly on KVM. Any physical or virtual machine that has KVM configured can be

connected locally or remotely over SSH to virtual machine manager [89]. In LivCloud,

two physical machines and three VMs are connected to the virtual manager installed on

LivClouds management machine.

To fully achieve nested virtualization, KVM as a Layer 2 hypervisor must be enabled

on either Amazon Ubuntu m3.2xlarge or c4.2xlarge instances. Secondly, both sides

must be connected to LivClouds virtual manager in order to live migrate VMs between

LivCloud and Amazon instance. KVM supports running modified and unmodified OS

[86]. This step is currently underway, working closely with a cloud provider to enable

nested KVM. The functional requirements help to fulfill F1, F2, F3 and P1.

38

3.3.2 The enhancement of the basic design stage: performance, flex-
ibility and security

The optimizations of LivCloud are related to performance, flexibility and security cri-

teria. LivCloud should guarantee enhancing network throughput, maintaining exist-

ing VMs connections, reserving required migration resources and securing the process

which are briefly explained in the following:

1. Enhancing network throughput: Various technologies are leveraged to help to

fulfill P1, including:

(a) OpenvSwitch (OvS):

It has flow classification, caching and better performance over the traditional

Linux Bridge. Moreover, it has its own load balancer, which is used to

distribute loads across available routes [90].

(b) UDT:

It is used as the transport protocol between LivCloud and Amazon instance

instead of TCP. The protocol’s developers claim that UDT has throughput

about five times more than TCPs and is as reliable and secure as TCP. Un-

til 2009, UDT was able to win Supercomputing 2009 Bandwidth Challenge

Winner [91]. Moreover, in [74], a comparison study is conducted between

TCP and UDT, which shows that UDT performance is far better perfor-

mance than TCP, especially in Long Flat Network (LFN) which is known as

Bandwidth-Delayed Network. In 2013, VMware announced that UDT can

be used to speed up VMs live migration between Datacentres that deploy

VMware vCloud Air [92].

(c) Multiprotocol Label Switching (MPLS):

It has improved QoS attributes over WAN connections and recently it has

been integrated into SDN controllers [93]. LivCloud incorporates MPLS

into ODL controller to improve the network performance.

2. Maintaining VMs connections and configurations:

Live migration of a VM from one site to another over the Internet needs to keep

existing connections and configurations, such as, Access Control List (ACL) and

DNS records. The following technologies used to maintain these configurations:

39

(a) Inter SDN controller communication (ODL SDNi):

Different ODL controllers can use this feature to instantly communicate to

each other and pass any changes in the topology to each other, such as VMs

relocation [86, 94]. Two ODLs are configured on LivCloud and Amazon

instance to deploy SDNi between both sites.

(b) ODL Locator/Identifier Separation Protocol (LISP): It is integrated into ODLs

on both sides. LISP builds a routed layer on IP using two addresses. These

two addresses, Endpoint Identifier (EIDs) and Routing Locator’s (RLOCs)

are used to decouple the VM from its fixed IP address and keep the existing

connections when the VM is migrated [95].

3. Reserving resources and prediction of potential failure:

To help fulfill P2 and P3, LivCloud aims to utilize OpenStack orchestrator, HEAT

[96] and a plug-in coded in Python [62]. These components will help to reserve

enough resources for migration, finish the migration within predefined time, avoid

any potential failure and prevent therefore throttling QoS attributes, such as Ser-

vice Level Agreement (SLA).

4. Securing the migration channel:

Due to the extra overhead processing and migration downtime added by secu-

rity mechanism, such as IPsec to live migration, it has been avoided in many live

cloud migration approaches [1]. In many cases, the downtime is increased about

5 times when IPsec added to live migration as the study in [88] shows. The study

illustrates the increase of both migration downtime and total time migration, from

less than two seconds to almost 8 seconds downtime when IPsec VPN is imple-

mented. Moreover, in studies [20], [61] and [63], the live migration is between a

local deployment and Amazon services and there is no security mechanism used,

despite the fact that Amazon offers load balanced IPsec VPN between its VPC

and cloud users’ local IaaS [43]. Data have to be encrypted during migration,

thus it is protected from any penetration. Also, during migration, authentication

has to be imposed in order to prevent any potential hijacking [72]. To maintain

encryption (S1) and authentication (S2), LivCloud uses tinc VPN, which is able

to provide encryption using Advanced Encryption Standard (AES) and authenti-

cation using Hash-based Message Authentication Code (HMAC-SHA1) [20].

40

Figure. 3.5 Virtual Manager’s connection to all hosts

3.4 Preliminary experimental evaluation

3.4.1 Experiment setup

The experiment aims to evaluate LivCloud within a LAN environment. Thus, the lab

setup consists of four HP Z440 workstations are connected through Cisco L2 switch

providing a 100 Mbps. Each machine has 32 GB of RAM, 1TB disk and 4-core 2.8GHz

Intel(R) Xeon(R) E5-1603 v3 CPU. Ubuntu Server 14.04 LTS and KVM (a Layer 1

hypervisor) are installed and configured on two machines, H1 and H2. Using KVM,

VMs, H3 is created on H1 and H4 on H2. KVM (a Layer 2 hypervisor) is configured

on H3 and H4. Microsoft Windows 10 and VMware workstation 12 are installed on

the third machine. Using VMware, H5 is created and equipped with Ubuntu Server

14.04 as well as KVM. The last machine is configured as a NFS server (FreeNAS 9.3)

for LivCloud. Any VM can be configured with a local disk or a disk hosted on the

NFS server. H3 and H4 have their disks hosted on the NFS server. Hosts H1, H2, H3,

H4 and H5 are connected to the virtual manager as shown in Figure 3.5. A VM with

Windows XP used as the migrated VM between all hosts. It has 1GB of RAM and

2vCPUs. The connection between LivCloud and Amazon instance is an essential part

of live cloud migration. This connection is established through a VPN. Figure 3.6 shows

how both sides are connected [43]. VPC is Amazon Virtual Network that helps building

41

Figure. 3.6 LivCloud’s connection to Amazon

user-defined private network subnets inside the cloud in order to facilitate controlling

IP address changes.

3.4.2 Experiment motivation

The main motivation behind conducting KVM live migration within the LAN environ-

ment is to illustrate that despite the LAN resources are less affected by the migration

than the WAN, there is still a notable impact of the process on the LAN without the

proposed criteria [1]. Network throughput, CPU utilization, network latency, migration

downtime and disk I/O performance are the main parameters used to analyze the live

migration impact. Network throughput is measured using iPerf version3 [97] and mi-

gration downtime is measured by using Wireshark protocol analyzer [98], whereas disk

I/O performance is tested using hdparm command [99].

3.4.3 Experiment results discussion

Figure 3.7 illustrate the experimental results. These results are the average of con-

ducting the experiment of a total of 15 runs. In terms of the experiment times, it is

done during the morning, afternoon and during the night. This approach is used in any

42

experiments carried out in this research. In particular, Figure 3.7(a) shows that there is

downtime (0.07 seconds) during live migration between H5 and H1 (VMware to KVM)

because of that there is no network latency.

(a) Network latency (b) Network throughput

(c) CPU overhead (d) Disk I/O performance

Figure. 3.7 Results statistics
A remarkable increase in network latency is obtained when migrating from H3 to H4

and from H4 and H5 (a Layer 2 hypervisor). Figure 3.7(b) shows that the network

throughput is highly affected, in particular when migrating between H3 and H4. In

effect, the throughput decreases ∼ 25% compared to the case of no migration.

In Figure 3.7(c), the CPU load increases by almost 20% during live migration between

H1 and H5 (KVM to VMware). Figure 3.7(d) shows that the I/O performance of disks

that are hosted on the NFS server (H3 and H4) are severely affected by the migration.

These hosts access their disks through the network to write and read data. The impact is

notable in accessing the disks through the LAN. Therefore, it will be more pronounced

in the case of WAN and live cloud migration.

Live migration of VMs disks has been considered in many studies [11][74]. However, it

is considered to be unreliable and needs synchronization between CPU processing speed

and network bandwidth [100]. Moreover, many cloud users prefer keeping VMs disks

43

in-house for more control and privacy [20, 61, 63]. As mentioned earlier, LivCloud uses

KVM that has a live block migration feature that allows migrating the disks state [101].

However, during the initial evaluation of LivCloud, this feature showed instability and

the process crushed many times. On account of this, the disk live migration is cloud

users decision to use this feature or leave the disk on the shared storage in LivCloud.

3.5 Conclusion

Given the requirements of cloud users, such as cloud service continuity and data privacy,

there is a clear need for live migration of VMs at IaaS. The current cloud providers

IaaS is heterogeneous and hence, hinders live migration of VMs. Every provider de-

ploys their own developed virtualization platforms. Many user-centric approaches to

overcome virtualization heterogeneity, including Xen-Blanket and HVX, attempted to

achieve the migration with minimal service disruption. While they have managed to

devise a customized nested virtualization such as paravirtualization and binary transla-

tion, they have shown shortfalls in terms of migration downtime, decoupling VMs from

underlying systems and securing the live migration.

LivCloud is designed to address the existing issue using different components, includ-

ing KVM, OpenDaylight controller, UDT and OpenStack orchestrator, Heat. The ini-

tial evaluation shows that live migration impacts the LAN resources, including network

throughput and latency as well as CPU utilization and disk I/O performance before and

during live migration. Optimization is needed to tackle the migration negative impact,

in particular when live migrating between different hypervisors (KVM and VMware)

and when VMs disks are hosted on an NFS server. The next chapter shows the imple-

mentation of basic design of LivCloud on Amazon EC2.

Chapter 4

The basic design of LivCloud on
Amazon EC2

Having defined the design requirements of LivCloud, this design is configured and eval-

uated on a public cloud provider, Amazon EC2. Amazon is one of the most popular

platforms [20, 22]. Cloud users may decide to live migrate their virtual machines from

a public cloud provider to another due to a lower cost or ceasing operations. Currently,

it is not possible to install a second virtualization platform on public cloud infrastructure

(IaaS) because nested virtualization and hardware-assisted virtualization are disabled by

default. As a result, cloud users’ VMs are tightly coupled to providers IaaS hindering

live migration of VMs to different providers. This chapter introduces LivCloud, a so-

lution to live cloud migration. LivCloud is designed based on well-established criteria

to live migrate VMs across various cloud IaaS with minimal interruption to the services

hosted on these VMs. Also, it discusses the basic design of LivCloud which consists of

a Virtual Machine manager and IPsec VPN tunnel introduced for the first time within

this environment. It is also the first time that the migrated VM architecture (64-bit &

32-bit) is taken into consideration. In the context of this research, we evaluate the imple-

mentation of the basic design of LivCloud on Amazon EC2 M3 and C4 instances. M3

instance is similar to general workstation performance and C4 has a compute optimized

instance and has high performance processors. First, we envision the instances as 32-bit

machines to enable nested virtualization. Second, we explore three developed options.

Theses options are being tested for the first time on EC2 to change the value of the EC2

instance’s control registers. Changing the values of the registers will significantly help

enable nested virtualization on Amazon EC2.

44

45

The organization of this chapter is as follows. Section 4.1 presents an introduction of

this chapter. We introduce the LivCloud architecture on Amazon EC2 in Section 4.2.

Implementing LivCloud architecture on EC2 is explained in Section 4.3. In Section 4.4,

Configuring and testing HQEMU on Amazon EC2 instances is tested and evaluated. We

discuss the implementation results in Section 4.5. In Section 4.6, the possible solutions

to enable nested virtualization on Amazon EC2 are outlined. Section 4.7 concludes this

chapter.

4.1 Introduction

In 2016, RightScale conducted cloud computing trends survey in which 1060 IT pro-

fessionals were interviewed about their adoption of cloud infrastructure and related

technologies. The survey showed 17% of enterprises had more than 1000 virtual ma-

chines (VMs) in public cloud, up from 13% in 2015 [102]. This number of VMs

would have been reduced to 250 VMs hosting 4 VMs each if public cloud IaaS had

not been deliberately locked (disabled nested virtualization or no hardware-assisted vir-

tualization features enabled). This chapter evaluates the basic design of LivCloud on

Amazon EC2 m3.2xlarge and c4.2xlarge instances [56]. By default nested virtualiza-

tion or hardware-assisted virtualization features (Intel VT-x, Intel VT-d and Extended

Page Tables) are not enabled on any Amazon instances [20, 22]. Consequently, en-

hanced QEMU, HQEMU is configured as a second layer hyperviosr. HQEMU [100]

is an academic project to enhance QEMU performance by using dynamic binary trans-

lation (DBT). DBT is similar to binary translation mentioned in Section 3.2, but DBT

is an open source technology. The implementation process has a number of twisted

configurations to overcome Amazon network and KVM configuration challenges. For

example, adding a second network interface with Elastic IP [103] is layer 3 networking

with detailed steps to correctly enable this interface; whereas, in traditional operating

system, adding a second interface is a simple layer 2 networking. Appendix A.2 shows

more detail on this issue. Moreover, configuring IPsec VPN tunnel between Amazon

VPC and the local network to secure the migration channel. The Virtual Machine man-

ager (VMM) is used as GUI interface to connect Cloud-Host on the Amazon VPC to

Local-Host on the local network. IPsec VPN and the virtual manager are the main

contributions of implementing of LivCloud.

As mentioned in Section 3.2, two main techniques have been used to enable nested

virtualization on the top of cloud IaaS: paravirtualization and binary translation. The

46

Figure. 4.1 LivCloud’s implementation on Amazon EC2

Xen hypervisor can be configured to run paravirtualization concept, while VMware and

hypervisor, HVX run binary translation [22]. KVM is limited in running paravirtual-

ization. However, OPENFV has been developing KVM for running Network Function

Virtualization (NFV), which will help overcoming KVMs limitations [87]. Two related

user-centric approaches are already explained in Chapter 2, the fist one in [20] uses

paravirtualization and the second runs binary translation [22].

4.2 LivCloud architecture on Amazon EC2

Figure 4.1 illustrates LivCloud architecture on Amazon EC2. LivCloud is designed

based on live cloud migration criteria published in [1] and explained in Chapter 2.

To support effective live cloud migration, the design needs a foundation that supports

nested virtualization in order to decouple VMs from the cloud IaaS and connect hyper-

visors on the IaaS in order to facilitate live migration back and forth. In addition to this,

the design needs to optimize live migration performance, prevent any potential failure,

and protect the process against hijacking and penetration [1]. The basic requirements

help fulfill F1, F2, F3 and P1. In the basic design stage, Dynamic DNS is used to main-

tain the migrated VM’s connections and configurations (P1). Dynamic DNS is used to

keep a domain name pointing to the same physical or virtual server connected to the

Internet regardless of any IP addresses changes [104]. Also, IPsec VPN tunnel is used

47

to fulfill S1 and S2. The secure connection between LivCloud and IaaS is an essential

part of live cloud migration.

4.3 Implementing LivCloud on Amazon EC2

In this implementation, Cloud-Host in LivCloud architecture is Amazon instance. In

this section, the cloud host is being configured to allow live migration and network

connectivity between the local host and the cloud host (see Figure 4.1). We consider

Qemu-KVM and network configurations of different Amazon instances.

4.3.1 Envision Amazon Ubuntu instance as 32 bit operating system

Amazon instance is envisioned as an x86 machine and use Qemu-system 32 and KVM

paravirtualization to enable nested virtualization on the instance. In a simulated environ-

ment on VMware Workstation 12, a VM with 32-bit Ubutnu Desktop and KVM (layer 1

hypervisor) is created. Using virtual manager, a VM with 32-bit Windows XP is created

on Ubuntu Desktop VM. There is a message stating that KVM is not working properly

and it needs additional packages. It is similar to the message is encountered when in-

stalling Ubuntu Desktop and KVM on Amazon Ubuntu Server instances (t2.micro and

m3.2xlarge). The instance is forced to ask for the same additional packages to help

running KVM properly. It does ask for the same packages. Yet, when creating a new

VM on the top of Amazon instance (m3.2xlarge), the message is shown (see Figure 4.2)

states that KVM is not installed and further actions are needed.

Despite the warning message, a VM with Windows XP OS is created and the instal-

lation is successful. Following that, other issues are encountered, including VT-x and

Extended Page Table (EPT) as well as an issue with the VM network (the bridge inter-

face). Intel VT-x is necessary to create a 64-bit VM [105]. EPT provides a hardware

assist to memory virtualization that includes the partitioning and allocation of physical

memory between VMs. The guest OS stores the mapping between virtual and physical

memory addresses in page tables [105]. The Amazon instance’s architecture is almost

identical to a 64-bit architecture. However, it is not possible to create a 64-bit VM on

the top of it. Only, a 32-bit VM is supported. The VM has performance degradation

because VT-x and EPT are not enabled. The system architecture of 32-bit Ubuntu

Desktop with VT-x enabled and 32-bit Ubuntu Desktop with no VT-x to Amazon fully

48

Figure. 4.2 KVM warning message on Amazon instance

virtualized (HVM) 64-bit Ubuntu Server are compared using lscpu command [106]. It

is possible to live migrate a VM between 32-bit Ubuntu with VT-x and 32-bit Ubuntu

with no VT-x as shown in Figure 4.3. The mentioned systems’ architecture and a similar

warning message to the message in Figure 4.2 are shown in Figure 4.4 and 4.5. Table

4.1 illustrates the architecture of the mentioned operating systems.

Figure. 4.3 Live migration between the two Ubuntu systems

49

Figure. 4.4 32-bit Ubuntu desktop with VT-x enabled

4.3.2 Linux bridge issue

Linux bridge is used by KVM and Xen hypervisors for handling communication be-

tween VMs and the network interface card (NIC) of the hosting machine. It works as

a layer-2 switch which forwards traffic based on the MAC addresses of NICs. Usually,

when installing KVM, Linux bridge joints VMs to the physical network, so they can

request IP addresses from the underlying network DHCP server [107]. In this case, the

network card of the hosting machine is configured to pass its IP address to the bridge.

Figure. 4.5 32-bit Ubuntu desktop with no VT-x

50

Table. 4.1 Comparison between various Ubuntu architectures

Architecture Component 32-bit Ubuntu
Desktop with VT-x

32-bit Ubuntu Desktop
with no VT-x

Amazon t2.micro
64-bit Ubuntu

Architecture: i686 i686 x86 64
CPU op-mode(s): 32-bit 32-bit 32-bit, 64-bit
Byte Order: Little Endian Little Endian Little Endian
CPU(s): 2 2 1
Core(s) per socket: 1 1 1
Socket(s): 2 2 1
Vendor ID: Genuine Intel Genuine Intel Genuine Intel
CPU MHz: 2394.459 2394.459 2500.042
Hypervisor vendor: VMware VMware XEN
Virtualization type: VT-x 0 Full

Figure 4.6 shows what it would be ideal configurations for Linux bridge on Amazon

instance, the cloud host. However, when configuring the bridge on Amazon instance,

connectivity to the Amazon instance is lost. Every Amazon VPC has DHCP server con-

figured to handle any DHCP request from any network card of an instance within the

VPC. The DHCP server sees the bridge as an undefined interface, so it does not give

it an IP address. Subsequently, the connectivity with the instance is lost whenever the

bridge is configured.

Figure. 4.6 Linux bridge ideal configurations of on Amazon (Cloud host)

51

Table. 4.2 Amazon C4 instance’s specifications

C4 Feature Specification
Processor Number E5-2666 v3
Instruction Set 64-bit
Processor Base Frequency 2.9 GHz
Max All Core Turbo Frequency 3.2 GHz
Intel vPro Technology Yes
Intel Virtualization Technology (VT-x) Yes
Intel Virtualization Technology for Directed I/O (VT-d) Yes
Intel VT-x with Extended Page Tables (EPT) Yes
Intel 64 Yes

4.3.3 Enabling nested virtualization on C4 instance using KVM and
VMware workstation

To overcome the issues mentioned earlier in relation to VT-x, EPT and the bridge con-

nectivity, a different instance, c4.2xlarge is tested. C4 was launched in January, 2015 as

a EC2 Compute-optimized instance. Table 4.2 shows the specifications of the instance.

According to [108], the instance has the required features to enable layer 2 hypervisor

and EPT to improve VMs performance, but the link had been modified and this feature

has been removed. Appendix A.1 approves the case until 20/05/2016. After creating

the instance, VMware Workstation 12 is installed on the instance. The NAT feature of

VMware is used to hide the virtual network behind the IP address of the network card of

the instance. Therefore, VMs do not have to request addresses from the VPC’s DHCP

server. It works and all VMs have Internet connectivity. However, KVM is installed

on them with the same warning message. Figure 4.7 illustrates the configurations on

Amazon C4 instance at this development stage. It is not possible to enable VT-x and

EPT from inside VMware because Amazon hypervisor Xen prevents that. Figure 4.8

illustrates the error message. Both VMs are connected through Virtual Manager and a

VM (XP with 1GB RAM and 2vCPU) is created on one of them. Then, this VM is live

migrated to the other one. The XP VM has to be restarted upon finishing the migration

because the VM is on a halted state.

According to Table 4.2, the instance is capable of running VT-x and EPT. During the

initial evaluation it has been proved that these features have been disabled.

52

Figure. 4.7 The configurations on C4 at this development stage

4.4 Configuring HQEMU to implement LivCloud on EC2

The main motivation behind conducting HQEMU live migration between Local-Host

and Cloud-Host across the Internet is to illustrate that LivCloud basic design can be

implemented on uncontrolled environment, Amazon’s datacentre without any enhance-

ments from the next stage of LivCloud.

Figure. 4.8 EPT message on Amazon

53

Figure. 4.9 Virtual manager’s connection to both hosts

4.4.1 Experiment setup

To achieve the basic design stage, a private network (172.16.10.0/24) based in Bournemouth

(UK), which has two physical servers (Local-Host and NFS server) is connected to a

Ubuntu server 14.04 (private address, 10.0.0.10/24) on Amazon’s datacentre in London,

UK. The experiment aims to evaluate LivCloud’s basic design within the mentioned

environment. Thus, the lab setup as shown in Figure 4.1 consists of one HP Z440

workstation is connected to the Internet through EdgRouter X and Netgear L2 switch

providing 1Gbps. The workstation has 32GB of RAM, 1TB disk and 4-core 2.8GHz

Intel(R) Xeon(R) E5-1603 v3 CPU. 64-bit Ubuntu Server 14.04 LTS, HQEMU (Layer

1 hypervisor) and HQEMU routed network are installed and configured on the machine,

Local-Host. The other machine on the private network is configured as an NFS server

(FreeNAS 9.3) for the lab.

The Amazon c4.2xlarge instance 64-bit Ubuntu server 14.04, Cloud-Host is connected

through a network card providing 1Gbps. The server has 15GB of RAM, 100GB disk

and 8 vCPU 2.9GHz Intel(R) Xeon(R) Xeon E5-2666 v3. HQEMU (Layer 2 hypervi-

sor) and HQEMU routed network are installed and configured on the instance. Any VM

on either Local-Host or Cloud-Host can be configured with a local disk or a disk hosted

on the lab NFS server. Using HQEMU, VMs, 2 VMs, 32-bit Windows XP, xp-1 and 64-

bit Ubuntu server 14.04, ub-14-sh used as the migrated VMs between both hosts. Their

disks are hosted on the NFS server. The Windows VM has 1GB of RAM, 2vCPUs and

5GB of disk. Whereas, the Ubuntu VM has 2GB of RAM, 2vCPU and 8GB of disk.

The private network and the Amazon VPC network are securely connected via IPsec

VPN tunnel. Local-Host and Cloud-host are connected through the tunnel via the VM

manager that is installed on Local-Host as shown in Figure 4.9. VPC is Amazon Virtual

Network that helps building user-defined private network subnets inside the cloud in

54

order to facilitate controlling IP address changes [43]. Furthermore, Dynamic DNS is

used to maintain the migrated VMs’ connections and configurations (P1).

Dynamic DNS is used to keep a domain name pointing to the same physical or virtual

server connected to the Internet regardless of any IP addresses changes [104]. no.ip is

a dynamic DNS provider that has been chosen to register ub-14-sh and xp-1 under the

DNS name records, ub-14-sh.ddns.net and xp-1.ddns.net respectively. Dynamic DNS

clients (noip-2.1.9-1) are installed and configured on both migrated VMs [109]. Also,

to prove that it can achieve flexibility and security despite that it is not possible to

conduct a successful migration at this stage. Moreover, the migrated VMs’ hardware

specifications in respect to RAM and disks sizes are larger than the migrated VMs in

previous approaches [20–22].

4.5 Experiment results and discussion

In this scenario, both hosts have HQEMU bridged or routed network installed and con-

figured because KVM modules cannot be loaded on Amazon EC2 instances. IPsec

VPN tunnel is configured between the Local-Host’s private network and Amazon VPC.

Local-Host and EC2 Cloud-host are connected through the tunnel via the virtual man-

ager that is installed on Local-Host as shown in Figure 4.9. The migration process of

ub-14-sh is also shown in this figure. Amazon VPC provides two public IPs to VPN tun-

nel for load-balancing. Figure 4.10 shows a comparison between the latency (RTT) of a

direct ping from Local-Host to Cloud-Host’s public IP and the latency of a ping through

Figure. 4.10 Latency comparison between Internet connection and IPsec VPN

55

Figure. 4.11 Migrated Ubuntu VM’s kernel panic

the IPsec VPN from Local-Host to Cloud-Host’s private IP. The private network and the

Amazon VPC network are securely connected via IPsec VPN tunnel.

4.5.1 Live migration with shared disk

Despite the successful completion of the migration of 2 VMs with shared disks (xp-1 &

ub-14-sh) from Local-Host to Cloud-Host, it is necessary to restart both VMs to fix the

halt state on xp-1 and the kernel panic on ub-14-sh. The average total migration time

of ub-14-sh is just above 3 minutes, whereas, it is about 2 minutes in xp-1 migration.

Furthermore, the performance of both VMS is rather slow despite compiling HQEMU

[100] instead of QEMU. Figure 4.11 shows the kernel panic of ub-14-sh.

4.5.2 Live migration without shared disk

Live migration of VMs disks has been considered in many studies [17, 61, 63]. How-

ever, it is considered to be unreliable and needs synchronization between CPU process-

ing speed and network bandwidth [71]. Moreover, many cloud users prefer keeping

VMs disks in-house for more control and privacy [20]. As mentioned earlier, LivCloud

uses HQEMU that is an enhancement of QEMU. QEMU has a live block migration

feature that allows migrating the disks state [100]. However, during the evaluation of

LivCloud, this feature showed instability and the process crushed many times. How-

ever, before crushing both VMs continue working for almost 2 minutes and Dynamic

DNS’s records are correctly update with the new public IP. The total migration time is

Figure. 4.12 Migrated Ubuntu VM’s halt state

56

approximately 15 minutes of both VMs due to the disks sizes. As a result, live migration

of the VM’s disk is cloud users’ decision to either use this feature or leave the disk on

the shared storage in LivCloud. Figure 4.12 shows the crushing of the migrated Ubuntu

VM.

In the next section, a number of solutions to enable nested virtualization on Amazon

EC2 are discussed.

4.6 Possible solutions to enable nested virtualization on

EC2

To load KVM modules on public IaaS, the hardware-assisted virtualization features

must be enabled. To check if the IaaS has theses features, the KVM acceleration must be

enabled, VMX or SVM flags’s number should be larger than 0 and the nested virtulaition

of kvm intel must be set to ’Y’. Figure 4.13 proves that these features are not enabled

on Amazon EC2 instances.

There is a number of possible solutions to enable these values and consequently, to en-

able the hardware-assisted virtualization on public cloud IaaS. The following solutions

have been explored as part of the implementation process.

4.6.1 Recompiling Amazon C4 Linux instance’s kernel

This solution aims to recompile the instance kernel with specific features enabled such

as, KVM acceleration support as shown in Figure 4.14 using the latest version of Linux

kernel [110] and menuconfig command [111]. The menuconfig command is a menu-

based user interface that rebuilds Linux kernel with selected options. Because Amazon

Figure. 4.13 Hardware-assisted virtualization features disabled on EC2

57

Figure. 4.14 Recompiling the EC2 instance’s kernel

instances’ BIOS cannot be reached, menuconfig is an alternative tool to enable many

hardware features on the instances.

The rebuilding process of the kernel takes about two hours to finish and includes also

upgrading the grub file. However, the result of this process changes only the nested

virtualization of kvm intel from ’N’ to ’Y’. However, the other two features, the KVM

acceleration and the VMX flags number, the process cannot change their values. This

solution does not help improve the live migration process.

4.6.2 Compiling Bareflank on Amazon EC2

Bareflank is an open source, lightweight hypervisor, lead by Assured Information Se-

curity, Inc [112]. which provides the minimum requirements to install other complete/-

complicated hypervisors, such as Xen, KVM and VirtualBox. To enhance Bareflank

development, it is written in C++, and it can be run on various operating systems, in-

cluding Windows and Linux. If the compilation of the hypervisor is successful, it con-

verts the operating system into a VM [112]. It is installed and configured on Amazon

c4.2xlarge instance because it can force enabling hardware-assisted virtualization, but

the configuration process to convert the operating system to a VM has been repeatedly

interrupted and stopped by the Amazon hypervisor, Xen.

58

Figure. 4.15 The output of running the script on C4 instance

4.6.3 Running a C script on Amazon EC2

Such a script written in C language and it had been used to enable Intel VT-x on Mac

Pro and other operating systems in 2008 [113]. This code is programmed to enable

hardware-assisted virtualization on the Intel based machines that have theses features

in the CPU architecture, but there is no BIOS support for them provided that the BIOS

does not lock these features. The result of running the script shows that the BIOS locks

these features as shown in Figure 4.15.

There is a potential solution that may help activate this feature. It consists of reprogram-

ming an existing Assembly code written to enable Intel VT-x and EPT on a Windows

physical machine [114]. It switches on the values of the machine’s CPU control regis-

ters to enable nested virtualization features on Amazon. The reprogramming is based

on enabling the code to modify the vCPU’s control registers values on Amazon Ubuntu

instance. Through many attempts to run this code on Amazon, it is proved that it is

challenging to master and customize the code.

4.7 Conclusion

Given the current state of public cloud IaaS in terms of hardware-assisted virtualization

features, VMs live migration is still challenging to cloud users. LivCloud approach is

introduced to help successfully live migrate cloud users’ VMs without services disrup-

tion across different public cloud providers. The basic design stage of this approach is

implemented and evaluated on Amazon M3 and C4 instances. Although, the connectiv-

ity is securely maintained between Local-Host and Cloud-Host through Virtual Machine

manager and IPsec tunnel, the migration process is not successfully completed due to

the lack of nested virtualization feature on Amazon IaaS. We explore 3 developed op-

tions to enable nested virtualization on Amazon EC2. None of them have yielded the

desired results. In the next chapter, we implement the basic stage on a different provider,

Packet bare metal cloud.

Chapter 5

The basic design of LivCloud on Packet

In this chapter, because none of the solutions proposed in Chpater 4 have yielded the

desired results, we have moved to a different cloud provider that has the nested virtual-

ization enabled by default. The basic design stage of LivCloud is evaluated on Packet

bare metal cloud. The live migration with the basic requirements consists of five steps:

(i) installing QEMU-KVM on the host on the local network, Local-Host and the host

on Packet, Cloud-Host; (ii) establishing the connection between the two hosts through

IPsec VPN; (iii) connecting the two hosts using virtual machine (VM) manager through

SSH protocol; (iv) connecting both hosts to the shared storage on the local network; and

(v) performing live migration between the two hosts. Each of these steps is validated

using empirical studies. We show for the first time: (i) performing live cloud migration

in these five steps; (ii) considering the migrated VM’s architecture (32 or 64-bit) and

(iii) deploying IPsec VPN tunnel in such environment. Our approach outperforms a

number of previous approaches in terms of security and the migrated VMs hardware

specifications (RAM & virtual disk sizes) despite its relatively acceptable performance.

Furthermore, as far as the literature review of live cloud migration is concerned, it is the

first time that the migration channel is protected by two secure layers, IPsec tunnel and

SSH protocol.

The organization of this chapter is as follows. Section 5.1 we present an introduction

to this chapter. We discuss introduces a brief summary of related work highlighting

existing techniques to achieve nested virtualization on the cloud IaaS in Section 5.2. live

cloud migration criteria of VMs at cloud IaaS and LivCloud architecture on Packet is

presented in Section 5.3. We explain the experiment design of LivCloud in Section 5.4.

59

60

The empirical results of the experiment are summarised in Section 5.5. Section 5.6

concludes this chapter.

5.1 Introduction

Various approaches from industry and academia have been developed to address the lack

of cloud interoperability. User-centric approaches are among these proposed solutions

to achieve live cloud migration for VMs across public cloud IaaS. The implementation

of these solutions are still challenging because they are implemented on top of uncon-

trolled public cloud IaaS. As result, a number of user-centric approaches succeeded in

overcoming virtualization heterogeneity by devising a customized nested virtualization,

such as paravirtualization and binary translation [17, 22]. However, they suffer limita-

tions in terms of flexibility (decoupling VMs from underlying hardware), performance

(migration downtime) and security (secure live migration). These three, flexibility, per-

formance and security are our live cloud migration criteria [1]. They are used to identify

the mentioned limitations and design our approach, LivCloud [1]. LivCloud is designed

to address the limitations of the previous approaches. It is designed in two stages, the

basic design and the enhancement of the basic design.

In this chapter, the basic design of LivCloud is implemented and evaluated. Our ap-

proach achieves better results in terms of flexibility and security. With respect to secu-

rity, IPsec VPN is used for the first time in such an environment and it has no effects on

performance. A study in [88] shows that the downtime is increased about 4 times when

IPsec VPN is considered in live migration. The study illustrates the increase of both

migration downtime and total time migration, from less than two seconds to almost 8

seconds downtime when IPsec VPN is implemented. Furthermore, it is the first time

that the VM’s architecture (64-bit or 32-bit) is taken into consideration in live cloud

migration.

61

5.2 Related work

The literature review reveals that there are two of user-centric approaches that aim to

achieve live cloud migration at public cloud IaaS that has nested virtualization by de-

fault. Both approaches are explained in Chapter 2. In [21], an approach that is im-

plemented on OpenStack-based infrastructure. It uses a virtual switch and a Linux

container (LXC) to live migrate nested VMs within the cloud. The approach cannot run

on a variety of OS (i.e., Windows) because the containers (LXC) are Linux-based [49].

In [52], a provider-centric approach is designed and evaluated in a controlled environ-

ment. It needs the provider’s agreement to be implemented on their IaaS. It introduces

Dichotomy which uses a new nested virtualization technology (ephemeral virtualiza-

tion). This technology transfers control of VM between a layer one hypervisor (the

cloud provider’s hypervisor) and a second lightly modified hypervisor using memory

mapping techniques. Dichotomy is implemented and tested in QEMU-KVM [52].

5.3 LivCloud architecture on Packet

The LivCloud design is distilled into two stages, basic design and the enhancement of

the basic design [7]. The basic design stage helps fulfill F1, F2, F3, P1, S1 and S2. The

main motivation behind conducting live migration between LivCloud and public cloud

IaaS across the Internet is to illustrate that LivCloud basic design can be implemented

on an uncontrolled environment, cloud IaaS without any enhancements from the next

stage of LivCloud. Also, to prove that it can achieve better results than previously

proposed live migration approaches in terms of flexibility and security.

In this development stage, LivCloud is connected to the cloud IaaS through nested vir-

tualization and secure network connectivity. Firstly, nested virtualization is achieved

by configuring QEMU-KVM on LivCloud and public cloud IaaS. Nested virtualization

is configuring one hypervisor (in the upper layer) within a virtual machine hosted by

another hypervisor [24]. Most of legacy hypervisors, such as QEMU-KVM, Xen and

VMware can run nested virtualization [25]. LivCloud uses QEMU-KVM as its hypervi-

sor on the both sides. Virtual machine manager is a user interface for managing virtual

machines mainly on QEMU-KVM. Any physical or virtual machine that has QEMU-

KVM configured can be connected locally or remotely over SSH to virtual manager

62

Figure. 5.1 The basic design architecture of LivCloud [7]

[89]. Figure 5.1 shows the basic design and the benchmark tools that are used in the

implementation. The basic design architecture is distilled in the following steps:

1. QEMU-KVM is enabled on LivCloud and public cloud IaaS. QEMU-KVM sup-

ports running modified and unmodified OS. QEMU has high emulation capabil-

ity of drivers (i.e network card driver) and KVM provides high acceleration to

enhance drivers performance. Also, KVM needs to access the underlying CPU

architecture to pass it to the virtualized CPU of the hosted VMs [20, 47].

2. IPsec VPN tunnel is configured to fulfill S1 and S2. The secure connection be-

tween LivCloud and IaaS is an essential part of live cloud migration.

3. Both sides are connected to virtual manager in order to live migrate VMs between

LivCloud and cloud IaaS.

4. Both sides are connected to the shared storage on the local network.

5. At this stage, Dynamic DNS is used to maintain the migrated VM’s connections

and configurations (P1). Dynamic DNS is used to keep a domain name pointing

to the same physical or virtual server connected to the Internet regardless of any

IP addresses changes [109].

63

Figure. 5.2 The basic design implementation on Packet

5.4 Experimental design

To implement the basic design stage, a private network (172.16.10.0/24) based in Bournemouth,

UK which has two physical servers (Local-Host and NFS server) is connected to a

Ubuntu server 14.04 (private address, 10.80.119.3/31) on Packet’s datacentre in Ams-

terdam, Holland.

Moreover, Network throughput, CPU utilization, network latency, migration downtime

and disk I/O performance are the main parameters used to analyze the live migration

impact. Network throughput is measured using iPerf version3 and network latency is

measured by pinging the migrated VM’s DNS record. Whereas disk I/O performance is

tested on Local-Host and Cloud-Host using hdparm command [7].

Packet Bare Metal Cloud provides customers with dedicated single tenant-physical

servers [115]. The bare metal server complements or substitutes virtualized cloud ser-

vices with a dedicated server that eliminates the overhead of virtualization, but main-

tains flexibility, scalability and efficiency. The server’s hardware is fully dedicated and

the server can be provisioned using a web-based portal or API, providing access to

high-performance dedicated servers on demand [115]. Figure 5.2 shows the basic de-

sign implementation on Packet.

64

Figure. 5.3 Virtual manager connections to both hosts

5.4.1 Experimental setup

The lab setup as shown in Figure 5.2 consists of one HP Z440 workstation, Local-Host

is connected to the Internet through EdgeRouter X and Netgear L2 switch providing a

1 Gbps. The workstation has 32 GB of RAM, 1TB disk and 4-core 2.8GHz Intel(R)

Xeon(R) E5-1603 v3 CPU. 64-bit Ubuntu Server 14.04 LTS, QEMU-KVM (Layer 1

hypervisor) and QEMU-KVM NAT-based networking are installed and configured on

the machine [116]. QEMU-KVM NAT is used here instead of QEMU-KVM Linux

bridge due to the fact that Packet provider’s private network does not allow layer 2

networking connectivity which is necessary to configure QEMU-KVM bridge [115].

The other machine on the private network is configured as a NFS server (FreeNAS 9.3)

for the lab. The Packet 64-bit Ubuntu server 14.04, Cloud-Host is connected through

two bonded network cards providing a 2 Gbps. The server has 32 GB of RAM, 240 GB

disk and 4-physical core 3.4GHz Intel(R) Xeon(R) E3-1240 v3 CPU.

By default nested virtualization or hardware-assisted virtualization features (Intel VT-x,

Intel VT-d and Extended Page Tables) are enabled on any Packet server [115]. QEMU-

KVM (Layer 2 hypervisor) and QEMU-KVM NAT-based networking are installed and

configured on the server. Any VM on either Local-Host or Cloud-Host can be config-

ured with a local disk or a disk hosted on the private network NFS server. The private

network and the Packet private network are securely connected via IPsec VPN tunnel.

Local-Host and Cloud-host are connected through the tunnel via the virtual machine

manager that is installed on Local-Host as shown in Figure 5.3.

65

In case of Local-Host is temporarily not accessible, both hosts can still be connected

via the virtual machine manager installed on Cloud-Host. A remote Ubuntu desktop is

installed on Cloud-Host using VNC server (vnc4server) and through TightVNC, cloud

users can be remotely connected to Cloud-Host [117]. Six VMs, three 32-bit Windows

XP and three 64-bit Ubuntu server 14.04 used as the migrated VMs with shared disks

between both hosts. ub-NonShared-1 VM has 8GB of disk hosted on Cloud-Host and

xp-NonShared-1 has 5GB of disk hosted on Local-Host. Both VMs are live migrated

without shared disks. Table 5.1 shows the migrated VMs and their DNS records.

Table. 5.1 Migrated VMs’ specifications and DNS names

DNS records VM’s
Architecture vCPU RAM (GB) Virtual

disk (GB)
Shared disk/
non-Shared

ub-NonShared-1.ddns.net 64-bit 2 1 8 Non-Shared
ub-shared-1.ddns.net 64-bit 2 1 8 Shared
ub-shared-2.ddns.net 64-bit 2 2 10 Shared
ub-shared-3.ddns.net 64-bit 2 3 10 Shared

xp-NonShared-1.ddns.net 32-bit 1 2 5 Non-Shared
xp-shared-1.ddns.net 32-bit 2 1 8 Shared
xp-shared-2.ddns.net 32-bit 2 2 10 Shared
xp-shared-3.ddns.net 32-bit 2 3 10 Shared

At this stage, Dynamic DNS is used to maintain the migrated VMs’ connections and

configurations (P1). Dynamic DNS is used to keep a domain name pointing to the

same physical or virtual server connected to the Internet regardless of any IP addresses

changes [104]. no.ip is a dynamic DNS provider that is chosen to register the DNS

records as shown in Table 5.1. Dynamic DNS clients (noip-2.1.9-1) are installed and

configured on all migrated VMs [104]. Figure 5.4 illustrates how NFS server is con-

nected to Local-Host and Cloud-host. The IPsec VPN tunnel is configured on the private

network side. Whereas, on the Packet side, OpenSwan IPsec VPN [44] is configured on

Cloud-Host. Appendix B.1 shows the OpenSwan’s configurations in more detail.

5.5 Experimental results

5.5.1 Achieving flexibility criteria F1, F2 & F3

Because hardware-assisted virtualization features, Intel VT-x, Intel VT-d and Extended

Page Tables (EPT) are enabled on Packet servers, KVM can support a wide range of

66

hardware architectures, such as CPU registers. This has been proved through live mi-

grating of VMs between Local-Host and Cloud-Host. Both hosts have different archi-

tectures, yet the migration does not have any issues in this regard. As a result, F1 has

been supported at this stage. KVM supports running modified OS, such as Linux and

unmodified OS, such as Windows. Within the evaluation process, it has been possible

to live migrate 64-bit Ubuntu VM (modified OS) and 32-bit Windows VM. It is the first

time that the VM architecture (64-bit or 32-bit) has been taken into consideration in

live cloud migration. Consequently, F2 has been successfully implemented. Table 5.1

highlights the migrated VMs’ hardware specifications including virtual disks and RAM

sizes. Table 5.1 helps achieve F3.

5.5.2 Achieving performance criterion, P1

For this criterion, live migration must maintain the continuity of delivering the hosted

services on migrated VMs. Also, it must keep the existing connections to other VMs

and cloud users. QEMU-KVM supports live migration with different networking op-

tions, including bridged or routed network and NAT network. The first option, routed

Figure. 5.4 NFS server connections to both hosts

67

network has not been possible to implement because as mentioned in Section 5.4.1,

routed network needs a Linux bridge to be configured as a layer 2 switch, but layer 2

networking is not permissible in Packet network. The NAT is chosen to successfully

implement the migration process. The other option to overcome networking issue is

configuring an overlay network using the Software Defined Networking SDN protocol,

OpenFlow [20, 93], this feature will be implemented in the enhancement of the basic

design of LivCloud.

Dynamic DNS records are used to maintain the existing connections to the migrated

VMS. VMs’ dynamic DNS records are registered on the dynamic DNS provider, noip

[109] associated with either the public IP of Local-Host or Cloud-Host. Once the mi-

gration to the host is completed, the dynamic DNS client installed on the migrated

VMs updates the noip provider with this host’s public IP, so that noip updates the name

records accordingly. The other VMs and the cloud users are connected to these records

not to the IP addresses. Therefore, any changes of public and private IP addresses, the

DNS client and noip provider update the records accordingly. QEMU-KVM live mi-

gration is copying the RAM and CPU states in a number of iterations while the OS

and the applications are running. This means the drivers’ states, such as network cards

(NICs) stay as they are on the sender side [7]. The migrated VMs’ NICs are configured

to request IP addresses from the NAT’s DHCP server. During the migration, the VMs’

NICS need to be triggered to renew their IPs on the receiver’s network. To this end, a

script written in C language to be run on Windows or Linux, is used to do the following:

1. Continuously testing the Internet connectivity by pinging Google server (8.8.8.8).

If connectivity is maintained, the script does nothing.

2. If the connectivity is lost, the script forces the migrated VM to renew the IP

address and trigger the dynamic DNS client to update the VM’s record on the

noip.

The script has the following structure:

During the evaluation process, this script is proved to function properly. The total mi-

gration time varies because the VM’s hardware specifications and the Internet traffic.

For example, live migrating the Ubuntu VM (ub-shared-2: 2GB RAM & 2 vCPU) it

takes on average about 8 minutes in terms of total migration time. Whereas, the XP VM

(xp-shared-1: 1 GB RAM & 2vCPU), it takes about 5 minutes in terms of total migration

time. The migration process does not yield the desired results in case of xp-shared-3

68

Algorithm 2 Steps of C script
1: Input: T
2: while (true) do
3: Sleep (T)
4: if connection to 8.8.8.8 is false then
5: if (Operation System is Windows) then
6: - Trigger the network card to renew its IP address
7: - Re-run Dynamic DNS client
8: else if (Operation System is Unix) then
9: - Trigger the network card to renew its IP address

10: - Re-run Dynamic DNS client
11: end if
12: end if
13: end while

and xp-NonShared-1. However, the migration downtime in other VMs migration is just

about 2 seconds due to the latency in updating the public IP and the DNS records.

5.5.3 Achieving security criteria, S1 & S2

Figure 5.5 shows how the migration channel in LivCloud is protected. Due to the extra

overhead processing and migration downtime added by security mechanism, such as

IPsec to live migration, it has been avoided in many live cloud migration approaches.

The downtime is increased about 5 times when IPsec added to live migration as the

study in [88] shows. The study illustrates the increase of both migration downtime and

total time migration, from less than two seconds to almost 8 seconds downtime when

IPsec VPN is implemented. However, by comparing a direct ping through the Internet

to Cloud-Host’s public IP and ping to Cloud-Host’s private IP (10.80.119.3) through

the IPsec tunnel from Local-Host, the round trip time (RTT) is almost identical in both

scenarios. In fact, the connection through the tunnel is slightly faster. Figure 5.6 sup-

ports the findings. Consequently, IPsec VPN achieves S1 and S2 in the live migration

criteria without any extra penalty in terms of performance. In this design, IPsec starts

the connection by exchanging a pre-shared key (password) using Diffie-Hellman pro-

tocol (D-H) [118]. On the sender side, D-H generates two keys, public and private

keys. Then, it uses the public key to encrypt the pre-shared before sending it to the

receiver. The receiver deciphers the pre-shared key using its own D-H private key. The

receiver’s private key is generated using the sender’s public key. If this step is success-

fully completed, this means S1 is achieved. Now, the two parties have authenticated

each other and any data sent between them is encrypted using AES-128 protocol [118].

69

Figure. 5.5 Securing the migration channel via IPsec and SSH

Figure. 5.6 A direct ping latency & IPsec VPN latency

This leads to maintain S2 and provides secure connectivity between the private network

in Bournemouth and Cloud-Host in Amsterdam. This is the first layer of protection.

The second layer of protection is secured through the use of SSH protocol and pass-

words (another layer of encryption and authentication) to connect Local-Host to Cloud

Host through IPsec tunnel. Virtual manager is a GUI interface that has many features

regarding creating, editing and live migrating VMs. In this design, virtual manager

is used to connect Local-Host and Cloud-Host through SSH protocol and VMs’ user

names and passwords as shown in Figure 5.3. This connection provides a secure SSH

tunnel inside the IPsec tunnel.

5.5.4 Discussion

Live migration of the Ubuntu VMs and XP VMs mentioned earlier is performed back

and forth between Local-Host and Cloud-Host. The experiments results are the average

of conducting the experiment of a total of 15 runs. In terms of the experiment times, it

70

(a) Network throughput (b) Network latency

(c) CPU overhead (d) Disk I/O performance

Figure. 5.7 Results statistics

is done during the morning, afternoon and during the night. This approach is used in

any experiments carried out in this research.

Appendix B.1 shows screen shots of performing the migration at different point of time.

Only the most notable statistics are summarized in Figure 5.7: Figure 5.7(a) shows that

the network throughput is considerably affected, in particular when migrating ub-share-

2 VM. This VM has 2GB RAM which is less than ub-shared-3’s RAM. It is most likely

due to the Internet congestion at that time.

In particular, Figure 5.7(b) shows that there is notable increase in network latency during

live migration ub-shared-3 VM because this VM has the largest RAM size, 3GB. The

total migration time reaches about 15 minutes in this case. Figure 5.7(c) shows CPU

load increases by almost 35% during live migration ub-shared-3. Figure 5.7(d) shows

that I/O performance of disks of Local-Host and Cloud-Host are slightly effected by the

migration process. As mentioned earlier, there is downtime (∼ 2 seconds) during live

migration back and forth between the two hosts. Based on conducting the migration in

various time points, the process is slightly faster during the day than the night.

71

5.6 Conclusion

The evaluation of basic design on Packet shows that IPsec VPN is used for the first time

in this environment with no impact on the system performance. Also, the evaluation

shows that the migrated VMs’ architecture (64 or 32-bit) is considered for the first time

in live cloud migration. Finally, the migrated VMs’ RAM and disks sizes are larger

than any previous approaches. However, LivCloud performance is relatively acceptable

due to losing of the connectivity to the migrated VMs for about 2 seconds. Therefore,

LivCloud basic design stage is more flexible and more secure than any previous user-

centric approach.

The next chapter shows how to implement the enhancement of the basic design of Liv-

Cloud on Packet. In this stage, OpenvSwitch (OvS), OpenDayLight (ODL) and Cisco

OpenFlow Manager are considered. Theses technologies help enhance the network

throughput, maintain the connectivity to the migrated VMs, and eliminate any discon-

nection between the cloud users and the migrated VMs by redirecting and re-routing

the migrated VMs’ new locations.

Chapter 6

The enhancement of the basic design
on Packet

The implementation of the basic design has been introduced and evaluated on Amazon

EC2 and Packet bare metal cloud in Chapter 5 and 4. This chapter discusses the im-

plementation of the second stage, the enhancement of the basic design on Packet. In

particular, it illustrates how LivCloud is implemented in two different scenarios. The

first scenario deploys KVM bridge networking, OpenvSwitch and C scripts used to meet

the network configuration changes during the VMs relocating. This scenario achieves

better downtime of one second compared to the basic design of LivCloud. The second

scenario uses OpenVPN, OpenDayLight (ODL) and Cisco OpenFlow Manager (OFM)

to successfully live migrate VMs back and forth between LivCloud and Packet. This

scenario achieves better downtime between 400 and 600 milliseconds. As part of the

discussion, we propose a third potential scenario to successfully meet the live cloud mi-

gration requirements. This scenario aims to eliminate any downtime occurred in the first

two scenarios by utilizing the Open Overlay Router (OOR), Locator Identifier Separator

Protocol (LISP) and ODL.

The organization of this chapter is as follows. In Section 6.1, we present an introduction

of this chapter. We present LivCloud’s architecture that covers the enhancement of the

basic design in Section 6.2. We also highlight the experimental setup in this chapter.

We discus the implementation of the two live cloud migration scenarios on Packet and

the empirical results of the experiments in Section 6.3. In Section 6.4, we conclude this

chapter.

72

73

6.1 Introduction

Live migration across the Internet takes a notable amount of time due to transferring

the storage, limited Internet bandwidth, traffic re-routing, faulty behavior of Internet

links and IP address management [57, 119]. It must keep the existing connections of

the migrated VM to other VMs and cloud users. As a result, the live migration process

can maintain the continuity of delivering the hosted services on migrated VMs. Various

approaches from industry and academia have been proposed to improve live cloud mi-

gration of VMs at cloud IaaS [12, 16]. The implementation of those solutions are still

challenging because they are implemented on top of uncontrolled public cloud IaaS [1].

As a result, a number of approaches succeeded to overcome virtualization heterogene-

ity by devising Software Defined Networking (SDN) and nested virtualization [20, 22].

However, they suffer limitations in terms of flexibility (decoupling VMs from underly-

ing hardware), performance (migration downtime) and security (secure live migration).

Our proposed live cloud migration, LivCloud, considers these three criteria as critical.

It is designed over two stages, the basic design and its enhancement of the basic design.

The basic design has been implemented and evaluated in a previous paper [56].

The basic design evaluation outperforms a number of previous approaches in terms of

security and the migrated VMs hardware specifications (RAM & virtual disk sizes)

despite its relatively acceptable performance (downtime of 2 seconds).

In this chapter, the enhancement of the basic design is introduced and evaluated by con-

ducting live cloud migration in two different scenarios. Despite both scenarios achieve

better downtime than the basic design stage, Dynamic DNS and a script written in C are

still needed to successfully finish the process. As a result, a third potential scenario is

proposed to tackle these limitations of the first two scenarios by:

1. Using IPsec VPN and OpenvSwitch (OvS) [90].

2. Using OpenVPN Ethernet Bridging [120], OvS, Cisco OpenFlow Manager (OFM)

[8] and OpenDayLight (ODL) controller [121].

3. Introducing ODL, OvS, Locator Identifier Separator Protocol (LISP) [54] and

Open Overlay Router (OOR) [122].

With respect to security, IPsec VPN is used for the first time in such an environment

and it has no effect on performance. A study in [7] shows that fully live migrating VMs

74

with their virtual disks and large RAM is still an ongoing effort to tackle instability and

performance. Hence, the next step is implementing LivCloud using LISP, ODL, OvS

and OOR.

The literature review reveals that there are a number of approaches that aim to achieve

live cloud migration using SDN technologies such as OpenFlow protocol. In [53], an

SDN architecture named, LIME, is introduced to live-migrate VMs and virtual switches.

In [20], an interesting approach is introduced which is implemented on top of a number

of cloud providers, including Amazon EC2, Rackspace and HP Cloud. Another ap-

proach in [54] proposes an open LISP implementation for public transportation based

on Open Overlay Router with an SDN controller, OpenDayLight. In [57], Migration of a

VM cluster is suggested to various clouds based on different constraints such as compu-

tational resources and better economical offerings. It is designed based on SDN Open-

Flow protocol and allows VMs to be paired in cluster groups that communicate with

each other independently of the cloud IaaS. In [66], an IaaS framework with regional

datacentres for mobile clouds is presented. It is designed based on software-defined

networking (SDN) to address the network bandwidth consumption during migration.

Finally, virtual network migration is designed and tested on the Global Environment for

Networking Innovation (GENI) [58, 59] which is Wide-Area SDN-enabled infrastruc-

ture. All these approaches are disused in more detail in Chapter 2.

6.2 The final configurations of LivCloud

The LivCloud design is distilled into two stages: basic design and the enhancement of

the basic design [7]. The basic design stage helps connecting the local network to the

cloud IaaS through nested virtualization and secure network connectivity. Firstly, nested

virtualization is achieved by configuring QEMU-KVM on the local network and pub-

lic cloud IaaS. Nested virtualization is configuring one hypervisor (in the upper layer)

within a virtual machine hosted on another hypervisor [24]. Most of legacy hypervi-

sors, such as QEMU-KVM, Xen and VMware can run nested virtualization [25, 47].

LivCloud uses QEMU-KVM as a hypervisor on both sides. Virtual machine manager

is a user interface for managing virtual machines mainly on QEMU-KVM. Any phys-

ical or virtual machine that has QEMU-KVM configured can be connected locally or

remotely over SSH to virtual manager [89]. The basic design has been implemented

and tested on Amazon EC2 [56].

75

At this development stage, an enhancement of basic design of LivCloud is implemented.

It deploys various technologies such as OpenDayLight (ODL), OpenFlow and LISP

protocols to:

1. Enhance network throughput.

2. Maintain VMs connections and configurations.

3. Reserve resources and prediction of potential failure.

Figure 6.1 shows the final configurations of LivCloud. Live cloud migration is imple-

mented and evaluated in Scenario 1 and Scenario 2. The next section explains these

scenarios in more detail. Both scenarios are built and tested on a general experimental

setup that can be distilled as follows:

1. QEMU-KVM is enabled on the local network and public cloud IaaS. QEMU-

KVM supports running modified and unmodified OS. QEMU has high emulation

capability of drivers (i.e network card driver) and KVM provides high accelera-

tion to enhance drivers performance. Also, KVM needs to access the underlying

CPU architecture to pass it to the virtualized CPU of the hosted VMs [7, 17].

2. IPsec VPN tunnel is configured to secure the migration. The secure connection

between local network and Packet’s network is an essential part of live cloud

migration.

3. Both sides are connected to Virtual Machine Manager (VMM) [89] in order to

live migrate VMs between the local network and cloud IaaS.

4. Both sides are connected to the shared storage on the local network.

5. Dynamic DNS is used to maintain the migrated VM’s connections and configura-

tions. Dynamic DNS is used to keep a domain name pointing to the same physical

or virtual server connected to the Internet regardless of any IP addresses changes

[104].

76

Figure. 6.1 The final configuratrion of LivCloud [7]

6.3 Live cloud migration scenarios

Two different live cloud migration scenarios are implemented and evaluated in this sec-

tion. These scenarios are chosen to cover the potential solutions of live cloud migration.

These solutions may help cloud users live migrate their VMs without any extra costs.

6.3.1 The general experimental setup

This setup is used in both scenarios and some elements may be added or removed ac-

cordingly. To implement the general setup, a local network (172.16.10.0/24) based in

Bournemouth (UK) which has two physical servers (Local-Host and NFS server) is

connected to a Ubuntu server (Cloud-Host) 14.04 (private address, 172.20.20.0/24) on

Packet’s datacentre in Frankfurt (Germany). Moreover, Network throughput, CPU uti-

lization, network latency, migration downtime and disk I/O performance are the main

parameters used to analyze the live migration impact. Network throughput is measured

using iPerf [97], while network latency is measured by pinging the migrated VM’s

DNS record. Disk I/O performance is tested on Local-Host and Cloud-Host using hd-

parm command [99]. If any downtime happens during the process, Wireshark is used

to calculate it [98].

Packet Bare Metal Cloud provides customers with dedicated single tenant-physical

servers [109]. The bare metal server complements or substitutes virtualized cloud ser-

vices with a dedicated server that eliminates the overhead of virtualization, but main-

tains flexibility, scalability and efficiency [115]. Figure 6.2 shows the enhancement

77

Figure. 6.2 The enhancement implementation on Packet

implementation on Packet.

The lab setup as shown in Figure 6.2 consists of one HP Z440 workstation, Local-Host

is connected to the Internet through EdgeRouter X and Netgear L2 switch providing

1 Gbps. The workstation has 32 GB of RAM, 1TB disk and 4-core 2.8GHz Intel(R)

Xeon(R) E5-1603 v3 CPU. 64-bit Ubuntu Server 16.04 LTS, QEMU-KVM (Layer 1

hypervisor), OpenvSwitch (OvS) and QEMU-KVM bridged networking are installed

and configured on the machine [10]. OvS has flow classification, caching and better

performance over the traditional Linux Bridge. Moreover, it has its own load balancer

which is used to distribute loads across available routes [90].

The other machine on the private network is configured as NFS server (FreeNAS 9.3)

for the lab. The Packet 64-bit Ubuntu TYPE 1E server 14.04, Cloud-Host is connected

through two bonded network cards providing 20 Gbps. The server has 32 GB of RAM,

240 GB disk and 4-physical core 2.0GHz/3.4GHz burst Intel E3-1578L v3 CPU. By

default nested virtualization or hardware-assisted virtualization features (Intel VT-x,

Intel VT-d and Extended Page Tables) are enabled on any Packet server [115]. QEMU-

KVM (Layer 2 hypervisor), OpenvSwitch (OvS) and QEMU-KVM bridged networking

are installed and configured on the server.

Packet offers various types of bare metal servers including, Type 1 and Type 1E servers

which both have similar hardware specifications as specifications of Local-Host [115].

78

As a result, the live migration has no issues in terms of hardware architecture. Previ-

ously, Type 1 in Packet’s datacentre in Amsterdam, Holland, was used in implementing

the basic design of LivCloud. However, KVM NAT networking had to be configured

instead of the bridged option. Packet does not allow layer 2 networking in this type.

This made the migration process more complicated in terms of VMs’ networking and

IPsec VPN configurations.

Type 1E Server is deployed and KVM bridge is possible thanks to the configuration

with spare Ethernet network card (eth1) [115]. Layer 2 bridge is implemented through

this interface and the cloud private network (172.20.20.0/24) is installed as shown in

Figure 6.2. Many configurations are carefully considered including PAT behind the

server’s public IP and enabling IPv4 forwarding to have the bridge functions correctly.

Appendix C.1 shows IPtables configurations which are a crucial part for enabling IPv4

forwarding between both sides.

Any VM on either Local-Host or Cloud-Host can be configured with a local disk or a

disk hosted on the local network NFS server. The local network and the Packet pri-

vate network are securely connected via IPsec VPN tunnel. Local-Host and Cloud-host

are connected through the tunnel via the virtual machine manager that is installed on

Local-Host. In the case of Local-Host being temporarily not accessible, both hosts can

still be connected via the virtual machine manager installed on Cloud-Host. A remote

Ubuntu desktop is installed on Cloud-Host using VNC server (vnc4server) and through

TightVNC, cloud users can be remotely connected to Cloud-Host [117].

At this setup, Dynamic DNS is used to maintain the migrated VMs’ connections and

configurations. Dynamic DNS is used to keep a domain name pointing to the same phys-

ical or virtual server connected to the Internet regardless of any IP addresses changes

[104]. no.ip is a dynamic DNS provider that is chosen to register the DNS records.

Dynamic DNS clients (noip-2.1.9-1) are installed and configured on all migrated VMs

[109]. Dynamic DNS records are used to maintain the existing connections to the mi-

grated VMS. VMs’ dynamic DNS records are registered on the dynamic DNS provider,

noip [109] associated with either the public IP of Local-Host or Cloud-Host. Once the

migration to the host is completed, the dynamic DNS client installed on the migrated

VMs updates the provider with this host’s public IP, so that the name records are up-

dated accordingly. The other VMs and the cloud users are connected to these records

not to the IP addresses. Therefor, any changes of public and private IP addresses, the

79

DNS client updates the records accordingly. Table 6.1 shows the migrated VMs’ speci-

fications, VMs’ architecture and associated DNS names. As far as the related literature

is concerned, the VMs’ specifications are the highest in this environment.

Table. 6.1 Migrated VMs’ specifications and DNS names

DNS records VM’s
Architecture vCPU RAM (GB) Virtual

disk (GB)
Shared disk/
non-Shared

ub-NonShared-2.ddns.net 64-bit 2 2 12 Non-Shared
ub-shared-2.ddns.net 64-bit 2 2 15 Shared
ub-shared-3.ddns.net 64-bit 2 3 15 Shared
ub-shared-4.ddns.net 64-bit 2 4 15 Shared

xp-NonShared-2.ddns.net 32-bit 2 2 10 Non-Shared
xp-shared-2.ddns.net 32-bit 2 2 15 Shared
xp-shared-3.ddns.net 32-bit 2 3 15 Shared

6.3.2 Scenario 1:

The general setup described in Section 6.3.1 is used in this scenario without adding any

technology to successfully live migrate the VMs mentioned in Table 6.1. QEMU-KVM

supports live migration with different networking options, including bridged network

and NAT network. Bridge network has successfully been implemented as mentioned in

Section 6.3.1. Packet offers various server types including 1E server that its networking

setup allows OpenvSwitch and the bridge configurations. QEMU-KVM live migration

copies the RAM and CPU states over a number of iterations while the OS and the

applications are running. This means the drivers’ states, such as network cards (NICs)

stay as they are on the sender side [56]. The migrated VMs’ NICs are configured to

request IP addresses from the NAT’s DHCP server. During the migration, the VMs’

NICS need to be triggered to renew their IPs on the receiver’s network. To this end,

we have written a script in C language to be run on Windows or Linux to enable the

following:

1. Continuously testing the Internet connectivity by pinging Google server (8.8.8.8).

If connectivity is maintained, the script does nothing.

2. If the connectivity is lost, the script forces the migrated VM to renew the IP

address and trigger the dynamic DNS client to update the VM’s record on the

noip.

The script has the following structure:

80

Algorithm 4 Steps of C script in Scenario 1
1: Input:
2: while (true) do
3: Sleep (T)
4: if connection to 8.8.8.8 is false then
5: if (Operation System is Windows) then
6: - Trigger the network card to renew its IP address
7: - Re-run Dynamic DNS client
8: else if (Operation System is Unix) then
9: - Trigger the network card to renew its IP address

10: - Re-run Dynamic DNS client
11: end if
12: end if
13: end while

The total migration time varies because of the VM’s hardware specifications and the

Internet traffic. For example, live migrating the Ubuntu VM (ub-shared-4: 4GB RAM &

2 vCPU) takes on average about 7 minutes in terms of migration time. The XP VM (xp-

shared-2: 2 GB RAM & 2vCPU) takes about 3 minutes. Unfortunately, the migration

process does not yield the desired results in case of xp-shared-3 and xp-NonShared-2.

However, the migration downtime in other VMs migration is just under one second due

to the latency in updating the public IP and the DNS records.

Figure. 6.3 A direct ping latency & IPsec VPN latency

81

Due to the extra overhead processing and migration downtime added by security mech-

anism, such as IPsec to live migration, it has been avoided in many live cloud migra-

tion approaches. The downtime is increased about 5 times when IPsec added to live

migration as the study in [88] shows. The study illustrates the increase of both mi-

gration downtime and total time migration, from less than two seconds to almost 8

seconds downtime when IPsec VPN is implemented. However, by comparing a direct

ping through the Internet to Cloud-Host’s public IP and ping to Cloud-Host’s private IP

(172.20.20.1) through the IPsec tunnel from Local-Host, the round trip time (RTT) is

almost identical in the first and the second scenarios. In fact, the connection through the

tunnel is slightly faster. Figure 6.3 shows a direct ping latency & IPsec VPN latency .

Due to the extra overhead processing and migration downtime added by security mech-

anism, such as IPsec to live migration, it has been avoided in many live cloud migration

approaches. The downtime is increased about 5 times when IPsec is added to live mi-

gration as in [88]. The study illustrates the increase of both migration downtime and

total time migration, from less than 2 seconds to almost 8 seconds downtime when

IPsec VPN is implemented. However, by comparing a direct ping through the Internet

to Cloud-Host’s public IP and ping to Cloud-Host’s private IP (172.20.20.1) through the

IPsec tunnel from Local-Host, the round trip time (RTT) is almost identical in the first

and the second scenarios. In fact, the connection through the tunnel is slightly faster.

Figure 6.3 shows A direct ping latency & IPsec VPN latency.

6.3.3 Scenario 2:

We update the general setup with the following technologies, OpenVPN [120], Cisco
OpenFlow Manager (OFM) [8] and Zodiac-FX OpenFlow switch [123]. Figure 6.4

shows the changes made in this scenario. OpenVPN has the ability to extend one net-

work across multiple sites (Ethernet bridging) [120]. The local network (172.16.10.0/24)

is extended to the cloud network, so the migrated VM has an IP address within the lo-

cal network range. OFM is connected to OpenDaylight controller through RESTCONF

API [8] to re-route the migrated VM internally and Dynamic DNS is used to re-route it

externally. This scenario uses OpenVPN tunnel instead of IPsec tunnel. The local net-

work (172.16.10.0/24) is extended using OpenVPN across to Packet’s private network

(172.20.20.0/24) using TAP interface [120]. Zodiac switch is added to the general

topology to configure OF protocol. Zodiac switch is connected to ODL [123]. Then,

OFM is connected to ODL using RESTCONF API which is an application developed

82

Figure. 6.4 The enhancement implementation on Packet using OpenVPN

by Cisco to run on top of ODL. It visualizes OpenFlow topologies, its program paths

and gather its stats [8]. Figure 6.5 shows how OFM is connected to ODL. By config-

uring OFM, any changes of VMs or hosts location can be re-routed internally through

Zodiac switch. However, Dynamic DNS is still needed to re-route the VMs’ location

to external users. Also, during the migration, the VMs’ NICS and OpenVPN client file

need to be triggered to renew their IPs on the receiver’s network and update the Open-

VPN configurations. This requires the modification of the C script used in Section 6.3.2

to yield the desired results.

During the evaluation process, OpenVPN bridging, OFM and the modified script are

Figure. 6.5 The connection between OFM and ODL [8]

83

proved to function slightly better than the previous scenario. For example, live migrat-

ing the Ubuntu VM (ub-shared-3: 3GB RAM & 2 vCPU) takes on average about 5

minutes in comparison to 7 minutes in the scenario 1. The XP VM (xp-shared-2: 2 GB

RAM & 2vCPU) takes about the same time as the scenarion 1, 3 minutes. Similar to

the scenario 1, the migration process does not yield the desired results when live mi-

grating xp-shared-3 and xp-NonShared-2. However, the migration downtime in other

VMs migration mentioned in Table 6.1 is between 400 and 600 milliseconds due to the

latency in updating the public IP and the DNS records. The downtime is about 1 sec-

ond in Scenario 1. Moreover, OpenVPN Bridging has limitations in terms of scalibility

and Maximum Transmission Unit (MTU) tuning [20, 120]. The updated version of the

script has the following structure:

Algorithm 6 Steps of C script in Scenario 2
1: Input:
2: while (true) do
3: Sleep (T)
4: if connection to 8.8.8.8 is false then
5: if (Operation System is Windows) then
6: - Trigger the network card to renew its IP address
7: - Re-run OpenVPN client
8: - Re-run Dynamic DNS client
9: else if (Operation System is Unix) then

10: - Trigger the network card to renew its IP address
11: - Re-run OpenVPN client
12: - Re-run Dynamic DNS client
13: end if
14: end if
15: end while

6.3.4 Simulation results

First, we compare Scenario 2 against Scenario 1 with respect to network throughput,

network latency, CPU overhead and disk I/O performance. In both scenario, the exper-

iments results are the average of conducting the experiment of a total of 15 runs. In

terms of the experiment times, it is done during the morning, afternoon and during the

night. This approach is used in any experiments carried out in this research.

Then, live migration of the Ubuntu VMs and XP VMs mentioned earlier is performed

back and forth between Local-Host and Cloud-Host in both scenarios. Only the most

84

notable statistics are summarized in Figure 6.6. In summary, deploying OpenVPN

Bridging is proved to outperform using only IPsec tunnel in all evaluation aspects.

Figure 6.6(a) shows that the network throughput is considerably affected in the first

scenario than the second scenario. In the first scenario, when migrating ub-share-3 VM

that has 3GB RAM, the network throughput VM is more affected than ub-shared-4 that

has 4GB RAM. It is most likely due to the Internet congestion at that time.

(a) Network throughput (b) Network latency

(c) CPU overhead (d) Disk I/O performance

Figure. 6.6 Simulation outcome

In the second scenario, when the VM’s hardware size is larger the network throughput

decreases. In particular, Figure 6.6(b) shows that there is notable increase in network

latency during live migration ub-shared-4 VM in both scenarios because this VM has

the largest RAM size, 4GB. The total migration time reaches about 7 minutes in the first

scenario and 5 minutes in the second. In case of ub-shared-2 & 3, the network latency

is fairly better in the second scenario than the first one.

Figure 6.6(c) shows that CPU load increases by about 39% in Scenario 1 and by 38%

in the second one during live migration ub-shared-4. Figure 6.6(d) shows that I/O per-

formance of disks of Local-Host and Cloud-Host are slightly effected by the migration

85

process in both scenario. However, It is affected more by the first scenario than the

second one.

As mentioned earlier, in Scenario 1 there is downtime of roughly 1s during live mi-

gration back and forth between the two hosts. The downtime in the second scenario

is between 400 to 600 milliseconds, which means using OpenVPN bridging is slightly

faster. Table 6.2 shows a comparison between the scenario in Chapter 5 and the two

scenarios in this chapter.

Table. 6.2 Summary of analysis results

Scenario in
Chapter 5 Scenario 1 Scenario 2

Criterion Details Criterion Details Criterion Details

F1 X

Heterogeneous Hardware
(CPU architecture

(i.e. flags)
& Disk I/O drivers)

X

Heterogeneous Hardware
(CPU architecture

(i.e. flags)
& Disk I/O drivers)

X

Heterogeneous Hardware
(CPU architecture

(i.e. flags)
& Disk I/O drivers)

F2 X
Unmodified (Windows) &

Modified (Linux) X
Unmodified (Windows) &

Modified (Linux) X
Unmodified (Windows) &

Modified (Linux)

F3 X
Table 5.1 shows

VMs’ specs X
Table 6.1 shows

VMs’ specs X
Table 6.1 shows

VMs’ specs

P1 X
Relatively acceptable

(∼ 2 seconds downtime) X
Acceptable

(∼ 1 second downtime) X
Acceptable

(400-600ms downtime)
P2 × – × – × –
P3 × – × – × –

S1 X
IPsec AES-128 for

encryption X
IPsec AES-128 for

encryption X
IPsec AES-128 for

encryption

S2 X
IPsec Diffie-Hellman

and shared key for
authentication

X
IPsec Diffie-Hellman

and shared key for
authentication

X
IPsec Diffie-Hellman

and shared key for
authentication

6.4 Conclusion

LivCloud is designed to overcome the limitations of previously proposed live cloud

migration approaches. The evaluation of enhancement design on Packet shows that

live cloud migration can be improved by using various techniques such as, OpenVPN

and Software Defined Network (SDN). Also, the evaluation shows the migrated VMs’

RAM and disks sizes are larger than the previous stage of LivCloud and any previous

approaches. Moreover, this stage performance outperforms any previous approaches.

However, there is still improvement needed in maintaining the connectivity to the mi-

grated VMs without using extra techniques such as Dynamic DNS. The migration

downtime is most likely due to the time needed by Dynamic DNS to be propagated

across both sites.

86

In a nutshell, we show: (i) performing two successful live cloud migration scenarios;

(ii) considering the migrated VM’s architecture (32 or 64-bit) and hardware specifica-

tions, (iii) deploying ODL and OFM in such environment and (iv) using a customized

script to dynamically change network configurations and re-run the OpenVPN.

The next step of running LivCloud on Packet is to implement and evaluate Scenario

3 that is explained in the next chapter. It includes configuring LISP protocol on the

OOR to eliminate the need for the customized script and Dynamic DNS. This scenario

helps enhance the network throughput, maintain the connectivity to the migrated VMs

and eliminate any disconnection between the cloud users and the migrated VMs by

redirecting and re-routing the migrated VMs’ new locations based on LISP and ODL

LISP mapping feature.

Chapter 7

Conclusions and Future Work

This chapter summarizes the contributions of this dissertation and discusses the future

directions. The thesis’s aim is, to live migrate of VMs across various cloud providers’

IaaS with minimal services disruption. To successfully achieve this aim, a number of

objectives are considered. They are represented by live cloud migration criteria that

consist of flexibility, performance and security criteria. Each criteria have a number

of subcriteria, every subcriteria represent an objective towards achieving the main aim.

In terms of flexibility, there are three subcriteria; firstly, decoupling the migrated VM

from underlying system by supporting wide range of hardware drivers, such as CPU

drivers; secondly, supporting various OS on the migrated VM, for instance, Windows;

thirdly, considering the migrated VMs hardware specifications including RAM and hard

disk size and their architecture, 64 or 32 bit. There are three performance subcriteria:

firstly, live migration must be imperceptible to the migrated VM and its users; secondly,

predicting the required resources to decide whether or not to proceed with live mi-

gration; thirdly, monitoring resource utilization to avoid over utilization and to predict

any possible failure. With respect to security, there are security two subcriteria, firstly,

maintaining data privacy during live migration using encryption; secondly, imposing

authentication during migration.

7.1 Contributions

The research questions that this thesis revolves around achieving live cloud migration

of VMs across public cloud IaaS. Many similar studies have been done in such an

environment from both industry and academia. Also, Many standards bodies (IEEE,

87

88

NIST, DMTF and SNIA) have been pursuing standards to reduce the impact of vendor

lock-in. Cloud providers offer their IaaS services based on virtualization to enable

multi-tenant and isolated environments for cloud users. Currently, each provider has its

own proprietary virtual machine (VM) manager, called the hypervisor. This has resulted

in tight coupling of VMs to their underlying hardware hindering live migration of VMs

to different providers. A number of user-centric and provider-centric approaches have

been proposed to solve this issue.

The main contributions have been the result of four scenarios explained across five

chapters answering the research questions. The core idea of these scenarios is to suc-

cessfully live migrate VMs across various cloud providers with respects to flexibility,

performance and security. The process must be done without extra cost and cloud users

intervention or their awareness. In order to compare our approach, LivCloud to previous

live cloud approaches [20–22], we used live cloud migration criteria mentioned in Table

2.2. Table 7.1 provides a summary of the comparison results between these approaches

and LivCloud. Despite the relatively acceptable performance, LivCloud has deployed

a better security mechanism than the previous approaches. Moreover, using the secu-

rity mechanism has not affected the migration performance. Moreover, the migrated

VMs’ hardware specifications in respect to RAM and disks sizes are larger than the mi-

grated VMs in these approaches. The implementation and the evaluation of LivCloud

are explained in Sections 5.4 and 6.2.

Table. 7.1 Summary of analysis results

Supercloud [20] Kangaroo [21] HVX [22] Our approach [7]
Criterion Details Criterion Details Criterion Details Criterion Details

F1 X

Heterogeneous Hardware
(CPU architecture

(i.e. flags)
& Disk I/O drivers)

X

Heterogeneous Hardware
(CPU architecture

(i.e. flags)
& Disk I/O drivers)

X

Heterogeneous Hardware
(CPU architecture

(i.e. flags)
& Disk I/O drivers)

X

Heterogeneous Hardware
(CPU architecture

(i.e. flags)
& Disk I/O drivers)

F2 × Only modified O/S
(Linux) × Only modified O/S

(Linux) X
Unmodified (Windows) &

Modified (Linux) X
Unmodified (Windows) &

Modified (Linux)

F3 × – X 3.2GB virtual disk × – X
Table 6.1 shows

VMs’ specs

P1 X
Relatively acceptable

(∼ 1.4 seconds downtime) X
acceptable

(no downtime) X
acceptable

(no downtime) X
Relatively acceptable

(∼ 2 seconds downtime)
P2 × – × – × – × –
P3 × – × – × – × –

S1 × – × – × – X
IPsec AES-128 for

encryption

S2 × – × – × – X
IPsec Diffie-Hellman

and shared key for
authentication

The main outcome is summarized in the next section.

89

7.2 Main outcome

• Contribution 1: the fist research question, identifying the key challenges and fac-

tors to successfully perform live migration of VMs across different cloud IaaS, is

answered across Chapter 1 and Chapter 2. The outcomes of these chapters are,

highlighting the challenges facing the cloud computing at the infrastructure level,

a proposal of live cloud migration criteria which are in three categories, flexibility,

performance and security. The criteria are the solid foundation on which we eval-

uate the effectiveness of previous live cloud migration approaches and design our

approach, LivCloud. Furthermore, across these chapters, we discus the analysis

results of certain user-centric approaches that are similar to our approach.

• Contribution 2: the second research question, identifying the limitations of ex-

isting live cloud migration approaches and how to design efficient live cloud mi-

gration using up-to-date technologies, is answered across Chapter 2 and Chapter

3. An introduction of our live cloud approach, LivCloud components and how

they should interoperate with each other to help the approach function correctly

as intended. LivCloud design is distilled into two stages, the basic design and

the enhancement of the basic design. Experimental results within the LAN envi-

ronment help to validate the different components of the design. As part of the

experiment, live migration between two different virtualization platforms is eval-

uated and tested in order to find out how difficult the process across the cloud

is.

• Contribution 3: the third research question, how can our approach, LivCloud be

assessed on different public cloud IaaS , chapters 4, 5 and 6 explain in detail how

this question is answer as follows.

1. Implementing the basic design of LivCloud on Amazon EC2 infrastructure.

The outcome of this chapter explain various challenges to successfully ap-

ply the approach on Amazon. Experimental results on Amazon M3 and C4

instances show the practicality of implementing the proposed design. Al-

though, the networking complexity is dealt with here and the connection is

secure, enabling nested virtualization on Amazon is proved to be still chal-

lenging. Application and developed model, such as VMware, HQEMU and

various coding are used to efficiently enable nested virtualization, but none

of them yield the desired result.

90

2. Implementing the basic stage of our approach on Packet bare metal cloud.

This stage is evaluated and tested based on KVM NAT, Linux Bridge and

other open-source technologies. Due to using NAT and Internet congestion,

the down time (about 2 seconds) is quite notable in this implementation.

3. Implementing the enhancement stage of LivCloud. It gives a better results

in terms of down time. Two scenarios are tested and evaluated, scenario 1

has down time of about 1 second and scenario 2 achieves better performance

of 400 to 600 milliseconds down time.

7.3 Future work

In this section, we discuss the limitations of the all scenarios in this thesis and propose

an alternative potential scenario that copes with these limitations that can be imple-

mented in the near future.

7.3.1 The limitations of scenarios

To successfully finish the live migration, a number of steps have to be considered includ-

ing Dynamic DNS, the C script and OpenVPN. Yet, there are still challenges to VMs

relocating and migration downtime. In a nutshell, we have to implement the following

steps to achieve successful migration and maintain the downtime as low as possible:

1. Configuring Dynamic DNS on the migrated VMs and the DNS provider to main-

tain the external and the internal connections to other VMs and cloud users. As

shown in Section 6.3.4, there is still downtime in both scenarios because of up-

dating and propagating any change in Dynamic DNS records.

2. Using the C script to cope with any change in network configurations helps update

DNS name records and re-initiate OpenVPN in Scenario 2. These changes should

have dynamically happened without any script.

Based on these limitations, the next section discusses two potential scenarios that cope

with any of the mentioned challenges.

91

Figure. 7.1 The potential solution on Packet

7.3.2 Future scenario 1:

To improve LivCloud downtime and cope with VMs relocation, an alternative scenario

is being investigated. This scenario adds to the general setup Open Overlay Router

(OOR) that can be configured to run Locator Identifier Separator Protocol (LISP), OvS,

ODL and Cisco OFM. OOR, which is an open source software router to deploy pro-

grammable overlay networks. OOR runs LISP to map overlay identifiers to underlay

locators and to dynamically tunnel overlay traffic through the underlay network [122].

Figure 7.1 shows the scenario design.

LISP creates two different namespaces: endpoint identifiers (EIDs) and routing locators

(RLOCs). Each host is identified by an EID, and its point of attachment to the network

by an RLOC. Traffic is routed based on EIDs at LISP sites and on RLOCs at transit

networks. At LISP site edge points, ingress/egress tunnel routers (xTRs) are deployed

to allow transit between EID and RLOC space.

LISP follows a map-and-encap approach. EIDs are mapped to RLOCs and the xTRs

encapsulate EID packets into RLOC traffic. LISP introduces a publicly accessible Map-

ping System, which is a distributed database containing EID-to-RLOC mappings. The

Mapping System consists of both Map-Resolvers (MRs) and Map-Servers (MS). Map-

Servers store mapping information and Map-Resolvers find the Map-Server storing a

specific mapping [124].

92

OpenDayLight controller can use the northbound REST API to define the mappings

and policies in the LISP Mapping Service. OOR can leverage this service through a

southbound LISP plugin. It must be configured to use this OpenDayLight service as

their Map Server and/or Map Resolver. The southbound LISP plugin supports the LISP

control protocol (Map-Register, Map-Request, Map-Reply messages) and can also be

used to register mappings in the OpenDayLight mapping service [125]. Each VM is

assigned an EID, which represents the private IP address and RLOC which represents

the public IP address. When the migration occurs the RLOC is maintained and the EID

is updated through ODL LISP Mapping Service, MRs and MS servers.

The OOR configuration includes setting up two overlay networks, EID prefix (10.16.10.0/24)

on the local network and EID prefix (192.168.20.0/24) on the cloud network. At this

development stage, Packet’s architecture does not allow configuring those prefixes. The

configurations need flexibility in layer 2 networking, which is not possible on Packet’s

datacenters in either Amsterdam or Frankfurt. Both datacentres are the closest to Liv-

Cloud’s location, Bournemouth, UK. Layer 2 networking is being considered in both

centres very soon.

7.3.3 Future scenario 2:

Having evaluated different scenarios in Chapters 3, 4, 5 and 6 of both LivCloud’s stages,

the optimized and final design has become clearer in terms of the required technologies

and their customized configurations. This design has the potential solution of the mi-

gration downtime and any possible VM hardware failure.

The scenario explained in Section 7.3.2 has been implemented and tested in a number

of attempts, none of them yield the desired results. However, if there was cooperation

with the OOR router developers, the desired results would have obtained. Therefore,

upon successfully completing this scenario, other technologies explained in Chapter 3,

including OpenStack dashboard (Horizon), OpenStack orchestration (Heat), UDT pro-

tocol and MPLS, can be integrated to improve the GUI interface, resource management

and predication, and performance of live cloud migration.

Configuring OpenStack Horizon needs installing storage node, networking node, iden-

tity services (Keystone) and compute node. Cloud-Host and Local-Host are connected

through the compute node [9]. Figure 7.2 shows a high level of how various design’s

93

Figure. 7.2 LivCloud future architecture [9]

components are connected using OpenStack Horizon and other OpenSatck’s compo-

nents [9]. The figure shows how Cloud-Host and Local-Host are configure as Compute-

1 and Compute-2 nodes in OpenStack dashboard, Horizon. As result, live migration is a

Horizon component that it instructs both nodes’ hypervisors to perform migration back

and forth. Moreover, the figure shows the following components [9, 126]:

• Identity services(Keystone): it is an OpenStack identity service that manages user

databases and OpenStack service catalogues and their API endpoints. It integrates

with existing directory services like LDAP and supports multiple authentication

mechanisms, such as username-and-password and token-based systems. It has

different components including, user, tenant, role, credentials, authentication, to-

ken, service and endpoint.

• Object storage(Swift): it provides a cost effective, scalable and fully-distributed

API-accessible storage platform that can be integrated directly into applications

or used for backup, archiving and data retention. It is equivalent to Amazons S3.

• Image service(Glance): it stores virtual machine images in a number of formats.

These images are used by compute service to create instances. It is comparable

to Amazon Machine Image (AWS AMI).

• Block storage(Cinder): it provides persistent block storage to guest virtual ma-

chines for expanded storage, better performance and integration with enterprise

storage platforms. It is comparable to Elastic Block Storage(AWS EBS).

94

Figure. 7.3 The future implementation of LivCloud

• Networking(Neutron): it enables network connectivity interface devices managed

by Compute. It enables users to create and attach interfaces to networks. It cor-

responds to AWS Networking, but it is more complicated and it needs more con-

figurations. I the context of this research, we have worked with both networking

and AWS networking is more flexible in terms of customization such as adding

and removing any virtual network interface.

• Compute(Nova): it provisions instances on user demand. It supports most virtual-

ization technologies. It provides similar functions to Amazon’s Elastic Compute

Cloud (EC2).

Figure 7.3 highlights technologies mentioned in Chapter 3 and this scenario’s tech-

nologies combined together to achieve successfully live cloud migration. The server

versions of all OpenSatck’s components installed on the Management-Host, but the

client versions are configured on the Cloud-Host and Local-Host. Once, the configura-

tions are done correctly, Cloud-Host and Local-Host appear in the OpenStack’s dash-

board as Compute-1 and Compute-2 respectively. Every technology on this design ac-

commodates subcriteria or criteria in live cloud migration criteria. LivCloud basic de-

sign needs nested Virtualization which is achieved by customizing QEMU-KVM pack-

age(performance criteria, F1, F2 & F3) and network connectivity which is achieved by

configuring OpenStack’s components and VPC IPsec(P1, S1 & S2).

95

With respect to the enhancement stage, enhancing network throughput that can be

achieved by configuring OvS, MPLS & UDT (Enhancing performance subcriteria, P1);

maintaining the migrated VMs connections and configurations by installing LISP Flow

Mapping and ODL Inter SDN Controller Communication on ODL as well as config-

uring LISP on OOR routers(Enhancing performance subcriteria, P1); reserving the re-

quired migration resources and prediction of potential failure by installing OpenStack

orchestrator, Heat(performance subcriteria P2 & P3).

Appendix A

This appendix highlights configurations related to Chapter 4 including, how Amazon

C4 instance had the hardware-assisted virtualization enabled until 20/05/2016 as shown

in Figure A.1, networking customization and HQEMU configuration issues.

A.1 C4 instance specifications

Amazon cloud provider offers various EC2 instances (VMs) including general purpose

(T & M) and compute optimized (C4 & C5) [127]. In 2015, Amazon announced the

availability of C4 instance with certain specifications, including hardware-assisted vir-

tualization [128]. Figure A.1 shows these specifications, which were available on Ama-

zon’s website until 20/05/2016. In Section 4.4, we prove that the C4 instance does

not have any virtualization related feature by running the related Linux commands and

installing KVM that needs these features to run correctly. It would have been very

promising from the research perspective to have these features enabled.

96

97

98

Figure. A.1 C4 instance specifications

A.2 Networking

As mentioned in Section 4.1 regarding adding another interface to the EC2 instance.

This interface needs to be bridged to Linux Bridge, br0, so the migrated VMs can attain

99

private IP address from Amazon DHCP server. Figure A.2 shows the required configu-

rations to bridge br0 through eth1.

Figure. A.2 Network configuration of the hosted instance, C4

To attach the bridge, br0 to the instance, the following steps and commands are consid-

ered:

1. Create a config file for the eth1 and br0 interfaces:

cp /etc/network/interfaces.d/eth0.cfg /etc/network/interfaces.d/eth1.cfg

cp /etc/network/interfaces.d/eth0.cfg /etc/network/interfaces.d/br0.cfg

2. Create a custom route table named, out by adding this line, 200 out is added to

rt tables file:

nano /etc/iproute2/rt_tables

3. Add a rule to route eth1 traffic via default gateway:

ip route add default via 10.20.0.1 dev br0 table out

100

4. Add routing rules to route all traffic from/to br0 IP address, which is assigned to

the br0 interface, via the out routing table:

ip rule add from 10.20.0.11/32 table out

ip rule add to 10.20.0.11/32 table out

ip route flush cache

Also, the migrated VMs’s networking configurations have to be customized as well.

Figure A.3 shows these configurations of XP VM.

Figure. A.3 Network configuration of a migrated VM, XP on C4 instance

Upon successfully adding the bridge interface, the second step is, to configure NATting

between the original interface of the instance, eth0 and br0.

A.3 HQEMU configuration issues

Prior to HQEMU installation and configurations, the instance’s kernel has to be recom-

piled to facilitate HQEMU function on the instance. Figure A.4 highlights the main

101

commands to perform this operation. This operation takes on average between an hour

and half and two hours. In the context of this project, this process has been done tens of

times.

Figure. A.4 The Linux commands to recompile the kernel prior to HQEMU configu-
ration

Appendix B

This Appendix highlights OpenSwan IPsec VPN configurations on Packet. These con-

figurations are used in Chapter 5 and Chapter 6. Also, a number of screen shots of live

migrating Ubuntu VM from Cloud-Host to Local-Host are shown in this appendix.

B.1 OpenSwan configuration on Packet

After installing OpenSwan on Cloud-Host, the following files are configured as follows:

1. ipsec.config:

• config setup

– nat traversal=yes

– oe=off

– protostack=netkey

– force keepalive=yes

– keep alive=60

– nhelpers=0

• conn Packet2LocalConnection

– left=10.80.135.131

– leftsubnet=10.80.0.0/16,172.20.20.0/24

– leftid=Packet public IP

– leftsourceip=10.80.135.131

– leftnexthop=Local network public IP

– right=Local network public IP

102

103

– rightsubnet=172.16.10.0/24

– rightid=Local network public IP

– type=tunnel

– keyexchange=ike

– ikelifetime=480m

– keylife=60m

– ike=aes128-sha1;modp1024!

– phase2=esp

– phase2alg=aes128-sha1;modp1024

– pfs=yes

– forceencaps=yes

– authby=secret

– auto=start

2. ipsec.secrets:

include /var/lib/openswan/ipsec.secrets.inc

Local network public IP Packet public IP: PSK ”PaSSwOrD”

3. rc.local:

• iptables -t nat -A POSTROUTING -s 10.80.0.0/16 ! -d 172.16.10.0/24 -o

bond0 -j MASQUERADE

• iptables -t nat -A POSTROUTING -s 172.30.255.0/24 ! -d 172.16.10.0/24

-o bond0 -j MASQUERADE

B.2 Screenshots of live migration attempts

The following figures show different points in time until Ubunt VM migrated between

Cloud-Host to Local-Host.

104

Figure. B.1 Live migration of Ubuntu VM at various points of time

Appendix C

C.1 IPtables configurations on Cloud-Host

The following configurations of IPtables on Cloud-Host show how the network behind

KVM bridge, virbr0 is connected through IPsec VPN to the local network. These con-

figurations have taken a number of attempts to correctly connect both sides. Despite

Packet server used in Chapter 6 has a second interface attached to it, connecting the

network behind the bridge was not possible until we customize IPtables configurations

as follows:

Generated by iptables -save v1.4.21 on Wed Nov 29 01:45:47 2017

*nat

:PREROUTING ACCEPT [1:60]

:INPUT ACCEPT [1:60]

:OUTPUT ACCEPT [0:0]

:POSTROUTING ACCEPT [0:0]

-A POSTROUTING -m policy --dir out --pol ipsec -j ACCEPT

-A POSTROUTING -s 172.20.20.0/24 -d 224.0.0.0/24 -j RETURN

-A POSTROUTING -s 172.20.20.0/24 -d 255.255.255.255/32 -j RETURN

-A POSTROUTING -s 172.20.20.0/24 ! -d 172.20.20.0/24 -p tcp -j MASQUERADE

--to-ports 1024 -65535

-A POSTROUTING -s 172.20.20.0/24 ! -d 172.20.20.0/24 -p udp -j MASQUERADE

--to-ports 1024 -65 535

-A POSTROUTING -s 172.20.20.0/24 ! -d 172.20.20.0/24 -j MASQUERADE

-A POSTROUTING -m policy --dir out --pol ipsec -j ACCEPT

-A POSTROUTING -s 10.80.0.0/16 ! -d 172.16.10.0/24 -o bond0 -j MASQUERADE

-A POSTROUTING -s 172.20.20.0/24 -o bond0 -m policy --dir out --pol ipsec -j ACCEPT

-A POSTROUTING -s 172.20.20.0/24 -o bond0 -j MASQUERADE

COMMIT

Completed on Wed Nov 29 01:45:47 2017

Generated by iptables -save v1.4.21 on Wed Nov 29 01:45:47 2017

*mangle

:PREROUTING ACCEPT [8476:1260941]

:INPUT ACCEPT [8378:1253221]

:FORWARD ACCEPT [98:7720]

:OUTPUT ACCEPT [9672:4537257]

105

106

:POSTROUTING ACCEPT [9787:4547396]

-A POSTROUTING -o virbr0 -p udp -m udp --dport 68 -j CHECKSUM --checksum -fill

COMMIT

Completed on Wed Nov 29 01:45:47 2017

Generated by iptables -save v1.4.21 on Wed Nov 29 01:45:47 2017

*filter

:INPUT ACCEPT [8367:1251212]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [9670:4536601]

-A INPUT -i virbr0 -p udp -m udp --dport 53 -j ACCEPT

-A INPUT -i virbr0 -p tcp -m tcp --dport 53 -j ACCEPT

-A INPUT -i virbr0 -p udp -m udp --dport 67 -j ACCEPT

-A INPUT -i virbr0 -p tcp -m tcp --dport 67 -j ACCEPT

-A INPUT -i virbr0 -p tcp -m tcp --dport 22 -j ACCEPT

-A INPUT -i bond0 -p udp -m policy --dir in --pol ipsec -m udp --dport 1701 -j

ACCEPT

-A FORWARD -d 172.20.20.0/24 -p icmp -j ACCEPT

-A FORWARD -d 172.20.20.0/24 -p tcp -j ACCEPT

-A FORWARD -d 172.20.20.0/24 -p udp -j ACCEPT

-A FORWARD -d 172.20.20.0/24 -o virbr0 -m conntrack --ctstate RELATED ,ESTABLISHED -j

ACCEPT

-A FORWARD -s 172.20.20.0/24 -i virbr0 -j ACCEPT

-A FORWARD -i virbr0 -o virbr0 -j ACCEPT

-A FORWARD -o virbr0 -j REJECT --reject -with icmp -port -unreachable

-A FORWARD -i virbr0 -j REJECT --reject -with icmp -port -unreachable

-A OUTPUT -o virbr0 -p udp -m udp --dport 68 -j ACCEPT

COMMIT

Completed on Wed Nov 29 01:45:47 2017

Bibliography

[1] Ibrahim Mansour, Reza Sahandi, Kendra Cooper, and Adrian Warman. Interop-

erability in the Heterogeneous Cloud Environment: A Survey of Recent User-

centric Approaches. In the International Conference on Internet of things and

Cloud Computing (ICC2016). ACM, 2016.

[2] Hakim Weatherspoon Robbert van Renesse and Zhiming Shen. The Supercloud:

Applying Internet Design Principles to Interconnecting Clouds. Internet Com-

puting, 2018.

[3] Christophe Crin Thouraya Louati, Heithem Abbes and Mohamed Jemni.

LXCloud-CR: Towards LinuX Containers Distributed Hash Table based

Checkpoint-Restart. Journal of Parallel and Distributed Computing, 2018.

[4] Huansheng Ning Pengfei Hu, Sahraoui Dhelim and Tie Qiud. Survey on fog

computing: architecture, key technologies, applications and open issues. Journal

of Network and Computer Applications, 2017.

[5] Eduard Zharikov Sergii Telenyk and Oleksandr Rolik. An approach to software

defined cloud infrastructure management. In XI International Scientific and Tech-

nical Conference on Computer Sciences and Information Technologies (CSIT).

IEEE, 2016.

[6] VMware. Understanding Full Virtualization, Paravirtualization, and

Hardware Assist. URL https://www.vmware.com/techpapers/2007/

understanding-full-virtualization-paravirtualizat-1008.html.

[7] Ibrahim Ejdayid A. Mansour, Kendra Cooper, and Hamid Bouchachia. Effec-

tive live cloud migration. In 4th International Conference on Future Internet of

Things and Cloud (FiCloud). IEEE, 2016.

[8] Cisco OpenFlow Manager. URL https://developer.cisco.com/site/

devnetcreations/openflow-mgr.

107

https://www.vmware.com/techpapers/2007/understanding-full-virtualization- paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization- paravirtualizat-1008.html
https://developer.cisco.com/site/devnetcreations/openflow-mgr
https://developer.cisco.com/site/devnetcreations/openflow-mgr

Bibliography 108

[9] OpenStack. OpenStack Architecture Design Guide, . URL https://docs.

openstack.org/arch-design/.

[10] Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros,

Yogesh Simmhan, Blesson Varghese, Erol Gelenbe, Bahman Javadi, Luis Miguel

Vaquero, Marco A. S. Netto, Adel Nadjaran Toosi, Maria Alejandra Rodriguez,

Ignacio M. Llorente, Sabrina De Capitani di Vimercati, Pierangela Samarati, De-

jan Milojicic, Carlos Varela, Rami Bahsoon, Marcos Dias de Assuncao, Omer

Rana, Wanlei Zhou, Hai Jin, Wolfgang Gentzsch, Albert Zomaya, and Haiying

Shen. A manifesto for future generation cloud computing: Research directions

for the next decade. Distributed, Parallel and Cluster Computing, Cornell Uni-

versity Library, 2017.

[11] RIGHSCALE. Cloud computing trends: 2017 state of the cloud survey, 2017.

URL https://www.rightscale.com/blog/cloud-industry-insights/

cloud-computing-trends-2017-state-cloud-survey.

[12] Zhizhong Zhang, Chuan Wu, and David W.L. Cheung. A survey on cloud inter-

operability: taxonomies, standards, and practice. In ACM SIGMETRICS Perfor-

mance Evaluation Review. ACM, 2013.

[13] Zack Whittaker. Amazon web services suffers outage, takes down vine,

instagram, others with it. URL http://www.zdnet.com/article/

amazon-web-services-suffers-outage-takes-down-vine-instagram-\

others-with-it/.

[14] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song, Robbert van

Renesse, and Hakim Weatherspoon. Follow the Sun through the Clouds: Appli-

cation Migration for Geographically Shifting Workloads. In Proceedings of the

Seventh ACM Symposium on Cloud Computing (SoCC’16). ACM, 2016.

[15] Sean Michael Kerner. Lloyd’s Estimates the Impact of a

U.S. Cloud Outage at $19 Billion. URL http://www.

eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.

-cloud-outage-at-19-billion.

[16] Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. Intercon-

nected cloud computing environments: Challenges, taxonomy, and survey. In

ACM Computing Surveys (CSUR). ACM, 2014.

https://docs.openstack.org/arch-design/
https://docs.openstack.org/arch-design/
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.zdnet.com/article/amazon-web-services-suffers-outage- takes-down-vine-instagram-\others-with-it/
http://www.zdnet.com/article/amazon-web-services-suffers-outage- takes-down-vine-instagram-\others-with-it/
http://www.zdnet.com/article/amazon-web-services-suffers-outage- takes-down-vine-instagram-\others-with-it/
http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud- outage-at-19-billion
http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud- outage-at-19-billion
http://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud- outage-at-19-billion

Bibliography 109

[17] Dan Williams, Hani Jamjoom, , and Hakim Weatherspoon. The Xen-Blanket:

virtualize once, run everywhere. In 7th ACM European Conference on Computer

Systems (EuroSys 12). ACM, 2012.

[18] OpenStack Summit. The OpenStack Summit in Hong Kong. URL https://

www.openstack.org/summit/openstack-summit-hong-kong-2013.

[19] OpenStack. Two Milestones Mark the Beginning of the OpenStack In-

teroperability Era, . URL https://www.openstack.org/news/view/

59/two-milestones-mark-the-beginning-of-the-openstack-\

interoperability-era.

[20] Qin Jia, Zhiming Shen, Weijia Song, Robbert van Renesse, and Hakim Weather-

spoon. Supercloud: Opportunities and Challenges. In ACM SIGOPS Operating

Systems Review-Special Issue on Repeatability and Sharing of Experimental Ar-

tifacts. ACM, 2015.

[21] Kaveh Razavi, Ana Ion, Genc Tato, Kyuho Jeong, Renato Figueiredo, Guillaume

Pierre, and Thilo Kielmann. Kangaroo: A Tenant-Centric Software-Defined

Cloud Infrastructure. In International Conference on Cloud Computing (IC2E).

IEEE, 2015.

[22] Alex Fishman, Mike Rapoport, Evgeny Budilovsky, and Izik Eidus. HVX: Vir-

tualizing the Cloud. In USENIX Workshop on Hot Topics in Cloud Computing.

USENIX, 2013.

[23] Kenneth Nagin, David Hadas, Zvi Dubitzky, Alex Glikson, Irit Loy, Benny

Rochwerger, and Liran Schour. Inter-cloud mobility of virtual machines. In 4th

Annual International Conference on Systems and Storage (SYSTOR ’11). ACM,

2011.

[24] Apprenda. Server Virtualization. URL https://apprenda.com/library/

glossary/definition-server-virtualization/.

[25] Zhenhao Pan, Qing He, Wei Jiang, Yu Chen, and Yaozu Dong. NetCloud: To-

wards Practical Nested Virtualization. In International Conference on Cloud and

Service Computing (CSC). IEEE, 2011.

[26] Changbin Liu and Yun Mao. Inception: Towards a Nested Cloud Architecture.

In 5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 13).

USENIX, 2013.

https://www.openstack.org/summit/openstack-summit-hong-kong-2013
https://www.openstack.org/summit/openstack-summit-hong-kong-2013
https://www.openstack.org/news/view/59/two-milestones-mark-the- beginning-of-the-openstack-\interoperability-era
https://www.openstack.org/news/view/59/two-milestones-mark-the- beginning-of-the-openstack-\interoperability-era
https://www.openstack.org/news/view/59/two-milestones-mark-the- beginning-of-the-openstack-\interoperability-era
https://apprenda.com/library/glossary/definition-server- virtualization/
https://apprenda.com/library/glossary/definition-server- virtualization/

Bibliography 110

[27] VMware Technology Network. Running Nested VMs. URL https://

communities.vmware.com/docs/DOC-8970.

[28] XenServer Open Source Technology. URL http://xenserver.org/.

[29] S. Crago, K.Dunn, P.Eads, L.Hochstein, D.-I.Kang, M.Kang, D.Modium,

K.Singh, J.Suh, and J.P.Walters. Heterogeneous cloud computing. In Interna-

tional Conference on Cluster Computing (CLUSTER). IEEE, 2011.

[30] K. Eguro-R. Kaushik D. Kossmann R. Ramamurthy A. Arasu, S. Blanas and

R. Venkatesan. Orthogonal security with cipherbase. In the 6th Biennial Con-

ference on Innovative Data Systems Research (CIDR’13). Microsoft Research,

2013.

[31] N.Zeldovich R.A.Popa, C.Red

eld and H. Balakrishnan. Cryptdb: protecting con

dentiality with encrypted query processing. In the Twenty-Third ACM Symposium

on Operating Systems Principles. ACM, 2011.

[32] W. Zhou T. Zhu, G. Li and S. Y. Philip. Differentially private data publishing and

analysis: a survey. Transactions on Knowledge and Data Engineering, 2017.

[33] S. Foresti S. Jajodia S. Paraboschi V. Ciriani, S. D. C. D. Vimercati and P. Sama-

rati. Combining fragmentation and encryption to protect privacy in data storage.

Transactions on Information and System Security (TISSEC), 2010.

[34] S. Jajodia S. Paraboschi S. De Capitani di Vimercati, S. Foresti and P. Samarati.

Effecient integrity checks for join queries in the cloud. Journal of Computer

Security, 2016.

[35] F. D. Rossi T. C. Ferreto T. Lange M. G. Xavier, M. V. Neves and C. A. De Rose.

Performance evaluation of container-based virtualization for high performance

computing environments. In the 21st Euromicro International Conference on

Parallel, Distributed and Network-Based Processing (PDP). IEEE, 2013.

[36] Ross Brewer and LogRhythm. Advanced persistent threats: minimising the dam-

age. Elsevier BV, 2014.

[37] S.Azodolmolky, P.Wieder, and R.Yahyapour. Cloud computing networking:

challenges and opportunities for innovations. Communications Magazine, 2013.

https://communities.vmware.com/docs/DOC-8970
https://communities.vmware.com/docs/DOC-8970
http://xenserver.org/

Bibliography 111

[38] Downdetector.uk (Amazon). URL http://downdetector.co.uk/problems/

amazon.

[39] Eduardo Huedo, Rubn S. Montero, Rafael Moreno, Ignacio M.Llorente, Anna

Levin, and Philippe Massonet. Interoperable Federated Cloud Networking. In-

ternet Computing, 2017.

[40] Open Data Center Alliance. Open Data Center Alliance (2012) Developing

Cloud-Capable Applications. URL http://www.opendatacenteralliance.

org/docs/DevCloudCapApp.pdf.

[41] Jonathan Caldwell. Microsoft Azure announces expansion in cloud hybridiza-

tion and hyperscaling for customers. URL http://www.winbeta.org/news/

microsoft-expands-hybrid-cloud-hyper-scale-microsoft-azure-\

announcements.

[42] Gartner. Cloud Services Brokerage (CSB). URL https://www.gartner.com/

it-glossary/cloud-services-brokerage-csb.

[43] Steve Morad. Amazon Virtual Private Cloud Connectivity Options.

URL https://media.amazonwebservices.com/AWS_Amazon_VPC_

Connectivity_Options.pdf.

[44] OpenSwan. URL https://www.openswan.org/.

[45] Margaret Rouse. Paravirtualization. URL http://

searchservervirtualization.techtarget.com/definition/

paravirtualization.

[46] Peter Troger Felix Salfner and Andreas Polze. Downtime Analysis of Virtual Ma-

chine Live Migration. In The Fourth International Conference on Dependability.

International Academy, Research and Industry Association (IARIA), 2011.

[47] Mark Shtern, Bradley Simmons, Michael Smit, and Marin Litoiu. An architec-

ture for Overlaying Private Clouds on Public Providers. In the 8th International

Conference and Workshop on Network and Service Management (CNSM) and

System Virtualization Management (SVM), 2012.

[48] Naveed Ahmad, Ayesha Kanwal, and Muhammad Awais Shibli. Survey on Se-

cure Live Virtual Machine (VM) Migration in Cloud. In 2nd National Conference

on Information Assurance (NCIA). IEEE, 2013.

http://downdetector.co.uk/problems/amazon
http://downdetector.co.uk/problems/amazon
http://www.opendatacenteralliance.org/docs/DevCloudCapApp.pdf
http://www.opendatacenteralliance.org/docs/DevCloudCapApp.pdf
http://www.winbeta.org/news/microsoft-expands-hybrid-cloud-hyper- scale-microsoft-azure-\announcements
http://www.winbeta.org/news/microsoft-expands-hybrid-cloud-hyper- scale-microsoft-azure-\announcements
http://www.winbeta.org/news/microsoft-expands-hybrid-cloud-hyper- scale-microsoft-azure-\announcements
https://www.gartner.com/it-glossary/cloud-services-brokerage-csb
https://www.gartner.com/it-glossary/cloud-services-brokerage-csb
https://media.amazonwebservices.com/ AWS_Amazon_VPC_Connectivity_Options.pdf
https://media.amazonwebservices.com/ AWS_Amazon_VPC_Connectivity_Options.pdf
https://www.openswan.org/
http://searchservervirtualization.techtarget.com/definition/paravirtualization
http://searchservervirtualization.techtarget.com/definition/paravirtualization
http://searchservervirtualization.techtarget.com/definition/paravirtualization

Bibliography 112

[49] Canonical Ltd. What’s LXC? URL https://linuxcontainers.org/lxc/

introduction/.

[50] Dan Williams. TOWARDS SUPERCLOUDS. PhD thesis, Cornell University,

2013.

[51] Sandor Acs, Miklos Kozlovszky, and Peter Kacsuk. A Novel Cloud Bursting

Technique. In the 9th International Symposium on Applied Computational Intel-

ligence and Informatics (SACI). IEEE, 2014.

[52] Dan Williams, Yaohui Hu, Umesh Deshpande, Piush K. Sinha, Nilton Bila, Kar-

tik Gopalan, and Hani Jamjoom. Enabling Efficient Hypervisor-as-a-Service

Clouds with Eemeral Virtualization. In the 12th ACM SIGPLAN/SIGOPS Inter-

national Conference on Virtual Execution Environments (VEE16). ACM, 2016.

[53] Soudeh Ghorbani, Cole Schlesinger, Matthew Monaco, Eric Keller, Matthew

Caesar, Jennifer Rexford, and DavidWalker. Transparent, Live Migration of a

Software-Defined Network. In the Symposium on Cloud Computing (SOCC14).

ACM, 2014.

[54] T.Balan, D.Robu, and F.Sandu. LISP Optimisation of Mobile Data Streaming in

Connected Societies. Mobile Information Systems, 2016.

[55] Geraphic Network Simulator (GNS3). URL https://www.gns3.com/.

[56] Ibrahim Mansour, Hamid Bouchachia, and Kendra Cooper. Exploring Live

Cloud Migration On Amazon EC2. In 5th International Conference on Future

Internet of Things and Cloud (FiCloud 2017). IEEE, 2017.

[57] Stelios Sotiriadis, Nik Bessis, Euripides G.M. Petrakis, Cristiana Amza, Catalin

Negrud, and Mariana Mocanud. Virtual machine cluster mobility in inter-cloud

platforms. Future Generation Computer Systems, 2017.

[58] Yimeng Zhao, Samantha Lo, Ellen Zegura, Mostafa Ammar, and Niky Riga.

Virtual Network Migration on the GENI Wide-Area SDN-Enabled Infrastructure.

Cornell University Library, 2017.

[59] M.Berman, J.S.Chase, L.Landweber, A.Nakao, M.Ott, D.Raychaudhuri, R.Ricci,

and I.Seskar. GENI: A federated testbed for innovative network experiments.

Special issue on Future Internet Testbeds Part I, 2014.

https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://www.gns3.com/

Bibliography 113

[60] Aurlien Wailly, Marc Lacoste, and Herv Debar. RetroVisor: Nested Virtualiza-

tion for Multi IaaS VM Availability. In the third IT Conference on Conference in

Parallelism, Architecture and system (ComPAS 2013), 2013.

[61] Dan Williams, Hani Jamjoom, Zhefu Jiang, and Hakim Weatherspoon. Virtu-

alWires for Live Migration Virtual Networks across Clouds. Technical report,

Cornell University and IBM T.J Watson Research Center, New York, 2013.

[62] Konstantinos Tsakalozos, Vasilis Verroios, Mema Roussopoulos, and Alex Delis.

Time-Constrained Live VM Migration in Share-Nothing IaaS-Clouds. In the 7th

International Conference on Cloud Computing. IEEE, 2014.

[63] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. Software defining sys-

tem devices with the Banana double-split driver model. In the 6th USENIX con-

ference on Hot Topics in Cloud Computing (HotCloud14). USENIX, 2014.

[64] Spandan Bemby, Hongbin Lu, Khashayar Hossein Zadeh, Hadi Bannazadeh, and

Alberto Leon-Garcia. ViNO: SDN overlay to allow seamless migration across

heterogeneous infrastructure. Communications Magazine, 2013.

[65] Cristian Hernandez Benet, Kyoomars Alizadeh Noghani, and Andreas J.Kassler.

Minimizing Live VM Migration Downtime Using OpenFlow based Resiliency

Mechanisms. In the 5th International Conference on Cloud Networking. IEEE,

2016.

[66] Wijaya Ekanayake, Heli Amarasinghe, and Ahmed Karmouch. SDN-based IaaS

for Mobile Computing. In the 14th Annual Consumer Communications & Net-

working Conference (CCNC). IEEE, 2017.

[67] Mininet. URL http://mininet.org/.

[68] Microsoft TechNet. TCP/IP Protocol Architecture. URL https://technet.

microsoft.com/en-gb/library/cc958821.aspx.

[69] Reaz Ahmed and Raouf Boutaba. Design considerations for managing wide area

software defined networks. Communications Magazine, 2014.

[70] Hani Jamjoom Dan Williams and Hakim Weatherspoon. Plug into the Super-

cloud. Internet Computing, 2013.

[71] Ali Jose Mashtizadeh, Min Cai, Gabriel Tarasuk-Levin, Ricardo Koller, Tal

Garfinkel, and Sreekanth Setty. XvMotion: Unified Virtual Machine Migration

http://mininet.org/
https://technet.microsoft.com/en-gb/library/cc958821.aspx
https://technet.microsoft.com/en-gb/library/cc958821.aspx

Bibliography 114

over Long Distance. In The Annual Technical Conference (USENIX ATC 14).

USENIX, 2014.

[72] Mahdi Aiash, Glenford Mapp, and Orhan Gemikonakli. Secure Live Virtual Ma-

chines Migration: Issues and Solutions. In the 28th International Conference on

Advanced Information Networking and Applications Workshops (WAINA), 2014.

[73] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab. Hamid, Muhammad Shi-

raz, Feng Xia, and Sajjad A.Madani. Virtual machine migration in cloud data

centers: a review, taxonomy, and open research issues. The International Jour-

nal of Supercomputing, 2015.

[74] Tatikayala Sai Gopal, Neha Gupta, Rahul Jain, Srinivasa Reddy Kamatham, and

Reddy Lakshmi Eswari P. Experiences in porting TCP application over UDT and

their Performance Analysis. In the International Conference in MOOC Innova-

tion and Technology in Education (MITE). IEEE, 2013.

[75] S. Wu B. Ruan, H. Huang and H. Jin. A performance study of containers in cloud

environment. In In Advances in Services Computing: 10th Asia- Pacifi

c Services Computing Conference, APSCC 2016. Springer International Publish-

ing, 2016.

[76] Hanglong Zhan Wei Cui and Bao Li. Cluster as a Service: A Container Based

Cluster Sharing Approach with Multi-user Support. In Symposium on Service-

Oriented System Engineering (SOSE). IEEE, 2016.

[77] Wubin Li and Ali Kanso. Comparing Containers versus Virtual Machines for

Achieving High Availability. In the IEEE International Conference on Cloud

Engineering. IEEE, 2015.

[78] Ruben S. Montero Rafael Moreno-Vozmediano and Eduardo Huedo. Cross-Site

Virtual Network in Cloud and Fog Computing. Transactions on Cloud Comput-

ing, 2017.

[79] OpenFog. URL https://www.openfogconsortium.org/.

[80] ZHENG YAN RONGXING LU KIM-KWANG RAYMOND CHOO

OPEYEMI OSANAIYE, SHUO CHEN and MQHELE DLODLO. From

Cloud to Fog Computing: A Review and a Conceptual Live VM Migration

Framework. SPECIAL SECTION ON RECENT ADVANCES IN CLOUD RADIO

ACCESS NETWORKS, 2017.

https://www.openfogconsortium.org/

Bibliography 115

[81] Jungmin Son Amir Vahid Dastjerdi Rajkumar Buyya, Rodrigo N. Calheiros and

Young Yoon. Software-defi

ned cloud computing: Architectural elements and open challenges. In In Interna-

tional Conference on Advances in Computing, Communications and Informatics

(ICACCI 2014). IEEE, 2014.

[82] Rastin Pries Peter Schneider Admela Jukan Wolfgang Bziuk Steffen Gebert

Thomas Zinner Phuoc Tran-Gia Marco Hoffmann, Michael Jarschel. SDN and

NFV as Enabler for the Distributed Network Cloud. Journal of Mobile Networks

and Applications, 2017.

[83] Open Networking Foundation. URL https://www.opennetworking.org/.

[84] M. Ammar V. Eramo, E. Miucci and F. G. Lavacca. An approach for service

function chain routing and virtual function network instance migration in net-

work function virtualization architectures. Transactions on Networking, 2017.

[85] Subhasree Mandal Joon Ong Leon Poutievski Arjun Singh Subbaiah Venkata

Jim Wanderer Junlan Zhou-Min Zhu Jonathan Zolla Urs Holzle Stephen Stuart

Sushant Jain, Alok Kumar and Amin Vahdat. B4: Experience with a globally-

deployed Software De

fined WAN. ACM SIGCOMM Computer Communication Review, 2013.

[86] Rafat Jahan. Inter SDN Controller Communication (SDNi). URL

https://events.static.linuxfound.org/sites/events/files/

slides/ODL-SDNi_0.pdf.

[87] Mesut Ergin, Yunhong Jiang, Krishna Murthy, James Tsai, Wei Wang,

Huawei Xie, and Yang Zhang. KVM as The NFV Hypervisor.

URL http://www.linux-kvm.org/images/8/87/02x09-Aspen-Jun_

Nakajima-KVM_as_the_NFV_Hypervisor.pdf.

[88] Anupam Tamrakar. Security in Live Migration of Virtual Machine with Au-

tomated Load Balancing. In International Journal of Engineering Research &

Technology (IJERT), 2014.

[89] Virtual Machine Manager (KVM). Manage virtual machines with virt-manager.

URL https://virt-manager.org/.

https://www.opennetworking.org/
https://events.static.linuxfound.org/sites/events/files/slides/ODL- SDNi_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/ODL- SDNi_0.pdf
http://www.linux-kvm.org/images/8/87/02x09-Aspen-Jun_Nakajima- KVM_as_the_NFV_Hypervisor.pdf
http://www.linux-kvm.org/images/8/87/02x09-Aspen-Jun_Nakajima- KVM_as_the_NFV_Hypervisor.pdf
https://virt-manager.org/

Bibliography 116

[90] Ben Pfaff, Justin Petti, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Ra-

jahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Ami-

don, and Martin Casado. The Design and Implementation of Open vSwitch.

In the 12th Symposium on Networked Systems Design and Implementation

(NSDI15). USENIX, 2015.

[91] UDT UDP based Data Transfer. UDT: Breaking the Data Transfer Bottleneck.

URL http://udt.sourceforge.net/.

[92] Prasenjit Sarkar. Improving Performance with Path Optimization and UDT

- VMware vCC 2.5. URL http://stretch-cloud.info/2013/06/

improving-performance-with-path-optimization-and-udt-vmware-\

vcc-2-5/.

[93] Gabriele Lospoto, Massimo Rimondini, Benedetto Gabriele Vignoli, and

Giuseppe Di Battista. Rethinking virtual private networks in the software-defined

era. In International Symposium on Integrated Network Management (IM). IEEE,

2015.

[94] G. Carrozzo, R. Monno, B. Belter, R. Krzywania, K. Pentikousis, M.Broadben,

T. Kudoh, A. Takefusa, A. Vico-Oton, C. Fernandez, and B.Puype J. Tanak.

Large-scale sdn experiments in federated environments. In International Con-

ference on Smart Cmmunications in Network Technologies (SaCoNeT). IEEE,

2014.

[95] OpenDaylight. Whats New in Lithium. URL https://www.opendaylight.

org/whats-new-lithium.

[96] OpenStack. OpenStack Orchestration Heat, . URL https://wiki.openstack.

org/wiki/Heat.

[97] iPerf3. URL https://iperf.fr/iperf-download.php.

[98] Wireshark. URL https://www.wireshark.org/.

[99] hdparm. URL https://wiki.archlinux.org/index.php/hdparm.

[100] Ding-Yong Hong, Jan-Jan Wu, Pen-Chung Yew, Wei-Chung Hsu, Chun-Chen

Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung. Efficient and Re-

targetable Dynamic Binary Translation on Multicores. In Transactions on Paral-

lel and Distributed Systems. IEEE, 2014.

http://udt.sourceforge.net/
http://stretch-cloud.info/2013/06/improving-performance-with-path- optimization -and-udt-vmware-\vcc-2-5/
http://stretch-cloud.info/2013/06/improving-performance-with-path- optimization -and-udt-vmware-\vcc-2-5/
http://stretch-cloud.info/2013/06/improving-performance-with-path- optimization -and-udt-vmware-\vcc-2-5/
https://www.opendaylight.org/whats-new-lithium
https://www.opendaylight.org/whats-new-lithium
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://iperf.fr/iperf-download.php
https://www.wireshark.org/
https://wiki.archlinux.org/index.php/hdparm

Bibliography 117

[101] Tom Fifield, Diane Fleming, Anne Gentle, Lorin Hochstein, Jonathan

Proulx, Everett Toews, and Joe Topjian. OpenStack:Issues with

Live Migration. URL http://www.tomsitpro.com/articles/

openstack-operations-guide-compute-nodes,2-746-3.html.

[102] RIGHSCALE. Cloud computing trends: 2016 state of the cloud survey.

URL http://www.rightscale.com/blog/cloud-industry-insights/

cloud-computing-trends-2016-state-cloud-survey.

[103] Amazon Web Services. Elastic IP Addresses, . URL http://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/elastic-ipaddresses-eip.

[104] Steve Russell. DynamicDNS. URL https://help.ubuntu.com/community/

DynamicDNS.

[105] Werner Fischer. Overview of the Intel VT Virtualization Features. URL

https://www.thomas-krenn.com/en/wiki/Overview_of_the_Intel_VT_

Virtualization_Features.

[106] Ubuntu Manuals. lscpu command. URL http://manpages.ubuntu.com/

manpages/trusty/man1/lscpu.1.html.

[107] Ubuntu Documentation. Network Connection Bridge. URL https://help.

ubuntu.com/community/NetworkConnectionBridge.

[108] Amazon Web Services. Compute Optimized Instances, . URL

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

compute-optimized-instances.html.

[109] noip. URL https://www.noip.com/.

[110] The Linux Kernel Archives. URL https://www.kernel.org/.

[111] Creating custom kernels with Debians kernel-package system. URL

http://newbiedoc.sourceforge.net/tutorials/kernel-pkg/

config-kernelpkg.html.en.

[112] Assured Information Security Inc. BitVisor. URL https://github.com/

Bareflank/hypervisor.

[113] KVM. Enable VT-X on Mac Pro (Early 2008). URL https://www.linux-kvm.

org/page/Enable_VT-X_on_Mac_Pro_(Early_2008).

http://www.tomsitpro.com/articles/openstack-operations-guide- compute-nodes,2-746-3.html
http://www.tomsitpro.com/articles/openstack-operations-guide- compute-nodes,2-746-3.html
http://www.rightscale.com/blog/cloud-industry-insights/cloud- computing-trends-2016-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud- computing-trends-2016-state-cloud-survey
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic- ipaddresses-eip
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic- ipaddresses-eip
https://help.ubuntu.com/community/DynamicDNS
https://help.ubuntu.com/community/DynamicDNS
https://www.thomas-krenn.com/en/wiki/ Overview_of_the_Intel_VT_Virtualization_Features
https://www.thomas-krenn.com/en/wiki/ Overview_of_the_Intel_VT_Virtualization_Features
http://manpages.ubuntu.com/manpages/trusty/man1/lscpu.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/lscpu.1.html
https://help.ubuntu.com/community/NetworkConnectionBridge
https://help.ubuntu.com/community/NetworkConnectionBridge
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute- optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute- optimized-instances.html
https://www.noip.com/
https://www.kernel.org/
http://newbiedoc.sourceforge.net/tutorials/kernel-pkg/config- kernelpkg.html.en
http://newbiedoc.sourceforge.net/tutorials/kernel-pkg/config- kernelpkg.html.en
https://github.com/Bareflank/hypervisor
https://github.com/Bareflank/hypervisor
https://www.linux-kvm.org/page/Enable_VT-X_on_Mac_Pro_(Early_2008)
https://www.linux-kvm.org/page/Enable_VT-X_on_Mac_Pro_(Early_2008)

Bibliography 118

[114] Code Project For those who code. Virtualization for System Pro-

grammers. URL https://www.codeproject.com/Articles/215458/

Virtualization-for-System-Programmers.

[115] Packet. URL https://www.packet.net/.

[116] Libvirt Virtualization API. KVM/QEMU. URL https://wiki.libvirt.org/

page/Main_Page#KVM_.2F_QEMU.

[117] TightVNC Software. URL http://www.tightvnc.com/.

[118] Cisco. VPNs and VPN Technologies. URL http://www.ciscopress.com/

articles/article.asp?p=24833&seqNum=3.

[119] Anita Choudhary, Mahesh Chandra Govil, Girdhari Singh, Lalit K.Awasthi, and

Emmanuel S.Pilliand Divya Kapil. A critical survey of live virtual machine mi-

gration techniques. Cloud Computing: Advances, Systems and Applications,

2017.

[120] OpenVPN. Openvpn ethernet bridging. URL https://openvpn.

net/index.php/open-source/documentation/miscellaneous/

76-ethernet-bridging.html.

[121] OPENDAYLIGHT, . URL https://www.opendaylight.org/.

[122] Alberto Rodriguez-Natal, Jordi Paillisse, and Florin Coras. Programmable Over-

lays via Open-OverlayRouter. In Communications Magazine. IEEE, 2017.

[123] Zodiac-FX OpenFlow Switch. URL https://northboundnetworks.com/

products/zodiac-fx.

[124] Alberto Rodriguez-Natal, Lorand Jakab, and Vina Ermagan. Location and iden-

tity privacy for LISP-MN. In International Conference on Communications

(ICC). IEEE, 2015.

[125] OPENDAYLIGHT. LISP Flow Mapping User Guide, . URL

http://docs.opendaylight.org/en/stable-nitrogen/user-guide/

lisp-flow-mapping-user-guide.html.

[126] Flux7 Labs Technology Adoption Blog. An Introduction to Open-

stack Project. URL http://blog.flux7.com/blogs/openstack/

openstack-tutorials-part-1-openstack-introduction.

https://www.codeproject.com/Articles /215458/Virtualization-for- System-Programmers
https://www.codeproject.com/Articles /215458/Virtualization-for- System-Programmers
https://www.packet.net/
https://wiki.libvirt.org/page/Main_Page#KVM_.2F_QEMU
https://wiki.libvirt.org/page/Main_Page#KVM_.2F_QEMU
http://www.tightvnc.com/
http://www.ciscopress.com/articles/article.asp?p=24833&seqNum=3
http://www.ciscopress.com/articles/article.asp?p=24833&seqNum=3
https://openvpn.net/index.php/open-source/documentation/ miscellaneous/76-ethernet-bridging.html
https://openvpn.net/index.php/open-source/documentation/ miscellaneous/76-ethernet-bridging.html
https://openvpn.net/index.php/open-source/documentation/ miscellaneous/76-ethernet-bridging.html
https://www.opendaylight.org/
https://northboundnetworks.com/products/zodiac-fx
https://northboundnetworks.com/products/zodiac-fx
http://docs.opendaylight.org/en/stable-nitrogen/user-guide/lisp-flow- mapping-user-guide.html
http://docs.opendaylight.org/en/stable-nitrogen/user-guide/lisp-flow- mapping-user-guide.html
http://blog.flux7.com/blogs/openstack/openstack-tutorials-part-1- openstack-introduction
http://blog.flux7.com/blogs/openstack/openstack-tutorials-part-1- openstack-introduction

Bibliography 119

[127] Amazon AWS. Amazon EC2 Instance Types, . URL https://aws.amazon.

com/ec2/instance-types/.

[128] Amazon AWS. Now Available New C4 Instances, . URL https://aws.

amazon.com/blogs/aws/now-available-new-c4-instances/.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/blogs/aws/now-available-new-c4-instances/
https://aws.amazon.com/blogs/aws/now-available-new-c4-instances/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Cloud interoperability benefits and issues
	1.3 Cloud interoperability approaches
	1.3.1 Provider-centric approaches
	1.3.2 User-centric approaches

	1.4 Research questions
	1.5 Contributions
	1.6 Structure of the thesis
	1.7 List of publications

	2 Literature review and live cloud migration analysis
	2.1 Approaches to live cloud migration
	2.1.1 A proposal for interconnecting the clouds (Supercloud project)

	2.2 Live cloud migration criteria
	2.3 Analysis of three related approaches
	2.3.1 Supercloud:
	2.3.2 Kangaroo:
	2.3.3 HVX:
	2.3.4 Summary of analysis results

	2.4 Live migration in technologies related to cloud computing
	2.4.1 Containers
	2.4.2 Fog computing
	2.4.3 Software Defined cloud computing

	2.5 Conclusion

	3 LivCloud Architecture
	3.1 Introduction
	3.2 Related work
	3.2.1 Paravirtualization
	3.2.2 Binary translation

	3.3 LivCloud architecture
	3.3.1 The basic design stage: nested virtualization and network connectivity
	3.3.2 The enhancement of the basic design stage: performance, flexibility and security

	3.4 Preliminary experimental evaluation
	3.4.1 Experiment setup
	3.4.2 Experiment motivation
	3.4.3 Experiment results discussion

	3.5 Conclusion

	4 The basic design of LivCloud on Amazon EC2
	4.1 Introduction
	4.2 LivCloud architecture on Amazon EC2
	4.3 Implementing LivCloud on Amazon EC2
	4.3.1 Envision Amazon Ubuntu instance as 32 bit operating system
	4.3.2 Linux bridge issue
	4.3.3 Enabling nested virtualization on C4 instance using KVM and VMware workstation

	4.4 Configuring HQEMU to implement LivCloud on EC2
	4.4.1 Experiment setup

	4.5 Experiment results and discussion
	4.5.1 Live migration with shared disk
	4.5.2 Live migration without shared disk

	4.6 Possible solutions to enable nested virtualization on EC2
	4.6.1 Recompiling Amazon C4 Linux instance's kernel
	4.6.2 Compiling Bareflank on Amazon EC2
	4.6.3 Running a C script on Amazon EC2

	4.7 Conclusion

	5 The basic design of LivCloud on Packet
	5.1 Introduction
	5.2 Related work
	5.3 LivCloud architecture on Packet
	5.4 Experimental design
	5.4.1 Experimental setup

	5.5 Experimental results
	5.5.1 Achieving flexibility criteria F1, F2 & F3
	5.5.2 Achieving performance criterion, P1
	5.5.3 Achieving security criteria, S1 & S2
	5.5.4 Discussion

	5.6 Conclusion

	6 The enhancement of the basic design on Packet
	6.1 Introduction
	6.2 The final configurations of LivCloud
	6.3 Live cloud migration scenarios
	6.3.1 The general experimental setup
	6.3.2 Scenario 1:
	6.3.3 Scenario 2:
	6.3.4 Simulation results

	6.4 Conclusion

	7 Conclusions and Future Work
	7.1 Contributions
	7.2 Main outcome
	7.3 Future work
	7.3.1 The limitations of scenarios
	7.3.2 Future scenario 1:
	7.3.3 Future scenario 2:

	A
	A.1 C4 instance specifications
	A.2 Networking
	A.3 HQEMU configuration issues

	B
	B.1 OpenSwan configuration on Packet
	B.2 Screenshots of live migration attempts

	C
	C.1 IPtables configurations on Cloud-Host

	Bibliography

