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Behind Anemone Lines: Determining the environmental drivers 

influencing lagoonal benthic communities, with special reference to the 

anemone Nematostella vectensis. 

Jess R. Bone 

Abstract 

Climate change induced sea level rise and increase in associated storms is 

impacting the coastal zone worldwide. Lagoons are a transitional ecosystem 

on the coast that are threatened with habitat loss due to ingress of seawater, 

though conversely this also represents an opportunity for lagoon habitat 

creation. It is important to quantify the spatio-temporal trends of 

macrozoobenthic communities and abiotic factors to determine the ecological 

health of lagoon sites. Such information will ensure optimal and adaptive 

management of these rare and protected ecosystems. This thesis examines 

the spatial distribution of macrozoobenthic assemblages and the abiotic and 

biotic factors that may determine their abundance, richness and distribution at 

tidally restricted urban lagoon at Poole Park on the south coast of England. 

The macrozoobenthic assemblages were sampled using a suction corer 

during a spatially comprehensive survey in November 2017, in addition to 

aquatic and sediment variables such as salinity, temperature, organic matter 

content and silt content. Species richness and density were significantly lower 

in areas of high organic matter and silt content, indicative of hostile conditions. 

There were no correlations between pelagic fauna and macrozoobenthic 

fauna which suggests that top-down control of macrozoobenthic species is not 

significant enough to influence their distribution. Salinity and temperature were 

spatially homogenous but macrozoobenthic assemblages indicate longer term 

variability; the euryhaline annelid Hediste diversicolor dominates at sample 

sites adjacent to surface water outflow pipes. The non-native protected Starlet 

Sea Anemone Nematostella vectensis was also significantly negatively 

correlated with organic matter and silt content. It is known to be sensitive to 

hypoxic-sulfidic conditions associated with high organic matter sediments. The 

anemone’s indiscriminate and efficient method of prey capture in high 
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macrozoobenthic densities may disproportionately affect prey species, limiting 

their availability to native predators and negatively affect higher trophic levels. 

The anemone’s effect on native communities should be subject to further 

study. This thesis will serve as a baseline to compare subsequent surveys to, 

particularly post dredging and island construction works planned to commence 

in Poole Park lagoon in the late autumn of 2018. 
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Chapter 1 - Macrozoobenthic Communities in Poole 

Park Lagoon 

1. Introduction 

1.1 Threats to Coastal Zones 

Climate change induced sea level rise presents an imminent threat to coastal 

zones. It is deemed very likely that 95% of the ocean area will experience sea 

level rise, affecting 70% of coastlines worldwide (IPCC 2014). Hence, they are 

disproportionately threatened by habitat loss from the associated effects of 

climate change and coastal development, which are predicted to significantly 

decrease biodiversity within coastal regions (Hawkins et al. 2016; Hawkins 

2012). Semi-enclosed coastal systems (SECs), including transitional 

ecosystems such as lagoons and saltmarshes, are among the most vulnerable 

coastal ecosystems to these anthropogenic pressures, particularly when 

associated with river mouth systems (Newton et al. 2014; Newton et al. 2012; 

Nicholls and Cazenave 2010; Eisenreich 2005).  

 

Along the south coast of the UK, the estimated sea level rise compared to 

1990 levels will be between 18.4cm and 25.8cm by 2050. The impact on 

Scottish coasts is less severe, with sea level rise estimated between 10.5cm 

and 18cm due to vertical land movement from loss of glaciation leading to local 

isostatic change (Bradley et al. 2009; IPCC 2007). The most pertinent threat 

is the flooding of low-lying coastal land with longer term effects involving 

changes to coastal geomorphology, such as increased erosion and changes 

to sediment dynamics. Additionally, warming oceans will intensify atmospheric 

pressure gradients leading to increased frequency and intensity of coastal 

storm events (Murphy et al. 2010; Woth et al. 2006; Dorland et al. 1999). The 

hydrological cycle for northern and central Europe is also projected to change, 

increasing precipitation and freshwater input to lagoon sites (IPCC 2007). 
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Subsequently, the salinity regime of many SECs may become less predictable 

and turbidity may increase due to stronger run-off currents. 

1.2 Lagoons 

Lagoons are typically defined as shallow bodies of brackish water partially 

separated from the adjacent sea by a barrier and where there is a restricted 

tidal exchange (Brown 1997; Barnes 1989). They are uncommon on the 

European Atlantic coast, comprising just over 5% of the coastline, with some 

subtypes rarer still, though these figures are now several decades old and 

require updating (Barnes 1980). Climate change related threats may lead to 

an increase in dystrophic events and mass mortality of lagoon fauna. Habitat 

loss is also a risk due to the inundation of seawater or infilling of sediment if a 

site is unable to retreat into the hinterland due to land reclamation (Carrasco 

et al. 2016; Anthony et al. 2009).  

 

The definition of a lagoon has been applied to a broad spectrum of lagoonal 

sites that can include atypical characteristics, such as depths exceeding 2m 

(Oban nam Fiadh, Uist, and Arne lagoon, Dorset), but meet the 

physiographical criteria and host lagoonal specialists that would otherwise be 

outcompeted by their marine counterparts (Howson et al. 2014; Wheeler 

2013). Lagoons are a Priority Habitat in Annex I of the EU Habitats Directive 

and under the UK’s Biodiversity Action Plan, and several UK sites have been 

selected as Special Areas of Conservation (SACs) including over 50 individual 

lagoons across 10 UK SAC sites (Williams 2006). Barnes (1989) identified a 

total of 41 lagoon sites in Britain in the late 1980s, some of which have been 

since reclassified, such as Poole Harbour on the southern English coast, which 

is now considered an estuary due to the salinity regime and volume of tidal 

exchange (May and Humphreys 2005). Most of Barnes’ original sites were on 

the English coast, but over 100 lagoon sites have since been identified on the 

Scottish coasts, predominantly confined to the Northern and Western isles 

(Howson et al. 2014).  
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1.2.1 Lagoon Ecosystem Services 

A wide range of ecosystem services are provided by lagoons as they are highly 

productive, prevent erosion, are key sources of food for local communities, 

and provide wildlife refuge and nursery areas. They are also significantly 

important for the cultural services sector, providing cultural heritage, 

aesthetics, education and recreation (Velasco et al. 2017; Lopes and Videira 

2013; Barbier et al. 2011). Increases in temperature, sea level rise and 

changes in freshwater input are predicted to negatively affect all ecosystem 

services provided by lagoons (Newton et al. 2018). 

1.2.2 Effect of Sea Level Rise on Lagoons 

Lagoons are a transitional system so by their very nature are ephemeral, 

exacerbated further by climate change and coastal squeeze. The predicted 

sea level rise, based on UKCP09 projections for London, is between 23cm 

and 53cm by the year 2095. The UK’s stance on sea level rise was developed 

in the late 1990s by the Department of Environment and Rural Affairs (DEFRA) 

and accepts the likelihood of water ingress in coastal areas. It has several 

conditions it assigns to portions of coastline depending on the threat level and 

feasibility of different management strategies; No active intervention, Hold the 

line, Managed realignment, and Advance the line (Esteves 2014). In the 

scenario of No active intervention and Managed realignment current lagoon 

habitats may be lost as their defining barriers are overtopped. However, 

inevitably there will also be low-lying coastal sites that can become lagoons, 

providing refugia for lagoon specialists and the associated reliant food web. 

As lagoons are hydrologically impounded and the invertebrate fauna generally 

have a limited dispersal range, connectivity between lagoon sites can be low. 

It is important to consider a site within the wider context of regional lagoon 

ecosystems and network (Herbert et al. 2018; Perez-Ruzafa et al. 2018; 

Ghezzo et al. 2015).  

1.3 Natural History of Poole Harbour 

Having lagoonal characteristics itself, Poole Harbour was formed in the late 

Holocene and is an estuary of rivers Frome, Sherford, Corfe and Piddle (see 
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Figure 1). It is a shallow natural harbour with a maximum area of 13.92 miles 

and an average depth of 48cm with a microtidal range of 0.6m-1.8m and a 

double high tide for a total duration of 16 of 24 hours (May and Humphreys 

2005; May 2005; McClusky and Elliot 2004). The harbour’s proportionally 

narrow entrance permits 22% to 45% of the water volume to leave on the ebb 

tide. Salinity range increases with distance from the harbour mouth, ranging 

by as much as 29.4‰ in Wareham Channel where freshwater input is greatest. 

It possesses extensive intertidal mud flats fringed with saltmarsh and reedbeds 

and is considered to host most types of British coastal habitat (JNCC 2008b; 

Gray 1985). The northeast coast of the harbour is significantly urbanised with 

the town of Poole, its surrounding suburbs and a recently expanded port. Such 

land reclamation has led to a local sea level rise of 26cm since the late 1800s 

(Edwards 2001; Pethick 1993). Conversely, the southwest coast possesses a 

notable absence of development, and most of the coastal land is owned by 

conservation and heritage charities and are designated nature reserves. For 

example, Arne is owned by the Royal Society for the Protection of Birds 

(RSPB) and Studland by the National Trust. Five islands exist in the central 

harbour area with little to no permanent human residence. This includes most 

notably Brownsea Island, the largest of the islands with an area of 0.772 miles 

and owned by the National Trust, and Furzey Island, home to 22 oil wells of 

Wytch Farm Oil Field.  

 

A site of international avian importance, Poole Harbour is a RAMSAR site, a 

Special Protected Area (SPA), and several Sites of Specific Scientific Interest 

(SSSIs) are locally designated under European Union Birds Directive and 

Habitats Directive legislation. Large numbers of resident, migratory and over-

wintering birds utilise Poole Harbour and its various habitats to roost, feed and 

breed, and peak in the wintertime with a total abundance of approximately 

25,000 individuals. Notable species include the protected avocet Recurvirostra 

avosetta (Linnaeus 1758), black-tailed godwit Limosa limosa (Linnaeus 1758), 

and common tern Sterna hirundo (Linnaeus 1758) (JNCC 2008b). The cord 

grass Spartina anglica (C.E. Hubb) dominates saltmarsh which occupies 1.242 

miles of the coastal area (Corkhill and Edwards 2006). This is decreasing in 
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areas due to erosion, competition from the common reed Phragmites australis 

(Cavanilles) where salinity is low, and trampling  
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occurs from the non-native Sika deer Cervus nippon (Temminck 1838) (House 

et al. 2005; Edwards 2004; Gray et al. 1991). Several small stony islands in 

the Wareham Channel host the largest nesting population of Schedule 1 

protected Mediterranean gulls Ichthyaetus melanocephalus (Temminck 1820). 

However, these are fully immersed during high spring tides and are vulnerable 

to strong wave action and storm damage (Hopper 2016).  

 

A maximum of 88 invertebrate species have been recorded in sediment cores 

from the harbour with a dominance of annelid and mollusc species, with the 

ragworm Hediste (Nereis) diversicolor (O.F Muller 1776) characteristic of 

assemblages throughout the harbour. Several lagoonal specialists also occur 

in the harbour such as the bivalve Cerastoderma (Cardium) glaucum 

(Bruguiere 1789) (Thornton 2016; Herbert et al. 2010; Barnes 1980). 

 

The harbour includes four known lagoons; Brownsea, Seymers, Arne and 

Poole Park lagoon (see Figure 1). 

1.3.1 Brownsea Lagoon 

Brownsea Island lagoon was created in the late 1800s following the flooding 

of agricultural land on Brownsea Island and the subsequent enclosure by a 

sea wall (Herbert et al. 2018). The lagoon is fed by a freshwater stream and is 

connected to the harbour via an electronic pump and sluice. It is the longest 

established lagoon in terms of management within Poole Harbour and has 

been protected from development by the National Trust, who own the island, 

and the Dorset Wildlife Trust, who lease part of the land. It is also the most 

diverse, with the greatest species richness and abundance (Bone 2017; 

Herbert et al. 2010). It is incorporated within Poole Harbour SPA due to its 

importance as a feeding and roosting site for thousands of migrating and 

resident waterfowl that frequent the harbour each year. The current status of 

this threatened lagoon site is to Hold the Line in the short-term and Managed 

Realignment in the long term (National Trust 2015; Guthrie and Eggiman 

2014).   



7 

 

1.3.2 Arne Lagoon 

Arne lagoon, a repurposed clay quarry, was deliberately filled with sea water 

in 2012 via a channel that meanders through marshland, connecting it to Poole 

Harbour (RSPB 2012). Recent observations suggest that the lagoon has since 

been colonised by characteristic lagoon species such as Hydrobiid snails and 

the estuarine ragworm H. diversicolor, and the sand gaper Mya arenaria 

(Linnaeus 1758) was also observed in situ (Herbert et al. in press). Several 

species of coastal bird, such as cormorant Phalacrocorax carbo (Linnaeus 

1758), spoonbill Platalea leucorodia (Linnaeus 1758) and little egret Egretta 

garzetta (Linnaeus 1766), were observed at the edge, demonstrating its 

capacity to provide a crucial habitat for the harbour’s internationally important 

populations of avifauna (personal observation).  

1.3.3 Seymers Lagoon 

Seymers lagoon was created incidentally in the late 1800s following the 

ingress of seawater in a clay mining works. Following this, a natural inlet 

channel formed, allowing the exchange of seawater. Its hydrodynamic regime 

limits the biodiversity in this small eutrophic lagoon, but characteristic 

specialist benthic fauna has been recorded, in addition to a number of bird 

species including teal Anas crecca (Linnaeus 1758) and shelduck Tadorna 

tadorna (Linnaeus 1758) (Bone 2017). It has not benefitted from lagoon-

specific management like the main Brownsea lagoon but undergoes regular 

monitoring from the Dorset Wildlife Trust (personal communication). It is a 

small lagoon and would benefit from expansion and dredging the channel to 

improve the flushing regime.  

1.3.4 Poole Park Lagoon 

Poole Park lagoon is a recreational boating lake in an urban park in the Poole 

conurbation. It was created in 1890 when the railway line along the southern 

edge was constructed, impounding an intertidal bay with the railway 

embankment. Historically the lagoon supported high abundances of the 

lagoon cockle C. glaucum but this species now occurs only in low numbers 

(Harrison et al. 2016; Boyden and Russell 1972). It is now a sluiced lagoon 
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that is flushed once a month on the high spring tide and faces significant 

anthropogenic pressures, such as pollution from surface water runoff that 

discharges into the lagoon via pipes. The limited tidal exchange combined with 

highly variable freshwater input can lead to dramatic ranges in salinity, limiting 

the species richness. Litter from the park users accumulates in the lagoon, 

such as plastic bottles, to the more unusual such as electric kettles (personal 

observation).  

 

Anthropogenic disturbance and lack of intertidal mudflats limits the avifauna 

that visit the lagoon and is dominated by opportunistic species such as mute 

swans Cygnus olor (Gmelin 1789), Canada and greylag geese Branta 

canadensis and Anser anser (Linnaeus 1758), mallard ducks Anas 

platyrhynchos (Linneaus 1758), and gulls. The proliferation of algal blooms 

and nuisance swarms of non-biting midges (Chironomidae) that undergo their 

larval stages in the lagoon sediment have indicated that Poole Park lagoon is 

a degraded and hypereutrophic habitat (Harrison et al. 2016). 

1.4 Rationale 

It is evident that there is a relative paucity of literature and data on temperate 

lagoons, particularly on the coasts of the UK, with much work on European 

lagoons focused in the Mediterranean. Much of the work done by British 

lagoon ecologists Martin Sheader, Roger Bamber and Richard Barnes was 

pivotal in providing a baseline of physico-chemical parameters typical of British 

lagoons and the lagoonal fauna. However, apart from a handful of more recent 

studies, surveys and reports (see Howson et al. 2014), little has been done 

since the 1990s, particularly on English lagoons. Since then, taxonomic 

scientific techniques and methods have become more accurate and precise, 

which is crucial to determine positive identification of some of the more 

ambiguous invertebrates, such as the morphologically similar lagoon cockle 

C. glaucum and common cockle Cerastoderma edule (Linnaeus 1758) 

(Hummel et al. 1994; Barnes 1980). Additionally, it is important to maintain 

accurate data on the distribution, extent and ecological health of British 

lagoons in an ever-changing climate to ensure adaptive management. 
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There is historical evidence of lagoons becoming inundated with seawater in 

Poole Harbour. Blue Lagoon, once a disused saltern, became intertidal in the 

late 1980s leading to the loss of a regional lagoon habitat and a local 

population of the starlet sea anemone Nematostella vectensis (Stephenson 

1935) (Sheader et al. 1997; Sheader and Sheader 1992; Sheader and 

Sheader 1985). With Brownsea lagoon facing habitat loss in the future, there 

is a need to assess the extant lagoons and potential/ unconfirmed lagoon sites 

in the region to determine their habitat health, their potential as refugia and to 

provide baseline data that will inform their management for the future. A survey 

focused on water quality was conducted in Poole Park lagoon in 2015 with 

some biotic data collected, giving a limited insight into the benthic 

communities. Macrozoobenthic communities are well-known indicators of 

habitat health and spatially comprehensive data would provide an assessment 

of the ecological condition of Poole Park and its capacity to support species 

from higher trophic levels such as birds (Arbi et al. 2017; Dauvin 2007; 

Rakocinski and Zapfe 2004; Simboura and Zenetos 2002). 

 

In the late autumn of 2018 the lagoon will undergo works to improve public 

access and engagement, create islands for use by terns, and to improve 

overall ecology. Collecting spatially comprehensive abiotic and biotic data now 

will provide a baseline allowing the status of the lagoon’s ecosystem health to 

be compared before and after the works have been completed. 

1.5 Aims and Objectives 

A study conducted in Poole Park in 2015 gave a snapshot view of 

macrozoobenthic diversity but focused on water quality. Biotic samples were 

only taken from two sites and recorded 13 species, with the annelid H. 

diversicolor and amphipod Monocorophium (Corophium) insidiosum 

(Crawford 1937) dominating (Harrison et al. 2016). This study aims to collect 

spatially comprehensive biotic and abiotic data in Poole Park lagoon to 

determine the primary environmental variables that dictate the 

macrozoobenthic communities and species. Measuring the sizes of the most 
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widespread and abundant species can provide useful indicators of spatial 

ecological health (Petchey and Belgrano 2010). 

 

Decreasing salinity with decreased proximity to the site where the lagoon 

connects to the sea is seen in Brownsea Lagoon, and also demonstrated on 

a larger scale in Poole Harbour (Herbert et al. 2010; Barnes 1989). Salinity 

may be higher closer to the sluice gate with hyposalinity occurring in the north 

of the lagoon where surface water input from pipes is greatest. It is predicted 

that proximity to the sluice gate will be negatively correlated with species 

diversity due to the higher energetic costs associated with osmoregulation 

(Arndt 1989).  

 

The aims and objectives for this study are:  

 

1) Collect spatially comprehensive baseline abiotic and biotic data by: 

a) Using standardized, replicable field and laboratory methodology  

b) Obtaining abiotic data measurements such as salinity, temperature, 

particle size, organic matter content, sediment depth and water depth 

c) Obtaining biotic data from benthic cores and fish traps. 

 

2) Identify relationships between abiotic variables and assemblages by: 

a) Using ArcGIS to visually identify spatial trends 

b) Conducting statistical analyses 

c) Analysing the assemblage data within the context of abiotic variables 

using appropriate biotic metrics  

d) Measuring annelid H. diversicolor and amphipod M. insidiosum to 

determine size class frequency distributions to establish resident 

populations. 

 

3) Identify, if any, relationships between pelagic and benthic fauna by: 

a) Using ArcGIS to visually identify spatial trends 

b) Conducting statistical analyses. 
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4) Discuss the ecological health of Poole Park lagoon and its potential for 

improved management by: 

a) Using existing literature, including Harrison et al.’s report from 2016 

b) Analysing results within the context of trophic ecology and comparing it 

to other lagoons in the region. 

2. Methods and Materials 

2.1 Study Site 

Poole Park lagoon is a 0.21km2 sluiced lagoon and the gate is opened once 

monthly on the spring high tide for flushing and is otherwise impounded. It also 

receives freshwater input from pipes that drain surface water from a catchment 

of approximately 2km2 from the Poole town conurbation, including a licensed 

sewage overflow. As a result, freshwater input can be very variable and lead 

to extreme temporal values in salinity, contribute to contaminant loading and 

exacerbate eutrophication in the lagoon (Harrison et al. 2016).  

 

Five islands were created in 2007 in the northwest with material dredged from 

the lagoon and bordered with wooden fencing, chicken wire and reeds to 

prevent erosion and access by geese and swans (see Figure 2). Since then, 

some of the islands have subsided and fallen into disrepair and are frequently 

used by avifauna. In the north and east, reedbeds have been used to create 

sheltered inlets and are in a similarly poor state. Reedbed One in the north is 

often populated by geese, swans and gulls which are fed by the users of the 

car park adjacent to the reedbed. Reedbed Two in the east is less accessible 

to park users as hedgerows prevent direct access to the lagoon. In the 

southeast a Concrete Walkway borders the Model Boating Area. The Sluice 

Gate is in the south of the lagoon and discharges into Parkstone Bay in the 

north of Poole Harbour. Rockley Watersports operate in the lagoon and are 

based in The Kitchen Café premises, offering schools and the public access 

to stand-up paddle-boarding, sailing, kayaking, and peddle boats. 
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Figure 2 A map of Poole Park lagoon including key features. 

 

Historically the lagoon was flushed on a frequent basis which regulated the 

salinity regime enough to sustain a relatively stable ecosystem. However, in 

recent years budgetary constraints have led to an infrequent flushing regime, 

leading to hypertrophic conditions and stochastic salinities. Unpleasant 

hydrogen sulphide odours and swarms of midges (Chironomidae), which 

undergo their larval phase in the mud, have been the subject of park user 

complaints and can be symptomatic of a degraded aquatic habitat. In 2015, 

the salinity varied by >25‰ throughout the year, and in early February 2015 

varied by approximately 20‰ following a single flushing event. Lagoon depth 

is predominantly <1m but reaches 1.5m in depth around the islands and in the 

northeast. Historically, sediment depth is highest in the central to southwest 

region and overall ranges between 0-200cm (Harrison et al. 2016). 
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2.2 Abiotic Data 

2.2.1 Fieldwork  

Abiotic data at Poole Park lagoon was collected on November 8th and 28th 

2017 and February 7th, 2018 with permission from Poole Borough Council and 

Natural England. The lagoon was accessed with a rigid inflatable boat (RIB). 

On November 8th and 28th, 49 sediment sample cores were obtained from 

sample points distributed approximately 65m apart on a grid using a 10cm 

diameter suction corer (see Figure 3). Samples were stored in plastic 

resealable bags and labelled with waterproof permanent marker and internally 

with waterproof paper and pen. Samples were frozen the same day to prevent 

decomposition of organic content. Aquatic and bathymetric data were obtained 

on February 7th, 2018. A ranging pole was used to determine water and 

sediment depth from a RIB and conductivity and temperature data were 

obtained using a Hach HQ40D multimeter probe.  

 

 

Figure 3 A map of sampling sites. 
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2.2.2 Laboratory Analysis 

The sediment samples were defrosted overnight, homogenised and sub 

samples were taken for sediment analysis. Organic content was measured by 

drying a homogenised subsample in a Memmert drying oven at 105˚C for 48h 

and then placing in a Carbolite chamber furnace at 450˚C for 12h and 

measuring the loss of mass on ignition (% LOI). Particle size analysis was 

obtained using a Malvern Mastersizer 3000 laser diffractometer with 

subsamples of the processed sediment. Samples were put through a 2mm 

sieve and particles greater than 2mm were weighed separately. Sieved 

samples were added to distilled water until the obscuration threshold was 

exceeded and readings commenced. Percentage silt content was determined 

by grain sizes ≤63μm and percentage sand content was determined by grain 

sizes >63μm (Wentworth 1922).  

2.3 Biotic Data 

2.3.1 Fieldwork 

Fieldwork was conducted on November 7th and 8th 2017 and access was 

obtained with a RIB. Benthic sampling was conducted according to the 

procedural guidelines for sampling sediment species using cores as detailed 

in the JNCC Marine Monitoring Handbook and as per other benthic surveys at 

local lagoons (Bone 2017; Harrison et al. 2016; Herbert et al. 2010; Dalkin and 

Barnett 2001).  Benthic fauna was sampled by taking fifty evenly distributed 

sediment cores using a 10cm diameter suction corer.  Samples were 

immediately stored in plastic resealable bags, labelled with waterproof 

permanent marker and internally with waterproof paper and pen, before being 

sieved in-situ using a 0.5mm sieve to remove fine sediments and clay lumps. 

These fauna samples were taken back to the laboratory the same afternoon 

as collection and fixed using 10% formalin and seawater and stored in plastic 

pots labelled internally and externally.  

 

Following a review of the macrozoobenthic and environmental data, pelagic 

faunal data were obtained to investigate the relationships between pelagic and 
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benthic faunal communities in areas at the minima and maxima of organic 

matter content. Pelagic fauna hereafter refers to pelagic and demersal species 

and invertebrate species missed with core sampling such as crabs. This was 

to assess how biotic interactions from pelagic fauna may influence 

macrozoobenthic spatial distribution, particularly in areas where abiotic 

variables such as organic matter appear to have a strong influence, and 

accurately reflect the three-dimensional dynamism of the lagoon benthos. 

Pelagic fauna surveys were conducted in June 2018. Sites were chosen by 

visually assessing an interpolated GIS map showing the distribution of organic 

matter content (%) (see Figure 4). Ten sites showing the lowest percentage of 

organic matter and ten sites showing the highest percentage of organic matter 

were selected from the same points where the core samples had been taken 

for accurate spatial comparison. Permission to undertake the work was 

granted by the Environment Agency.  

 

Crayfish style traps were used to obtain pelagic data (see Figure 5). A previous 

study by Harrison et al. (2016) used seine nets to obtain fish biodiversity data 

Figure 4 A map showing the distribution of benthic organic matter content in Poole 

Park lagoon. 
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but this method was used at the lagoon edges and was therefore unsuitable 

for the deeper and more central sample sites for this survey. Additionally, 

because the aim was to identify possible interactions with benthic 

macroinvertebrates, seine netting may have missed key pelagic and demersal 

nekton such as the common ditch shrimp Palaemon (Palaemonetes) varians 

(Leach 1813) and European green crabs Carcinus maenas (Linnaeus 1758). 

Crayfish style traps also had the benefit of being left in situ during nocturnal 

and crepuscular periods when many fish species are most active.  

 

A field test was conducted prior to deployment where two traps were left 

overnight about 10m apart; one was baited with a small piece of tilapia (Tilapia 

sp.) fish and the other was not baited. The baited trap caught approximately 

80 common ditch shrimp, eight common gobies Pomatoschistus microps 

(Kroyer 1838), and two European green crabs. The non-baited trap caught 

seven common gobies and 26 common ditch shrimp. Following this pilot study, 

it was decided not to use bait due to the length of time the traps would be 

deployed as the attraction of predators could lead to the mortality of other 

species caught in the traps. Additionally, the bait plume may attract individuals 

not local to the trap, providing inaccurate data (Heagney et al. 2007; Cappo et 

al. 2004).  

 

22cm 

22cm 

53cm 

Figure 5 The collapsible crayfish style trap used for this study. 
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Twenty fish traps (22x22x53cm) with a 3mm mesh size were deployed for no 

longer than 24 hours at twenty sites (see Figure 6) overnight and collected the 

following morning to catch nocturnal and crepuscular species. Due to the 

restricted availability of Rockley Watersports providing boat access, traps 

were dropped at 11.00 on Thursday 28th June and collected at 10.30 on Friday 

29th June. These timings were repeated for Thursday 19th July and Friday 20th 

July. Traps were removed from the lagoon and submerged in a tub filled with 

lagoon water on the boat to prevent mortality of sample specimens. Numeric 

abundance was determined before specimens were immediately returned to 

the site they were collected from.  

 

2.3.2 Laboratory Analysis 

The benthic fauna samples were rinsed of formalin with water in a ventilated 

fume cupboard for viewing under a microscope. Invertebrates were picked 

from the samples under a low power stereo microscope and placed in small 

tubes containing 70% Industrial Methylated Spirit (IMS) for identification and 

quality control purposes. Identification of individuals was made using 

Figure 6 Map of the twenty sample sites where pelagic fauna were sampled. One to 

ten were at sites with the highest organic matter and eleven to twenty were at sites 

with the lowest organic matter. 
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appropriate keys to highest taxonomic resolution. Specimens without a head 

were discounted, as were bivalves which did not contain living tissue. The 

ragworm H. diversicolor and amphipod M. insidiosum were measured using a 

stage micrometer calibrated with an eyepiece graticule. The width of the head 

(peristomium) and length of the body from the prostomium to pygidium (when 

entire specimen was present) was taken for H. diversicolor. For entire 

specimens, body size data were collated on a spreadsheet and a line of best 

fit was found for the linear relationship between head width to body length, to 

extrapolate body length data for incomplete specimens. The body length of M. 

insidiosum was measured from the tip of the rostrum to the tip of the telson of 

all complete specimens. 

2.4 Data Analysis 

Data were collated onto Microsoft Office Excel spreadsheets for analysis. 

Species richness (S) and numeric abundance (N) were counted. Diversity 

indices, including Margalef’s species diversity index, Shannon-Weiner index, 

and Pielou’s evenness were produced with the DIVERSITY function (Clarke 

and Gorley 2006). Generally, biodiversity indices are most useful when used 

in comparison with another dataset to identify spatial or temporal change. 

Therefore, the mean biodiversity index values for Brownsea lagoon, Seymers 

lagoon and Poole Harbour mudflats are also given. These sites were chosen 

due to their inclusion within the Poole Harbour regional network and because 

singular surveys were conducted using the same standardised methodology 

in late Autumn (Herbert et al. 2010). It should be noted however that surveys 

at Brownsea and Seymers took samples from the lagoon perimeter and were 

not as spatially comprehensive or were not conducted at a fine scale. Previous 

Poole Park lagoon data from Harrison et al. (2016) has been omitted as it is 

incompatible for the purposes of this comparison because data were only 

collected from two central points and collated over several months. 

 

Percentage of dominant taxa was also calculated. Density of individuals per 

m2 was calculated by multiplying abundance by 127.324, the quotient of 1m2 

divided by the suction core area (πr2 = 78.54). IBM SPSS v. 25 was used to 
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perform linear regressions and, where appropriate, polynomial regressions. 

Linearity was first established by visual inspection of a scatterplot. Normally 

distributed residuals were assessed by visual inspection of a normal 

probability plot. Where outliers were identified, the analyses were performed 

both with and without them.  

 

An independent samples t-test was run to identify significant differences 

between pelagic fauna of areas of high and low organic matter, and between 

the surveys of June and July. The correct values as per the outcome of the 

Levene’s Test for Equality of Variances are reported. 

 

A multivariate analysis was conducted using Primer 7th Edition software 

(Clarke and Gorely 2006). Abundance data was square root transformed to 

standardise the data and to reduce influence of extreme values. A Bray-Curtis 

similarity matrix was created for the sample sites and a cluster analysis 

(CLUSTER) was run to identify statistically significant groupings of sample 

sites based on the assumption of no known assemblage structure similarities. 

A similarity profile analysis (SIMPROF) was run to detect structure in the 

macrozoobenthic assemblages. 

 

The BEST function was used for the BIO-ENV procedure to determine which 

abiotic factors correlated with overall assemblage patterns using the 

resemblance matrix of biotic data, following a square root transformation, and 

normalised abiotic data, following a log transformation (Clarke and Gorley 

2006). The following abiotic variables were considered: Silt Content, Organic 

Matter Content (OM Content), Median Grain Size (MGS), Water Depth 

(WDepth), Sediment Depth (SDepth), Salinity, Temperature, Distance from 

Sluice Gate, Distance from Southwest Shore (Distance from SW Shore), 

Distance from East Shore (Distance from E Shore), and Distance from North 

Shore (Distance from N Shore). A draftsman plot was created of all the 

untreated variables and a visual inspection of linear relationships within some 

plots suggested co-linearity.  

 

Abiotic variables were tested for co-linearity using a Pearson correlation test  
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in SPSS. A subset of co-linear variables was identified exceeding the accepted 

threshold of 0.7; Silt Content, OM Content and MGS (Dormann et al. 2013). 

MGS was obtained from the Malvern Mastersizer output during the particle 

size analysis. MGS was chosen as a proxy to represent the co-linear sediment 

variables and Silt Content and OM Content were omitted from Primer 

computations (Clarke and Warwick 2001). To ensure this variable was the best 

representative, interpolated layers of Silt Content, OM Content, and MGS were 

visually compared on an ArcMap of Poole Park which showed that MDS was 

closely associated with Silt and adequately reflected the OM Content 

distribution. Following this, the MGS proxy variable was renamed ‘Sediment’ 

in subsequent analyses to ensure interpretation of results considers the subset 

represented and not the singular retained variable. Temperature and Distance 

from N Shore were co-linear, but both remained in subsequent analyses as 

they were not functionally related in the same way the co-linear sediment 

variables were. Distance from SW Shore and Distance from N Shore were also 

co-linear, but both remained in subsequent analyses. Co-linearity was not 

deemed to be incidental as the sample dataset was large and representative 

of the full geographic area being surveyed.  

 

Following the removal of co-linear sediment variables, a draftsman plot of 

untreated remaining abiotic variables was visually inspected, and skewed 

variables were log transformed (SDepth, Salinity, Temperature). A BIO-ENV 

procedure was run using the following abiotic variables: SDepth, Salinity, 

Temperature, Distance from Sluice, Distance from SW Shore, Distance from 

E Shore, Distance from N Shore, and Sediment. The correlation method was 

Spearman rank with 999 permutations using Euclidean resemblance.  

 

ArcMap (ArcGIS) was used to provide spatially representative maps of abiotic 

and biotic data. Abiotic data were subject to the Inverse Distance Weighted 

(IDW) interpolation function, which extrapolates abiotic variables from existing 

sample points to provide a contoured surface and show gradients across the 

lagoon area. IDW interpolation was chosen over other available interpolation 

functions as the sample points were densely and evenly distributed enough 

for IDW to capture the extent of local variation necessary for analysis. 
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Interpolation was not utilised for biotic data which were instead overlaid as 

points for visual assessment of correlations with interpolated abiotic variables.  

 

Lagoon biotopes were assigned as per the classification in Bamber (1997), 

however they are not particularly inclusive and require revision and expansion.  

3. Results 

3.1 Abiotic Conditions and Patterns 

Most environmental variables measured displayed clear spatial patterns or 

gradients (see Appendix Table 1 for full results).  

 

Sediment factors included Silt Content, MGS, OM Content, and SDepth. Silt 

Content ranged between 18.7 and 95.4% by 76.6% and had a mean value of 

73.3%. Silt Content was highest in the central-southwest region (henceforth 

referred to as the CSW) and the central-northeast region (henceforth referred 

to as the CNE) with at least 85% of particles ≤63µm. Silt Content decreases 

rapidly eastward across a defined line almost perpendicular to the sluice gate 

and is mostly 65% or less in the east, northeast and northwest edge, 

decreasing to <35% in three periphery sites in the north (see Figure 7).  

 

MGS ranged between 18.3µm and 230.4µm by 212.1µm and had a mean 

value of 57.9µm. MGS follows a very similar spatial pattern to Silt Content with 

the finest grains of ≤73µm occupying the CSW and becoming progressively 

and rapidly coarser towards the CNE, the northwest of Island One and a 

periphery site in the southeast (see Figure 7).  

 

OM Content ranged from 1.2% to 12.3% by 11.1% and had a mean value of 

7.4%. OM Content was similar in spatial distribution to MGS and Silt Content, 

with the same east, northeast and northwest periphery sites showing lower 

OM Content with ≤4.5% and the CSW showing up to 12.3%. Unlike Silt 

Content and MGS, OM Content is also low in the central east area, not just 

periphery sites (see Figure 7). 
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SDepth ranged from 0.1 to 2.0m by 1.9m and had a mean value of 0.6m. It 

shows a broadly similar pattern to the other sediment factors but is a lot 

simpler. SDepth is deepest at the central south edge at 2m, just west of the 

sluice gate. Almost a third of the SDepth is shallow with ≤0.3m in the east and 

northeast, including a southwest periphery site (see Figure 7). SDepth from 

the current study is broadly similar to the SDepth measured by Harrison et al. 

(2016) with the CSW dominated by deeper sediments and the east and 

northeast very shallow, indicating very little movement of sediments since 

2015. 

 

 

 

 

 

 

 

 

 

 

 

 

a. b. 

c. d. 

Figure 7 The distribution of sediment factors in Poole Park lagoon including a) MGS, b) 

OM Content, c) SDepth and d) Silt Content. 
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Aquatic variables included Temperature, Salinity and Water Depth (WDepth). 

Temperature ranged from 1.3°C to 3.7°C by 2.4°C, had a mean value of 2.8°C 

and was overall relatively homogenous. A southwest to northeast gradient can 

be seen with colder water in the south and becoming warmer in the northeast 

(see Figure 8). Two periphery sites on the south bank are particularly cool 

ranging between 1.3°C and 2.0°C but the sites immediately surrounding these 

anomalous points are between 2.4°C and 2.8°C which is characteristic of the 

southern temperature regime of that day.  

 

 

 

a. b. 

c. 

Figure 8 The distribution of aquatic factors in Poole Park lagoon including a) Salinity, 

b) Temperature and c) WDepth. 
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Salinity ranged from 24‰ to 26.6‰ by 2.6‰ and has a mean value of 26.4‰. 

Salinity does not follow the southwest-northeast gradients seen in other 

environmental variables and appears more northwest-southeast (see Figure 

8). Over half of the lagoon ranges between 26.3‰ and 26.6‰ and then in the 

southeast decreases to 26.0‰ with three periphery sites in this area as low as 

24‰. Two of these three points are shared with the anomalous sites for 

Temperature, suggesting a freshwater source may be locally affecting these 

areas.  

 

WDepth ranges from 0.6m to 1.3m by 0.8m and has a mean value of 0.9m 

WDepth is deepest by up to 1.3m in the central north which then decreases in 

depth to its shallowest points in the southwest and northeast corners (see 

Figure 8). Bathymetry in this study is very similar to the bathymetry recorded 

in Harrison et al. (2016). 

3.2 Overall Macrozoobenthic Biodiversity 

The overall numeric benthic abundance across the lagoon totalled 2260 

individuals with a total of 15 species and a mean density of 5873m2 which was 

influenced by sites with disproportionately higher densities; most sample sites 

were below average density with just 35% above average density. Density 

ranged from 127 individuals per m2 to 50,930 individuals per m2. The most 

abundant phylum was Crustacea (see Figure 9) with a mean density of 3448 

individuals per m2, dominated by the lagoon amphipod M. insidiosum and the 

amphipod Microdeutopus gryllotalpa (Costa 1853). The second most 

abundant phylum, and the most species rich, was Annelida with a mean 

density of 940 individuals per m2, dominated by the ragworm H. diversicolor. 

The least abundant phylum was Mollusca with a mean density of 75 individuals 

per m2, dominated by the lagoon spire snail Ecrobia (Hydrobia) ventrosa 

(Montagu 1803). Phylum Cnidaria and Class Insecta were the least 

taxonomically rich with only one representative species each, though with 

relatively high mean densities of 868 and 541 individuals per m2 respectively. 

Lagoon specialists, indicated with an asterisk * in Table 1, comprised 52% of 

the fauna with a mean density of 3061m2 (Bamber et al. 2001). Non-native  



25 

 

 

and cryptic species (including the anemone N. vectensis), indicated with ▲ in 

Table 1, comprised 15% of the fauna with a mean density of 891m2. M. 

arenaria is included as a cryptic species as, although historically native, it 

became extinct in the Pleiocene Epoch 1.6 million years ago and has since 

been introduced from extant populations in the 1500s or 1600s (Petersen et 

al. 1992; Foster 1946). 

Figure 9 The spatial distribution of phylum assemblages. 
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Table 1 The species, mean and maximum density of the macrozoobenthic fauna of 

Poole Park. Note that the minimum density for all species was 0. 

Scientific Name Common Name 
Mean 

Density (m2) 
Maximum 

Density (m2) 

PHYLUM CNIDARIA    

Nematostella vectensis*▲ Starlet sea anemone 867.88 9803.90 

PHYLUM ANNELIDA    

Ficopomatus enigmaticus▲ Australian tubeworm 2.60 127.32 

Hediste diversicolor Ragworm 649.61 7512.10 

Phyllodoce mucosa Polychaete 2.60 127.32 

Polydora sp. Polychaete 202.68 2164.50 

Tubificoides sp. Oligochaete 83.15 3055.80 

PHYLUM CRUSTACEA    

Gammarus locusta Amphipod 15.59 381.97 

Melita palmata Amphipod 44.17 763.94 

Microdeutopus gryllotalpa Amphipod 1239.46 14515.00 

Monocorophium insidiosum* Amphipod 2148.92 18462.00 

PHYLUM MOLLUSCA    

Cerastoderma glaucum* Lagoon cockle 12.99 254.65 

Ecrobia ventrosa* Lagoon spire snail 31.18 509.3 

Mya arenaria▲ Sand gaper 20.79 763.94 

Peringia ulvae Spire snail 10.39 381.97 

PHYLUM INSECTA    

Chironomidae sp. Chironomid larvae 540.48 3819.70 
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Table 2 Regression analyses for overall density and abiotic factors. Significant p 

values in bold. Site 34 was a consistent outlier for all regression analyses. 

 

Overall invertebrate density was significantly negatively correlated with OM 

Content, Silt Content and Salinity and significantly positively correlated with 

MGS (see Table 2, Figure 10). Density was lowest in the CSW portion of the 

lagoon and highest around the north and eastern edge. Density peaked at Site 

34, which was consistently flagged as an outlier in regression analyses, with 

50,928 individuals per m2. Density was poorest at Site 4 with just 1 individual 

in the core sample, extrapolated to a density of 127 individuals per m2.  

 

Species richness was significantly negatively correlated with OM Content, 

SDepth, Silt Content and significantly positively correlated with Distance from 

SW Shore and MGS (see Table 3, Figure 11). Species richness was lowest in 

the CSW portion of the lagoon and highest around the north and eastern edge. 

Species richness peaked at Site 34, which was consistently flagged as an 

Density and Abiotic Factors of Poole Park Lagoon 

Variable Regression R2 DF F p 
Unstandardized 
Co-efficient B 

OM Content Linear 10.8 1, 47 5.709 0.021 -864 

Silt Content Linear 12.8 1, 47 6.879 0.012 -158 

MGS Linear 14.2 1, 47 7.778 0.008 60.222 

SDepth Linear 6.8 1, 47 3.455 0.069 -3948 

Temperature Quadratic 4.2 2, 46 1.006 0.373 4271 

Salinity Quadratic 12.6 2, 46 3.326 0.045 -8588 

WDepth Linear 0.7 1, 47 0.342 0.562 -4606 

Distance 
from SW 
Shore 

Linear 9.2 1, 47 4.786 0.034 16 

Distance 
from E Shore 

Linear 4.3 1, 47 2.095 0.154 -13 

Distance 
from N Shore 

Linear 5.5 1, 47 2.722 0.106 -13 

Distance 
from Sluice 

Linear 0.4 1, 47 0.172 0.68 4.57 
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outlier in regression analyses, with 11 species. Richness was poorest at Sites 

4, 8, 15, 40 and 46 with 1 species. Mean species richness was 4. 

Table 3 Regression analyses for species richness and abiotic factors. Significant p 

values (<0.05) in bold. 

Species Richness and Abiotic Factors of Poole Park Lagoon 

Variable Regression R2 DF F p 
Unstandardized 
Co-efficient B 

OM Content Linear 14.2 1, 47 7.757 0.008 -0.277 

Silt Content Linear 17.8 1, 47 10.151 0.003 -0.053 

MGS Linear 17.2 1, 47 9.761 0.003 0.019 

SDepth Linear 13.4 1, 47 7.263 0.01 -1.548 

Temperature Linear 2.0 1, 47 0.953 0.334 0.754 

Salinity Quadratic 7.2 2, 46 1.771 0.181 -1.723 

WDepth Linear 1.9 1, 47 0.902 0.347 -2.086 

Distance 
from SW 
Shore 

Linear 9.2 1, 47 4.747 0.034 0.004 

Distance 
from E 
Shore 

Linear 5.4 1, 47 2.709 0.106 -0.004 

Distance 
from N 
Shore 

Linear 4.1 1, 47 1.985 0.165 -0.003 

Distance 
from Sluice 

Linear 0.1 1, 47 0.033 0.858 0.001 
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Figure 10 Overall density with significantly associated abiotic variables, including maps of the 

spatial distribution of abiotic gradients and invertebrate density and scatter graphs 

demonstrating relationships. a) OM Content, b) MGS, c) Salinity and d) Silt Content. 

a. 

b. 

c. 

d. 
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c. 

d. 

Figure 11 Species richness with significantly associated abiotic variables, including maps of 

the spatial distribution of abiotic gradients and species richness and scatter graphs 

demonstrating relationships. a) OM Content, b) MGS, c) SDepth and d) Silt Content. 
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3.3 Matching Abiotic Variables to Assemblages 

BIO-ENV indicated that the BEST matching environmental variables to the 

resemblance matrix of the square root-transformed data was SDepth with a 

Spearman rank correlation (Rho) of 0.130 and significance value of 0.46. The 

addition of Temperature or OM Content to Sdepth, which were included in the 

next best models, reduced the correlation further to 0.105 and 0.099 

respectively. These correlations are quite low. Variables Distance from Sluice, 

Distance from SW Shore, and Distance from E Shore were not among the top 

ten correlations.  

3.4 Biodiversity Indices 

Shannon-Weiner, Margalef and Pielou’s Evenness biodiversity indices were 

used to assess biodiversity (see Table 4) though their relative values varied.  

Table 4 The Shannon-Weiner, Margalef and Pielou's Evenness biodiversity indices 

of Poole Park lagoon. 

Biodiversity Index Range Mean 

Shannon-Weiner (H’) 0 – 1.84 0.95 

Margalef (d) 0 – 1.82 0.96 

Pielou’s Evenness (J) 0 - 1 0.68 

 

For example, Site 2 only had 3 species and a numeric abundance of 3 but 

scored above average for all three indices (Shannon-Weiner: 1.10, Margalef: 

1.82, Pielou’s Evenness: 1.0), as the distribution of abundance between 

species was evenly split and there was no overwhelming dominance. Site 6 

had 7 species and a numeric abundance of 50 but scored below average for 

all three indices, as 4 of those species only numbered 1 individual, with the 

remaining abundance distributed between the remaining 3 species (Shannon-

Weiner: 0.31, Margalef: 0.42, Pielou’s Evenness: 0.44).  

 

The biodiversity indices for Brownsea, Seymers, Poole Park lagoon and Poole 

Harbour mudflats were compared (see Table 5). 
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Table 5 The Shannon-Weiner, Margalef and Pielou's Evenness biodiversity indices 

of comparative lagoon sites Brownsea, Seymers and Poole Park and Poole Harbour 

mudflats (Bone 2017; Herbert et al. 2010). 

Poole Harbour Site 
Shannon-Weiner 

(H’) 
Margalef (d) 

Pielou’s Evenness 
(J) 

Brownsea Lagoon 1.67 2.01 0.63 

Seymers Lagoon 0.84 0.97 0.86 

Poole Harbour Mudflats 1.49 1.28 0.63 

Poole Park Lagoon 0.95 0.96 0.68 

 

As previously noted by Bone et al. (2017), though in reference to historic Poole 

Park macrozoobenthic data (Harrison et al. 2016), Poole Park and Seymers 

lagoon are most similar in biodiversity as both are considered eutrophic 

degraded habitats, though Poole Park ranks lower overall. Poole Harbour 

mudflats and Brownsea lagoon rank considerably higher with Margalef and 

Shannon-Weiner and have much higher species richness and abundance than 

Seymers or Poole Park. However, both rank lower with Pielou’s Evenness at 

0.63.  

3.5 SIMPROF Analysis and Groupings 

This study has collected comprehensive assemblage data which the Primer 

SIMPROF function divided into four statistically significant groupings (groups 

A, B, C and D) (see Figure 12). Statistically significant groups are denoted by 

Figure 12 The SIMPROF groupings of Poole Park lagoon. 

D 

A 

B C 
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complete black lines. The assemblages, species richness, and relative 

abundance of these groupings was analysed with reference to complementary 

abiotic data, to identify trends and patterns.  

3.5.1 Group A 

Group A notably consisted of Site 41 only and is characterised as a site of 

extremes; it exhibited the lowest Silt Content (54.58%), OM Content (3.67%) 

and SDepth (0.06m) and the highest Temperature (3.3°C). Its faunal 

assemblage consisted of relatively rare species; one snail E. ventrosa, and 

one amphipod Gammarus locusta (Linnaeus 1758). Site 41 was in the north 

east immediately adjacent to Reedbed 2 that enclosed a small section of 

water, so would experience high energy conditions when windy. It was also 

relatively shallow, which likely accounted for the higher Temperature. Its 

proximity to a structure may have led to a local high abundance of fish 

predators that limited richness and abundance, in addition to coarser sediment 

just 6cm in depth, limiting its capacity to support infaunal invertebrates.  

3.5.2 Group B 

Group B consisted of 10 samples (Sites 4, 9, 10, 15, 17, 24, 28, 40, 45, 46) 

and was characterised by very low abundances (n = ≤19, mean = 7.6), low 

species richness (S = ≤4, mean = 2, total S = 6) and was dominated almost 

exclusively by amphipods (92%), including M. insidiosum, M. gryllotalpa, and 

Melita palmata (Montagu 1804). Group B also included all four monospecific 

sites dominated by the lagoon amphipod M. insidiosum. Other invertebrates 

within this grouping included the annelid Phyllodoce mucosa (Orsted 1843), 

which was singularly present at Site 9, two Chironomid larvae, two anemones 

(N.vectensis), and C. glaucum singularly present at Site 45. Group B had the 

highest mean Silt Content, OM Content and deepest SDepth with 83.52%, 

9.46% and 0.93m respectively. Mean Salinity and Temperature was 26.53‰ 

and 2.81°C respectively. Spatially these sites were clustered in two main 

areas; the central-south region and the northeast region, with one inside the 

Model Boating Area. The low abundance and richness of this group, 

particularly low abundances of predominantly infaunal species, is indicative of 
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hostile conditions, supported by the unfavourable sediment factors which 

would suggest hypoxic-sulphidic sediments. Motile amphipods dominate these 

sites likely due to their capacity to swim to more favourable conditions when 

necessary.  

3.5.3 Group C 

Group C consisted of 26 samples (Sites 1, 3, 6, 7, 11, 13, 14, 16, 19, 20, 21, 

23, 25, 27, 29, 31, 33, 34, 38, 42, 43, 44, 47, 48, 49, 50) and was characterised 

by higher than average abundances (mean = 79, n = 11 to 400) and higher 

than average species richness (mean = 5.7, S = 2 to 11, total S = 14). 

Amphipods M. insidiosum, M. gryllotalpa, M. palmata, and G. locusta 

dominated taxa again by 60% but Group C assemblages were characterised 

by a higher proportion of annelid worms (17%), including H. diversicolor, 

Polydora sp. and Tubificoides sp., which dominated five sites and were 

present in 20 of 26 sites. A higher proportion of infaunal and epifaunal molluscs 

and N. vectensis were also present. The anomalous Site 34 was included in 

this grouping, with an overall abundance of 400 and a total of 11 species. 

Other invertebrates within this grouping included one Australian tubeworm 

Ficopomatus enigmaticus (Fauvel 1923) individual singularly present at Site 

38, Chironomid larvae, Hydrobiid snails Peringia (Hydrobia) ulvae (Pennant 

1777) and E. ventrosa, bivalves C. glaucum and M. arenaria, and the anemone 

N. vectensis. The mean SDepth for Group C was 0.48m and had a moderate 

mean OM Content of 6.63%, and a moderate mean Silt Content of 67.61%. 

Mean Salinity and Temperature was 26.28‰ and 2.84°C respectively. The 

moderate sediment factors at these sites have facilitated the colonisation of 

greater numbers of infaunal species as the sediment is likely to be better 

oxygenated and little to no interstitial hydrogen sulphide. The predatory non-

native anemone N. vectensis is present at these sites where there are higher 

abundances of prey species. 

 

Site 34 is situated between two hard structures; the Concrete Walkway to the 

southeast and Reedbed 2 to the north. Hard structures within a soft-bottomed 

habitat represent areas of productivity due to their capacity to be colonised by 
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species that require a hard substrate, and the habitat complexity this creates 

for other species. The Concrete Walkway is encrusted with Australian 

tubeworm reefs which anecdotally are sites of high densities of motile species 

feeding and seeking shelter among the calcareous tubes, including isopods, 

common ditch shrimp, gobies and unidentified fish fry. Bryozoans and green 

algae have also been seen growing on the reefs. However, this anomalous 

site supports the need for taking more than one sample at each site to 

compare same-site samples to see if there is much biotic variation on a 

microspatial scale, particularly as it was adjacent to Site 41, with only nine 

individuals of one species present. 

3.5.4 Group D 

Group D consisted of 12 samples (Sites 2, 5, 8, 12, 18, 22, 26, 30, 32, 36, 37, 

39) and was characterised by lower than average abundances (n = ≤22, mean 

= 9.8) and low species richness (S = ≤4, mean = 3, total S = 6). The overall 

dominant taxa were Chironomid larvae (55%) and was the dominant taxa in 

10 of 12 sites, including the fifth monospecific site. Group D also included the 

ubiquitous amphipods M. insidiosum and M. gryllotalpa, which were the 

second most abundant phylum (17%), and low abundances of annelid worms 

H. diversicolor and Polydora sp.. The anemone N. vectensis was also present 

in low abundances and a single Hydrobiid snail P. ulvae was present at Site 

12. Group D had a mean high Silt and OM Content and relatively deep SDepth 

with 78.83%, 7.62% and 0.71m respectively. Salinity and Temperature were 

26.33‰ and 2.72°C respectively. There was no clear spatial pattern for this 

grouping, but Group D assemblages did not stretch to the northeast corner or 

eastern edge of the lagoon.  

3.5.5 Spatial Distribution of SIMPROF Groupings 

When mapped, the distribution of the SIMPROF groupings do not display any 

clear spatial distribution patterns. As SDepth was identified by BIO-ENV to be 

weakly associated with macrozoobenthic assemblages, an interpolated 

SDepth layer was added to the map (see Figure 13). 
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Group B was predominantly clustered within central and southern deeper 

SDepth areas, but four sites were in the shallower northeast. Group C was 

predominantly clustered within shallow SDepth areas throughout the lagoon, 

but four sites were in the deeper central to southern area. Group D can be 

found on the fringes of the central deeper SDepth area, with some sites in both 

the deepest and shallowest areas, with no discernible pattern. Group A, the 

single site, is in the shallow northeast.  

3.6 Lagoon Biotopes 

Considering the English and Welsh Biotopes (Bamber 1997) Group C and D 

was best suited to ENLag.IMS.Ann, infralittoral muddy sand with Chironomids, 

Hydrobiids, H. diversicolor, C. glaucum, and amphipods. Group B was best 

suited to ENLag.Veg with its high OM Content and strong dominance of 

amphipod crustaceans.  

Figure 13 The spatial distribution of statistically significant SIMPROF groupings in 

Poole Park lagoon with SDepth. 
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3.7 Invertebrate Distribution 

Every site sampled was populated with invertebrates. Of the 49 sample sites, 

10% were monospecific, with four sites dominated by the lagoon amphipod M. 

insidiosum and one site dominated by Chironomid larvae. The abundance at 

these monospecific sites did not exceed nine individuals. At 59% of sites (29 

of 49) the dominant taxa were amphipod species, either M. insidiosum, M. 

gryllotalpa or on one occasion G. locusta with a dominance ranging from 33% 

to 100% of the assemblage. The second most abundant taxa were Chironomid 

larvae occurring at 22% of sites (11 of 49) with a dominance ranging from 33% 

to 100% of the assemblage.  

 

The least numerically abundant species (<20) included the Hydrobiid snails P. 

ulvae and E. ventrosa, the bivalves M. arenaria and C. glaucum, the 

polychaetes F. enigmaticus and P. mucosa, and the amphipods M. palmata 

and G. locusta. Apart from P. ulvae and the polychaetes, these relatively rare 

species can be found at Site 34 or its neighbouring sites, indicating a hot spot 

for species richness. The results for the anemone N. vectensis can be found 

in Chapter Two.  

3.7.1 Annelids 

The F. enigmaticus individual was found still within its calcareous tube on the 

southwest corner of Island One, presumably having dislodged from a  

reef colonising the Island fencing (see Appendix Figure A1). The P. mucosa 

individual, a carnivorous scavenger normally occurring in estuarine and soft-

bottomed coastal areas, was found in the southwest centre in the area of high 

Silt and OM Content (see Appendix Figure A1). 

 

The most abundant annelid H. diversicolor was largely absent from the CSW 

and CNE and most abundant along the west side of the Concrete Walkway, 

around the northwest edge and Islands and peaked at Site 38 (see Appendix 

Figure A1).  
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The annelid Polydora sp. was completely absent in the CSW right up to the 

southwest bank and in the CNE (see Appendix Figure A2). It occurred in low 

abundances around the Island One, northeast edge, Sites 33 and 34, by the 

sluice gate and west of the Concrete Walkway. The oligochaete Tubificoides 

sp. occurred at just four sites and was otherwise completely absent throughout 

the lagoon (see Appendix Figure A2). It was found at Site 34, in the southeast 

corner and northwest of Island One. 

3.7.2 Crustaceans 

The amphipods M. gryllotalpa and M. insidiosum were the most abundant 

species and accounted for several monospecific sites. However, though 

singularly present, M. insidiosum was by no means abundant with a maximum 

of nine individuals at the most abundant monospecific site, suggesting hostile 

conditions were not limited to the sediment. M. gryllotalpa was present at most 

sites and scattered throughout the lagoon with no discernible site groupings 

where they were consistently absent (see Appendix Figure A2). M. insidiosum 

was present at all but eight sites, peaking at Site 34, and was also notably 

abundant in the northeast corner (see Appendix Figure A3). Three sites M. 

insidiosum was absent from were clustered around the northwest-west edge 

by The Kitchen Café. 

 

M. palmata was distributed fairly randomly, occurring in sites in the centre and 

perimeter and in the northwest, east and west (see Appendix Figure A3). G. 

locusta was found at Site 34 and an adjacent site, and two perimeter sites; 

one adjacent to the sluice gate and another in the southwest corner (see 

Appendix Figure A3).  

3.7.3 Molluscs 

P. ulvae was found at two sites, one on the south perimeter and one near the 

centre, both high Silt and OM Content sites (see Appendix Figure A4). E. 

ventrosa was not only more abundant than P. ulvae, its distribution was more 

widespread; predominantly in the northeast around Reedbed 2 and also found 
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at the southern site with P. ulvae (see Appendix Figure A4). Empty shells of 

both species were more abundant in samples than live specimens.  

 

M. arenaria was found at Site 34 and at two perimeter sites adjacent to the 

Sluice Gate (see Appendix Figure A4). All M. arenaria individuals were <1cm 

in size, suggesting one of two things; that conditions are unfavourable for rapid 

growth or that they were recently recruited juveniles (<1 year).  

 

C. glaucum was found at one site in the southwest corner but the majority were 

found in three sites in the northern area (see Appendix Figure A5). The high 

energy of the north is likely favourable for these filter feeding bivalves. 

Specimens were a mixture of juveniles and young adults (<2cm). 

3.7.4 Chironomid Larvae 

Chironomid larvae were largely absent in the CSW and central northeast, 

though the site at which they were the sole species occurred in the southwest 

(see Appendix Figure A5). There were no areas where Chironomid larvae 

were particularly abundant though they peaked in numbers in the northeast 

corner.  

 

Although many species demonstrated areas of particularly high abundance or 

areas where they were notably absent, their spatial distribution was patchy 

overall. Many species had singular sites of absence or high abundance 

scattered randomly throughout. High abundance sites were often adjacent to 

sites where the same species was absent and vice versa, demonstrating the 

characteristically patchy nature of lagoon macrozoobenthic species and 

assemblages.  

3.8 Size Classes 

3.8.1 Lagoon amphipod M. insidiosum 

Some specimens were unavailable for measuring after being sent for 

identification and some were too fragile and broke when being handled. 
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Nonetheless 688 individuals were measured, comprising 83% of the total 

abundance for M. insidiosum. Approximately 70% were between 1.1-2.0mm 

and frequency decreases either side of this (see Figure 14). This pattern is 

reflected at sites with higher abundances. The largest individuals (3.6-4.0mm) 

were found at Site 23 with all other size classes present (see Figure 15). Six 

sites that comprised of just one size class were always between 1.6-2.0mm. 

Size classes ranged the most along the Concrete Walkway and along the west 

bank. There was no discernible pattern with environmental variables. 
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Figure 14 The size class frequency for the amphipod M. insidiosum. 
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3.8.2 Ragworm H. diversicolor  

Seventy percent of H. diversicolor specimens were measured, with some 

being too fragile to handle. The dominant size class was 0-1.0cm and there 

was a negative correlation between frequency and size class (see Figure 16). 

No specimen exceeded 7cm though H. diversicolor can grow to twice this size. 

Size class 1.1-2.0cm occurs in all but two sites (see Figure 17). Seven sites 

were dominated by a single size class which was either 1.1-2cm or 3.1-4cm. 

Sites in the north exhibited the greatest variety of size classes and greater 

abundances, particularly around Island One and both Reedbeds. Conversely 

the largest specimens (6.1-7.0cm) were found in the southeast by the 

Concrete Walkway. 

Figure 15 The size class distribution of the lagoon amphipod M. 

insidiosum. 
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Figure 17 The size class distribution for the ragworm H. diversicolor. 
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Figure 16 The size class frequency for the ragworm H. diversicolor. 
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3.9 Pelagic Fauna 

Fauna caught in the fish traps were dominated by P. varians and P. microps 

(see Table 6). This differed from the most recent previous survey which was 

dominated by three-spined sticklebacks Gasterosteus aculeatus (Linnaeus 

1758) and recorded a greater species richness with six fish species (Harrison 

et al. 2016). However, a comparison cannot be sensibly drawn due to differing 

survey methodology, time of year and location within the lagoon. Additionally, 

it should be noted that the lagoon underwent an accidental drain on a neap 

tide on May 8th, 2018 and took an additional 4 days to return to average 

volume. Anecdotal accounts of the lagoon described it as a large muddy 

puddle with some of the marginal sediment emersed (Rockley Watersports, 

personal communication). During the four days it was below average water 

height, the weather was consistently sunny, and the air temperature was as 

high as 21°C. Such conditions may have led to the mass mortality of some 

species, including fish who would have been forced into a smaller area and 

higher densities in unusually hot and potentially hypersaline conditions due to 

evaporation.  

Table 6 Pelagic species and abundances of Poole Park lagoon. 

 

 

There was no significant correlation with invertebrate density with C. maenas, 

P. varians or P. microps abundance overall (see Table 7). This is unsurprising, 

given the time that has elapsed between their respective survey dates. P. 

varians abundance was highest at Site 1 for both surveys and lowest at Site 

18 for June and absent at Sites 11 and 20 for July. P. microps were most 

abundant at Sites 8 and 13 for June and Site 15 for July. It was least abundant 

Scientific Name Common Name June July TOTAL 

PHYLUM CRUSTACEA     

Carcinus maenas European green crab 11 8 19 

Palaemon varians Common ditch shrimp 261 293 554 

PHYLUM CHORDATA     

Gasterosteus aculeatus Three-spined stickleback 0 6 6 

Pomatoschistus microps Common goby 229 228 457 

TOTAL ABUNDANCE: 501 535 1,036 
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at Site 4 for June and absent at Sites 3, 8, and 9 for July. C. maenas were 

found at seven sites in June but only four in July. Abundances for the three 

species was not significantly different between surveys. G. aculeatus was 

found only in July in low abundances. 

Table 7 Regression analyses for overall invertebrate density and pelagic abundance 

of Poole Park lagoon. Site 16 was a consistent outlier in all regressions. 

Invertebrate Density and Pelagic Abundance of Poole Park Lagoon 

Variable Regression R2 DF F p 
Unstandardized 
Co-efficient B 

C. maenas 
Total  

Linear 1.5 1, 18 0.276 0.605 -892.732 

G. aculeatus 
Total 

Linear 2.5 1, 18 0.464 0.505 2256.277 

P. microps 
Total 

Linear 0.5 1, 18 0.082 0.778 50.042 

P. varians 
Total 

Linear 3.2 1, 18 0.601 0.448 -111.297 

 

In June, P. microps were found in almost equal abundances in the high OM 

area and low OM area (see Figure 18). P. varians abundance was 

considerably higher in the high OM area. C. maenas were in higher 

abundances in the low OM area. In July P. microps abundance was more than 

four times greater in the low OM area than the high OM area. Conversely P. 

varians abundance was almost twice as great in the high OM area than the 

low OM area. G. aculeatus were found only at three sites in the northeast of 

the lagoon in the low OM area with none found in June.  

 

The traps were notably weedier with filamentous green algae in July when 

recovered, particularly in the high OM area. In June, no fouling was observed 

apart from Site 18 in Reedbed 2 by the large freshwater Pipe L8. July’s survey 

followed a period of drought conditions in the UK, with record-breaking hot 

weather and just over 20% of the average rainfall for June-July in southwest 

England (Shukman 2018). Furthermore, a larger proportion of P. microps 

caught in July were larger, approximately 3-4cm, some with dorsoventral 

swelling in the pelvic area. This swelling could indicate fish that were in 

breeding condition. In July, several of the traps contained small proportions of 
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dead P. microps with visible lacerations, possibly due to attempted predation 

by C. maenas outside the traps. Many of P. varians caught in July were much 

smaller (<2cm) than those caught in June. The decrease in P. varians and 

increase in P. microps and vice versa in both survey areas in July suggests 

that predation of P. varians by P. microps may be a factor in determining their 

distribution; particularly noting the differences in size classes.  

3.9.1 Temporal Differences in Pelagic Abundance 

There was no significant difference between P. microps abundance (F = 3.467, 

df = 38, p = 0.987), between P. varians abundance (F = 0.782, df = 38, p = 

0.648), between C. maenas abundance (F = 0.160, df = 38, p = 0.607), or 

between G. aculeatus abundance (F = 14.124, df = 19, p = 0.110) in June and 

July.  

3.9.2 Spatial Differences in Pelagic Abundance 

There was a significant difference between P. microps abundance (F = 0.730, 

df = 38, p = 0.015) and between P. varians abundance (F = 3.130, df = 38, p 

= 0.011) in the area of high OM Content (Sites 1-10) and low OM Content 

(Sites 11-20). There was no significant difference between C. maenas 

abundance (F = 11.417, df = 26.939, p = 0.057) and between G. aculeatus 

abundance (F = 14.124, df = 19, p = 0.110) in the area of high OM Content 

and low OM Content.  
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a. 

b. 

c. 

Figure 16 The spatial distribution of pelagic fauna in a) June, b) July and c) 

overall. 
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4. Discussion 

This study aimed to determine the primary abiotic and biotic factors 

responsible for the spatial distribution of lagoon macrozoobenthic communities 

and species. Following a spatially comprehensive survey of biodiversity and 

abiotic variables, it was found that species richness and abundance were not 

correlated with proximity to the Sluice Gate (p = 0.86 and p = 0.68 respectively) 

as predicted.  

 

Species richness was significantly positively correlated with MGS and 

Distance from SW Shore, and significantly negatively correlated with OM 

Content, SDepth and Silt Content (see Table 3). Invertebrate density was 

significantly positively correlated with MGS and Distance from SW Shore, and 

significantly negatively correlated with OM Content, Salinity and Silt Content 

(see Table 2). Considering all abiotic factors, a BIOENV procedure yielded no 

statistically significant combination of variables that explained the faunal 

assemblages but identified SDepth as the abiotic factor that fit the best (Rho 

= 0.13, significance value = 0.46). 

 

There were no significant correlations between pelagic species and 

invertebrate density. However, this should be interpreted with caution as the 

sampling periods were seven months apart and during different seasons (late 

Autumn and early summer respectively) and faunal communities are likely to 

exhibit temporal patterns not reflected in this study. On a broad spatial scale, 

it is evident that invertebrate density and richness are influenced primarily by 

physico-chemical factors within the lagoon ecosystem.  

4.1 Sediment Factors in Poole Park Lagoon 

Sediment factors, such as MGS, Silt Content, OM Content, and SDepth, are 

key variables in determining the spatial distribution of Poole Park lagoon’s 

biodiversity. This is also seen in Seymers lagoon and Poole Harbour and is a 

common primary or secondary factor in soft-bottomed ecosystems (Bone 

2017; Herbert et al. 2010; Labrune et al. 2008; Jayaraj et al. 2008, van Hoey 

et al. 2004; Weston 1988). Grain size and organic matter content is indicative 
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of other unmeasured associated variables such as interstitial space available, 

hydrogen sulphide content, and oxygen availability, which will also influence 

the distribution of infaunal invertebrates. Without measuring these variables, it 

is impossible to be certain that the sediment variables are truly responsible for 

determining spatial distribution of invertebrates and not one or a combination 

of several unknown but co-linear variables. However, the sediment variables 

measured in this study are likely to be representative of other associated 

variables, like hydrogen sulphide content, and these compounding factors will 

be jointly influential in what species can colonise the sediments. Organic 

enrichment, represented in this study by OM Content (LOI%), can lead to low 

dissolved oxygen and the by-products of decomposition such as hydrogen 

sulphide and ammonia (Gray et al. 2002). Low concentrations of H2S is lethally 

toxic to invertebrates and, combined with hypoxic conditions, can lead to mass 

mortality from physiological stress (Vismann 1991). Siltier sediments are often 

associated with greater organic matter content due to similar settling velocity 

and greater surface area of finer particles adsorbing organic carbon (Burone 

et al. 1993; Tyson 1995; Hedges et al. 1993). 

4.1.1 Deposition in a Tidally Restricted Lagoon 

The spatial distribution of significantly associated sediment variables, as 

interpolated map layers on ArcMap, show a consistent central to south west 

area that is associated with the maximum or minimum values for sediment 

variables, also visually demonstrating their co-linearity (see Figure 7). The 

CSW area is associated with high Silt Content and greater MGS, high OM 

Content and greater SDepth, and a hydrogen sulphide odour when sediment 

samples were taken. As Poole Park lagoon is tidally restricted, it is highly likely 

that wind-induced mixing is a crucial factor determining the distribution and 

sorting of sediment grain sizes and the areas that accumulate organic matter, 

such as floating algal mats or fallen leaves (Barnes 1994). Given prevailing 

wind direction is south-westerly, linear regressions were performed to find 

associations between the southwestern corner of the lagoon and measured 

abiotic variables (Weather Online 2018). OM Content, Silt Content, and 

SDepth were significantly negatively correlated with Distance from the SW 
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Shore, indicating that fetch built up over the lagoon from the southwest 

direction leads to greater velocity of wave action in the northeast corner. The 

large size and wide shape of Poole Park lagoon satisfies the “low aspect ratio” 

criteria that favours increased wind fetch and turbulence (Bamber et al. 2001; 

Covey 1999).  

 

Waves can be seen in the northeast corner on windy days, with sea foam 

blowing over the adjacent road on particularly blustery days. The decreasing 

water depth from southwest to northeast would further promote the 

development of waves and the interaction between the benthic habitat and 

wind-induced mixing. Lower velocity in the CSW has led to greater deposition 

of siltier sediments and the accumulation of organic matter and thus deeper 

sediments overall. The Train Track that borders the south edge of the lagoon 

is acts as a wind break, preventing south westerly winds from dispersing 

accumulated floating organic matter in the southwest corner. Deposition of fine 

sediments and accumulation of organic matter in central regions is also 

demonstrated in the Mellah lagoon, Algeria, and in several Scottish lagoons 

(Magni et al. 2015; Covey 1999). Therefore, it is likely that the interaction 

between lagoon physiography and bathymetry has facilitated the deposition of 

silt and organic matter in the CSW and led to greater disturbance in the 

northeast. Thus, these areas are relatively species poor and low in abundance.  

4.2 Aquatic Factors in Poole Park Lagoon 

Aquatic variables measured in this study, apart from salinity and density, were 

not found to be significantly associated with overall invertebrate biodiversity. 

Temperature ranged by 2.6°C across the lagoon and appeared relatively 

homogenous on a horizontal spatial scale, regardless of proximity to the Sluice 

Gate or freshwater Pipes. The northeast was overall warmer and significantly 

positively correlated with distance from the southwest corner, likely due to its 

shallower depth and increased time exposed to sunlight at that time of year.  

 

Salinity is negatively correlated with density and reduced salinity may 

negatively impact the numeric abundance of invertebrates that are able to 
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tolerate hyposaline conditions. The salinity of the lagoon was relatively 

homogenous with a range of 2.5‰, apart from three perimeter sites which 

exhibited lower salinities around 24‰. One of these sites is adjacent to 

freshwater Pipe L2. However, salinity was measured at the water’s surface, 

thus the salinity in the benthic environment and interstices is unknown.  

4.2.1 Stratification in a Tidally Restricted Lagoon 

Stratification in tidally restricted lagoons is common, and so the degree of 

vertical mixing for salinity is not known for Poole Park (Barnes 1980). Wind-

induced mixing and wave action is likely to play an important role determining 

various abiotic factors in the absence of a current in tidally-restricted lagoons 

(Bamber et al. 2001). Thus, shallower and high energy areas such as the 

northeast of the lagoon are likely to be well-mixed. Salinity in Poole Park rises 

sharply following a flush event, from 6‰ to 27‰ in one case, with the interim 

salinity dependent on freshwater input (rainfall) (Harrison et al. 2016). The 

salinity gradient within Poole Park lagoon was relatively stenohaline and this 

homogeneity is likely due to wind-induced mixing. Thus, fluctuations in salinity 

may be more relevant to Poole Park on a temporal scale than on a spatial 

scale. Well-mixed waters also tend to be species poor as niches associated 

with hypo or hypersalinity are not available for colonisation by lagoon 

specialists, which must instead compete with estuarine generalists. Lagoons 

that maintain a salinity regime of 18-24‰ are more likely to develop specialist 

fauna dominated by H. diversicolor and Corophiid amphipods (Ouisse et al. 

2011; Bamber et al. 2001; Robertson 1993). As Poole Park lagoon is large 

and wide, it’s capacity to support a diverse invertebrate assemblage is limited 

(Bamber et al. 2001; Covey 1999). This limitation is compounded by its 

restricted and infrequent flushing regime and freshwater input of surface water 

discharge, making it vulnerable to eutrophication and hyposalinity events.  

 

It is likely that salinity is a secondary factor in determining invertebrate 

distribution. While hypoxic-sulfidic sediments determine macrozoobenthic 

organisms on a spatial scale and will remain relatively stable, salinity is likely 

to determine distribution on a temporal scale with weather-dependent 
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freshwater input and flush events resulting in a stochastic salinity regime 

(Dauvin et al. 2017). For example, proximity to Sluice Gate and freshwater 

Pipes may influence distribution on a secondary spatial scale during flush and 

rain events. This stochastic dynamism is typical of coastal lagoons (Barnes 

1999). The absence of evidence in this study that proximity to the sluice gate 

is not correlated with abiotic gradients is not evidence that they don’t occur 

(Altman and Bland 1995). Indeed, horizontal salinity gradients may occur 

immediately post flush, and sediments may experience sorting during the 

velocity incurred by ebb and flood currents during a spring tide drain and flush 

event. The sedimentary factors often show a narrow gradient change 

perpendicular to the sluice which may be indicative of sorting during flush 

events. However, flushes are infrequent compared to the consistent wave 

energy derived from prevailing SW winds. Thus, sluice gate gradients may 

exist only in the short term.  

 

Though salinity was not recorded to be lower than average at these sites 

during this study, the faunal assemblages at Sites 37, 38, 42 and 43 are 

indicative of an environment that undergoes hyposaline events. The 

dominance of tolerant H. diversicolor and opportunistic Chironomid larvae are 

species that are typically found near freshwater inputs and can tolerate 

salinities as low as 6‰ (Ouisse et al. 2011; Bamber 2001; Fritzsche and von 

Oertzen 1995). Sites 37, 38 and 43 are adjacent to Pipe L8 and Site 42 is 

adjacent to Pipe L2 (see Figure 2), which both discharge surface water run-off 

from the local urban area (Harrison et al. 2016). 

4.3 Relationships Between Abiotic Factors and Overall 

Assemblage 

There were no statistically significant correlations between any combination of 

abiotic factors and macrozoobenthic assemblages, following a BIO-ENV 

procedure. Lagoons are hostile habitats with stochastic abiotic factors and a 

longitudinal study would likely reveal patterns and trends that this study has 

not. As this was a snapshot study, conditions in the days and weeks prior to 

the data collection would have been instrumental in determining the 
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assemblages recorded. Additionally, the spatial scale at which assemblages 

vary may occur at a finer scale than was surveyed. Taking more than one core 

sample per sample site for biotic data would improve the reliability of the data 

by providing the opportunity to analyse assemblages within the same site. 

What many lagoon studies fail to consider is the interactions between 

macrozoobenthic species and how their behaviours, such as predation, 

reproduction and interference, can lead to differences in assemblage 

composition. While macrozoobenthic assemblages are good indicators of local 

habitat quality, the relative proportions in which species occur may be down to 

interspecific interaction. 

4.3.1 Relationship Between Salinity and Benthic Primary 

Productivity  

One of the primary issues within lagoons is eutrophication and related 

dystrophic events. Benthic primary productivity is particularly high in shallow 

areas with low turbidity. During spring and summer, macroalgae can be seen 

growing on the bottom of the lagoon in most places, including along northeast 

edge (personal observation). Initially, this rapid growth increases benthic 

invertebrate biodiversity by increasing habitat complexity and food availability. 

However, as algal mat coverage and biomass peaks in late summer, oxygen 

availability in the benthic environment decreases (Ouisse et al. 2011). 

Cladophora spp. and other macroalgal species are nitrogen limited and thus 

rely on biologically available nitrogen to grow (Peckol et al. 1994). Salinity is 

known to affect biogeochemical pathways in nitrogen removal processes and 

transformations, leading to less nitrogen removed from coupled processes and 

greater nitrogen removed from direct processes in polyhaline conditions than 

oligohaline conditions (Hines et al. 2015). Short term fluctuations and 

variations in intensity of salinity fluctuations is also known to affect the 

community structure of denitrifying microbes but not the functional capacity of 

the community (Zaghmouri et al. 2018). Therefore, the microbial community is 

relatively resistant to physiological stress that changes in salinity may incur, or 

alternatively are adept at colonizing sediments with better adapted species or 

clades when salinity does change.  
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However, increases in porewater salinity does lead to desorption of 

ammonium (NH4
+) from sediments into the overlying water column, making it 

available to macroalgal species (Giblin et al. 2010; Weston et al. 2010; 

Rysgaard et al. 1999). Additionally, where hydrogen sulphide and organic 

matter content in sediments is elevated, DNRA (dissimilatory nitrate reduction 

to ammonium) rates are higher and denitrification rates are lower, leading to 

greater amounts of dissolved ammonium (Song et al. 2014; An and Gardner 

2002). Bioturbation effects from infaunal invertebrates, including H. 

diversicolor and C. glaucum, causes the release of ammonium from sediments 

(Murray et al. 2017; Solan et al. 2008; Ieno et al. 2006; Mermillod-Blondin et 

al. 2005). Where time between flushing events is relatively long, more nitrogen 

is removed via microbial processes (Joye and Anderson 2008). Subsequently, 

tidally restricted lagoons can accumulate biologically available ammonium 

promoting macroalgal blooms observed in Poole Park lagoon, leading to 

eutrophic conditions and degraded biodiversity.  

4.4 SIMPROF Groupings and Ecotones 

The SIMPROF groupings represent a spectrum of habitat suitability according 

to their sediment values and corresponding faunal assemblages. At one end 

is Group A with the lowest sediment factor values and lowest abundance and 

species richness, followed by Group C which had moderate sediment factor 

values and much higher abundances and species richness. Group D follows 

and as the sediment factor values increase, abundance and species richness 

begin to decline and while still relatively diverse with species representation 

from all phyla, the dominant species shifts to Chironomid larvae, indicating the 

decline in habitat quality. Finally, Group B represents the other end of the 

spectrum, with the maximum sediment factor values and lowest abundance. 

Although Group B has the same number of species as D, annelids are almost 

absent and there is a dominance of motile species. Interpreting the SIMPROF 

results as a spectrum as opposed to discrete groupings provides greater 

insight into habitat preferences for individual species and assemblages. 

However, when these groupings are plotted against interpolated sedimentary 

data layers, sites from all groups do not fit neatly into predicted areas based 
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on the average sediment factor values for those groups. This emphasises the 

need for long term data to help explain spatial and temporal patterns and that 

although the SIMPROF groupings serve as a guide, lagoon assemblages and 

abiotic factors continue to be relatively stochastic and unstable.  

 

Pearson and Rosenberg (1978) wrote extensively about the organic 

enrichment of soft-bottomed macrofaunal communities. Where organic input 

is highest, sediments are almost devoid of fauna, with low species richness 

and abundance (Rybarcyzk et al. 1996; Peterson et al. 1994). Abundance then 

rises rapidly as organic content becomes more moderate. Here, sediments are 

not hostile so can be colonised by opportunists drawn to the organic food 

source. Moderate nutrient input can increase primary productivity and thus 

boost macrozoobenthic abundance; macrozoobenthic biomass doubled in a 

15-year period in the Dutch Wadden Sea due to organic enrichment (Gray 

1992; Beukema and Cadee 1986). The SIMPROF groupings in this study 

could represent successional communities in ecological gradients, and 

frequently overlap. Ecotones and coenoclines are common transitional waters, 

particularly tidally restricted lagoons, where greater ranges in environmental 

gradients, such as salinity and temperature, limit species richness (Reizopolou 

et al. 2013; Basset et al. 2013; Bazairi et al. 2003). 

 

The Intermediate Disturbance Hypothesis postulates that moderate 

magnitudes of stress on an ecosystem promotes biodiversity (Connell 1978). 

In the case of coastal ecosystems, and particularly lagoons, spatially 

heterogeneous and stochastic environmental variables facilitate niches which 

can be colonised by different species (Ouisse et al. 2011; Bamber 2001). 

Salinity and temperature in this study are spatially homogenous but inevitably 

will vary spatially on a temporal scale, which will affect macrozoobenthic 

assemblages. The magnitude of variation is beyond the scope of speculation 

in this study but has been demonstrated by Harrison et al. (2016). However, 

the spatial distribution and dominance of species can provide clues as to the 

historical long-term salinity and temperature trends. 
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4.5 Spatial Patterns of Invertebrate Species 

4.5.1 Annelids 

Annelid worms were overall absent from the CSW and CNE and were 

dominant at sites adjacent to freshwater input, predominantly due to a high 

proportion of euryhaline H. diversicolor. Polydora sp. was located at 14 sites 

in the east and north, with none located in the CSW and southwest. Their 

absence in the CSW suggests that the redox layer is largely non-existent and 

thus unsuitable for infaunal colonization. Tubificoides sp. was present at just 

four sites, again avoiding the CSW and CNE. Densities for this oligochaete 

worm were very low. This is unusual as this is an opportunistic worm, 

characteristic of polluted, organically enriched and hypoxic sediments (Giere 

2006; Giere et al. 1999; Bagheri and McLusky 1982). However, although it is 

a pioneer species of such impoverished habitats, it is relatively slow-growing 

and long-lived which may make it vulnerable to dystrophic events, leaving relict 

populations to recolonize areas where it is locally extinct (Giere 2006). This 

can take over a year to match previous population levels (Bolam and 

Whomersley 2003).  

The single individual of F. enigmaticus was found within its calcareous tube 

likely having broken off from the adjacent hard structure. The single individual 

of P. mucosa, a carrion feeder, will travel along the sediment surface to 

scavenge on carrion of dead crabs, molluscs and worms (Lee et al. 2004). 

Found at Site 9 in the CSW, there is likely ample prey items that have perished 

in the hostile conditions.  

 

What is interesting is the conspicuous absence of opportunistic polychaete 

Capitella capitata (Fabricius 1780). A typical coloniser of organically enriched 

and disturbed sediments and present in Brownsea and Seymers lagoon, it was 

surprising not to find it within Poole Park lagoon where these habitat 

characteristics have been demonstrated (Gray and Elliott 2010; Tsutsumi 

1990; James and Gibson 1980). In Harrison et al.’s (2016) survey, C. capitata 

was also absent from the lagoon. It is present in Parkstone Bay where the 
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sluice gate opens into Poole Harbour but in very low densities. In Herbert et 

al.’s (2010) survey of the Poole Harbour invertebrates, C. capitata was found 

at 18 sites. At each site five samples were taken and at sites where C. capitata 

was found, it was often not present in all five samples. Thus, the sampling 

effort in this study may not have been sufficient to detect C. capitata in low 

densities. Additionally, despite year-round breeding and spawning, 

colonization capacity may be low due to the infrequent flushing events 

facilitating the movement of planktonic larvae from the harbour and the lack of 

wader species which would facilitate avian dispersal (Herbert et al. 2018; 

Bolam and Fernandes 2002; Shull 1997; Warren 1976). Competitive exclusion 

with other annelids may also play a role; sudden dystrophic events will lead to 

colonization of C. capitata but chronically stressed environments, such as 

lagoons, are dominated by stress-adapted species such as H. diversicolor 

(Warwick 1986; Pearson and Rosenberg 1978). Low abundances of C. 

capitata were observed in Poole Harbour despite expectations that they would 

be present in greater numbers due to algal mat enrichment. However, their 

peak abundance was thought to occur in the summer, when algal growth in 

the harbour was greatest, and were subsequently outcompeted (Thornton 

2016). Thus, the relative abundance of C. capitata may be an indication of the 

successional stage of lagoonal assemblages following a disturbance event. 

4.5.2 Crustaceans 

M. insidiosum and M. gryllotalpa were the most abundant crustaceans and 

were absent at just eight sites and 20 sites respectively, though at the majority 

of sites occurred in very low abundances. Both live in tubes constructed on 

vegetation, in the sediment or on a hard substrate such as shells or man-made 

structures and thus can avoid hypoxic-sulfidic sediments that would limit other 

infaunal species, such as annelids (Barnes 1994). M. insidiosum can be 

frequently found outside of its tube, avoiding disturbed or hostile conditions in 

the sediment (Fricke et al. 2015). Furthermore, its tube construction can 

irrigate the sediment surface and thus improve oxygenation in the immediately 

local area, particularly as M. insidiosum generates currents into its tube to feed 

using its pleopods, drawing in oxygenated water and flushing out hydrogen 
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sulphide (Fricke et al. 2015; Dixon and Moore 1997). Peracarid crustaceans 

are known to break diffusive boundary layers in hypoxic sediments, facilitating 

reoxygenation with bioturbation (Lindstrom and Sandberg-Kilpi 2008). 

 

M. palmata is distributed fairly randomly and in very low abundances. Anibal 

et al. (2007) found that mudflat topography determined the presence of M. 

palmata, with concave areas more associated with the amphipod. In this study, 

sites where M. palmata is present are generally deeper than surround sites, 

indicating a concave area. Several sites where M. palmata are present are 

adjacent to hard structures that may be colonised by the reef-building 

tubeworm F. enigmaticus, with which they are known to be associated with 

(Obenat et al. 2006). G. locusta occurred at just four sites in very low 

abundances. Higher temperatures can negatively affect survival and fecundity 

of G. locusta, thus the hot summer temperatures combined with the loss of 

macroalgal habitat and food source in autumn may have contributed to its low 

abundance (Cardoso et al. 2018; Neuparth et al. 2002). Although organically 

enriched sediments provide a food source for G. locusta, competition with 

abundant benthic species may have limited population recovery (Costa et al. 

2005). 

4.5.3 Molluscs  

The gastropod species in the lagoon were all incredibly low in abundance. The 

dominance of Hydrobiid snail E. ventrosa over P. ulvae observed in this study 

is not uncommon in tidally restricted lagoons (Barnes 1999; Barnes and 

Gandolfi 1998; Barnes 1994). The high abundance of empty shells indicates 

that these species were previously abundant in the lagoon but are no longer. 

E. ventrosa is clustered predominantly at sites around Reedbed 2 by Pipe L2. 

The lower salinity of this area is closer to the optimal feeding salinity of 20‰ 

for E. ventrosa and their presence in this area also indicates food availability 

(Barnes 1999). At Site 3, both Hydrobiid species were present and peaked in 

abundance (although still very low), indicating adequate food availability in this 

area.  
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M. arenaria was found at Site 34 and at two perimeter sites adjacent to the 

Sluice Gate. All M. arenaria individuals were <1cm in size, suggesting one of 

two things; that conditions are unfavourable for rapid growth or that they were 

recently recruited juveniles (<1 year). M. arenaria is characteristically patchy 

on both spatial and temporal scales and has several predators in the lagoon 

including the oystercatcher Haematopus ostralegus (Linnaeus 1758), the 

flounder Platichtys flesus (Linnaeus 1758), and the crab C. maenas. Larval 

and juvenile development is also negatively affected by bioturbation from the 

lugworm Arenicola marina (Linnaeus 1758), also present in the lagoon 

(Harrison et al. 2016; Strasser 1999; Strasser et al. 1999). However, M. 

arenaria was found at Sites 11 and 12 along the south edge by the Sluice Gate 

which was an area where lugworm casts were present.  

 

C. glaucum was found at one site in the southwest corner but the majority were 

found in three sites in the northern area. The high energy of the north is likely 

favourable for these filter feeding bivalves. Abundance peaks at Site 48, 

adjacent to a surface water outflow, which may provide sufficient water flow 

for suspension feeding. Specimens were a mixture of juveniles and young 

adults (<2cm). The filtration activity of the non-native tubeworm F. enigmaticus 

may reduce seston availability for M. arenaria and C. glaucum, limiting their 

capacity to colonize the lagoon, thus limiting their abundance. 

4.5.4 Chironomid Larvae 

Chironomid egg masses are oviposited onto the water surface by the imago 

female, which are then distributed throughout the water body by currents and 

winds, so their distribution can be relatively random (Pinder 1995; Tokeshi 

1995; Schmid 1993). However, the CSW is an area of deposition so the 

absence of Chironomid larvae suggests that, despite their resilience to 

hypoxic-sulfidic sediments, the CSW is too hostile for colonisation (Kanaya 

2014; Kanaya 2005). Top down control from predation by P. varians in the 

CSW may also play a role (Roberts 1995). 
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4.6 Invertebrate Size Classes 

4.6.1 Monocorophium insidiosum 

Nearly all sites where M. insidiosum was present had very similar size class 

proportions, except those sites with very low abundances which were 

dominated by one or two size classes. This supports the idea that temperature 

and salinity, which can affect fecundity and growth rates in this species, are 

relatively homogenous throughout the lagoon on a temporal scale (Prato and 

Biandolino 2006). Higher temperatures enable M. insidiosum to become 

sexually mature at a smaller size, with first oviposition occurring at 3.3mm at 

20°C after 29 days and 4.0mm at 10°C after 99 days (Nair and Anger 1979). 

Thus, most individuals in Poole Park lagoon are not likely to be sexually 

mature and will have recruited in late summer/ early autumn earlier in the year 

of study.  

 

Immature females delay the onset of maturity in November and December. 

Sheader (1978) found that M. insidiosum only has two main generations per 

year and can live up to 12 months, which is due to the latitudinal differences 

in seasonality and temperature. The mature generation that produced the 

immature cohort will die over winter and late summer’s immature brood will 

become sexually mature in spring to reproduce, with immature females 

delaying the onset of maturity in November and December (Prato and 

Biandolino 2006; Sheader 1978). Fluctuations in salinity and temperature 

outside the optimal ranges for breeding can result in egg loss (Kevrekidis 

2004). Thus, the extreme salinity ranges brought about by the infrequent 

flushing regime and high temperatures in summer may negatively impact 

reproductive success in M. insidiosum. Determining reproductive success and 

variations in fecundity and growth rates in M. insidiosum within Poole Park 

lagoon are beyond the scope of this study. 
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4.6.2 Hediste diversicolor 

The ragworm H. diversicolor has a greater variety of size classes in the north 

than in the south, where sites are dominated by one or two size classes. Male 

H. diversicolor can grow up to 12cm but females only grow up to 7cm. As no 

ragworms exceeding this size were found in this study, the sex ratio of H. 

diversicolor is likely to be heavily biased towards females in Poole Park 

lagoon, which has been seen in populations in north-eastern England (Olive 

and Garwood 1981). Colour differences indicate sexual maturity in H. 

diversicolor as they lose their rusty orange coloration and become greener. 

However, this was not observed in measured specimens as their preservation 

removed any pigmentation. Females begin to mature about 7cm in length and 

both sexes die shortly after spawning (Budd 2008). Thus, there may be low 

abundances of larger size classes as H. diversicolor reproduces only once 

before dying. In England, H. diversicolor generally has a single short spawning 

and recruitment period, stimulated by a rise in temperature (Olive and 

Gardwood 1981; Wharfe 1977; Dales 1950). 

 

The northern sites which have low abundances of larger size classes and high 

abundances of smaller size classes indicate a recent recruitment of juvenile 

individuals. These sites may indicate a long-term breeding population with 

individuals present in most size classes representing different generations. It 

should be noted that these populations are adjacent to Pipe L8 and usually 

dominate the associated invertebrate assemblages, suggesting that the 

fluctuations in salinity discourage the colonisation of less tolerant species. This 

facilitates H. diversicolor to fully exploit habitat and food availability. With 

reduced competition, H. diversicolor can spend more energy on reproductive 

effort.  

 

The dominance of one or two size classes in the south may indicate increased 

competition, predation, and hostile conditions that would increase metabolic 

requirements and reduce energy available for coelom development and 

reproduction. Size classes were overall relatively small, between 1.1cm and 

3.0cm, with Sites 13 and 20 including specimens of the largest recorded size 
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class 6.1-7.0cm. In polluted sites, H. diversicolor individuals are generally 

smaller (Durou et al. 2007). Thus, an absence of the larger size classes may 

indicate that they reached sexual maturity at a smaller size, reproduced and 

died.  

4.7 Pelagic Fauna 

There was no significant correlation with any of the pelagic fauna and 

abundance of macrozoobenthic species. Given that the survey periods were 

at least seven months apart, temporal and seasonal differences will occur in 

pelagic and macrozoobenthic populations (Carvalho et al. 2011; Como and 

Magni 2009; Bachelet 2000). Thus, the populations observed in June and July 

are unlikely to reflect the population dynamics in November. Absence of 

correlations does not mean that correlations and relationships do not occur; 

predation of macrozoobenthic species by P. microps, P. varians and C. 

maenas is well known (Pockberger et al. 2014; Rainbow and Smith 2013; 

Roberts 1995; Escaravage and Castel 1990; Anderson 1985). 

 

P. varians was significantly associated with higher organic matter sites and P. 

microps was significantly associated with lower organic matter sites. P. varians 

is predominantly a detritivore but is also a primary and secondary consumer 

of algae, mysid shrimp, nematodes, mosquito and midge larvae, and annelids 

(Rainbow and Smith 2013; Roberts 1995; Escaravage and Castel 1990; 

Anderson 1985). They are tolerant of hypoxic conditions and their detritus-

based diet may explain their dominance over P. microps in the area of high 

organic matter. Many of the P. varians individuals in this area were quite small 

and thus they may feed preferentially on particulate detritus.  

 

P. microps feeds on polychaetes, molluscs, amphipods, and N. vectensis 

(Pockberger et al. 2014). It dominated sites of low organic matter where 

hypoxic conditions are less likely to occur as it is stressed by hypoxia 

(Peterson and Peterson 1990). Hypoxic conditions also influence reproductive 

behaviour and may negatively affect reproductive success (Reynolds and 

Jones 1999). Furthermore, macrozoobenthic abundance at sites of high 
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organic matter are on average lower than sites of moderate to low organic 

matter. Thus, P. microps preferentially feeds at these sites. The low organic 

matter sites are also in closer proximity to hard structures associated with F. 

enigmaticus reefs and algal growth, where productivity is higher and habitat 

complexity increases protection from predators (Schwindt et al. 2001). P. 

microps preferred the habitat complexity offered from standing vegetation in 

Arne and Brownsea lagoon as opposed to homogenous soft-bottomed habitat 

(Wheeler 2013).  However, F. enigmaticus reefs are preferentially visited by 

piscivorous birds due to higher prey densities (Bruschetti et al. 2009). P. 

microps could be seen in and around the reefs and concrete columns in high 

densities.  

 

There was no temporal or spatial correlation between populations of G. 

aculeatus and of C. maenas due to their low abundances. C. maenas was 

associated with proximity to complex habitats, including the Concrete 

Walkway and Reedbed 2. This is likely due to the increased prey density.  

4.8 Applications 

4.8.1 Comparative Baseline and Long-Term Monitoring 

This study could be used as a comparative baseline for future surveys in the 

lagoon if the methodology is replicated. In the autumn and winter of 2018, 

works are proposed in the lagoon, including a prolonged drain down and 

dredging of sediments for additional islands to be created. A boardwalk that 

extends into the lagoon centre may be constructed. A comparison of the 

lagoon fauna and environmental variables pre and post works would give an 

indication if the ecosystem is recovering. However, it should be undertaken at 

the same time of year (November), so the comparison is meaningful and 

accurate (Bamber et al. 2001). Ideally, a suite of baseline surveys would be 

more useful, taken at least quarterly, to understand trends and patterns, prior 

to comparison. Therefore, this should be considered for the monitoring of the 

lagoon going forward, particularly to aid site-specific and adaptive 

management and to improve knowledge on a key site in the regional Poole 
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Harbour lagoon network. If comparisons are drawn between future surveys 

and the one undertaken as part of this study, it should be noted that Poole 

Park lagoon is still considered a degraded habitat and is essentially a bar to 

raise, not to aspire to.  

 

It should also be noted that lagoons are, by their very definition and nature, 

patchy, stochastic and stressed ecosystems, and subsequently it can be 

challenging to obtain baselines and filter out background variation and random 

events (Stringell et al. 2013; Perez-Ruzafa et al. 2007; Bamber et al. 2001). 

Lagoonal communities can show a naturally high variability in response to 

changes in abiotic variables which could be perceived as negative change. If 

a site is judged to display poor ecological performance, the attempted 

suppression of these pressures may negatively impact lagoon specialists. 

Thus, a rigorous and regular monitoring regime is crucial to minimise the 

influence of random events on long-term trends (Stringell et al. 2013; Bamber 

et al. 2001). However, it is acknowledged that sampling frequency for Poole 

Park may fall below the recommended quarterly minimum due to the potential 

financial constraints of the local authority responsible for its management 

(Lucas et al. 2006). It can be argued that no real baseline or ‘ideal’ 

environmental parameters exists within lagoons given their highly variable 

nature and cycles of dystrophic events and recolonization (Stringell et al. 2013; 

Gamito et al. 2005).  

 

Increases in precipitation in winter and decreases in summer, changes in wind 

direction prevalence and speed, and increased storminess are all likely to 

occur in the coming years due to climate change (Fakhry et al. 2013; Nolan et 

al. 2012; IPCC 2007). This will affect the salinity regimes and associated 

macrozoobenthic assemblages of Poole Park lagoon, potentially increasing 

the range variability and the length of time spent at these extreme values. 

Changes in wind may alter the spatial distribution of finer sediments and 

increase turbidity. Overall temperatures in the UK are predicted to increase 

with milder winters (increase of up to 2.5°C) and considerably hotter summers 

(increase of up to 4.2°C) (Murphy et al. 2010). Thus, the seasonal ranges in 

temperature and salinity may increase significantly, potentially leading to more 



64 

 

frequent and intense dystrophic events in the summer and thus slower 

recolonization over the winter. Abiotic data in this study will serve as a useful 

comparison to data collected in future years, particularly within the context of 

climate change. 

4.8.2 Value for Avifauna 

Brownsea Island lagoon is a site of significant importance for nesting sandwich 

terns Thalasseus sandvicensis (Latham 1787), common terns Sterna hirundo, 

(Linnaeus 1758), black-headed gulls and occasionally Mediterranean gulls 

supports Larus melanocephalus (Temminck 1820). Additionally, it provides 

crucial feeding habitat for internationally important species such as avocets 

and spoonbills. Brownsea lagoon supports these species due to the 

accessible depth for waders. Poole Park is 0.55m at its shallowest, too deep 

for wading birds. At the time of writing, proposed works for the lagoon include 

islands with graduated plateaus that will provide shallower areas, but it is 

unknown how successfully these will be colonised by macroinvertebrate prey 

items and if they will be of a suitable depth for utilisation by waders. However, 

subsidence has occurred on some of the existing islands, creating a littoral 

area that has been used by feeding oystercatchers (personal observation). 

Without intervention, the subsistence may continue over time and the littoral 

area will become too deep. The islands have been problematic for several 

years due to erosion from use by swans and geese, and various attempts have 

been made to keep them off. Methods have included lining the islands with 

reeds and shoring up the subsidence with wooden fencing. The persistence of 

swans and geese has thwarted these attempts however, and a permanent 

solution is yet to be enacted. 

 

Furthermore, Poole Park experiences greater disturbance from human activity 

than the other Poole Harbour lagoon sites and may not be considered as a 

suitable feeding ground. Pickess and Underhill-Day (2002) found that Poole 

Harbour waders will preferentially feed in areas of lower disturbance, even if 

the benthic biodiversity is poorer, suggesting less disturbance is prioritised 

over richer feeding grounds. However, common sandpipers Actitis hypoleucos 
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(Linnaeus 1758), ruff Calidris pugnax (Linnaeus 1758), redshank Tringa 

tetanus (Linnaeus 1758), black-tailed godwits have been observed feeding on 

the mudflats during a drain down, so the creation of a permanent littoral 

mudflat could see a greater abundance and frequency of these species (Birds 

of Poole Harbour 2018). 

 

Though at present Poole Park has a limited capacity to accommodate waders, 

it supports several fish prey species for piscivorous birds, including sand smelt 

Atherina presbyter (Cuvier 1829), bass Dicentrarchus labrax (Linnaeus 1758), 

herring Clupea harengus (Linnaeus 1758), flounder P. flesus, and species 

found in this study P. microps and G. aculeatus (Harrison et al. 2016). Little 

egret feed on A. presbyter, P. microps and G. aculeatus, cormorants feed on 

A. presbyter, kingfishers Alcedo atthis (Linnaeus 1758) feed on G. aculeatus 

and potentially P. microps as it falls within its preferred prey size range, and 

common and sandwich terns feed on A. presbyter (Farinos-Celdran et al. 

2018; Wheeler 2013; Reynolds and Hinge 1996; Hafner et al. 1982). Thus, 

Poole Park’s value as a supplementary feeding habitat for these piscivorous 

species is greater than for wader species. Its greatest habitat value is likely to 

be as a sheltered roosting site, where it supports large numbers of 

Mediterranean gulls, black-headed gulls, common gulls Larus canus 

(Linnaeus 1758), herring gulls Larus argentatus (Pontoppidan 1763), lesser 

black-backed gulls Larus fuscus (Linnaeus 1758), and greater black-backed 

gulls Larus marinus (Linnaeus 1758), all of which are designated with an 

amber or red UK conservation status and protected by The Wildlife and 

Countryside Act 1981 (Birds of Poole Harbour 2018). 

 

Some of the islands proposed by Borough of Poole council will use a stony 

substrate to encourage terns to nest. Site fidelity among terns can be low, so 

discovery and colonisation of the new islands if appropriate could be relatively 

soon (Ratcliffe et al. 2000; Lloyd et al. 1991). Inaccessible from the lagoon 

shore, the islands would need protection from watercraft disturbance, 

particularly as the terns’ breeding season in the UK coincides with the 

occupation of Poole Park lagoon in the summer by recreational boating 

company Rockley. Management of this could include a sign-posted 
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exclusionary zone around the islands and by informing water users of the 

terns’ whereabouts before they leave the shore (Burger and Leonard 2000).  

 

The proposed dredging by Borough of Poole council will create deeper areas 

within the lagoon which could facilitate stratification depending on their 

location, promoting thermoclines and haloclines. Areas demonstrating salinity 

and temperature gradients could promote greater biodiversity by creating 

niche habitats appropriate for lagoon specialists (Bamber et al. 2001). 

4.9 Limitations and Considerations 

Sediment cores can provide a wealth of information about the benthic and 

infaunal habitat, such as granulometry and pore water chemistry. However, in-

situ conditions, such as depth of oxygenated layer and how the grains are 

sorted, are not always measured when they could be particularly relevant in 

determining richness and abundance (Dauvin et al. 2017; Holland and Elmore 

2008). The sediment samples are homogenised before subsamples are taken 

and processed by the Mastersizer laser diffractometer, so intact cross-

sections of the sediment are destroyed and may not be representative of the 

ambient environment that resident organisms inhabit (Snelgrove and Butman 

1994). For future studies, qualitative data should be noted for each sample 

where possible, including approximate depth of oxygenated and de-

oxygenated layer, how the grains are vertically sorted, if the sample has a 

hydrogen sulphide odour, and where visible organic matter has accumulated. 

This information will augment data obtained from the laboratory and help 

explain the spatial distribution of infaunal invertebrates. For example, if 

ragworms were not present and it was noted that the oxygenated layer was 

particularly thin, it is likely the habitat was not suitable for them. Furthermore, 

infaunal species will exhibit sediment depth preferences depending on their 

tolerance to variable interstitial conditions, which may prevent competition 

(Gamenik et al. 1996; Thiermann et al. 1996; Dubilier et al. 1995; Vismann 

1990). The data for their relative vertical distribution is also missed when they 

are sieved from sediment cores. There is a need for lab-based studies on the 

ecology and biotic interactions of lagoon benthic macroinvertebrates and such 
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a study would shed light on their vertical distributions and depth preferences, 

with the data supporting field-based surveys.  

 

Two metrics of particle size that have been used in similar soft-bottomed 

studies were used to quantify granulometry in this study to see if there was 

any difference in functionality when describing sediments; median grain size 

(MGS) and percent silt content (Silt Content) (Henkel and Politano 2017; 

Seiderer and Newell 1999). Information is filtered when continuous data, such 

as particle size, are broken into categories, such as particle size classes which 

were used to inform the Silt Content metric in this study (Steel et al. 2013). 

Indeed, Magnusson (1997) wrote that most ecological categories are arbitrary, 

and the breaks in grain size classes used in the study may not be functionally 

relevant when trying to determine associations with the macroinvertebrate 

assemblages. It is challenging to quantify particle sizes in a biologically 

relevant way when many lagoon macroinvertebrate species not only have 

multiple feeding strategies and dietary preferences, but the vertical particle 

sorting and invertebrate distribution data are lost during laboratory processing. 

Many particle size metrics, such as Silt Content and others such as dominant 

size class, are derived from the Wentworth scale (Wentworth 1949). In this 

study MGS and Silt Content produced very similar and significant values and 

outputs when used in statistical analyses and display very similar patterns as 

interpolated layers on a map. Their significant associations with density, 

species richness, and relative abundance of species made ecological sense 

within soft-bottomed lagoon ecosystems, therefore for future lagoon studies 

either metric is suitable. Within MGS and Silt Content are size classes that are 

not wholly represented by these simplified metrics, so it is still prudent to look 

closely at the continuous granulometry data in conjunction with biodiversity 

metrics, in case any obvious patterns can be identified that are not evident in 

statistical analyses or the simplified metrics.  

 

It is challenging to build a broader picture of the recent temporal trends for the 

aquatic variables without data, as proximity to flush days and rainfall will 

influence the salinity and temperature regimes on a local and whole lagoon 

scale. Therefore, interpretation of these variables is limited. For future related 
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studies, it would be prudent to obtain salinity and temperature data not just 

from the water surface, as in this study, but also benthic and interstitial salinity 

and temperature. It is well known that salinity and temperature undergo 

stratification in lagoon ecosystems, particularly if the water is not well-mixed 

as it may be in the tidally-restricted Poole Park lagoon; surface temperature 

and salinity may have had little influence over benthic and infaunal 

invertebrates (Barnes 1980; Bamber et al. 2001). Obtaining temporal data will 

help to identify trends but also identify where the system lags; that is the 

delayed response of macrozoobenthic species to changes in the environment. 

Thus, the macrozoobenthic assemblages recorded in this study may be 

indicative of long-term trends or a change in environmental variables that 

occurred prior to the survey date. This could lead to inaccurate interpretation 

of the relationships between abiotic variables and biodiversity metrics in this 

study.  
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Chapter 2 - The Starlet Sea Anemone in Poole Park 

Lagoon 

5. Introduction 

5.1 Non-Native Species 

Non-native species are one of the major drivers of biodiversity loss globally 

(IUCN 2000). Carlton (1987) defined non-native species as “introduced 

species are those taxa transported by human activity to regions where they 

did not exist in historical times”, historical times referring to 5000 years before 

the present. Non-native marine species are usually introduced via the shipping 

industry, either by fouling or ballast water, or deliberate or incidental 

introduction from the shellfish industry, particularly oysters from Japan and 

North America (Eno et al. 1997). Their impact can range from undetected to 

the domination and displacement of indigenous species to increasing 

biodiversity of indigenous species; the interactions are often complex and 

understudied. For example, the hybridized common cord-grass Spartina 

anglica dominates saltmarshes and reduces feeding grounds for waders 

(Davidson et al. 1991). However, S. anglica saltmarsh also provides crucial 

high tide roosts for wintering and passage waders (Morrison 2004).  

 

At least 150 non-native marine species have been recorded in the UK, though 

this is likely an underestimation (Roy et al. 2007). Non-native taxa that are 

represented most frequently are red algae (19%), molluscs (18%), annelids 

(15%) and crustaceans (14%) (Eno et al. 1997). In addition to requiring a 

vector to facilitate their colonization of new territories, the host site is usually 

one of low species diversity with vacant niches to exploit (Ribera and 

Boudouresque 1995). Harbours and estuaries are common sites for the 

colonization of non-native species; ships often dock there, and they are 

typically low energy which promotes local settlement of larvae or propagules. 

The expanse of hard structures associated with developed harbours and 
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estuaries are ideal sites for attachment of sessile species such as mussels 

and barnacles.  

 

Poole Harbour is one such site. With an area of 13.92 miles and a relatively 

narrow mouth, a full flush can take up to three days with only 22-45% of the 

harbour volume flushed on a spring tide (May and Humphreys 2005).  It’s 

shallow depth and limited flushing regime leads to warmer temperatures than 

the open sea, producing ideal conditions for opportunistic non-native species. 

Disturbance to sediments from pump-scoop dredging may also provide 

colonization opportunities for non-native invertebrates, allowing them to utilize 

space and resources once dominated by indigenous fauna (Clarke et al. 

2018). 

 

There are at least 12 known non-native species in Poole Harbour and have 

previously represented up to 60% of wet weight of assemblages (Harrison et 

al. 2016; Maggs and Magill 2014; Herbert et al. 2010; Eno et al. 1997). This is 

higher than the mean of 10.8 non-native species in marinas and harbours on 

the south coast of England (Arenas et al. 2006). Their interactions with native 

fauna and socio-economic effects are not fully understood, though there are 

some exceptions. The Manila clam Ruditapes philippinarum (Adams and 

Reeve 1850) is indigenous to western Pacific coasts but was introduced to the 

harbour in 1988 following successful commercial trials, and by 1994 was being 

harvested by local fishermen (Humphreys et al. 2015; Utting and Spencer 

1991). The harbour’s favourable physico-chemical parameters have enabled 

the clam to naturalise and the clam fishery had a value of £1.5 million in 2014 

(Franklin et al. 2012).  

5.1.2 Non-Native Species in Lagoons 

The impounded nature of lagoons provides ideal shelter for non-native species 

that can withstand the stochastic salinity and temperature regimes. Species 

such as the red alga Gracilaria vermiculophylla (Papenfuss 1967), the sand 

gaper M. arenaria, and the Australian tubeworm F. enigmaticus have been 

identified in lagoons in Poole Harbour (Harrison et al. 2016; Maggs and Magill 
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2014). These species have not yet had any proven negative impacts on native 

fauna but demonstrate the capacity with which they can colonise an 

impounded lagoon. The cryptic bivalve M. arenaria is an important prey 

species for the flounder P. flesus, the curlew Numenius arquata (Linnaeus 

1758) and the oystercatcher H. ostralegus, all known to utilise Poole Harbour 

lagoons for feeding (Harrison et al. 2016; Strasser 1999; Zwarts and Wanink 

1989). The red alga G. vermiculophylla and tubeworm F. enigmaticus have the 

capacity to increase habitat complexity and biodiversity within lagoons, which 

are typically soft-bottomed homogenous environments (Heiman and Micheli 

2010; Thomsen 2010; Nyberg et al. 2009; Bianchi and Morri 1995).  

5.2 The Starlet Sea Anemone  

The starlet sea anemone Nematostella vectensis (Stephenson 1935) is a small 

(≤1.5cm) infaunal cnidarian that thrives in muddy soft-bottomed substrate 

where it preys on other benthic invertebrates. Unlike many other anthozoans, 

N. vectensis has not faced selective pressure to develop a variety of 

neurotoxins owing to its limited prey selection consistent with the low species 

diversity of lagoons, having many genes that may enable it to rapidly refill its 

toxin stores (Moran and Gurevitz 2006). N. vectensis also has chemoreceptors 

that complement its mechanoreceptors, with the detection of prey-derived n-

acetylase sugars reducing the vibration-induced action potential necessary to 

fire nematocysts. The detection of such sugars also increases the length of 

hairs that detect vibrations from prey movement, further increasing the chance 

of successful prey capture (Watson et al. 2009). Such adaptations ensure 

maximum exploitation of prey abundance.  

 

N. vectensis can reproduce asexually and sexually, maximising its 

colonisation capacity. Transverse fission rates are higher at lower salinities 

and, with increased food availability (Hand and Uhlinger 1995), sexual 

reproduction occurs at full marine salinity (Hand and Uhlinger 1992). Sixty-one 

per cent of UK individuals are derived from one genotype suggesting a 

dominance in clonal reproduction, indicative of a species that has recently 

colonised an area (Pearson et al. 2008). Sexual reproduction has been 
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induced under laboratory conditions at 20°C and has been recorded as 

occasionally occurring in the field during summer and autumn when 

temperature and salinity would be at its highest (Williams 1976; Frank and 

Bleakney 1978). Such reproductive plasticity is advantageous in a hostile 

lagoon environment.  

 

The common ditch shrimp P. varians, N. vectensis’ currently only known 

predator in the UK, was thought not to co-occur in the same sites as N. 

vectensis (Barnes 1994; Posey and Hines 1991). However, all three lagoons 

N. vectensis is present in in Poole Harbour also have records of the presence 

of P. varians (Bone 2017; Harrison et al. 2016; Herbert et al. 2010). In 

Brownsea Lagoon, P. varians and N. vectensis co-occured with densities of 

42 and 3048 per m2 respectively within the same benthic sample (Herbert et 

al. 2010). As P. varians does co-exist with N. vectensis, there is an opportunity 

for its predator-prey relationship to be quantified. 

 

N. vectensis has been used in genome research of which there is an 

abundance of literature, but there is a notable absence of literature detailing 

its ecology in UK lagoons (Darling et al. 2005). It has been listed as Vulnerable 

on the IUCN Red List since 1983 and was subsequently listed under the 

Wildlife and Countryside Act 1981 as a protected species in 1988 (Sheader et 

al. 1997; World Conservation Monitoring Centre 1996). However, the last 

assessment was performed in 1996 with the annotation ‘needs updating’. 

Sheader et al. (1997) postulated that N. vectensis was non-native having been 

introduced to Europe from North American populations via the oyster trade. 

The North American populations are unlikely to have colonised British coasts 

owing to their limited dispersal range, unless the British population is relict and 

indicative of a larger historical range. Therefore, a relict population would show 

appropriately divergent genetic distances.  

 

Reitzel et al. 2007 analysed the DNA of British and North American N. 

vectensis specimens which confirmed that British populations have been 

introduced from western Atlantic populations. British populations possess 

significantly lower genetic diversity than western Atlantic populations, due to 
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reproducing asexually as opposed to sexually. Barfield (2016) noted in his 

review article that while non-native species in the UK are eligible for protection 

under the Wildlife and Countryside Act (1981), N. vectensis satisfies only half 

of the designation criteria. Indeed, its lagoon habitat faces numerous threats 

and is at risk of habitat loss, but lagoons already receive protection in the UK 

and the designation of an inhabiting species to bolster lagoon protection is 

redundant. 

 

It’s protection in the UK, its Vulnerable status and the data on which these 

designations are based are outdated and in need of review. However, before 

such a review it would be prudent to quantify N. vectensis’ effect on native 

lagoon fauna and lagoon benthic ecology, particularly its role as a passive 

predator and prey item for P. varians. It is known to consume small annelids, 

Hydrobiid snails, copepods, and has been observed feeding on Chironomid 

larvae in the field (Sheader et al. 1997; Welstead and Shardlow 1999).  

 

Occurring only rarely in the now extinct Blue Lagoon in Poole Harbour in the 

late 90s, N. vectensis can now be found in high densities in all Poole Harbour 

lagoons, excluding Arne. 

5.3 Rationale 

Although salinity is important in determining distribution of invertebrates within 

lagoon habitats, including N. vectensis, sediment factors are also known to be 

a primary factor. Additionally, there is a paucity of data about the potential top-

down control of its distribution from predator-prey interactions with P. varians 

also known to inhabit Poole Harbour lagoons. With reference to its revised 

status, it would be judicious to analyse its role within invertebrate assemblages 

through the non-native lens and critically appraise its potential interactions with 

native lagoon ecology.  
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5.4 Aims and Objectives 

The study aims to semi-quantitatively assess the role of N. vectensis within 

native lagoon assemblages and to determine the abiotic factors that determine 

its distribution.  

1) Utilising the abiotic and biotic data collected for Chapter 1 

2) Identify relationships between abiotic variables and N. vectensis by: 

a) Using ArcGIS to visually identify spatial trends 

b) Conducting statistical analyses 

3) Identify, if any, relationships between N. vectensis and overall 

macrozoobenthic assemblages by: 

a) Analysing assemblage composition 

b) Using existing literature to understand interactions 

4) Identify, if any, relationships between N. vectensis and pelagic fauna by: 

a) Conducting appropriate statistical analyses  

b) Using existing literature to understand interactions 

6. Materials and Methods 

 

Numeric abundance data for N. vectensis was obtained from sediment cores 

taken on November 7th and 8th and were counted under a stereo microscope 

in laboratory conditions. Samples were fixed in 70% Industrial Methylated 

Spirit (IMS) for identification and quality control purposes. Body size data was 

not obtained for the N. vectensis due to the propensity for specimens to 

contract when fixated, preventing accurate measurement (Sheader et al. 

1997). To analyse its interaction with environmental variables and pelagic 

fauna, abiotic factors were measured, and fish traps were used to obtain 

species data. Further details can be found in Materials and Methods in Chapter 

1.  

7. Results 

N. vectensis was significantly negatively correlated with OM Content, Salinity, 

and Silt Content and significantly positively correlated with MGS (see Table 8, 
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Figure 20). N. vectensis density in the CSW portion of the lagoon was relatively 

low, not exceeding 500 individuals per m2. Densities increase in the north west 

and east side of the lagoon, peaking at sample Site 34 with 9800 per m2 (see 

Figure 19). This was identified as an outlier for regression analyses. When the 

outlier was removed and analysis re-run for SDepth and N. vectensis density 

they were significantly negatively correlated (F (df = 1, 46) = 4.316, p = 0.043).  

 

 

The relative abundance of N. vectensis within an assemblage did not exceed 

50% and the mean relative abundance was only 13% as N. vectensis was not 

present at 17 out of 49 sample sites. Only 11 out of 49 sites did N. vectensis 

exceed 20% relative abundance and species richness and overall invertebrate 

abundance at these sites ranged from 2 to 9 and 3 to 141 respectively. N. 

vectensis was the dominant taxa at seven sites but at only three of these sites 

was it the sole dominant taxa. N. vectensis was dominant at sites which had 

low invertebrate abundances with only two of the seven sites having higher 

than average (48) invertebrate abundances. 

 

Figure 17 The spatial distribution of the density of N. vectensis. 
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Table 8 Regression analyses for N. vectensis density and abiotic factors. Significant 

p values in bold. Site 34 was a consistent outlier in all regressions. 

N. vectensis Density and Abiotic Factors of Poole Park Lagoon 

Variable Regression R2 DF F p 
Unstandardized 
Co-efficient B 

OM Content Linear 11.1 1, 47 5.857 0.019 -176 

Silt Content Linear 12.1 1, 47 6.496 0.014 -31 

MGS Linear 9.2 1, 47 4.767 0.034 9.812 

SDepth Linear 7.5 1, 47 3.817 0.057 -836 

Temperature Linear 0 1, 47 0.003 0.954 32 

Salinity Quadratic 18.8 2, 46 5.308 0.008 -2232 

WDepth Linear 0.1 1, 47 0.045 0.832 340 

Distance 
from SW 
Shore 

Linear 10.1 1, 47 5.285 0.026 3 

Distance 
from E 
Shore 

Linear 10.7 1, 47 5.635 0.022 -4 

Distance 
from N 
Shore 

Linear 5.3 1, 47 2.646 0.111 -2 

Distance 
from Sluice 

Linear 0.9 1, 47 0.426 0.517 -1.451 

 

Of the 17 sample sites that N. vectensis was not present at, all but one (Site 

49) had lower than average (46) overall invertebrate abundances and all but 

three (Sites 9, 14, 49) had lower than average (4) species richness and so 

were characterised by particularly poor biodiversity. The sites where N. 

vectensis was not present was dominated by amphipods and Chironomid 

larvae by >75% except for Site 41. These 17 sites are in two main clusters; 

five sites in the CNE and nine sites in the CSW (see Figure 19). Other sites 

included a pair at the lagoon edge in the northwest direction and a single site 

in the southeast inside the Model Boating Area. These 17 sites share a similar 

distribution pattern with overall invertebrate density.  
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Figure 18 N. vectensis density with significantly associated abiotic variables, including maps of 

the spatial distribution of abiotic gradients and N. vectensis density and scatter graphs 

demonstrating relationships. a) OM Content, b) MGS, c) Salinity and d) Silt Content. 
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7.1 N. vectensis Density and Pelagic Fauna 

N. vectensis was not significantly correlated with any pelagic fauna, though 

this should be interpreted cautiously given the length of time that has elapsed 

between survey periods (see Table 9). 

Table 9 Regression analyses for N. vectensis and pelagic abundance in Poole Park 

Lagoon. Site 16 was a consistent outlier for regression analyses.  

N. vectensis Density and Pelagic Abundance of Poole Park Lagoon 

Variable Regression R2 DF F p 
Unstandardized 
Co-efficient B 

C. maenas 
Total  

Linear 0.2 1, 18 0.039 0.845 69.287 

G. aculeatus 
Total 

Linear 0.9 1, 18 0.162 0.692 -2742469 

P. microps 
Total 

Linear 5.1 1, 18 0.974 0.337 34.328 

P. varians 
Total 

Linear 2.8 1, 18 0.524 0.479 -21.246 

 

N. vectensis was the dominant taxa at just seven sites, not exceeding 50%. At 

four of these sites, dominance is equally shared with one other, sometimes 

two, species due to extremely poor species richness and abundance at those 

sites. Prey species richness and abundance was greater at sites where N. 

vectensis was solely dominant compared to sites where it shared dominance.  

7.2 Biotic Interactions 

A scatterplot of N. vectensis and amphipod abundance shows a positive linear 

correlation, with anemone abundance increasing with amphipod abundance 

(see Figure 19). A scatterplot of the proportional percentage of Amphipods 

and Anemones within the overall invertebrate assemblage of each site shows 

as negative linear correlation with the proportion of N. vectensis increasing as 

the proportion of amphipods decrease (see Figure 20). Amphipod percentage 

dominance is generally highest at sites where N. vectensis is absent. N. 

vectensis density is significantly positively correlated with overall invertebrate 

density (F = (df = 1, 47) = 145.64, p = <0.05) (see Figure 21). 
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Figure 19 The negative linear relationship between the proportions of N. vectensis 

and amphipod abundance. 

Figure 20 The positive linear relationship between N. vectensis and amphipod 

abundance. 
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8. Discussion 

This study aimed to determine the variables responsible for the spatial 

distribution of N. vectensis and assess its role within native assemblages. N. 

vectensis was significantly negatively associated with OM Content, Salinity, 

and Silt Content and significantly positively correlated with MGS. It was also 

positively correlated with macrozoobenthic density.  

 

N. vectensis is known to preferentially colonise very fine sediments, so the 

significant correlations with particle size factors is likely because of their co-

linearity with OM Content (Williams 2003). Fine sediments and increased OM 

Content often co-occur because of the low energy environment necessary for 

their deposition (Burone et al. 2003). Increased OM Content would lead to 

hypoxic-sulfidic conditions creating a hostile environment unsuitable for 

colonisation (Gray et al. 2002; Rybarczyk et al. 1996). Though N. vectensis 

was also found in the coarser sediments of the lagoon, the largest particle size 

did not exceed 230µm, contained at least 18% silt and would still be suitable 

for burrowing.  

 

Figure 21 The positive linear relationship between overall invertebrate and N. 

vectensis abundance. 
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N. vectensis is a euryhaline species and so the significant association with 

salinity is interesting (Sheader et al. 1997; Barnes 1994). The salinity regime 

of the lagoon at the time of survey was relatively homogenous with a narrow 

range of 2.5‰, and only three sites were below 25‰; most of the lagoon was 

between 25.9‰ and 26.6‰. As salinity and N. vectensis are both significantly 

correlated with macrozoobenthic density it is possible that salinity and 

macrozoobenthic density are co-linear. Thus, this euryhaline anemone could 

be reliant on how the salinity regime dictates the spatial distribution of its prey 

species. An alternative explanation is that within ecological scales the 

association with salinity is irrelevant and it is unlikely the euryhaline anemone 

is affected by a relatively minor fluctuation in salinity.  

 

N. vectensis was significantly positively correlated with macrozoobenthic 

density likely because of an increase in prey availability (Sheader et al. 1997). 

Increases in food intake increase the frequency of transverse fission, a 

common method of reproduction in English specimens, thus high prey 

densities will cause rapid population growth (Hand and Uhlinger 1995; Hand 

and Uhlinger 1992).  

 

N. vectensis was abundant overall but was not found at all sites at which prey 

species also occurred. As N. vectensis is a small (<1cm) burrowing infaunal 

cnidarian, the absence of a well oxygenated layer at the sediment-water 

interface may cause the anemone to evacuate the sediment or suffer paralysis 

due to the inhibition of peristalsis which is vital to its locomotive behaviour 

(Williams 2003). Hypoxic-sulfidic sediments, like those in the central 

southwest of Poole Park lagoon, are unlikely to be suitable for colonisation 

and will explain why N. vectensis is not present even when suitable prey 

species such as amphipods are. There is a second cluster of five sites in the 

northeast with no N. vectensis which may occur due to the high energy 

environment preventing settlement. 

 

In sites where N. vectensis was particularly abundant (N = >20), annelid 

worms were also moderately abundant. This is likely due to the shared 

preference for sediments that are not high in OM Content. The bioturbation by 
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these worms could also facilitate the thixotropic and well oxygenated sediment 

favoured by N. vectensis (Williams 2003; Sheader et al. 1997). Furthermore, 

one N. vectensis individual identified under the stereo microscope was partially 

ingesting a Polydora sp. individual, indicating that worms of a certain size are 

vulnerable to predation by N. vectensis.  However, where worms dominate by 

>50%, the proportion of other species decreases, including N. vectensis. This 

may be because of disturbance, such as dislodging N. vectensis from the 

sediment, predation by larger H. diversicolor individuals or even interspecific 

competition for prey with H. diversicolor.  

 

Three of the most abundant sites, including superabundant Site 34, were 

adjacent to the Concrete Walkway. Sediment conditions here were favourable 

with low to moderate OM Content and MGS between 51µm and 145µm, 

enabling burrowing activity. Another factor potentially responsible for 

increased abundance at these sites is the proximity to the F. enigmaticus reefs 

that have colonised the Concrete Walkway, and the increase in prey 

associated with this. However, the tubeworm reefs are also associated with 

higher abundances of the only recorded predator of N. vectensis; P. varians. 

The predator-prey dynamics between the two species are unclear and could 

be scale dependent; juvenile P. varians could be prey for N. vectensis before 

preying on N. vectensis itself when it is a larger size.  

 

The other two abundant (N = >20) sites were in the north, adjacent to the 

northeast cluster where no N. vectensis individuals were found. Though this is 

an area of high energy, south-westerly prevailing winds would be disrupted by 

the islands to the southwest of the two abundant sites reducing disturbance. 

 

This study found no correlation between the abundance of N. vectensis or P. 

varians, suggesting that the shrimp has a negligible effect on N. vectensis 

density. However, the pelagic survey was not as spatially comprehensive as 

the macrozoobenthic survey and conducted several months apart so this 

should be interpreted cautiously. P. varians is omnivorous and will feed on 

detritus and macroinvertebrates though there is a paucity of data available on 

its diet (Barnes 1994). Palaemon elegans (Rathke 1837), a morphologically 
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similar shrimp species that inhabits similar ranges, will consume Chironomid 

larvae, small crustaceans and H. diversicolor (Janas and Baranska 2008). P. 

varians may preferentially feed on species that occur at greater densities, such 

as the amphipods M. insidiosum and M. gryllotalpa. As previously mentioned, 

predation on N. vectensis may also be size dependent as smaller P. varians 

individuals could be vulnerable to predation by N. vectensis even if it they are 

too large to be consumed by it.  

  

N. vectensis and amphipod abundance were positively correlated, and their 

percentage proportions were negatively correlated. This indicates that 

favourable habitat conditions allow these species to proliferate, but the 

increase in the percentage proportion of N. vectensis may have a negative 

effect on the proportion of their prey species due to increased rates of 

predation. However, this does not consider interspecific and interference 

competition from other species that will be colonising the favourable sediments 

and should be investigated further. 

 

Due to the physal pinching method of transverse fission of N. vectensis, their 

abundance may be underestimated due to the discarding of budded 

specimens that had not developed into physiologically identifiable individuals 

– particularly as fixation induces contraction (Sheader et al. 1997). 

Additionally, N. vectensis can migrate vertically into floating macroalgal mats 

using adhesive rugae so benthic sampling may underrepresent N. vectensis, 

though it is unlikely to be by a significant margin (<5%) (Barnes 1994). It is 

undetermined if such vertical migration is incidental from accidental 

attachment or deliberate because of negative chemotaxis to hydrogen 

sulphide (Williams 2003). For future studies, it would be prudent to obtain a 

hand sample of overlying algal mats to rinse migratory invertebrates from.  

 

N. vectensis within Poole Park lagoon appears to have a negligible effect on 

native macrozoobenthic assemblages. However, Poole Park is still a degraded 

habitat and N. vectensis may have greater top-down influence if invertebrate 

densities were greater. Its influence on disturbance of sediment is low due to 

its small size and shallow burial, only relocating when interstitial conditions 
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become too hostile or it is displaced by wave action or the burrowing activity 

of another species. Upon reburial, sediment is not displaced in a conspicuous 

manner akin to lugworm activity. Instead N. vectensis uses peristaltic 

contractions and adhesive rugae to bury itself and is unlikely to disturb or 

displace other infaunal species (Williams 2003).  

 

N. vectensis has a formidable capacity to kill other macrozoobenthic 

organisms with its rapidly refillable neurotoxin reservoir and chemosensors 

that enhance the likelihood of prey capture, though some organisms captured 

will be too large for ingestion (Moran and Gurevitz 2006; Watson et al. 2009). 

Therefore, there is a chance that it has a disproportionately negative effect on 

vulnerable species due to its indiscriminate method of prey capture, however 

this is beyond the scope of this study. Organisms captured incidentally but not 

consumed by N. vectensis may become available to other scavengers or 

predators and the anemone may enhance food availability to other carnivorous 

species. Transverse fission of N. vectensis increases with food availability 

(Hand and Uhlinger 1995). A population explosion of this sessile predator in 

areas of high prey densities could lead to a local sudden and rapid decline in 

abundance of certain species, altering the assemblage dynamics and 

potentially negatively affecting higher trophic levels reliant on the same prey 

species. Microcosm experiments would be necessary to quantify the effects of 

this small but potentially formidable anemone on microspatial 

macrozoobenthic assemblages. However, further surveys should not focus on 

N. vectensis as a vulnerable protected species but as a non-native and 

understudied species.  

 

Historically, Poole Harbour has previously hosted lagoonal specialists within 

the estuary itself (C. glaucum) and it is possible that some brackish areas of 

the main harbour may act as refugia to populations of lagoonal specialists 

such as N. vectensis (Herbert et al. 2010). Although no individuals have 

been found in saltmarshes in the UK to date, N. vectensis can be found in 

saltmarsh sites on coasts of North America (Sheader et al. 1997). There are 

sites in Poole Harbour where saltmarshes, wetland scrapes, and lagoon 

habitats can be found within the same area. As sea defences fail against sea 
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level rise, agricultural land has become intertidal wetland habitat where 

waders, such as ruff and redshank, will frequent to roost and feed (Birds of 

Poole Harbour 2018). The presence of avian predators indicates sufficient 

colonisation of aquatic invertebrates and warrants further study; such sites 

include Lytchett Fields, the flooded agricultural land in northwest Lytchett 

Bay, and Arne Moors (personal communication). Another site of interest is 

Holton Pools, a wetland scrape created in saltmarsh habitat that exhibits 

physiographic lagoonal properties and supports several species of wader 

(personal observation).  
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9. Conclusion 

This study surveyed the spatial distribution of macrozoobenthic assemblage, 

pelagic fauna and abiotic variables to determine which factors dictated 

distribution of species, abundance and whole communities. The starlet sea 

anemone N. vectensis received particular attention due to both its cryptic and 

protected statuses in the UK. There were no significant correlations with 

proximity to Sluice Gate and species richness, abundance, overall 

assemblages or any of the abiotic factors. However, correlations with salinity 

may occur temporally, particularly during and post flush events. Species 

richness and abundance was significantly correlated with OM Content, Silt 

Content and MGS. Overall assemblages were not significantly correlated with 

any factor, and richness and abundance were not correlated with pelagic 

fauna. Thus, sediment factors are the predominant variables in determining 

spatial distribution of species and their abundances. This is likely due to the 

hostile conditions associated with high OM Content and increased food 

availability associated with moderate OM Content.  

 

The epifaunal starlet sea anemone is also significantly negatively correlated 

with sediment factors, likely due to the physiological stress associated with 

hypoxic conditions in high OM Content sediments. Its effect on native fauna is 

beyond the scope of this study but it is postulated that in high prey densities it 

could negatively affect certain species with its indiscriminate and relatively 

effective method of prey capture. Further research should focus on predator-

prey relationships and competition of this cryptic cnidarian with native fauna.  

Poole Park is currently a degraded habitat, but the creation of islands may 

reduce turbidity in the northeast and change areas of deposition. This study 

will serve as a comparative baseline for surveys post-works. It is an important 

site in the Poole Harbour regional lagoon network, particularly for piscivorous 

and roosting coastal birds, though currently has little value for wading species 

that are at risk of habitat loss. Sites such as Lytchett Fields and Holton Pools 

exhibit lagoonal properties and should be the subject of further study, in 

addition to Arne Moors which has the capacity to become lagoonal in the 

future. 
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Appendices 

Table A1. Abiotic measurements from all sample sites. 

Sample 
Site 

Silt 
Content 

(%) 

Median 
Grain 

Size (µ) 

Organic 
Matter 
(%LOI) 

Water 
Depth 

(m) 

Sediment 
Depth 

(m) 

Salinity 
(‰) 

Temperature 

(°C) 

1 76.0 48.1 9.7 0.7 0.5 26.6 2.5 

2 89.3 20.6 10.8 0.7 0.7 26.5 2.5 

3 92.8 20.4 11.5 0.8 2.0 26.6 2.5 

4 90.9 19.0 10.9 0.9 2.0 26.6 2.5 

5 65.6 62.3 5.2 0.9 1.9 24.7 1.5 

6 78.6 36.4 5.7 0.7 0.1 26.6 2.5 

7 93.5 20.5 10.5 0.8 0.5 26.6 2.6 

8 88.4 19.5 12.3 0.9 1.4 26.5 2.6 

9 90.4 18.3 10.6 0.9 1.3 26.6 2.6 

10 88.1 20.6 11.0 1.0 1.3 26.6 2.6 

11 80.7 27.2 8.7 0.8 1.0 26.2 2.7 

12 59.1 66.5 3.4 0.7 0.6 26.4 2.6 

13 87.6 22.3 8.6 0.9 0.7 24.8 1.3 

14 88.6 21.2 9.0 0.9 0.4 26.5 2.6 

15 89.6 20.2 9.3 0.9 1.4 26.5 2.7 

16 87.0 22.2 10.7 1.0 1.3 26.6 2.6 

17 91.1 20.3 9.2 1.0 1.2 26.6 2.5 

18 87.6 25.1 8.9 0.9 0.8 26.3 2.9 

19 59.8 64.2 3.1 1.0 0.5 26.2 2.6 

20 61.3 65.0 4.7 0.9 0.2 26.3 3.1 

21 49.4 128.2 3.5 0.9 0.1 26.2 3.1 

22 68.4 75.7 7.0 0.9 0.6 26.5 2.9 

23 87.3 23.3 10.5 0.9 1.4 26.5 2.8 

24 89.1 22.8 11.6 1.0 1.3 26.6 2.6 

25 91.0 21.6 8.9 1.0 1.3 26.5 2.6 

26 84.0 27.2 9.2 1.0 0.3 26.4 3.0 

27 63.7 60.5 6.3 0.9 0.1 26.2 2.7 

28 62.9 61.3 5.3 0.9 0.2 26.1 2.9 

29 74.3 33.8 7.3 0.8 0.2 26.6 3.0 

30 71.7 42.8 4.2 0.9 0.5 26.5 2.8 

31 86.9 25.4 7.2 1.3 0.5 26.5 2.7 

32 95.4 20.4 9.4 1.0 0.9 26.5 2.9 

33 83.7 25.8 12.1 1.1 0.2 26.5 2.9 
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34 47.1 137.7 3.5 0.8 0.2 26.2 2.7 

36 68.3 51.3 3.7 0.7 0.2 26.5 2.9 

37 81.6 29.6 7.0 1.1 0.4 26.5 2.9 

38 60.6 71.7 6.2 1.0 0.1 26.5 2.9 

39 86.6 32.3 10.3 1.1 0.2 26.6 3.1 

40 77.5 52.1 10.6 1.2 0.3 26.6 3.1 

41 54.6 103.1 3.7 0.7 0.1 26.5 3.3 

42 28.1 204.2 1.2 0.6 0.2 24 3.1 

43 30.3 230.4 1.5 1.0 0.1 26.5 2.9 

44 62.5 72.7 5.5 1.0 0.3 26.5 3.0 

45 82.2 40.0 9.8 1.2 0.2 26.6 3.2 

46 73.4 56.5 6.3 1.1 0.2 26.5 3.4 

47 36.3 182.9 2.3 0.8 0.3 26.5 3.5 

48 60.6 95.3 5.4 0.9 0.5 26.4 3.6 

49 71.4 72.2 7.5 0.6 0.1 26.4 3.7 

50 18.7 186.4 1.4 0.6 0.1 26.4 3.7 
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Table A2. Abundance of pelagic fauna at all sample sites. 

Site 

June July 

TOTAL 

C
. 

m
a

e
n

a
s
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n

s
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P
. 

m
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p

s
 

1 0 40 0 3 0 45 0 2 90 

2 0 20 0 7 0 5 0 5 37 

3 0 20 0 9 0 40 0 0 69 

4 0 20 0 1 0 2 0 1 24 

5 0 15 0 10 0 30 0 3 58 

6 0 5 0 9 0 10 0 2 26 

7 1 10 0 25 0 10 0 20 66 

8 2 20 0 30 0 20 0 0 72 

9 0 10 0 7 0 10 0 0 27 

10 0 10 0 10 1 20 0 10 51 

11 1 25 0 10 3 0 0 30 69 

12 1 20 0 10 0 10 0 18 59 

13 3 5 0 30 3 15 0 15 71 

14 0 10 0 15 1 5 0 25 56 

15 2 5 0 15 0 10 0 40 72 

16 0 5 0 10 0 20 0 10 45 

17 1 10 0 10 0 20 0 5 46 

18 0 1 0 3 0 16 1 11 32 

19 0 5 0 5 0 5 3 25 43 

20 0 5 0 10 0 0 2 6 23 

TOTAL 11 261 0 229 8 293 6 228 1036 
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a. 

b. 

c. 

Figure A1 The spatial distribution of a) F. enigmaticus, 

b) P. mucosa and c) H. diversicolor. 
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a. 

b. 

c. 

Figure A2 The spatial distribution of a) Polydora sp., b) 

Tubificoides sp. and c) M. gryllotalpa. 
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a. 

b. 

c. 

Figure A3 The spatial distribution of a) M. insidiosum, b) M. 

palmata and c) G. locusta 
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a. 

b. 

c. 

Figure A4 The spatial distribution of a) P. ulvae, b) E. 

ventrosa and c) M. arenaria. 
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a. 

b. 

Figure A5 The spatial distribution of a) C. glaucum and 

b) Chironomid larvae. 


