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Abstract
The head shape of high-speed trains has become a critical factor in boosting the 
speed further. Aerodynamic simulation-based optimization is a dominant method to 
obtain the optimal head shape which relies on detailed train head models defined by 
a lot of design variables. Since aerodynamic simulation-based optimization involves 
heavy calculations, too many design variables not only causes high computational 
costs, but also makes the optimal solution difficult to obtain. Therefore, how to use 
few design variables to define detailed train head model is the key to success. Partial 
differential equation (PDE)-based geometric modelling which creates a complicated 
PDE patch with few design variables provides an effective solution to this problem. 
In addition, it also has the advantage of naturally maintaining any high-order conti-
nuities between two adjacent surfaces which is very important in designing highly 
smooth train heads to achieve excellent aerodynamic performance. At the present 
time, PDE-based geometric modelling cannot be directly applied in computer-aided 
design (CAD), computer-aided manufacturing (CAM), and computer-aided engi-
neering (CAE) since it has not become an industrial standard. In contrast, non-uni-
form rational B-splines (NURBS) are commonly used in CAD, CAM, CAE, and 
many other engineering fields. They have already become part of industry wide 
standards. In order to apply PDE-based geometric modelling in shape design of 
high-speed train heads for CAD etc., how to optimally convert PDE surfaces into 
NURBS surfaces must be addressed. In this paper, a new method of achieving opti-
mal conversion of PDE surfaces representing high-speed train heads into NURBS 
surfaces is developed. It takes control points and weight deformations of NURBS 
surfaces to be design variables, and the error between NURBS surfaces and PDE 
surfaces as the objective function. The least squares fitting and the genetic algorithm 
are combined to obtain the optimal conversion between PDE surfaces and NURBS 
surfaces. The application examples demonstrate the effectiveness of the developed 
method.
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1  Introduction

Geometric design of high-speed train heads is a key part in the aerodynamic 
research of high-speed trains (Wang et al. 2018). A high-speed train head involves a 
lot of design variables and high smoothness requirements. Parametric surface mod-
elling methods such as B-splines surfaces, Bézier surfaces and non-uniform rational 
B-splines (NURBS) surfaces are widely used in geometric design of the high-speed 
train head (Yao et al. 2016; Suzuki and Nakade 2013; Muñoz Paniagua et al. 2011). 
However, they are not ideal in using few surface patches to describe complicated 
shapes, easily and accurately controlling surface shapes, and achieving any high-
order continuity which are required in shape modelling of high-speed strain heads. 
Especially, when aerodynamic simulation-based optimization is required to obtain 
the optimal head shape for further speed increase, using few design variables to 
describe complicated and detailed train head models will not only significantly 
reduce computational costs, but also make the optimal solution easy to obtain.

Partial differential equation (PDE)-based geometric modelling can use few PDE 
surface patches to describe complicated and detailed shapes (Zhang and You 2004), 
easily specify shape manipulation regions with arbitrary complexity (Ugail et  al. 
1999), apply sculpting forces to achieve complicated deformations and accurate 
control of surface shapes (Bloor and Wilson 1994; Du and Qin 2000), and readily 
achieve and naturally maintain any high-order continuity between two adjacent PDE 
surface patches (Zhang and You 2004). Therefore, PDE-based geometric modelling 
has the strengths in geometric design of high-speed train heads.

With partial differential equation-based modelling, 3D models are constructed 
from the solution to partial differential equations subjected to position, tangent, cur-
vature, and even higher-order boundary constraints (You et al. 2013). Since adjacent 
PDE surface patches share the same boundary constrains, 3D models constructed 
from partial differential equation-based geometric modelling exactly and automati-
cally satisfy position, tangent, curvature and higher order continuities between adja-
cent PDE surface patches. No manual operations are required to stitch PDE surface 
patches together. Complicated shapes of 3D models can be easily and effectively 
manipulated by adjusting shape control parameters in partial differential equations, 
and boundary curves, boundary tangents, boundary curvature, etc. in boundary con-
straints. Since a single PDE surface patch can describe a complicated shape, a com-
plicated 3D model can be constructed from few PDE surface patches. In addition, 
fourth order partial differential equations are similar to the governing equations of 
elastic bending of thin plates. Therefore, PDE-based geometric modelling is phys-
ics-based (Du and Qin 2001), and has a potential to create more realistic deforma-
tions of 3D models. Its association with physical significance is particularly useful 
for engineering design.

Geometric models of high-speed train heads are usually applied in computer-
aided design (CAD), computer-aided manufacturing (CAM) and computer-
aided engineering (CAE) for further applications such as aerodynamic simula-
tion and structural optimization. Currently, PDE-based geometric modelling has 
not become an industrial standard for the applications in CAD, CAM and CAE. 
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In contrast, non-uniform rational B-splines (NURBS) have become an industry 
standard for the representation, design, and data exchange of geometric informa-
tion processed by computers (Piegl and Tiller 1997). In order to facilitate further 
applications of PDE-based geometric modelling, it is necessary to convert PDE 
surfaces into NURBS surfaces for use in CAD, CAM and CAE systems. There-
fore, optimal conversion from PDE surfaces into NURBS surfaces is an essential 
part of PDE-based geometric modelling of high-speed train heads.

Although there has been much work investigating conversion methods between 
different geometric surfaces such as from B-spline surfaces to Bézier surfaces 
(Hoschek and Schneider 1990), parametric surfaces to implicit surfaces (Mano-
cha and Canny 1992), and physical surfaces to NURBS surfaces (Heidrich et al. 
1996; Ma and Kruth 1998; Saini and Kumar 2014; Kruth and Kerstens 1998; Yin 
2004; Dan and Lancheng 2006), we did not find any reports which convert PDE-
surfaces into NURBS surfaces. In addition, most of prior conversion methods 
focus on a single surface patch or an object with a simple shape. Thus the data 
sizes of origin surfaces and converted surfaces are small and there is no need 
to minimize the data sizes in the process of conversion and further applications 
such as aerodynamic simulation-based optimization. However, for a complicated 
and large-scale object such as high-speed train heads in this paper, it involves a 
large amount of data. Therefore, two main problems exist. First, the conversion 
process will cost a lot of computational time and raise the computational cost. 
Second, after achieving the conversion, the NURBS surface-represented train 
heads involve plenty of control points which will cause heavy calculations of aer-
odynamic simulation-based optimization and make the optimal shape difficult to 
obtain. In order to tackle the two problems, the conversion method should not 
only achieve good conversion accuracy, but also minimize the amount of the data 
representing the converted NURBS surfaces. This paper will review various con-
version methods between different geometric surfaces and develop a new method 
to optimally converting PDE surfaces of high-speed train heads into NURBS sur-
faces with required accuracy and small data amount.

PDE surfaces are defined by the solution to a vector-valued PDE subjected to 
the required boundary constraints. Depending on whether the vector-valued PDE 
is solved analytically or numerically, the solution to the PDE can be continuous or 
discrete representations. When converting continuous representations of analyti-
cal PDE surfaces into NURBS surfaces, it is still required to calculate the errors 
between the discretized version of analytical PDE surfaces and NURBS surfaces. 
Therefore, this paper will investigate the optimal conversion between discrete repre-
sentations of PDE surfaces and NURBS surfaces.

The remaining parts of the paper are organised as follows. Existing research stud-
ies on PDE-based geometric modelling, NURBS and surface conversion methods 
are reviewed in Sect. 2. An overview of the proposed method is given in Sect. 3. 
Then, a fourth order PDE for each of the position functions x, y, and z function and 
its solution are proposed in Sect.  4. After that, an optimal conversion method of 
PDE surfaces defining high-speed train heads into NURBS surfaces is developed in 
Sect. 5, and validated by the application example presented in Sect. 6. Finally, the 
conclusion is drawn in Sect. 7.
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2 � Literature review

The work given in this paper is related to PDE-based geometric modelling, NURBS 
surfaces and their applications in CAD, CAM and CAE as an industrial standard, 
conversion between different surface representations, and optimization methods. 
This section will review some work in these fields.

2.1 � PDE‑based geometric modelling

Surface modelling based on the solutions of PDEs was initially proposed by Bloor 
and Wilson (1990). In the paper, they applied a vector-valued fourth order PDE with 
one shape control parameter to create surface shapes such as a propeller blade and a 
phone handset. Since then, this fourth order PDE-based surface modelling approach 
was applied to a number of engineering design problems (Bloor and Wilson 1994, 
1996). Ugail et al. (1999) studied interactive design of practical surfaces using PDE-
based modelling in real time. Du and Qin (2000) proposed a unified methodology 
to combine PDE surfaces with physics-based techniques, and presented a numeri-
cal approach through finite difference discretization of PDE surfaces (Du and Qin 
2000).

Since one shape control parameter cannot satisfy the designers who want to 
obtain a much greater variety of shapes by adjusting the shape control parameters, 
You and Zhang (1999) proposed a general fourth order PDE with three shape con-
trol parameters for surface generation. Then, they developed some analytical meth-
ods to resolve the fourth order PDEs (Zhang and You 2004, 2002). They also pre-
sented a fast surface modelling method using a sixth order PDE (Zhang and You 
2004). This method provides more degrees of freedom and shape control parameters 
to manipulate surface shapes.

Due to the advantages of PDE-based geometric modelling discussed above, they 
have been applied in many applications. For example, PDE-based geometric mod-
elling has been used in parametric design and optimisation of solid pharmaceuti-
cal tablets in cylindrical and spherical shapes (Ahmat et al. 2014), facial geometry 
parameterisation (Sheng et al. 2011), cyclic animation (Gonzalez Castro et al. 2010), 
and real-time aircraft design (Athan et al. 2009).

2.2 � NURBS as an industrial standard of CAD, CAM and CAE

NURBS originates from B-spline technology and plays an important role in the 
CAD, CAM and CAE world. The description of NURBS was first given by Ver-
sprille KJ (1975) who extended B-splines to rational B-splines in 1975. By under-
standing the advantages of NURBS for geometry representation and design, Boe-
ing proposed it as part of the standard to the 1981 International Graphics Exchange 
Standard meeting, and many companies, such as Structural Dynamics Research 
Corporation and Intergraph Corporation, started to develop modellers and sys-
tems based on NURBS in the 1980s (Piegl 1991). Because of the useful geometric 
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properties, NURBS become part of many national and international standards such 
as IGES (Kennicott 1996), PHIGS (ISO/IEC 1997) and STEP (ISO 2003) for the 
representation, design, and data exchange of geometric information.

2.3 � Surface representation conversion

Converting other types of surfaces into NURBS surfaces is most often required 
since NURBS has become an industrial standard in CAD, CAM and CAE, espe-
cially in the field of reverse engineering. The key issue in the conversion is to solve 
NRUBS fitting. In general, fitting is usually achieved with polynomial approxima-
tion, which involves the minimization of an error at discrete data points. Depend-
ing on the application domain and the expected type of error, different norms can 
be selected for the minimization process such as l1 , l2 and l3 norms (Heidrich et al. 
1996). The least-square ( l2 norm) is usually applied in NURBS fitting. Ma and Kruth 
(1998) presented an algorithm for NURBS curves and surfaces fitting from free-
form objects based on least squares fitting. The basic idea is to identify weights of 
the control points by applying symmetric eigenvalue decomposition techniques and 
then establish the control points in a similar way. Based on this identified method of 
weights, Saini and Kumar (2014) proposed a method to reconstruct surfaces from 
arbitrary perspective images using a NURBS model, and Kruth and Kerstens (1998) 
described NURBS surface fitting from a cloud of points subject to the incorpora-
tion of sufficient boundary conditions. Through determining the knot vectors, select-
ing the degrees, calculating the weights, and constructing an initial NURBS surface, 
Yin (2004) provided a new algorithm for fitting NURBS surfaces to scattered points 
using minimization of deviation under boundary constraints. By letting ordered 
measured points be control points and using least squares minimization, Dan and 
Lancheng (2006) developed a new conversion method which modifies a constructed 
surface to obtain a desired fitted surface.

2.4 � Optimization methods

NURBS consists of multi-parameters: control points, knots and weights which make 
the conversion task become a multi-variable nonlinear optimization problem involv-
ing large amount of data. In order to find a good NURBS model from large amount 
of data, Erkan Ulker (2012) applied the heuristic of artificial immune system for 
global optimization to find a smooth curve and the optimization of the NURBS 
weights and the knot vector. Jing et al. (2009) used a simulated annealing method 
to optimize weights and knot parameters of NURBS for curve and surface fitting. 
The genetic algorithm (GA) is a common multi-variables optimization method. 
Limaiem et al. (1996) applied genetic algorithms to obtain control point and knot 
values optimization, and proposed a new method for curve and surface approxima-
tion from scanned data points. Similarly, Yoshimoto et al. (1999) and Sarfraz (2004) 
applied GA to optimize both the knots and the weights of control points for curves 
and surfaces.
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3 � Overview of the proposed method

For complicated and large-scale objects such as high-speed train heads to be con-
sidered in this paper, plenty of control points are required to describe its shape. 
This will introduce many design variables and increase the need of storage capac-
ity. If the weights of control points are also involved in the optimization calcu-
lations, independent design variables will be significantly increased. Too many 
control points and weights will lead to a large search space, greatly reduce com-
putational efficiency, increase the difficulty in finding optimal converted NURBS 
surfaces. In the following applications of aerodynamic simulation-based optimi-
zation, they will also cause heavy calculations and make the optimal shape hard 
to obtain. Therefore, the aim of the optimal conversion from PDE surface-rep-
resented train heads to NURBS surface-represented train heads should look for 
the minimum design variables and weights while satisfying the required con-
version accuracy � . We introduce two new ideas to achieve this aim. First, we 
approximate a lot of weights with a weight deformation discussed in Sect. 5.2.1 
to noticeably reduce the number of weights. Second, we minimize the number of 
control points to decrease total control points while still satisfying the required 
conversion accuracy �.

Including the weight deformation and the number and positions of control points 
in a same optimization objective function will greatly increase the computational 
complexity of the optimal conversion. When the total number of control points is 
known, the errors between PDE surfaces and NURBS surfaces can be minimized 
with the least square method to obtain the optimal positions of control points. There-
fore, the complicated optimal conversion problem can be converted into two simple 
interlinking sub-problems: (1) obtaining the minimum number of control points and 
optimal weight deformation, and (2) determining the optimal positions of control 
points. The genetic algorithm (GA) is commonly used to generate high-quality solu-
tions to optimization and search problems. In this paper, we employ GA to deter-
mine the minimum number of control points and the optimal weight deformation 
and combine it with the least squares method to obtain the optimal conversion from 
PDE surface-represented train heads to NURBS surface-represented train heads.

As shown in Fig. 1, the proposed method can be divided into three steps: (1) 
PDE surface-based train head modelling, (2) NURBS surface formulation, and 
(3) Genetic algorithm-based optimal conversion. In (1) PDE surface-based train 
head modelling, a complicated train head (Fig.  1: left image of the top row) is 
first decomposed into a number of simple parts (second image from the left in 
top row), each part is described with a PDE surface patch (third image from the 
left in top row) obtained from the finite difference solution of a vector-valued 
partial differential equation (1) below, and all the PDE surface patches are auto-
matically and smoothly stitched together to represent the whole train head model 
(right image in top row). In (2) NURBS surface formulation, the discrete vertices 
of each PDE surface patch are extracted, the number of control points and weight 
deformation obtained from the genetic algorithm are input to define a NURBS 
surface with unknown control points, and the least square method is introduced to 
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minimize the errors between the PDE surface and NURBS surface and determine 
the optimal positions of control points. In (3) Genetic algorithm-based optimal 
conversion, the maximum error between the PDE surface and the corresponding 
NURBS surface obtained from the least squares method is first calculated. If the 
maximum error satisfies the required conversion accuracy � , i. e., maximum error 
≤ � , the optimal NURBS-represented train head is obtained for further applica-
tions in CAD, CAM and CAE and the optimization calculations terminate. If the 
maximum error is larger than � , the genetic algorithm will find new number of 
control points and weight deformation and replace the previous input variables 
with them in second step. The new variables are input into the least squares mini-
mization to determine the new positions of control points.

4 � PDE‑based surfaces of high‑speed train heads

Since the geometric shape of a high-speed train head is complicated, it cannot be 
accurately described with one PDE-based surface patch. Therefore, we divide a train 
head into some simple parts according to their shape changes, and use one PDE-
based surface patch to describe each of the parts.

PDE-based surface modelling can take different forms such as PDEs of the sec-
ond, fourth and sixth orders (You et al. 2013). It was found that the higher the order 
of a PDE, the smoother between two adjacent PDE surfaces and the more powerful in 

Fig. 1   Framework of our method
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creating and manipulating geometric models, but the less efficient of the calculations 
and the harder it is to be solved (Zhang and You 2004). Since a second order PDE can-
not ensure the tangent continuity between two adjacent PDE surface patches, we apply 
a fourth order PDE for our applications, which can be written as:

where f (u, v) = (x(u, v), y(u, v), z(u, v)) represents the generated surface, a1 , a2 and 
a3 are user defined shape parameters, and u and v are parametric variables which 
are the independent variables used in parametric equations to express the location 
of a point (x, y, z) on a surface by determining each of the coordinates x, y, and z 
separately, i. e., x = x(u, v) , y = y(u, v) and z = z(u, v) with u and v usually defined 
by 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

A PDE surface patch is defined by the solution to the vector-valued partial differen-
tial equation (1) subjected to boundary conditions such as boundary curves, boundary 
tangents and boundary curvature. Compared to polygon and other patch-based model-
ling which involve a lot of design variables, the design variables defining a C1 continuous 
PDE surface patch only involve few design variables, i. e., three shape parameters in PDE 
(1), and boundary curves and the first derivatives on the boundaries. Since the analytical 
solution to PDE (1) is usually not a simple polynomial function, a PDE surface patch can 
describe a more complicated shape than other geometric methods. Therefore, PDE-based 
geometric modelling can use few design variables to represent a complicated 3D model.

The solution of a PDE can be analytical or numerical methods. The analytical 
method, representing PDE surfaces by continuous functions, is usually applicable to 
low order or simple PDE. Although the numerical method is computationally more 
complicated and expensive, it is more powerful than the analytical method. When con-
verting analytical PDE surfaces into NURBS surfaces, we are still required to calculate 
the errors between the discretized version of analytical PDE surfaces and NURBS sur-
faces. Therefore, this paper will investigate optimal conversion between discrete points 
of PDE surfaces and NURBS surfaces. The finite difference method is ideal in generat-
ing discrete points of PDE surfaces. Here we briefly introduce such a method.

A typical I × J grid of the finite difference method is shown in Fig. 2. The small dots 
and squares represent the unknown inner nodes and the known boundary nodes of a 
PDE surface patch, respectively. The small triangles represent the virtual nodes beyond 
the boundaries of the PDE surface patch. The virtual nodes will be involved in the finite 
difference equations of the first partial derivatives on the boundaries and used to guar-
antee the boundary tangent continuity.

Based on the Taylor series expansion of a function f, the central-difference approxi-
mation of �fi,j

�u
 and �fi,j

�v
 at the typical node (i, j) can be formulated below:

(1)a1

(
�4f

�u4

)
+ a2

(
�4f

�u2�v2

)
+ a3

(
�4f

�v4

)
= 0

(2)
�fi,j

�u
=

1

2h
(fi,j+1 − fi,j−1)

(3)
�fi,j

�v
=

1

2h
(fi+1,j − fi−1,j)
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where h denotes the grid interval.
The central difference approximations of the fourth partial derivatives can be derived 

from Eqs (2) and (3). They can be written as:

where i = 3, 4, ..., I − 2 , j = 3, 4, ..., J − 2 . Substituting Eqs (4), (5) and (6) into (1), 
we obtain the following vectorial finite difference equation of the PDE (1)  at the 
inner node (i, j) :

(4)
�4fi,j

�u4
=

1

h4
[6fi,j − 4(fi,j−1 + fi,j+1) + (fi,j−2 + fi,j+2)]

(5)
�4fi,j

�v4
=

1

h4
[6fi,j − 4(fi−1,j + fi+1,j) + (fi−2,j + fi+2,j)]

(6)
�4fi,j

�u2�v2
=

1

h4
[4fi,j − 2(fi−1,j + fi+1,j + fi,j−1 + fi,j+1)

+ (fi−1,j+1 + fi−1,j−1 + fi+1,j+1 + fi+1,j−1)]

(7)

(6a1 + 4a2 + 6a3)fi,j − (4a1 + 2a2)fi,j+1 − (2a2 + 4a3)fi+1,j

− (4a1 + 2a2)fi,j−1 − (2a2 + 4a3)fi−1,j + a2fi−1,j+1 + a2fi+1,j+1

+ a2fi+1,j−1 + a2fi−1,j−1 + a1fi,j+2 + a3fi+2,j + a1fi,j−2 + a3fi−2,j = 0

Fig. 2   Typical finite difference grid
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 After the boundary conditions, i. e., positions and the first partial derivatives of the 
function f with respect to the parametric variable u and v on the boundaries of the 
PDE surface patch, are specified by users, they can be converted into the finite dif-
ference equations by using Eqs. (2) and (3) to change them into the finite difference 
approximations. Making use of the first partial derivatives on the boundaries, the 
virtual nodes beyond the boundaries are represented with the inner nodes next to the 
boundaries. The finite difference equations of the boundary conditions together with 
Eq. (7) can be written in a matrix form below:

where [A] is an I × J by I × J coefficient matrix. {Q} is a column vector of the dis-
crete vertices of the PDE surface patch. {E} is a column vector involving boundary 
points and tangents. Since the matrix [A] is square and nonsingular, the PDE surface 
patch is obtained directly by matrix inversion:

5 � Optimal NURBS conversion method

Non-uniform rational B-splines (NURBS) are commonly supported by CAD, CAM, 
and CAE systems and have already become part of numerous industry wide standards. 
A NURBS surface of degree p in the u direction and degree q in the v direction can be 
expressed as (Piegl and Tiller 1997):

where Pi,j are (m + 1) × (n + 1) control points of the NURBS surface, and Ri,j(u, v) 
are piecewise rational basis functions, which are defined as:

In the above equation, wi,j and wī,j̄ are the weights, and Ni,p(u) , Nj,q(v) , Nī,p(u) and 
Nj̄,q(v) are the non-rational B-spline functions defined on the knot vectors:

(8)[A]{Q} = {E}

(9){Q} = [A]−1{E}

(10)S(u, v) =

n∑
i=0

m∑
j=0

Ri,j(u, v)Pi,j (0 ≤ u ≤ 1;0 ≤ v ≤ 1)

(11)Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j∑n

ī=0

∑m

j̄=0
Nī,p(u)Nj̄,q(v)wī,j̄

(12)U =

⎧
⎪⎨⎪⎩
0,… , 0
⏟⏟⏟

p+1

, up+1,… , ur−p−1, 1,… , 1
⏟⏟⏟

p+1

⎫⎪⎬⎪⎭

(13)V =

⎧
⎪⎨⎪⎩
0,… , 0
⏟⏟⏟

q+1

, vq+1,… , vs−q−1, 1,… , 1
⏟⏟⏟

q+1

⎫⎪⎬⎪⎭
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where r = n + p + 1 and s = m + q + 1.
Taking the parametric variables u and v to be the same values as those at the 

finite difference nodes, i. e., u = uk and v = vk with k = (i − 1)J + j where i and j are 
shown in Fig. 2, we use Rkl (k = 1, 2, ...,K;l = 1, 2, ..., L) to represent Ri,j(uk, vk) with 
K = I × J to be the total number of the finite difference nodes and L to be the total 
number of control points, i. e., L = (m + 1) × (n + 1) . After replacing the control point 
Pi,j ( i = 0, 1, 2, ..., n ; j = 0, 1, 2, ...,m ) in Eq. (10) with the symbol Pl , Eq. (10) can be 
written in a matrix form as follows:

or

5.1 � Least squares fitting

The least squares method is a standard approach in regression analysis which is used 
to find the best fit to a dataset. It is widely applied in reverse engineering. With the 
least squares method, the sum of the squared errors between a PDE surface patch 
and its corresponding NURBS surface patch at the finite difference nodes can be 
written as:

where Qk and Sk are kth element of the column vector {Q} and {S} which repre-
sents the kth discrete vertex of a PDE surface patch and a NURBS surface patch 
respectively.

Introducing Eqs. (9) and (15) into the above equation, Eq. (16) is transformed 
into the following form:

where [A]−1
k

 is the kth row of the matrix [A]−1 , {E} is the column vector given in Eq. 
(9), [R]k is the kth row of the matrix [R] , and {P} is the column vector given in Eq. 
(15).

With the least squares method, we have �f

�Pl

= 0 ( l = 1, 2, ..., L ) which converts 
Eq. (17) into the following normal equations.

(14)

⎡
⎢⎢⎢⎣

S1
S2
⋮

SK

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

R11 R12 ⋯ R1L

R21 R22 ⋯ R2L

⋮ ⋮ ⋱ ⋮

RK1 RK2 ⋯ RKL

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎣

P1

P2

⋮

PL

⎤
⎥⎥⎥⎦

(15){S} = [R]{P}

(16)f =

K∑
k=1

||Qk − Sk
||2

(17)f =

K∑
k=1

|||[A]
−1
k
{E} − [R]k{P}

|||
2

(18)[R]T [A]−1{E} = [R]T [R]{P}
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Solving the above equations, the positions of all the unknown control points of 
the NURBS surface patch is obtained.

5.2 � Genetic algorithm

The accuracy of the converted NURBS surface depends on the number of control 
points: more control points will lead to more accurate calculations which make 
the converted NURBS surface closer to the PDE surface. Therefore, we need to 
find enough control points which make the converted NURBS surface satisfy the 
required conversion accuracy. Since increasing control points will introduce more 
design variables, cause more storage capacity, and raise the computational cost in 
both conversion process and following applications, it is important to find the least 
control points which not only minimize the number of design variables but also sat-
isfy the required conversion accuracy �.

Apart for control points, weights of a NURBS surface also affect the conver-
sion accuracy. As shown in Eqs. (10) and (11), one control point has one weight. 
If all the weights are taken to be design variables, the optimization calculation cost 
will greatly increase and the optimal conversion will be more difficult to obtain. 
To tackle this problem, a curve deformation algorithm is proposed in Sect. 5.2.1 to 
change all the weights into a single weight deformation.

The genetic algorithm is very efficient in random search to solve unclear and 
complex problems. This paper uses it to find the minimum number of control points 
and the optimal weight deformation and combine it with the least squares method 
which is used to determine the most suitable positions of control points for the 
optimally converted NURBS surface. The basic structure of a genetic algorithm is 
shown in Fig. 3.

5.2.1 � Design variables

As discussed above, the number of control points and weight deformation are cho-
sen to be design variables. Inspired by the algorithm of deforming a curve discussed 
in Yu et  al. (2013), we propose a new weight deformation algorithm to deform a 
surface. It transforms multiple weight variables into a single weight deformation, 
makes the deformation bigger and bigger when moving from the boundaries to the 
centre of a NURBS surface, and has no effects on the four boundaries of a NURBS 
surface patch to ensure the continuity between adjacent NURBS surface patches. 
The deformation algorithm is given by

where w̄i,j and wi,j are original and new weight respectively, n + 1 and m + 1 are the 
numbers of weights in the u direction and v direction respectively, and dw is the 
weight deformation.

Figure  4 shows an example how the weight deformation changes the shape of 
a NURBS surface. When dw is 0, the weights of all control points are equal to 1 

(19)wi,j = w̄i,j

(
1 + dw

(i − 1)(n − i)

(i − 1)2 + (n − i)2
×

(j − 1)(m − j)

(j − 1)2 + (m − j)2

)
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( wi,j = 1 ). It means the NURBS surface becomes a B-spline surface. Therefore, the 
geometric meaning of weight deformation is to adjust the concavity ( dw < 0 ) and 
convexity ( dw > 0 ) of a B-spline surface.

The least number of control points of a NURBS surface is related to the degree 
p in the u direction and degree q in the v direction. For a NURBS surface of the 
degree p with n + 1 control points in the u direction, its knot vector has n + p + 2 
knots. Since the knot vector is non-periodic and the first and last knots have multi-
plicity p + 1 , the number of control points must satisfy n + 1 ≥ p + 1 . Similarly, in 
the v direction, the number of control points must satisfy m + 1 ≥ q + 1 . Thus, for 

Fig. 3   The basic structure of the 
genetic algorithm

Fig. 4   Effects of the weight deformation on a NURBS surface
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a NURBS surface, the least number of control points is (p + 1) × (q + 1) . In addi-
tion, the maximum number of control points is equal to K which is the total number 
of discrete vertices of NURBS surface. Therefore, the input range of the number of 
control points is between (p + 1) × (q + 1) and K.

There is no strict limitation for the range of weight deformation, except that it 
needs to include the value of zero. A wider range of weight deformation produces 
more precise results but causes more computing time. On the other side, when the 
value of weight deformation is very large or small, the shape of surface is nearly 
unchanged. Therefore, after a dozen experiments, we find a suitable range of weight 
deformation which is [−4, 30].

After the ranges of the number of control points and weight deformation have 
been specified, they are represented by a set of strings coded in binary.

5.2.2 � Objective function

Since Eq. (9) determines a PDE surface patch represented by the column vector {Q} 
and Eq. (15) describes the corresponding NURBS surface patch represented by the 
column vector {S} , we can obtain the difference between the two surface patches 
by calculating the errors of the two surface patches at the finite difference nodes i 
( i = 1, 2, 3,⋯ ,K ) which is the Euclidean distances d(Qi, Si) where Qi is the ith ele-
ment of the column vector {Q} and Si is the ith element of the column vector {S}. 
The optimization objective function is to find the minimum number of control points 
and the optimal weight deformation which minimize the maximum error between 
the PDE surface patch and its corresponding NURBS surface patch. Once the maxi-
mum error satisfies the required conversion accuracy � , the genetic algorithm termi-
nates and the optimal NURBS surface patch is obtained. Therefore, the optimization 
objective function can be formulated as:

where

where cp and dw are design variables that are the number of control points and the 
weight deformation, respectively, and Ls is the shortest distance between any two 
points of the PDE surface. The reason why we choose the shortest distance is to 
measure the distance between the PDE surface patch and the NURBS surface patch 
under the same order of magnitude of the PDE surface.

5.2.3 � Genetic operators

The basic structure of the genetic algorithm is shown in Fig. 3. The transition from 
one generation to the next one consists of four basic components (Bodenhofer 2004):

(20)
argmin
cp,dw

|�max(cp, dw) − �|
subject to �max(cp, dw) ≤ �

(21)�max(cp, dw) = max
1≤i≤K

{
1

Ls
d(Qi, Si)

}
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1)	 Selection: The selection process selects individuals for reproduction according to 
their fitness. In this paper, the individuals are the binary strings of the number of 
control points and the weight deformation, and the fitness is the objective function 
value.

2)	 Crossover: Crossover is a probabilistic process that merges the genetic informa-
tion of two selected individuals and produces next generation.

3)	 Mutation: mutation is a random deformation of the strings with a certain probabil-
ity. It mutates a bit position (genes) of binary representation of chromosomes by 
simply flipping its value at random. The positive effect is preservation of genetic 
diversity and avoidance of local maxima.

4)	 Sampling: The sampling process computes a new generation from the previous 
one and its offspring.

6 � Applications

As a demonstration of the proposed method, we here present an example of con-
verting the PDE surface patches of a simplified high-speed train head into optimal 
NURBS surface patches. To obtain the NURBS-represented train head, the first step 
is to represent a high-speed train head with a number of PDE-based surface patches. 
Since the high-speed train head is a symmetrical structure, there is no need to use 
whole PDE-based surface patches for representing the shape of train head. Thus, 
we can create the half of train head by PDE-based surface patches, and then obtain 
the whole shape of the PDE-based train head by symmetry. The patches of the half 
of the train head are then converted to optimal NURBS surface patches which are 
assembled to represent a complete NURBS surface-represented train head. The con-
version process is shown in Fig. 5.

For illustrative purposes, we divide the half of a high-speed train head into 
twenty-two surface patches according to shape changes. The whole train head 
includes forty-four surface patches, which are shown in Fig.  5. The twenty-two 
surface patches are converted to optimal NURBS surface patches by our proposed 
method. The flowchart of the optimal conversion is shown in Fig. 6.

The flowchart includes three steps. First, the coordinate values and u and v val-
ues of the twenty-two PDE surface patches of the train head at the finite difference 
nodes together with a required conversion accuracy and GA variables (the number 
of control points and weight deformation) are input to the algorithm of least squares 

Fig. 5   Process of conversion
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surface fitting to determine the optimal positions of control points of the converted 
NURBS surface patches. Second, the genetic algorithm is applied to minimize the 
objective function and obtain the new number of control points and weight defor-
mation. Third, whether the maximum error is smaller than the required conversion 
accuracy is checked. If yes, the optimal NURBS surface patches are obtained and 
the genetic algorithm terminates. Otherwise, the new number of control points and 
weight deformation are input to the algorithm of least squares surface fitting to 
determine new optimal positions of control points.

In this example, we take the required conversion accuracy � to be 1% ( � = 1% ). 
The optimal number of control points and weight deformation for the twenty-two 
NURBS surface patches of the high-speed train head are given in Table 1. In order 
to visualize the errors between the PDE surface patches and the obtained optimal 
NURBS surface patches, the errors are represented with different colours in Fig. 7. 
In the figure, the lighter colours mean smaller errors whereas the darker colours 
mean bigger errors.

Since we set � = 1% , the minimized maximum errors should be between 0 and 
0.01, i. e., 0% ≤ �max(cp, dw) ≤ 1% . Fig.  7 indicates that all the errors are in the 
range. Among them, the maximum error of patches 4, 8, 11, 12, 17, and 21 reaches 
the upper limit of the range which is 1%, and the maximum error of patches 13 and 
20 is 0.38% and 0.32%, respectively which are minimal.

For the whole train head, the errors between the PDE representation and 
NURBS representation are visualised in Fig.  8. In this figure, (a) is the origi-
nal PDE surface-represented train head, (b) is optimally converted NURBS 

Fig. 6   Flowchart of the optimal 
conversion
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surface-represented train head, and (c) uses different colours to visualize the 
errors between the original PDE surface-represented train head and the optimally 
converted NURBS surface-represented train head. The images given in the figure 
clearly shows the errors for all the surface patches are not more than 1%.

The above discussions indicate that the developed method is very effective in 
obtaining the optimal conversion from the PDE surface-represented train head to 
the NURBS surface-represented train head.

In order to investigate the effects of the required conversion accuracy � and 
weight deformation, we set � to 0%, 1%, 2%, 5% and 10%, respectively, and con-
sider two cases: one with fixed weights wi,j = 1 (Brujic 2002; Xiao 2005), and the 
other with the optimal weight deformation. The obtained results are depicted in 
Fig. 9 where the blue curve is from the optimal conversion with the fixed weight, 
and the pink curve is from the optimal conversion with the optimal weight 
deformation.

Figure 9 shows the total number of control points for the 22 NURBS patches of 
the half of the train head linearly decreases with the increase of the required con-
version accuracy for both cases. The linear decrease when the required conver-
sion accuracy is less than 1% is larger than the linear decrease when the required 

Table 1   Optimal number of 
control points and weight 
deformation ( � = 1%)

Patch index Number of control 
points

Weight deformation

1 121 − 3.9969
2 121 0.7452
3 110 −  3.9913
4 100 −  3.2886
5 90 2.9158
6 72 1.7053
7 77 2.8173
8 48 0.7253
9 96 2.6475
10 99 3.8784
11 80 −  3.2496
12 80 8.3377
13 48 2.8943
14 64 9.5815
15 56 0.3618
16 110 16.3041
17 70 −  3.2187
18 90 30.0000
19 99 18.3193
20 120 3.2596
21 88 −  g3.2854
22 100 14.9994
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Fig. 7   Visualization of the errors between the PDE surface patches and NURBS surface patches

Fig. 8   Error comparison between the original PDE surface-represented (a) and NURBS surface-repre-
sented (b) high-speed train head where (c) uses different colours to visualize the errors between them
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conversion accuracy is more than 1%. When the required conversion accuracy � 
is 0%, 1%, 2%, 5% and 10%, the minimum control points for the optimal conver-
sion with fixed weights are 2956, 2060, 1635, 1239 and 903 respectively, and the 
minimum control points for the optimal conversion with weight deformation are 
2956, 1939, 1559, 1172 and 848 respectively, indicating the application of the 
weight deformation can decrease the number of control points to some extent. 
Compared to the minimum control points obtained by the optimal conversion 
with the fixed weights, the optimal conversion with the optimal weight deforma-
tion reduces the minimum control points by 0%, 5.87%, 4.65%, 5.41% and 6.09% 
respectively. When � = 0% , the errors at the finite difference nodes between the 
PDE surface patches and the corresponding NURBS surface patches are zero, and 
Eq. (17) becomes[A]−1

k
{E} − [R]k{P} = 0 ( k = 1, 2, 3,… ,K ). That is, we solve 

the K equations to determine K control points. Therefore, the number of control 
points is always K whether the fixed weights or the weight deformation are con-
sidered. When the required conversion accuracy increases from 0% to 1%, 2%, 
5% and 10% , the total control points are reduced by 34.40%, 47.26%, 60.35% and 
71.31% for the optimal conversion with the optimal weight deformation which 
indicate setting the required conversion accuracy to a high value will greatly 
decrease the number of control points. Therefore, proper selection of the required 
conversion accuracy is very important for reducing the number of control points.

7 � Conclusion

A new method of converting a PDE surface-represented high-speed train head into 
optimal NURBS surfaces has been developed in this paper. How to use the finite dif-
ference method to obtain PDE surface-represented high-speed train heads is investi-
gated. A new 3D weight deformation method is proposed to transform many weights 

Fig. 9   Effects of the required conversion accuracy and weight deformation
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into a single weight deformation for significant reduction of design variables. The 
least squares fitting method and genetic algorithm are combined to optimally con-
vert PDE surface patches to NURBS surface patches which satisfy the required con-
version accuracy with minimum control points.

We have demonstrated this method by presenting an example of converting PDE 
surfaces of a high-speed train head into NURBS surfaces. The example indicates 
that the developed method is able to obtain an optimal NURBS surface-represented 
high-speed train head with high accuracy and minimum control points.

We have also investigated the influences of the required conversion accuracy and 
weight deformation on the optimal conversion. Since a high value of the required 
conversion accuracy can greatly reduce control points, it is very important to prop-
erly specify the required conversion accuracy to minimize control points. By com-
paring the optimal conversion with fixed weights and that with the optimal weight 
deformation, it can be concluded that introduction of the weight deformation can 
further lower the number of control points.
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