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ABSTRACT 

This thesis is concerned with the design of multiplier-less (ML) finite impulse 
response (FIR) digital filters. The use of multiplier-less digital filters results in 
simplified filtering structures, better throughput rates and higher speed. These 
characteristics are very desirable in many DSP systems. This thesis concentrates on 
the design of digital filters with power-of-two coefficients that result in simplified 
filtering structures. 

Two distinct classes of ML FIR filter design algorithms are developed and compared 
with traditional techniques. The first class is based on the sensitivity of filter 
coefficients to rounding to power-of-two. Novel elements include extending of the 
algorithm for multiple-bands filters and introducing mean square error as the 
sensitivity criterion. This improves the performance of the algorithm and reduces the 
complexity of resulting filtering structures. 

The second class of filter design algorithms is based on evolutionary techniques, 
primarily genetic algorithms. Three different algorithms based on genetic algorithm 
kernel are developed. They include simple genetic algorithm, knowledge-based 
genetic algorithm and hybrid of genetic algorithm and simulated annealing. Inclusion 
of the additional knowledge has been found very useful when re-designing filters or 
refining previous designs. Hybrid techniques are useful when exploring large, N- 
dimensional searching spaces. Here, the genetic algorithm is used to explore 
searching space rapidly, followed by fine search using simulated annealing. This 
approach has been found beneficial for design of high-order filters. Finally, a formula 
for estimation of the filter length from its specification and complementing both 
classes of design algorithms, has been evolved using techniques of symbolic 
regression and genetic programming. Although the evolved formula is very complex 
and not easily understandable, statistical analysis has shown that it produces more 
accurate results than traditional Kaiser's formula. 

In summary, several novel algorithms for the design of multiplier-less digital filters 
have been developed. They outperform traditional techniques that are used for the 
design of ML FIR filters and hence contributed to the knowledge in the field of ML 
FIR filter design. 
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Chapter 1 

Introduction 

"An engineer can build a better mousetrap, but evolution can create a cat. " 

Andy Singleton 

1.1 Introduction 

The evolution of human society has been always closely tied with the effective 

communication and exchange of information enabling to pass human knowledge and 

skills from generation to generation. The last three decades of the twentieth century, 

in particular, are often termed as "information age". The way in which information 

are transmitted, stored and processed has changed entirely with the availability of 

powerful and fast computers and the rapid advances in telecommunications fueled by 

the growth of Internet and multimedia. One of the key enabling technologies in the 

development of communication infrastructure wassignal processing. 
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Chapter 1 Introduction 

The field of signal processing embodies the algorithms and hardware that allow 

processing of signals produced by natural or artificial means. These signals might be 

speech, audio, video, images, seismic signals, satellite and weather data, etc. 

Processing of these signals can involve acquisition, conversion, coding, compression, 

transmission, display, etc. When signals are represented in the discrete form and 

processed by computers or special purpose digital hardware, we identify an exciting 

and rapidly expanding field of Digital Signal Processing (DSP). In recent years, 

DSP has been spreading rapidly both in new software algorithms and hardware 

implementations. 

Digital filters form an essential component in many DSP systems. They are simple 

algorithms that can be implemented either in software or in a hardware. Their task is 

to change signal properties that will satisfy a desired goal, for example shaping of 

signals, noise removal, edge sharpening in images, etc. Several commercial products 

make use of digital filtering and digital filters, including digital compact cassette, 

video-phones, NICAM TVs, CD players, tape-less telephone answering machines, 

cellular and satellite-based mobile telephony, etc. 

The main component in a digital filter is a multiplier. As the requirements for higher 

speed and throughput rates are increasing, they can be best met by using a hardware 

multiplier. However, the hardware multiplier is the most power consuming and area 

occupying component in the filter structure. Hence the need to optimise multiplier 

structures and to reduce computational complexity is essential. This can be achieved 
by specific arrangements and alternations of the multiplier structures to reduce the 

size of multipliers. Alternatively, an elimination of multipliers from filtering 

structures is possible. This is generally accomplished by restricting the filter 

coefficients to powers-of-two exploiting the fact that powers-of-two coefficients 

reduce the multiplication operation to the simple shift and add operation. The 

approach to the design of digital filters with no multipliers is often referred to as a 

multiplier-less (or multiplier-free) approach. 
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Chapter 1 Introduction 

Digital filters are the most researched topic in DSP. The multiplier-less (ML) 

subclass is coming to the forefront as a result of increased demand for further 

reduction in multiplier hardware. Despite the increased research effort in past years, 

no methodology or design approach for multiplier-less digital filters has been 

formalised. This is a consequence of limitations of calculus-based methods, a quasi 

non availability of software tools for the design of multiplier-less digital filters and the 

NP-complete nature of the multiplier-less filter design problem. The design of ML 

digital filters has been recognised as a hard optimisation problem, because the 

approximation of infinite precision coefficients by powers-of-two coefficients yields a 

very poor performance [Ben92] and methods developed for discrete coefficient filters 

are very slow in the case of high order filters. 

This thesis is concerned with the design of multiplier-less finite impulse response 

digital filters based on evolutionary algorithms. Evolutionary algorithms are 

powerful search optimisation algorithms, which imitate the process of the biological 

evolution in the nature. Genetic algorithms (GAs) particularly have emerged as a 

powerful technique for searching in high dimensional spaces, capable of solving 

problems despite their lack of knowledge of the problem being solved. They have 

been shown to be robust optimisation algorithms for real-valued functions, whilst 

their application to the combinatorial optimisation (the precise nature of the digital 

filter design with PWR2 coefficients) possesses several obstacles [Ree94, Suh87]. 

The aims of this research are: 

(i) to investigate and develop novel design techniques based on classical methods 

and evolutionary algorithms for the design of multiplier-less digital filters, 

(ii) to establish and develop a solid framework for the design of ML digital filters. 

This would alleviate the designer from the burden of evaluating the appropriate 
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Chapter 1 Introduction 

method for a particular application and to provide him/her with a powerful 

evolution-based tool applicable to a broad range of filter design tasks. 

(iii) to instigate research in the area of "Genetic Design & Synthesis", what could 

represent a way of designing and synthesising electronic circuits in the 

foreseeable future. 

1.2 Contribution of the research 

The work presented in this thesis is concerned with the design of multiplier-less finite 

impulse response (ML FIR) digital filters. The use of multiplier-less digital filters 

results in simplified filtering architectures, better throughput rates and higher 

operational speed - highly desirable characteristics in a number of DSP systems. The 

review of classical design techniques demonstrates that despite the intense research 

effort in past years, no design approach for the design of ML FIR digital filters has 

been formalised and the problem is far from being solved. 

The core of this research work presents two distinct approaches to the design of ML 

FIR digital filters. Following the study of classical design techniques, one of the best 

performing methods based on the sensitivity of filter coefficients has been selected 

and further improved. A novel algorithm uses a different approach to the calculation 

of the coefficient sensitivity that is based on the mean square error (MSE) between 

the desired and the actual frequency response of the filter. The novel coefficient 

sensitivity criterion originates from the theoretical analysis of the original sensitivity 

criterion that has identified its deficiency. It is shown that the mean square error 

sensitivity criterion is more accurate measure of the influence of filter coefficients' 

quantisation on the frequency response. Theoretical foundations of the novel 

algorithm and the novel criterion are strengthened by the numerical analysis that 

shows that the MSE criterion outperforms the original sensitivity criterion [Sha91]. 
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Chapter 1 Introduction 

Filters designed using the novel criterion benefit from a lower complexity, simplified 

architectural implementations and shorter design times than those designed using 

other techniques. The only disadvantage of the proposed algorithm is that optimal 

designs cannot be guaranteed. Indeed, better filter designs can be achieved using 

evolutionary algorithms. Evolutionary design techniques represent the second 

approach to the ML FIR filter design investigated in this thesis. 

The theoretical analysis of genetic algorithms shows that they are very suitable for 

combinatorial optimisation problems, the very nature of the ML filter design with 

coefficients limited to the set of power-of-two values. As a result, a design technique 

based on genetic algorithms is proposed. The distinct feature of the novel design 

technique is that no prior knowledge of infinite precision filter coefficients is 

required. The algorithm is not restricted to approximating of infinite precision 

coefficients to power-of-two (PWR2) terms. Instead, the entire space of discrete 

PWR2 coefficients is open for exploration by genetic algorithms. Benefits of this 

approach are numerous. The calculation of infinite precision coefficients is not 

required and this part can be removed from the design method thus resulting in 

shorter design times. Further, sub-optimal (possibly optimal) solutions can be 

attained. The GA-based technique has been favorably compared with other 

techniques, including the improved coefficient sensitivity criterion based method. 

The designs that have been realised could not be accomplished using other reported 

techniques [Sha91, Cem93a, Cem93c]. Further improvements of the basic algorithm 

have been achieved by introducing advanced genetic operators and hybrid 

evolutionary techniques. 

GA-based and classical techniques can further benefit from the prior knowledge of 

minimum number of discrete power-of-two coefficients, i. e. the filter length, that is 

required to satisfy the filter design constraints. The prior knowledge of the filter 

length would decrease a number of iterations that is required for a particular 

technique to converge to the solution. Empirical formula that would predict the 

minimum number of discrete power-of-two coefficients from the filter's specification 
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Chapter 1 Introduction 

is not known yet. No research work attempting to devise such formula has been 

known to the author in time of writing up this thesis. Hence the concluding part of 

this research work presents an empirical formula that has been evolved from a large 

number of realised filter designs using the technique of genetic programming. 

Although the devised formula is very complex and difficult to understand it can 

achieve better predictions of filter length for ML FIR filters than classical Kaiser's 

formula. However, further research in this area is required to obtain a formula that is 

both simple and accurate. 

To summarise, the design of ML FIR digital filters is very complex problem involving 

many factors that have to be considered. This work concentrates on development of 

novel design techniques that reduce the computational complexity of filtering 

structures and well outperform classical design methods. The improvements that 

have been achieved justify the relevance of the research that has been undertaken. 

1.3 Outline of the thesis 

This thesis is organised as follows: 

Chapter 1 presents the research described in this thesis and briefly introduces the 

reader to the problem of multiplier-less digital filter design. Genetic algorithms are 

briefly highlighted as a powerful procedures for solving complex problems. This 

chapter also lists the contributions of the thesis. 

The background to the field of digital filters and a survey of related design methods is 

provided in Chapter 2. Two classes of design methods are distinguished. 

Algorithmic methods focus on filter design algorithms that would produce filter 

coefficients with a low complexity thus resulting in simplified filter architectures, 
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Chapter 1 Introduction 

while architecture-optimising methods concentrate solely on optimisation of 

hardware structures. 

Two new algorithms are presented in Chapter 3. The first algorithm describes an 

evolutionary local search, which produces better results than simple rounding of 

infinite precision Remez coefficients to power-of-two terms. The second algorithm is 

an improvement of the coefficient sensitivity based method [Sha91], used for efficient 

rounding of infinite precision Remez coefficients to the single power-of-two terms 

(PWR2) or sums/differences of two power-of-two terms (2PWR2). 

The background on genetic algorithms is introduced in Chapter 4. GAs are 

explained in depth, concentrating on various methods of encoding, selection, 

reproduction and fitness assignment and their implications. The application of 

genetic algorithms to the multiplier-less digital filter design and the experimental 

results are described in the second part of the chapter. Chapter 4 also presents 

further improvements of the basic GA-based filter design technique, including a 

knowledge-based genetic algorithm and hybrid techniques. 

Chapter 5 describes the research concerned with estimating a formula characterising 

the relationship between the required number of single power-of-two coefficients and 

the filter's specification. The application of genetic programming and symbolic 

regression to evolve the empirical formula is illustrated. 

Finally, conclusions and further work related to improving of the multiplier-less filter 

design algorithms are presented in Chapter 6. 
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Chapter 2 

Review of multiplier-less FIR digital 

filters 

This chapter presents current development in multiplier-less digital filter design. The 

basic theory and principles of digital filtering are briefly explained in section 1 

together with advantages and disadvantages of digital filters. Section 2 presents an 

extended review of multiplier-less FIR digital filters. Two approaches to multiplier- 

less FIR filter design are identified namely, an algorithmic approach and an 

architecture-optimising approach. The main methods used for both approaches are 

reviewed. The chapter concludes with the results of a comparative study of 

algorithmic design methods. 

2.1 Digital filtering 

Digital filtering algorithms were developed from computer simulations of algorithms 
describing analogue filters. As the technology advanced and provided essential 
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Chapter 2 Review of multiplier-less FIR digital filters 

hardware components (ADC converters, memories, multipliers, adders) with a 

reasonable speed and price, those algorithms were implemented in hardware. Over 

the years, digital filters replaced analogue filters in most applications because of their 

numerous advantages: 

" digital filters can be designed with an exactly linear phase 

" they do not suffer from the degradation mechanisms of passive and active 

components of analogue filters 

" digital filters have better stability, reproducibility and higher orders of precision 

" it is possible to realise filters with very low cut-off frequencies 

" they can be realised as integrated circuits. 

Digital filtering in the frequency domain can be easily considered as a multiplication 

of the signal X(e1 ) with a specific "mask" H(e'w) that allows certain frequencies to 

pass through a filter and discriminates other frequencies. The "mask" H(e'W) is 

called a frequency response and describes the change in magnitude and phase of the 

filter at the frequency co. 

A convenient and useful form of describing the behaviour of filters in terms of their 

frequency response is by using the z-transform. To obtain a z-transform of a digital 

filter, the term ej' is replaced by a complex number z. The z-transform of the unit- 

impulse response is also called the transfer function of the filter. The generalised 

expression of the transfer function is given by: 
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_ 
bo +b, z-'+... +bNz-" H(z) 
l+alz"'+... +aMz_M (2.1) 

Digital filters can be classified into two main categories by considering the length of 

unit-impulse response. If all the coefficients ai in the denominator of (2.1) are set to 

zero, then the filter has a finite impulse response and is referred to as FIR filter. The 

output of the FIR filter depends on the input signal and filter coefficients only. When 

some of the coefficients a; #0, then the filter has an infinite impulse response and is 

referred to as IIR filter. The output of the IIR filter depends on the input signal, filter 

coefficients and past output values. FIR filters are preferred because of a number of 

their advantages over UR filters: 

9 an exactly linear-phase response can be achieved to preserve the shape of the input 

signal 

" they are inherently stable (unless they are implemented with recursive blocks) 

" excellent design methods are available 

" the output round-off noise is generally very low 

9 multidimensional FIR filters can be easily designed from one-dimensional filter 

prototypes 

" they allow easy implementation of multirate signal processing algorithms. 

The main disadvantage of FIR digital filters is that they usually require a large 

number of coefficients and hence the overall group delay is large for higher order 

filters. The overall amount of hardware components required to implement a FIR 

filter is also much higher than the one for an implementation of IIR filters. 
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2.1.1 FIR digital filters 

Finite impulse response digital filters of length N are described in the time domain by 

the following equation: 

N-1 

y(k) =E h(n)x(k - n) (2.2) 
n=0 

The corresponding frequency response of the FIR filter is given as: 

N-1 

H(e'') =I h(n)e-'' (2.3) 
n=0 

The transfer function of FIR filter in z-domain based on its frequency response is a 

polynomial: 

H(z) = h(O) + h(1)z-1+... +h(N -1)z'("-'" (2.4) 

The process of designing FIR filters is to select a set of filter coefficients h(n), so that 

the frequency response H(e'w) approximates a desired frequency response D(e'w ) 

with a minimum error function E(e'w ). The frequency response error function is 

defined as: 

IIE(ej' )II = II H(e'w) - D(eiw )II (2.5) 

where the symbol 1111 represents one of the following approximation criteria: 

" LS approximation is based on the average squared error and is therefore suitable 

for the design of noise separating filters as the energy of a signal is related to the 

square of the signal, 

" Chebyshev (or minimax) approximation minimises the maximum error between 

the approximating and the desired frequency response, 

11 
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Chapter 2 Review of multiplier-less FIR digital filters 

" maximally flat approximation is suitable when smoothness of the frequency 

response is required. 

There are a number of available design methods in the design of digital FIR filters 

based on these approximations. Amongst them, windowing [Par87, Kin89], 

McClellan-Parks-Rabiner algorithm [MC73a, MC73b] and linear programming 

[Kin89, Rab72] have established themselves as traditional FIR filter design methods. 

(i) Windowing: one of the earliest design techniques for FIR filters. The technique 

is based on the inverse discrete Fourier transform (IDFT) of the desired frequency 

response D(e'u'). The infinite series of corresponding impulse response coefficients 

obtained by the IDFT is subsequently truncated to the finite-length sequence by 

multiplying with the window function. Windowing techniques attempt to reduce the 

error between the desired frequency response and the actual frequency response. 

However, they do not guarantee that designed filters will be optimal (i. e. that they 

will have a minimum length for a given specification). Another disadvantage is that 

they do not allow control of pass-band and stop-band errors separately, which are 

restricted to be approximately equal. Therefore, design of multiple band filters with 

different attenuation in different bands may be difficult to realise. 

(ii) McClellan-Parks-Rabiner (MPR) algorithm: probably the most popular and 

widely used technique for the design of FIR digital filters. MPR algorithm was 

advanced by Parks and McClellan [Par72] and further improved by McClellan, Parks, 

and Rabiner [MC73a, MC73b]. The algorithm can design linear-phase FIR filters 

which satisfy given specifications (cut-off frequencies and the maximum deviation 

from the desired frequency response) with a minimum filter order. The Chebyshev 

approximation, exploiting the alternation theorem, is used to approximate the desired 

frequency response. 

12 
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Alternation theorem. 

Let F be an interval (0, n) . Let P(e'`)) be a linear combination of cosines: 

M 

P(ej') =I a(n) cos(con) (2.6) 
n=0 

and D(e'w) the desired frequency response defined on the interval F. Let W(e'w) be 

a positive weight function defined on the interval F. To design a linear-phase FIR 

filter we want to minimise the weighted error function E(e'w) : 

E(e'`)) =W (el') " [D(e'w) - P(e'`° )] (2.7) 

by choice of a(n) in (2.6). 

The alternation theorem states that P(e'W) is the unique, best weighted Chebyshev 

approximation to a given function D(e'') on F if and only if weighted error 

function (2.7) exhibits at least M+2 extremal frequencies. The extremal frequencies 

are points w, EF such that wl < w2 <... ' M+2 and such that 

E(e'° )= -E(ei°;. ') (2.8) 

for i=1,2, ..., M+1, and 

IE(e'°")I = max IE(e'w )I (2.9) 

for i=1,2,..., M+2 and co, EF. 

Because of the alternation theorem, filters designed using Chebyshev approximation 

necessarily exhibit an equiripple behaviour in their frequency response. Hence, they 

are often referred in a literature as equiripple filters or optimum Chebyshev filters. 
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The alternation theorem does not determine how to choose the filter coefficients, so 
how can it help to design optimal FIR filters? The answer is that the alternation 

theorem precisely characterises the optimum solution by the M+2 extremal 
frequencies. If they are known, the impulse-response coefficients can be easily 
determined by interpolation. The problem of fording filter coefficients is thus reduced 

to the problem of fording the extremal frequencies. The Remez multiple exchange 

algorithm [Rem57] is the most powerful algorithm to ford these extremal frequencies, 

from which the filter coefficientsh(n) can be determined. 

(iii) Linear programming techniques: they were originally introduced by Rabiner 

gt al. [Rab72]. They allow linear constraints in the time or the frequency domain to 

be imposed on a design. These constraints can be a fixed pass-band error, a flatness 

constraint on frequency response in a pass-band, etc. Under these circumstances the 

Remez exchange algorithm is not applicable. 

The general linear programming problem can be considered as a set of M linear 

equations: 

N (2.10) 
cix, <_ bý j=1,2,..., M and i=1,2,..., N 

where {x, } is a set of unknowns. The objective of linear programming is to find 

values of {x, } such that the objective function 

ai'xi 
i=l 

(2.11) 

is maximised (minimised). It means that from the infinite number of solutions of 

(2.10) we have to select a solution that maximises (minimises) the objective function 

(2.11). Equations (2.10) are the constraints of the system and a,, bb, cj are given 

constants. 
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The linear programming problem and constraint lines (2.10) can be easily understood 

from the following example in two dimensions. Suppose that we have the following 

set of inequalities: 

and the objective function is 

Review u/ mirlliplicr--less /%R rligitul filze rs 

Cl I XI +c21 x2 b, 

CIA + c22x2 h2 (2.12) 
CIA +c23x2 b3 

c14xI + c24x2 < h4 

f(x) = u, x, +u2x2 (2.13) 

Each of the constraints (2.12) will divide xIx2 plane into two sections. The section 

below the constraint line (inclusive) is permissible region for the objective function 

(2.13), whereas the section above the constraint line is not permissible. Several 

constraint lines will form a polygon with each point of the polygon including its 

boundaries satisfying constraints. Graphical representation of the polygon formed by 

constraints (2.12) is in Figure 2.1. Dashed line represents the objective function 

(2.13). 

X2 

XI 

Fig. 2.1 A graphical representation of linear programming 
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The objective here is to find values of {x; } which are within the polygon and 

maximise the objective function (2.13) that is depicted by the dashed line. A solution 

of the above problem is trivial in two-dimensional case, but becomes more difficult 

when solving problems in N dimensions. An analytic solution to the N-dimensional 

linear programming problem has not been found yet. A number of different 

techniques to solve the general linear programming problem has been devised. They 

are mostly iterative procedures. An important characteristic of linear programming 

techniques is that if there exists a solution, it is guaranteed to be a unique solution to 

the problem. In other words, filters designed using linear programming techniques 

are guaranteed to be optimal. 

Linear programming can be easily adapted for a design of digital FIR filters. The 

frequency response of FIR filter and the desired frequency response are written as a 

set of linear inequalities on a dense grid of frequencies. The following example 

shows the set of inequalities for a low-pass filter: 

H(e'w)51+51 0: 5 wSwP 

H(e'w) _ 
1-S, 0<_w<-wp 

S2 cu, <_ (»: 5 7r (2.14) 

where co,, 9 w, , are pass-band and stop-band cut-off frequencies, and 5 1,62 are the 

pass-band and stop-band ripples, respectively. The set of equations (2.14) 

corresponds to the equation (2.10). The objective function to be minimised (2.11) is 

usually a linear combination of6, and S2. 
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2.2 Design techniques of multiplier-less linear-phase FIR digital 

filters 

Despite the large number of algorithms developed for the design and implementation 

of infinite precision FIR filters, no closed-form design formulas for the multiplier-less 

FIR filter design have been developed yet. The main methods for optimal FIR filter 

design, such as the Remez exchange algorithm and linear programming, are not 

suitable because they do not allow an inclusion of discrete coefficient set constraint. 

Essentially, there are two possible approaches to the design of multiplier-less FIR 

digital filters. We have denoted these approaches as algorithmic methods and 

architecture-optimising methods. 

The concept of algorithmic methods is to design multiplier-less digital filters with 

discrete coefficients selected from the discrete domain of powers-of-two. Therefore, 

a multiplication operation is converted to simple shift and add operations. As a result 

of that, multipliers can be removed from the filtering structures. Algorithmic 

methods are not limited to a particular filter structure and are suitable for any 

implementation of the filtering structure (direct form, transposed form, cascades, 

etc. ). Algorithmic methods are mostly iterative procedures based on the algorithms 

which have been established as the main techniques in the design of FIR digital filters 

with infinite precision coefficients. 

A different design philosophy can be seen in architecture-optimising methods. These 

methods attempt to optimise the hardware realisation of filtering structures so that 

some (or all) of the multipliers can be removed. Architecture-optimising methods 

include design of FIR filters using various number systems [Kin7l], recursive 

architectures [Ram89], numerous arrangements of filter structures [Gre85, Sha87, 

Sar9l, Bu191], systems with the filtering operation distributed in time and space 

[Gha93], etc. 

17 



Chapter 2 

2.2.1 Algorithmic methods 

Review of multiplier-less FIR digital filters 

Algorithmic methods focus on design of filter coefficients with lower complexity 

rather than on the optimisation of hardware structures. This in turn leads to lower 

implementation complexity of filtering structures. There are two categories of 

algorithms to solve an approximation problem for FIR filters with powers-of-two 

coefficients (PWR2): exact and approximate. Exact algorithms guarantee the optimal 

filter design, i. e. a minimum order of the filter for a given specification. An example 

of exact algorithms is an exhaustive search (examines all possibilities) and a branch- 

and-bound algorithm [Lim83a]. Approximate algorithms do not guarantee the 

optimality of the design, although they can deliver near-optimal designs in less time 

than exact algorithms. The majority of algorithms for the multiplier-less FIR filter 

design belongs to the category of approximate algorithms. 

The following sections list and explain design methods and techniques used in the 

design of multiplier-less digital filters as they chronologically appeared. Benefits and 

restrictions for each method are explained. 

2.2.1.1 Rounding of infinite precision filter coefficients 

Rounding of infinite precision filter coefficients to nearest powers-of-two is the 

simplest method for the multiplier-less FIR filter design. It is often used as a 

benchmark to test performance of other more complex algorithms. The rounding 

algorithm is relatively simple: 

Step 1) obtain infinite precision filter coefficients for a given filter specification and 

a given length of filterN by any of the methods described in 2.1.1, 
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Step 2) round the infinite precision coefficients to the nearest power-of-two (or a 

sum/difference of two powers-of-two), 

Step 3) evaluate the frequency response, 

Step 4) if the frequency response satisfies the desired frequency response D(e3(') 

then finish, otherwise increment the length of filter and go to the Step 1. 

The advantage of this method is its simplicity and the possibility to utilise any of the 

methods described earlier in the process of designing infinite precision coefficients, 

thus allowing to choose a preferred approximation criterion. However, filters 

designed by rounding of optimal infinite precision coefficients are not guaranteed to 

be optimal. This is because of the fact that the domain of powers-of-two is not 

searched for a solution. Instead, searching is conducted in the real domain and 

subsequently mapped onto powers-of-two domain. In general, most of the methods 

described below are able to design multiplier-less FIR filters with a smaller deviation 

from the desired frequency response or fewer coefficients for a fixed error. 

2.2.1.2 Mixed Integer Linear Programming 

Linear Programming has been shown beneficial in the design of infinite precision FIR 

filters (see section 2.1.1) as it is able to handle additional linear constraints. 

Unfortunately, linear programming cannot be applied to the design of discrete 

(PWR2) coefficient filters, since it does not allow the inclusion of this type of 

constraint. When the coefficient domain is discrete and uniformly distributed, the 

integer linear programming (ILP), an extension of linear programming techniques, 

can be used. ILP techniques were successfully applied to the design of FIR digital 

filters with integer coefficients to minimise finite wordlength (FWL) effects by Kodek 

[Kod80]. 
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The design problem is more difficult when considering FIR filters with powers-of- 

two coefficients since powers-of-two are non-uniformly distributed. General integer 

linear programming techniques cannot be used for optimisation in a domain that is 

non-uniformly distributed, unless they are modified. Modified integer linear 

programming techniques applicable to the design of FIR filters with PWR2 

coefficients in the minimax sense has been first reported in [Lim79] and then 

subsequently in [Lim82, Lim83a, Lim83b, Lim88, Lim90]. Lim proposed mixed 

integer linear programming (MILP), a combination of ILP techniques with a branch- 

and-bound algorithm, to solve the design problem in non-uniformly distributed 

coefficient domain. 

The branch-and-bound algorithm limits the number of solutions needing to be 

examined by calculating upper and lower bounds on partial solution of the problem. 

The algorithm creates an enumeration tree starting with an unsolved problem P(O). 

A solution of the problem P(O) is S(O). The problem P(O) is resolved into smaller 

problems P(i) with solutions S(i) satisfying the following condition: 

Vi: u S(i) = S(0) (2.15) 

This process is further continued by resolving subproblems P(i) into smaller 

subproblems. Bounds are used to prune a search tree as the enumeration process 

proceeds. The process continues until the problem P(O) is solved. An illustration of 

Branch-and-bound algorithm is shown in Fig. 2.2. 
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Fig. 2.2 Branch-and-bound algorithm 

The design procedure proposed by Lim starts with the infinite precision coefficient 

vector obtained by the Remez exchange algorithm or linear programming techniques. 

In the next step, a coefficient h(n) whose value is not a power-of-two is selected. If 

2J and 2k are two consecutive power-of-two values such that 

2f <_ h(n) 5 2k (2.16) 

then, since the value of h(n) rounded to the power-of-two cannot fall between 2i 

and 2k , two problems P(1) and P(2) may be generated by imposing the constraints: 

h(n) S 2k (2.17) 

h(n) > 2J (2.18) 
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as shown in Fig. 2.2. Problems P(1) and P(2) are solved individually and further 

branching is performed on P(1) and P(2). The process of branching continues until 

the problem P(O) is completely solved. The number of branches required can be 

reduced by removing those branches, where no improvements can be predicted (only 

subproblems with better subsolutions are selected for further branching). 

The MILP algorithm is at the present the only known algorithm to guarantee the 

optimal design of FIR filters with powers-of-two coefficients in the minimax sense, 
i. e. minimising a peak weighted error function in the frequency domain using: 

max{W(w) " [D(co; ) - H(w; )]} 
(2.19) 

O)i 

If the LMS approximation is required, it can be achieved by minimising the mean 

squared weighted error function: 

1: 1'V(wt) - 
ID(col) 

- H(cw1 )I2 (2.20) 

coi 

Minimising of (2.20) is an integer quadratic programming problem, which is also 

capable to produce optimal designs. 

Frequency responses of filters designed by the MILP algorithm have been shown 

superior to those obtained by simply rounding of infinite precision coefficients 

[Lim83a]. Unfortunately, a very high computation cost of the MILP algorithm 

prohibits its practical application to the design of high-order PWR2 FIR filters. The 

upper bound on the filter length was found to be less than 70 in order to converge in 

reasonable times [Lim90]. 

22 



Chapter 2 Review of multiplier-less FIR digital filters 

The design of high-order PWR2 has been presented in [Lim83b]. This has been 

achieved by incorporating the least mean square (LMS) criterion into the MILP 

algorithm. The LMS approach can be also used to design FIR filters in the minimax 

sense, approximating the minimax criterion by adjusting the least squares weighting. 

PWR2 filters with the filter length N: 5 90 were realised. However, the LMS criterion 

algorithm does not guarantee an optimal solution. 

2.2.1.3 Local search 

A useful alternative to the branch-and-bound algorithm, particularly when designing 

high-order FIR filters with PWR2 coefficients is the local search algorithm. It has 

been applied to the design of finite wordlength filters [Kod81], but can be also 

applied to the design of PWR2 filters. The local search algorithm iteratively explores 

a neighbourhood of a given starting point for improvements until a local optimum is 

found. Hence, the local search algorithm requires a good choice of starting point and 

a good searching strategy. A starting point is usually an infinite precision coefficient 

vector obtained by the Remez exchange algorithm or linear programming. 

There are generally two types of searching strategies: 

a) changing each coefficient, one at a time, in both directions and repeating the 

process until no further improvement is registered, 

b) changing two or more coefficients over all possible pairs of coefficients, thus 

allowing to analyse searching space in more extensive manner. 

Local search can yield to substantial improvements of the frequency response when 

compared with rounding of infinite precision coefficients to their nearest neighbours. 

A performance of the local search can be severely reduced when the landscape of 
frequency response contains deep local minima, as local search tends to be easily 

trapped in those minima. 
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2.2.1.4 Proportional relation-preserve/ simple symmetric sharpening method 

A simple suboptimal algorithm for the design of PWR2 filters enabling sharp cut-off 

frequencies and capable to design filters with filter length N> 200 was proposed by 

Zhao and Tadokoro [Zha88]. The algorithm embodies two methods. The first 

method is a suboptimal design that determines PWR2 coefficients from the set of 

infinite precision coefficient vectors. The method, referred to as the proportional 

relation-preserve (PRP) method, preserves a proportional relation between the 

optimal infinite precision coefficients and the PWR2 coefficients. When filters 

designed using the PRP method cannot satisfy given filter specifications, the second 

method, referred to as simple symmetric-sharpening (SSS) method, is employed. 

The PRP method minimises the maximum error with a constraint on coefficients h(n), 

allowing coefficients to be single power-of-two or powers-of-two values only. The 

design strategy is as follows: 

(1) The infinite precision filter coefficients ho(n) are calculated by the Remez 

algorithm. 

(2) The filter gain A of the filter with PWR2 coefficients is determined by varying 

the gain A from 0.5 to 1.0 to minimise error function E(A) : 

(N-1)12 
[A x h0(n)] 2 

E(A) = 
I ho(n) -A (2.21) 
n=0 

where the symbol [] represents rounding to PWR2 values: ± 2-p- ± 2-q.. A 

set of coefficients hA(n), which minimisesE(A) of (2.21) is defined. 

(3) The filter coefficients h(n) of the PWR2 filter are determined by local 

optimisation to preserve, as far as possible, the proportional relation between the 
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coefficients ho(n) and h(n). This is accomplished by selecting the optimum 

combination of nl adjacent coefficients hA(n) and n2 discrete values of these 

coefficients to minimise the maximum error 5. The optimal values of nl and n2 

have been experimentally found to be 4 and 5, respectively. 

(4) The previous operation is carried out recursively for all coefficients and the 

maximum error 5 is recorded. 

(5) The same operation is continued using coefficient values obtained from the 

previous operation as initial values. If the maximum error 8 is larger than error 

in the previous operation, the local optimisation is stopped. 

(6) If the designed filter does not satisfy the given specification on the maximum 

error S, the filter length Nis incremented and the algorithm starts again. 

The SSS method on the other hand, can greatly improve the approximation errors of 

the PRP method. It is based on the sharpening of the frequency response of the 

symmetric FIR filter by multiple use of the same filter, a technique described by 

Kaiser in [Kai77]. The filter designed by the PRP method is considered as a subfilter 

HS(z) of the filter H(z) designed by SSS method. The SSS method is applied when 

the filter length N becomes greater than N,,, = 59. 

2.2.1.5 Samueli's method 

A technique of rounding infinite precision filter coefficients to their nearest power-of- 

two values described in section 2.2.1.1 has been adopted by Samueli for the design of 

multiplier-less FIR filters with the canonical signed-digit (CSD) coefficients 
[Sam88]. To define canonical signed-digit numbers, signed-digit numbers must be 

explained first. 
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Signed-digit (SD) numbers were formally defined by Hwang [Hwa79]: 

Given a radix r, each digit of an SD number can assume the following 2x+1 values: 

(2.22) 

r 

where the maximum digit magnitudes must be within the following region: 

r2 cc !5r -I (2.23) 

II 

In (2.23), the symbol rxl represents the smallest integer that is more than or equal to 

the real number x. Because integer a must be bigger or equal to one, the minimum 

radix r bigger or equal to two must be assumed. 

The radix-r signed-digit representation of a fractional numberx has the general form 

x=ýakr P. 

k=1 
(2.24) 

where L is the number of nonzero digits, p. E {O, 1,..., B-1} determines positions of 

nonzero bits and B is the total number of bits. 

A minimal signed-digit representation that contains no adjacent nonzero digits ak is 

called a canonical signed-digit representation. The CSD representation has some 

interesting properties. For example, a number of adders/subtracters required to 

realise a CSD coefficient is one less than the number of nonzero digits in the code. 

The added redundancy and the added flexibility of negative digits allows most 
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numbers to be represented with fewer nonzero digits. This can be used in the design 

of totally parallel adders and fast hardware multipliers. 

The starting point for the Samueli's algorithm is an infinite precision coefficient 

vector obtained by the Remez exchange algorithm. Infinite precision coefficients are 

scaled prior to rounding to avoid a possible overflow and also to minimise the error 
introduced by rounding. Scaled coefficients must satisfy a condition: 

N-1 

Ih(n)l :51. 
n=0 

(2.25) 

Samueli has found, that the best results are achieved when the filter coefficients are 

scaled so that the largest coefficient can be represented exactly by two-bit CSD 

coefficient. Scaled filter coefficients h(n) are rounded to the nearest sum or 

difference of at most two powers-of-two and represented by a CSD numbers with at 

most two nonzero bits. This resulted in at most one adder required to implement 

each coefficient. 

An improved, two-stage optimisation algorithm has been presented in [Sam89]. In 

the first stage, a search for an optimum scale factor is performed. The algorithm 

allocates one additional nonzero digit in the CSD representation to those coefficients 

whose magnitudes exceed 0.5. This is to compensate for the very non uniform 

distribution of the CSD coefficient set. When the optimum scale factor is found, a set 

of infinite precision filter coefficients is scaled and rounded to the nearest CSD 

coefficients. 

The process of scaling and rounding of coefficients is followed by a bivariate local 

search [Kod8l] in the neighbourhood of CSD coefficients. All possible pairs of 

coefficients are varied by one quantisation step size in both directions and the 

resulting peak ripple 8 is calculated. A coefficient vector resulting in the minimum 
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value of S is selected for further optimisation. The bivariate local search is repeated 

with this coefficient vector as the starting point. The process of bivariate local search 

stops when no further improvement is obtained. Filters with CSD coefficients 

designed using Samueli's algorithm were found to have nearly optimal performances 

when compared with the ideal infinite precision filters. 

2.2.1.6 Coefficient sensitivity method 

An improved optimisation algorithm based on Samueli's algorithm [Sam89] was 

presented in [Sha9l]. The improved algorithm replaces a scaling procedure by 

evaluating the sensitivity S� of the coefficients h(n) rounded to the nearest power-of- 

two. 

Prior to the optimisation procedure, the optimal infmite-precision coefficient vector is 

obtained by one of the conventional design methods (Remez exchange algorithm or 

linear programming). The optimisation procedure evaluates the sensitivity S� of the 

frequency response to each of the coefficientsh(n). 

The sensitivityS� is calculated as follows: 

" each coefficient, in turn, is set to its nearest power-of-two, yielding in each case a 
9 response An (co) 

, 

" the sensitivity is calculated as the sum of the increase in the pass-band ripple and 

the increase in the stop-band ripple: 
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sn = 
(IAn 

(w)Imax - 
IAn 

(w)Imin 
)passband 

- 
(IA((t')Imax - 

IA((')Imin) 

passband 

+ An (0))Lax) - 
(IA(co)lmax )stopband 

stopband 

(2.26) 

All coefficients are then set to their nearest power-of-two. If the frequency response 

at this stage does not satisfy a prescribed specification, the coefficients are set one 

after another, in the decreasing order of sensitivity, to the nearest sum or difference 

of two powers-of-two. The frequency response is evaluated after each change of 

coefficient and the entire process is repeated until the frequency response does not 

satisfy a given filter specification. When all coefficients are changed and the given 

filter specifications are not met, the design procedure may be repeated with an 

increased filter length. 

An alternative approach is to re-calculate the coefficient sensitivity S� with each 

coefficient set to the nearest sum or difference of two powers-of-two. Then all 

coefficients are set to the nearest sum or difference of two powers-of-two and the 

frequency response is evaluated. If the frequency response is not within the 

prescribed specification, the coefficients are set one after another, in the decreasing 

order of sensitivity, to the nearest sum or difference of three powers-of-two. The 

frequency response is evaluated at each stage and the optimisation procedure 

continues until a satisfying frequency response is obtained. 

The coefficient sensitivity method has been compared with other algorithms described 

in the literature (rounding to the nearest power-of-two, Samueli's algorithm, etc. ). 

Superiority of the improved algorithm has been demonstrated in terms of savings of 

the number of PWR2 coefficients required to realise a given filter specification. 
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2.1.1.7 Design of multiplier-less FIR filters using genetic algorithms 

Research into the design of multiplier-less digital filters using genetic algorithms has 

been initiated by Suckley in [Suc9l]. Suckley described synthesis of FIR filter 

structures by cascading of simple elements from a library of primitive filters. All 

primitives in the library were computationally simple blocks with a multiplication 

reduced to shift-and-add operations, hence producing multiplier-less FIR structures. 

A genetic algorithm was used to select the best combination of primitives. Suckley's 

method is a further development of integer linear programming techniques applied to 

the synthesis of cascades of primitive elements described by Wade et al. [Wad90]. 

Recently, Wade et al. also reported a synthesis technique for multiplier-less FIR filter 

design using genetic algorithms [Wad94]. A drawback of the above techniques is 

that a filtering structure is determined at the same time as the filter coefficients. 

Therefore filters designed using these methods are not suitable to implement with 

direct or transposed filtering structures. 

Schaffer et al. presented a software tool Fil-E using a genetic algorithm to evolve 

digital filters with PWR2 coefficients [Sch93]. The approach used in Fil-E to design 

ML FIR filters is similar to that of Suckley's and Wade's work: cascades of FIR 

filters. Schaffer suggests that the 3-stage cascades are suitable for most designs. If 

the frequency response is not within the specified boundaries, either the number of 

cascades or number of coefficients in each cascade is changed and a population of 

filter structures is re-evaluated. Fil-E uses Gray coding with only four bits to encode 

PWR2 coefficients onto chromosomes. To estimate the order of the filter, heuristics 

formulas used for the design of infinite-precision coefficients have been applied. 

Gentilli et al. described an evolutionary design of ML FIR filters that introduces the 

pass-band gain G criterion [Gen94] as the additional parameter of the optimisation 

problem. The pass-band G preserves a proportionality between the power-of-two 

and infinite-precision coefficients similar to that described by Zhao et al. in [Zha88]. 

The pass-band gain G is relevant when rounding infinite-precision coefficients to 
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powers-of-two using heuristics methods, yet it limits searching space for the genetic 

algorithm. 

2.2.2 Architecture-optimising methods 

Architecture-optimising methods focus rather on the optimisation and implementation 

aspects of filter structures than on the design and optimisation of filter coefficients. 

They are usually associated with specific architectures, what does not make them 

very practical when considering, for example, implementation of digital filtering 

algorithms using digital signal processors (DSP). 

One of the first multiplier-less architectures was proposed by Greenberger [Gre85] 

and improved by Shah [Sha87]. It was achieved by rearranging the order of 

convolution operations so that the convolution has been replaced with simple SHIFT 

and ADD operations. Although the proposed architecture is multiplier-less, the final 

number of gates was approaching the complexity of filter structures using multipliers. 

In addition, the proposed arrangement does not have an advantage of higher speed 

than multiplier based filter structures. 

Filter structures using the logarithmic system [Kin7l] do not require multipliers as 

the multiplication of two operands is achieved by adding their logarithms. On the 

other hand, the addition operation is fairly complex and there is also a need to 

convert numbers between binary and logarithmic representations. 

It has been observed that better frequency responses can be achieved by multiple use 

of the same filter. This has been described by Kaiser et al. as the Amplitude Change 

Function (ACF) technique [Kai77]. Ramakrishnan et al. [Ram89] adopted this 

technique for the multiplier-less filter design by choosing a recursive running sum 

(RRS) filter as the prototype filter for cascading. As a result, their filter structure 

uses fewer multipliers and adders. However, the number of delay units has doubled 
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when compared to conventional methods and the technique assumes a prefixed filter 

architecture. 

Tai et al. has further improved Ramakrishnan's technique by using the cascade of a 

cosine function (CCOS) as the prototype filter [Tai92]. The resulting filter structure 

in [Tai92] does not use any multipliers. However, this method also assumes a 

prefixed architecture for the filter implementation. 

Other multiplier-less filter design approaches include the use of primitive operators 

described by Bull et al. [Bu187, Bu188, Bu191], or periodically time-varying state- 

space structures (PTV-SS) distributing the filtering operation over space and time. 

The principle of the primitive operator method exploits the redundancy in the direct- 

form filter structure. This has been achieved by decomposition of each product in the 

convolution operation into a number of primitive arithmetic operations and reusing of 

partial results to form other product terms. 

The use of periodically time-varying state-space structures using ternary coefficients 

({0, ±1)) and therefore multiplier-less, has been described by Ghanekar in [Gha93]. 

Because PTV-SS structures use upsampling and downsampling and therefore 

effectively operate at N times the input signal rate, where N is the rate of upsampling, 

they are not practical for high-speed applications. The PTV-SS structures are 

applicable also to the design of multiplier-less IIR filters [Gha94]. 
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2.3 Conclusion 

A number of design techniques and algorithms used for the design of multiplier-less 

digital filters have been presented. Each method has its advantages and 

disadvantages. For instance, architecture-optimising methods are generally not 

suitable for software implementation. Some of these architectures need a special 

hardware to convert between different number systems. However, they do not need 

specific algorithms for the design of filter coefficients, as they can usually operate 

with Remez coefficients. 

Algorithmic methods are not limited by implementation issues. They use infinite 

precision coefficients calculated by Remez algorithm as an initial coefficient vector 

and iteratively search for a coefficient vector that is composed from power-of-two 

terms only. Apart from mixed integer linear programming incorporating the branch- 

and-bound algorithm, and the enumerative search, which is not practical, they are not 

optimal in the minimax sense. To date, the MILP algorithm developed by Lim is the 

only method that guarantees an optimal solution in minimax sense. However, the 

MILP algorithm is not practical for higher order filters as the computational cost 

becomes excessive. The summary of the algorithmic methods is in Table 2.1. 

We conclude this chapter with the observation that Shaffeu et al. [Sha91] presented a 

method that outperformed other classical techniques used in multiplier-less FIR filter 

design. Shaffeu's method is simple, it has a relatively short design time when 

compared to MILP and authors claim that a minimum filter length required to satisfy 

the desired frequency response is shorter than with other methods. We will analyse 

this method in more detail and investigate further improvements in the next chapter. 
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Table 2.1 Algorithmic methods for the multiplier-less digital filter design 

Method Initial set of Optimal Max. length of Features and 

coefficients filter N limitations 

Rounding Remez No unlimited simple 

(nearest PWR2) 

MILP Remez Yes N :: g 70 to date this is the 

(branch-and- only optimal 
bound) 

method 

MILP Remez No N <_ 90 

(LMS criterion) 

Local search Remez No 

PRP/SSS Remez No N<_59 (PRP 
method 

only) 

N>200 

(PRP+SSS) 

Samueli's Remez No uses CSD 

method coefficients 

Coefficient Remez No not limited produces best 
sensitivity results from non- 
method 

opt. methods 
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Novel techniques of multiplier-less FIR 

filter design 

This chapter presents two novel design methods for ML FIR digital filters based on 

classical design methods. First, a modification of a local search algorithm, an 

evolutionary local search is described [Cem93c]. The evolutionary local search is 

very simple, but it can produce better results than simple rounding of infinite 

precision coefficients to nearest power-of-two numbers. An advantage of the 

evolutionary local search is that there is no need to calculate Remez coefficients. 

The rest of this chapter is devoted to two novel algorithms based on Shaffeu's 

method of rounding of filter coefficients based on coefficient sensitivity. The first 

algorithm is an improvement of the coefficient sensitivity criterion for filters with 

multiple bands. The improved sensitivity criterion yields better frequency responses 

and lesser complexity of filter coefficients (i. e. more coefficients are represented as 
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single PWR2 and less coefficients as 2PWR2). The second algorithm replaces 

Shaffeu's sensitivity criterion with a novel sensitivity criterion that is based on a mean 

square error (MSE) or a mean absolute error (MAE). The novel coefficient 

sensitivity criterion yields better frequency responses and lesser complexity of 

coefficients for all types of filters, including filters with multiple bands. The most 

significant contribution of the novel sensitivity criterion is that it can result in shorter 

filter lengths than the original Shaffeu's criterion. A shorter filter length represents a 

number of advantages, e. g. shorter design times, lesser complexity and a smaller 

group delay. 

3.1 Evolutionary local search 

A modification of the local search algorithm, an evolutionary local search (ELS), is 

presented in this section. The evolutionary local search for the design of multiplier- 

less FIR filters uses sequential and modified sequential searching methods. The 

minimum solution is acquired from a set of power-of-two coefficients and does not 

pre-empt the filter architecture prior to the calculation of the coefficients, thus 

supporting a variety of alternative implementations. It also eliminates the use of 

sensitivity procedures to map real coefficients to their nearest power of two 

coefficients as no standard procedure is used to obtain the initial real coefficients. 

Evolutionary local search guarantees the optimal solution for low-order filters and 

suboptimal for higher orders. 

An alternative approach to the Remez-based technique could search for a suitable 

coefficient vector from the possible arrangement of the values over the range defined 

by the coefficient wordlength. This suggestion is impractical as the complexity of the 

searching process increases beyond the capability of existing computing machines. 

However, since we are interested in multiplier-less FIR filters, the restriction of the 

coefficients to power of two values reduces dramatically the number of possible 

arrangements of coefficients. 
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The proposed coefficient approximation procedure uses the following concept. 

Initially, a basic set of possible power of two coefficients is defined. The band 

tolerances are then entered, and the minimum length filter is evaluated using Kaiser's 

formula. Starting from this order, all possible arrangements of coefficients extracted 

from the basic set have their frequency responses computed and compared with the 

desired frequency response. When a satisfactory solution is obtained, the algorithm 

terminates, otherwise the next arrangement is used until all combinations have been 

evaluated. When no solution is found, the order of the filter is increased and the 

process is repeated. The nature of this sequential search guarantees minimum order 

multiplier-less filters. 

For more complex filters that require a large number of coefficients to approximate 

the desired frequency response, this method has shortcomings due to the excessive 

amount of computations resulting from the complexity of the search process. A 

modified procedure is proposed for these categories. The pseudo-code of the 

modified procedure is illustrated in Figure 3.1. The source code written in Pascal is 

included on the accompanying disk. 

The minimum length is evaluated again by Kaiser's formula and the coefficients' 

values randomly assigned. The procedure searches through all possible powers of 

two for the best value for each coefficient. The value that provides the best 

frequency response approximation is saved and the procedure continues with the next 

coefficient. This procedure is repeated until no further improvements in the 

approximation of the desired frequency response are obtained. If no solution is 

found, the order of filter is increased and the process repeated. This approach adopts 

the principle of keeping the best and rejecting the rest through sequential exchange. 

The method is faster than the sequential searching, and computer simulations have 

shown better results compared to conventional methods of simple rounding (SR) to 

nearest power-of-two. 
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Evolutionary local search () 

begin 

Novel techniques of multiplier-less FIR f lter design 

evaluate the minimum length of filter 

initialise coefficient values randomly 

repeat 

for each coefficient do 

search all PWR2 values 

evaluate frequency response 

keep the best coefficient 

end for 

if unsatisfactory frequency response then 

increment the length of filter 

end if 

until satisfactoryfrequency response 

end 

Fig. 3.1 Pseudo-code of the evolutionary local search 

A more powerful method that produces better results can be obtained when the 

discrete space of the coefficients to be explored is extended. This is done by a small 

variation of the searching procedure when the coefficients are arranged into groups 

of two or three. Thereafter, all possible combinations of powers of two terms for 

each group of coefficients are explored. There are three possible modes of 

arrangements of these coefficients into groups: randomly, sequentially and according 

to their fitness. The arrangement of the coefficients that gives the least mean square 

error in the frequency response is saved and the searching procedure continued with 

another group of coefficients. 

The evolutionary local search (ELS) algorithm has been compared with the 

conventional rounding of infinite precision coefficients. The conventional rounding 
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method uses McClellan - Parks algorithm to obtain an initial set of coefficients and 

then this set is approximated to the nearest power of two coefficients. The ELS 

algorithm is shown to produce superior results to the more conventional approach. 

Results obtained using the evolutionary local search algorithm are compared to the 

conventional rounding to nearest power-of-two coefficients in Table 3.1. Typical 

frequency responses for filters from Table 3.1 are shown in Figure 3.2. 

Table 3.1 Comparison between simple rounding (SR) to the nearest PWR2 and 

evolutionary local search (ELS) algorithm 

Filter Frequency Desired Max. error Filter Filter Coeffs. 

No. Bands response allowed Length Length saving 

(SR) (ELS) 

0-0.05 

1 0.20-0.30 band-pass 0.1 13 13 0 

0.45-0.50 

0-0.30 

2 0.45-0.50 high-pass 0.1 15 11 27 % 

0-0.25 

3 0.37-0.50 low-pass 0.15 14 8 43 % 

0-0.30 

4 0.45-0.50 low-pass 0.1 10 8 20 % 

0-0.10 

5 0.20-0.30 band-pass 0.2 13 10 23 % 

0.40-0.50 
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(b) frequency response of the filter No. 4 

Fig. 3.2 Comparison of simple rounding (SR) and evolutionary local search (ELS) 
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Figure 3.2 (a) depicts the frequency responses for the filter No. 3 with the solid line 

representing the conventional method and the dotted line representing the ELS 

algorithm. Both frequency responses are well within the specification, however, the 

filter designed using the ELS algorithm requires only eight coefficients in comparison 

with fourteen coefficients required when the conventional method of infinite- 

precision coefficients is used. This represents 43% saving in the number of 

coefficients. Figure 3.2 (b) shows the frequency responses for the filter No. 4. While 

the saving in terms of the number of coefficients required is less (20%), the filter 

designed using the ELS algorithm has better attenuation in the stop-band than the 

filter designed using the conventional approach. 

The ELS algorithm is applicable to any filter type, and because it does not assume a 

prefixed architecture for the implementation, it could be implemented on any 

processor that can perform a Multiply-Accumulate function. Furthermore, the 

elimination of multipliers makes the resulting structure ideal for fast, low area, high 

throughput rate ASIC implementations. 
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3.2 Rounding of filter coefficients based on coefficient sensitivity 

3.2.1 Coefficient sensitivity 

The coefficient sensitivity reflects the degree of influence on the frequency response 

of digital filter resulting from rounding of infinite precision coefficient to the nearest 

power-of-two. The sensitivity of each coefficient as defined by Shaffeu in [Sha9l] 

was calculated as the sum of the increase in the pass-band and stop-band ripples: 

Sn = 
(IA, 

w)i - 
IAn (w)l 

min) passband 

-(IA(co)l - IAcw>Imin 
)Passband 

Passbund 

+1 
,, 

((0)lmaa ) 

smpband 
- 

`IA(O)Imax 

)slopband 

where A(w) is the amplitude response of infinite precision coefficient vector and 

A�(co)is the amplitude response with n-th coefficient changed to the nearest power- 

of-two. As we will show later, this sensitivity measure does not yield a minimum 

number of canonical coefficients (having more than one power-of-two term). It is 

also not suitable for the design of multiple-band filters with power-of-two 

coefficients. This is because in equation 3.1 the sensitivity is calculated using only six 

extremes of the frequency response, ignoring extremes in different bands. 

3.2.2 Modified coefficient sensitivity 

We propose two novel approaches for the evaluation of the sensitivity criterion, both 

maximising the number of single power-of-two coefficients and therefore reducing 

the overall complexity of the filter. The first approach is a generalised version of the 

sensitivity criterion in (3.1). The sensitivity is calculated using local maxima and 

minima in each band, while Shaffeu used only global extrema. The improved 

coefficient sensitivityS� is calculated as follows: 
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where NN and Ns represent the number of pass-bands and stop-bands, respectively. 

The improved sensitivity criterion (3.2) has been shown superior to the original 

sensitivity criterion (3.1), when designing PWR2 filters with multiple bands. Its 

performance has been verified on several filter designs. Examples of the filter 

specifications (band-pass and multiple-band filters) that have been used to evaluate 

the performance of the modified sensitivity criterion are given in Table 3.2. 

Comparisons of frequency responses for the band-pass filter BP1 are illustrated in 

Figures 3.3 (a) and 3.3 (b), respectively. Solid lines represent frequency responses of 

filters that have been designed using the original sensitivity measure, while frequency 

responses of filters that have been designed using the improved criterion are 

represented by the dashed line. Solid and dashed lines in Figure 3.3 (a) and 3.3 (b) 

are aligned as frequency responses for both methods are approximately the same. 

However, the design based on the improved sensitivity criterion cuts the total number 

of canonical coefficients by 4 %. This results in a lower complexity of the filter 

implementation. 

Figures 3.3 (c) and 3.3 (d) show frequency responses of the filter with multiple bands 

(example MB1). The improved sensitivity criterion resulted in smaller errors in the 

pass-bands and slightly increased errors in the stop-bands. However, the number of 

canonical coefficients has been decreased by more than 30 %. The results comparing 

the minimum filter length and the total number of single PWR2 coefficients that are 

required to satisfy frequency response constraints are summarised in Table 3.3. 
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Table 3.2 Examples of filters designed using modified sensitivity criterion 

Filter type Number of Cutoff Desired Attenuation Maximum error 

bands frequencies freq. resp. [dB] allowed 

(f) (D) (6) 

Bandpass 3 0-0.22, 0, > -26 dB 0.05,0.03,0.05 

BP1 0.24-0.26, 1, 

0.28-0.5 0 

0-0.05, 1, 0.1, 

Multiple bands 6 0.10-0.15, 0, 0.1, 

MB1 0.20-0.23, 1, 0.1, 

0.27-0.30, 0, 0.1, 

0.35-0.4, 1, 0.1, 

0.45-0.5 0 0.1 

Multiple bands 0-0.04, 1, 0.1, 

MB2 7 0.08-0.12, 0, 0.1, 

0.16-0.22, 1, 0.1, 

0.245 - 0.275, 0, 0.1, 

0.30-0.34, 1, 0.1, 

0.38-0.42, 0, 0.1, 

0.46-0.5 1 0.1 

Lowpass 2 0-0.27, 1, 0.02, 

LP1 0.31-0.5 0 0.02 

Lowpass 2 0-0.24, 1, 0.05, 

LP2 0.25-0.5 0 0.05 
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Fig. 3.3 Comparison of the original and improved sensitivity criterion: 

(a) frequency response of band-pass filter BP1, 

(b) as (a), but in logarithmic scale, 

(c) frequency response of the multiple-bands filter MB 1, 

(d) as (c), but in logarithmic scale. 
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Table 3.3 Comparison of the original and improved sensitivity criterion 

Filter Filter length Number of canonical coeffs. 

with the criterion: with the criterion: 

original improved original improved 

BP1 74 

MB1 31 

74 

31 

50 

17 

48 

11 

MB2 41 41 39 23 

3.2.3 Mean square error and mean absolute error sensitivity criterion 

Although the sensitivity criterion (3.2) reflects the changes in the frequency response 

for each band, it still overlooks the fact that by approximating infinite precision 

coefficients with power-of-two terms, the entire frequency response is influenced at 

more than few isolated points. Therefore, we propose a novel sensitivity criterion, 

based either on a mean square error (MSE) or on a mean absolute error (MAE). 

Both criteria make use of the entire information acquired within the process of 

searching for extrema of the frequency response. The MSE criterion is more suitable 

for the design of noise separating filters as the energy of signal is related to the square 

of the signal. The MAE criterion can be used when a minimax design is preferred. 

As we will show later in this section, MSE and MAE based sensitivity criteria 

maximise further the number of coefficients that are single power-of-two [Cem93a]. 

Better interpretation and visualisation of the coefficient sensitivity as proposed by 

Shaffeu in [Sha9l] can be achieved by re-arranging individual sensitivity terms in 

equation 3.1. The re-arranged sensitivity criterion Sn is given as follows: 
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S. =Jn (w)I. - IA(w)l, 
)Psbd 

+(IA(w)Imin - 
IAn (° )Passband 

Passband 

" "ý sropband 

where A(co) is the infinite precision coefficients' frequency response, and A'. (CO) is 

the frequency response with the n-th coefficient changed to the nearest power-of- 

two. The first term in (3.3) represents the difference between maximum ripples in the 

pass-band for a filter with infinite precision coefficients and a filter with the n-th 

coefficient changed to the nearest power-of-two. The second term represents the 

difference between the smallest errors in the pass-band. The last term depicts the 

difference between maximum ripples in the stop-band. Graphic interpretation of 

individual sensitivity terms is illustrated for a low-pass filter in Figure 3.4. 
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Fig. 3.4 Graphic interpretation of sensitivity 
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Because the sensitivity is calculated using the global extrema in both bands, it is 

necessary to seek their location across the whole frequency range. When searching 

for maxima and minima in (3.1) and (3.2), the frequency response at each discrete 

frequency point is evaluated. Except for the global extrema, this information is later 

disregarded. In fact, the calculation of coefficients' sensitivity does not consider that 

rounding of infinite precision coefficients to nearest powers-of-two influences the 

frequency response across the whole range and not only in extrema points. 

The MSE sensitivity criterion is based on the mean square error between the 

frequency response of the filter with infinite precision coefficients and the frequency 

response of the filter with the n-th coefficient changed to the nearest power-of-two. 

The MSE criterion embodies every discrete frequency point across the entire 

frequency range that has been evaluated. The MSE coefficient sensitivity is 

calculated as follows: 

SMSE(n)= 
L [An'(wi)-A(w; )]2 (3.4) 

L , _, 

Equally, the MAE criterion is based on the mean absolute error between the 

frequency response of the filter with infinite precision coefficients and the frequency 

response of the filter with the n-th coefficient changed to the nearest power-of-two: 

L 
SMAE(n) 

= (3.5) L ; _t 

where CO, is a set of discrete frequency points: 

fS ý' 0' 
2N' 2N ' 2N "', wP, ws,.... 0.5 (3.6) 

{Nft2. Nft 3"N 
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where cop, co, are normalised pass-band and stop-band cut-off frequencies, 

respectively and L is the number of discrete frequency points for evaluating the 

frequency response given as: 

2N"wp [2N. (o. 5_w) 
N13 Nfs 

In equation (3.7), N represents the length of filter and Nfs is the size of desired 

frequency step. The symbol LxJ means an integer less than or equal to the real 

number x. By varying Nfs we can adjust the precision for the calculation of the mean 

square error or the mean absolute error. The pseudo-code of the improved design 

algorithm is shown in Figure 3.5, while the Matlab source code is included on the 

accompanying disk. 
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Rounding of filter coefficients based on coefficient sensitivity () 

begin 

read initial specification of filter 

repeat 

calculate infinite precision coefficients 

evaluate frequency response 

choose criterion (MSE or MAE) 

/* evaluate sensitivity of each coefficient using MSE(MAE) criterion 

for each coefficient do 

round i-th coefficient to PWR2 

evaluate frequency response with changed i-th coefficient 

calculate sensitivity Si 

end for 

/* round to the nearest PWR2 */ 

round all coefficients 

repeat 

evaluate frequency response 

if unsatisfactory frequency response then 

/* round to the combination of two PWR2 */ 

round next coefficient with the highest sensitivity 

end if 

end 

until satisfactory frequency response 

increment filter length 

until satisfactoryfrequency response 

Fig. 3.5 Pseudo-code of the rounding algorithm using the improved sensitivity 
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The MSE/MAE sensitivity criterion has been verified on more than 700 various filter 

specifications. Some of the specifications were shown in Table 3.2. The novel 

criterion clearly outperformed the original Shaffeu's sensitivity criterion. Filters 

designed using the MSE criterion had often lower complexity with either fewer 

coefficients represented as canonical or with a lesser number of coefficients. In some 

instances, the number of canonical coefficients was reduced even more when the 

MAE criterion has been used. 

The first example illustrated here addresses the design of a low-pass filter (Filter LP1) 

with relatively strict requirements on the pass-band and stop-band errors. Using the 

original sensitivity criterion, the minimum number of PWR2 coefficients required to 

satisfy the prescribed specification has been found equal to 58. When the MSE 

sensitivity criterion has been applied, the length of filter equal to 54 has been found to 

be sufficient. We failed to meet the prescribed specification with the original criterion 

for filter lengths less than 58 even when all the coefficients were changed to 2PWR2 

values. Frequency responses for the filter LP I are illustrated in Figure 3.6, where 

dotted line represents the original criterion and the solid line depicts the novel 

sensitivity criterion. 
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Fig. 3.6 Frequency response of the low-pass filter LP 1 
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The next example illustrates the design of low-pass filter (Filter LP2) with very 

narrow transition band, where the MSE sensitivity criterion failed to deliver expected 

results. This can be caused by the fact, that the amplitude of ripples attributed to the 

narrow transition band is averaged with other ripples when using the mean square 

error approach. This is not the case of the original sensitivity criterion that 

emphasises maximum error peaks. Bearing this in mind, we can conclude that in the 

majority of cases the mean square error sensitivity criterion is superior to the original 

sensitivity criterion proposed by Shaffeu. Frequency responses for the filter LP2 are 

illustrated in Figure 3.7. They are almost aligned as there was very small difference 

between both responses. However, the minimum number of coefficients when using 

the MSE criterion has been found to be higher. 
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Fig. 3.7 Frequency response of the low-pass filter LP2 

Results for all five filter examples using the original , MSE and MAE criteria are 

summarised in the Table 3.4. 

0.4 
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Table 3.4 Comparison of Shaffeu's and novel (MSE based) sensitivity criterion 

Filter Filter length Single PWR2 coe fficient 
Shaffeu MSE MAE Shaffeu MSE MAE 

BP1 74 74 74 24 28 28 
MB 1 31 31 31 14 20 20 
MB2 41 41 41 2 18 18 
LP1 58 54 54 16 18 18 
LP2 133 141 141 82 64 39 

3.3 Conclusion 

In this chapter, we analysed the problem of designing multiplier-less digital FIR 

filters. We presented three novel algorithms that are based on classic rounding of 
infinite precision filter coefficients. They include evolutionary local search, modified 

coefficient sensitivity and mean squared error coefficient sensitivity for rounding filter 

coefficients, respectively. These algorithms outperformed their counterparts and the 

results are particularly encouraging for the MSE based method for rounding filter 

coefficients. 

However, there are still number of issues that have not been addressed. For instance, 

the design of filters with phase requirements other than linear cannot be realised in a 

straightforward manner. The algorithms are not suitable for the design of IIR digital 

filters and they cannot guarantee the optimal design in the minimax sense. In fact, 

none of the algorithms previously described can guarantee that the coefficients are 

optimal (except the exhaustive search and mixed integer linear programming). Let us 

summarise the observations and draw some conclusions for the multiplier-less FIR 

filter design. 
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(i) The algorithms presented in previous chapters are essentially searching 

algorithms approximating infinite-precision coefficients by the discrete 

coefficients (powers-of-two) that would satisfy the desired frequency response. 

They use either the Remez algorithm or linear programming to obtain the initial 

infinite-precision coefficient vector and they explore only the vicinity of 

infinite-precision coefficients. 

(ii) The set of discrete filter coefficients obtained by rounding of infinite-precision 

coefficients is suboptimal. This is because the Remez algorithm and linear 

programming methods can design filters that are optimal in the minimax sense 

only with infinite-precision coefficients. By approximating these coefficients 

with powers-of-two, we are ignoring a vast searching space where potential 

optimal filter designs might occur. We still know very little about properties of 

filters with power-of-two coefficients and no closed analytical solutions for the 

design of multiplier-less filters with powers-of-two coefficients have been 

developed yet. 

(iii) Essentially, the problem of discrete coefficient filter design is a combinatorial 

optimisation problem of an enormous computational complexity. For example, 

let us consider a design of linear-phase FIR digital filter with 50 coefficients, 

using 16 bit wordlength. By restricting the coefficients to single power-of-two 

numbers and reserving one bit as a sign bit, we have 30 possible values for each 

coefficient. Because of the symmetry of the impulse response, the number of 

unknown variables is halved from 50 to 25. To find an optimal coefficient 

vector, we are dealing with the 25-dimensional combinatorial optimisation 

problem. The total number of coefficient combinations is given as: 

C= Bw2 = 3025 = 8.472886.1036 (3.7) 
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where B is the number of all possible discrete values for each coefficient and N is 

the length of filter. 

Imagine now, that we have extremely powerful computer facilities able to 

calculate the frequency response and to evaluate one combination of coefficients 

each picosecond. The time t that is needed to evaluate all combinations would 

be 

8.472886.1036 
1=8.4 . 1024 sec = 2.7.10" years !!! 
Ps 

Simple analysis of (3.7) will show that the time t increases exponentially with 
increasing filter length N. When the filter coefficients would be sums/ differences 

of two (or more) power-of-two numbers, the total number of combinations 

would be even bigger. Problems where the computing cost increases 

exponentially with the dimension of the problem are in complexity theory 

denoted as NP-complete problems (non-deterministic polynomial time complete 

problems). For solving of NP-complete problems we need robust searching 

algorithms that will handle combinatorial optimisation problems efficiently. 

Natural algorithms, primarily genetic algorithms, offer themselves as ideal candidates. 

They are powerful searching and optimisation algorithms, based on natural processes 

and systems. An advantage of genetic algorithms is that the computing cost of GA's 

grows linearly with the size of problem. Therefore we suggest that the kernel of 

techniques for the design of ML FIR filters should be based upon natural algorithms, 

primarily genetic algorithms. In the next chapter, we will show how genetic 

algorithms can be applied to the design of multiplier-less FIR digital filters. 
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Chapter 4 

Design of multiplier-less FIR filters 

using genetic algorithms 

This chapter presents a new robust technique for the design of multiplier-less FIR 

digital filters based on natural algorithms. Natural algorithms are problem solving 

methods based on natural processes and systems. They are an alternative to 

traditional optimisation techniques for solving complex optimisation problems. They 

tend to perform well where the traditional (calculus-based) techniques failed to 

deliver successful results. Natural algorithms include neural networks, simulated 

annealing and evolutionary algorithms based on natural selection and evolution 

principles. Amongst evolutionary algorithms, Genetic Algorithms have emerged as 

very powerful searching and optimisation techniques. They are capable of solving 

problems with no previous knowledge. This makes them very attractive in the design 

of digital filters. 
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The structure of this chapter is as follows. First, the principles of genetic algorithms 

are thoroughly explained. The emphasis is placed on a thorough understanding of 

how genetic algorithms work. This is vital for further improvements of the basic 

implementation of the genetic algorithm (simple genetic algorithm). In the following 

section we develop and test our proposed genetic filter design method, that 

represents foundations for advanced techniques that are presented in the second part 

of the chapter. This chapter closes with conclusions. 

4.1 Genetic Algorithms 

Genetic algorithms (GAs) are robust search and optimisation algorithms based on 

genetic processes of biological organisms. They combine the mechanics of natural 

selection with the Darwinian principle of "the survival of the fittest". GAs have 

been developed by John Holland in 1975, but have only been considered by few 

researchers for 15 more years (primarily because of the complexity of Holland's book 

[Ho175]). The breakthrough came after the distinguished work of Goldberg 

[Go189a], that sparked intense research in the field of genetic algorithms and, more 

importantly, their applications to real world problems. 

What makes genetic algorithms so attractive is that they really work very well for 

broad range of problems. This is because they emulate the process of natural 

evolution that has been exercised and proven in nature for millions of years. In 

nature, living creatures have to compete with each other for resources for survival. If 

they want to reproduce themselves, they must also attract a mate. They must be also 

able to adapt to the ever changing environment. Thus they can have a large number 

of offsprings and naturally increase their numbers. Individuals unable to provide 

enough resources will produce either weak offsprings or only few offsprings and will 

gradually degenerate. 
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Genetic algorithms are direct analogy of the process of natural evolution. They work 

with a population of chromosomes that represent encoded potential solutions to a 

given problem. Unlike calculus based algorithms, genetic algorithms work with the 

encoded unknown variables, not with the variables themselves. Chromosomes are 

built up of genes, which represent particular parameters of the problem. The values 

of genes are called alleles and the position of the gene is referred to as locus. The 

chromosomes in genetic algorithms are represented as strings of symbols, most often 

as binary strings. Each chromosome is assigned a fitness value that reflects the 

performance of the chromosome as a potential solution of the problem. 

In genetics terms, the chromosome is often called the genotype (an encoded potential 

solution), while the solution itself is referred to as the phenotype. In nature, an 

analogy of genotype is the DNA (deoxyribonucleic acid, the main constituent of the 

chromosomes of all organisms), while humans, animals or plants are various 

examples of phenotypes. A gene is a piece of DNA that is expressed as a particular 

feature (e. g. hair) in the phenotype and can have a number of possible values 

(alleles). A particular gene can characterize a human's hair color, for example, and 

the allele value can be black. 

Chromosomes are selected for a recombination according to their fitness values. 

Those having a high fitness are more likely to be selected and have better chances to 

reproduce than others. Hence, the genes of the fittest chromosomes will survive and 

spread themselves in further generations, while the genes of the chromosomes with a 

low fitness will gradually die out. The process of natural selection therefore leads not 

only to the "survival of the fittest" individuals, but also to the survival of their genes. 

The "fittest genes" will propagate themselves from population to population. 

Therefore, what natural evolution actually selects for is genes with high fitness. 

The process of selection is followed by the recombination process, where the 

exchange of a genetic material occurs. Parent chromosomes swap sections of DNA 
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to form offsprings and as a result they pass their genetic information to the 

offsprings. This is the very moment, when the evolution process begins. An 

analogous operation in genetic algorithms is a crossover operation, when the selected 

chromosomes are recombined. The crossover operator randomly generates a 

crossover point (site) and sections of parent chromosomes before and after the 

crossover point are swapped to form offsprings. Parents' genetic information is 

propagated to the offsprings. Offspring chromosomes combine the information 

gained in previous cycles to direct subsequent moves in the searching space. This is a 

very important aspect, distinguishing genetic algorithms from the random search. 

Figure 4.1 illustrates the most simple, one-point crossover. 

Crossover site 

Parent 1 

Parent 2 
OOý O 

Offspring 1 ýýý 

Offspring 2 OOO""- 

Fig. 4.1 Crossover 

The operation of crossover is followed by a mutation. In the process of mutation, 

every allele of each chromosome in the population is randomly mutated (altered) with 

a certain probability. The mutation probability pis generally very low, hence 

producing only few changes. The role of the mutation is to regenerate a lost genetic 

material and to introduce new genetic structures. This allows us to explore the 

regions of the searching space which are not represented by chromosomes in the 

current population. For example, if all chromosomes in the population have the same 
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allele at the n-th locus and this allele is wrong, the mutation can regenerate the 

correct allele. This cannot be realised by the crossover. Figure 4.2 illustrates the 

mutation of the allele at the second locus. 

Original chromosome 
=AMVD 

Mutated chromosome 

Fig. 4.2 Mutation 

A genetic algorithm operates in a cycle of three stages. Prior to this cycle, an initial 

population of chromosomes is created. This is generally accomplished by random 

initialisation of chromosomes. Following the process of initialisation, chromosomes 

are decoded and evaluated for their fitness values. Chromosomes are selected for 

recombination according to their fitness and the preferred selection method. The 

combined process of fitness evaluation and selection is called reproduction and is 

followed by the last stage of the genetic cycle - recombination. The genetic 

information from parent chromosomes is recombined to form offsprings using the 

crossover and mutation operators. The process of fitness evaluation, reproduction 

and recombination is repeated for a given number of generations. We may wish to 

stop the evolution process when the entire population has converged (reached a 

certain degree of homogeneity). 
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4.1.1 Model of genetic algorithm 

Goldberg's Genetic Algorithm (Simple Genetic Algorithm) consists of the following 

components: 

" population of strings (chromosomes) 

" control parameters (population size, crossover probability, mutation probability) 

" genetic operators (crossover, mutation) 

" fitness function 

and the following operations are defined on the GA components: 

" encoding/decoding of strings 

" fitness evaluation 

" selection 

" recombination (crossover and mutation) 

We have implemented Goldberg's Simple Genetic Algorithm in Matlab and further in 

this thesis it is referred to as the SGA model. This model also creates a basic 

framework for the implementation of more complex genetic algorithms that are built 

upon this model. The pseudo-code of the Simple Genetic Algorithm (SGA) is 

illustrated in Figure 4.3: 
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Simple Genetic Algorithm () 

begin 

/* initialisation process */ 

initialise population-size, p, , pm 

initialise population of chromosomes 

evaluate fitness of each chromosome 

/*evolution process */ 

while not converged do 

for each generation do 

selection 

/* recombination 

crossover 

mutation 

/* evaluate fitness of offsprings 

evaluate fitness 

end for 

end while 

end 

Fig. 4.3 Pseudo-code of Simple Genetic Algorithm 

4.1.2 How does the genetic algorithm work? 

To illustrate stages of the genetic algorithm and to demonstrate the role of all 

components and operations involved we will use similar approach of "simulation by 

hand" as has been used by Goldberg [Go189a]. Let us apply the SGA from Figure 
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4.3 to find a maximum of the function f (x) = sin(x) +V x' , where x is an integer 

number from the interval (0,63). 

Depending on the nature of the problem, the control variables population_size, 

crossover probability p, and mutation probability p�, must be suitably chosen. In this 

example a rather small population size of six strings has been used for illustration 

purposes only. In fact, the size of the population varies from 30 (Goldberg's SGA) 

to several hundreds up to thousands strings for some real world problems. The 

encoding method must be also decided before the initialisation. A six-bit unsigned 

binary coding was chosen in this example to encode integers from 0 (000000) to 63 

(111111). The selection of the optimal control variables and an appropriate encoding 

method is very important for efficient implementation of a genetic algorithm and is a 

subject of the intense research [Gre86, Sch89, DeJ90, Go192, Aru93]. The next step 

is to create an initial population of strings. This is done usually by random 

initialisation of strings. The initial population of six strings is shown in Table 4.1 in 

the first column. 

The initialisation is followed by a process of reproduction which combines the 

processes of fitness evaluation and selection. Strings are selected according to their 

normalised fitness values f,. /7 and reproduced for the next population. Normalised 

fitness values and the actual number of strings to be reproduced are shown in Table 

4.1. with the symbol f,. denoting the fitnes of the i-th string and the symbol 7 

representing the average fitness of the entire population. String 110011 will be 

reproduced twice, because it has the highest fitness. String 001011 will not be 

reproduced at all, because of its low fitness, and the remaining strings will be 

assigned one copy each, to maintain a constant size of the population. The 

reproduced population is shown in the first column of Table 4.2. 
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Table 4.1 GA's initial population, normalised fitness values and actual number 

of strings selected for recombination 

Initial population x f(x) f. /7 Number of selected strings 

001001 9 4.1493 0.5907 1 

010110 22 6.3805 0.9084 1 

110011 51 11.2516 1.6019 2 

011111 31 7.4450 1.0599 1 

001011 11 3.2154 0.4578 0 

101100 44 9.7021 1.3813 1 

Table 4.2 First generation of GA computer simulation 

Reproduced 

population 

Mate Crossover 

site 

Offsprings New 

population 

x f(x) 

001001 3 2 000011 000011 3 2.0743 

010110 6 4 010100 010000 16 4.9901 

110011 1 2 111001 111001 57 11.7478 

110011 5 5 110011 110010 50 10.1940 

011111 4 5 011111 011111 31 7.4450 

101100 2 4 101110 101110 46 10.8479 
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Following the process of reproduction, the crossover operator is applied in two steps. 

In the first step, strings are randomly mated, using coin tosses to pair mates. In this 

example, the first string was paired with the third, the second with the sixth and 

fourth with fifth string. In the second step, a biased coin toss will decide if the 

crossover will occur. If the result is heads, the strings swap their parts before and 

after a randomly chosen crossover site (shown in the third column of Table 4.2), thus 

generating offsprings. If the result is tails, the offsprings are the exact copies of 

parent strings. After crossover, the mutation operator is applied, mutating randomly 

string's bits with the probability pm. String 010100 was mutated at the fourth locus 

(position) creating thus the string 010000 and string 110011 was mutated at the sixth 

locus, creating the string 110010. Mutated strings are shown as the new population 

in fifth column of Table 4.2. In this example, the SGA after first generation 

produced a string 111001 which when decoded, returns higher value of the function 

to be maximised, than the best string from the initial population (the string, its 

decoded value and the function value is shown in italics in Table 4.2). Subsequent 

generations would produce "better" strings, eventually a global maxima of the 

function is attained. The algorithm terminates, when the total number of generations 

has exceeded a specified amount or when the population has converged. The 

population is converged, when all of the genes have converged. A gene is said to be 

converged, when 95% of the population have identical value [DeJ75]. But why is the 

Genetic Algorithm able to produce better strings by just selecting, copying and 

crossing strings together? 

The first explanations how GAs work was given by Holland's schema theorem 

[Ho175]. A schema is a pattern of gene values describing a subset of chromosomes 

which have similarities at certain positions. A chromosome contains a particular 

schema if it matches that schema. For example, when using a binary coding with the 

three symbols 1,0 and * (the symbol * can represent either 1 or 0), the string 111001 

from the previous example contains schemata 11****, 11*0*1, **1001, etc. 

Goldberg [Go189a] introduces the following two properties for schemata: defining 

length and order. The defining length 8 of a schema H is the distance between the 
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outermost chromosome's position that are fixed (in this example, 8=1,5, and 3, 

respectively). The order of a schema, denoted in GA literature as o(H), is the total 

number of fixed positions. Schema theorem states: 

Schema theorem. 

The optimum way to explore a searching space is to allocate chances to individuals 

to reproduce proportionally to their fitness relative to the average fitness of the 

population. Good schemata are then exponentially increasing in numbers in 

successive generations. 

Holland also showed that the number of schemata processed in each generation is of 

the order N pop 
9 where Npop is the size of the population. This is very important and 

powerful feature of genetic algorithms known as implicit parallelism. 

The proof of the schema theorem and a theoretical analysis of the effect of 

reproduction, crossover and mutation on a particular schema H was shown by 

Goldberg in [Go189a]. We will repeat the proof here as it is a foundation for 

understanding how genetic algorithms work. Let's suppose that in the discrete time 

step t there are m examples of a schema H in a current population. We will denote 

this as m= m(H, t), meaning that there are different numbers of different schemata H 

at different times t. Each discrete time step represents one generation. An expected 

number of schemataH in the next generation is therefore denoted as m= m(H, t+ 1). 

The first step is to determine the effect of reproduction. Let's suppose that a 

population contains n strings and the average fitness of all strings representing 

schema H at time t isf(H). The expected number of schemata H at time t+1 is then 

given by the following equation: 
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m(H, t+1)=m(H, t)"n"f(H) (4.1) 

1f 

As the average fitness of the population was defined as f=. f/n, equation (4.1) can 

be rewritten as 

m(H, t+ l) = m(H, t) 
f f) (4.2) 

Equation (4.2) states that, during reproduction, schemata with fitness values above 

the population average will receive increased number of copies for the next 

generation and schemata with low fitness values will decrease in numbers (and 

gradually will die off). To complete the proof of the schema theorem Goldberg has 

also shown in [Gol89a] that good schemata are increasing in their numbers 

exponentially. 

Suppose that a schema H has an above average fitness f(H) =7+ C" f, where C is a 

constant. Equation (4.2) after substituting f(H) and assuming a stationary value of C 

becomes: 

m(H, t+1)=m(H, t)`J 
+CfJ=(1+C)"m(H, 

t) (4.3) 
f 

and this can be rewritten as: 

m(H, t+ 1) = m(H, O) " (1 + C)` (4.4) 

This equation is also known as a discrete form of an exponential function. Hence, we 
have a proof that good schemata during reproduction are increasing in numbers 

exponentially. 

67 



Chapter 4 Design of multiplier-less FIR filters using genetic algorithms 

To analyse the effect of crossover, suppose a binary string of length L that contains a 

particular schema H with defining length S(H). Schema H will be destroyed 

(disrupted) by crossover, whenever a crossover point falls between any two bits 

corresponding to schema H. Generally, the probability that a schema H will be 

destroyed is: 

Pd = PC L- 
(4.5) 

where p, is the probability of crossover. The probability that a schema H will survive 

crossover is defined as the mutation survival probabilityps, 

psc z 1- pd =1- pc " L5(H) l 
(4.6) 

Because the crossover operation is independent of the reproduction and follows the 

reproduction stage, equation (4.2) can be multiplied by the survival probability psc to 

obtain a combined effect of reproduction and crossover: 

m(H, t+ 1) >_ m(H, t)- 
f (H) 1I-P,. L(Hi 

(4.7) 

The last step is to determine the effect of mutation. Mutation randomly alters each 

allele of the string with the probability p, �. If a schema H has the o(H) fixed alleles, 

each allele has to survive in order for a schema H to survive. The probability that an 

allele survives mutation is (1 - p). Because there is no correlation between 

mutations, the probability that a particular schema H with the o(H) fixed alleles 

survives mutation is: 

Pam = 
(1 

- P. 
)o(H) (4.8) 

68 



Chapter 4 Design of multiplier-less FIR filters using genetic algorithms 

Multiplying equation (4.7) with equation (4.8) and ignoring one small cross-product 

term, the combined effect of reproduction, crossover and mutation is given by the 

following equation: 

m(H, t+ 1) >- m(H, t) 
f (H) 

1- pý " 
8(H) 

" 
](1_Pm)(H)(4.9) 

Equation (4.9) states that schemata of short defining length and fitness values above 

the average are receiving exponentially increasing numbers of copies in subsequent 

generations. Crossover can be a very disruptive operation, but has a little disruptive 

effect on schemata with short defining length. However, as we have shown before 

(Table 4.1 and Table 4.2), the exchange of information occurring during crossover is 

of greater importance than disruptive effects. 

Goldberg in [Gol89a] explains how GAs work by the building block hypothesis. 

Building blocks are schemata of short defining length and above average fitness 

values. They are propagating themselves from generation to generation and 

increasing exponentially in numbers according to the schema theorem. When 

combined together, they result in the improved performance. For example, the string 

111001 in the example shown in Table 4.2 has been obtained by combining schemata 

11**** and **10**. An analogy of the building blocks hypothesis in real life can be 

building a model from Lego pieces, or designing a complex microprocessor from 

blocks like adders, registers, buses, etc. In both cases, by combining small 

components (equivalent of the short defining length) with exactly defined function 

within the entity (high fitness) we can create amazing things. Goldberg concluded 

that: 

Genetic algorithms seek near optimal performance through the juxtaposition of 

short, low-order, highly fit building blocks. 
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The formation of building blocks can be encouraged by a suitable coding method. A 

good coding method will encode genes that are related to each other so that they will 

appear close on the chromosome and the interaction between them will be as low as 

possible. The crossover and mutation operations should also support a formation of 

building blocks, with a minimum disruption. We will follow these principles in our 

implementation of a simple genetic algorithm that is presented next. 

4.2 Simple genetic algorithm for the FIR filter design 

A mapping of the discrete combinatorial optimisation problem onto a genetic 

algorithm is not a straightforward task. A thorough analysis of the optimisation 

problem has to precede the mapping of the problem onto a genetic algorithm. When 

this is omitted, the performance of genetic search is low and the results are more-less 

random. This is in agreement with previous claims that genetic algorithms can find a 

solution without any knowledge about the problem. This is true, yet the genetic 

algorithm must: 

perform the searching process in a domain where the problem is defined, 

" know whether chromosomes represent good or poor potential solutions to the 

problem. 

The first requirement can be satisfied by a choice of an appropriate encoding scheme 

and the second requirement is accomplished by constructing of a specific problem- 

related fitness function. 

The process of mapping the filter design problem onto the genetic algorithm is shown 

next. The filter coefficients are encoded onto a population of chromosomes as they 

are the parameters that need to be designed. The chromosomes can have any data 

structure, in case of the simple genetic algorithm they are just binary strings. The 

filter coefficients are evolved by the genetic manipulating of chromosomes. 

70 



Chapter 4 Design of multiplier-less FIR filters using genetic algorithms 

When designing digital FIR filters the following considerations must be known: 

" the desired frequency response, i. e. magnitude and phase response 

" the filter order (N-1) 

" coefficient wordlength 

In case of multiplier-less FIR digital filters, additional restrictions on the range of 

coefficient values must be also taken into account. These considerations greatly 

influence the chromosome structure and the associated encoding method and also the 

fitness function. The chromosome structure and the fitness function vary for each 

particular filter. 

The algorithm proposed here (further referred as GA-1) employs the SGA model and 

can design linear-phase ML FIR filters of the following types: low-pass, high-pass, 

band-pass, band-stop, multiple-band filters or filters with an arbitrary frequency 

response. No other magnitude or phase constraints can be realised with the GA-1 

algorithm. The filter coefficients are restricted to the PWR2 or 2PWR2. The source 

code of GA-1 algorithm written in Matlab is included on the accompanying disk. 

4.2.1 Encoding 

In living organisms, the DNA carries an important genetic information of organisms 

by the information onto the chromosomes. Genetic algorithms must have also a 

similar system to encode parameters of the problem to be solved. Each individual 

parameter (representing an individual gene) is encoded and genes are concatenated to 

form chromosomes (strings of values). Encoding of the problem's parameters must 

be decided before genetic algorithm can be considered to solve any problem. A 

particular method of encoding depends on the nature of the problem and is very 

critical to the performance of genetic algorithms. 
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The traditional way of coding is binary coding, where individual parameters are 

coded as binary numbers and concatenated to form chromosomes. The main 

disadvantage of binary coding is the large Hamming distances between the binary 

codes of adjacent numbers (Hamming cliffs). For example, when the gene's value is 

3 and the required value is 4, we need to flip three bits to arrive to the solution. To 

avoid Hamming cliffs, Gray coding has been proposed [Ho171, Go189a]. Other 

coding methods include dynamic parameter encoding (DPE) proposed by 

Schraudolph in [Sch9l], which increases the resolution search as the evolution 

process proceeds, and coding methods that use high-cardinality alphabets. Using 

high-cardinality alphabets, genes can be represented as integers or real numbers. 

However, special crossover and mutation operators must be used, for example 

arithmetic crossover [Ife93], averaging crossover, geometric mean crossover, 

random replacement mutation, etc. 

Encoding scheme for GA-1 algorithm. 

To satisfy the linear-phase condition, the filter coefficients must be symmetrical. This 

can be achieved by folding of the filter coefficients, i. e. the number of coefficients 

NCOef evolved during the design process is: 

N/2, if N is even 
NcOe (N -1)/2+1, otherwise 

(4.10) 

where N is the length of the filter. Before calculating the frequency response the 

filter coefficients must be unfolded, i. e.: 

h(N-i+1)=h(i) (4.11) 

Hence, the number of parameters that need to be encoded onto chromosomes is 

equal to Nook . Each parameter, i. e. each folded coefficient represents one gene, 
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therefore the chromosomes will have NCoeff genes in total. The values of the filter 

coefficients h; (alleles) are assumed to be either single power-of-two values (PWR2): 

h; E {a: a= c; " 2-b' , c; E {-1,1}, b, E {1,2, 
..., B -1}} (4.12) 

or the sum (or the difference) of two power-of-two values (2PWR2): 

2 

h; ýdi-2 -bý�d ; E{-1,0,1}, b; E{1,..., B-1} (4.13) 

where B is the coefficient wordlength. For example, when the coefficient wordlength 

B= 16, the filter coefficients can be any of the following values: 

a) PWR2 
12-i 

_2-2 ..., -2-15, +2 -u +2-2 +2-11 (4.14) 

b) 2PWR2 

2-1-2-1, -2-1-2'2,..., -2-1s, (4.15) 
+2-'s,..., +2-1 +2-2, +2-1 +2-1 

When designing ML FIR filters, the choice of filter coefficients is limited to discrete 

values with highly non-uniform distribution. The distribution of PWR2 coefficients 

in the interval (- 05, +05) is shown in Figure 4.4. 
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0.8- 

0.6- 

0.4- 

0.2- 

0 
-0.5 0 0.5 

Fig 4.4 Distribution of PWR2 coefficients in the interval (- 05, +05 

Because of the non-linear distribution of filter coefficients and therefore also the non- 

linear distribution of the gene alleles, the encoding procedure for the simple genetic 

algorithm is not straightforward. Binary coding of filter coefficients cannot be used 

because of its redundancy. Suppose that the filter coefficients are represented by the 

16-bit binary word with one bit reserved as a sign bit and limited to power-of-two 

numbers. Then each filter coefficient can have only 31 valid different values 

(including zero value). However, with 16-bit binary word there is 216 = 65 536 

possible combinations, therefore the probability that a random initialisation of the 16- 

bit binary string to produce a valid coefficient is equal to (31/65536) = 0.00047. 

Suppose that the chromosome consists only of 10 genes, then the probability that the 

chromosome is valid, i. e. each gene is valid, is equal to (31/65536)10 = 5.6081e-34. 

Therefore the probability that a random initialisation of the population of 

chromosomes would produce a valid chromosome is : 

2B -1 
"sexes (4.16) Pchromosomc =N pop 2B 
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where Np0 is the size of the population (number of chromosomes) and Ngene, is the 

number of genes in each chromosome: 

Ngenes - 
Ncoeff 

, 
2- Ncoeff 

for PWR2 coefficients 
for 2PWR2 coefficients 

(4.17) 

This redundancy produces a number of invalid strings that need to be removed from 

the population in each generation. As a consequence, the performance of genetic 

algorithm radically deteriorates. 

Because of the redundancy problems we propose a different coding method. It follows 

from the analysis of (4.14) and (4.15) that only the exponents of power-of-two 

coefficients and the signs of coefficients need to be encoded. The exponent signs can be 

ignored as they are always minus. As only 30 different coefficients are to be encoded 

(when B= 16), only 5-bit binary word is needed where one bit is reserved for the sign. 

The chromosome length Lchrom is a product of the number of genes Ngenes and the 

number of bits Bgene required to encode each allele: 

Lchrom = Ngenes * Bgene (4.18) 

The encoding method is demonstrated by the following example. 

Example: 

We will demonstrate the encoding procedure using a 10-th order FIR filter with PWR2 

coefficients and the coefficient wordlength B equal to 16, thus restricting the coefficient 

values to be power-of-two values in the range 
(-2 -15 +2-15). A set of the filter 

coefficients can have, for example, the following values: 

h= {2-s, 2-a'2-15 2-2'2-15,2-1 
, 2_15 2-2 , 2-15X2-4,2-s } (4.19) 
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The number of coefficients to be encoded is: 

NCoeff =(N-1)12+1=10/2-x-1=6 (4.20) 

and the set of folded coefficients is: 

hfolded = 
12-5,2 -4 

ý2-15 
2-z 

ý2-15 ý2-11 (4.21) 

Applying the encoding method proposed above, only the string (5,4,15, -2,15,1 } needs to 

be encoded using 5-bit binary coding. The corresponding chromosome length Lchrom is: 

Lchrom = Ngenes ' Bgene =6 .5= 30 (4.22) 

and the chromosome representation of the filter coefficients from (4.19) is: 

chromosome(i) = 001010010001111100100111100001 

End of example. 

When the population of chromosomes is encoded using the method described above, no 

invalid strings can be produced. The size of the initial population and the number of the 

genes depends on the filter specification and can be determined from the design 

constraints. There are several ways to create the initial population of chromosomes and 

to initialise their alleles, including a random initialisation, an equidistant sampling of the 

discrete power-of-two space and rounding of infinite-precision coefficients acquired from 

the Remez algorithm The latter is accomplished just for one chromosome and represents 

very simple knowledge-inserting operator. When using this scheme the remaining 

chromosomes are initialised randomly . 

Other representations of the encoded chromosomes can be also realised. For instance, 

Gray coding can be used to avoid Hamming cliffs, or gene alleles can be represented as 

integers or symbols, thus avoiding the creation of invalid strings. 
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There is an ongoing discussion between GA researchers concerning which 

representation of genes is better. Goldberg has shown in [Go189a, Go190] that the 

representation of genes with the minimal binary alphabet is more natural to genetic 

algorithms. Representation with the smallest alphabet allows better sampling of the 

searching space. This is because genes' alleles that can be either 0 or 1 effectively cut 

the searching space in half. Goldberg also investigated Gray coding and concluded 

that although it can help to avoid Hamming cliffs, it introduces non-linearity in the 

recombination process [Go189b]. Davis [Dav9l] argues in favour of nonbinary 

higher cardinality alphabets as the larger range of operators can be applied to the 

problem. 

When using binary and Gray coding, crossover operator can have very disruptive 

effects on the overall performance of the algorithm. This occurs when the crossover 

point falls between any two bits of the gene that has converged to the genuine (and 

correct) value. Therefore, we have implemented non disruptive crossover methods, 

where the crossover point is guaranteed to be between outermost bits of the adjacent 

genes. The influence of various gene representations on a performance of genetic 

algorithm has been investigated, using the evolution speed as a criterion to measure 

the effects of various gene representation. We have defined the evolution speed as 

follows: 

Definition 1. 

Evolution speed is a number of generations that is necessary for genetic algorithm to 

produce a chromosome that represents an acceptable solution to the problem being 

solved. 

Statistical analysis has shown that there is a little difference between results achieved 

with various gene representations for ML FIR filter design problems. Therefore we 
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conclude that the important decision that is strongly influencing the performance of 

genetic algorithms is taken when determining the encoding method. Effects of 

different gene representation on the performance of genetic algorithm has been found 

negligible. The evolution speed for various gene representations is shown in Table 

4.3 (results shown are for the GA-LP2 example from Appendix A). Table 4.3 shows 

10 runs of genetic algorithm for binary representation (with non-disruptive and 

disruptive crossover), Gray code representation (with non-disruptive and disruptive 

crossover) and integer representation, respectively. The last row represents the 

average evolution speed. 

Table 4.3 Comparison of evolution speed for various gene representations 

Binary Binary Gray Gray Integer 

representation representation representation representation representation 

(disruptive) (disruptive) 

1 27 10 5 6 

15 9 10 34 19 

28 5 18 4 19 

12 33 14 12 22 

10 11 25 19 31 

19 21 18 32 3 

10 13 4 25 5 

23 18 13 18 8 

8 1 4 1 7 

18 6 10 18 13 

14.4 11.4 12.6 16.8 12.3 
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The decoding procedure is a reverse process of encoding. The chromosomes are 

split into the genes that are decoded creating thus folded filter coefficients. The filter 

coefficients are constructed by unfolding of the folded filter coefficients. 

4.2.2 Fitness evaluation 

The fitness function is the most important part of any genetic algorithm influencing its 

overall performance. GA assigns a fitness value to each string, reflecting a potential 

of the string to be a solution to the problem. To choose the fitness function is 

straightforward in many cases. For instance, when maximising (minimising) function 

f(x), where xE (x,, x2)1 the fitness value can be simply a value of the function at a 

given point x (or a reciprocal function value). For complex design problems, when 

many parameters are to be optimised, the fitness function should reflect all these 

parameters. To construct a fitness function for multi-parameter optimisation 

problems is non trivial task. When the values of decoded chromosomes have no 

actual meaning for guiding a searching process, they cannot be used as a fitness 

measure. Therefore, the fitness function that describes how well are chromosomes 

progressing towards the local (global) optimum, must be constructed. 

Fitness function for GA-1 algorithm. 

The fitness function should express how accurately the desired frequency response is 

approximated by the frequency response of the potential solution (decoded 

chromosome) over the entire frequency range. The difference between both 

frequency responses can be expressed as the weighted error function E(fi): 

E(fi)= W(fi). [H(f, )_D(fi)] (4.23) 

where H(f; ) is the actual frequency response of the FIR filter, D(ff) is the desired 

frequency response and W(fj) is the weight function that controls the error ripples in 

different bands (see also (2.13) in Chapter 2). 
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The FIR filter design problem can be then viewed as a minimisation of the error 

function E(f j) over the frequency range fE (0, ir) for a given filter specification : 

min 11 E(f, ) = W(fý) .[ H(f) - D(fi)] 11 (4.24) 
which must satisfy the filter specification 

E(f; ) = W(fi) "[ H(f; ) - D(. f; )] Sf (4.25) 

The fitness function should guarantee that the genetic algorithm will minimise an 

error between the desired and actual frequency response, therefore it should be an 

inverse function of the error function. The error function can be calculated as a mean 

square error over the entire frequency range. Hence, the fitness function for the j-th 

chromosome is given as follows: 

fitness = 
1 

1+ [D(f) 
- Hi (f)]2 (4.26) Nf, f, =, 

where Nfs represents the number of frequency samples. Within the process of fitness 

evaluation, the frequency response is calculated and compared with the desired frequency 

response at N fs discrete frequencies. The algorithm is terminated when the frequency 

response is within the specification. Considering four basic types of FIR filters, the 

fitness function (4.26) can be rewritten to reflect a specific frequency response of 

each filter type: 
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(a) odd filter length and symmetric coefficients 

fitness -12 
Nfi N-1 

1+ 
1 D(f) - lh; cos(21fi) (4.27) 
Nfs f, =i i=O 

(b) even filter length and symmetric coefficients 

i fitness = Nft N-t 2 
1+1 

[D(3) CO 
(4.28) 

I- cos 
Ntst1 

h cos(2) 
i=o 

(c) odd filter length and anti-symmetric coefficients 

1 
fitness f2 Nf, N-1 

1+1 D(f. ) - sin(co)1 h; cos(2nf) (4.29) Nfs fi ; _o 

(d) even filter length and anti-symmetric coefficients 

fitness] = 
1 

(l2 
1+1 D(fi) - sing Jý hi cos(2nf 

NfSf, =i 
\ 

i-o 

where N f, is given as: 

N fs = npN " 
[f 

p +(05- fs)] 

(4.30) 

(4.31) 

where fp, fs are the cut-off frequencies, np controls frequency sampling N is the filter 

length. 
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4.2.3 Implementation of GA-1 algorithm. 

It follows from the analysis of (4.27-4.30) that a design of digital FIR filters of (N-1) 

order can be considered as N-dimensional combinatorial optimisation problem. The 

algorithm proposed here uses Goldberg's Simple Genetic Algorithm (SGA) to search in 

the discrete domain of powers-of-two for a combination of filter coefficients that best 

satisfy the filter specification. 

The GA-1 algorithm starts with a random population of chromosomes. The length and 

the structure of chromosomes are determined by the filter length, filter type and the 

applied encoding method. The default size of the population is 40 and can be changed by 

the designer. Increasing of the size of the population Nn0 greatly influences searching 

capabilities of the genetic algorithm, as the number of schemata processed in each 

generation is of the order Np0 [Ho175]. Therefore a compromise between the size 

of the population, the available computer memory and the convergence speed of 

genetic algorithm has to be made. 

In the next stage, the fitness values of chromosomes are evaluated. This is done in 

two steps. First, chromosomes are decoded and unfolded, thus creating vectors of 

filter coefficients. Then the frequency response of each coefficient vector is 

calculated. The fitness values are determined according to the equations (4.27), 

(4.28), (4.29) and (4.30). 

Following the calculation of fitness values, offspring population is selected from the 

parent population according to the fitness values of parent chromosomes. Fitness- 

proportionate selection has been used in GA-1 algorithm. Half of the offspring 

population represents father chromosomes, while the other half represents mother 

chromosomes. Crossover sites are randomly choosen and the single point crossover 

operator is applied to father and mother chromosome pairs with the probability P,, 

thus creating a population of child chromosomes. The crossover probability P, 51, 
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hence allowing to keep some parent chromosomes in children population with no 

changes. (default value of P, = 0.7). The process of crossover is followed by the 

mutation. The probability of mutation P. is kept very low (default value of 

Pm=0.001), otherwise genetic algorithms are reduced to a random search. During 

the process of crossover and mutation, the parent population is replaced with the 

population of offsprings. 

Two generation replacement models have been tested with GA-1 algorithm. Initially, 

a model using only one father chromosome has been used. We have denoted this 

model as one father model. In one father model, the parent population is copied into 

the offspring population and the chromosome with the highest fitness in the parent 

population is selected as a father chromosome. This model preserves the best 

chromosome in successive generations (population elitism), therefore it can be used 

to refine the solution that has been found earlier or that has been found by other 

algorithms. The father chromosome is crossed with other chromosomes in the parent 

population (mothers) at every possible crossing point resulting in the creation of 

offspring chromosomes. The frequency response of every offspring chromosome is 

calculated, then compared with the desired frequency response and finally, the fitness 

value is calculated. When the offspring chromosome has better fitness than the 

chromosome with the worst fitness in the parent population, then it replaces the 

worst chromosome. This process is repeated until all possible combinations of 

[father I mother] crossing sites are exhausted. Following the process of selection 

and crossover, the supervised mutation operator is applied. This is accomplished by 

the inversion of every allele for each chromosome. A mutated chromosome is 

inserted into the offspring population when its fitness is better than the fitness of the 

worst chromosome. However, we have found that the one father model was very 

slow and did not produce better results than the traditional generation-replacement 

model. 
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The cycle of fitness evaluation, selection, crossover and mutation is repeated until no 
further improvements in the fitness function are achieved. If no solution is found, the 

filter length is incremented and the GA-1 algorithm is repeated. Pseudo-code of the 

proposed filter design algorithm is illustrated in Figure 4.5. 

Genetic Filter Design () 

begin 

*/filter specification */ 

specify the frequency response, filter type and coefficient type 

while no acceptable solution was found do 

create the initial population of chromosomes 

evaluate fitness of chromosomes 

while not converged do 

for each generation do 

select parent chromosomes for recombination 

perform crossover 

perform mutation 

evaluate fitness of offspring chromosomes 

/* generation replacement */ 

replace parent population with offsprings 

end for 

end while 

/* increment the length of filter and run GA again */ 

if no acceptable solution was found 

increment the length of f lter 

end if 

end while 

end 

Fig. 4.5 Pseudo-code of the GA-1 filter design algorithm 
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4.2.4 Experimental results 

The GA-1 algorithm has been implemented in Matlab and compared with other 

methods of designing multiplier-less FIR filters. As the aim is to design a filter with 

the simplest coefficient set while satisfying the filter specification, the number of filter 

coefficients was choosen as a criterion to compare a performance of different 

algorithms. Results that have been achieved indicated the superior performance of 

GA-1 when compared with traditional approaches. Table 4.4 illustrates some of the 

results that have been achieved using the following methods: 

SR: rounding of infinite precisionRemez coefficients to single power-of- 

two coefficients, 

GA-1: single power-of-two coefficients designed by GA-1 algorithm as 

presented in [Cem93b], 

SENS: MSE sensitivity criterion method for 2PWR2 coefficients as presented 
in [Cem93a], 

GA-2PWR2: 2PWR2 coefficients designed by GA-1 algorithm. 

Table 4.4 Comparison of the number of coefficients using simple rounding, simple 

genetic algorithm and coefficient sensitivity design methods 

Deign method: SR GA-1 SENS GA-2PWR2 

GA-LP1 18 14 14 14 

GA-HP I 11 753 

GA-LP2 14 866 

GA-BPI 13 10 95 
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The results in Table 4.4 indicate considerable savings of the total number of filter 

coefficients required to satisfy the desired frequency response when using the GA-1 

algorithm for the filter design. GA-1 algorithm has outperformed the SR method in 

each case that has been tested. 

A comparison of the GA-1 algorithm and the sensitivity driven rounding of filter 

coefficients also shows remarkable results. For instance, the design constraints for 

the specification GA-LP1 were satisfied using the GA-1 algorithm when the filter 

length was equal to 14 (single power-of-two coefficients). When using the sensitivity 

driven rounding, the minimum filter length satisfying the constraints was found again 

to be 14, but with all coefficients changed to 2PWR2 values. The use of genetic 

algorithm to design the filter coefficients reduced the filter complexity by 50%. 

Even better results have been achieved when the GA-1 algorithm has been used to 

design the set of test filters with 2PWR2 coefficients. An example of the results that 

have been achieved are presented for filters GA-BPI and GA-LP1. Table 4.5 

illustrates filter coefficients for the filter GA-BP1 that have been designed using all 

four methods referred above, while the frequency responses for the filter 

specifications GA-LP1 and GA-BPI are shown in Figure 4.6. 

Table 4.5 Coefficient values for band-pass filter GA-BPI 

SR method GA-1 method SENS method GA-2PWR2 method 

h(1) = +2"5 = h(13) h(1) = +24 = h(10) h(1) = +2-4 = h(9) h(1) = +2-4 = h(9) 

h(2) = +2"15 = h(12) h(2) = +2-3 = h(9) 

h(3) = +274 = h(11) h(3) = -2'3 = h(8) 

h(4) = +2-15 = h(10) h(4) = -2-2 = h(7) 

h(5) = -2'2 = h(9) h(5) = +2_2 =h(6) 

h(6) = +2-ß5 = h(8) 

h(2) _ +2'15 = h(8) h(2) _ +2"15 = h(8) 

h(3) _ -2'2 = h(7) h(3) _ -2'Z = h(7) 

h(4)=+2'15 =h6) h(4)=+2'14=h6) 

h(5 )= +2" -2 '3 h(5) _ +27' - 2'3 

h(7) = +2 i 
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Fig. 4.6 Frequency responses for the GA-LP1 and GA-BPI filter specifications 
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4.3 Knowledge-based genetic algorithm 

GA-1 algorithm based on SGA model that has been described in previous sections 

does not require any prior information about the problem being solved. However, in 

certain situations genetic algorithms can benefit from the additional knowledge that 

would support the evolution process. Considering the design of multiplier-less FIR 

filters, the knowledge can be inserted into the initial population in the form of 

knowledge-based chromosome. This chromosome can be a coefficient vector that 

has been designed using Remez algorithm or other suitable technique and rounded to 

the nearest single power-of-two coefficients. The rationale behind this approach is to 

refine the coefficient vectors that have been acquired by other techniques. 

Coefficient vector that has been inserted into the initial population can be refined 

during the evolution process, because genetic algorithm cannot converge to worse 

chromosome (with lower fitness) as the knowledge-based chromosome. However, 

the following requirements must be satisfied: 

" genetic algorithm should propagate the best chromosome from population to 

population, 

" suitable mechanisms to avoid premature convergence must be implemented. 

The first requirement can be implemented within the generation replacement process 

that must guarantee that the best chromosome is copied from the parent population 

into the offspring population without changes. The proportion of strings in the 

population, which is replaced in each generation following the operation of selection, 

reproduction and recombination, is defined as the generation gap. Traditionally, 

researchers have used generation gap equal to 1 (Goldberg's Simple Genetic 

Algorithm). It means, that the entire population is replaced in each population. This 

method of replacement is often referred to as generational-replacement. It is not 

suitable for our purpose, because there is no guarantee that the best chromosome will 

be always propagated from generation to generation. 
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The other method, termed as steady-state replacement [Sys89, Whi89, Dav9l] 

replaces only a part of the population, usually chromosomes with the lowest or below 

the average fitness, while preserving the best chromosomes. Preservation of best 

chromosomes for future generations is referred to as population elitism. The steady- 

state replacement might be a better model of what is happening in nature, because it 

allows coexistence of parents and offsprings. Goldberg and Deb examined [Go191 ] 

both replacement methods and did not find any replacement method fundamentally 

better than other. However, for our purpose the steady-state replacement model is 

more suitable. 

The problem of premature convergence is associated with the chromosomes with 

high fitness values that are well above the average fitness value of the population. 

These highly fit chromosomes can take over the entire population during the first few 

generations, causing a convergence to a local maximum (minimum). To avoid the 

premature convergence, various fitness re-mapping methods have been proposed, 

including fitness scaling and fitness ranking [Go189a, Whi89]. Among several fitness 

scaling and ranking methods, we have choosen linear scaling because of its simplicity. 

Linear fitness scaling ensures that the maximum value of the scaled fitness is only 1.5 

to 2.0 times higher than the average fitness of the population. In this way, the 

maximum number of offsprings allocated to highly fit strings is two. The scaled 

fitness values are calculated as follows: 

fscaled = of +b 

(4.32) 

where a, b are constants which must be calculated in each generation. Constants a, b 

must be chosen to prevent negative fitness values to be generated. 
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The pseudo-code of the knowledge-based genetic algorithm for the design of FIR 

filters (further referred to as GA-2 algorithm) is shown in Figure 4.7. GA-2 

algorithm has been tested on the set of filter specifications (Appendix A). 

Knowledge-based chromosomes were represented as Remez coefficients rounded to 

nearest single power-of-two terms. Results are shown in Table 4.6 (results shown 

are for the GA-LP2 example). The improvement of evolution speed has been 

achieved, when compared with Table 4.3 that shows results for the same experiment, 

but without the knowledge chromosomes inserted into the initial population. The last 

row represents the average evolution speed for various gene representation using 

knowledge-based chromosomes. 

Table 4.6 Comparison of evolution speed (knowledge-based genetic algorithm) 

Binary Binary Gray Gray Integer 

representation representation representation representation representation 

(disruptive) (disruptive) 

7 9 9 6 5 

5 1 10 4 5 

8 5 14 13 3 

16 7 15 17 17 

7 12 7 5 8 

10 12 13 19 19 

19 4 6 21 30 

9 22 19 8 9 

4 5 2 16 14 

15 8 7 19 20 

10.0 8.5 10.2 12.8 13.0 
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Knowledge-based Genetic Filter Design () 

begin 

*/filter specification 

specify the frequency response, filter type and coefficient type 

while no acceptable solution was found do 

/* create knowledge-based chromosome */ 

calculate infinite precision coefficient vector 

round coefficients to nearest single power-of-two 

/* create the population of chromosomes */ 

create the initial population of chromosomes 

insert the knowledge chromosome into the population 

evaluate f tness of chromosomes 

while not converged do 

for each generation do 

select parent chromosomes for recombination 

perform crossover 

perform mutation 

evaluate fitness of offspring chromosomes 

find elite chromosome 

steady-state replacement 

insert elite chromosome into new population 

end for 

end while 
/* increment the length of filter and run GA again 

if no acceptable solution was found 

increment the length of filter 

end if 

end while 

end 

Fig. 4.7 Pseudo-code of the knowledge-based (GA-2) filter design algorithm 
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4.4 Hybrid GA-SA algorithm 

In next section we describe the technique of Simulated Annealing and we discuss 

improvements that can be achieved by hybridising of Simulated Annealing with 

genetic algorithms. 

4.4.1 Simulated annealing 

Simulated Annealing (SA) is a stochastic optimisation technique based on modeling 

of the physical process of annealing and interactions between particles in systems that 

consist of a large number of atoms (typically of order 1023 atoms per cubic 

centimeter). Such systems have many degrees of freedom in thermal equilibrium at a 

finite temperature and the state dynamics of these systems behave according to the 

theory of statistical and thermal mechanics [Rei65] which states: 

The probability that the system is in a state with energy E is proportional to the 

Boltzmann distribution, e-E'`BT , where T is the temperature of the bath. 

This statement can be expressed in the equation form: 

P(E) = exp(-E/kBT) (4.33) 

where kB is Boltzmann's constant. 

According to equation (4.33), the system is in equilibrium with high probability when 

it is in a state of low energy. But this is not a sufficient condition to determine the 

states of matter. Kirkpatrick et al. [Kir83] have shown an analogy between the 

process of solidifying melted substances and the properties of combinatorial 

optimisation. For example, when growing a single silicon crystal from a melt, it must 

be done by careful annealing process which involves melting, lowering the 
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temperature slowly, allowing enough time to be spent in the vicinity of solidifying 

point. When this process is not realised properly, the resulting Si crystal will have 

many defects or will not form a crystalline structure at all. 

Metropolis et al. [Met53] has developed an algorithm which simulates the process of 

annealing and uses Monte Carlo techniques. Metropolis algorithm generates a 

sequence of points in the searching space according to the annealing schedule and the 

energy values of generated points starting from the initial point xo describing the 

initial configuration of the system. In each step of the algorithm, a new point x,,,,, is 

generated. This corresponds to the random displacement of the atom within the 

complex system of atoms and results in the change of the energy of the system AE. 

The new point x�ew is accepted upon Monte Carlo criterion. If the new point x,, ew 

resulted in the change of energy DE_O, that places the system in a state of lower 

energy, the point x�ew is always accepted and used as a starting point xx in the next 

step. When the change of system's energy DE>O and the system is placed in a state 

of higher energy, the new point is accepted with the probability P(AE), which 

depends on the difference between the energy states DE and the temperature T of the 

system described by: 

P(EE) = exp(-DE/kßT) (4.34) 

By repeating this procedure and lowering the temperature, Metropolis algorithm 

iteratively converges to the state with the lowest energy corresponding to the 

optimum point. The optimum point can be a global optimum, but because of the 

nature of the searching process, it cannot be guaranteed. 

The Metropolis algorithm can be applied to the combinatorial optimisation problems, 

as there is an obvious connection between statistical mechanics and combinatorial 

optimisation shown by Kirkpatrick in [Kir83]. Hence, simulated annealing has been 

applied to various optimisation tasks, including VLSI routing and placement, 
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traveling salesman problem, etc. When applied to the optimisation problems, the 

change of the energy DE of the system is replaced by the cost function to be 

optimised. A new point xneW is accepted, if the Metropolis test [Kir83] is satisfied, i. e. 

if the cost function decreases: 

f (x. ) sf (xý) (4.35) 

where x, is the current point. 

However, if 

f (xnew) 
>f 

(xc) (4.36) 

x,,,,, is accepted with the probabilityp equal to 

p=exp 
f(xc)-J (xnew) (4.37) 

T 

This corresponds to an uphill move under the control of probabilistic criterion, 

allowing the algorithm to escape from local minima. By analysing equation (4.37), 

we can distinguish two limit cases. If the temperature 7'>>O, the probability p =1, 

irrespective of the cost function (system's energy). A new point Xnew is practically 

always accepted. As the temperature T approaches zero, T=0, states with higher 

energies are no longer accepted. 

The pseudocode of the classic simulated annealing procedure is shown in Figure 4.8. 

The classic simulated annealing algorithm uses the Boltzmann distribution exp(- 

E/kBT). Variations of the classic SA have been reported, replacing the Boltzmann 

distribution in (4.33) to speed up the algorithm. Szu et al. [Szu87] proposed fast 

annealing algorithm, which replaces the Boltzmann distribution with the Cauchy 

distribution. Because of the properties of the Cauchy distribution, fast Cauchy 
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annealing (FCA) have an annealing schedule exponentially faster than classic 

Boltzmann annealing. Further improvement of FCA was proposed by Ingber 

[Ing92]. Ingber claims that his method of very fast simulated reannealing (VFSR) is 

exponentially faster than the fast Cauchy annealing and is also statistically guaranteed 

to find the function optima. 

Simulated Annealing () 

begin 

initialise 

for each temperature do 

for number of search moves do 

create new point x�ew=Xc + step 

if Metropolis test passed then 

accept new point 

compare with optimal point x0 

end if 

adjust step 

end for 

decrease temperature 

end for 

if termination test passed then 

return xop, 

else 

restart SA from xot 

end if 

end 

Fig. 4.8 Pseudo-code of Simulated Annealing procedure 
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4.4.2 ML FIR filter design using simulated annealing 

Because of its hill-climbing properties and the advantage to escape from local 

minima, several authors attempted to use simulated annealing for design of digital 

filters. Diethorn et al. [Die86] used simulated annealing for of finite wordlength 

digital filters and his work has been later extended by Benvenuto et al. [Ben89a, 

Ben89b]. Benvenuto et al. applied simulated annealing also in design of multiplier- 

less FIR digital filters [Ben90, Ben92]. However, their approach is based on refining 

of infinite precision coefficients obtained by Remez algorithm, that might limit 

searching space that is explored by simulated annealing. We have shown earlier, that 

genetic algorithm can produce better coefficient vectors than methods that use 

infinite precision coefficients as a starting point. Finally, Cemes et al. proposed 

simulated annealing as a technique for fine tuning of filter coefficients obtained by 

genetic algorithm [Cem93d]. 

We propose a hybrid technique for the design of ML FIR filters based on robust 

genetic algorithm kernel and simulated annealing operator. Genetic algorithm is used 

to rapidly explore the discrete space of power-of-two coefficients. We have 

implemented advanced genetic algorithms using tournament selection [Go191 ], two- 

point crossover [Cav70], linear fitness scaling [Gol89a] and steady-state generation 

replacement [Dav91] that is retaining the elite chromosome. In each generation, the 

elite chromosome is selected and simulated annealing is applied. We follow the same 

annealing schedule as in [Ben92]. Pseudo-code of the proposed hybrid algorithm 

(GA-3) is shown in Figure 4.9. 
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Hybrid GA-SA Genetic Filter Design () 

begin 

*/filter specification */ 

specify the frequency response, filter type and coefficient type 

while no acceptable solution was found do 

create the initial population of chromosomes 

evaluate fitness of chromosomes 

while not converged do 

for each generation do 

select parent chromosomes for recombination 

perform crossover 

perform mutation 

evaluate fitness of offspring chromosomes 

find elite chromosome 

run simulated annealing on elite chromosome 

steady-state replacement 

insert elite chromosome into new population 

end for 

end while 

/* increment the length of filter and run GA again 

if no acceptable solution was found 

increment the length of filter 

end if 

end while 

end 

Fig. 4.9 Pseudo-code of the hybrid GA-SA filter design algorithm 
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The hybrid GA-3 algorithm was compared with both simple and knowledge-based 

genetic algorithms. Results have indicated that GA-3 algorithm is superior to GA-1 

and GA-2 algorithms, especially for high-order filters. Figure 4.10 illustrates the 

frequency responses for the low-pass filter LP2 designed using GA-1 and GA-3 

algorithms. The dotted line represents the frequency response that has been achieved 

by using GA-1 algorithm, while the solid line represents the frequency response that 

have been achieved by fine tuning of the coefficient vector using GA-3 algorithm. A 

similar frequency response to that obtained with the GA-1 algorithm has been 

obtained with the GA-2 algorithm. 
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Fig. 4.10 Frequency responses of the low-pass filter LP2 designed using GA-1 and 

GA-3 algorithms 
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4.5 Conclusions 

The results presented in this chapter have shown the superiority of genetic algorithms 

for the design of FIR digital filters with discrete coefficients limited to power-of-two 

values. They confirmed our expectations and conclusions drawn in Chapter 3. 

Although limited to the simple genetic algorithm, the performance of the designed 

algorithm is dramatic when compared to conventional techniques. Further 

improvements of the basic technique have been also developed. They include 

knowledge-based genetic algorithm and hybrid technique based on genetic algorithm 

kernel using the simulated annealing operator that outperform design techniques 

based on a simple genetic algorithm mainly for high-order filters. 
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Chapter 5 

Prediction of minimum filter length 

Several methods for multiplier-less FIR filter design have been described in previous 

chapters. The majority of the design methods are iterative in a sense that the 

minimum filter length that is required to satisfy the filter specification is not known in 

advance. In this chapter, we attempt to fill-in this knowledge gap and to devise a 

formula that would predict the minimum number of power-of-two coefficients. The 

techniques of genetic programming and symbolic regression are used to evolve the 

formula describing the relationship between the filter length and its specification. The 

rest of this chapter is organised as follows. First, Kaiser's empirical formula that is 

used to estimate a number of infinite precision filter coefficients is described. The 

technique of genetic programming and symbolic regression is briefly introduced next. 

Section 6.3 describes our experiments and the results achieved. The chapter finishes 

with conclusions. 
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6.1 Kaiser's formula 

Prediction of minimum filter length 

A common drawback of all methods for the design of filters with power-of-two 

coefficients is that the filter length is not known prior to the design procedure. 

Therefore most designers adopted iterative design approach where design algorithms 

operate between lower and upper boundaries on the filter length. The upper 

boundary is set to the highest filter length that is still acceptable. The lower bound is 

estimated using the empirical formula that has been devised by Kaiser and can be 

found in classic DSP textbooks [Rab75]. Kaiser's formula has two different forms 

depending on whether the windowing design method (5.1) or equiripple design 

method (5.2) has been used: 

N= -201og, 06 - 7.95 
+1 

14.360f 
(5.1) 

N= -201og, o S, S2 -13 +1 
14.6Af (5.2) 

where 51952 are the frequency response ripples (they might be different when the 

equiripple design method is used) and Of is the width of the transition band. 

It should be noted that Kaiser's empirical formulas (5.1) and (5.2) have been devised 

for infinite-precision coefficients. When filters are realised using power-of-two 

coefficients only, the minimum number of coefficients is usually much higher, 

rendering (5.1) and (5.2) only partially useful. Another disadvantage associated with 

the use of (5.1) and (5.2) in the design of PWR2 filters is that the widely adopted 

iterative approach starting from lower boundary on filter length is both time 

consuming and costly. If some formula estimating the minimum filter length from the 

filter specification would be known, it could save many unnecessary iterations 

independently of the design method. This would be particularly useful for higher 
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order filters. We attempt to evolve such formula using the techniques of genetic 

programming and symbolic regression that are described next. 

5.2 Genetic programming and symbolic regression 

Genetic programming (GP) can be thought as an extension of genetic algorithms into 

the space of computer programs. It has been devised and developed only recently by 

Prof. Koza [Koz92]. The thorough description and recent developments in the field 

of genetic programming can be found in [Koz92, Koz94 and Kin94]. Essentially, 

genetic programming is an evolution process in which computer programs are being 

evolved. The main difference between GAs and GP is that while genetic algorithms 

operate with fixed length linear chromosomes, genetic programming works with a 

population of computer programs that are represented as chromosomes of variable 

length having usually tree-like structure. The result of genetic programming is not a 

value (or a set of values), but a computer program that is able to solve some problem. 

Initially, a population of computer programs is created using the set of terminals 

(input and output variables and constants) and the set of functions (add, subtract, 

divide, multiply, sin, logarithm, etc. ). No encoding and decoding functions are 

required as genetic programming operates directly with the population of computer 

programs. Each computer program in the population must satisfy the closure 

condition, i. e. situations that could result in errors (division by zero, etc. ) must be 

avoided. Genetic programming does not require the fitness function. Instead, 

individual programs are executed to evaluate their fitness values that reflect "how 

well" particular programs are able to solve the problem. This is the most important 

and non trivial part when implementing genetic programming. The process of 

program execution and fitness evaluation is followed by selection and recombination. 

Genetic programming uses similar selection methods to those used in genetic 

algorithms. The recombination process in genetic programming differs from genetic 

algorithms as a crossover operator has been replaced by the tree structure crossover. 
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The process of program execution, fitness evaluation, selection and recombination is 

repeated for a given number of generations. With the exception of program 

execution stage, the process is identical to genetic algorithms. Pseudo-code of 

genetic programming is illustrated in Figure 5.1, while the tree structure crossover is 

shown in Figure 5.2. 

Genetic Programming( ) 

begin 

identify set of functions and terminals 

randomly create population of computer programs 

while termination criterion is not satisfied do 

for each generation do 

execute each program to evaluate its fitness 

for each program do 

select genetic operator (crossover, mutation, reproduction) 

perform genetic operator 

end for 

end for 

end while 

end 

Fig. 5.1 Pseudo-code of genetic programming 

Genetic programming has been successfully applied to a wide range of problems that 

are difficult to solve, including prediction of protein characteristics, forecasting of the 

weather, automatic programming, image compression, etc. Amongst a number of 

successful applications of genetic programming, we are particularly interested in 

symbolic regression (SR) described by Koza [Koz92]. Koza defines symbolic 

regression as "seeking for a mathematical expression that would approximately fit a 

given sample of data". Symbolic regression is different from the polynomial 
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regression where the function is known beforehand and only the polynomial 

coefficients are calculated. Symbolic regression attempts to construct a mathematical 

expression that would express the relationship between the input and output data 

(training set) as closely as possible. The application of symbolic regression to 

discover the relationship between the filter specification and the number of power-of- 

two coefficients is described in the next section. 

sin " 

0.4 (a1 i' 

Yb 

Fig. 5.2 Tree structure crossover 

5.3 Implementation of experiments 

The following requirements must be satisfied prior to the experiments with symbolic 

regression: 

"a training set (sample of input and output data) must be designed 

" genetic programming system must he compiled to perform N-dinlensional 

symbolic regression. 
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As we are interested in an expression that would describe the relationship between 

the filter specification and its length, we must provide the symbolic regression system 

with the training set containing various examples of filter designs. We have chosen 

simple rounding of infinite precision Remez coefficients to the nearest single power- 

of-two coefficients as the design algorithm to construct the training set. The main 

criterion for choosing this algorithm was its simplicity and the speed, as extensive 

training sets are required to sample the space of filter specifications. 

The design space S for low-pass and high-pass filters can be either four-dimensional 

(pass-band and stop-band cut-off frequencies and pass-band and stop-band ripples): 

ý' Spass 
9k op 

(5.3) `S - 
fpars 

ý Jstop +V 

or two-dimensional (the width of transition band and the max. ripple allowed): 

S= {Af, s} (5.4) 

We have constructed three different training sets sampling the design space S of low- 

pass and high-pass filters in broad range of cut-off frequencies and band ripples. The 

set S1 contained 3,487 different low-pass filter specifications of type (5.3), the set S2 

contained two-dimensional equivalent of the set Si and the set S3 contained 3,018 

different high-pass filter specifications of type (5.4). To construct these training sets 

we have performed 6,505 different filter designs in total. This took several days with 

the design algorithm written in Matlab running on Pentium 120 Mhz processor. The 

next step before the evolution process can be started is to choose and compile 

suitable symbolic regression system We have chosen N-dimensional symbolic 

regression that has been compiled with the following set of functions: ADD, 

SUBTRACT, MULTIPLY and DIVIDE. For simplicity reasons, no other functions 

were realised at this time. 
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Upon completion of these preparatory steps, the process of five-dimensional (for the 

set Si) and three-dimensional (for the sets S2 and S3) symbolic regression has been 

performed. Symbolic regression in terms of memory and execution time is extremely 

costly process. The time to finish our experiments varied from 8 to 14 days as shown 

in Table 5.1. Each experiment has been repeated six times to produce more results 

that would allow us to choose the most suitable expression and to compare different 

runs. The results are analysed in the next section. 

Table 5.1 Comparisons of SR runs 

Dataset Training set Training set size Time to complete SR 

cardinality 

Si 5 3,487 14 days 

S2 3 3,487 9 days 

S3 3 3,018 8 days 

5.4 Analysis of results 

The mathematical expressions resulting from the application of symbolic regression 

to the training sets Si, S2 and S3 are rather complex. This is because symbolic 

regression does not simplify the evolved expressions from generation to generation. 

This does not constitute a problem as we were mainly interested whether the 

expression describing the relationship between the filter specification and its length 

could be attained using the symbolic regression. We have performed the error 

analysis of the resulting expressions to evaluate how close the evolved expressions 

approximate the given training sets. For this purpose, the error has been defined as 

the difference between the actual filter length and its estimated length. 
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The error analysis of six different expressions that have been evolved by the five- 

dimensional symbolic regression using the training se61 is shown in Figure 5.3. 
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Fig. 5.3 Error analysis of expressions EQU-1 to EQU-6 for estimating the filter 

length for low-pass filters (five-dimensional training set) 
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Chapter 5 Prediction of minimum filter length 

Studies of the error analysis and the corresponding training sets have shown that 

large errors, represented as peaks in Figure 5.3, have occurred mainly for high-order 

filters. As the high-order filters (with the actual filter length bigger than 50) 

represented less than 5% of the entire training set, we have removed them from the 

training set S1 and re-evaluated the error analysis. In these circumstances the 

evolved expressions produced more realistic results. The maximum and average 

errors for the expressions EQU-1 to EQU-6 are shown in Table 5.2. The error 

analysis for the expression EQU-3 that yields in lowest errors is illustrated in Figure 

5.4. 

Table 5.2 Maximum and average errors following the removal of high-order filters 

Expression Maximum error Average error 

EQU-1 32.60 0.2162 

EQU-2 33.35 0.2387 

EQU-3 32.22 0.0988 

EQU-4 32.76 0.1600 

EQU-5 33.70 0.4355 

EQU-6 34.31 2.3418 
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Fig 5.4 Error analysis of expression EQU-3 following the removal of high-order 

filters 

The equation EQU-3 evolved by the five-dimensional symbolic regression using the 

training set Si that contained 3,487 filter designs is as follows: 

Nestimated = (fstop'fpass) - (((fpasl(2*(fstop'fpass)))*fpass)/fstop) + fstop 

Prediction of minimum filter length 

+ (((fstop'2*fpass)-(fp. /SS))-i(fp. Jfstop)/(fstop*fstop)))/6 

+ fpass/(fstap* ftop*Ss) +2 *Sp- fpasifstop 

+ 5ý ((Estop'((fpass/fstop)/(fstop*fstop)))/fstop)) + i(('stop*(fstop'fpass))-fpass) 

+ (((fpasJ(((fstop'fpass)-(fstop*fstop))+Ss))*fpass)/(fstop'fpass)) 

+ ((SS ((fP jSs)*'pass))-fsýoP)/(2*SS) 

(5.5) 
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The equation (5.5) has been tested with the set of filters not contained in the training 

set. Table 5.3 shows comparisons between the actual filter length, the filter length 

estimated using the Kaiser's formula and the equation (5.5) evolved using symbolic 

regression. 

Table 5.3 Comparison of Kaiser formula, Maximum and average errors following 

the removal of high-order filters 

fpass Estop Sp 88s NKaiser Nestimated Nactual 

0.02 0.2 0.1 0.1 4 6 15 

0.2 0.3 0.2 0.2 2 10 10 

0.2 0.4 0.1 0.1 3 10 10 

0.316 0.432 0.18 0.10 4 38 16 

0.316 0.432 0.18 0.12 3 25 20 

0.183 0.375 0.1 0.1 4 11 14 

5.5 Conclusions 

This chapter presents the application of symbolic regression to discovery of filter 

length when the filter coefficients are restricted to single power-of-two only. Several 

expressions describing approximate relationship between the filter specification and 

its length have been evolved. The error analysis has shown that the results are 

reasonably good for low-order filters (filter length N: 5 30). Although the training set 

for symbolic regression contained large amount of data, higher order filters (N>30) 

represented less than 5% of the training set. This could explain large difference 
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between the actual and estimated filter length for higher order filters. Further work is 

required to evolve a simplified expression that would achieve high accuracy. 

However, any of the evolved equation EQU-1 to EQU-6 can be included in any 

design technique for filters with single power-of-two coefficients in the present form. 

To increase the accuracy of the expressions, two alternatives are possible, including 

adding more functions into the function set and using better methods to generate the 

training set. This constitutes the aim of our future research. 
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Conclusions and future work 

The aim of this chapter is to review achievements that have been made and the 

contribution of this research work to the field of multiplier-less FIR filter design. 

Novel approaches to the design of multiplier-less FIR filters with coefficient vectors 

limited to power-of-two terms that have been proposed in this thesis can be classified 

into three separate classes: 

" improvements of calculus-based design methods, 

" design of ML FIR filters based on evolutionary algorithms, 

" evolution of the formula for estimation of ML FIR filter length. 

The advances that have been made and the limitations of the developed algorithms 

are analysed in the next section. The chapter concludes with a suggestions for further 

research to enhance proposed techniques. 
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6.1 Summary of the results 

Two novel design techniques have been developed following the analysis of available 

calculus-based methods. The first technique has been referred to as evolutionary 

local search (ELS). ELS is a combination of exhaustive search with a refined local 

search technique. The algorithm differs from the majority of calculus-based 

techniques as it does not require the initial set of infinite-precision filter coefficients 

as a starting point. Although the algorithm is simple in its principle, it can design 

optimal low-order ML FIR and sub-optimal higher-order filters. It has outperformed 

the traditional rounding of infinite-precision filter coefficients. 

The second technique has been termed as MSE coefficient sensitivity based 

rounding. In our view, this technique represents development of one of the best 

classic design techniques for ML FIR filter design available. We have suggested 

improvements to the basic technique to include among other types the design of 

filters with multiple-bands. Major improvements stem from the replacement of the 

original sensitivity criterion with the mean square error sensitivity criterion. The 

results that have been achieved and presented have demonstrated the superiority of 

this design technique. However, both ELS and MSE coefficient sensitivity based 

rounding techniques are able to produce only suboptimal designs as they limit 

searching to the vicinity of the starting vector. 

Our work in the field of multiplier-less FIR filter design using genetic algorithms 

represents one of the earliest works in the field. Several novel algorithms, named as 

GA-l, GA-2 and GA-3, have been proposed. The kernel of these algorithms is based 

on a simple genetic algorithm model. The GA-1 algorithm uses unique encoding 

scheme that guarantees that each population contains only valid chromosomes 

without adverse effects on the performance of genetic algorithm The GA-1 

algorithm has been compared with other techniques, namely with the rounding of 

infinite precision coefficients based on MSE coefficient sensitivity criterion. Results 

have indicated that the GA-1 algorithm has greatly outperformed traditional ML FIR 
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filter design techniques as further reduction of the filter complexity has been 

achieved. It has to be stressed at this point that the filter vectors that have been 

designed using GA-1 algorithm could not be designed using other techniques that are 

based on rounding of infinite precision coefficients, as these techniques limit the 

searching space to the vicinity of infinite precision coefficients only. The power of 

the GA-1 algorithm to explore the entire searching space is its main advantage 

opposite calculus-based algorithms. Even better results have been achieved with GA- 

2 algorithm that uses inserting of knowledge-based chromosome into the initial 

population. Here, the knowledge based chromosome represents a Remez coefficient 

vector rounded to nearest single power-of-two coefficients. To overcome the 

problem of premature convergence, fitness scaling has been applied. 

Hybrid evolutionary techniques are represented by GA-3 algorithm. The kernel of 

GA-3 algorithm embodies powerful genetic algorithm with a class of advanced 

genetic operators and simulated annealing. Here, the main genetic kernel is used to 

explore searching space rapidly, while simulated annealing is applied to refine the 

solution that has been obtained with genetic algorithms. GA-3 algorithm 

outperforms GA-1 and GA-2 mainly for higher-order filters. However, there is a 

price to be paid for the algorithm's ability to explore N-dimensional searching space 

as many control parameters have to be tuned. 

A common drawback of all design methods that have been presented is that the filter 

length, i. e. the number of coefficients that is required to satisfy the filter specification, 

is not known beforehand. Instead, lower and upper boundaries on the filter length 

are specified and design techniques work iteratively within these boundaries. It 

would be advantageous to have a formula that would be able to estimate the filter 

length from its specification. In the last chapter, we have shown that it is possible to 

evolve such formula using the technique of genetic programming and symbolic 

regression. Although the expression that has been evolved is rather approximate, it 

does compare very well with Kaiser's formula that is used in majority of FIR filter 

design methods, either calculus-based or based on evolutionary algorithms. The 
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accuracy of the formula can by further improved either by extending the function set 

that is used by symbolic regression or using mixed integer linear programming to 

create a training set that would contain optimal coefficient vectors. 

6.2 Further work 

The aims of this research work as stated in Chapter 1 have been accomplished. 

However, the research has uncovered some problems that need to be addressed. We 

have shown that genetic algorithms are robust optimisation techniques, but they can 

suffer from undesired effects, such as premature or slow convergence. To overcome 

these problems, we suggest to use robust genetic kernels based on distributed genetic 

algorithms (DGA) described by Tanese in [Tan89]. Distributed genetic algorithms 

operate with several populations of chromosomes, with each population having 

different control parameters and using different genetic operators. Initially, there is 

no interaction between the populations. After a pre-specified number of generations, 

the average fitness values of different populations are compared and genetic 

operators that are related to the best performing population are selected for further 

evolution process. 

Finally, the use of genetic programming for the design of multiplier-less FIR filters 

should lead to further improvements, as the filter coefficients and the filter 

architecture can be evolved at the same time. The approach using genetic 

programming would further benefit from variable length chromosome representation, 

effectively exploring the searching space between lower and upper boundaries in 

highly parallel fashion. The novel techniques that have been presented in this thesis 

can be also extended to the design of multiplier-less infinite impulse response filters. 
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Filter type Number of Cutoff Desired Attenuation Maximum error 

bands frequencies freq. resp. [dB] allowed 

(f) (D) (S) 

Bandpass 3 0-0.22, 0, > -26 dB 0.05,0.03,0.05 

BP1 0.24-0.26, 1, 

0.28-0.5 0 

0-0.05, 1, 0.1, 

Multiple bands 6 0.10-0.15, 0, 0.1, 

MB1 0.20-0.23, 1, 0.1, 

0.27-0.30, 0, 0.1, 

0.35-0.4, 1, 0.1, 

0.45-0.5 0 0.1 

Multiple bands 0-0.04, 1, 0.1, 

MB2 7 0.08-0.12, 0, 0.1, 

0.16-0.22, 1, 0.1, 

0.245 - 0.275, 0, 0.1, 

0.30-0.34, 1, 0.1, 

0.38-0.42, 0, 0.1, 

0.46-0.5 1 0.1 

Lowpass 2 0-0.27, 1, 0.02, 

LP1 0.31-0.5 0 0.02 

Lowpass 2 0-0.24, 1, 0.05, 

LP2 0.25-0.5 0 0.05 

Table A. 1 Some examples of filters designed using modified sensitivity criterion 
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Filter type Number of Cutoff Desired Weighting Maximum error 

bands frequencies freq. resp. function allowed 

(1) (D) W) (3) 

Low-pass 2 0-0.25, 1, 1, 0.125, 

GA-LP1 0.35-0.5 0 10 0.032 

High-pass 2 0-0.1218, 0, 1, 0.1, 

GA-HP 1 0.377-0.5 1 1 0.1 

Low-pass 2 0-0.1875, 1, 1, 0.1, 

0.4011-0.5 1 
GA-LP2 0 0.1 

Band-pass 3 0-0.1, 0, 1, 0.2, 

GA-BPI 0.2-0.3, 1, 1, 0.2, 
1 

0.4-0.5 0 0.2 

Table A. 2 Filter specifications used with simple genetic algorithm 

129 



Appendix B 

List of published work 

Cemes, R., and Ait-Boudaoud, D.: `Modified sensitivity criterion for the design of 

powers-of-two FIR filters', Electronics Letters, Vo1.29, No. 16, August 1993, 

pp. 1467-1469 

Cemes, R., and Ait-Boudaoud, D.: `Multiplier-less FIR filter design with power-of- 

two coefficients', Thirteenth Saraga Colloquium on Digital and analogue filters and 

filtering systems, The Institution of Electrical Engineers, Savoy Place, London, 2nd 

November 1993 

Cemes, R., and Ait-Boudaoud, D.: `Genetic approach to the design of multiplier-less 

FIR filters', Electronic Letters, Vol. 29, No. 24, November 1993, pp. 2090-2091 

130 



Cemes, R., and Ait-Boudaoud, D.: `Random search techniques for the design & 

synthesis of multiplier-less filters', International Conference on Concurrent 

Engineering and Electronic design Automation, Bournemouth, UK, 7th-8th April 

1994 

Cemes, R., and Ait-Boudaoud, D.: `A Matlab based development tool for multiplier- 

less filter design using Genetic Algorithm', International Conference on Signal 

Processing Applications & Technology, Dallas, Texas, USA, October 18-21,1994 

Cemes, R., Ait-Boudaoud, D., and Holloway, S.: `Evolutionary adaptive filtering, 

International Conference on Artificial neural Networks and Genetic Algorithms, 

Ales, France, 18th-21st April 1995 

131 


