Skip to main content

GoalD: A Goal-Driven Deployment Framework for Dynamic and Heterogeneous Computing Environments.

Rodrigues, G.S., Felipe, P.G., Rodrigues, G.N., Knauss, A., de Araújo, J.P.C., Andrade, H. and Ali, R., 2019. GoalD: A Goal-Driven Deployment Framework for Dynamic and Heterogeneous Computing Environments. Information and software technology, 111 (July), 159 - 176.

Full text available as:

Gabriel_GoalD_IST_Journal[1].pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.


DOI: 10.1016/j.infsof.2019.04.003


Context: Emerging paradigms like Internet of Things and Smart Cities utilize advanced sensing and communication infrastructures, where heterogeneity is an inherited feature. Applications targeting such environments require adaptability and context-sensitivity to uncertain availability and failures in resources and their ad-hoc networks. Such heterogeneity is often hard to predict, making the deployment process a challenging task. Objective: This paper proposes GoalD as a goal-driven framework to support autonomous deployment of heterogeneous computational resources to fulfill requirements, seen as goals, and their correlated components on one hand, and the variability space of the hosting computing and sensing environment on the other hand. Method: GoalD comprises an offline and an online stage to fulfill autonomous deployment by leveraging the use of goals. Deployment configuration strategies arise from the variability structure of the Contextual Goal Model as an underlying structure to guide autonomous planning by selecting available as well as suitable resources at runtime. Results: We evaluate GoalD on an existing exemplar from the selfadaptive systems community – the Tele Assistance Service provided by Weyns and Calinescu [1]. Furthermore, we evaluate the scalability of GoalD on a repository consisting of 430,500 artifacts. The evaluation results demonstrate the usefulness and scalability of GoalD in planning the deployment of a system with thousands of components in a few milliseconds.

Item Type:Article
Uncontrolled Keywords:Autonomous deployment; Contextual goal modelling; Heterogeneous computational resources; Deployment planning
Group:Faculty of Science & Technology
ID Code:32183
Deposited By: Symplectic RT2
Deposited On:23 Apr 2019 09:40
Last Modified:14 Mar 2022 14:15


Downloads per month over past year

More statistics for this item...
Repository Staff Only -