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Abstract

Link prediction in social networks has a long history in complex network research
area. The formation of links in networks has been approached by scientists from differ-
ent backgrounds, ranging from physics to computer science. To predict the formation
of new links, we consider measures which originate from network science and use them
in the place of mass and distance within the formalism of Newton’s Gravitational Law.
The attraction force calculated in this way is treated as a proxy for the likelihood of link
formation. In particular, we use three different measures of vertex centrality as mass,
and 13 dissimilarity measures including shortest path and inverse Katz score in place
of distance, leading to over 50 combinations that we evaluate empirically. Combin-
ing these through gravitational law allows us to couple popularity with similarity, two
important characteristics for link prediction in social networks. Performance of our
predictors is evaluated using Area Under the Precision-Recall Curve (AUC) for seven
different real-world network datasets. The experiments demonstrate that this approach
tends to outperform the setting in which vertex similarity measures like Katz are used
on their own. Our approach also gives us the opportunity to combine network’s global
and local properties for predicting future or missing links. Our study shows that the use
of the physical law which combines node importance with measures quantifying how
distant the nodes are, is a promising research direction in social link prediction.

Keywords: social network, link prediction, network dynamics, physics-inspired
network predictive model, Newton Gravitational Law

1. Introduction1

Networks are ubiquitous. Ranging from food webs, to protein, brain or social net-2

works, they underpin many natural phenomena [1, 2, 3, 4]. In the broad landscape3

of network science, networks which are formed via social interactions, have been in-4

creasingly drawing research attention in recent years, due to the heterogeneity of their5
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components and non-trivial dynamics. Data representing small-scale social networks6

were available and analysed in the past, for example, the famous Zachary’s karate7

club network has been studied extensively since it was published by Zachary [5] in8

1977. However, Zachary’s karate club contains only 34 nodes and 78 vertices, whereas9

today’s social networks (e.g. Facebook, scientific paper citation, Twitter), contain bil-10

lions of nodes and are far more complex and dynamic [6]. Although these large-scale11

social networks are formed by social interactions, their topological properties and dy-12

namics are similar to those of networks found in nature. For example, most biological13

networks exhibit power-law degree distribution, cellular networks have high cluster-14

ing coefficient, network encoding the large-scale causal structure of spacetime in our15

accelerating universe exhibits power-law degree distribution and high clustering coeffi-16

cient [7, 4]. Both of these characteristics are also commonly found in social networks.17

The similarity between anthropogenic social networks and naturogenic networks18

gives the opportunity to apply many different prediction and modelling tools devel-19

oped in the field of naturogenic networks, to social networks. This is due to the fact20

that large-scale physical and biological networks and social networks exhibit simi-21

lar topological properties (e.g. degree power-law distribution, high clustering coeffi-22

cient) [3, 8, 4]. However, the similarities are explored at the global level and this causes23

some issues with precision of adopted models and methods because the local dynamics24

are not considered. This raises the question if we could also adopt laws which govern25

a physical system to predict social network at a local level.26

Tools which are primarily used in order to analyse, model, or describe physical27

world have been used in social network analysis on numerous occasions [9]. Some ex-28

amples include Memetic algorithm for community detection in social networks, reach-29

ing of Bose gas state of complex social networks or the molecular model of social30

network [10, 4, 11, 12]. The field with applications of physical models to social net-31

works has been named as social physics by Urry [13].32

The main focus of this paper is the link prediction problem. The proposed model33

is inspired by the earliest theory of gravity, where Newton described the law of uni-34

versal gravitation based on the force between two point masses. Authors have already35

attempted to use models from physics in the context of network structure prediction.36

In Budka et al. [14] and Juszczyszyn et al. [12] they adopted molecular models in the37

context of evolution of social network. Now, by applying Newton’s gravitational law,38

we extend the nature-inspired link prediction framework with a new method that allows39

to take into account more than one characteristic of the network, and not only distance40

between nodes as it was done in the molecular model.41

The rest of the paper is structured as follows. Section 2 presents the problem state-42

ment and related work. The proposed method is described in Section 3 and the exper-43

imental setup in Section 4. Section 5 discusses the results, while the final conclusions44

are given in Section 6.45

2. Related Work46

Given a network at time t, the link prediction problem is to identify new links that47

will be present in the network at time t + 1 [15, 16]. Assuming the network has a set48

V of nodes and set E of edges at time t expressed as G(V,Et), and that a link between49

2



a pair of vertices vi and vj is denoted by L(vi, vj), the goal of link prediction is to50

predict whether L(vi, vj) ∈ Et+1, where L(vi, vj) /∈ Et. The prediction is performed51

by using topological and/or non-topological information about nodes’ characteristics52

and their relationships.53

2.1. Link prediction methods classifications54

There are numerous works on review and classification of link prediction meth-55

ods [17, 18, 19, 20, 21, 22]. One of the widely used and accepted classifications is56

by Liben-Nowell and Kleinberg [18], where link prediction methods were grouped as:57

1. Methods based on node neighbourhoods (e.g. Common Neighbours [23], Jac-58

cards Coefficient [24], AdamicAdar [25], Preferential Attachment [26])59

2. Methods based on the ensemble of paths between a pair of nodes (e.g. Katz [27],60

Hitting time [18], PageRank [28])61

3. Higher-level approaches (Low-rank approximation [29, 18], unseen biagrams [30,62

31, 18], clustering [18])63

Classifications, like the one above, give us a better understanding of the principles64

that are used when link prediction methods are proposed, e.g. if a method works at65

a local or global level of the network or use path or node based similarity, etc. How-66

ever, they neglect the information about applicability of different methods, i.e. those67

classifications do not answer a question in what circumstances and for what networks68

the methods can be used. For example, for some methods (e.g. Katz) an input is69

a single snapshot of a network, while others (e.g. Triad Transition Matrix (TTM))70

require a time series as an input (i.e. a sequence of historical snapshots of the net-71

work) [32, 33]. As a result, methods like TTM are not applicable to network datasets72

where only vertices and links are given without historical information [32]. Also, there73

are other methods which may use additional information about node attributes like age,74

location, etc. [34, 35]. Based on the type of information exploited by link prediction75

methods, we categorise link prediction methods into four groups:76

1. Unsupervised – based on topological information, which are methods that77

only use structural information such as mutual friend count in social networks,78

path lengths, triad profiles etc. Some examples include methods like Katz, PageR-79

ank, and AdamicAdar [18]. These methods only require a snapshot of the net-80

work topology at any given time t to make predictions for time t + 1, and are81

useful when past and non-topological information is not available. These meth-82

ods are applicable to any type of network dataset and do not require training.83

2. Supervised – based on topological information, which are methods only ap-84

plicable to networks where historical information regarding network’s topology85

is available. For example, if snapshots of a network at t− 1 and t are given, then86

t− 1 is considered as historical information. Network characteristics like degree87

of certain nodes at time t − 1 can also be considered as historical information.88

One example of such method is the Triad Transition Matrix (TTM) [32, 33]. A89

wide range of machine learning approaches also fall into this category if the topo-90

logical information such as mutual nodes, shortest distance etc. is considered as91

features, and link appearance is considered as class label [34, 36, 37]. Methods92

in this category do not use non-topological information such as age, location etc.93
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3. Unsupervised – based on non-topological and/or topological information,94

which are methods that consider non-structural information like age, location,95

preferences etc. [38, 34, 35]. In this category topological information can also96

be used in combination with the non-structural attributes mentioned above.97

4. Supervised – based on non-topological and/or topological information, which98

are methods applicable to the same kind of datasets as in point two above. If99

non-structural historical information of a network is considered (with or without100

topological information) any binary classifier could be used to make predictions101

in this setting [39].102

There are multiple methods that fall into the first category [17, 18, 19, 20, 21,103

22]. These methods are applicable to any kind of network where only one structural104

snapshot is available. Despite the fact that the methods only exploit network topology105

without historical information or node attributes, they make more accurate predictions106

for future links than a random predictor [18]. The proposed link prediction method in107

its current form falls into the first category. However, a supervised version or usage of108

non-topological information is also possible and is discussed in Section 3.109

2.2. Physics-inspired approaches for link prediction in social networks110

If we consider a social network, at its local level, how two people make a connec-111

tion or interact could rely on two factors, 1) how popular, and 2) how similar these112

people are. These two concepts are known as popularity and similarity and are well113

established in the link prediction paradigm [40, 41]. Intuitively, for social networks,114

predicting the appearance of links between two people, having both the popularity and115

similarity factors should entail better prediction accuracy than considering only one116

of the factors (i.e. only popularity or only similarity). In social network analysis, we117

already have a wide range of measures of node popularity and similarity. Different118

centrality measures (e.g. degree centrality, closeness centrality or betweenness cen-119

trality) could be thought of as notions of popularity. On the other hand, scores from120

link prediction methods like Katz, AdamicAdar could be thought of as measurements121

of nodes’ similarity [42, 27, 25]. However, the challenge is how to combine these two122

metrics in order to predict links between two particular entities in the future. This is123

where we make use of Newton’s law of gravity. In Newton’s explanation of gravity, the124

force between two particles is proportional to the product of their masses and inversely125

proportional to the squared distance between them. We argue that this law of attraction126

between two points of masses could also be applicable in social networks. We measure127

popularity or importance of a node using centrality and consider it as mass. We mea-128

sure dissimilarity by the inverse of similarity (i.e. scores from link prediction methods129

like Katz, AdamicAdar etc.) or by the path length, and consider them as distance.130

Physics-inspired approaches in networked systems have been used in the context131

of force-directed graph drawing, where node centralities were used as masses [43].132

However, as opposed to our method, Bannister et al. [43] did not use a measurement of133

distance or Newton’s gravitational equation for predicting future interactions. One of134

the first applications of gravity in social science dates back to as early as the mid-19th135

century, when Simini et al. [44] and Carey [45] reasoned that physical laws are also136

applicable in social phenomena [46]. There are also some approaches using the theory137
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of gravity to solve link prediction problem, however, most of these works are related to138

modern physics i.e. quantum mechanics [13, 14, 12, 11].139

In the study by Levy and Goldenberg [47], Newton’s gravitational law is used in140

link prediction. The authors used spatial distance (i.e. not topological) and substituted141

friendliness for masses. In fact, inverse square law in terms of geographical distance142

has been used earlier than in [47]. Not specifically in link prediction but in the field143

of social gravity, Zipf [48] and Stewart [49] both have applied the inverse square law.144

In fact, they have considered the original notion of Newtonian gravitational law where145

the interaction between two groups of people is proportional to their cardinality, and146

inversely proportional to their squared geographical distance [46, 48, 49]. The problem147

with this approach in online social networks is that in some cases the physical distance148

is either not available or not indicative of the relationship strength. Therefore, in this149

study we take the inverse of different similarity measurements from scores of Katz,150

AdamicAdar, and Rooted PageRank (RPR) as distance, and use centrality as mass.151

3. Proposed method152

Our approach to link prediction in social networks is inspired by Newton’s law153

of universal gravitation, which states that the force exerted between two masses is154

proportional to the product of those masses, and inversely proportional to the squared155

distance between their centres [50]:156

F = G
m1 ·m2

r2
, (1)

where F is the force between masses m1 and m2, G is the gravitational constant,157

and r is the distance between m1 and m2. Newton derived this equation by empirical158

observation and inductive reasoning [51], which is an approach that we have also taken.159

As discussed earlier, we use importance or popularity of a node to express mass.160

We argue that different centrality measures are direct measurements of how important,161

central or popular a node is in a given network. Dissimilarity or distance is measured162

via path distances (e.g. shortest path) or inverse of various similarity measures (e.g.163

AdamicAdar, Jaccard’s Coefficient). It is also possible to define distance in terms of164

dissimilarity in non-topological node properties, like age, physical distance etc. A165

weighted sum of these factors can be incorporated into the distance, allowing to natu-166

rally exploit non-topological information. This however is not the focus of our study.167

The above analogy leads to the following formula for calculating the score of two168

nodes forming a link in the future:169

Score(vi, vj) = Score(vi, vj) ∝
P (vi) · P (vj)

D(vi, vj)2
, (2)

where P is popularity/centrality andD is dissimilarity/distance in an undirected graph.170

The formula in Equation 2 can be interpreted as a modification of the Preferen-171

tial Attachment method (i.e. product of centralities), where the resultant scores are172

weighted by the inverse of squared distance between the two nodes in question. This173

arguably gives our method more expressive power by taking proximity into account,174
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which as demonstrated in our previous work [52] not only makes sense intuitively, but175

also tends to produce more accurate predictions in practice.176

As for the gravitational constant G, without loss of generality we have assumed
G = 1, since in order to make a prediction, a ranked list of scores is required with
their absolute values being irrelevant. Note, that if the score was to be interpreted as
probability, for a given network this could be achieved by setting the value of G as:

G =
min∀(i,j),i6=jD(vi, vj)

2

max ∀iP (vi) ·max ∀j 6=iP (vj)
, (3)

where the numerator is equal to 1, which reflects the obvious existence of a direct link177

between at least one pair of nodes. This essentially scales Score(vi, vj) to be between178

0 and 1. Two closest nodes (path length 1 if they are connected) with highest degrees in179

the entire graph will result in a score Score(vi, vj) = 1. Including the above constant180

value of G in Equation 2, effectively divides every score by the highest possible score181

for a given graph or network1.182

Different link prediction methods give different similarity scores that denote how183

likely two nodes are to be connected in the future. In our method we use the inverse of184

these scores to denote the dissimilarity/distance2, plugging them into Equation 2.185

4. Experimental Setup186

In order to empirically evaluate our approach proposed in Equation 2 we use three187

different centrality measures along with 12 similarity measures. Definitions of both188

centrality and similarity measures are outlined below.189

4.1. Centralities190

In our experiments we use the degree, closeness and betweenness centrality, consid-191

ered as a measurement of popularity in Equation 2. We draw an analogy here between192

these three centrality measures and mass in Equation 1:193

1. Degree Centrality (DC), which is the degree of a vertex in a network i.e. the194

number of edges attached to this vertex (the number relationships a person has in195

a social network). This is a very simple but useful measure of centrality in social196

networks that indicates importance of the node within the overall structure [53].197

2. Closeness Centrality (CC), which is calculated based on the mean geodesic198

path from a given vertex to all other vertices in the network [53]. High closeness199

centrality of a vertex means the vertex has better access to information or more200

direct influence on other vertices. Closeness centrality is defined as:201

CC(vi) =
1∑

n 6=i d(vi, vn)
(4)

1Much like physical world, one may also estimate G from a given graph to determine the proportionality
constant rather than using it to scale the score between 0 to 1.

2We are considering dissimilarity as distance, noting that in some cases the symmetry and triangle in-
equality might not hold. For an unweighted and undirected graph Score(vi, vj) = Score(vi, vj) (symme-
try) but other than shortest path, triangle inequality may or may not hold for every dissimilarity score.
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In Equation 4, d is the geodesic distance between two vertices. If there are a total202

n+1 vertices in a graph, closeness centrality for vertex vi is calculated using the203

inverse of the average length of the shortest path from/to all other vertices except204

itself vi 6∈ {v1, v2, ..., vn}. If the path does not exist between two vertices then205

the total number of vertices is used instead of path length [54].206

3. Betweenness Centrality (BC), which gives score to a vertex vi based on how207

many paths connecting any two vertices in the network go through that vertex vi.208

If the number of those paths is high then vertex vi will have high betweenness209

centrality. Vertices that are frequently on the shortest paths between any two ver-210

tices of the graph have more control over information flow [42, 55]. Removing a211

vertex with high betweenness centrality has negative influence on the overall in-212

formation flow in a network. Betweenness centrality differs from other centrality213

measures as it doesn’t consider how well-connected a vertex is but measures how214

much a vertex falls in between others. This way it is possible to have a vertex215

with low degree but high betweenness centrality. For example, two groups of216

vertices can be connected via a single path and then a vertex that connects those217

groups (a.k.a. bridge node or broker) will have high betweenness centrality.218

If a network has set of vertices V , source vertex s ∈ V and target vertex t ∈ V ,219

the betweenness centrality of vertex vi can be defined as [42, 55, 56]:220

BC(vi) =
∑

s 6=vi 6=t

σst(vi)

σst
(5)

where σst is number of shortest paths between two vertices s and t and σst(vi)221

is the number of shortest paths between two vertices s and t that pass through vi.222

4.2. Similarity223

We have used 12 similarity measurements to calculate node similarity and use their224

inverse value as a measurement of distance/dissimilarity for Equation 2. The similarity225

measurements we have used are described below.226

1. Common Neighbours (CN), which is a similarity metric where the likelihood227

of two nodes vi and vj to develop a link depends on the number of mutual228

friends [23]. This method could be quantified via Equation 6 (Γ represents the229

set of neighbours of a node):230

Score(vi, vj) = |Γ(vi) ∩ Γ(vj)|, (6)

2. Jaccard’s Coefficient (JC), which is a version of Common Neighbours [24]
normalised by the total number of neighbours of both nodes:

Score(vi, vj) =
|Γ(vi) ∩ Γ(vj)|
|Γ(vi) ∪ Γ(vj)|

(7)

3. AdamicAdar (AA), which is a similarity metric used in information retrieval [18]
similar to the Jaccards Coefficient (JC). In this method the likelihood of two
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nodes being connected in the future depends on the number of Common Neigh-
bours (e.g. mutual friends in a social network) relative to the nodes’ degrees [25]:

Score(vi, vj) =
∑

vk∈Γ(vi)∩Γ(vj)

1

log |Γ(vk)|
(8)

4. Preferential Attachment (PA), which is based on the social concept of ‘rich231

get richer’ implying that nodes with higher degree are more likely to get new232

links [26]:233

Score(vi, vj) = |Γ(vi) · Γ(vj)| (9)

5. Katz, which considers the number of all the paths from node vi to vj [27]. The234

shorter paths have bigger weight (i.e. are more important), which is damped235

exponentially by path length and the β parameter (M is the adjacency matrix):236

Score(vi, vj) = βM + β2M 2 + β3M 3 + · · · (10)

β needs to be smaller than the reciprocal of the highest eigenvalue of M [57].237

In our experiments we have used three different values of β. For collegeMsg,238

contact, hep-th, hep-ph, and hypertext datasets β ∈ {0.001, 0.0005, 0.00005};239

for infectiousContact dataset β ∈ {0.005, 0.0005, 0.00005}; for MITContact240

β ∈ {0.1, 0.05, 0.005} have been used. In Section 5 three different values of β241

parameter are denoted as Katz1, Katz2, and Katz3.242

6. Rooted PageRank (RPR), which is used by search engines to rank websites. In243

graph analysis it works by ranking nodes, with the rank being determined by the244

probability of each node being reached via random walk on the graph [28]. The245

Score(vi, vj) is calculated using the stationary probability distribution of B in a246

random walk. The random walk returns to vi with the probability α at each step,247

moving to a random neighbour with probability 1− α. We have calculated RPR248

for every dataset using two different α parameters and they are α ∈ {0.15, 0.25}.249

7. Average Commute Time (ACT), which is an average number of steps it takes250

to visit node vj from node vi and come back to vj using random walk [19]:251

Score(vi, vj) = RandWalk(vi, vj) +RandWalk(vi, vj) (11)

This could be obtained using pseudoinverse of the laplacian matrix (L), which is252

L+, where L = B −M [58, 59, 60]. Here, B is the degree matrix (a diagonal253

matrix which contains degree of every vertices) and M is the adjacency matrix.254

Score(vi, vj) =
1

C(l+ii + l+jj − 2l+ij)
(12)

In Equation 12, because we are considering the rank, constant C could be re-255

moved. Here l+ are the elements in matrix L+.256

8. Average Commute Time Normalised (ACTN), which is the same as ACT but257

normalised by stationary distribution, π = B∑
v B [61, 62].258
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9. Pseudoinverse of the Laplacian matrix (PsInLap), which is simply the pseu-259

doinverse of the graph Laplacian L+. PsInLap defines kernel of a graph and can260

be interpreted as a similarity measure [59].261

10. Local Path Index (LPI), which is based on the number of paths of different
lengths between two vertices. LPI is a generalisation of CN. While CN measures
similarity based on mutual friend count, which effectively gives the number of
paths with length two between two vertices, LPI also takes into account paths of
length three [63, 64]. LPI is hence a more global similarity measure than CN but
not as global as Katz:

Score(vi, vj) = M2 + εM3 (13)

In Equation 13, ε is a free parameter. If we choose it to be zero then this would262

give us common neighbours, and if we consider all higher orders of M (the263

adjacency matrix) than this would essentially become Katz. In our experiments264

we have used two values for ε ∈ {0.01, 0.02}.265

11. Leicht-Holme-Newman Global Index (LGI), which is a similarity metric util-
ising the concept that if two nodes vi and vj have neighbours who are themselves
similar, then they have higher similarity score [65]:

Score(vi, vj) = B−1

(
I − θ

λ
M

)−1

B−1 (14)

In Equation 14, θ is a free parameter and λ is a the largest eigenvalue of adjacency266

matrix M . We have used θ ∈ {0.5, 0.7} in our setup.267

12. Matrix Forest Index (MFI), which is a similarity score between vi and vj ,
defined as ratio of the number of spanning rooted forests, such that vertices vi
and vj belong to the same tree which is rooted at vi to all spanning rooted forests
of the entire network [66]:

Score(vi, vj) = (I + L)−1 (15)

A spanning subgraph of a graph contains the same vertices as the main graph,268

but not all the edges. A forest is a cycleless graph and a tree is a connected forest.269

A rooted tree is a tree which has only one root [66].270

Reciprocal values of the similarity measures presented above (except Preferential271

Attachment) can be seen as inverse of different topological path measurements, hence272

we consider them as distance in Equation 1. Preferential Attachment (PA) is scored via273

the product of popularity (degree), which is the special case of numerator of proposed274

Equation 2 without the denominator of squared dissimilarity.275

4.3. Datasets276

For the experimental comparative evaluation of the proposed method we selected277

seven datasets from various domains and of different sizes, frequently used in the liter-278

ature, all representing undirected graphs:279
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1. hep-th: Collaboration graph of authors of scientific papers from High Energy280

Physics – Theory (hep-th) Section, where edges between two nodes represent a281

common publication. This dataset is acquired from the KONECT database [67,282

68, 69] and has been used in the experiment of Liben-Nowell, which is a very283

important research work in the area of link prediction [18].284

2. hep-ph: Collaboration graph of authors of scientific papers from High Energy285

Physics – Phenomenology (hep-ph) Section, where edges between two nodes286

represent a common publication. This dataset is acquired from the KONECT287

database [70, 71].288

3. contact: Dataset representing a network where edges are human contacts using289

portable wireless devices distributed among different groups of people [72, 73].290

4. hypertext: Face-to-face contacts of ACM Hypertext 2009 conference attendees,291

where edges represent interactions of at least 20 seconds [74, 75].292

5. collegeMsg: Private messages sent via an online social network at the University293

of California, Irvine for over 193 days [76].294

6. infectiousContact: This dataset represents network of the face-to-face interac-295

tions of people during an exhibition INFECTIOUS: STAY AWAY in 2009 at296

the Science Gallery in Dublin. Each node is a person and edges between two297

nodes represent face-to-face contacts that lasted at least for 20 seconds. This298

network contains data about the interactions gathered on the day of the exhibi-299

tion when highest number of contacts took place. This dataset is also acquired300

from KONECT database [77, 74]301

7. MITContact: This dataset is based on human contact and it is a part of Real-302

ity Mining experiment preformed in 2004. In this network, vertices represent303

physical contact between a group of students from Massachusetts Institute of304

Technology (MIT) [78, 79]. This dataset is also acquired from KONECT. Data305

has been collected over a period of nine months.306

As it can be seen from Table 1, the selected datasets differ greatly in size and most307

of them represent typical social networks with power law node degree distribution,308

normal distribution of shortest path and small mean shortest path length as well as high309

global clustering coefficient. There are of course some exceptions to this profile, e.g.310

collegeMsg has very low global clustering coefficient, making the network more similar311

to random rather than social network. For a fully connected graph the highest density312

of a network is one. However, for networks with multiple edges, density can be higher313

than one, as multiple links between two vertices are possible. We can observe this314

higher than one density for, hypertext and MITContact contact datasets. The density is315

higher than one for both the datasets and both of these networks have multiple edges.316

However, in the training portion (i.e. the part of the data which is used for making the317

prediction as discussed in more details in Section 4.4) of those two networks we still318

have many nodes where no edges exist. In Section 5 we make predictions for these319

missing edges or links.320
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dataset
no.
vertices no. edges density node degree

dist.

avg.
shortest
path dist.

avg.
shortest
path

transitivity
dist.

global
clustering
coeff.

collegeMsg 1899 59835 0.033 power law normal 3.055 power law 0.057
contact 274 28244 0.755 power law normal 2.424 power law 0.566
hep-th 6776 290484 0.013 power law normal 3.224 normal 0.333
hep-ph 10324 955423 0.018 power law normal 2.946 normal 0.351
hypertext 113 20818 3.290 power law normal 1.656 power law 0.495
infectiousContact 410 17298 0.206 power law normal 3.631 power law 0.436
MITContact 96 1086405 238.247 power law normal 1.445 power law 0.725

Table 1: Basic statistics of the datasets selected for the experiment

4.4. Data Partition321

All networks considered in this study are with timestamps that indicate when a322

given relationship was created. This allows us to test prediction results against actual323

links that appeared in the future. We have divided each of the datasets into two parts324

based on the timestamps available. A similar setup has been used by Liben-Nowell and325

Kleinberg [18] for benchmarking several link prediction methods, and in particular:326

1. The hep-th dataset has been divided into two parts. Part one consisted of publi-327

cations from years 1992-1994 and part two consisted of publications from years328

1995-1997. Part one is where the link prediction is performed and part two is329

used as a ground truth in order to evaluate the method.330

2. The hep-ph is also divided into two parts, part one containing publications be-331

tween year 1994 and 1996, and part two with publications between year 1997 and332

year 1999. Similar to the previous dataset, part one is where the link prediction333

is performed and part two is used as ground truth.334

3. Datasets contact, hypertext, collegeMsg, infectiousContact, and MITCon-335

tact have also been divided into two parts with respect to time. However, the336

timespans within each part are not equal. Each part contains approximately3
337

equal number of edges.338

5. Results339

We are using Area Under the Precision-Recall Curve (AUC) to evaluate perfor-340

mance of each of the predictors. In total, we have calculated AUC for combinations341

of 74 different predictors and seven datasets. These 74 predictors involve 1) similarity342

measures from Section 4.2, 2) combinations of these similarity measures with central-343

ity measures from Section 4.1 and, 3) combinations of shortest path with the centrality344

measures mentioned above.345

The summary of results is given in Figures 1 and 2. In Figure 1 AUC values are346

sorted in descending order. Each of the bars is the sum of all the AUCs over all datasets347

for a given approach (i.e. a given predictor from the three categories listed above)348

to link prediction. For example, the leftmost bar in Figure 1 represents AUCs for349

combination of closeness centrality and MFI using Equation 2. This predictor has the350

3For collegeMsg and MITContact datasets total number of edges are odd
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best overall performance if we sum AUCs for this method for all seven datasets. On the351

other hand, Figure 2 depicts individual performance for all the predictors for individual352

datasets. From Figures 1 and 2 we see that for some of the datasets, overall AUCs are353

very small. However, later in Sections 5.1.1–5.1.12 we have compared each of methods354

with a random predictor. The results show that overall low values of AUC for a certain355

dataset do not necessarily mean that particular dataset has low predictability. This is356

because all networks are different in size. For a larger (in terms of vertices) or less357

dense network, the total number of predictions made is higher. This is because, we358

make predictions for a total of |V |(|V |−1)
2 − |E| links. As a network gets denser, the359

term |E| also becomes larger. As a result, the total number of predictions gets lower.360

Because our AUC is from Precision-Recall curve, when we make predictions for a361

higher number of links there is a higher chance of having more false positives. This is362

because of the number of new links that a network forms may not increase at the same363

rate as the growth of the network. The Precision is calculated as:364

Precision =
TP

TP + FP
(16)

From Equation 16, we could see that, if we have larger values for false positives (FP)365

the value for Precision gets lower.366

In Figure 1 it can be seen that the first three overall best performing methods are367

the ones with our Newton’s gravitational law inspired combination approach. On the368

other hand, ACTN used as a standalone method makes worst prediction among all the369

74 predictors. Interestingly, when ACTN is combined with DC using Equation 2 its370

performance jumps to rank 32 from 74. In addition, this combination of ACTN with371

DC performs better than DC with shortest path. This improvement reveals that the in-372

crement in predictability is not because of DC, or ACTN’s independent predictability373

but because of the combination that we use. More on this improvement due to the com-374

bination is discussed later in Section 5.1. We also see a similar improvement with CN,375

where CN combined with CC ranks as the fourth overall best method. Improvements376

due to the combination approach we take could also be seen in several other combina-377

tions of predictors with MFI, Katz, RPR, etc. These improvements evidence that our378

combination approach has a great potential in the area of link prediction.379

We further analyse the results in two ways: (i) we group methods based on the simi-380

larity measure used and then we compare the results within the groups (Sections 5.1.1–381

5.1.12) and (ii) we discuss the results in the context of each dataset separately and try to382

interpret why certain methods work on some datasets and not on others (Section 5.3).383
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Figure 1: Combined Average (AUC)
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Figure 2: Individual Method’s Performance (AUC)
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5.1. Overall performance using AUC384

For any pair of vertices vi and vj , we can consider all the similarity methods from
Section 4.2 as a set of predictors S = {Katz1,Katz2,Katz3, AA, .., CN}. Sim-
ilarly, all centrality measures from Section 4.1, could be expressed as a set P =
{DC,BC,CC} where DC = DCi · DCj , BC = BCi · BCj , CC = CCi · CCj .
As we use dissimilarity or distance by taking the inverse of each similarity measure for
Equation 2, our proposed combination approach could be expressed as:

W = {P × S}, (17)

where each of the elements w ∈ W is a particular predictor which gives prediction385

for any two vertices vi and vj . For any predictor w ∈ W , it is a combination of one386

particular similarity measure s ∈ S and one particular centrality measure p ∈ P . For387

such a combined predictor w, with similarity measure s and centrality p we check if:388

AUC(w) >
(
AUC(s) ∧AUC(w)

)
> AUC

( p
d2

)
(18)

Here in Inequality 18, d is the shortest path. If for a particular combination ap-389

proach w, Inequality 18 holds, those AUC values are highlighted using dark grey boxes390

in Tables 2–12. The dark grey boxes indicate if a particular well-established similarity391

measure s ∈ S, when combined with centralities using Equation 2 performs better than392

the similarity measure on its own. The improvement could also be due the product of393

centralities in p which we have in the combination method w. In fact, product of de-394

gree centrality of vi and vj is a similarity measure, Preferential Attachment (PA) from395

Section 4.2. Similarly, it is possible to use a product of another centrality measure as396

a standalone predictor. Due to this we also check if AUC of a particular combination397

w ∈W is greater than the AUC of p
d2 . The denominator of d2 results from findings of398

our earlier study [52], where dividing by shortest path squared mostly improves (where399

it does not, the difference is very small) the score as compared with the standalone400

product of centralities. The analysis in Table 5.1.12 confirms this improvement. As a401

result, if Inequality 18 holds, the inverse of similarity measure improves the predictor402

when used for Equation 2. It also shows that the improvement is due to the combina-403

tion approach we take using Equation 2 but not due to the independent predictability404

of the similarity measure or product of centralities divided by squared shortest path.405

In Sections 5.1.1–5.1.11, when the performance of a combination method is said to be406

better or improved, it entails that Inequality 18 holds.407

In addition to validating Inequality 18, for each of the datasets, we also identify if408

AUC of a predictor is smaller than the AUC of a random predictor. For each predictor,409

AUC is calculated using R package called PRROC [80, 81]. The AUC of a random410

predictor is also generated from the same package. For each dataset AUC of a random411

predictor is calculated from an ensemble of 1000 random predictors [80]. In Tables 2–412

13, values of AUC which are not higher than the AUC of a random predictor for a413

particular dataset, have been highlighted as light grey.414
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5.1.1. Combinations with Katz415

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

Katz1 0.01132 39 0.35702 22 0.13032 8 0.16138 8 0.22064 52 0.00532 60 0.12643 68
Katz2 0.01061 43 0.35138 25 0.13167 5 0.16412 5 0.22377 49 0.00815 38 0.12842 66
Katz3 0.00969 50 0.34395 30 0.13258 2 0.16578 3 0.22576 48 0.00826 37 0.1265 67
DC1 ∗DC2 ∗Katz12 0.01286 29 0.36789 9 0.12653 15 0.14505 22 0.23282 37 0.00499 66 0.12262 71
DC1 ∗DC2 ∗Katz22 0.01229 35 0.36401 13 0.12775 12 0.1479 21 0.23663 35 0.00673 48 0.13064 64
DC1 ∗DC2 ∗Katz32 0.01121 40 0.36078 18 0.12869 10 0.14986 19 0.23854 32 0.00703 46 0.13417 63
BC1 ∗BC2 ∗Katz12 0.01405 15 0.28444 41 0.09813 28 0.11762 40 0.25738 15 0.00534 59 0.12364 70
BC1 ∗BC2 ∗Katz22 0.01351 25 0.28187 42 0.09871 27 0.1207 36 0.26073 12 0.00743 44 0.12947 65
BC1 ∗BC2 ∗Katz32 0.01242 32 0.27896 43 0.09922 26 0.12444 31 0.2619 10 0.00766 41 0.14257 58
CC1 ∗ CC2 ∗Katz12 0.0114 37 0.36158 16 0.13031 9 0.16125 9 0.2234 50 0.00518 62 0.11112 74
CC1 ∗ CC2 ∗Katz22 0.01069 42 0.3567 24 0.13166 6 0.16398 6 0.22683 45 0.00753 43 0.11415 73
CC1 ∗ CC2 ∗Katz32 0.00974 49 0.35033 26 0.13257 3 0.16557 4 0.22879 43 0.00767 40 0.12089 72

Table 2: AUC for Katz with different centralities. Highlights in dark grey represent that Inequality 18 holds,
and light grey represents AUC values lower than the AUC of a random predictor

Katz similarity performs poorly for infectiousContact and MITContact datasets –416

we can see from Table 2, most of the AUC values are lower than random predictors.417

Also, we do not see any combination of Katz performing better than both the standalone418

Katz and the product of centralities divided by distance (Table 13), which means the419

combination does not satisfy Inequality 18. As a result, we do not have any empirical420

evidence suggesting that using inverse of Katz as distance in our proposed approach of421

Equation 2, could entail improved performance.422

5.1.2. Combinations with AdamicAdar (AA)423

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

AA 0.00845 61 0.34479 29 0.13344 1 0.16241 7 0.22985 40 0.01069 26 0.17158 29
DC1 ∗DC2 ∗ AA2 0.01183 36 0.36166 15 0.12377 19 0.11257 42 0.24188 28 0.00541 57 0.16746 42
BC1 ∗BC2 ∗ AA2 0.01263 30 0.2785 45 0.07275 40 0.07279 53 0.26434 8 0.00978 30 0.16848 38
CC1 ∗ CC2 ∗ AA2 0.00947 52 0.35018 27 0.12764 13 0.1371 26 0.23314 36 0.00658 50 0.17386 26

Table 3: AUC for AdamicAdar (AA) with different centralities. Highlights in dark grey represent that
Inequality 18 holds, and light grey represents AUC values lower than the AUC of a random predictor

In Table 3 we also see similar pattern to Katz that, inverse of AdamicAdar (AA)424

similarity measure as a measurement of distance for Equation 2 does not entail im-425

proved4 performance (i.e. it does not satisfy Inequality 18).426

4Throughout this section, whenever we say a combination approach performs better or has improved
performance, we imply it satisfies Inequality 18. Please see Section 5.1 for more details.
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5.1.3. Combinations with Common Neighbours (CN)427

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

CN 0.00825 62 0.3433 31 0.13139 7 0.1572 12 0.22578 47 0.00984 28 0.17138 30
DC1 ∗DC2 ∗ CN 2 0.0114 38 0.36073 19 0.12757 14 0.13528 27 0.23876 30 0.00563 55 0.1673 43
BC1 ∗BC2 ∗ CN 2 0.01236 34 0.27863 44 0.0884 34 0.09332 49 0.26171 11 0.00898 32 0.16842 39
CC1 ∗ CC2 ∗ CN 2 0.00965 51 0.34967 28 0.13173 4 0.15674 13 0.22885 42 0.0064 51 0.17366 28

Table 4: AUC for Common Neighbours (CN) with different centralities. Highlights in dark grey represent
that Inequality 18 holds, and light grey represents AUC values lower than the AUC of a random predictor

We can see in Table 4, that combining inverse of Common Neighbour (CN) with428

centrality (as a measurement of popularity or mass for Equation 2) improves perfor-429

mance of link prediction for one dataset. This is expressed by the fact that one of the430

values of AUC satisfies Inequality 18. There is one such case which is highlighted431

using dark grey box in Table 4. This improvement is seen when the combination of CN432

is with closeness centrality for hep-th dataset. However, except for combination of CN433

with CC in the hep-th dataset, there is no other evidence that any other combination of434

CN satisfies Inequality 18.435

5.1.4. Combinations with Jaccards Coefficient (JC)436

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

JC 0.00476 68 0.16494 57 0.06883 43 0.14048 25 0.22959 41 0.02935 19 0.25703 2
DC1 ∗DC2 ∗ JC2 0.00615 65 0.31865 37 0.00574 73 0.01561 73 0.25224 19 0.00508 64 0.19332 18
BC1 ∗BC2 ∗ JC2 0.00721 64 0.24436 48 0.0103 71 0.02022 72 0.2725 1 0.01009 27 0.16706 44
CC1 ∗ CC2 ∗ JC2 0.00541 67 0.04442 72 0.00489 74 0.0151 74 0.20351 61 0.00524 61 0.2237 7

Table 5: AUC for Jaccards Coefficient (JC) with different centralities. Highlights in dark grey represent that
Inequality 18 holds, and light grey represents AUC values lower than the AUC of a random predictor

In quite a few cases, as presented in Table 5, Jaccards Coefficient (JC) combined437

with betweenness centrality gives improved performance (i.e. satisfies Inequality 18).438

These improvements are seen for contact, hep-ph, and hypertext datasets. In fact, for439

hypertext dataset, JC combined with betweenness centrality entails the best result (i.e.440

AUC value ranked one). These improvements support that, JC combined with between-441

ness centrality using 2 is a better link prediction method than using JC alone. Also,442

there is one case where for hypertext dataset, JC performs better when combined with443

degree centrality. However, closeness centrality combined with Jaccard’s Coefficient444

(JC) does not satisfy Inequality 18.445
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5.1.5. Combinations with Average Commute Time (ACT)446

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

ACT 0.0134 26 0.35688 23 0.08106 38 0.06478 56 0.23875 31 0.00481 68 0.157 51
DC1 ∗DC2 ∗ ACT 2 0.01371 22 0.38183 6 0.08451 35 0.06308 58 0.24294 25 0.00468 71 0.15241 56
BC1 ∗BC2 ∗ ACT 2 0.01508 8 0.30064 38 0.04642 50 0.0492 61 0.26911 5 0.00535 58 0.1515 57
CC1 ∗ CC2 ∗ ACT 2 0.01351 24 0.3632 14 0.08108 37 0.06486 55 0.24524 23 0.00466 73 0.16568 45

Table 6: AUC for Average Commute Time (ACT) with different centralities. Highlights in dark grey rep-
resent that Inequality 18 holds, and light grey represents AUC values lower than the AUC of a random
predictor

In Table 6 there are several cases when ACT combined with any of the three cen-447

trality measures gives better performance than using ACT alone or only centralities448

divided by the squared shortest path. However, such improvements are mainly ob-449

served for the collegeMsg dataset. Other than the collegeMsg dataset, combination of450

ACT with closeness centrality gives better prediction for hep-th. From this analysis we451

can see that, ACT combined with closeness centrality has more predictive power in link452

prediction than ACT combined with degree or betweenness centrality. This is because453

the first combination, ACT with closeness centrality, performs better (i.e. satisfies454

Inequality 18) in two (collegeMsg and hep-th) datasets and the other best perform-455

ing combination, ACT with closeness centrality performs better in only one (hep-th)456

dataset. However, the number of datasets for which the combination with ACT satisfies457

Inequality 18 is lower than what we have seen for JC, MFI, and RPR. Combination of458

JC performs better i.e. satisfies Inequality 18 in two datasets whereas JC, MFI, and459

RPR performs better in three, four, and five datasets respectively.460

5.1.6. Combinations with Average Commute Time Normalised (ACTN)461

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

ACTN 0.00216 74 0.03339 74 0.03996 56 0.0634 57 0.12492 73 0.02379 21 0.17125 31
DC1 ∗DC2 ∗ ACTN 2 0.01398 18 0.38394 5 0.09163 32 0.07025 54 0.24261 27 0.00475 69 0.15853 50
BC1 ∗BC2 ∗ ACTN 2 0.01516 7 0.17047 55 0.02844 64 0.04175 66 0.26346 9 0.00896 33 0.17062 34
CC1 ∗ CC2 ∗ ACTN 2 0.00581 66 0.35745 21 0.04116 55 0.07523 52 0.16509 67 0.00583 54 0.21415 11

Table 7: AUC for Average Commute Time Normalised (ACTN) with different centralities. Highlights in
dark grey represent that Inequality 18 holds, and light grey represents AUC values lower than the AUC of a
random predictor

Table 7 shows two cases of ACTN, where the predictability is improved when com-462

bined with degree centrality for collegeMsg and hep-th datasets. There is also one sim-463

ilar improvement with betweenness centrality for the collegeMsg dataset. However,464

there is no combination with closeness centrality which satisfies Inequality 18. Based465

on the number of datasets where combination with ACTN perform well, we could ar-466

gue there is weak evidence that the two different combinations of ACTN with degree467

and closeness centrality may have good potential for predicting future links.468
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5.1.7. Combinations with Rooted PageRank (RPR)469

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

RPR0.15 0.01025 45 0.11534 62 0.06051 48 0.15376 17 0.23686 34 0.15386 6 0.20978 13
RPR0.25 0.00991 47 0.11244 63 0.06116 46 0.15653 15 0.23106 38 0.12798 8 0.21024 12
DC1 ∗DC2 ∗RPR0.152 0.01403 17 0.33405 33 0.12221* 21 0.15744 11 0.25588 16 0.01163 23 0.16394 46
DC1 ∗DC2 ∗RPR0.252 0.01404 16 0.33078 35 0.12806 11 0.17288 1 0.2575 14 0.01265 22 0.16996 35
BC1 ∗BC2 ∗RPR0.152 0.01499 11 0.17568 51 0.0588 49 0.09366 48 0.26893 6 0.06414 11 0.19521 17
BC1 ∗BC2 ∗RPR0.252 0.01504 10 0.17169 54 0.06406 44 0.10471 43 0.26978 4 0.06413 12 0.20235 15
CC1 ∗ CC2 ∗RPR0.152 0.01058 44 0.1488 58 0.0607 47 0.15398 16 0.24394 24 0.07155 10 0.21519 10
CC1 ∗ CC2 ∗RPR0.252 0.01018 46 0.138 59 0.06137 45 0.15673 14 0.23727 33 0.05944 13 0.21563 9

Table 8: AUC for Rooted PageRank (RPR) with different centralities. Highlights in dark grey represent that
Inequality 18 holds, and light grey represents AUC values lower than the AUC of a random predictor

Inverse of Rooted PageRank (RPR) is one of the best measures for distance (ac-470

cording to Equation 2) from Section 4.2. Table 8 shows that for hep-th, collegeMsg,471

hypertext and, hep-ph datasets, when RPR is combined with degree centrality, the com-472

bination outperforms individual performance of RPR or degree centrality divided by473

shortest path (i.e. satisfies Inequality 18). Also, for collegeMsg, hep-th and, Contact474

datasets similar improvement is observed when RPR is combined with betweenness475

centrality. Only in one case (with two different values for α parameter of RPR) we476

see that combination of RPR with closeness centrality satisfies Inequality 18. From477

this analysis it is apparent that, RPR combined with degree centrality could be a better478

choice for link prediction than only using RPR.479

5.1.8. Combinations with Pseudoinverse of the Laplacian matrix (PsInLap)480

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

PsInLap 0.00909 54 0.2641 47 0.03336 61 0.10005 45 0.21214 59 0.25286 1 0.17385 27
DC1 ∗DC2 ∗ PsInLap2 0.01239 33 0.33506 32 0.02588 65 0.08148 50 0.15964 68 0.17834 4 0.16009 49
BC1 ∗BC2 ∗ PsInLap2 0.01374 21 0.08809 67 0.02189 68 0.04634 62 0.20339 62 0.1288 7 0.24667 3
CC1 ∗ CC2 ∗ PsInLap2 0.00245 73 0.03747 73 0.00873 72 0.03238 70 0.11912 74 0.23169 2 0.28475 1

Table 9: AUC for Pseudoinverse of the Laplacian matrix (PsInLap) with different centralities. Highlights in
dark grey represent that Inequality 18 holds, and light grey represents AUC values lower than the AUC of a
random predictor

In Table 9, there are two combinations (with betweenness centrality and closeness481

centrality) with Pseudoinverse of the Laplacian matrix (PsInLap) which perform better482

than PsInLap or product of these centralities divided by shortest path. Because these483

improvements are only seen for one dataset, we do not have strong evidence to support484

the use of the combination of PsInLap using Equation 2 for link prediction.485
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5.1.9. Combinations with Local Path Index (LPI)486

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

LPIeps0.01 0.01495 12 0.36019 20 0.12541 16 0.15286 18 0.21593 55 0.00762 42 0.16774 40
LPIeps0.02 0.01547 5 0.3609 17 0.12387 18 0.14961 20 0.21409 56 0.0073 45 0.16773 41
DC1 ∗DC2 ∗ LPIeps0.012 0.01506 9 0.36898 8 0.12182 22 0.1301 28 0.22758 44 0.00627 52 0.16357 47
DC1 ∗DC2 ∗ LPIeps0.022 0.01557 3 0.36979 7 0.12083 23 0.12967 29 0.22596 46 0.00603 53 0.16355 48
BC1 ∗BC2 ∗ LPIeps0.012 0.0161 2 0.28604 40 0.09365 31 0.09973 46 0.25459 17 0.00839 36 0.16875 37
BC1 ∗BC2 ∗ LPIeps0.022 0.01663 1 0.28689 39 0.09398 30 0.10043 44 0.25346 18 0.00796 39 0.16882 36
CC1 ∗ CC2 ∗ LPIeps0.012 0.01491 14 0.36414 12 0.12466 17 0.14473 23 0.21932 53 0.007 47 0.17081 33
CC1 ∗ CC2 ∗ LPIeps0.022 0.01556 4 0.36552 11 0.1234 20 0.14378 24 0.21743 54 0.00665 49 0.17082 32

Table 10: AUC for Local Path Index (LPI) with different centralities. Highlights in dark grey represent that
Inequality 18 holds, and light grey represents AUC values lower than the AUC of a random predictor

From Table 10 we could see that Local Path Index (LPI) performs better when com-487

bined with betweenness centrality than on its own. This improvement can be observed488

for collegeMsg and MITContact datasets. In addition, for collegeMsg dataset, LPI489

improves when it is combined with degree centrality and closeness centrality. These490

improvements are not due to the product of centralities or LPI itself but due to the ap-491

plied combination. This is because these combinations satisfy Inequality 18. However,492

there is more prevalent evidence that, LPI combined with betweenness centrality is a493

better predictor of future links than LPI combined with degree centrality.494

5.1.10. Combinations with Leicht-Holme-Newman Global Index (LGI)495

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

LGI0.5 0.00418 70 0.05162 70 0.04235 54 0.12159 35 0.14685 70 0.04951 14 0.18933 21
LGI0.7 0.00385 72 0.04821 71 0.04477 52 0.12031 39 0.14028 72 0.04178 15 0.1923 20
DC1 ∗DC2 ∗ LGI0.52 0.00851 59 0.32063 36 0.11859 24 0.16784 2 0.19186 65 0.01133 25 0.17625 22
DC1 ∗DC2 ∗ LGI0.72 0.0094 53 0.33098 34 0.11305 25 0.15801 10 0.18625 66 0.00982 29 0.17523 24
BC1 ∗BC2 ∗ LGI0.52 0.01244 31 0.13035 61 0.07136 42 0.12059 37 0.24265 26 0.03963 16 0.22435 6
BC1 ∗BC2 ∗ LGI0.72 0.01333 27 0.13741 60 0.07271 41 0.11554 41 0.23936 29 0.02988 17 0.22917 4
CC1 ∗ CC2 ∗ LGI0.52 0.0043 69 0.06027 69 0.04242 53 0.12161 34 0.15047 69 0.02967 18 0.19328 19
CC1 ∗ CC2 ∗ LGI0.72 0.00398 71 0.06144 68 0.04486 51 0.12031 38 0.1441 71 0.02439 20 0.19758 16

Table 11: AUC for Leicht-Holme-Newman Global Index (LGI) with different centralities. Highlights in
dark grey represent that Inequality 18 holds, and light grey represents AUC values lower than the AUC of a
random predictor

In Table 11 we can see that Leicht-Holme-Newman Global Index (LGI) when com-496

bined with degree centrality always exhibits improved performance for hep-th and hep-497

ph datasets. These improvements might indicate that, this combination performs well498

for collaboration networks. Because hep-th and hep-ph both are the only collaboration499

networks we have. These improvements could suggest that for collaboration networks,500

combining LGI with degree centrality using Equation 2 could be a good approach for501

predicting future collaborations. However, this claim for collaboration network needs502

to be corroborated by evaluating this combination for more network datasets of col-503

laboration networks. Performance for combination of LGI with betweenness centrality504

for the hep-th and MITContact datasets, and closeness centrality for hep-ph dataset, are505

also improved. Here, we have weak evidence of degree and betweenness centrality to506

perform better when combined with LGI, thus a better predictor than LGI itself.507
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5.1.11. Combinations with Matrix Forest Index (MFI)508

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

MFI 0.00978 48 0.27332 46 0.03846 58 0.12256 33 0.21244 57 0.21582 3 0.17394 25
DC1 ∗DC2 ∗MFI2 0.01397 19 0.38795 3 0.09617 29 0.12733 30 0.24704 20 0.00846 35 0.13802 62
BC1 ∗BC2 ∗MFI2 0.01535 6 0.20197 49 0.03556 60 0.06253 59 0.27084 2 0.07619 9 0.15345 55
CC1 ∗ CC2 ∗MFI2 0.01114 41 0.36762 10 0.03858 57 0.12314 32 0.26806 7 0.15773 5 0.22291 8

Table 12: AUC for Matrix Forest Index (MFI) with different centralities. Highlights in dark grey represent
that Inequality 18 holds, and light grey represents AUC values lower than the AUC of a random predictor

Table 12 shows that Matrix Forest Index (MFI) when combined with degree cen-509

trality using Equation 2 outperforms the predictability of 1) MFI when used on its own510

and 2) product of degree centrality divided by shortest path. This can be observed for511

four out of seven datasets: collegeMsg, hep-th, hep-ph, and hypertext. Also, in two512

datasets, similar improvement is seen when combined with closeness (hep-ph and hy-513

pertext) and betweenness (collegeMsg and hypertext) centrality. We hence argue that514

MFI combined with degree centrality is a strong method for link prediction.515

5.1.12. Combinations with Shortest Path516

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

DC1 0.00778 63 0.10156 64 0.03643 59 0.04261 65 0.20073 64 0.00543 56 0.15655 52
DC2 0.00893 56 0.17552 52 0.02298 66 0.03956 68 0.20564 60 0.00472 70 0.12636 69
BC1 0.00886 57 0.09526 65 0.01959 69 0.0358 69 0.22064 51 0.00947 31 0.15653 53
BC2 0.00907 55 0.18862 50 0.01516 70 0.03071 71 0.21233 58 0.01139 24 0.13938 59
CC1 0.00847 60 0.0902 66 0.03301 62 0.04356 64 0.23007 39 0.00507 65 0.20749 14
CC2 0.00865 58 0.16996 56 0.02245 67 0.04154 67 0.20218 63 0.00449 74 0.17528 23
DC1 ∗DC2 0.01377 20 0.38969 2 0.08237 36 0.05854 60 0.24605 21 0.00466 72 0.13807 61
DC1 ∗DC2 ∗ 1/sp2 0.0136 23 0.38976 1 0.08983 33 0.07696 51 0.24601 22 0.00483 67 0.13812 60
BC1 ∗BC2 ∗ 1/sp2 0.01492 13 0.17511 53 0.0288 63 0.04596 63 0.26983 3 0.0085 34 0.15626 54
CC1 ∗ CC2 ∗ 1/sp2 0.01314 28 0.38662 4 0.07964 39 0.09746 47 0.25756 13 0.00511 63 0.22749 5

Table 13: AUC for Shortest path with different centralities. Highlights in dark grey represent that a combina-
tion method performs better than PA, and light grey represents AUC values lower than the AUC of a random
predictor

From Table 13 we could see that for the case where we use the shortest path in517

combination with degree centrality, even with a slight variation of shortest path length518

(due to the small-world phenomena the range of shortest path tend to be small) gives519

better performance than only using the product of degree centrality i.e. the Preferential520

Attachment (PA) similarity measurement. These improvements are seen in five out of521

seven datasets. This finding is consistent with findings by Wahid-Ul-Ashraf et al. [52].522

Here we have compared degree centrality combined with the shortest path against PA523

because PA is the product of degree centrality. The baseline method here is PA instead524

of Inequality 18 as the combination of centrality and the shortest path itself served525

as baselines for other results of combination methods discussed so far. PA is a well-526

established link prediction method that we have discussed further in Section 4.2 [26].527

Other than the DC with the shortest path, BC and CC combined with the shortest path528

also perform better than PA. BC with the shortest path performs better in four datasets529
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and CC with the shortest path performs better in three datasets (although it performs530

better than PA for the infectiousContact dataset the predictability is not better than a531

random predictor).532

5.2. Best Methods533

Methods which satisfy Inequality 18 are the only ones which we analyse here. The534

reason for this selection is discussed in Section 5.1. From the selected combination535

methods, we use three different evaluation techniques to calculate scores in Table 14.536

The ‘Dataset variability score’ is the number of datasets for which a combination ap-537

proach satisfies Inequality 18. We also calculate a score based on ranks. In our analysis538

the lowest rank of a method is 74, as we have 74 methods in total including the stan-539

dalone methods from Tables 2-13. We subtract 73 (so that the worst method with rank540

74 will have a score 1) from the rank of a method in a dataset to get a score instead541

of rank. Afterwards, we sum the scores up to get the final score which is represented542

as ‘Score (73-Rank)’ in the table. This score not only tells us for how many datasets a543

method performs well but also that method’s relative performance among all the other544

methods. Finally, we normalise ‘Score (73-Rank)’ by the number of datasets for which545

a method satisfies Inequality 18. This normalised version of the rank-based score is546

represented as ‘Normalised Score (73-Rank)’ and considers a combination method’s547

rank based on the average performance on all datasets.548
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Method
college
Msg contact hep-th hep-ph hypertext infectious

Contact
MIT
Contact

Dataset
Variablity
Score

Score
(73-Rank)

Normalised
Score
(73-Rank)

RPR0.25+DC Y(16) Y(11) Y(1) Y(14) 4*** 254*** 63.5
MFI+BC Y(6) Y(2) 2* 214** 107***
MFI+DC Y(19) Y(29) Y(30) Y(20) 4*** 198* 49.5
RPR0.15+DC Y(17) Y(11) Y(16) 3** 178 59.3
DC+SP Y(1) Y(33) Y(51) Y(60) 3** 151 50.3
LGI0.5+DC Y(24) Y(2) 2* 122 61
LGI0.7+DC Y(25) Y(10) 2* 113 56.5
LPIeps0.02+BC Y(1) Y(36) 2* 111 55.5
LPIeps0.01+BC Y(2) Y(37) 2* 109 54.5
MFI+CC Y(32) Y(7) 2* 109 54.5
LGI0.7+BC Y(41) Y(4) 2* 103 51.5
JC+BC Y(48) Y(72) Y(1) 3** 101 33.67
LGI0.5+BC Y(42) Y(6) 2* 100 50
ACTN+DC Y(18) Y(32) 2* 98 49
RPR0.25+BC Y(10) Y(44) 2* 94 47
ACT+CC Y(24) Y(37) 2* 87 43.5
RPR0.15+BC Y(11) Y(51) 2* 86 43
PsInLap+CC Y(1) 1 73 73**
PsInLap+BC Y(3) 1 71 71*
LPIeps0.02+DC Y(3) 1 71 71*
CN+CC Y(4) 1 70 70
LPIeps0.02+CC Y(4) 1 70 70
ACTN+BC Y(7) 1 67 67
ACT+BC Y(8) 1 66 66
LPIeps0.01+DC Y(9) 1 65 65
RPR0.25+CC Y(14) 1 60 60
RPR0.15+CC Y(16) 1 58 58
JC+DC Y(19) 1 55 55
ACT+DC Y(22) 1 52 52
LGI0.5+CC Y(34) 1 40 40
LGI0.7+CC Y(38) 1 36 36

Table 14: Methods which satisfy Inequality 18. The dataset(s), in which a method satisfied Inequality 18
is marked as Y, and the rank of that method mentioned in the parenthesis, i.e. Y(rank). First best score is
marked with ***, second best with** and third best with *. For all the scores, higher is better. The ‘+’
operator entails a combination based on the Equation 2.

5.3. Results Analysis for each Dataset549

Based on the methods we use and the combination of them we conclude that some550

datasets can be be more predictable than others. By comparing AUC of the PR curves,551

it seems that hep-th and collegeMsg datasets are the most predictable, as only two552

methods perform worse than a random predictor. Overall the collaboration networks553

hep-th and hep-ph have good predictability. Only two methods for the hep-th and three554

methods for the hep-ph collaboration network perform worse than a random predictor.555

On the other hand, infectiousContact dataset has the lowest predictability – there are 37556

out of 74 (including combinations) methods whose performance is worse than a random557

predictor. The second worst dataset in terms of predictability is MITContact where 11558

methods perform lower than a random predictor. For hypertext we have six methods559

performing worse than a random predictor. Overall, except contact dataset, where we560

have only three methods with AUC lower than a random predictor, all the networks561

representing human contact seem to have low predictability. We discuss below the562

results from the perspective of individual datasets and interpret those outcomes in the563
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context of characteristics of each social network tested:564

1. collegeMsg: Overall, performance of methods on collegeMsg does not appear565

to be very good when compared to the remaining datasets. However, when we566

compare with a random predictor, many of the predictors seem to perform better.567

The best performing methods for collegeMsg are those based on LPI in combina-568

tion with BC. As LPI in its nature is similar to CN it is surprising that the highest569

rank for CN–based method for collegeMsg dataset is ranked 34. It means that570

consideration of friend-of-friend-of-friend (path of length three) in LPI rather571

than friend-of-a-friend (CN) makes a (positive) difference for prediction.572

2. contact: For contact network the best performing methods are the ones based573

on DC and the top ranked is DC coupled with the shortest path. Also, DC on its574

own (rank two), DC+MFI (rank three), CC+shortest path (rank four), DC+ACTN575

(rank five) and DC+ACT (rank six) perform well. All these methods are path-576

based but they must be combined with information about node degree to achieve577

good performance, e.g. DC+ACTN has rank five and ACTN on its own is last in578

the ranking (rank 74). However, this improved performance when combined with579

DC might be due to the fact that Preferential Attachment (product of degrees) is580

the second best predictor. Thus, although dividing DC by ACTN still makes it a581

good predictor, its performance is worse than when only degree product is used.582

3. hep-th: Although the best method for hep-th is AA, the best performing set583

of methods are those based on Katz and combined with CC. Katz2 and Katz3584

also performed very well with ranks five and two respectively. Also, methods585

combing CC with Katz3, CN, and Katz2 were performing very well (rank three,586

four, and six respectively). However, standalone Katz performs better than in587

a combination. On the other hand, note that again, we need to have a proper588

combination of metrics because CC combined with JC gives the poorest perfor-589

mance. It shows that taking into account the greater network (Katz enables that)590

not only the immediate neighbourhood of a node (JC) may result in better perfor-591

mance. It is surprising that although AA is very similar to JC, their performance592

differs so much with AA being ranked one and JC - 43 (0.06 accuracy for JC and593

0.13 for AA). The interpretation may be that AA gives importance to the degree594

of common neighbour and if common neighbour degree is lower then there is a595

bigger chance that he/she will introduce two of his/her neighbours to each other.596

JC on the other hand focuses only on overall number of common friends. This597

indicates that when developing new prediction methods, we should also focus on598

other factors and capacity of other nodes rather than just the nodes in question.599

4. hep-ph: Overall, for hep-ph dataset methods based on Katz and Katz combined600

with CC and DC perform best. However, the top two results are those that com-601

bine DC with RPR and LGI. Methods based on JC combined with different cen-602

tralities give the worst results. It seems that merging local information (DC)603

with knowledge about paths throughout the network and appropriately weight-604

ing them (Katz, RPR, LGI) gives the best results. Similarity RPR and LGI com-605

bined with degree centrality outperform DC, RPR or LGI used as a standalone606

predictor. Similarly, for this dataset, LGI performs better (compared with using607

it independently) when combined with betweenness and closeness centrality.608
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5. hypertext: For the hypertext dataset the best set of methods are those that use BC609

as the centrality measure which is the most overreaching centrality out of those610

we analysed. BC is present in 11 out of 13 top ranked methods for this dataset.611

This improvement could be explained by looking at Table 13. We can see that612

BC combined with shortest path is the third best predictor for this dataset. In613

addition, Table 5 shows that JC works well for a measurement of distance for614

hypertext dataset when JC is combined with BC, it has the best predictability.615

6. infectiousContact: Most of the predictors perform poorly for the infectiouseC-616

ontact dataset. This low predictability may be indicative of the dataset containing617

many random interactions between people. Each of the edges represents inter-618

action between two people at the INFECTIOUS: STAY AWAY exhibition at the619

Science Gallery in Dublin, Ireland, from April 17th to July 17th, 2009 [74].620

This dataset captured interactions between members of general public at the ex-621

hibition [74]. Other contact networks however, such as the hypertext network,622

capture interaction between the attendees [75]. It would be more likely that in the623

conference people would have interacted less randomly than the exhibition. This624

is because in the conference, people would speak to other people who might have625

similar research interests. Also, in a conference one person who might have a626

very interesting research contribution might get more interaction with other peo-627

ple. Methods based on PsInLap work best for infectiousContact network. It is628

very interesting as PsInLap can be interpreted using the concept of conductance629

and it can be very much connected with the fact that the network is a set of630

face-to-face interactions that took place in one location.631

7. MITContact: This dataset is interesting as methods that include Katz are the632

ones whose performance is the poorest and this is very uncommon that Katz633

performance capability is so low. 11 out of 12 worst performing methods include634

Katz element. However, Katz seems to perform better for collaboration networks635

as it has been seen in the study by Liben-Nowell and Kleinberg [18]. We also see636

similar result in Table 2 that for both of the collaboration networks hep-th and637

hep-ph, performance of Katz is good. It is interesting to see that when PsInLap638

is combined with closeness centrality and betweenness centrality, it outperforms639

PsInLap used as a standalone predictor. Also, using inverse of PsInLap instead640

of geodesic path as a measurement of distance gives better performance for this641

dataset only. In addition, LPI combined with BC satisfies Inequality 18.642

5.4. Computational Complexity643

In terms of computational complexity, we have discussed in Section 5 that we need644

to make predictions for |V |(|V |−1)
2 − |E| links in total. Thus the time complexity is645

O(|V |2), if we wish to predict all possible non-existing links based on Equation 2.646

However, based on different algorithms, each of the methods (i.e. CN, Katz, rooted647

PageRank etc.) we have used in our combination approach may have different time648

and space complexities. For example, for CN, JC and AA, where traversal of node649

neighbourhood is required, the computational complexity is at least O(|V |b2), where650

b is the average degree of the graph [82, 64]. Among all the methods, PA has the651

lowest computational complexity ofO(2|V |), as we only need to multiply the predicted652
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pair of nodes’ degree. RPR could be calculated using different algorithms and the653

complexities vary from O(|V |) to O(|V |2) (in case of a sparse network) [83, 84]. The654

computational complexity of calculating an inverse or pseudoinverse of a matrix is655

usually O(|V |3) [85] which is required for MFI, PsInLap, ACT, ACTN, Katz, and656

LGI. However, there is a faster alternative algorithm proposed especially for Katz,657

reducing the computational complexity from O(|V |3) to O(|V |+ |E|) [86]. LPI has a658

computational complexity of O(|V |b3) [64].659

As for centralities, DC has a time complexity of O(|V |2). BC has O(|V ||E|) [56]660

and CC also has the same time complexity of O(|V ||E|) [56, 87, 57]. However, the661

complexity may vary depending on the algorithm used as pointed out in [57].662

For shortest path calculation, there is a range of algorithms available and time com-663

plexity depends on the used algorithm. Algorithm selection for shortest path calcula-664

tion of a graph is based on several factors, such as available computational power and665

memory, graph type (weighted, directed etc.), graph size, and graph density. Addition-666

ally, calculating a selective set of pairs’ shortest path or calculating an all pair shortest667

path could require different algorithms, resulting in different computational and space668

complexities. For example, all pair shortest path calculation using the Floyd–Warshall669

algorithm has a time complexity of O(|V |3) [88] and the Seidel’s algorithm has com-670

plexity of O(H(|V |)log|V |) (where H(|V |) is the time complexity of multiplying two671

|V | × |V | matrices of small integers) [89]. The time complexity of the Johnson’s all672

pair shortest path is O(min(|V |2+ 1
k + |V ||E|, |V |2log|V |+ |V ||E|log|V |)) [90].673

The space complexity of CN, AA, JC is O(|V |b2) [64] and for a matrix inversion it674

is O(|V |2) [64]. Floyd–Warshall algorithm has a space complexity of O(|V |2).675

All the time complexities discussed here are based on a serial processor. However,676

with the advancement of GPU and distributed computing, parallel and distributed graph677

algorithms are emerging and can be found in the literature very often. For example, You678

et al. [91] proposed an algorithms to calculate degree, closeness, and betweenness cen-679

trality measures in directed graphs. In terms of GPU computation, Gunrock is an ex-680

cellent library which can calculate different centrality measures and shortest path [92].681

In his paper Wang et al. [92] used very large graphs with millions of vertices and edges682

and shown the performance of their GPU computation from their graph analysis li-683

brary Gunrock, which is much better than the performance of a serial processor. There684

is also another graph processing library with GPU computation available, which comes685

free with CUDA (NVIDIA’s parallel computing framework) named nvGraphs, which686

shows a very fast PageRank calculation on a very large 1.5 billion edge dataset [93].687

The library currently supports PageRank, single-source shortest path, and single-source688

widest path calculation [93]. The recent revolution of the GPU computation is not only689

benefiting deep learning but also graph computation [94, 95, 96, 97, 98].690

6. Conclusions and Future Work691

In this paper, we proposed a new approach to link prediction in social networks,692

inspired by Newton’s law of universal gravitation, which states that the force exerted693

between two masses is proportional to the product of those masses, and inversely pro-694

portional to the squared distance between their centres [50]. We have performed exten-695

sive empirical analysis to investigate the potential of our link prediction method.696
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Our experiments indicate that in many cases a combination method, using Equa-697

tion 2 improves performance with respect to either standalone similarity measure used698

in that combination or the product of centralities divided by distance squared (Inequal-699

ity 18). In cases where we see these improvements (i.e. for all the datasets except700

infectiousContact), we have also seen that AUC values are higher than that of a ran-701

dom predictor. The significant improvements of RPR, LGI,and MFI in terms of the702

AUC on average, demonstrate that our combination approach has great potential as a703

link prediction method. Combinations of LGI, shortest path, and MFI with DC work704

well for both of the collaboration networks, hep-th and hep-ph. ACT, ACTN with DC,705

LPI with DC, BC, and CC, MFI and RPR with DC and BC, work best for collegeMsg706

dataset. JC with BC and shortest path with DC work best for contact dataset. As for707

hypertext dataset JC with BC and DC, RPR with DC, MFI with DC, BC, and CC, work708

best. In MITContact dataset, PSInLap with BC and CC, LPI with BC, LGI with BC709

perform best. As for infectiousContact none of the combinations works well. In fact,710

most of the standalone similarity measures perform worse than a random predictor.711

The exception is PsInLap which works best for infectiousContact dataset.712

From our empirical analysis, we have concluded that there are a number of combi-713

nations which perform better than others. The combination of RPR with degree cen-714

trality in Table 5.1.7 can be used as a better predictor than using RPR on its own. In715

addition to RPR, LGI with DC for collaboration networks, MFI with DC, and DC with716

shortest paths are the best overall combinations that we found in our study.717

One powerful property of our approach also allows us to combine local and global718

measures (e.g. DC with RPR, which considers the larger structure of the surrounding719

vertex or vertices such) for link prediction. For a pair of vertices, it might happen that720

the global structure may not indicate link formation probability strongly enough, but721

the local structure indicates otherwise or vice versa. Due to the combination of local722

and global measures, in such cases, the final score of link formation would still be723

higher compared with considering only a local or global measure. Thus, a combination724

of global and local may improve link formation predictability for pairs of nodes which725

are likely to be ignored (i.e. false negatives) by a predictor which considers only single726

local or global measure.727

We have discussed similarities between physical networks and social networks in728

Sections 1 and 2.2. Our Newtonian gravity inspired link prediction method shows that729

even at a local level the dynamics of a social network can be interpreted through phys-730

ical law. The similarity between physical and social world are often encountered. Per-731

haps one of the most well-known examples is the similarity between complex weather732

models and social dynamics [99], which supports the idea of benefiting from this kind733

of similarities between social and physical world. The benefits would come from cross-734

applying modelling and analytical tools from these domains. However, most of these735

similarities are emergent phenomena due to the characteristics of a complex system,736

at a global level. For example, we have discussed how physical and social networks737

exhibit similar global properties like high clustering coefficient, degree centrality etc.738

However, our study shows that we may also benefit from applying laws from physical739

world to a social network even at the local level.740

The inverse square relation between physical quantity (or intensity) and distance741

is widely found in nature and is known as the Inverse-Square Law. Some examples742
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include sound transmission [100], force between two electrostatic charges [101], inten-743

sity of radiation [102] and more. The quadratic form of inverse squared distance that744

we observe for several cases of intensity or quantity in nature is due to three spatial di-745

mensions, which characterise our physical world [103]. In our case of social networks,746

we are directly using the same Inverse-Square Law found in nature. For example, in747

the combination method of RPR with DC, the inverse of RPR is the path length analo-748

gous to the distance in Newton’s gravitational law in Equation 1. The squared distance749

in Newton’s law is a result of three spatial dimensions. But for our approach in Equa-750

tion 2, other than the quadratic order, it might be possible to obtain better performance751

by using an order of one, three, four etc of the RPR. Optimal order of the dissimilarity752

measure could be learnt from the ground truth of the data such that the dimension for753

which using Equation 2 gives the best prediction result. This is something we aim to754

do in future and goes beyond the scope of one study.755

In terms of computational and space complexity, we have discussed in Section 5.4756

that we need to make a prediction of |V |(|V |−1)
2 − |E| links in total. Thus the worst757

case time complexity is at least O(|V |2), if we wish to predict all possible non-existing758

links. However, each of the methods (i.e. Katz, rooted PageRank etc.) we have used in759

our combination approach may have different time and space complexity. For example760

computational complexity of different algorithms to calculate Katz could range from761

O(|V |3) to O(|V |+ |E|) [86]. A detailed and in-depth analysis of the complexity goes762

beyond the scope of one paper and we hope to discuss this in our future work.763
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ity versus similarity in growing networks, Nature 489 (2012) 537–540.864

[41] P. Thwe, Proposed approach for web page access prediction using popularity865

and similarity based page rank algorithm, International Journal of Scientific &866

Technology Research 2 (2013) 240–246.867

[42] L. C. Freeman, A set of measures of centrality based on betweenness, Sociom-868

etry (1977) 35–41.869

[43] M. J. Bannister, D. Eppstein, M. T. Goodrich, L. Trott, Force-directed graph870

drawing using social gravity and scaling, in: International Symposium on Graph871

Drawing, Springer, 2012, pp. 414–425.872
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