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Abstract 

In this work, two special aluminium cruciform specimens are designed and tested in 

an ultrasonic fatigue machine. They were designed based on Single-Input-Multiple-Output 

(SIMO) modal analysis to induce in-plane biaxial stress combinations (in-phase T-T and out-

of-phase C-T) when at resonance at 20 kHz. The geometries were subjected to both numerical 

analysis and experimental testing to understand if they can indeed create the intended biaxial 

state of stresses. Both numerical and experimental results showed an impact of nearby 

resonant modes of non-interest on the correct functioning of the specimens, especially 

regarding the T-T specimen where a large deviation from the mode of interest was measured. 

This means that future work includes re-designing T-T specimens taking into account these 

mode shapes. Only out-of-phase specimens demonstrated to work properly and tests until 

failure were conducted. The first failure results showed to be consistent with literature when 

out-of-phase biaxial stress is applied cyclically.  
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Nomenclature 

f, frequency; 

R, stress ratio;  



L, D, RM, Rm, dd, t, tt , w, Ᵽ, specimen dimension designations;  

U, displacement;  

σ, stress;  

B, biaxial ratio; 

 

1. Introduction 

The study of material damage in dynamic systems or structures is necessary to ensure 

their safety and reliability since fatigue is one of the main causes of material failure 1. For 

example, on a study of a failed crankshaft subjected to dynamic loads 2, it is shown how 

important it is to understand the reasons behind fatigue failure so that preventive measures 

can be taken in the future. With the evolution of technology, systems and machines have 

become more and more complex. At the same time, there is a demand to achieve greater 

performances with increased reliability; hence, more thorough fatigue studies are required 

for higher number of cycles and different load types and combinations. 

Since the realisation that the fatigue limit in the classical sense is no longer applicable 

3,4, the corresponding fatigue regime needs to be fully comprehended and characterised. This 

corresponds to life beyond 107 cycles, the Very High Cycle Fatigue (VHCF) regime. 

Conventional fatigue testing methods usually apply the stress cycle in a low frequency 

setting. Even with a machine operating at 100 Hz frequency the time required to study a 

certain material in the VHCF regime will be unfeasible and energy-wise very consuming. For 

example, if one would want to achieve 109 cycles at 100 Hz, a single test would take around 

4 months to complete, whereas in ultrasonic fatigue testing at 20 kHz this time could be 

reduced, in principle, to less than one day, if no interruptions had to be made. 

Because conventional fatigue machines would take an unfeasible amount of time to 

achieve cycles between 106 and 109 (VHCF regime) a new type of machine was developed 

capable of inducing high frequency cycles: the ultrasonic fatigue testing machine. Mason in 

1950 was the first to build such machine successfully establishing the standard frequency of 

20 kHz 4. In ultrasonic testing, the cƻƳǇƻƴŜƴǘǎΩ ǎŜǘ ƛǎ ŜȄŎƛǘŜŘ ƛƴ ǊŜǎƻƴŀƴŎŜ ƛƴ ƻǊŘŜǊ ǘƻ ŀǇǇƭȅ 



high stresses at high frequencies. All the parts are designed to have the resonant mode of 

interest tuned to the working frequency of the actuator (typically, a piezoelectric transducer). 

The specimen is then excited at a specific resonant mode that induces higher stresses within 

a well-determined section of the specimen for the fatigue study. 

The first studies with ultrasonic fatigue machines applied uniaxial 

tension/compression (stress ratio Ὑ ρ) using a booster and horn to amplify the 

displacements introduced by the transducer. Many different materials have been tested, such 

as alloy steels 5, aluminium 6,7 and copper 8. Also, several variants of the test where different 

parameters are controlled and analysed 9, like corrosion 10 and fretting 11, were conducted. 

With the development of ultrasonic fatigue testing many new trends capable of 

applying different stress combinations than the first uniaxial tension/compression were 

created, like uniaxial bending 12 and biaxial bending 13, torsion 5,14, or even combined 

multiaxial tension/compression with torsion 15,16. All the aforementioned ultrasonic fatigue 

tests are based on the same principles: the specimens are designed so that they resonate at 

ǘƘŜ ƳŀŎƘƛƴŜΩǎ ƻǇŜǊŀǘƛƴƎ ŦǊŜǉǳŜƴŎȅ όǘȅǇƛŎŀƭƭȅ нл ƪIȊύ with mode shapes that induce well-

determined stresses at a well-determined location of the specimen where the nucleation of 

fatigue cracks will occur. 

In this work, ultrasonic fatigue tests were conducted to analyse cruciform test 

specimens that were purposely designed to induce an orthogonal biaxial state of stress at its 

centre when resonating at 20 kHz, as initially proposed by Montalvão and Wren 17. The 

designs for VHCF are based on other cruciform specimens that have been created and 

optimised by several authors for the study of fatigue for this type of complex biaxial stress 

cycle in conventional non-ultrasonic machines 18ς21. Two cruciform geometries were tested, 

one with in-phase tension-tension biaxial stresses (T-T) and the second with out-of-phase 

tension-compression biaxial stresses (C-T). A uniaxial ultrasonic fatigue testing machine with 

a single actuator operating at 20 kHz coupled with a booster and a horn was used to excite 

one of the cruciform specimenǎΩ ǊŜǎƻƴŀƴǘ ƳƻŘŜ ǎƘŀǇŜǎ ό¢-T or C-T) at a single coordinate (an 

anti-node) with a point load. Since the specimens are cruciform, it will be shown that a biaxial 

state of stress is induced at the centre of the specimen even if only one actuator is used.  

 



2. Theoretical background and Methodology 

As it was mentioned above, two types of cruciform specimens were designed, 

numerically analysed, manufactured and tested, based on the designs from 21,22, and were 

adapted following the guidelines from 17, so that they could be tested under ultrasonic fatigue 

loads in the uniaxial tension-compression test machine developed at Instituto Superior 

Técnico (University of Lisbon) 23. The specimens have a cruciform shape, and both induce in-

plane axial-axial stress combinations, although in one design the stresses are in-phase 

(tension-tension or T-T) while in the other one they are out-of-phase (tension-compression 

or C-T). This specific geometrical shape is already in use in the conventional way of applying 

loads with four actuators 24. 

For the transformation from the conventional to the ultrasonic fatigue testing the 

base geometry shape form is kept, but the dimensions are changed so that the specimens 

have a specific resonant mode of interest around the working frequency of 20 kHz. The 

dimensions are dependent on the material of choice and the resonant mode of interest; thus, 

two geometries are created for tension-tension (T-T) and compression-tension (C-T) stress 

induced combinations. The analysed and tested geometries were obtained based on one of 

the co-authors previous work and experience 17. 

The two types of cruciform specimens in this study are excited in two different 

resonant modes. Both specimens follow a certain geometry with special relations between 

the dimensions. These relations were obtained from an optimisation of the geometry 

proposed by 22. The geometry follows the design in Figure 1 with dimensions given by 

equations (1) to (6). 

Ὑὓὸ πȢπσχωὸ πȢψςςσὸ υȢυχτωὸ ρςȢυυυὸ υσȢψτ   (1) 

Ὑάὸ πȢπςσφὸ πȢσυπρὸ πȢυπσφὸ ςςȢρψτ     (2) 

ὨὨὸ πȢπςρὸ πȢτφφψὸ σȢςτψὸ χȢωτυςὸ τφȢςςτ    (3) 

Ὀὸ πȢπστςὸ πȢχωσφὸ φȢπσωψὸ τȢυυςφȢτȠ τ ὸ ρπάά   (4) 

—ὸ πȢχφςρὸ ρυȢτψτὸ ωςȢχχτὸ ςρρȢχψȠ τ ὸ ρπάά   (5) 

ὸὸὸ πȢρυὸȠὸ ψάά         (6) 



 

 

Fig. 1: Technical drawing of the cruciform specimen and designations of each dimension 

variation 17,22. 

To achieve a working specimen, i.e. one that has the intended in-phase or out-of-

phase mode shape tuned at 20 kHz, the method described in 17, that makes use of equations 

(1) to (6) and the application of a dimensional tuning scale factor, is followed. Therefore, the 

specimens used in this paper have the same dimensions as the ones proposed in 17 (table 1). 

 

Table 1: Dimensions and estimated mode frequencies of the ultrasonic specimens 17. 

 
Original Design from 

22 (ὸ ρπÍÍ) 

Ultrasonic Design 

(C-T) from 17 

Ultrasonic Design 

(T-T) from 17 

ίcale 

factor 
1 0.4577 0.5533 

    

ὒ ÍÍ 200 91.5 110.7 

ύ ÍÍ 30 13.7 16.6 

ὸ ÍÍ 10 4.58 5.53 

Ὑὓ ÍÍ 65.2 29.8 36.1 

Ὑά ÍÍ 28.9 13.2 16.0 



ὨὨ ÍÍ 57.7 26.4 31.9 

Ὀ ÍÍ 19.7 9.02 10.9 

ὸὸ ÍÍ 1.50 0.687 0.830 

— Ј 70.6 70.6 70.6 

    

Ὢ (Ú 
9,151 Hz (C-T) 

11,066 Hz (T-T) 
19,999 Hz 20,000 Hz 

 

A representation of the mode ǎƘŀǇŜǎΩ ŘŜŦƻǊƳŀǘƛƻƴ is determined using Abaqus 

software and shown in Figure 2. 

 

Fig. 2: Representation of the displacements of the resonant mode shapes of interest: (A) in-

phase T-T; (B) out-of-phase C-T. 

The material chosen was the 6082-T651 Aluminium alloy, a medium strength alloy 

used in a diverse range of applications, including highly stressed structures that are subjected 

to in-plane multiaxial loads. The material properties used in the finite element models are 

presented in Table 2. 

Table 2: 6082-T651 Aluminium alloy properties. 

Density (g/cm^3) Young Modulus (MPa)  tƻƛǎǎƻƴΩǎ coefficient 

2.70 70.000 0.33 



 

In both specimens there is one displacement node at the centre and stress nodes at 

the four extremities (i.e., where the stresses are null). Conversely, they both have two stress 

anti-nodes at the centre (i.e., where the stresses are maximum in both orthogonal directions) 

and displacement anti-nodes at the four extremities (i.e., where the displacements are 

maximum). The specimens are attached to the machine, composed by horn, booster and 

transducerΣ ŀǘ ƻƴƭȅ ƻƴŜ ƻŦ ǘƘŜ ǎǇŜŎƛƳŜƴΩǎ ŜȄǘǊŜƳƛǘƛŜǎ. The used machine was built at Instituto 

Superior Técnico laboratories in Lisbon as described in 23 and 25. The systemΩǎ ŎƻƳǇƻƴŜƴǘΩǎ 

set is represented in Figure 3. 

 

Fig. 3: Ultrasonic fatigue machine system components with cruciform specimen under test 

17. 

Longitudinal displacements with a frequency of around 20 kHz (±0.5 kHz) provided by 

the piezoelectric transducer are amplified  by the booster and the horn and transmitted to 



the cruciform specimens. The movement transmitted by the horn excites the specimen in a 

specific resonant mode shape of interest for the biaxial fatigue study. 

Several analyses were conducted in the finite element software. First, the resonant 

mode of each specimen was studied individually (because the nature of operation of 

ultrasonic fatigue testing machines is that they seek to reproduce free vibration with the 

specimen vibrating at its own natural frequency). Then, the horn and booster were included 

in the simulations to account for their influence which will show up due to the existence of a 

connection coordinate and frequency differences in all individual modes. These analyses 

helped to comprehend how the functioning geometry could be improved, based on the 

understanding on what other behaviours may be occurring beyond the pretended (and 

predicted) deformation. The results were compared qualitatively with the experimental 

analysis made afterwards. 

Before performing any experimental test, a frequency analysis of the component set 

(booster; horn; specimen) with each of the machined specimens was made using the 

traƴǎŘǳŎŜǊΩǎ ǎƻŦǘǿŀǊŜΦ ¢Ƙƛǎ ŀƴŀƭȅǎƛǎ ƘŜƭǇed to firstly understand if it was possible to excite the 

produced specimens under resonance at the 20 kHz (±0.5 kHz) design frequency. It also 

provides the frequency of work. This frequency varies between each specimen tested and 

gives an insight of the deviation of the specimen frequency comparing it to the working 

frequency without the specimen. Simulations on FEA show that the resonant modeΩs 

frequency of the specimens have shown to be sensible to small geometrical variations. 

Both T-T and C-T ǎǇŜŎƛƳŜƴΩǎ dynamic behaviours were afterwards analysed using a 

two-channel Polytec Laser Doppler Vibrometer (LDV) measuring axially (at the extremities of 

the arms) and transversely (along the longitudinal length of the arms) in pairs. The difference 

in amplitude and phase between two lasers measurements in certain key points of the 

cruciform specimens helps to understand if the specimenΩǎ ƳƻŘŜ ǎƘŀǇŜ is as predicted. Three 

different measurements were put in place: between the extremities (horizontal and vertical 

ŀǊƳΩǎύΤ ƘƻǊƛȊƻƴǘŀƭ ƳƻǾŜƳŜƴǘ ƻŦ ǾŜǊǘƛŎŀƭ ŀǊƳǎΤ vertical movement of horizontal arms and the 

variation along their length. 

The measurements at the extremities help to understand if each specimen is inducing 

the displacement of the arms as intended and therefore the induced stress ratio at the centre. 



For the remaining tests, by measuring with the laser vibrometer transversally along the length 

of the arms we can perceive if the displacement has any discrepancies between the true and 

predicted motion. For the measurements to be made laser reflectors were glued to the 

ǎǇŜŎƛƳŜƴΩǎ ŀǊƳǎ at all the measurement points of interest. 

The ƳŀǘŜǊƛŀƭΩǎ hysteretic damping is responsible for the generation of heat during 

tests 26; this means that where the material is deforming the most (in the sense of strain; 

hence where the highest stress is) the heat generated is the highest. With the use of a thermal 

camera, all specimens were observed to view if the centre showed the generation of heat, 

since that is the expected area of highest stress. To obtain the thermal response on the 

camera the specimen's side on film was painted matte-black beforehand. 

After analysing all machined geometries of both shapes, the specimens that showed 

best agreement between the Finite Element Models and experimental results were tested to 

failure. All the experimental tests followed a similar methodology to the one described in 25 

with temperature control. 

 

3. Results and discussion 

3.1 Finite element analysis (FEA) 

The two different specimensΩ ŘŜǎƛƎƴǎ ό/-T and T-T) were analysed using finite element 

analysis (FEA) through Abaqus software. The results of previous work 17 were also considered, 

since they were on the basis of the first designs subjected to testing in this work. Modal 

analysis simulations were conducted to both the C-T and T-T specimens alone (i.e., with free-

free boundary conditions), as well as with the specimens attached to the booster and horn as 

illustrated in figure 3. A dynamic modal analysis is also performed to the systemΩǎ assembly, 

where a unit force harmonic excitation is applied at the resonant frequency determined in 

the modal analysis. This dynamic analysis will give a better understanding of the possible 

influence of modes shapes in the vicinity of the biaxial mode shapes under study. 

Observing all the mode shapes of each specimen individually under free-free 

boundary conditions (figures 4 and 5 for specimens T-T and C-T respectively) there are a few 

mode shapes with similar displacements to the arm receiving the displacement from the horn. 



Theses modes are the ones most likely to have interference with the mode of interest but 

only if they have a relative frequency proximity to the working frequency 20 ± 0.5 kHz could 

his influence be relevant. These are the modes at 19,468 Hz for case T-T (2.7% below the 

working frequency) and at 23,547 Hz for case C-T (17.7% above the working frequency) 

represented in figure 4 and 5 respectively. Due to this similarities to the hornΩs movement 

these modes may have some influence on the deflection shape of the specimen even for a 

pure harmonic excitation at 20,000 Hz, because of the stiffness and mass line contribution of 

mode shapes that are not within range but that are still close enough to have an influence on 

the target mode shape 27. 

 

Fig. 4: Relevant resonant mode shape closest to the working frequency for the T-T 

specimen. 

Fig. 5: Relevant resonant mode shape closest to the working frequency for the C-T 

specimen. 

Afterwards a similar FEA modal analysis is made but with specimens attached to the 

horn and booster used in the ultrasonic machine. The obtained modal shapes are a 

combination of the specimen mode shapes with the horn and booster mode shapes. Thus, 

the modes presented in figure 2, the modes of interest for both specimens, is represented in 

figure 6 and 7 (A), and mode shapes of figures 4 and 5 are transformed and established with 



the horn and booster in figure 6 and 7 (B) for the T-T now at 19,442 Hz (2.7% below the 

working frequency) and at 21,755 Hz for C-T (8.9% above the working frequency) respectively.  

 

Fig. 6: Resonance mode shapes with the system components for the T-T specimen: (A) Mode 

of interest; (B) the most relevant one closest to the working frequency. 

 

Fig. 7: Resonance mode shapes with the system components for the C-T specimen: (A) 

Mode of interest; (B) the most relevant one closest to the working frequency. 

All the represented mode shapes of figure 6 and 7 (B) of non-interest are excited with 

the longitudinal displacement of the booster and horn, just as the resonant mode of interest. 

The T-T specimen shape alone and with the attached horn and booster has the closest mode 



to the working frequency of 20kHz. This means that the T-T shape will be under higher 

influence by the mode in figure 6.(B) when excited in the mode of interest. 

Due to the proximity of the resonant mode of the T-T specimen presented in figure 

6(B), it is important to understand how is the displacement distributed along the specimen, if 

there is indeed an influence of the non-interest mode. This analysis will be important not only 

to understand in what differs from the mode of interest but also how could it be measured 

and determined experimentally. The figure 8 shows in detail the displacement magnitude (A) 

and the vertical displacements with reduced scale (B) of a specimen  obtained from a time 

iteration of a dynamic modal FEA analysis with the booster and horn in magnitude, . The 

reduction of figure 8.(B) scale is applied for a better comprehension of the changes in 

displacement along the specimen. 

 

Fig. 8: FEA Dynamic modal results: (A) Displacement magnitude; (B) Longitudinal 

displacement with reduced scaling. 

Through figure 8 the specimen shows in the dynamic modal FEA to have a combination 

of both modes of figure 6 (A) and (B). The horizontal arms have now a vertical node along its 

length. Thus, if the displacement is measured along the horizontal arm there will be a change 

in phase between opposite points of ŀǊƳΩǎ ƭŜƴƎǘƘΦ 

 

 



3.2 Ultrasonic testing for assessment of the specimens’ designs  

Four specimens of each phase type of specimens were tested. The frequency analysis 

was firstly performed on all machined specimens showed that all C-T and T-T could be excited 

within the working frequency range of the transducer. Yet, this does not prove that the 

excited resonant mode shape of the cruciform specimens is the intended one or if it is 

occurring according the designed and determined by the FEA. Several tests were conducted 

using a laser doppler vibrometer to measure the displacement of several specimens at 

different coordinates and directions for afterwards correlate with the expected mode shape. 

All tests were conducted to several specimens of each geometry and with the same low power 

setting, with the exception of a more thorough measurement made to a T-T specimensΩ 

horizontal arms. Only a set of results is shown for each phase specimen due to the similarity 

and consistence of the laser results. 

The Laser measurements at the extremities are shown in Figure 9 for each type of 

specimen. It is clear that, even though both types of cruciform specimens proved to have the 

correct and expected phase, only C-T showed to have similar amplitudes between both 

extremities, as intended. All current T-T specimens tested showed displacements at the 

extremities which are in-phase but with a considerable shift in amplitude, being 

systematically larger in the horizontal arms (Laser 2), around three times higher than in the 

vertical direction (Laser 1). The higher amplitude in the horizontal arms of T-T showed a 

similar amplitude to both extremities of C-T. 

 



Fig. 9Υ 5ƛǎǇƭŀŎŜƳŜƴǘ ƳŜŀǎǳǊŜƳŜƴǘǎ ƻŦ ǘƘŜ ǎǇŜŎƛƳŜƴǎΩ ŜȄǘǊŜƳƛǘƛŜǎ: (A) representation of the 

measurement coordinates; (B) results for specimen type T-T; and (C) results for specimen 

type C-T. 

After testing at the extremities, several vertical measurements were conducted along 

the horizontal arms. These after measurements were made to verify if there is vertical 

movement as indicated by the FEA. This movement is expected to be the reason for the higher 

amplitude acquired in the horizontal arms in the T-T specimen obtained in Figure 9.(B). If 

there was no vertical motion the lasers should show to be in phase and with low amplitude. 

Firstly, a simple measurement with the lasers oriented as showed in Figure 10 for both 

specimens was conducted. 

 

Fig. 10: Vertical dƛǎǇƭŀŎŜƳŜƴǘ ƳŜŀǎǳǊŜƳŜƴǘǎ ƻŦ ǘƘŜ ǎǇŜŎƛƳŜƴǎΩ horizontal arms: (A) 

representation of the measurement coordinates; (B) results for specimen type T-T; and (C) 

results for specimen type C-T. 

From figure 10, the amplitude obtained when measuring transversely to the horizontal 

arms for the T-T specimens is higher than what is obtained for the C-T specimens, for the 

same testing conditions and using the same power setting. Moreover, for the C-T specimens 

the amplitude measurement showed to be around eight times lower than the highest value 

measured at the extremities, while for the T-T specimens it showed to be just around 2 times 

lower. Phase is also important, being observed that Laser 1 is out-of-phase with Laser 2, which 

is clearer for specimens T-T. This suggests a άŦƭŀǇǇƛƴƎέ condition of the horizontal arms, i.e., 

there is a combined translational and bending motion of the arms, as illustrated earlier in 

figures 7(B) and 8, which supports the previous discussion based on the FEA models.  



It was also observed that even when the vertical laser measurements are on the same 

plane and colinear along the horizontal arms there is a difference in amplitude and phase in 

some locations of both specimensΩ types. Looking at the FEA results, the vertical movement 

ǾŀǊƛŜǎ ŀƭƻƴƎ ǘƘŜ ŀǊƳΩǎ ƭŜƴƎǘƘ in the underside of it and it actually changes direction at a 

ŎŜǊǘŀƛƴ ǇƻƛƴǘΦ {ŜǾŜǊŀƭ ƳŜŀǎǳǊŜƳŜƴǘǎ ǿŜǊŜ ƳŀŘŜ ŀƭƻƴƎ ǘƘŜ ŀǊƳΩǎ ƭŜƴƎǘƘ ǿƛǘƘ ƻƴŜ ƭŀǎŜǊ ŀǘ ǘƘŜ 

end of the opposite arm used as a reference. The results of these measurements are shown 

in figure 13 and were made with a power setting twice as high as in the previous experiments, 

so that ǘƘŜ άŦƭŀǇǇƛƴƎέ ōŜƘŀǾƛƻǳǊ ƻŦ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀǊƳǎ already identified was highlighted. 

 

Fig. 11: Vertical displacement measurements along the ƻŦ ǘƘŜ ǎǇŜŎƛƳŜƴǎΩ horizontal arms: 

(A) representation of the measurement coordinates; (B) results for specimen type T-T. 

This experiment was only conducted with specimens T-T, since for specimens C-T this 

άŦƭŀǇǇƛƴƎέ effect is much less pronounced, as observed from figure 10. The measurement 

point represented in figure 10 corresponds to point 2 in figure 11. The change of phase along 



ǘƘŜ ŀǊƳΩǎ ƭŜƴƎǘƘ, as observed in the FEA, was also proved comparing the 1-1 and 1-4 results. 

The highest amplitude was measured at point 4. 

One final laser measurement was made to the vertical arms with the laser horizontally 

fixed (figure 12).  

 

Fig. 12: Horizontal dƛǎǇƭŀŎŜƳŜƴǘ ƳŜŀǎǳǊŜƳŜƴǘǎ ƻŦ ǘƘŜ ǎǇŜŎƛƳŜƴǎΩ vertical arms: (A) 

representation of the measurement coordinates; (B) results for specimen type T-T; and (C) 

results for specimen type C-T. 

Results show to be consistent with both the FEA models and the intended mode 

shapes ŦƻǊ ōƻǘƘ ǎǇŜŎƛƳŜƴΩǎ types: both lasers showed to be in-phase and with a relatively low 

amplitude, especially when compared to the amplitude when measured in the axial direction 

which is about 10 to 15 times greater. This measurement of amplitude may be explained by 

the displacements caused by the elongation of the arms due to the Poisson coefficient of the 

tested material since both signals are in-phase. Being in phase means that at both points the 

displacement towards the laser is the same, meaning that the arm is elongating or 

compressing and not having a bending horizontal movement. The observed small difference 

in amplitude in figure 12.(B) may easily be due to a slight misalignment between both lasers, 

or inevitable geometrical and dimensional deviations (e.g., concentricity or flatness) of the 

manufactured parts in the system (from booster, through to horn and down to the specimen).  

From the Laser measurements and numerical analysis, it was observed that the T-T 

specimens has a specific undesired vertical movement in the transversal arms, which motion 

ǊŜǎŜƳōƭŜǎ ǘƘŜ άŦƭŀǇǇƛƴƎέ ƻŦ ŀ ōƛǊŘΩǎ ǿƛƴƎǎΣ and a very low vertical displacement of the vertical 

extremity. There are a few reasons why this may be happening as discussed above. The most 

likely reason is the existence of a nearby resonant mode (at approximately 19.4 kHz, a 2.7% 



difference to the operating frequency), so the end result is an ODS (a combination of both 

modal response and forced vibration) rather than aƴ άƛǎƻƭŀǘŜŘέ Mode Shape, thus altering the 

ǎǇŜŎƛƳŜƴΩǎ intended deflection shape. The difference in amplitude between the vertical arm 

and vertical movement is much lower experimentally than numerically estimated. This 

smaller difference could be related for the non-accounted geometrical deviations of the 

specimens that influence the frequency of all modes, which can translate in a much higher 

influence of the resonant mode of non-interest. 

 

3.3 Thermographic analysis 

In order to corroborate the conclusions above and get a better understanding on why 

ǎǇŜŎƛƳŜƴǎΩ ǘȅǇŜ ¢-T are not operating as intended, a thermographic analysis was conducted. 

Thermal imaging of the T-T specimen shows that the greatest amount of heat is not being 

generated at the centre as intended, but near the connection to the horn, as shown in Figure 

13. 

 

Fig. 13: Thermographic image of a T-T specimen under an ultrasonic fatigue test. 

However, the C-T geometries proved to have acceptable performance. Thermal 

imaging also helps to reinforce the latter statement as Figure 14 shows a higher heat 

generation at the centre of a C-T specimen. 



 

Fig. 14: Thermographic image of a C-T specimen under an ultrasonic fatigue test. 

 

3.4 Experimental testing to failure 

Knowing that the C-T specimen was being excited in the resonant mode of interest 

without significant influence from other mode shapes, a power-controlled test was 

performed until failure. In this test, a high enough constant power setting is applied to the 

specimen with temperature control and with displacement measurement at the free vertical 

arm. So, along the test a constant amplitude is measured and interruptions are made for 

cooling the specimen down for maintaining the highest heat generation region between 28 

and 40 degrees. The chosen power was made empirically. LŦ ŀ ǎǇŜŎƛƳŜƴ ŘƛŘƴΩǘ ōǊŜŀƪ at a given 

power, a higher one was applied. For the determination of the applied stress a correlation 

between the displacement measured and the FEA analysis must be made as well as the usage 

of a strain gauge. 

Throughout the test the number of cycles was counted from the waveform acquired 

by the Polytec Laser Doppler Vibrometer. After more than one million cycles (1E6) the 

ǎǇŜŎƛƳŜƴ άƭƻǎǘέ ƛǘǎ ǊŜǎƻƴŀƴŎŜ ŀǘ ŀǊƻǳƴŘ нл ƪIȊ ŘǳŜ ǘƻ ǘƘŜ ŀǇǇŜŀǊŀƴŎŜ ƻŦ ŀ ŦŀǘƛƎǳŜ ŎǊŀŎƪ ŀǘ 

its centre (the stiffness decreased; hence the natural frequency of the entire system 

decreased as well until it reached the lower operating frequency of the machine at 19.5 kHz). 

In order to expose the fatigue crack surface for observation, the specimen was introduced to 

a hydraulic machine for a tensile test until complete failure. Figure 15 shows the crack before 

and after applying total failure to the specimen. 



 

Fig. 15: (A) Amplification of the crack after ultrasonic testing (before facture); (B) C-T 

specimen after tensile test showing fracture paths; and (C) microscopic image of the fatigue 

crack surface of the C-T specimen after fracture. 

The created fracture showed three different types of crack surface zones. Two related 

to the induce and propagation of the fatigue crack with a more regular and smother surface 

and the third with a rough surface related to the rupture of the specimen made in the tensile 

machine.  

The fatigue crack shows to have been initiated with ±50-degree angle to the induced 

stresses around 0.5 mm from the centre. After fatigue crack initiation, the propagation 

bifurcated in two paths on both sides. The former ±50-degree surface is similar to the latter 

ones but with a much shinier surface and with a more consistent direction as it can be seen 

in figure 17(B) and (C). The fatigue crack fronts did not grow across the whole of the 

ǎǇŜŎƛƳŜƴΩǎ ƭŜƴƎǘƘ ŘǳŜ ǘƻ ǘƘŜ ǎǳŘŘŜƴ increase of thickness and also due to the decrease in 

frequency which made the test come to a stop (due to limitations of the machine with regards 

to its operating bandwidth). The way the specimen ōǊƻƪŜ ƛƴ ǘƘŜ ǘŜƴǎƛƭŜ ƳŀŎƘƛƴŜ ŘƻŜǎƴΩǘ ŀƭƭƻǿ 

to see the surface of two of the four zones of fatigue propagation fractures created. The 

obtained angle in the crack initiation site seems adequate for the applied biaxial state 

considering that uniaxial tension/compression specimens have a crack surface normal to the 

ǎǇŜŎƛƳŜƴΩǎ ƭŜƴƎǘƘ and the biaxiality ratio is ὄ ρ (for the C-T specimens). Thereby 

having an in-plane axial-axial with a 90°-degree relation with similar induced stresses in both 

directions, it is a fair assumption that the fracture angle should be in between the applied 

stresses. The ±50°-degree angle of the fatigue crack initiation is shown in Figure 16. This 

assumption is reinforced by numerical calculations results by the studies28,29 for the optimized 



specimen followed in this study, where four of six fatigue crack initiation criterions (Findley30; 

Brown-Miller31; Fatemi-Socie32; Chu33) predict that the fatigue crack initiation will be ±45º-

degrees to the stress axis for the out-of-phase loading case (C-T specimen), considering 

AISI303 stainless steel 28 and a typical aluminium 29. It should also be mentioned that the study 

calculations consider the conventional stress inducing method for fatigue regimes below the 

VHCF. The fatigue crack criterion Findley and Fatemi-Socie mentioned show in 34 to have 

better correlation to ductile materials such as the used aluminium. Such results strengths the 

obtained experimental results of the correct functioning of the C-T specimen. 

 

Fig. 16: Fatigue crack angle in relation to the arms in a C-T specimen. 

 

4. Conclusions 

In this work, the adaptation of cruciform specimens for ultrasonic VHCF as proposed 

in 17 was thoroughly tested and analysed. Both FEA and experimental testing were performed, 

enabling several conclusions to be drawn.  

Comparing numerical results between both geometries, it was observed that 

specimen T-TΩǎ ōŜƘŀǾƛƻǳǊ ǿƘŜƴ ŜȄŎƛǘŜŘ ŀǘ нл ƪIȊ might suffer a considerable influence from 

at least one mode in the vicinity, even when excited with a pure harmonic excitation. On the 

other hand, C-T specimens, by having the other resonant modes sufficiently spaced away 



from the target resonant frequency, showed the intended dynamic behaviour when excited 

at the target frequency. The influence from modes in the vicinity was only possible to observe 

when the numerical models included the whole system composed by booster, horn and 

specimen. In such a case, and even if the ultrasonic fatigue testing machine used seeks to 

reproduce free vibration with all the parts and specimen vibrating at their own natural 

frequencies, there may be issues if each part does not have exactly the same resonant 

frequency, as what will be excited is an ODS rather than a mode shape. An ODS contains both 

forced and modal response components. 

Comparing now both geometries, experimental results confirm some of the 

assumptions made on the FEA.  

(1) The C-T specimen is able to vibrate with the intended mode shape, by having the 

extremities with the correct phase and approximate amplitudes. Furthermore, 

thermal imaging showed that the highest heat generation was at the centre of the 

specimen for specimen C-T. When exciting the system with a high enough power 

to induce a crack after more than a million cycles, the crack developed at ±45° 

between the horizontal and vertical axes, which is consistent with the assumption 

of numeric calculations of fatigue crack initiation criteria when the biaxiality ratio 

is ὄ ρ.  

(2) For the T-T specimen, a nearby (in terms of frequency) resonant mode appears to 

have a considerable influence on the results, making the mode of interest not being 

correctly induced. Also, this specimen did not show a higher heat generation at the 

centre and showed considerable differences in the amplitude of displacement 

between the extremities. It also showed considerable vertical motion of the 

horizontal arms.  

All considered, the reason for the incorrect functioning of specimen T-T is shown to 

be related to the resonant mode shape found in the vicinity of the working frequency, having 

a much higher influence on specimen T-T than on specimen C-T, which was predicted 

numerically. From this fact, any small geometrical deviations in specimen T-T will have a 

greater effect in the final result. Having the T-T specimen a more complex geometry than the 

remaining system components, its frequencies suffer a higher influence from dimensional 



deviations that result from machining. This variation on frequency could impose a higher 

influence over the resonant mode of non-interest shown in figure 4 and consequently on the 

one in figure 6 (B). This higher influence cannot be created by altering the differences in 

frequencies of the resonant modes of the specimen in free-free boundary conditions alone, 

but also by considering systemΩǎ componentsΩ frequencies. With higher differences between 

the systemΩǎ and the specimenΩǎ frequencies, the contribute from the forced vibration 

component of the response is imposed over the modal component of the response, resulting 

in a complete system with a more significant ODS than predicted. This leads to a more 

ǇǊƻƴƻǳƴŎŜŘ ŘƛǎǇƭŀŎŜƳŜƴǘ ǘƘŀǘ ǊŜǎŜƳōƭŜǎ ǘƘŜ ΨŦƭŀǇǇƛƴƎΩ of a bird, since it is a combination of 

an axial-axial with an axial-bending mode shape. Thus, the T-T specimen has to change to one 

where other resonant modes with similar anti-nodes have to be more spaced to the resonant 

mode of interest. 

 Finally, because of the intrinsic nature of the geometry of the specimen, only with the 

ƳŜŀǎǳǊŜŘ ŘƛǎǇƭŀŎŜƳŜƴǘ ƛƴ ǘƘŜ ŜȄǘǊŜƳƛǘƛŜǎ ŀƴŘ ǘƘŜ ƳŀǘŜǊƛŀƭΩǎ properties, it is quite difficult to 

calculate correctly the induced stresses at the centre of the specimen. There is a need to 

introduce a strain gauge in order to measure the strain and with it obtain the induced stress, 

which is left for further work. 
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