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Abstract
Non-isometric surface registration is an important task in computer graphics and computer vision. It, however, remains
challenging to deal with noise from scanned data and distortion from transformation. In this paper, we propose a Huber-
L1-based non-isometric surface registration and solve it by the alternating direction method of multipliers. With a Huber-
L1-regularized model constrained on the transformation variation and position difference, our method is robust to noise and
produces piecewise smooth resultswhile still preserving fine details on the target. The introduced as-similar-as-possible energy
is able to handle different size of shapes with little stretching distortion. Extensive experimental results have demonstrated
that our method is more accurate and robust to noise in comparison with the state-of-the-arts.

Keywords Surface registration · Huber-L1 · Non-isometric

1 Introduction

Surface registration has drawn intensive attention in com-
puter graphics and computer visionwithmassive applications
such as film production and computer games. With the
development of geometry acquisition technology, 3D scan-
ning systems allow us to capture high-resolution and highly
detailed 3D geometries even for dynamic scenes. However,
these scanned data often contain noise, especially from com-
modity depth sensors such as Microsoft Kinect. To tackle
this problem, surface registration is introduced to deform a
high quality model (template) so that it aligns with the scan-
ned shape (target). Often, the size and details of the template
differ from that of the target. Hence, registration methods
which are robust to noise and capable of handling different
sizes and details have been investigated.

According to the type of deformation mapping [6], the
surface registration is generally categorized into two groups:
rigid registration and non-rigid registration. The rigid regis-
tration [2,3] aims to find a rigid-body transformation between
two shapes, and thus, it cannot handle deformable (non-rigid)
shapes. The non-rigid registration, including isometric reg-
istration and similar registration, is to find a set of local
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transformations that align two shapes. The isometric reg-
istration which deforms the shape in an as-rigid-as-possible
(ARAP) manner has been widely used between isometric
shapes [7,10,25]. However, it is not capable of handling
shapes with different sizes since it tries to preserve the
length of edges. To address this limitation, similar registra-
tion approaches [8,29] introduce a scale factor into each local
transformation and formulate as an as-similar-as-possible
(ASAP) energy, which allows local scalability to handle the
size difference.

For the accuracy and robustness of registration, the trans-
formation variation and position difference constraints are
usually formulated as a smoothness term and a data term,
respectively, to measure the smoothness of the neighbor-
ing transformation and the closeness of registration shapes,
respectively. Most works [1,8,10] use the classic squared L2-
norm on both constraints (L2-L2). However, the smoothness
term in L2-norm tends to penalize large transformation vari-
ation. It is not suitable for articulated models where large
deformation variations exist at their joints. This could also be
seen in image processingwhere discontinuities are allowed to
highlight the sharp edges in image denoising [5]. The classic
model in image denoising is ROFmodel [18], where the total
variation (TV) term is an L1-norm-based regularization and
the data term is in squared L2-norm (TV-L2). Based on ROF
model,Yang et al. [27] propose a sparse non-rigid registration
methodwith an L1-norm regularized on the smoothness term.
However, ROF tends to produce over-regularized results as
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the L2-norm strives to distribute errors evenly, thus fitting
the result evenly on the noisy parts. To tackle this issue, TV-
L1 model [30] is proposed to efficiently remove the outliers
while preserving fine details. Based on TV-L1 model, Yang
et al. [11] propose a dual sparsity registration approach on
both position and transformation sparsity, allowing the posi-
tional error to concentrate on small regions. However, TV-L1

model tends to produce piecewise constant results as shown
in Werlberger et al. [26]. We propose a Huber-L1-based
non-isometric surface registration to reduce the staircasing
artifacts known from TV. A Huber-norm is applied on the
transformation variation, which significantly reduces artifi-
cial discontinuities and produces piecewise smooth results.
Meanwhile, an L1-norm is applied on the position difference,
solving the over-regularized issue that appeared in L2-norm.
The ASAP energy is introduced to handle shapes of differ-
ent sizes and poses. To reduce the risks of surface foldover,
we adopt Laplacian energy to smooth the template on both
primal and dual domains. We compare Huber-L1 to other
state-of-the-artmodels in the experiments on clean, noisy and
real scanned data, demonstrating the advantage and robust-
ness of our method.

The main contributions of this work are summarized as
follows:

– We propose a Huber-L1-based non-isometric registra-
tion method regularized on transformation variation and
position difference. The Huber-L1 model is solved by
the alternating direction method of multipliers (ADMM)
with each energy term being represented in matrix form.
The proposed model is robust to noise and produces
piecewise smooth results with the target’s fine details
being well preserved.

– We incorporate ASAP energy in the registration method,
which is not only able to handle shapes with different
sizes but can also reduce local stretch and distortion.
Since ASAP energy preserves the overall geometry of
the template while allowing local scaling, it demands a
fewuser efforts to provide a good initial shape estimation.

– We introduce Laplacian energy to relax the template on
both primal and dual domains, improving the template
mesh quality and decreasing the foldover occurrence.

2 Related work

Over last two decades, surface registration has been deeply
researched. A complete survey can be referred in [24]. Here,
we briefly review the related works on three categories: rigid
registration, isometric registration and non-isometric regis-
tration.

Rigid registration The most classic algorithm in rigid reg-
istration is iterative closest point (ICP) [2]. It alternates

between closest point searching and optimal transformation
solving. To improve the converge rate of ICP, Low et al. [13]
used a point-to-plane metric in which the energy function
is the sum of the squared distance between a point and the
tangent plane at its correspondence point. One main issue for
ICP and its variants is that they are sensitive to outliers and
missing data. To tackle this issue, Bouaziz et al. [3] propose a
new formulation of ICP using sparsity inducing norms. How-
ever, methods in this category cannot deal with deformable
shapes registration.

Isometric registration Huang et al. [7] present a non-rigid
registration of a pair of partially overlapping surfaces, con-
straining transformation locally as-rigid-as-possible (ARAP).
Rouhani et al. [17] propose a non-rigid registration between
two clouds of points, where the source set is clustered into
small patches and then deformed rigidly to align with the
target. Sussmuth et al. [23] slide the template mesh along
the time–space surface in ARAP manner to reconstruct ani-
mated meshes from a series of time-deforming point clouds.
Wand et al. [25] take a set of time-varying unstructured
sample points as input and reconstruct a single shape and
a local deformation field. Li et al. [10] introduce a reg-
istration algorithm for partial range scans of deforming
shapes. They deform local features as rigidly as possible
to avoid shearing and stretching artifacts. Yang et al. [11]
propose a dual-sparsity-based non-rigid registration, which
adds orthogonality constraints on the local transformation to
preserve local rigidity.

Non-isometric registration Based on shape matching [15],
Papazov et al. [16] compute shape transitions based on local
similarity transformswhich allow tomodel not only as-rigid-
as-possible deformations but also local and global scalability.
Liao et al. [12] reconstruct complete 3D deformable models
over time by a single depth camera. They constrain local
transformation to isotropic scales and rotations. Amberg et
al. [1] propose an optimal step non-rigid ICP algorithm
for surface registration, where an affine transformation is
assigned to each vertex and a stiffness term is used to
minimize the difference in the transformation of neighbor-
ing vertices. Sumner et al. [20] compute the set of affine
transformations induced by the deformation of the source
mesh, and the smoothness term is added to constrain the
transformation matrices for adjacent triangles to be equal.
Yeh et al. [28] introduce a template fitting method for 3D
surface meshes and optimize the local transformation by
applying bi-Laplacian energy. Yoshiyasu et al. [29] present
a non-isometric surface registration method that restricts
deformations locally as conformal as possible. However,
the discretized energy they adopted is not a consistent dis-
cretization of a continuous energy and thus may produce
foldover and distortion. To tackle this issue, Jiang et al. [8]
propose a consistent as-similar-as-possible surface registra-
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tion method. They apply the L2-norm regularization on both
the transformation variation and position difference (L2–L2),
which results in consistent discretization for surfaces and
improves the quality of the surface deformation and registra-
tion. However, the approach tends to produce over-smoothed
results given a noisy target. Yang et al. [27] propose a sparse
non-rigid registration method with an L1-norm regularized
on the transformation variation and an L2-norm regularized
on the position difference (L1-L2). The L1-norm-regularized
smoothness term usually results in artificial discontinuities,
and the L2-norm-regularized data termoften loses fine details
while smoothing the noise [5]. To tackle these issues, we
regularize the smoothness term in Huber-norm, which sig-
nificantly reduces the artificial discontinuities. Unlike most
work using the squared L2-norm in position difference con-
straints, we apply an L1-norm-regularized data term, which
is not only able to remove noise but also preserve fine
details.

3 Surface registration

In this paper, we adopt a coarse-to-fine fitting strategy to
implement the whole registration process in three steps:
coarse fitting, mid-scale fitting and fine fitting. For each step,
different energy terms are used and combined, which will be
introduced at their first appearance. The comparison results
with and without some energy terms will be illustrated to
stress the significance of these energies.

3.1 Notations

Suppose the template mesh is composed of n vertices P �
{p1, . . . ,pn}, wherepi � [xi , yi , zi ]� is a 3D vertex position
in Euclidean coordinate. In coarse fitting step, n is the vertex
number of coarse templatemesh. The vertices of the target are
denoted as Q = {q1, . . . ,qm}. For non-rigid registration, a
3×4 affine transformation matrixAi � [Xi , ti ] is associated
with each vertex pi of the template, where Xi is a 3 × 3 lin-
ear transformation matrix and ti is a 3× 1 translation vector.
For simplification, we concatenate pi ,qi ,Xi , ti into a n × 3
matrix P � [p1 . . . pn]�, a m × 3 matrix Q � [q1 . . . qm]�,
a 3n × 3 matrix X � [X1 . . .Xn]� and a n × 3 matrix
T � [t1 . . . tn]�, respectively. Similarly, the vertices on the
template dual mesh P∗ are denoted by P∗ � [p∗

1 . . . p∗
n∗ ]�,

where n∗ is the number of the vertices on the template dual
mesh, which is also equal to the number of triangle faces on
the template primal mesh. Again, a translation vector will be
assigned to each dual vertex, all ofwhich can be concatenated
as T∗ � [t∗1 . . . t∗n∗ ]�.

3.2 Coarse fitting

Instead of fitting thefine template surface from the beginning,
a coarsemesh extracted from the origin templatemesh is used
to fit for efficiency, as the coarse mesh involves less unknown
parameters. We employ the farthest point sampling approach
[14] to sample certain number of vertices to approximately
represent the shape of the template (Fig. 1a). Note that all
the sampled vertices are the subset of the original vertex set.
The geodesic remeshing technique [22] is then applied to
generate the coarsemesh out of the samples vertices (Fig. 1b).
Afterward, the feature points between the coarse template
mesh and the target are specified by users (Fig. 1d). The
coarse template is then fitted to the specified feature points to
approximate the overall size of the target (Fig. 1e). The total
energy in coarse fitting step is composed of four energies: Ef

penalizes the distances between the feature points of template
and target surface; EASAP constrains deformation ASAP; Er

penalizes the transformation variation; El penalizes the edge
lengths difference locally:

Ecoarse(X,T) = wfEf + wASAPEASAP + wrEr + wlEl. (1)

Each energy term will be introduced as follows, and wf ,
wASAP, wr and wl are the weights which represent the influ-
ence of each energy term.

3.2.1 Feature point constraints

To pull feature points on the template toward their correspon-
dence on the target, we define the feature point constraint
energy as:

Ef(T) = 1

2

∑

i∈F
‖pi + ti − qidx(i)‖2F ,

where F is the template index set of the feature points, pi is
the position of i th feature point on the template, idx(i) is the
index of the corresponding feature point on the target. To fit
this energy (and other energies subsequently) into ADMM
[4] for optimization, we need to rewrite the energy (and other
energies subsequently introduced) in matrix form.We define
two sparse matrices Cf , Df which select the feature point
pairs between the template and the target. Assuming the r th
feature point pair is pi on the template and qidx(i) on the
target, then

Cf(r , s) =
{
1, if s = i

0, if s �= i
, Df(r , t) =

{
1, if t = idx(i)

0, if t �= idx(i)
.

Therefore, we can rewrite Ef as

Ef(T) = 1

2
‖Cf(P + T) − DfQ‖2F , (2)
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Fig. 1 Huber-L1 algorithm: a sampled points (yellow dots); b remesh-
ing from the sampled points as embedded coarse mesh; c input of target
surface;d 9 feature points specified by user (red dots for target and green

dots for template); e coarse fitting; f mid-scale fitting; g reconstructed
through embedded deformation; h fine fitting on the dual domain; i fine
fitting on the primal domain; j subdivision; k the final result

3.2.2 ASAP energy

The transformation from the template to the target can involve
large deformation. To prevent shear distortion (Fig. 2), we
constrain the deformation matrix Xi to an orthogonal rota-
tion matrix Ri . As we deal with non-isometric registration,
the size between the template and the target can be differ-
ent. Therefore, we add a scalar si to make the deformation
scalable. The ASAP energy is defined as

EASAP(X) = 1

2

n∑

i=1

‖Xi − siRi‖2F ,

s.t. R�
i Ri = I3, det(Ri ) > 0,

where ‖·‖F denotes the Frobenius norm, I3 is a 3×3 identity
matrix and det(·) is the determinant of a matrix. To write the
energy in matrix form, we concatenate si ,Ri into a n × 1
vector s = [s1 . . . sn]� and a 3n×3matrixR � [R1 . . .Rn]�.
The ASAP energy can then be expressed as:

EASAP(X) = 1

2
‖X − (diag(s) ⊗ I3)R‖2F ,

s.t. R�
i Ri = I3, det(Ri ) > 0, (3)

where diag(·) returns the block-wise diagonal matrix of each
row vector in the input matrix and ⊗ denotes the operator of
Kronecker product.

Fig. 2 Coarse fitting results with and without ASAP energy. Without
ASAP energy, the model can easily get shear distortion

3.2.3 Regularization

We assign an affine transformation to each vertex. These
transformations are not independent with each other, and
the nearby transformations should have overlapping influ-
ence. Therefore, the computed transformations should be
consistent with respect to one another. In practice, articu-
lated animals only have large transformation deviation at
joints, so the transformation on the parts between joints
should be piecewise smooth with only small deviations. To
produce a piecewise smooth result (Fig. 3),we apply aHuber-
norm-regularized model constrained on the transformation
variation. This metric behaves like an L2-norm below a
certain threshold ε and like an L1-norm above. The regu-
larization energy is defined as:
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Fig. 3 Fitting results with and without regularization energy. The
method with regularization energy is more robust against outliers and
produces piecewise smoother result

Er(X,T) =
∑

ei j∈E
‖Xi (p j − pi ) + pi + ti − (p j + t j )‖ε,

where ei j is a directional edge from vertex i to vertex j , E is
the half-edge set of the template mesh. Note that an edge has
two opposite directional half-edges. ‖ · ‖ε is the Huber-norm
defined as:

‖x‖ε =
{ ‖x‖22

2ε , if ‖x‖1 ≤ ε

‖x‖1 − ε
2 , otherwise

,

ε > 0 is a threshold, ‖ · ‖1, ‖ · ‖2 are the L1, L2 norm,
respectively. In order to express the regularization energy
with respective to X and T, we introduce a selection matrix
J ∈ {1}|E|×n and a directional differential matrix K ∈
{−1, 1}|E|×n . Specifically, each row of J and K corresponds
to a half-edge in E and each column of them corresponds to
a vertex in P . Without loss of generality, we assume the r -th
rows in J and K are associated with the half-edge ei j . Each
row in J denoted by J(r , ·) only has one nonzero entry, whose
column corresponds to the start vertex pi of the half edge ei j ,
i.e., J(r , i) = 1. Each row in K denoted by K(r , ·) contains
two nonzero entries. The entry linked to the reference vertex
pi is set at −1, while the one linked to the neighboring ver-
tex p j is set at 1, i.e., K(r , i) = − 1, K(r , j) = 1. Then, the
regularization term can be rewritten as:

Er(X,T) = ‖diag(KP)(J ⊗ I3)X − KP − KT)‖ε. (4)

3.2.4 Laplacian energy

To improve themesh quality, we apply the uniformLaplacian
operator on the vertex position, enforcing eachvertex to strive
to lie in the centroid of its one-ring neighbors and thus the
edge lengths strive to be locally equalized. The Laplacian
energy is defined as follows:

El(T) = 1

2
‖L(P + T)‖2F , (5)

where L is the uniform Laplacian matrix corresponding to
the mesh connectivity:

L(i, j) =

⎧
⎪⎨

⎪⎩

− 1
di

, if vertices i and j are neighbors,

1, if i = j,

0, otherwise,

where di is the valence of vertex i .

3.3 Mid-scale fitting

This fitting step deforms the coarse mesh as close as possible
to the target. Apart from those constraints adopted in the
previous step, the data constraint is also applied to attract the
coarse mesh toward the target gradually (Fig. 1f). The energy
in this step is denoted by:

Emid(X,T) = Ecoarse(X,T) + wdEd. (6)

Data constraint

To pull the template toward the target, we need to determine
the reliable correspondences between the template and the
target. For each vertex pi on the template, we project it onto
the target along its normal direction. The projection ci is
regarded as a reliable correspondence only if:

– ci is inside a triangle of the target.
– The distance between ci and pi is under a threshold α.
– The angle between the normals at ci and pi is under a

threshold �.

We apply L1 norm on the position difference to allow a small
fraction of regions with large positional error, which is more
robust against outliers and fits to the target’s details better.
The data term is defined as:

Ed(T) =
∑

i∈C
‖pi + ti − ci‖1,

where C is the template index set of the correspondence. In
order to express the data term in regard to T, we stack all
ci into a matrix C. Similar to Cf , we define a sparse matrix
Cd to indicate the corresponding vertices on the template.
Therefore, we can rewrite the data term as:

Ed(T) = ‖Cd(P + T) − C)‖1. (7)

3.4 Fine fitting

In this step, the dense mesh is first reconstructed from the
mid-scale fitting result via embedded deformation method
[21] (Fig. 1g). To avoid foldovers and improve the mesh
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quality, the dual-domain relaxation strategy [28] is applied.
We alternatively perform the relaxation algorithm between
the primal domain and the dual domain. The reconstructed
primal mesh is first transformed into its corresponding dual
mesh, and then, the relaxation algorithm is applied on the dual
domain (Fig. 1h). The energy in the dual domain is defined
as:

Edual(T∗) = wrEr(T∗) + wdEd(T∗) + wlEl(T∗). (8)

After that, the relaxation algorithm is applied in the pri-
mary domain (Fig. 1i), whose energy can be expressed as:

Eprimal(T) = wcEc(T) + wlEl(T), (9)

where Ec is the consistent energy transforming the template
from the dual domain to the primary domain.

Consistency constraint

It is well known that one dual mesh corresponds to a primal
mesh and their vertices should be consistent: the i th dual
vertex should be equal to the centroid vertex of the i th triangle
of the primalmesh (Fig. 4). The consistency energy is defined
as:

Ec(T) = 1

2

n∗∑

i=1

‖1
3
(pi1 + ti1 + pi2 + ti2 + pi3 + ti3) − p∗

i ‖2,

where {i1, i2, i3} are the indices of the primal vertices par-
ticipating in the i th triangle of the primal mesh. Again, in
matrix form, we could rewrite this energy as:

Ec(T) = 1

2
‖Cc(P + T) − P∗‖2F , (10)

where Cc is a n∗ × n matrix:

Cc(i, j) =
{

1
3 , if j ∈ {i1, i2, i3},
0, otherwise,

If the resolution of the template mesh is insufficient to fit
the target tightly, a uniform or adaptive subdivision approach
can be employed. Here, we adopt 1–4 uniform subdivision
method [9] to subdivide the template (Fig. 1j), and then, the
dual-domain relaxation algorithm is performed on the sub-
divided template mesh again.

4 Optimization

The optimization process for each fitting step is quite similar.
We take the mid-scale step as an example to explain the opti-

Fig. 4 The Stanford bunny’s primary mesh and its corresponding dual
mesh

mization process as it includes all kinds of norm appeared in
the algorithm. Expanding each term in (6) gives us:

Emid(X,T) = wf

2
‖Cf(P + T) − DfQ‖2F

+ wASAP

2

n∑

i=1

‖Xi − siRi‖2F

+ wr‖diag(KP)(J ⊗ I3)X − KP − KT‖ε

+ wl

2
‖L(P + T)‖2F + wd‖Cd(P + T) − C‖1,

s.t. R�
i Ri = I3, det(Ri ) > 0, (11)

To solve the non-differential Huber-norm and L1-norm,
we introduce two auxiliary variables F,G to change the min-
imization of (11) into the following form:

min
X,T,F,G

wf

2
‖Cf(P+T)−DfQ‖2F+ wASAP

2

n∑

i=1

‖Xi −siRi‖2F

+ wr‖F‖ε + wl

2
‖L(P + T)‖2F + wd‖G‖1,

s.t. R�
i Ri = I3, det(Ri ) > 0,

F = HX − KP − KT,G = Cd(P + T) − C, (12)

where H = diag(KP)(J ⊗ I3) is introduced for conci-
seness.

To solve the constrained minimization (12), we transform
the original problem to iterative minimization of its aug-
mented Lagrangian form:

L(X,T,F,G,{Ri }, {si },Y, ρ)

= wf

2
‖Cf(P + T) − Dfq‖2F

+ wASAP

2

n∑

i=1

‖Xi − siRi‖2F
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+ wr(‖F‖ε + 〈Y1,HX − KP − KT − F〉F
+ ρ1

2
‖HX − KP − KT − F‖2F )

+ wl

2
‖L(P + T)‖2F + wd(‖G‖1

+ 〈Y2,Cd(P + T) − C − G〉F
+ ρ2

2
‖Cd(P + T) − C − G‖2F ),

s.t. R�
i Ri = I3, det(Ri ) > 0, (13)

where ρ1 and ρ2 are positive constants, Y1 and Y2 are
Lagrangian multipliers and 〈·, ·〉F is the Forbenius inner
product. We solve this problem by using the ADMM
algorithm, the detailed derivation of which is referred to
“Appendix A.”

Now we could summarize the optimization in mid-scale
fitting step in Algorithm 1. The optimization consists of two
loops: the outer loop adjusts the weights and searches the
correspondences to construct Ed, while the inner loop opti-
mizes the translation T for each template vertex. Once the
inner loop converges, T will be used to update the template
vertex position, and then, a new outer iteration starts again.
In this algorithm, l and k represent the indices of the outer
and inner iteration, respectively. The optimization problems
in coarse fitting and fine fitting steps can be solved in the
same way.

Algorithm 1 Mid-scale fitting step
1: while not converged do
2: Adjust weights in (11) and construct Ed
3: while not converged do
4: Compute F(k) by solving Eq. (15).
5: Compute G(k) by solving Eq. (16).
6: Compute R(k)

i by solving Eq. (17).

7: Compute s(k)
i by solving Eq. (18).

8: Compute X(k) by solving Eq. (19).
9: Compute T(k) by solving Eq. (20).
10: Y(k)

1 =Y(k−1)
1 + ρ1(HX(k) − KP − KT(k)− F(k)).

11: Y(k)
2 = Y(k−1)

2 + ρ2(Cd(P + T(k))−C−G(k)).
12: end while
13: Update the template by P(l) = P(l−1) + T(l−1).
14: end while

5 Experiments

Weevaluate theperformances of theproposed approachby
comparing with state-of-the-art algorithms on clean datasets,
noisy datasets and real scans, respectively. The number of
feature points, vertices and faces of models used in each
example is shown in Table 1. All the algorithms are imple-
mented in MATLAB, and all the statistics are measured on
an Intel Xeon E5 3.4 GHz 64-bit workstation with 16GB of
RAM.

Table 1 The number of feature points (#FP), vertices (#V), faces (#F)
of the template and the target models in the examples

Name #FP Template Target

#V #F #V #F

Bouncing 9 12,500 24,996 10,002 20,000

Camel 24 6608 13,200 9469 18,934

Crane 11 12,500 24,996 10,002 20,000

Dog 0 25,290 50,528 25,290 50,528

Gorilla 0 25,438 50,868 25,438 50,868

Head 10 1669 3298 281,581 562,554

5.1 Parameters and weights

In the data constraints, we set � = 90◦, α = 0.05rbox,
where rbox is the length of the target bounding box diagonal.
In the regularization term, ε = 0.1 is used, ρ = 1 for the
optimization. As for the weights, we use wASAP = 1, wr =
10, wf = 1000, wl = 10 for the whole coarse fitting step to
highlight the feature point constraints. In the mid-scale step,
wd is initialized to 0.1 and then increased by 0.1 for each
outer iteration. wl is initialized to 100 and then decreased
by 10 for each outer iteration until reaching 1. We gradually
increase wd and reduce wl so that the good quality of the
template mesh can be maintained during the registration to
avoid the foldover occurrence.Theotherweights are the same
as those in the coarse fitting step. In the fine fitting step, we
set wd = 0.1, wr = 0.1 for (8); wc = 1000 for (9); wl is
initialized to 100 and then decreased by 10 for each outer
iteration until reaching 1 through the whole fine fitting step;
wd is increased by 0.1 for each outer iteration as the same
reason in the mid-scale step.

5.2 Results on clean data

We compare our method with state-of-the-art non-iso-
metric registration methods (Fig. 5): consistent as-similar-
as-possible surface registration (CASAP) [8], as-conformal-
as-possible surface registration (ACAP) [29], the shape
matching-based registration method that minimizes the as-
similar-as-possible energy (SM-ASAP) [16] and the reg-
istration method that utilizes the point-based deformation
smoothness regularization (PDS) [1]. To evaluate the regis-
tration accuracy quantitatively, we follow the criterion used
in [8,11] and measure (1) distance error, which is the aver-
age distance from the vertices of the deformed template to
the corresponding points on the target relative to the tar-
get bounding box diagonal, (2) intersection error, which is
the number of self-intersecting faces, (3) Hausdorff error,
the largest distance between two shapes with respective to
the target bounding box diagonal. The statistics data can be
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Fig. 5 Comparison of non-isometric surface registration approaches on clean data. The color bar denotes the distance from the registration result
to the target

Table 2 Quantitative evaluation
in the bouncing and camel
examples. D, I and H indicate
distance error [%], intersection
error and Hausdorff error [%],
respectively

Huber-L1 CASAP ACAP SM-ASAP PDS

Bouncing

D 2.1556e−05 4.3619e−05 4.9460e−05 0.0010 1.8525e-04

I 0 242 494 909 5639

H 0.0113 0.0273 0.0784 0.7279 0.1619

Camel

D 7.1209e−05 1.8185e−04 1.8074e−04 9.8233e−04 2.9304e−04

I 0 0 76 85 3884

H 0.0172 0.0704 0.0710 0.3222 0.1238

Best values are highlighted in bold

found in Table 2. It is obvious that our methodHuber-L1 pro-
duces least errors without any foldover generated. Although
CASAP and ACAP can fit the template close to the target,
as shown at the left ankle of the bouncing model, they still
suffer from the foldover issue when the deformation is dra-
matic. SM-ASAP does not require feature points, but it is
only able to handle surfaces with close initial alignment and
similar poses. PDS allows for affine transformation for each
vertex, which makes it too weak against shear distortions as
shown at both arms of the bouncingmodel. Table 3 shows the
iteration steps and time taken by each method. The total time
cost in SM-ASAP and PDS is relatively small; however, their
results are undesirable with large errors and many foldovers.
The total time used in the rest of three methods is almost on
the same level, but our method gets the best result with no
foldover occurred.

5.3 Results on noisy data

In this subsection, we set up two different experiments to
demonstrate the robustness of our method. In both experi-
ments, the targets are polluted with noise along the normal
direction of each vertex bymultiplying the standard deviation
of the average length of the edges in the target.

First, we compare our method with the start-of-the-arts on
the noisy data in Fig. 6. The quantitative evaluation is shown
in Table 4. Affected by the noise, CASAP and ACAP get
poor initial shape estimation and regard some noise as corre-
spondence, which makes parts of template fitted to noise as
shown at the right waist of CASAP and the left arm of ACAP.
SM-ASAP and PDS still produce poor results as on the clean
data. Thanks to the dual relaxation and Huber-L1 regulariza-
tion, our method is robust against noise and achieves more
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Table 3 Iteration steps and time
(in seconds) in the bouncing and
camel example. #O and #I
indicate the number of outer
iteration steps and total inner
iteration steps, respectively.
“Inner” indicates the average
time required for each inner
iteration step. “Total” represents
the total fitting time

Huber-L1 CASAP ACAP SM-ASAP PDS

Bouncing

#O 24 54 73 9 500

#I 2064 3477 577 37 1608

Inner 0.068 0.034 0.277 0.252 0.035

Total 140.199 118.044 159.687 9.346 56.281

Camel

#O 24 54 73 9 500

#I 2037 3352 562 34 1582

Inner 0.065 0.032 0.272 0.261 0.034

Total 132.405 107.264 152.864 8.874 54.328

Best values are highlighted in bold

Fig. 6 Comparison of non-isometric surface registration approaches on
noisy data. The self-intersection faces on the template are colored in red

accurate results than othermethodswithout any foldover gen-
erated.

Second, instead of comparing with a particular method
(e.g., CASAP), we compare our Huber-L1 with different
norms applied on the regularization term and data term,

including TV-L1, TV-L2 and L2–L2, as shown in Fig. 7. To
ensure fair comparison, the correspondences among differ-
ent approaches are the same and have been given as priors.
As the L2-norm is easily affected by the outliers, TV-L2

and L2-L2 produce larger errors than Huber-L1 and TV-L1,
especially at the places with large deformation (seen at the
shoulder and butt of the gorilla in SNR and L2–L2). Due
to the L1-norm’s tendency on favoring sparse solution, the
effect caused by the regularizer leads to piecewise constant
solutions (shown at the tail of the dog in TV-L1). This effect
can be reduced significantly by using a quadratic penaliza-
tion for small gradient magnitudes while sticking to linear
penalization for larger magnitudes to maintain the disconti-
nuity properties known from TV, which is the Huber-norm
we adopted here. The quantitative evaluation is shown in
Table 5. As the benchmark models also involve foldovers,
we ignore the intersection error in the table. With Huber-L1

regularization scheme, our method is not only robust against
noise but also produces piecewise smooth results with least
errors.

5.4 Results on real scans

Finally, we compare our method with the state-of-the-art
approaches on real scan in Fig. 8. The quantitative evaluation
is shown in Table 6. In terms of distance error and Hausdorff
error, CASAP and ACAP have competitive results with our
method. However, they still produce foldovers at the can-
thus and nostril and especially generate poor results around

Table 4 Quantitative evaluation
in the crane example

Huber-L1 CASAP ACAP SM-ASAP PDS

Crane

D 4.7397e−05 5.2738e−05 5.6536e−05 9.4177e−04 1.6583e−04

I 0 143 453 8965 5862

H 0.0227 0.0729 0.0469 0.5691 0.1258

Best values are highlighted in bold
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Fig. 7 Comparison of different norms applied on the regularization term and data term on noisy data

Table 5 Quantitative evaluation
in the dog and gorilla examples

Huber-L1 TV-L1 TV-L2 L2-L2

Dog

D 1.0441e−06 5.2783e−06 1.0682e−05 1.5101e−05

H 1.6409 2.9771 3.9666 2.6419

Gorilla

D 2.3474e−06 2.8365e−06 1.6977e−05 2.3565e−05

H 4.1795 4.5067 5.5522 5.1793

Best values are highlighted in bold

the noisy boundary and the missing parts of the target (seen
from the side view). Compared to CASAP and ACAP, SM-
ASAP and PDS produce less foldovers; however, they have
larger distance errors andHausdorff errors so that their results
even look dissimilar to the target intuitively. On the contrary,
Huber-L1 produces least errors with no foldover generated,
which demonstrates our method is more robust to a noisy and
incomplete target.

6 Conclusions

We have proposed a novel non-isometric surface registration
approach based on the Huber-L1 model. The Huber-norm

regularizes on transformation variation, which is robust to
noise and produces piecewise smooth result. The position
difference is regularized in L1-norm, which preserves the
fine details on the target while smoothing the noise. The
ASAP energy allows us to handle shapes in different sizes.
To improve the efficiency and robustness of registration,
a coarse-to-fine strategy is adopted. The Laplacian energy
relaxes the template on the primal and dual domain, reducing
self-intersection and foldover occurrence and improving the
mesh quality. The experiments on various data have shown
our method is more robust and accurate than other state-of-
the-art approaches.
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Fig. 8 Comparison of non-isometric surface registration approaches on real scan

Table 6 Quantitative evaluation
in the head example

Huber-L1 CASAP ACAP SM-ASAP PDS

Head

D 3.6954e−06 4.0682e−04 3.1503e−04 0.0016 0.0048

I 0 1287 2345 103 185

H 3.1624 3.2413 3.2244 3.2463 3.2516

Best values are highlighted in bold

In the future, we will detect the inversion of the elements
to prevent the occurrence of foldover completely during reg-
istration. In addition, if the feature points can be detected
automatically from deep learning, the whole registration pro-
cess will be implemented without any user intervention. This
would be another interesting research topic.
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Appendix A

The ADMM algorithm is employed to optimize unknown
variables in (13) alternatively. The kth iteration can be sum-
marized as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(k) = argminF wr(‖F‖ε + 〈Y(k−1)
1 ,HX(k−1) − KP − KT(k−1)

−F〉F + ρ1
2 ‖HX(k−1) − KP − KT(k−1) − F‖2F ),

G(k) = argminG wd(‖G‖1 + 〈Y(k−1)
2 ,Cd(P + T(k−1))

−C − G〉F + ρ2
2 ‖Cd(P + T(k−1)) − C − G‖2F ),

R(k)
i = argminRi

wASAP
2 ‖X(k−1)

i − s(k−1)
i Ri‖2F

s.t. R�
i Ri = I3, det(Ri ) > 0,

s(k)
i = argminsi

wASAP
2 ‖X(k−1)

i − siR
(k−1)
i ‖2F ,

X(k) = argminX
wASAP

2 ‖X − (diag(s(k−1)) ⊗ I3)R(k−1)‖2F
+wr(〈Y(k−1)

1 ,HX − KP − KT(k−1) − F(k)〉F
+ ρ1

2 ‖HX − KP − KT(k−1) − F(k)‖2F ),

T(k) = argminT
wf
2 ‖Cf (P + T) − DfQ‖2F

+wr(〈Y(k−1)
1 ,HX(k) − KP − KT − F(k)〉F

+ ρ1
2 ‖HX(k) − KP − KT − F(k)‖2F ) + wl

2 ‖L(P + T)‖2F
+wd(〈Y(k−1)

2 ,Cd(P + T) − C − G(k)〉F
+ ρ2

2 ‖Cd(P + T) − C − G(k)‖2F )

Y(k)
1 = Y(k−1)

1 + ρ1(HX(k) − KP − KT(k) − F(k)),

Y(k)
2 = Y(k−1)

2 + ρ2(Cd(P + T(k)) − C − G(k)).

(14)
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The F-subproblem has the following closed solution:

F(k) = ερ1

ερ1 + 1

(
HX(k−1) − KP − KT(k−1) + Y(k−1)

1

ρ1

)

+ 1

ερ1 + 1
S ερ1+1

ρ1

(
HX(k−1) − KP − KT(k−1) + Y(k−1)

1

ρ1

)
,

(15)

where S is the soft thresholding operator acting on each ele-
ment of the given matrix:

Sκ(a) =

⎧
⎪⎨

⎪⎩

a − κ, if a > κ

0, if |a| ≤ κ

a + κ, if a < −κ

.

The G-subproblem can be solved as:

G(k) = S 1
ρ2

(
Cd(P + T(k−1)) − C + Y(k−1)

2

ρ2

)
, (16)

Following the work of [19], we solve the Ri -subproblem
by using singular value decomposition of Xi :

Ui�iVT
i = svd(Xi ),R

(k)
i = ViUT

i (17)

If det(Ri ) < 0, we change the sign of the column of Ui

corresponding to the smallest singular value.
Dividing the si -subproblem by si and setting its derivative

to zero yields:

s(k)
i = 〈X(k−1)

i ,X(k−1)
i 〉F

〈R(k)
i ,R(k)

i 〉F
= 〈X(k−1)

i ,X(k−1)
i 〉F

3
(18)

In order to solve theX-subproblem,wefirst zero its deriva-
tive and then write the equation in its equally stacked form:

AxX(k) = Bx , (19)

where

Ax =
(
sqrt(wASAP)I
sqrt(wr)H

)
,

Bx =
(
sqrt(wASAP)(diag(s(k)) ⊗ I3)R(k)

sqrt(wr)(F(k) − Y(k−1)

ρ1
+ KP + KT(k−1))

)
,

sqrt(·) is the square root function.
Similarly, T can be obtained by solving the following

equation:

AtT(k) = Bt , (20)

where

At =

⎛

⎜⎜⎝

sqrt(wf)Cf

sqrt(wr)K
sqrt(wd)Cd

sqrt(wl)L

⎞

⎟⎟⎠ ,

Bt =

⎛

⎜⎜⎜⎜⎝

sqrt(wf)(DfQ − CfP)

sqrt(wr)(HX(k) − KP − F(k) + Y(k−1)

ρ1
)

sqrt(wd)(G(k) − Y(k−1)
2
ρ2

+ C − CdP)

sqrt(wl)(−L ∗ P)

⎞

⎟⎟⎟⎟⎠
.
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