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SUMMARY 

This project involves the development of a software tool 

which enables the integration of the IEEE 1149.1/JTAG 
Boundary Scan Test Architecture automatically into an ASIC 
(Application Specific Integrated Circuit) design. 

The tool requires the original design (the ASIC) to be 
described in VHDL-IEEE 1076 Hardware Description Language. 

The tool consists of the two major elements: 
i) A parsing and insertion algorithm developed and 

implemented in 'C'; 
ii) A high level model of the Boundary Scan Test 

Architecture implemented in 'VHDL'. 

The parsing and insertion algorithm is developed to deal 

with identifying the design Input/Output (I/O) terminals, 

their types and the order they appear in the ASIC design. 

It then attaches suitable Boundary Scan Cells to each I/O, 

except power and ground and inserts the high level models of 

the full Boundary Scan Architecture into the ASIC without 

altering the design core structure. 
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RATIONALE 

The concepts of Boundary Scan, and its embodiment in the IEEE 

standard 1149.1 (JTAG), are now a fundamental part of Design- 

for-Test. The success of the Boundary Scan Architecture (BSA) 

ultimately depends on its popularity with Integrated Circuit 

(IC) users, rather than semiconductor manufacturers. However, 

chip and board manufacturers wanting to use JTAG are 

confronted with the lack of software tools to support them. 

In addition, the unavailability of generic models of the 
boundary scan test architecture has often hindered and 
dissuaded designers from developing BSA in accordance with 
the IEEE standard, and then including it into their designs. 

It is also worth noting that although some ASIC vendors have 

started to provide a set of boundary scan test cells in their 

libraries, they have failed in providing the associated test 

vectors. Furthermore, the designer is required to be able to 

understand the IC manufacturer configuration of the standard, 

and then include the necessary test cells in accordance with 

the guidelines outlined in the specifications of the IEEE 

standard. The other factor that ASIC/System Designers require 

when contemplating a new design is the ability to try out 

ideas at the behavioural/algorithmic level, and to explore a 

particular test strategy. 

It is therefore suggested that there is a need for a facility 

to make JTAG architecture available in a behavioural format 

which is both easily applied and economical in simulation 
time. 

The difficulty that arises in developing high-level models is 

that the testability features such as internal scan, and BIST 
(Built-in-self-test) are normally confined to the structural 
level. This is when internal state information is encoded 
into individual bits as represented by the flip-flops on the 
internal scan path(s), and the test signals have precise 
structural destinations inside the circuit. 
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Thus, the question that arises is how to back-annotate the 
high-level models developed presumably in the earlier steps 
of the top-down process with the test information that 
becomes known at the lower levels. Once such accurate high- 

level models are available, the testability features intended 

for structural testing could be used in the development of 
simplified functional tests of the system to a specific 
internal state. In the normal (mission) mode, the system 

could then be taken through a number of state transitions to 

verify a particular functional feature (eg asynchronous 
coupling to verify correct time / synchronisataion), and the 

resulting state could then be scanned out for verification. 

This research project involves the development of a 

parameterised behavioural model of testability features as 

specified by the proposed IEEE 1149.1 standard. The IEEE 

Hardware Description Language standard (VHDL 1076-1987) will 
be used to describe the different models. The project will 

examine the use of a suitable VHDL behavioural modelling 

style that will allow a consistent integration of testability 

features to be extracted from the structural level, and 

subsequently included in the behavioural models of the 

components. It will also develop an algorithm which enables 

the integration of the BSA models into an ASIC design. 
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INTRODUCTION 

As the density of integrated circuits mounted on a printed 

circuit board increases, the problem of testing these boards 

and systems increases too. Manufacturers typically use in- 

circuit and functional board test systems to detect defects 

in their products. 

An in-circuit test was originally designed to verify the 

goodness of connections and the operation of components on a 

board. Conversely, a functional tester verifies the 

function of the entire board/system through its edge 

connectors. The board is thus tested as close to the normal 

operating conditions as possible. 

In-circuit test techniques however, are faced with increasing 

difficulties due to surface-mount technology and multi-layer 

boards. Whilst the functional test technique is better in 

coping with these problems, it carries a penalty of requiring 

the generation of comprehensive and complex test programs. 

Despite the above difficulties, the majority of components 

available on the open market offer only Ad-hoc facilities to 

ease the testing problem. The JTAG group (Joint Test Action 

Group) initially provided standard and structured testability 

features on integrated circuits to simplify testing of boards 

and systems. The JTAG effort was continued by the IEEE 

standardisation committee, which resulted in the proposed 
testability standard 1149. It covers different types of 

circuits and test techniques. 

This research project concentrates on the 1149.1 portion of 
the proposed standard, which is the outgrowth of the JTAG 

work and relates to the testing of synchronous digital 

circuits. 
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The aim of the standard is to allow different manufacturers 
to provide testability features on their integrated circuits 
in such a way that boards constructed using chips from 
different sources could form the necessary scan paths and 
communicate test control information on the board. It is 

foreseen that eventually the majority of the off-the-shelf 
components would contain such features. 

Another standardisation effort is being expended by IEEE to 

provide common means for describing the behaviour/structure 

of integrated circuits, boards and systems using the IEEE 

1076 VHDL language. 

It is possible that components available 
be supplied with their models written in 

development of models of systems using t 

would not only reduce the duplication of 
models, but also help with the evolution 
its maintenance. 

on the market could 
VHDL to aid in the 

he components. This 

work in developing 

of the product and 

The models supplied with such components would most likely be 

behavioural rather than structural, so that the proprietary 

nature of designs would be protected. In addition, only such 
high-level models would be useful in modelling complex 
systems consisting of the interconnects of the components, as 

otherwise the verification of these systems by simulation 

would become too slow for practical purposes. It requires 
the accurate high-level models to be developed for 

components, with all of the behavioural features that these 

components exhibit. Therefore, all testability features that 

are provided inside the components must be included. 

This research project takes advantage of the two IEEE 
standards and develops the required parameterised VHDL models 
of JTAG together with a mechanism for inserting the BSA 
(Boundary Scan Architecture) into an ASIC design in a semi- 
automatic way. 
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AIM 

To design an HDL modelling tool that hides structural details 

of JTAG 1149.1 from the ASIC designer, and enables the 
insertion of the Boundary-Scan Architecture in a 

semi-automatic way. 

OBJECTIVES 

a) To create a parameterised behavioural model of the IEEE 

1149.1 Boundary Scan Architecture using VHDL IEEE 1076 

standard. 

b) To integrate the Boundary Scan Architecture onto an 

ASIC design in a semi-automatic way. 

c) To devise a strategy for mapping between levels of 

description of a design. 
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THESIS TAXONOMY 

The thesis consist of 10 chapters organised as follows: 

CHAPTER 1: Overview of Test Technology Prior to JTAG 

It provides an overview of the test technology prior to IEEE 

1149.1. The background to the problem of test is briefly 

described. It explains the non-viability of applying 

exhaustive testing to VLSI systems. The commercial and 

engineering considerations associated with design for test at 

various levels along the system's integration path are also 
highlighted. In addition, the need for Accessibility to 

enable system testing is identified. 

CHAPTER 2: Design for Test and Test Techniques 

It reviews some of the ideas behind VLSI circuit testing and 

highlights the problems of testing both combinational and 

sequential logic. The aim of circuit testing is identified 

including both functional and post fabrication testing. Both 

the Ad-Hoc and the Structured Approaches to Design for 

Testability are described. The advantages and disadvantages 

of both techniques are outlined. 

CHAPTER 3: Review of Boundary Scan Design 

It reviews the recent literature on Boundary Scan Design. A 

historical background to the development of JTAG and the IEEE 

1149.1. Boundary Scan Architecture is provided. In addition, 

this chapter examines the suitability of VHDL for use in the 

Computer Aided Design and Test environment. It therefore 
identifies the motivating factors behind the implementation 

of this project. In doing so it also identifies the 

originality of this work and where this proposed research 

relates to recent development in the field. 
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CHAPTER 4: VHDL Design and Modelling Techniques 

It reviews the main features of VHDL Hardware Description 

Language. It identifies where VHDL could be used at the 

various stages of the system development cycle. VHDL design 

hierarchy and data base structure is discussed. VHDL 

Description styles are also highlighted. A full design 

example and simulation using a4 bit serial multiplier is 

fully described. 

CHAPTER 5: The IEEE 1149.1 Boundary Scan Test 

Architecture 

This chapter describes the main operation of the main 

components of the IEEE JTAG standard in a structural way. The 

architecture is then tested with a simple application logic. 

Full simulation results are included. 

CHAPTER 6: High Level VHDL Modeling of Boundary Scan 

Architecture 

This chapter describes the use of Hardware Description 

Language VHDL, to describe behaviourally the IEEE 1149.1 

Boundary Scan Test Architecture. 

High level VHDL models of the JTAG Boundary Scan Architecture 

(BSA) are developed and tested, using both Mentor Graphics - 

workstation-based environment and View Logic's PC-based 

environment. 

The use of VHDL facilities such as 'PACKAGE and 'LIBRARY' for 

declaring timing elements associated with each model are 

highlighted. 
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CHAPTER 7: The Parsing and Insertion Algorithm 

This chapter describes the design, development and operation 

of a high level parser/insertion algorithm developed in "C". 

The parsing phase deals with identifying the mode of the 

input/output terminals as defined in the entity description 

of the application logic. The insertion phase deals with 

attaching the appropriate Boundary Scan Cells to the ASIC. 

The chapter also integrates the rest of the pre-processed 

generic Boundary Scan Architecture- the TAP, Instruction 

Register and Decoder, Bypass Register, Identification 

Register (Optional) and the Multiplexers- into the ASIC 

design in a semi-automatic way. Examples demonstrating the 

operation of the algorithm are given. 

CHAPTER 8: Cost Implications 

Cost and performance implications resulting from the 

inclusion of JTAG into an ASIC design are identified and 

discussed. 

CHAPTER 9: Overall Conclusions 

Concluding discussion relating to the achievement of aims and 

objectives is presented. This chapter also highlights the 

novel outcome of this project. 

CHPATER 10: Future Work 

This chapter examines the potential for future development on 

the work which has been carried out. 
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CHAPTER 1 

OVERVIEW OF TEST TECHNOLOGY PRIOR TO JTAG 

1.0 INTRODUCTION 

Integrated Circuit technology is now moving from Very Large 

Scale Integration (VLSI) to Ultra Large Scale Integration 
(ULSI). This major increase in gate count has brought about a 
decrease in gate costs along with improvements in 

performance. All of these attributes of ULSI are welcomed by 

industry. A problem which has never been adequately solved 
however, is that of determining in a cost effective way 

whether a component, a module or a board has been 

manufactured correctly. 

The ability to test is a fundamental problem when designing 

complex systems, in particular VLSI and ULSI circuits. It is 

a requirement which must be integrated at the earliest stages 

of the design cycle from the specification level through 

functional design to the structural circuit design. 

This chapter provides an overview of the test technology 

prior to the IEEE 1149.1. [JTAG 90] It briefly describes the 
background to the problem of test and explains the non- 

viability of applying exhaustive testing to VLSI systems. It 

also highlights the commercial and engineering considerations 
associated with design for test at various levels along the 

systems' integration path. In addition, it identifies the 

need for accessibility to enable system testing. 
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1.1 DEFINITIONS 

This section clarifies some of the terms associated with 

test. [WILL 83], [GREE 86], [AGRA 82], GRAS 80] 

TESTING is the Process of Determining the Absence or 

Presence and in some cases the Location, of One or More 

Design Flaws, Manufacturing Defects, or Field Defects in a 

Chip, Board or System. 

TESTABILITY is a Design Characteristic which allows the 

Status (Operable, Inoperable, or Degraded) of an Item to be 

Determined and the Isolation of Faults within the Item to be 

Performed in a Timely manner, so as to Reduce Both Test Time 

and Cost. 

DESIGN FOR TESTABILITY (DFT) is a Deliberate design 

Effort (s) Expended to Ensure that Unit is Testable. 

1.2 BACKGROUND 

In the last few years CMOS technology has become increasingly 

dominant for realizing ultra Large Scale Integrated Circuits. 

The popularity of this technology is due to its high density 

and low power requirement. The ability to realise very 

complex circuits on a single chip has brought about a 

revolution in the world of electronics and computers. 

[MAUN 84], [McAN 87], [PARK 86]. 

Testing has become a very time consuming process. The 

«Problem� is considered to be the resultant of many of the 

factors listed below: 
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a. Increasing Circuit Complexity. 

Increasing IC Complexity results from increasing IC circuit 

densities and consequential gate to pin ratios. In addition, 

packaging can complicate the testing problem as a result of 

new packaging technology such as Surface Mount, Double Sided 

Boards, Multi-layer Boards, Conformal Coating and Multi-Chip 

Modules. 

b. Increasing Test Generation and Fault Simulation Costs. 

The problem with test pattern generation and fault simulation 

costs is related to the running time which is likely to be an 

exponential function of the number of gates. [IRIS 84] 

[BRED 80] 

c. Expensive Automatic Test Equipment. 

The disparity between the costs of the tester and the UUT 

(Unit Under Test) is substantial! Increasing circuit 

densities have helped and hindered. Using VLSI in ATE has 

lowered the tester cost. However, using VLSI in the UUT has 

increased the tester costs. 

Other Contributors to the Problem of Testing include: 

d. Poor design and test organisational interfaces. 

e. Lack of design for testability. 
f. Incompatibility within and between design 

and test CAE tools. 
g. Lack of test requirements. 
h. Lack of logic and fault simulation. 
i. Test Engineer's lack of access to simulation or 

diagnostic vectors. 
j. Schedule pressures. 
k. Real estate constraints. 
1. Performance penalties. 
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Logic designers as far back as the early 1960's were 

confronted with testing fairly complicated systems on PCBs. 

They did not have the sophisticated software/hardware we have 

today to aid them in this task. They had to resort to 

primitive methods such as exhaustive testing and/or littering 

their PCB's with test points, neither of which can be applied 

today to our more complex systems integrated on single chips. 

Exhaustive testing can easily be seen to be non-viable if you 

consider some basic examples. For example, in a combinational 

circuit with n inputs there are 2n possible input patterns 

necessary to step through the truth table. Thus: for n=4, 

we have 16 steps; n=8,256 steps; n=16,65536 steps and so 

on. To simply test the circuits functionally, the number of 

steps is seen to rise rapidly. Another more interesting 

example is to consider a circuit with 100 nodes each node of 

which may take on one of three states: good, stuck-at-0, 

stuck-at-1. There are therefore 3100 possible outcomes. If 

we arranged to test for all these, taking only igsec per 

test, then the complete test would take 3100 = 1047µsec = 3.2 

x 1033 years, somewhat longer than the expected life of the 

earth! 

For sequential circuits the problem grows even more. If m 

stored state devices (flip-flops) are present then there are 

2m possible internal states and thus with n inputs we would 

have to step through 2(n+m) input patterns to do a full 

functional test. [GRAS 80], [GOEL 80] 

The foregoing discussion has only considered logical function 

testing. Even if the transient behaviour of a circuit is 

controlled and separated from the functional testing, 

stepping through the truth tables is often not sufficient as 

some faults are pattern sequence dependent. If this is the 

case then strictly all possible transitions of input patterns 
should be covered. 
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As an example consider a 2-input circuit (such as a half- 

adder) where there are 22 possible input patterns. Each of 

these 4 patterns can be followed by any one of the three 

remaining patterns and thus there are 4x3 transitions to 

investigate, three times the length of. a simple truth table 

functional test. For a 3-input circuit (such as a full- 

adder) there are 8x7 transitions; for a 4-input circuit 16x15 

transitions and so on. 

The difficulties with exhaustive testing are insurmountable 

and techniques have been developed to reduce the task of 

testing to manageable proportions. [FUN 78] 

A major contributor to testability is the Accessibility of 

internal circuit nodes via the Tester. Accessibility is 

impacted by such factors as : 

" Whether the circuit contains storage elements. 

" How many inverting levels of logic there are between I/O 

pins. 

" The fan-in and fan-out within the circuit. 

" The number of pins and test points. 

Accessibility is comprised of two components: CONTROLLABILITY 

and OBSERVABILITY. [WILL 83] [TRIS 84] [AGRA 821 

CONTROLLABILITY : is the ability to establish a specific 

signal value at each node in a circuit by setting values on 

the circuits inputs. 

OBSERVABILITY : is the ability to determine the signal 

value at any node in a circuit by controlling the circuit's 
inputs and observing its outputs. 
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The Characteristics of circuits with poor controllability 
include circuits that require a unique input pattern or a 
lengthy, complex pattern sequence to establish the state of 

each node. In addition, many types of circuits are inherently 

uncontrollable such as: 

Decoders and selectors, 
Circuits with feedback, 

Serial sequential circuits, 

Oscillators and clock generators, 
Discriminators, 

Electro-mechanical Transducer sensors, and 
Regulators. 

The-types of circuits with poor observability include 

circuits that require a unique input pattern or a lengthy, 

complex sequence of input patterns to propagate the state of 

each node to the outputs of the circuit. 

Many circuits are inherently unobservable, such as: 

Sequential circuits, 
Circuits with global feedback, 

Embedded RAMs, ROMS, PLAs, 

Concurrent error checking circuits, and 
Circuits with redundant nodes. 
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1.3 TEST TECHNOLOGY PRIOR TO IEEE 1149.1 STANDARD 

Over the years, automatic test equipment (ATE) used to test 

electronic products has evolved to cope with continued 
increases both in the number of integrated circuit packages 
used on as a single board and in the complexity of the 
integrated circuits (ICs) themselves. [MAUN 84][GREE 88] 

Typically, manufacturers of loaded boards will use high pin 

count in-circuit and functional board test systems, either 
separately or in sequence, to detect defects and to enable 
high quality levels in shipped products. 

Using in-circuit test technique, tests are applied directly 

to individual components by back-driving their connections 
from other devices in the product. The objective is to apply 

the appropriate test sequence for the component regardless of 

the environment in which it is used. 

Direct access is made to the components outputs to monitor 

the test results, enabling the function of each component in 

the circuit and interconnections between the various 

components to be checked. [BARD 82](BUDD 88] This method 

reduces the expense of test development for each circuit 

since the same test can be applied irrespective of where the 

IC is used. This is the case as long as an ICs functionality 

is not modified by externally wired connections (eg. by 

direct connection to power or ground). Clearly, the process 

requires extensive access to the circuit, because every 
connection must be driven and monitored directly to apply the 
test to individual components. This access is provided 
through a bed-of-nails interface in which spring-loaded 
probes are used to make contact with the interconnections on 
the PWB as shown in figure 1.1. 
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EJI 
CORE B 

PRINTED WIRING BOARD 

Figure 1.1 In Circuit Test 

The principal interface in the functional test technique is 

used to apply test stimuli and to observe the responses which 

are read at normal terminations such as the edge connector. 
[WILL 83] [PARK 86] Access may also be made to connections 
internal to the loaded board, but this is more limited to 

monitoring, rather than to driving, the connection. In 

contrast to in-circuit testing, the functional test technique 

is able to confirm that the various components used to 

construct the product interact correctly, that the overall 

required function is achieved in process, and the correctness 

of both the components in the circuit and their 
interconnections is verified. 

The achievement of a thorough test is however a difficult 

task since tests must be generated separately for each board. 

This task can be both time-consuming and extremely expensive, 

sometimes prohibitively so. [GOEL 80] 

Due to the differences in operation and failure detection 

capability between in-circuit and functional test techniques, 

a common approach is to use the two techniques in sequence to 

achieve high quality test. Initial product screening is 

performed by using an in-circuit test system since this is 

able to rapidly detect and diagnose the most common failures 
in newly assembled boards. For example, those errors that 
have resulted from soldering mistakes and incorrect or 
wrongly inserted components can be detected in this way. 
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Once a loaded board has passed the screening test, it is 

passed forward to a functional test system where checks are 

made for more complex (and less frequent) failures caused by 

faulty interaction between components. 

To allow the mix between the two test techniques to be more 

easily optimised for a given product, test equipment that 

supports both techniques within a single system has become 

more available recently. 

1.4 COST OF TEST 

There are commercial and engineering considerations when 
designing for test. [GOEL80][WILL 83] It is a general 

principle of electronics systems design that the further 

along the system integration path, the more expensive it is 

to replace a faulty component. Order of magnitude comparisons 

given in the following table and figure 1.2: 

Stage at which fault is detected 

Die 

Packaged chip 

PCB 

System at factory 

System in operation 

Log 1 
Unit 
of 
Cost 2 

£3 

dost of replacement 

£0.10 

£1.00 
£10.00 

£100.00 

£1000.00 

Figure 1.2 Cost of Test 
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The consequential costs of a chip failure during system 
operation, for example in a critical aircraft control system, 

can be orders of magnitude higher than these. 

A set of test vectors (diagnostic patterns of is and Os) 

which identify virtually all faults at the die stage provide 

great savings, since the chance of a post-fabrication fault 

developing is much lower than that of a fault being 

introduced during fabrication. 

The strategy for test vector development needs to take a 

number of cost factors into account, including those of 
design, computer resources, fabrication, wafer test, 

packaging, component test, board test, system test, and field 

test. All of these need to be balanced in relation to the 

size of the production run and the figures in the table 1.2 

of this section. [WILL 83][AGRA 82] 
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CHAPTER 2 

DESIGN FOR TEST AND TEST TECHNIQUES 

2.0 INTRODUCTION 

This chapter reviews some of the ideas behind VLSI circuit 

testing and highlights the problems of testing both 

combinational and sequential logic. The aim of circuit 

testing for both functional and post-fabrication is 

identified. The requirements for a testable block is also 

described. In addition, the chapter discusses some of the 

techniques for Design for Testability including Ad-Hoc and 

Structured approaches. It also identifies the advantages and 

disadvantages of the discussed techniques. 

Test methods such as pseudo-random testing and deterministic 

pattern testing are described. The scan test method both 

internal and external is described in some detail. The 

chapter then identifies the benefits offered by IEEE 1149.1 

Standard, when implementing a standard test interface to the 

unit under test. 
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2.1 VLSI TEST PROCESS 

The process of VLSI circuit testing has two major facets: 

a. test generation 
b. test verification 

Test generation is the process of enumerating stimuli for a 

circuit which will demonstrate its correct operation. Test 

verification is the process of proving that a set of tests 

are effective. To date, formal proof has been impossible in 

practice. Fault Simulation has been the best alternative, 

yielding a quantitative measure of test effectiveness. With 

the vast increase in circuit density, the ability to generate 

test patterns automatically and conduct fault simulation with 

these patterns has drastically waned. 

As a result, some manufacturers are foregoing these more 

rigorous approaches and are accepting the risks of shipping a 

defective product. One alternative approach to addressing 

this problem is embodied in a collection of techniques known 

as "Design for Testability°. Design for Testability, in the 

context of VLSI is gaining great importance. 

2.2 VLSI TEST PHASES 

In the complete Application Specific Integrated Circuit 
(ASIC) design and fabrication cycle, there are two test 

phases, as shown in figure 2.1: 

" functional testing, to check whether the circuit conforms 
to its original specification. 

" post-fabrication testing, to ensure that each die has been 

fabricated without any faults. These tests are used to 

check for differences between the operation of each 
individual die and an ideal chip. 

2- 2 



Start 

Structural 

Specify test vector 
Circuit 

Structural 
Enter/Edit simulation 
Design 

Compare 
functional Fabrication 
simulation Functional 
against test vector 
circuit 
spec Post-fab 

Functional test 
simulation 

N Function Y Results 
Correct N the same? 

Y 

Accept 
die 

Iý End 

Figure 2.1: Flow Chart Illustration of Various Test 

Stages 

2.3 THE DEFINITION OF A TESTABLE BLOCK 

Before discussing the various techniques to achieve Design 

for Test, it is important to define what is a testable block 

in VLSI design. 

A testable block is a section of a chip which can be isolated 

from the rest of the chip. It has a definable boundary 

between it and the rest of the chip. It also has a manageable 

amount of circuitry to test as a single section. In many 
instances the testable blocks will match the natural 

partitions and hierarchy of the design which is normally 
encouraged as a good design practice. A testable block many 
be any of : 

" Combinational logic with no internal feedback, 

"A single clocked pipeline state of circuitry, 
"A paracell such as RAM and ROM, and 
" Multiple pipeline stages. 
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it is possible to have several of the above sections 

connected together with test registers only at the inputs and 

outputs. The fewer the number of test registers used in a 
design, the more complex the test sequence that has to be 

used in the test registers in order to perform the complete 

section test. A sensible compromise has to be reached in 

order to work out how much circuitry can be placed in a 
testable block. 

In non-test mode the test registers can be used as normal 

clocked registers. Thus when partitioning the design into 

testable blocks, it can be more economic to choose existing 

clocked registers in the design and replace them with clocked 

test registers. This dual function of the test register 

effectively reduces the amount of test circuitry overhead 

than might otherwise be required. 

Test registers can be placed around the testable block, and a 

series of test sequences postulated that give adequate fault 

coverage. If the resulting test sequence is too lengthy and 

complicated, it may be necessary to split the testable block 

further into smaller blocks, to reduce this problem. 

2.4 DESIGN TECHNIQUES FOR TESTABILITY 

Design for Testability (DFT) techniques are divided into two 

categories. The first category is that of the ad hoc' 

techniques for solving the test problem. These techniques are 

used to solve a problem for a given design and are not 

generally applicable to all designs. 

The second category is that of the 'structured' approaches. 
The 'structured' techniques are more generally applicable and 

usually involve a set of design rules by which the designs 

are implemented. The objective of a structured approach is to 

reduce the sequential complexity of a network to aid test 

generation and test verification. Figure 2.2 compares the 
two techniques in term of life cycle test cost. 

2- 4 



Life Cycle Cummulative 
Test Cost 
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Figure 2.2 Ad-hoc Vs Structured Test 

2.5 AD-HOC DESIGN TECHNIQUES FOR TESTABILITY 

The first ad hoc approach is partitioning. Partitioning is 

the ability to disconnect one portion of a network from 

another portion of a network in order to make testing easier. 

The second approach is that of adding extra test points and 

is used at the board level. 

The third ad hoc approach, is that of Bus Architecture 

Systems. This is similar to the partitioning approach and 

allows one to 'divide and conquer' - that is, to be able to 

reduce the network to smaller sub-networks which are much 

more manageable. These sub-networks are not necessarily 
designed with any design for testability in mind. 

The fourth technique which bridges both the structured 
approach and the ad hoc approach is that of 'Signature 
Analysis'. Signature Analysis requires some design rules at 
the board level, but is not directed at the same objective as 

structure approaches are - that is, the ability to observe 
and control the state variables of a sequential machine. 
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Signature analysis mode can be used to collect a signature 
from circuitry driven by a pseudo-random sequence or slide 
test data. The output from a PR test is collected on a test 

register configured in TEST SIGNATURE ANALYSE mode. See fig 
2.3. 

TEST REGISTER TEST REGISTER 

101/01011 

1001101 000101111 

1/011110 0/01111ü 

1110011 
0 TIES SLtt 

ýý 
011011011 

011/00/ 
. 

: 0 
!f 010011000 

1011100 1 i 1/0011010 

ra ." 
ýýý 

v. h 
` 

TEST TEST 
MEUDO- N4DO1 PINATURE 

GENERATE ANALYN 

Figure 2.3 Signature Analysis SlOMTURE-101101011 

A faulty circuit produces a different signature. This is 

because the circuit behaves differently under the same 

pseudo-random input sequence, which is collected from the 

circuit outputs onto the test register as a corrupted 

signature. 

The length of a test register determines the length of the 

signature. An N bit test register produces an N bit 

signature, this means that there are 2N possible signature 
combinations. A fault in the circuit will produce a 
corrupted signature which can be any one of the 2N possible 
values. It is possible for a faulty circuit to produce a 
corrupted signature which is exactly the same as the fault 
free signature and this would go undetected (fault aliasing). 
The probability of this happening is in a random circuit can 
be shown to be 1/(2N). 
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Therefore it is strongly recommended that if a test register 

is going to be used in TEST SIGNATURE ANALYSE mode, that the 

length of the test register be made greater than or equal to 

10 bits (ie = <1/1024). The larger the test register the more 

data bits that can be used to build up a single signature, 

thus minimising the risk of an undetected fault. Extra unused 

bits in the test register can be used to build up the length 

to 10 bits. 

Signature analyse mode can be used to build up signature from 

many types of test. Any self-test that produces an output 

every clock cycle can be 'captured' by a test register in 

signature analyse mode. This is applicable for tests using 

the slide mode. 

Sections 2.5.1 to 2.5.3 describe additional ad-hoc test 

techniques. 

2.5.1 INITIALISATION 

In order to be able to test the state of any circuit element, 

it must be initialised to a known value at the start of the 

test. This is one of the reasons for including a reset in all 

the DFT elements. The initial state of an element is 

immaterial for operational purposes but it must be reset 

before a structured test commences. 

2.5.2 A METHOD OF TESTING COUNTERS 

Consider the following example shown in figure 2.4. For an 

n-bit counter, the final state is only attained after the 

application of 2n clock cycles. If this output feeds another 

m-bit counter, making it increment only once every 2n clock 

cycles, the final state of the second counter is only 
attained after 2(n+m) clock cycles. In such a situation, the 
first counter is generally a frequency divider and the second 
is a state counter. 
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For typical values of n(10) and m(4), the final state is only 
reached every 214 (or 16384) clock cycles. 

r 

r 

ee SBC: n bit v 

> ck 

ck 
frequency divider 

r 
e SBC: m bit 

ck c(O: m-1) 

m 

state count 

Figure 2.4 Counter Chain 

V 

n+m 
state 2 

It is almost impossible to generate an acceptable set of 

structural test vectors for a circuit of this nature. if they 

are to cover all the states of the second counter, they will 

take far too long to run through the simulator, or may exceed 

its limiting number of vectors. 

The solution is to break the counter chain, as shown in 

figure 2.5, by multiplexing a test signal into the line which 

joins the two counters. The output from the first counter is 

also carried to a test output. This is the most general 

solution to the problem and creates three additional pads. 

tin 

rr 

r 

ee SBC: n bit v 
> ck 

ck frequency divider 

mux n+m 
state 2 

ar 
bee 

SBC: m bit v 

_x > ck c(O: m-1) 

m 

state count 

tctrl 

tout 

Figure 2.5 Breaking a Counter Chain with Test Signals 
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2.5.3 REDUCING THE TEST PIN COUNT 

It is important to plan the DFT technique in such a way to 

minimise the additional number of input/output signals. A 

reduction in the number of the pads and the number of gates 

can sometimes be obtained by combining the test control and 

test data signals. Consider the following example in figure 

2.6. When a counter chain is broken, the test link must 

eventually be driven to 1 when in test mode. If this is the 

case, the multiplexer, test control and test data lines can 
be replaced by an OR gate and a single test line. The test 

line is low in operational mode and high in test mode. 

tst 

r 

e 

ck 

tout 

Figure 2.6 Reducing the number of Test Signals 

fm 

Alternatively, test data can be brought in and out by 

replacing input and output data pads by bi-directional pads 
controlled by tri-states, as shown in figure 2.7. 

2- 9 



tstcrl 

data in 

reset 

Figure 2.7 Bi-directional Pads used for Test 

Input/output 

In operational mode, these pads operate in the conventional 
direction. In test mode they work in the opposite sense and 

test data goes in via output pads, out via input pads. The 

only additional pad is the test control pad, which also 

controls the direction of the tri-state drivers. 

2.6 AD-HOC TECHNIQUES - FOR AND AGAINST 

There are a number of advantages in adopting the ad-hoc 

approach to design for test. These include: 

a. The functional circuit forms the basis of the additional 
test circuitry. 

b. Both functional and structural tests are simplified. 

c. Test vector generation time and cost can be significantly 
reduced. 

d. Advantage can be taken of the pins in the chip package 
which would otherwise be unused. 
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There are disadvantages in these techniques, including the 
following: 

a. There is an increase in chip area and pin count, although 
the latter can be minimised. 

b. The operational speed of the circuit is reduced due to 

. 
additional multiplexers in critical signal lines. 

c. The test components are additional potential sources of 
fabrication faults. 

d. A testability analyser can indicate the best position for 

test points, but the process of inserting them and 

generating test vectors cannot, in general, be automated. 

2.7 STRUCTURED DESIGN TECHNIQUES FOR TESTABILITY 

Structured techniques allow the test generation problem to be 

reduced to one of generating tests for combinational logic. 

One of the structured testability approaches is that of 

Scan-Set Logic. In this approach shift registers are used to 

load and unload data and are not part of the system data 

path. Not all system latches are necessarily controllable 

and observable via the shift register. 

Another approach which is that of Built-In Logic Block 

Observation (BILBO). This technique has attributes of both 

the LSSD (Level Sensitive Scan Design) network and the Scan 

Path network. It has the ability to separate the network 
into combinational and sequential parts, and has the 

attribute of Signature Analysis - that is, employing linear 

feed back shift registers. 
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All the structured approaches allow controllability and 

observability of the state variables in the sequential 

machine. The test generation and fault simulation can 
therefore be directed more at a combinational network, rather 

than at a sequential network. In general a synchronous 

sequential circuit can be represented in block diagram as 

shown in figure 2.8. [WILL 83][WILL 86] 

PI PO 

SV Secondary Variables 
CL = Combinational Logic 

Figure 2.8 A Synchronous Sequential Circuit 

PI are the primary inputs, PO are the primary outputs, SV are 

the state/secondary variables, CL is the combinational logic, 

and FF are the system flip-flops. The CL block will be made 

up of an input block generating the excitation logic to the 

flip-flops and an output logic block generating the primary 

outputs. As both these sub-blocks are driven by the same 

inputs, ie the PI's and the SV's, they can be lumped together 

as one CL block. 

To test the CL block we need to have direct control over all 

of its inputs, of which only the PI's are so available. We 

also need direct observability of its 0/P's, but again only 
the P0's are available. Testing the FF block is equally 
difficult as the SV's can neither be controlled nor observed 
directly. 

The most widely used of ways that have emerged to overcome 
these difficulties are all based on a structured design 

approach known as scan-path. 
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Scan design reduces the complexity of the test generation 
problem for circuits with stored-state devices (flip-flops) 
and global feedback by using a 'divide and conquer' 
philosophy. This benefit is at the expense of increased 

circuit complexity to enable the necessary partitioning 
('silicon overhead') which in turn can introduce unwanted 
further system delays. 

2.7.1 PRINCIPLES OF INTERNAL SCAN PATH DESIGN 

The principles of internal scan-path design can be summarised 
as follows: - 

(a) the stored state devices can be tested in isolation 

(b) the future-state of the secondary state variables can be 

set independently 

(c) the outputs of the combinational logic block can be 

observed directly. 

To do this it is important to establish a scan-path through 

the stored state devices by the addition of multiplexers as 

shown in figure 2.9. 

PO 
SDO 

PI 

M. 
SDI 

rn uM 
FF1 

CL 
rnuz 
2 FF2 Es 
ý 

IkF3 

Figure 2.9 A Scan-Path 

ST s 
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Three extra connections are shown: two inputs SDI and M 
(scan-data-in and mode respectively) and one output SDO, 
scan-data-out. With M set to divert the flip-flop inputs away 
from the CL block as scan-in/scan-out mode is entered, the 
flip-flops are connected as one long shift register with SDI 
as the serial input and SDO the serial output. This data 
path is known as the scan-path. Normal operating mode is re- 
entered with M set to connect the flip-flop inputs directly 
to the CL block. 

The steps of a suitable test strategy could be as follows: - 

(1) Select the scan-path and test scan the shift register 
by: - 

(a) Flush testing a '1' through a background of '0's and a 
'0' through a background of '1's. This tests the 

ability of each flip-flop to assume either state. 

(b) Shift testing using the sequence 00110011.... This 
exercises each flip-flop through all possible 
transitions. 

(2) Determine a set of tests for the CL block assuming: - 

(a) Total control of all inputs (PI's & SV's). 

(b) Direct observability of all the CL block outputs (P0's 

and those to the flip-flop inputs). 

(3) Apply each test as follows: - 

(a) Select scan-path mode. Pre-load the flip-flops with 
test input values and establish test input values on 
the PI Is. 
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(b) Select normal mode. The steady-state output response 

of the CL block can now be clocked into the flip- 

flops. 

(c) Return to scan-path mode and clock out the contents of 
the flip-flops. Compare these values plus the PO 

values with the expected fault-free response. 

It can be seen that the 'divide and conquer' approach has 

reduced the testing of the flip-flops to a standard procedure 

and the only test-generation problem that remains is that of 

generating a compact test set for the combinational block. 

Scan path circuit elements are based on a storage element 

such as a D-type flip-flop, with a multiplexer to choose 
between the scan path input and operational data input. These 

are built up into synchronously reset enable (E-type) and 
toggle (T-type) flip flops. 

2.8 SCAN PATH TESTING - FOR AND AGAINST 

Structural design for test, of which scan path testing is an 
implementation, has a number of benefits. These include the 

following: 

a. The test circuitry is an integral part of the circuit 
design. Provided that the circuit has a hierarchical 

structure of storage elements and combinational blocks, 

the scan path is easily incorporated. 

b. The scan path breaks the circuit into separate 
combinational blocks, which are generally small and 

easily tested modules. Feedback loops are disabled in the 

process. All storage elements are directly controllable 
and observable, and the controllability/observability 

path to or from each combinational element links to the 

nearest storage element. 

2- 15 



c. Scan path testing can be combined with path sensitization 
and justification techniques to develop test vectors, or 
with random test sequence generation techniques which can 
be incorporated on- chip. 

d. A scan path, by breaking the circuit into a number of 
separate combinational blocks enables automatic test 
pattern generation software to be applied to the circuit. 

Weighted against these significant benefits are the 
disadvantages of additional circuitry: 

a. The additional gating in the scan path elements and the 
scan path linkage itself can give rise to a significant 
increase in chip area, with consequent cost increases. 

b. Three additional pads are required: scan control, scan in 

and scan out. However, it is, possible to multiplex the 
latter two with data input and output pads, as these are 

not used during scan path testing. 

c. The multiplexers in the scan path elements cause 
additional delay. 

d. Scan path testing is not possible for level-sensitive 

elements such as RAM and ROM as it is an edge triggered 

technique. 

2.9 BUILT-IN SELF-TEST AND STRUCTURED DESIGN FOR TEST 

The method of path sensitization and- justification, when used 
on its own or in conjunction with a technique such as scan 
path testing, is a deterministic method of generating test 
vectors. The return for an extensive outlay of time to 
develop test vectors is a set of structural test vectors 
which may achieve the ideal of full fault coverage, but in 
practice, falls somewhat short of this ideal. 
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The alternative non-deterministic approach is to generate a 
large set of random test data automatically. If the set is 

large enough (and sufficiently random) it should give 
adequate fault coverage. The random test vectors may be 

generated by circuits included on-chip, hence the name given 

to this technique built-in self-test (BIST). Not only does 

BIST remove-the need for test vector generation altogether 
(all the circuit requires is a clock sequence of the 

appropriate length while in test mode), but also it means a 

circuit may be tested at any time while it is in operation. 

Figure 2.10 demonstrates an example circuit with PRBS 

generator and signature analysis register. The random test 

data are generated by one or more pseudo random binary 

sequence (PRBS) generator modules (also known as linear 

feedback shift registers (LFSR), and multiplexed into the 

input data stream when the circuit is in test mode. A PRBS 

generator is based'on an n-bit shift register which produces 

a random stream of 2n-1 bits. Although the bit stream is 

statistically random, the same stream is produced each time 

the PRBS is reset. 

The output is shifted into a signature analysis register, 

which produces a distinctive pattern depending on the entire 

data stream it receives. An n-bit signature analysis register 

will produce a different signature for a single-bit variation 

in an input of 2n-1. 

The signature may be compared with the fault-free signature 
by a comparator circuit, and a single go/no go output 

produced. 
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2.10 BUILT-IN SELF-TEST - FOR AND AGAINST 
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Built-in self-test has a number of advantages, in particular: 

a. There is no need to generate any test vectors - they are 

produced automatically on-chip. This saves a great deal 

of time and cost in circuit development. 
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b. A number of theoretical studies have shown that non- 
deterministic test vectors give approximately the same 
fault coverage as deterministic vectors for typical 

circuits. [TRIS 84] 

c. Field tests can be carried out on the chip. 

The disadvantages of the technique are as follows: 

a. Without a full fault simulation run (which is not 

generally possible) there is no certainty that the random 

test data stream is covering all the possible 'stuck-at' 

faults in the circuit. If the circuit contains a large 

number of components with high fan-in such as 4-input AND 

gates (for which the probability of getting a1 output is 

only 1/16) then the chances of putting all the nets into 

all states are reduced. 

b. The PRBS generator(s) and signature analysis registers 

create an overhead in silicon area, and can themselves be 

source of faults. In addition they require a control 

test pad, as well as a go/no go pad, although the latter 

may be multiplexed with a data output pad. However, 

existing D-types can be used to form PRBS generators and 

signature analysis registers. 
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2.11 COMBINATION OF SCAN PATH AND BUILT-IN SELF-TEST 

TECHNIQUES 

A number of the DFT techniques outlined previously may be 

used in on a single design. In particular: 

a. Testability analysis is used to identify obscure nets for 

attention by ad-hoc DFT techniques. 

b. Path sensitization and justification can be used on the 

combinational blocks of circuits which includes a scan 

path, in order to generate test vectors to be applied via 
the scan path. 

c. A PRBS generator may be used to provide the input into 

the scan path, and a signature analysis register to 

analyse the scan path output. 

d. The PRBS generator, signature analysis generator, scan 

path and operational register can be amalgamated into a 

single Built-in Logic Block Observer (BILBO), which is 

used for all registers in the circuit. 

This technique is known as hybrid design for test which is of 

particular significance. 

2.12 HYBRID DESIGN FOR TEST - FOR AND AGAINST 

Hybrid design for test techniques are the most powerful 
available for many circuits. Their benefits include the 
following: 

a. There is no need to develop the structural test vectors - 
these are generated on-chip when chip is in test mode. 
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b. The chip may be tested at any time while it is in 

operation. 

C. The use of the scan path means that the combinational 
depth of the circuit is reduced, and chances of obscure 
nets not being tested are reduced. 

d. The test circuitry is an integral part of the circuit, 
and requires only the minimum of additional design 

effort. 

The disadvantages of the technique is the silicon 
overhead as follows: 

a. Hybrid design for test creates a significant silicon 

overhead in the PRBS generator, signature analysis 

register and scan path register, or the large BILBO 

registers. However, this overhead can be reduced by 

checking whether a BILBO implementation is smaller than 

one with a separate PRBS generator and signature 
analysis register. If BILBO implementation is chosen, 

registers in the middle of the scan path can be scan path 

versions, rather than full BILBOs. 

b. The additional circuitry is in itself an additional 
source of fabrication faults and circuit delay. 
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2.13 TEST ACCESS AND BOUNDARY SCAN 

The 'Bed of nails' technique is becoming increasingly 

impractical, both because of lengthening back-drive times. In 

the face of miniaturisation, this technique is unsuited to 

todays boards with surface mount and Pin Grid Array devices, 

hybrid substrates, mother-daughter board assemblies and 

boards with components on both sides. conformal coatings are 

damaged by probing and need repair afterwards. 

The best solution to the test access problem is to move the 

ATE's (Automatic Test Equipment) test pattern registers 

directly into the boundary pins of the components to be 

tested. This overcomes the need for both probes and for 

logic-family-programmable buffers. 

The increased program execution time due to serialisation is 

offset by configuring test registers as pseudo random pattern 

generators and signature compressors. (Attempts to do this in 

ATE systems were frustrated by the difficulty of mapping ATE 

bits into relevant register groups). Resulting test programs 

can be short enough to fit in a , small on-board memory. 

A standard for the serial bus link to these on-board test 

registers has emerged. The Boundary Scan proposal by JTAG 

(Joint Test Action Group) was ratified in Autumn 1989. 

Boundary scan is a method of gaining test access to 

components within a circuit board, without using bed of nails 

or expensive Automatic Test Equipment. It is especially 

necessary for densely packed assemblies such as surface 

mount, double sided boards, hierarchical assemblies and 

silicon hybrids. 
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Test registers, embedded in the boundaries of components and 
functional blocks, can interrupt the normal flow of signals 

under the control of a global 'Test Mode Select' signal. 
Test data are shifted serially in and out of these registers, 

which are connected in one or more 'Boundary Scan Chains' as 

shown in figure 2.11. Tests are performed both on the inter- 

connections and on the components themselves. Data transfer 
is minimised where possible by configuring registers as 

pseudo random generators and signature gatherers. With 
improved goods-in testing of new components, design errors 

are minimised using improved design methods and simulation. 

Boundary 
Scan 
Path 

Pad 

Figure 2.11 Boundary Scan Path 

The IEEE Std 1149.1 - 1990, IEEE Standard Test Access Port 

JTAG (JTAG 90], defines circuitry that may be built into an 

Integrated Circuit to assist in the test, maintenance and 

support of assembled printed circuit boards. 

The circuitry includes a standard interface through which 
instructions and test data are communicated. A set of test 
features is defined, including a boundary scan register, such 
that the component is able to respond to a minimum set of 
instructions designed to assist with the testing of assembled 
printed circuit boards. 
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This standard defines test logic that can be included in an 
integrated circuit to provide standardised approaches to: 

" testing the interconnections between integrated circuits 
once they have been assembled into a printed circuit 
board or other substrates; 

" testing the integrated circuit itself; and 

" observing and modifying circuit activity during the 
component's normal operation. 

JTAG involves inserting special Test Register cells into the 

chip design. The Test Registers are strategically placed to 

intercept the signals that pass between blocks of logic. 

The Test Registers are able to perform a number of different 

test functions which are used to test the blocks of logic. 

When the circuit is not being tested, the test registers act 

as normal clocked or direct signal buffers and do not 
interfere with the normal operation of the chip. See fig 

2.12a. 

However during testing, the test registers are re-configured 
to form shift registers. Test Registers are connected 
together serially to form a 'Scan Loop', where serial data 

can be shifted in from a test input pin (TDI) and serial data 

can be shifted out via a test output pin (TDO) see fig 2.12b. 
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Thus it is possible to load into the circuit a predetermined 

set of values which are applied to the inputs of the internal 

circuitry. Once loaded, the test registers can apply the data 

directly to the internal circuitry. 

The outputs from the internal circuitry are also connected to 

test registers. After a test has been completed, the output 

test registers are loaded with the result of the test. The 

test registers are then configured again to form a scan loop 

and the result is shifted out and appears at the TDO pin. 

A controller cell (JTAP) is required to control the test 

registers. This cell requires 4 external test connections to 

control the complete test of the chip using a JTAG/IEEE 

1149.1 protocol which is explained in more detail later. 

The test registers can be configured into pseudo-random 

pattern generators, to exhaustively test a block of internal 

circuitry. Test registers on the outputs build up a 

signature, which is then shifted out for comparison, see fig 

2.12c. 
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Figure 2.12c Chip Performing a Pseudo-Random Test 
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Although a single scan loop is all that is required, to 

reduce data shifting times, the test registers can be 

connected to form several parallel scan loops. 

The test program primarily drives the JTAP (JTAG Test Access 

Port) controller on the chip. The complete BIST test program 

is made up from a series of individual shift and pseudo- 

random self-test operations which are controlled from the 

JTAG test interface. These test operations test out the 

individual blocks of the chip. The test program will contain 

all the serial data to load into the scan loops that is to be 

applied to the internal blocks of logic, plus the seeds and 

expected signatures for the pseudo-random tests. The JTAG 

hardware on a chip can be extended to include autonomous 

self-test. This is where the complete self-test of the chip 

is run automatically without the need to shift in data from 

the external JTAG interface. 

2.14 BOUNDARY SCAN AND IN-SYSTEM TESTING 

An immediate benefit of Boundary Scan is the ability to test 

a board and diagnose faults without removing it from a host 

system. Since this uses the system power supplies, the only 

equipment needed for field service is a personal computer to 

drive the serial test bus. This will reduce the cost of 

testing with the personal computer costing a few thousand 

pounds compared to ATE costing a few tens of thousands of 

pounds. 

2.15 BOUNDARY SCAN AND SYSTEM TEST INTERFACE 

To select the boards to be tested by the scan chain and to 

cater for missing boards, a hierarchical gateway at the 
interface to each board will be needed. This will allow for 

boards to be missed out of the scan chain, for the scan chain 

to be split into a several parallel paths around a board or 
back-plane re-converging later on. 
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Each board can have its own on-board scan chain test program 
and interpreter. This can be run as an execution of the JTAG 
'run self test' instruction, clocked by the back-plane test 
bus clock. 

The gateway and on-board program interpreter should be 

embodied in a test interface chip which could be obtained 
from IC manufacturers such as Texas Instruments. 

it is expected that, in many applications, the gateway and 

other features will be embodied in larger VLSI devices 

performing other primary functions on the board. 

2.16 BOUNDARY SCAN AND SOFTWARE ELEMENTS 

Development of software tools to support the inclusion of 

Boundary Scan Testing from back-plane level down to the ASIC 

level are being carried out by many companies. 

For board level testing, the tool that currently available 
for use is the Interactive Diagnostics Workstation running on 

a personal computer (PC). The boundary scan is normally 
driven from the PC via a software interface to a parallel 

port. 

When the user chooses the route of the hardware description 
files, the Scan Chain Map Compiler reads the files and builds 

a map of the Boundary Scan Chain. This will be complex since 
it has a hierarchical shape. 

The resultant presentation will normally display the scan 
chain graphically, and the user is able to choose the board, 

component to be displayed. Elements that have failed a test 
are subsequently highlighted. 

The user can apply new test patterns, either graphically, 
textually, or from a file (test program). 
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Test patterns are intended to be derivable from design 

simulations. At the highest design level, patterns are 

written in terms of the primary inputs and outputs of 
functional blocks or components. The scan Chain Instruction 

Compiler cross references these to the scan chain positions 

and calculates the necessary routing instructions for the 

hierarchical scan path. 

2.17 ADVANTAGES OF BOUNDARY SCAN PATH 

The inclusion of serial scan paths in digital circuits has 

long offered an attractive route to increasing the 

controllability and observability of an ASIC implementation 

or a circuit panel for test purposes. For example: - 

a. The inclusion of bouni 

offers an alternative 
probing to detect and 
It avoids the need to 
surface mount devices 

condition. 

dary scan paths 'around' components 

implementation to in-circuit 

diagnose open and short circuits. 

physically probe the fragile 

which can affect the failure 

b. The monitoring of system performance. Whilst it is 

unlikely that embedded scan paths can be used to define 

, at speed' testing of a system, the opportunity exists to 

use them to 'capture' data during real time operation of 

the system. 

2.18 CONCLUSIONS 

Typical fault classes today are production faults including 

shorts, opens, components inserted wrongly and wrong 

components inserted. These production faults comprise 99.5% 

of all faults. The other 0.5% of faults are from faulty 

components. The maintenance faults occur from open circuits 

and faulty components 
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This chapter has discussed both the Ad Hoc and the Structured 

approaches of testability. In summary, the Ad Hoc Testability 

techniques are applied on top of existing designs. They are 

specific to the logic under test. The Structured Testability 

techniques are designed-in up front, which complies with the 

Concurrent Engineering concept. The techniques form a 

consistent approach and are typically scan-based. 

The availability of a 'standard' such as the IEEE 1149.1 to 

define an implementation of scan path method is considered to 

have immense benefits. The definition of a consistent 
implementation method facilitates: 

a. A standard electrical interface to the UTT. Consequently, 
it allows the use of standard 'external' physical test 

equipment. The test software must still be customized for 

the application, but suitable design tools should be 

readily available. 

b. The design of the scan paths to be embodied in individual 

sub-circuits, of either an ASIC or a circuit board, is 

such that they can be efficiently combined to implement 
the overall system test. 

c. The availability of merchant parts and ASIC cells to 
implement scan paths efficiently. This significantly 

reduces the overhead', in terms of unit price and unit 

volume, which is associated with designing and developing 

scan path circuits. 

d. The opportunity for the test vectors employed in the 

simulation of an ASIC to be 'directly' employed to 

validate the components themselves when they are mounted 

on a circuit panel, thereby achieving a consistency of 
test conditions. 

2- 30 



e. The opportunity to combine the test vectors designed for 

individual components, to define part of a board test 

sequence, ie., implementing the system test strategy in a 
hierarchical fashion. 

f. The development of Computer Aided Engineering (CAE) 

'tools' to automate the placement of scan paths, the 

generation of test stimulus data and response data, the 

translation of component level 'files' to compile system 
level tests. 
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CHAPTER 3 

REVIEW OF BOUNDARY SCAN ARCHITECTURE 

3.0 INTRODUCTION 

The Joint Test Action Group (JTAG) was founded in 1985 as a 
result of an initiative within the Philips Group of companies 
to develop and promote structured design-for-test techniques. 
It has been able to create a broad consensus for Boundary 
Scan Test Architecture. The JTAG standard was the first 
formal effort by users to identify their testability 

requirements to Semiconductor manufactures. 

originally, the Boundary Scan Architecture (BSA) test defined 
by the JTAG was a simple scan interface to support board 
level test. As the JTAG grew to include more companies, other 

needs had to be considered and as a result, the original BSA 

architecture was expanded to satisfy these needs. The JTAG 

proposal version 2.0 was published in March 1988 and formed 

the basis of the actual standardisation architecture of 
P1149.1 IEEE Committee. 

This chapter reviews the recent literature on Boundary Scan 

Design. It examines the history of VHDL development and 

summarises VHDL related technologies, including computer 
Aided Design, Engineering and Test (CAD, CAE, CAT). it then 
identifies both the motivating factors behind the 
implementation of this research project and the development 
frame work. 
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3.1 TRENDS IN THE ELECTRONICS INDUSTRY 

The driving forces behind the JTAG initiative were two fold; 

the increasing use of Surface Mount packaged devices, and 

Application Specific Integrated Circuits (ASICs) on printed 

circuit boards (PCBs). These trends are continuing in the 

90's. In January 1989, Pound reported that 48% of electronic 

system companies had adopted surface mount technology, and 

that this percentage was rising [POUND 89]. This view is 

echoed by Cole, who also gave the prediction that the ASIC 

market would rise from its 1988 figure of 15% to 21% by 1993 

[COLE 89]. 

Bursky also predicts the increasing use of ASICs, (and what 
he terms "user-specific ICs"), with sizes reaching to 30M 

transistors at geometries of 0.25 micron by the year 2000 
[BURS 89]. He comments that the design time for such devices 

will reduce from 2 years to 9 months. The dominant packaging 
styles will be flip-chip and tape-automated bonding. Bursky's 
final comment was that testing problems will eventually be 

solved only by the adoption of both internal (device core 
logic) and external (device boundary) scan architectures. 

Bassett et al. discussed the trends in ASIC usage within IBM. 

Up to 500 signal pins and 100K gates is now common, with size 

forecasts to increase to 300K gates [BASS 89]. IBM has the 

ability to include internal scan paths (based on Level- 

Sensitive Scan Design -LSSD- architecture) in their devices, 

and the authors state that the design philosophy has now been 

extended to include input/output boundary scan to reduce the 

number of driver/sensor pins required on the tester. The 

motivation for this is to reduce the overall testing. IBM's 

proprietary version of boundary scan is described in [DUPT 

84] and more recently in [BASS 90]. 
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3.2 THE STANDARDISATION EFFORT 

JTAG was merged into the IEEE P1149 Testability Standards 
Committee (TBSC) in 1988, following exposure of JTAG's status 
at the 1987 International Test Conference [BEEN 87]. The TBSC 

operated under the section of the IEEE Computer Society's 
Test Technology Technical Committee [IEEE 90]. At that time, 
P1149 test group was developing a standardized test bus to 

provide access to test support functions built into the 

circuit board. An agreement between the P1149 group and the 
Joint Test Action Group (JTAG) permitted the incorporation of 
JTAG's effort into the 1149.1 minimum serial subset of the 
standard. The agreement proved JTAG's development of the 
proposal document and prototyped the proposed test access 
port (TAP) and boundary scan architecture. It also resulted 
in the first of a set of new standards - IEEE Standard 1149.1 

-1990. 

Other specifications are still in preparation: p1149.2, the 
Extended Serial Test Bus, P1149.3, the Real Time Test Bus; 

and P1149.5 the Back Plane Test and Maintenance Bus (based on 
the earlier VHSIC TM Bus [TBUS 87], [AVRA 871. Each of these 

standards will be free standing when they finally emerge. The 

overall P1149 document will provide a guide to the overall 
structure of the set of 1149. n series of documents. 

3.3 IMPLEMENTATION OF BOUNDARY SCAN ARCHITECTURE INTO 

INTEGRATED CIRCUITS 

The response of semiconductor manufacturers to the promotion 
effort has been very encouraging, with companies such as 
Plessey, National Semi, VLSI Technology Inc, Motorola, AT &T, 
Texas Instruments, LSI Logic, NCR, NEC, LSTI, SGS Thomson and 
Philips Components introducing BSA features into their ASIC 
libraries. 
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In 1990, Philips Components responded to the new standard by 

providing their ASIC engineers with a tool kit containing a 
library of soft macros from which an optimised BSA circuit 

can be assembled. In addition, Philips have recently 
developed a Testability IMprover (TIM) Software system, which 
integrates their soft macros into their ASIC technology. This 

effort was initially to exploit the use of BSA for their in- 

house ASIC design activity. The use of this tool has now been 

extended to work from a mentor Graphics CAE System [PHIL 90], 

as most of their designs are implemented using the Mentor 

system. 

An interesting factor about TIM is the concept of the "Single 

Transport Chain" IMAUN 90]. Consider the various parallel 
registers in the 1149.1 architecture: Instruction, Bypass, 
Identification, Boundary Scan, and User-Specific. In general, 
a register element is capable of three fundamental actions: 
capture, shift and update. "Capture" and "Up-Date" mean to 

transfer data to or from a parallel input to outputs of the 

register. "Shift" means to transfer register data serially 
through elements of the register. Not all register elements 

contain all-these features, for example, the identification 

register does not contain an update function. But all 

register elements contain a core shift function. Furthermore, 

only one register is connected from TDI to TDO at any one 

time. As a result, the shift elements can be considered to be 

a shared resource, for example a single transport chain, as 

shown in figure 3.1, thereby reducing the final number of 

memory elements needed to implement the various registers. 

T 

DO 
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Texas Instruments have led the way in introducing BSA 
features into both commercial and ASIC devices [MCLE 89]. The 
first devices to emerge were modified forms of their register 
and latch "octals". Code named 74BCT8244/8245/8373/8374, 

these devices are replacements for the standard 244/245/... 

devices, although not directly pin-for-pin compatible because 

of the extra pin-outs required for the boundary scan 
features. The BSA octals contain boundary scan cells on the 
inputs and the outputs, a full TAP controller, and extra 
facilities to configure output cells into a pseudo-random 
number generator (to generate test stimulus to other 
devices). They also include input cells into a parallel 
signature analyser to capture and compress the responses from 

other devices. On bus-orientated designs, these octals 
provide a means of isolating and controlling major system 
components (e. g. the memory and processor) and areas of glue 
logic. [PERR 89] 

Texas Instruments have also announced a new range of devices 
to be used at board level for controlling the test of other 
on-board devices compatible with 1149.1. This range includes: 
74ACT8990 Test Bus Controller: 74ACT8997/8999 Scan Path 
Selectors; 74ACT8994 16-bit Digital Bus Monitor. These devices 

are part of TI's Systems Controllability Observability 
Partitioning Environment (SCOPE), which is supported by the 
Advanced Support System for Emulation and Test (ASSET). 

The article by McLean (MCLE 89] contains details of the 
implementation of boundary scan cells in TI'S 1.0 micron CMOS 

TSC500 standard cell library. This library contains fourteen 
different cells, including a 1149.1 TAP controller and 
various forms of boundary scan cells. The impact on 
propagation delay is quoted as being 0.5ns per scan cell. In 
terms of additional gates, each scan cell requires around 15 

gates to implement, and each bit of the instruction register 
requires 11 gates. The TAP Controller requires less than 200 

gates. TI has also included 1149.1 features in their 0.8 

micron 100K BiCMOS gate array library. 
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Finally, McLean describes TI's 32 bit TMS320C30 Digital 
Signal Processor. This device makes extensive use of both 
internal and boundary scan paths and, although not strictly 

compatible with 1149.1, the facilities go along way to 

providing the features of the standard. The reason for the 

slight incompatibility is that the design of this chip 
started before the standard was finalised. As a result, TI 
had to make implementation decisions before the final version 
of the standard. The newer TMS320C5X is fully compatible with 
the standard. 

Perry states in his article in IEEE Spectrum on the Intel 
1860 microprocessor, the successor to Intels 80X86 

microprocessor family, that the new microprocessor will 
incorporate BSA features [PERK 89]. It also appeared that 
Motorola had incorporated a TAP interface MC68040 
microprocessor [TIME 89]. Other companies started to 
introduce 1149.1 features into their standard products. These 
companies included Lattice Semiconductors (PLD family) and 
AT &T (digital signal processors). 

An interesting BSA IC-implementation was presented by van 
Rissen at the 1989 European Test Conference [VAN 89], 
describinga hierarchical test architecture based on the JTAG 

proposal. The architecture was designed to ensure testability 

at board and chip levels and to aid self-test of macros in 

the chip. 

Board level controllers for the application of boundary scan 
tests are emerging. Vining of Texas Instruments (VINI 89], 
describes the design of trade versions of an interface chip, 
called the Scan Bus Master which interfaces between a 16-bit 

processor bus and a TAP. Ballew and Streb of AT &T [BALL 89] 
describe a device called PROBE ASIC. 
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An earlier paper by Lien and Bruer [LIEN 881 describes a 
Module Test and Maintenance Controller for use in a 
hierarchical test and maintenance environment. The controller 
for a 1149.1 board is detailed. The design is similar to both 

TI and AT &T designs, but is based on an earlier provisional 

version of the 1149.1 standard. 

Halliday [HALL 89] also describes the use of BSA devices 

(for example TI octals) for increasing controllability and 

observability during prototype testing. 

3.4 IEEE 1149.1 CONFORMANCE TESTING 

The paper by Dahbura, Uyar and Yau [DARB 89] describes a 
method for generating conformance tests for an 1149.1 TAP 

controller and for the instruction register. The method is 
based on the theory of checking experiments as applied to 
finite state machines, but uses a de-generate form called a 
Unique Input/Output (UIO) sequence. A UIO sequence is an 
input/output sequence of minimum length starting from one of 
the states, Si, that could not be produced starting from any 

other state in the circuit. The TAP controller is a classical 
Moore machine, and from a test point of view, it is only 

necessary to demonstrate the existence of each of its sixteen 

states and each of the specified transitions. It is not 

necessary to locate the cause of failure if failure occurs. 
If it were, then the more complete form of checking 

experiment would have to be used. 

The sequences produced use a form of flush test (110011 

sequences) to check the behaviour of the instruction 

register, - bypass register, boundary scan register and 
identification register (if it exists). The length of the 

sequence is dependant upon the length of the boundary scan 

path, N(bs) and the length of the instruction register N 
(ir), and is given by: 
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589 + 12 N(bs) + 23N(ir) (no identification register) 
or 
1658 + 12N(bs) + 44N(ir) (with 32 bit Identification 

register) 

The techniques described in the paper have formed the basis 

for a recent commercial offering from AT &T called TAPDANCE 
[TAPD 90]. 

3.5 BOUNDARY SCAN & BUILT IN SELF TEST 

BSA provides access to device Built In Self Test (BIST), 

although its primary benefit is for board testing. This 
allows device self test routines to be triggered as part of 
the functional board test, or even as part of a start up 
procedure. 

There has therefore been a significant amount of development 

work in this field in the last two years. In general BSA 

cells developed by Plessey, Siemens, SGS Thomson, Motorola, 
Texas Instruments and AT &T support BIST and can be 

configured as pseudo-random test vector generators and 
signature analysers [DETT 89], [MCLE 89]. 

AT &T Bell Labs have devised an architecture for combining 
BSA and BIST techniques [SCHO 88] and outlined a complete 
test program for testing boards equipped with BSA and BIST 
(TULL 89]. Signetics Corp. described a systematic test 

process that combines BSA and BIST [USZY 89]. Philips 

presented the specifications and design of a self test 

mechanism for static RAMs compatible with the BSA (DEKK 89]. 
IBM [BLANC 84] made use of SRLs on primary inputs and primary 
outputs in their LSSD On Chip Self Test (LOCST) architecture. 
Other articles dealing with boundary scan and BIST are 
[VAN 89], [GLOS 89], [BRGL 89], [WANG 89], [HUDS 89]. 
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3.6 ADAPTATION TO CAE TOOLS 

The major concern of designers and test engineers when they 
decide to adopt the BSA is their lack of experience, the 

scarcity of support tools and the impact on their development 

time schedule. Use of BSA will only be widespread when the 
tools required to implement and support this test technique 
are available and when the full implications of BSA 
implementation are well known. 

Recent publicity and promotion of Design for Test (DFT) 

techniques have been noted by vendors of CAD tools [Gt7NN 90). 

Chip and Board manufacturers wanting to use these techniques 

were confronted with the lack of software tools to support 
them. However in 1989, Gateway Automation (now part of 
Cadence), HHB Systems (now part of Racal Redac), and Teradyne 
began to offer design verification packages for scan path 
techniques. 

VLSI Technology Inc, has announced their Test Engineers 
Assistant (TEA) [HALL 89], a CAD environment with tools to 

support the design of testable devices. TEA interfaces with 
ADAS, VHDL, and TISSS and with commercially available tools 

to allow design capture, functional verification, design for 

testability, fault simulation, and test program generation 
for particular ATE. 

3.7 BSA AND TEST PATTERN GENERATION 

Because most of todays e 

complex, the electronics 
for automatic generation 
coverage. BSA simplifies 
partitioning the overall 
circuits. 

Lectronic circuits are dense and 
industry is eager to develop methods 
of test programs with high fault 

the test generation problem by 

circuit into a collection of smaller 
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As early as 1982, Goel and McMahon [GOEL 87] presented a 
technique for assembling a test for interconnect failures 
assuming the existence of boundary scan cells in the devices. 
This work has been extended by Wagner (WAGN 87], Hassan et al 
(HASS 88] and Jarwala and Yau [DRAW 89]. 

Generally, the interconnect pattern generation algorithms are 
either one step algorithms or adaptive algorithms. One step 
algorithms rely on a sufficient set of patterns to first 
detect the fault and then provide enough information to allow 
accurate analyses of the cause of the fault. Adaptive 
algorithms contain a fixed sequence section (to detect 
condition) followed by an adaptive section (to enable fault 
location with the minimum of additional sequences). The first 
algorithm of this type was reported by Goel and McMahon [GOEL 
87] and subsequent algorithms (one test and optimal C Test) 
by Jarwala and Yau [JARW 89]. 

3.8 BSA AND ATE 

Both chip and board manufacturers are beginning to use scan 
path techniques for design verification and/or production 
tests. The major problem is the lack of ATE hardware and 
software tools to support this. In 1988, Gateway Design 
Automation HHB and Teradyne (among others), offered limited 
design verification packages and Gillytron Inc (now called 
Brothers Electronics) announced a device tester tailored to 
verify the design of ICs equipped with scan circuit [BST 89, 
issue 1, P. 4]. 

The Gillytron scan tester is based on the VXI backplane and 
controlled by a PC. Two other PC-based testers for scan based 
boards are the ASSETT system developed at Texas Instruments 
and Marconi's Checkmate/Midata 510 low cost ATE, equipped 
with boundary scan card and ATPG software package [BST 89, 
issue 2, p. 5). 
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IMS have announced support for scan, including boundary scan, 

on their XL device verification tester; similarly 

Semiconductor Test Systems on their STS8500 device tester 

[MCLE 89]. 

Teradynes' response to the impending need for board testing 

tools to support BSA boards was the introduction of the L300 

board test family "representing a new definition of 

combinational testing, including concepts of BSA, LSSD and 

BIST" [VERS 89]. The L300 board tester automatically 

generates patterns and provides the algorithms necessary to 

diagnose the failed nets on boards equipped with boundary 

scan. The implemented BSA strategy is described in [HAN1 89]. 

Another important development was the joint TYPHOON project 
between Motorola and Schlumberger Technology's ATE division 

to develop a device tester for the next generation of 

Motorola devices supporting the 1149.1 standard [TIME 89]. 

The specification of the ATE was impressive; dynamic tests on 
1024 pin CMOS, bipolar or BiCMOS chips at frequencies up to 
80MHz, and all this for just $1,500 per pin. 

Clearly, it is not sufficient just to provide hardware 
facilities on the testers. There must also be some overall 
test strategy, taking into account the fact that most boards 

in the future will probably contain a mix of devices - some 

with BSA features, and others without. Those devices with BSA 

features provide access to the non-BSA devices through the 
boundary scan cells and the interconnects between the two 

types of device. Hansen called this form of access "virtual 
ATE channels" [ROSE 891, [HAN2 89], [HAN3 891. 

Halliday et al of Texas Instruments [HALL 89] also discussed 

the use of the TI'S octals to enhance both controllability 

and observability of non-boundary scan devices on a printed 

circuit board. This approach enables a form of cluster 
testing, that is, the non-BSA devices are treated as a single 

entity (cluster) and tested from the periphery. 
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In this respect, cluster testing is similar in application to 

the more familiar form of cluster testing through a bed of 

nails. 

Given that the boards will contain a mix of BSA and non-BSA 
devices , and that there will be limited in-circuit access 

through the bed-of-nails fixtures, a possible strategy is as 
follows: 

Power off nail contact integrity 

Tests: short tests 

Power On TRST test 

tests: daisy chain test BSA 

BYPASS test (*) Infrastructure 

BOUNDARY SCAN test (*) Tests 

Chip identification test 

board interconnect tests 
analog device tests 

digital device tests, including BIST cluster tests 

lperformance test 

(*) Note these two test are optional . They are only performed if the 

BYPASS and the BOUNDARY SCAN paths were not tested at chip test. 

The daisy chain test checks the chip-to-chip TDO and TDI 

interconnects through the instruction registers, by loading 

the hard-wired 01 sequences. These values provide the basis 

for the distributed checkerboard test. An all-1s sequence is 

fed in from the TDI edge connector, leaving the instruction 

register holding the mandatory BYPASS instruction. A further 

checkerboard is then passed through all the bypass register 

bits to check their behaviour. Finally, the instruction 

register is loaded with a mandatory SAMPLE/PRELOAD 

instruction and a further checkerboard is used to check out 

the boundary scan registers. 
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The chip identification test interrogates the contents of all 

chips containing an Identification register. Devices without 

an Identification register are automatically configured into 

their BYPASS function. Capturing the identification values 
into the Identification register places a1 in the least- 

significant position of the 32 bit identification register. 
Capturing the BYPASS register places a0 in the BYPASS 

register. This difference allows "blind" interrogation of a 
board containing a collection of 1149.1 devices - some with 
Identification register and some without (MAUN 90]. This has 

value on boards containing different variations of 
programmable devices such as EPLDs and EPROMs. 

Once it is known that the BSA infrastructure is working, then 

the remaining tests can be applied followed by analog and 
digital device tests where necessary. In addition, cluster 
tests using the boundary scan cells can be used as virtual 
ATE channels. 

Full exploitation of the advantages of the BSA technique in 

the field of fault diagnosis will require a close partnership 
between the CAE and ATE vendors. The ultimate goal is to 

create an integrated environment for the incorporation and 

the use of BSA for design, test and diagnosis purposes and 

supporting international standard formats. An important step 
in this direction has been taken by Hewlett-Packard. Parker 

and Oresjo outlines a "strawman" draft of a language called 

Boundary Scan Description Language (BSDL) to describe the 

features of a device conforming to the 1149.1 standard. 
[PARK 90] 

The BSDL language allows the description of information about 
the testability features in devices that are compliant with 
IEEE Standard 1149.1 - 1990. This information is needed by 

tools which will make use of these testability features. Such 
tools include design verification, testability analysis, test 

generation and diagnosis. 

3- 13 



The syntax of the language was developed as a VHDL subset 
[PARK 90]. The language describes the basic boundary scan 
information fundamental to an application, but it is not rich 
enough to support advanced capabilities. It does not give the 
flexibility to describe logic functions that may be 
incorporated in the boundary register itself, such as Texas 
Instruments have provided in their current set of devices 
[TI 1988]. Extensions to the language are being developed and 
the language has recently been ratified by the JTAG 
Committee. 

3.9 BSA AND POWER SUPPLY TERMINALS 

In a novel paper, van de Lagemaat [LAGE 89] described an 
application of boundary scan to the on-board testing of 
multiple power supply terminals into a single device. Many 

complex devices require multiple supply voltage and multiple 
ground connections for reasons to do with noise immunity. The 

problem is - how to detect open circuits in the internal bond 

wires of these groups of connections? 

Consider multiple supply voltage terminals. If all the 

terminals are correctly connected, then the voltage 
difference between them is of the order of 10mV. If one or 

more of the connection is open circuit , then the voltage 
difference is more like 100mV. This gives a basis for 

carrying out an open circuit test - measure the voltage 
between the connections inside the device. 

The technique described in the paper advocates the use of a 

circuit similar to a RAM sense amplifier to sense the 
difference in the analog voltage and convert it into a 
corresponding digital voltage. The output of the sense 
amplifier is then captured by an observe only boundary scan 

cell, and thus made observable through the boundary scan 
chain. 
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3.10 BSA AND ANALOG COMPONENTS 

Very little has been done yet on the application of BSA to 

analog or mixed signal devices. Fasang of National 

Semiconductor has described a multiplexer/de-multiplexer 

technique for partitioning the analog and digital sections of 

a mixed signal device [RASA 89]. Output boundary scan cells 

are used to observe the digitised output of the analog part 

of the circuit, and input boundary scan cells are used to 

control the input to the digital part of the circuit. The 

boundary scan cells used for these purposes are not part of 

the normal input/output pins of the device. 

3.11 SYSTEM APPLICATIONS OF BSA 

It is too early to report on system company applications of 

boundary scan, with one notable exception - that of the 

Apollo Company (now part of Hewlett Packard). The design of 

the Apollo DN10000 workstation included the use of boundary 

scan features [DEVI 88] in the gate arrays. These scan cells 

were not compatible with the 1149.1 since the Standard was 

still in its earlier JTAG form when the DN10000 design 

decisions were made. Nevertheless, all gate arrays on the 

DN10000 board included observe only boundary scan cells on 

the pin-out of the chip, linked to form an "external ring" 

The cells were then used to act as an observer of the results 

on tests applied internally to the devices and to the 

interconnects. In principle therefore, the external ring 

followed the spirit of 1149.1. 
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3.12 BSA AND RELATED DEVELOPMENTS 

Among other papers related to boundary scan, Landis [LAND 891 

describes the use of 1149.1 as a standard interface for wafer 
testing to reduce test complexity and costs. Bassett et al 
[BASS 89] discusses the architecture of a logic device tester 
for components equipped with BSA and array BIST. Hassan et 

al [HASS 89] proposes a test scheme for NON-BST glue logic 
interconnects using modified BSA cells for fast test-vector 

application and evaluation. The paper is an extension of the 

earlier paper from Hassan (HASS 88]. 

Levitt and Abraham [LEVI 89] and Dislis et al [DISL 89] deal 

with the economics of DFT measure like scan, BIST and BSA. 
Levitt and Abraham consider the general problem of cost 
justifying the inclusion of scan (any form) into the design 

of an integrated circuit. Factors include: gate count 
increase, effect on yield, number of die per wafer, and cost 
per die. The effect on profitability is then considered. 
Profitability has been defined in terms of "time-to-market 
slippage" and is related to the ease or difficulty of 
creating test programs. This is a simplified approach but 

future version of the analysis will include more complex 
factors such as the effect of pattern generation and fault 

simulation costs. 

Finally, Swan et al [SWAN 89] describes a modified gate array 
using the 1149.1 TAP to increase controllability and 
observability inside the chip. Advantage can then be taken of 
the increased testability at chip and board level. 

3.13 VHDL FOR CAD/CAE/CAT 

The life cycle of a typical digital system starts with system 

engineering and specification, which then proceeds into 
hardware and (software) design and development, manufacturing 
and field service and completes the cycle with re-procurement 
engineering. 
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The life cycle of a commercial digital system ranges from 6 

to 12 years and is very sensitive to competition and 

timeliness in introducing a new system to the market. 

Therefore, one of the major concerns is the efficiency and 

compatibility of the CAD/CAE/CAT tool set to reduce the time 

from requirement identification to system delivery. The life 

span of a military digital system may on the other hand range 
from 15 to 25 years so the components may become obsolete 
before a system is ready for use. 

Additional problems of logistic support and re-procurement 

engineering must be taken into account. Military systems are 

also on average more complex and involve more organisations 
than their commercial counterparts. During the product life 

cycle , companies which have developed the technology or 
inserted the technology in a hardware design, may not be 

involved in full production and logistic support. 

In addition, there are a large variety of incompatible 

CAD/CAE/CAT tools each of which may require a special 
language and a specific interface , and data and control 
format. For the most part, these languages are proprietary, 
having evolved from old designs which do not have the 
features of modern languages. Some of these languages are 
difficult for designers to read, understand or use. Each of 
the tools and its supporting language is designed to support 

a limited number of abstractions or design methodologies. 

This makes sharing of design among different organisations or 

across levels of design difficult. To cross tool or vendor 
boundaries, interface software or translators are often 

required, which are prone to additional errors. Design 

languages and test vector languages are not compatible 

causing inefficiency and additional errors. 

Test vectors used at chip level are not correlated with those 
for the board level testing. Up to 50% of the ASICs designs 

which pass the initial chip level test do not pass the board 
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level test because of design problems or test compatibility 
problems. 

VHDL was developed by the DoD VHSIC program as part of the 

Integrated Design Automation System (IDAS). The history of 
its development which has been well-reported, will not be 

repeated here. VHDL did not evolve from an existing hardware 

description language, it was developed specifically to meet 

well-defined requirements. 

Basically, VHDL describes a hardware component or building 
block (module, chip, device) as a design entity. A design 

entity consists of two parts: an interface description and a 
body description. The interface descriptions define the 
input/output ports through which the design entity 
communicates with the outside worlds. The body description 
defines the internal operation or organisation of the entity. 
in VHDL, the entity declaration is used to define the 
interface between a given design entity and the environment 
in which it is used. The architecture body defines the body 

of the design entity. It specifies the relationship between 

the input and the output of a design, and may be expressed in 

terms of behaviour, data flow, structure or any combination 

of these. 

The behavioural model is represented by a data transformation 

and a timing relation in response to a data transformation at 
the input. The basic concept of a structural model is 

represented by the component, the port and the signal. The 

component corresponds to a hardware building block. A port is 

the point of connection to their components and the point 
through which data flows in or out of the components. A 

signal is defined as a path from one component to another 
component along which data flows. 

In the VHDL behavioural model, the concept is very similar to 

those used in functional simulations using High-Order 

Language (HOL). 
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Algorithms or functions are used to describe the behaviour of 

the system. Output responses are calculated from the 

corresponding inputs. The basic statement for a behavioural 

description is the process statement. Each process statement 
defines a specific action to be performed which models the 

specific behaviour. The action is triggered when the value of 

one of its sensitivity signals (signals specified by the 

designer) changes. In the sequential model, the action is 

defined by the sequential order of the statements in the 

process. 

VHDL provides sequential statements such as IF, ELSE, CASE, 

LOOP, WAIT, PROCEDURE CALL, to define the algorithms or 
functions which model the behaviour of the system. Concurrent 

statements are also provided to simplify description of 

processes which have the same behaviour. A behavioural 

description provides the information on how a building block 

behaves without the details of how it is constructed. This 

type of description is useful in top-down design and 
functional decomposition, in communication design among 
different design groups and in describing a device without 
disclosing proprietary details of its design. 

A VHDL description can also be expressed in data flow format. 

VHDL provides several concurrent signal assignment statements 

which are triggered by changes in value of the input to a 

signal assignment statement and executed asynchronously with 

respect to one another. The execution of the concurrent 

assignment signal involves computing new output values after 

a specified or a default delay to the output signals of the 

statements. 

The structural description in VHDL parallels the physical 

system closely. The basic elements of structural description 

are ports and their connections. In VHDL port declaration, 

the number and mode of ports, the direction of the data flow 

and the type of data are described. 
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Structural descriptions define components and their 

interconnects using signal constructs to define paths among 

components. The component instantiation statement specifies 

an instance of a component and which port or signal is to be 

connected to. A generate statement provides a means for 

iterative or conditional elaboration of a portion of the 

description for components which exhibit some degree of 

regularity. Generic statements provide a means for 

instantiating components to pass values to another 

instantiated component. The configuration specification 

specifies the section of entity declaration and architecture 
body for each component instance. 

VHDL also provides the capability to mix various description 

models. This allows the design of different portions of the 

system to proceed without having all the structure details 

available. In addition it enables use of behavioural 

simulation for portions of the design which have been 

simulated structurally. Therefore in this way simulation of a 

larger piece of design can be carried out more rapidly. 

There are many ways to integrate VHDL into an EDA 

environment. Each CAE vendor uses its own approach to 

implement VHDL. Some vendors implement a VHDL subset to 

facilitate interfacing with their existing environments and 

tool sets, to allow transition of the current customer base 

to full VHDL implementation at a later date. Others elect to 

implement the full capability as specified in the language 

reference manual (LRM). Some vendors use an intermediate 

language, others directly compile from VHDL source code to 

simulation language. Some vendors have bridged VHDL to other 

tools such as editors, debuggers, logic synthesis or even 

RTL-level synthesis. Still others have interfaced the VHDL 

based simulator to their automatic test generation tools. DoD 

have developed a tester-independent test support software 

(TISSS) environment, and defined a test vector generation 
language (TVL), which is a subset of VHDL. All these provide 

a link between design and test. 
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3.14 VHDL FEATURES FOR CAD/CAE/CAT 

VHDL's capability, support, interface and potential benefits 

during the life cycle in general, and for design and test 

specifically, are summarised below: 

" Formal precise, human-readable and easily understood 
description for use in all phases of the life cycle 

" Machine processable and simulatable 
" Technology independent 

" Tool set, data type and environment-independent 
" Design modularity and re-usability 

" Overall hardware system acquisition process 

" Acquisition and logistic support 
" Efficient management of the design and the design data, 

library, configuration control 
" Interface with High Order Language (HOL) 

" Compatibility with other standards 

Benefits in Systems Engineering. Hardware Design and 

Development 

" Various combinations of abstractions - behavioural, data 

flow, structural 

" Partition of functions and structures 

" Sequential and concurrent processes 

" Multiple design methodologies; top-down, bottom-up or 

mixed 
" Various digital modeling techniques: Boolean, finite 

state, algorithmic and functional 

" Both synchronous and asynchronous designs 

" Various design methodologies: custom standard and macro 

cells, ASIC, gate array, off-the-shelf components or any 

combination. 
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" Different styles of description and documentation; 
behavioural, structural, data flow, procedural or various 
combinations. 

" Design for testability 
" Compatibility with test vector language 

" Test independent support software environment 

" Compatible data type between design modelling and test 
" Boundary scan test concept at board and module levels 

Ben in Re-procurement Encxineerina 

" Technology independent design descriptions 
" Test independent test descriptions 
" Simulator independent modeling 

3.15 IN CONCLUSION - THE PROPOSED PROJECT 

A need for implementing JTAG in designing ASICs was 
recognised in 1989. A mechanism that will shield the ASIC 
designer from becoming involved in interpreting and designing 
the JTAG 1149.1 Standard is needed. This could take the form 

of automatic or semi-automatic injection of JTAG into an 
ASIC, in a format which is both generic and technology non- 
specific. 

The emergence of VHDL as the IEEE 1076 Standard Hardware 
Description Language has resolved the problem of portability 
and independency. This enforced the choice of VHDL as the 
modeling tool for this project. 

in addition, VHDL's ability to model digital systems at 
behavioural and structural levels, has enabled the 
development of JTAG high level behavioural models but 
preserved the features that are normally exhibited at the 
structural level. 
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This research encompasses the development of a software tool 
that will enable the ASIC designer to include the full 1149.1 
BSA into the design in a semi-automatic way. 

The work models the BSA both structurally and behaviourally 

using VHDL. It also develops a parser which identifies and 
extracts a list of the input/output terminals of the ASIC 
design. It then inserts the full BSA high level parameterised 
models into the design, without altering the structure or the 
order of I/O terminals of the original design. 

The parsing insertion environment has to be simple, portable 
and independent of any CAE environment. Therefore, it needs 
to be developed in a high level programming language such as 
"C". Unlike the Hewlett-Packard BSDL language, the work 
therefore concentrates on developing high level testability 
models of JTAG using VHDL. This takes advantage of the 
language facilities provided by VHDL in dealing with the 
problem of annotating internal state information from the 
structural or RTL level to a much higher level. 

The tool is not intended to be an aid to synthesis. It does 

not deal with performance, speed and area issues. It is 

mainly a tool that will assist the designer to include JTAG 
into his/her design with ease. The design (ASIC) has to be 

either described in VHDL or has been converted to a VHDL 
description. The test features could be included in the 
design right from the behavioural description level. 
The test vectors for testing JTAG are developed and fault 

graded. 

The environment has been tested with simple examples using a 
suitable CAE system in order to simulate the design with the 
JTAG models included. 
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CHAPTER 4 

VHDL DESIGN AND MODELLING TECHNIQUES 

4.0 INTRODUCTION TO VHDL 

Hardware Description languages (HDL) provide a way to 

textually represent physical electronic systems. (Wax 1], 

(Wax 2]. They are used for the description, documentation and 

communication of digital electronic designs. More recently, 

they have been used for design verification, simulation and 

synthesis. 

VHDL - 1076 (VHSIC (Very High Speed Integrated Circuits) 

Hardware Description Language) is an IEEE Standard since 1987 

(stan 1076]. "It is a formal notation intended for use in 

all phases of the creation of electronic systems. It supports 
the development, verification, synthesis and testing of 
hardware designs, the communication of hardware design 

data..... " [Preface to the IEEE Standard VHDL Language 

Reference Manual] and especially the SIMULATION of hardware 

descriptions. Note that this chapter is not meant as an 
introduction to VHDL; that is beyond the scope of this 

thesis. The complete VHDL specification is documented in the 

current IEEE standard manual [stan 1076]. 

This chapter gives an overview of the VHDL language. It 

identifies the reasons for choosing VHDL as the modelling 
language for modelling the Boundary Scan Architecture. It 

also highlights the main ingredients of the modelling 

environment. In doing so, it describes the various 
description styles and abstraction levels available for the 

designer. In addition, this chapter describes the role of 

VHDL in the design cycle of digital systems and identifies 

where VHDL fits within the CAD environment. 
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4.1 DEFINITION OF VHDL 

VHDL is a language which can be interpreted by humans and 

machines. It is used to define the behaviour of an electronic 

circuit or system in an unambiguous way. In conjunction with 

appropriate CAE software tools (such as Mentor Graphic's 

HQUICKSIMN), it can also define and implement simulation of a 

system or circuit. 

The language allows simulation to take place from the 

SYSTEM level down to the GATE level. The language can be used 

to define the behaviour of entire systems, single boards, 

chips, single gates or an intermediate structure. 

The most immediate and widespread use of VHDL is in the 

design and simulation of integrated circuits. 

4.2 OPEN - SYSTEM DESIGN AUTOMATION ARCHITECTURE 

Utilising VHDL as the HDL language for implementing ASIC 

designs will enable the use of CAE environments which support 

an open-system architecture (such as Mentor Graphics), with 

the well defined ability to interpret standards to ensure 

effective interfaces for the designer and his/her tool. 

4.3 VHDL AND THE ASIC DESIGN PROCESS 

As Integrated Circuit complexity increases, circuits become 

more specialised and their broad applicability decreases. 

There are several reasons why a standard hardware description 

language like VHDL is important to the ASIC (Application 

Specific integrated Circuit) design process. 
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1) The ASIC design approach requires advanced design 

automation systems with clearly defined interfaces 
between the customer and the vendor. This can shorten 
the development cycle thereby reducing the associated 
costs. 

The three issues critical to the ASIC market that need 

to be dealt with are the design interface, true second 

sourcing and high performance fabrication processes. 

These issues are the driving forces behind the new 

approach. Since CAD advancements have happened so 

quickly, conventional Integrated Circuit manufacturers 
have been unable to catch up with CAD interface 

technology. 

2) VHDL provides user documentation of the ASIC design 

and facilitates design second sourcing. 

In an ASIC design service, vendors usually cannot 
supply detailed documentation such as manuals, books 

and application notes typically associated with 
standard components because every device is different 

and may or may not be vendor designed. 

3) VHDL enables the ASIC design service vendors to 

protect proprietary design system elements, giving 

them a competitive advantage. 

Figure 4.1 demonstrates where VHDL is used in relation to the 

system design process. 
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VHDL is currently used after the hardware functions derived 

from the system analysis stage have been partitioned. 
it is at this point in the design cycle that the use of VHDL 

is most appropriate. An important advantage of VHDL 

description at the system hardware level is that, for the 

first time, simulation becomes a realistic possibility. 

Features such as unambiguous hardware description and 

reusable hardware sub-systems are obvious and highly 

desirable objectives, allowing alternative designs to be 

simulated and design trade-offs to be investigated. 

4.4 VHDL DESIGN HIERARCHY 

Three main views of design hierarchy are behavioural, 

structural and physical. The more established HDL's tend to 

cover just one of these three views and have a dedicated 

application. 

The behavioural model describes the relationships between the 

ports of a node without referring to the internal logic or 

the physical structure. 

VHDL serves as a vehicle for investigating new approaches to 

design techniques, models and automation in areas such as 

test, synthesis and simulation. Knowledge about hardware 

properties and characteristics, applicable to design is the 

very essence of language constructs comprising VHDL. 

The various representations call for different areas of 

expertise, e. g. at the functional level one needs skills in 

the fields of architecture and machine design. At the 

structural level a good background in logic design and 

simulation would be essential. 
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VHDL offers a framework for more behaviour-orientated design, 

in which the behavioural axis has Boolean expression at the 

lower levels. Algorithms are the next level up. The highest 

design level is the system input/output specification. 

The ability to consider electronic system software and 

hardware jointly has tremendous potential in improving 

software/hardware performance trade-off analysis and system 

synthesis. 

The structural model describes a node in terms of its sub- 

components and their inter-connections. When more than just 

structural information is needed, such as size or position of 

ports around the perimeter, then it is integrated with the 

physical model. 

To cover all aspects of design a HDL really needs to be able 

to have all of these aspects, but at different points in 

time. For example, detailed structural information would not 

be wanted in the first stages when the design is more 

abstract. The four uses of VHDL are: - 

" Specification of the functionality and performance of a 

board or system with a view to simulation and 

verification of the design. 

" As a source level description of hardware with a view to 

using logic synthesis tools to generate the physical 

implementation of a design. 

" The modelling of components for inclusion in simulations 

at a detailed level. 

0 As a design transfer language. 
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Simulation - VHDL was designed to be used for a specific 

application or device and therefore, it cannot be synthesized 

easily. 

Modelling - VHDL enables abstract models to be defined. 

These models can not, however, be mapped directly to the 

physical realisation. Indirect methods are available to 

enable this mapping using alternative design tools e. g. ELLA. 

Transfer - VHDL can describe hardware at any level to cope 

with all types of designs and eventualities. 

VHDL is mainly used for digital design and, although at the 

most abstract level analogue components can be described in a 

software like language, it cannot be used for the detailed 

design. Analogue HDL tools are therefore used for these 

parts. 

Although there were many HDL's before VHDL it was the first 

to be standardised across the industry, making it the first 

truly standard HDL. VHDL has freed HDL'S from vendors, 
enabling portability of designs, and of standard models of 
devices. One risk of this is that vendors will produce sub- 

sets and Vendor specific naming which will reduce this 

portability and be a great pity. 

VHDL is maintaining the principles of Systems Analysis by 

enabling members of a team to work concurrently on different 

points of the overall design. The use of a common language 

enables the communication process which is essential if the 

design team is to function effectively. 
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When VHDL is employed, there can be many individuals working 

on different aspects of the design: system engineers 

developing global models and running system simulation; 

Hardware designers working on functional block diagrams; 

Test engineers designing appropriate test strategies. 

VHDL was designed to help the engineer to organise the design 

process. 

The basis of abstraction is a design 'entity', which gives 

the designer the 'black-box' model. It is essentially the 

interface to the outside world, input/ output ports, and an 

'Architectural Body' which describes the structural and 

behavioural functions of the entity. There can be multiple 

architectural bodies for one design entity all giving 

different views of the same object 

FIGURE 4.2 A VHDL DESIGN ENTITY 

VHDL supports libraries from which designers can select pre- 

compiled designs and reference them in their design. 
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VHDL's real strength is in its ability to model a system over 

a wide range of abstractions and thus there is no ambiguity 

concerning movement from one level to another. 

The area of design that VHDL is covering is from the systems 

analysis and division down to the gate level. VHDL cannot 
deal with switch or circuit level descriptions. it therefore 

needs to be supported by CAE tools to transfer the 

description into their schematic and simulation tools. 

To summarise the attributes of VHDL, it: - 

" Supports the design phase of development 

" Interacts directly with humans and is immediately 

understandable 
" Helps in the management of a design 

" Communicates design information between people 

" Supports the whole spectrum of design and test from 

system to chip. 

4.5 VHDL MODES OF OPERATION 

VHDL has two modes of operation: 

1. Concurrent 

2. Sequential 

Concurrent -In the concurrent mode ALL statements that have 

been queued for evaluation are evaluated at the same time. 

This closely matches the action of the hardware devices in 

real life. 

Sequential - in this mode of operation all statements are 

evaluated in strict sequence. No simulation time passes 
during execution unless explicitly stated in the code. 
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In order to simulate electronic hardware designs, the 
following information is required: 

" Structural descriptions of the design (netlist or 

schematic) 

" Behavioural model for each device in the design (VHDL 

source or model library) 

" Stimulus for the design (test vectors) 

" Design configuration information (specify which version 

of each device model to use during simulation). 

4.6 VHDL STRUCTURES 

VHDL models basically consists of two basic structures: 

1. Entities 

2. Architectures 

Entities. These consist of the external worlds view of the 

model. They consist of port declarations of the inputs and 

outputs of the circuit and a number of common parameters such 

as rise and fall times. 

Architectures. This section consists of the VHDL structural 

information. The circuit components, port to circuit 

connections and internal signals are all declared in this 

section. There are three basic levels of abstraction, these 

being the behavioural, data flow, and structural. 

4.7 VHDL DESIGN HIERACHY AND DATA BASE 

The basic structure within a VHDL design is the design 

entity. A single design consists of (potentially) many design 

entities, each entity describes the inputs and outputs of the 

design. 
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The entity declaration does not describe how the design 

entity functions, it simply defines the inputs and the 

outputs, thus providing an external view of the entity. Each 

design entity has at least one, but perhaps, more 

architectures associated with the entity declaration. Each 

architecture provides one possible way of describing the 

functionality of the design entity or one possible 
implementation of the design entity. Design entities may be 

hierarchically nested. This means that if one design entity 
is used in more than one part of the design, then it only 

needs to be defined once, but may be referenced (or 

instantiated) multiple times. VHDL gives us the flexibility to 

describe a design while maintaining any type of hierarchical 

partitioning or nesting. 

Architectures describe how a particular implementation of a 
design entity should function. Architectures consist of two 

parts: the architecture declaration and the architecture 
body. The architecture declaration describes the various 
items used within the architecture body. These items include 

signals (which can be considered the same as wires) and 

references to other design entities which are nested inside 

the architecture. Within an architecture body may appear two 

types of statements, concurrent and sequential. These 

statements are used to describe the functionality of the 

architecture. VHDL's concurrent and sequential statements are 

an attempt to describe circuits which exhibit parallel and 

serial behaviour respectively. The basic data construct 

within both sequential and concurrent code is the assignment 

construct. 

The main factors which make VHDL a better hardware 
description language to use are: 
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a) It has evolved from a set of user requirements 
b) It includes Timing thus avoiding dependence on the 

simulation environment. 
c) It can produce many different views and abstractions of 

the same model 
d) It helps in the Organisation of a design. 

4.8 DESIGN DESCRIPTION METHODS 

System-1076 provides a textual method of describing a 

hardware design rather than a schematic representation. The 

following are various System-1076 methods for describing 

hardware architectures: 

" Structural description method - expresses the design as 

an arrangement of interconnected components. 

" Behavioural description method - describes the functional 

behaviour of a hardware design in terms of circuit and 

signal response to various stimuli. The hardware 

behaviour is described algorithmically without showing 
how it is structurally implemented. 

" Data-flow description method - similar to a register- 
transfer language. This method describes the function of 

a design by'defining the flow of information from one 
input or register to another register or output. 

All three methods of describing the hardware architecture can 
be intermixed in a single design description. 
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4.8.1 STRUCTURAL DESCRIPTION 

This subsection identifies some of the language constructs 

that are in a System-1076 structural description, by using an 

example of a two-input multiplexer. The description provides 

an overview, but not a complete representation, of all the 

language building blocks found in a structural description. A 

System-1076 structural description of a hardware design is 

similar to a schematic representation because the 

interconnectivity of the components is shown. This is 

illustrated in this subsection with a comparison of a simple 

NETEDTM (from mentor Graphics) design to a System-1076 

structural description of the same circuit. 

Figures 4.3 and 4.4 show the symbol-schematic representation 

of the two-input multiplexer. Note the pin names on the 

inside of the MUX symbol in Figure 4.3 match the net names of 

the inputs and output of the schematic in figure 4.4. This 

ensures connectivity between the two NETED sheets. The input 

and output ports (DO_IN, D1_IN, SEL_IN, and Q_OUT) are 

unrelated to the underlying sheet. They are used during 

simulation to access the inputs and output. 

DO_IN 

D1_IN 

QOUT 

SEL_IN 

Figure 4.3 Symbol Representation of Two-Input 

Multiplexer 
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dO 

sel 

dl 

q 

Figure 4.4 Schematic Representation of Two-Input 

Multiplexer 

Figure 4.5 shows a System-1076 structural description of the 

two-input multiplexer. The system-1076 code contains comments 

that are set off with a double dash (--) symbol. Any text 

appearing between the double dash and the end of a line is 

ignored by the compiler. (See lines 1,3,6,8,18 20 through 

22, and 25 in figure 4.5) Descriptive comments make the code 

easier to read. 

1 -- entity declaration 
2 ENTITY Mux IS 
3 PORT (dO, dl, sel: IN Bit; q: OUT bit); --port clause 
4 END mux; 
5 
6 -- architecture body 
7 ARCHITECTURE structure OF mux IS 
8 COMPONENT and2 -- architecture declarative part 
9 PORT (a, b: IN bit; z: OUT bit); 
10 END COMPONENT; 
11 COMPONENT or2 
12 PORT (a, b: IN bit; z: OUT bit); 
13 END COMPONENT; 
14 COMPONENT inv 
15 PORT (i: IN bit; z: OUT bit); 
16 END COMPONENT; 
17 
18 SIGNAL, aa, ab, nsel : bit; --signal declaration 
19 
20 FOR ul : inv USE ENTITY invrt (behav); 

-- configuration 
21 FOR u2, u3 : and2 USE ENTITY and_gt (dflw); 

-- specifications 
22 FOR u4 : or2 USE ENTITY or_gt(archl); 
23 
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24 BEGIN 
25 ul: inv PORT MAP (sel, nsel); 

-- architecture statement 
26 u2: and2 PORT MAP (nsel, dl, ab); 
27 u3: and2 PORT MAP (d0, sel, aa); 
28 u4: or2 PORT MAP (aa, ab, q); 
29 END structure; 

Figure 4.5: Code Example of Structural Description for 

a Multiplexer 

The two-input MUX represented by figure 4.5 is a basic design 

unit. The entity declaration at the top of figure 4.5 (lines 

2 through 4) defines the interface between the entity and the 

environment outside of the entity. 

This entity declaration contains a 
input channels (signals d0, dl and 

and an output channel (signal q in 

The signals are of a pre-defined t: 
declared elsewhere to describe all 
for each signal. 

port clause that provides 

sel in figure 4.5 line 3) 

figure 4.5, line 3). 

1pe called bit which is 

possible values (0 or 1) 

The architecture body (lines 7 through 29) describes the 

relationships between the entity inputs and outputs in a 

structural way. 

The various components (and2, or2, and inv) that form the 

mux entity in figure 4.5 are declared in the architecture 
declarative part (lines 9 through 16). Signals (aa, ab, and 

nsel) are also declared in the architecture body (line 18) to 

represent the output of the two AND gates (u2 and u3) and the 

inverter (u1). 

The configuration specifications in lines 20 through 22 bind 

each component instance to a specific entity which describes 

how each component operates. 
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As an example, the component ul used in line 25 is bound to 

an architecture called behav for an entity called inverter. 

The architecture statement part (lines 25 through 28) 

describes the connections between the components within the 

entity. It is in this part that the declared components are 

instantiated. 

4.8.2 BEHAVIORAL DESCRIPTION 

The following identifies some of the major language 

constructs found in a behavioural description using the 

previous MUX example and a four-bit example. Structural 

description method can now be compared with the behavioural 

description method described in this section. 

A System-1076 behavioural description represents the function 

of a design in terms of circuit and signal response to 

various stimulus. 

In the design shown in figures 4.5 through 4.9, the behaviour 

of the MUX was determined by the connections between the 

inverter, and AND gates, and the OR gate. The function of 

these gates is generally understood. 

In a more complex design, the components U1 through U4 in 

figure 4.5 could represent entities that have complicated 
functions such as a central processing unit or a bus 

controller. When function and not structure is most 
important, each component can employ a corresponding 
behavioural description. 

Figure 4.6 shows the System-1076 code which defines the MUX 

behaviour. 
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The behavioural description in figure 4.6 and the structural 
description in figure 4.5 both contain an entity declaration 

and an architecture body. In practice you would not have both 

the behavioural and structural architecture body shown in 

figures 4.5 and 4.6 in one source file. The designer can 
first write the entity declaration in one design file, the 

behavioural architecture in another design file and the 

structural architecture in still another design file. In an 

actual design after the entity declaration is written and 

compiled, one might write a behavioural architecture next, to 

allow testing of the overall circuit functions. 

i -- entity declaration 
2 ENTITY Mux IS 
3 PORT (d0, dl, sel: IN Bit; q: OUT bit); --port clause 
4 END mux; 
5 
6 -- architecture body 
7 ARCHITECTURE behavioural OF mux IS 
8 BEGIN 
9 f1: -- process statement 
10 PROCESS (d0, dl, sel) -- sensitivity list 
11 BEGIN 
12 IF sel = '0' THEN -- process statement part 
13 q <= dl; 
14 ELSE 
15 q <= d0; 
16 END IF; 
17 END PROCESS f1; 
18 END behavioural; 

Figure 4.6 Code Example of Behavioural Description 

for a Multiplexer 

A behavioural description model is also useful to stimulate 
inputs of other System-1076 models during simulation. 

The major difference between the structural and behavioural 

descriptions of the MUX is that the architecture body in 

figure 4.6 contains a process statement. 
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The process statement describes a single, independent process 
that defines the behaviour of a hardware design or design 

portion. The basic format process statement is as follows: 

process statement ............ label: 
process (sensitivity-list) 
process_declarative_part 
begin 

process_statement_part 
end process label; 

The process statement in figure 4.6 begins with the process 
label f1 followed by a colon (line 9). The process label 
is optional but is useful to help differentiate this process 
from other processes in a larger design. 

Following the reserved word process is an optional 

sensitivity list (located between the parenthesis). The 

sensitivity list in figure 4.6 (line 10) consists of the 

signal names d0, dl, and sel. During simulation, whenever a 

signal in the sensitivity list changes state, that process is 

executed. 

In the MUX example, whenever, d0, dl, or sel change state, 

process fl is executed and the state of the output signal is 

changed accordingly. Each process in a System-1076 design 

description is executed once during initialisation of the 
System-1076 hardware model. 

The heart of the process statement in figure 4.6 is the if, 

statement contained in the process statement part. The basic 

format of an if, statement is as follows: 
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if statement ............... if condition then 
sequence_of_statements 

else if condition then 
sequence-of-statements 

else 
sequence-of-statements 

end if; 

4.8.3 DATA FLOW DESCRIPTION 

The following identifies some of the major language 

constructs found in a data-flow description using the 

previous MUX example. The VHDL data-flow description and a 

register-transfer language description are similar in that 

they describe the function of a design by defining the flow 

of information from one input or register to another register 

or output. 

The data-flow and behavioural descriptions are similar in 

that both use a process to describe the functionality of a 

circuit- see figure 4.7. A behavioural description explicitly 
calls a single, independent process with process statement by 

using one or more of the following concurrent statements for 

each implied process: 

0 Block statement 

" Concurrent procedure call 
" Concurrent assertion statement 

" Concurrent signal assignment 

In addition to these language constructs, the Block statement 

and Component Instantiation statement are also concurrent 

statements but are not found in a data-flow description. 

Concurrent statements define interconnected processes and 
blocks that together describe the overall behaviour or 

structure of a design. 
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A concurrent statement executes asynchronously with respect 

to other concurrent statements. 

1 -- entity declaration 
2 ENTITY Mux IS 
3 PORT (d0, dl, sel: IN Bit; q: OUT bit); --port clause 
4 END mux; 
5 
6 -- architecture body 
7 ARCHITECTURE data-flow OF mux IS 
8. BEGIN 
9 csl : -- concurrent sig assignment statement 
10 q <= dl WHEN sel = 00" ELSE -- conditional sig. ass. 
11 dO WHEN sel 
12 END data_flow 

FIGURE 4.7 Code Example of Data-Flow Description for a 

Multiplexer 

4.9 BEHAVIORAL MODELLING OF 4 BIT MULTIPLIER 

In this section a behavioural model of a4 bit serial 

multiplier will be designed. This circuit will be used as an 

example to demonstrate this modelling style of VHDL. 

The design consists of series of successive shift and add 

routines, which work in basically the same way as multiplying 

two numbers on paper. The main difference, is that on paper 

the shifting for each number is done first and then the whole 

lot added together to determine the result. This is different 

to the hardware design which keeps account of the last shift 

sum and adds it to the subtotal. In this way only one 

accumulation register is needed, so saving on gates and 

resulting in smaller die size at less expense. The other 

difference, mainly related to binary multiplication, is that 

no calculation is performed to the multiplicand if the next 

bit to be multiplied is a zero. 
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The multiplication process implemented contains three 
registers as can be seen from the top level multiplier 
schematic. 

behar 

Z(7: 0) 

i(3: 0) 
b(3: 0) 

en%b1e 

Figure 4.8: Structural Description of 4 bit multiplier 

One register (the four 4 bit multiplier register) is used to 
store one of the two four bit numbers to be multiplied 
together, the other 4 bit number is loaded into the eight bit 
multiplicand register to be shifted through. Loading is 

accomplished by previously resetting the registers to zero 
via the parallel clear and loading the values on to the 
preset. Any 'one' present in the word set, the appropriate 
cell will change to a high state. 

The output is achieved by successive shifting and add 
instructions via the 8 bit accumulator. Note that if a zero 
is multiplied the accumulator latch is inhibited and the 
multiplicand is shifted left one cycle. 
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4.9.1 VHDL BEHAVIOURAL MODEL OF MULTIPLIER 

This section describes the behavioural description of a4 bit 

multiplier in VHDL. 

ENTITY multi IS 
PORT (a : IN vlbit_1d(0 TO 3); 

b : IN vlbit_1d(0 TO 3); 
q : OUT vibit_1d(0 TO 7); 
clock, start : IN vlbit); 

END multi; 

ARCHITECTURE behav OF multi IS 

BEGIN 

calculate : PROCESS (clock) 

VARIABLE cycle : INTEGER :=0; 

BEGIN 
IF (clock=111) AND (start='1') THEN 

IF cycle=4 THEN 
q <= mulum(a, b); 
cycle :=0; 

ELSE 
cycle := cycle + 1; 

END IF; 
END IF; 

END PROCESS calculate; 

END behav; 

Figure 4.9: Behavioural Description of Multiplier 

4.9.2 SIMULATION AND TEST VECTORS 

Test Vectors are used to verify the functionality of the 

device after manufacture. The test vectors generated for the 

multiplier are shown in the simulation wave forms in the 

appendix. The inputs (in decimal) loaded to test the device 

are as follows: 5*3= 15 
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This resulted in a ripple through output of 'OF' which tested 

that the first four pins could be driven high, whilst the 

next four bits remained low. Other tests that were used are: 

15 * 15 = 225 which gives the maximum count available. 
0*8=0 which gives low level output. 

This does not provide a full test of all circuit nodes with 

all possible combinations, but proves the viability of the 
device to perform the mathematical computations required. 

4.10 CONCLUSIONS 

VHDL was chosen as the Behavioural Description Language for 

modelling the Boundary Scan Architecture in this project for 

several reasons. It is a well documented standard, it is 

gaining popular acceptance, it supports both abstraction 
hierarchy and design hierarchy (with its structural and 

procedural constructs) and it is not tied to any one vendor's 
design system. 

The different implementations of the multiplier have 
demonstrated the design approaches that are becoming 

available in todays market. VHDL thus offers a number of 
benefits over other hardware description languages. These 

include its availability as a public standard, its ability to 

support different design methodologies and design 

technologies, its independence of both technology and 

process, and its capability to support a wide range of 
hardware descriptions of a digital system, from a behavioural 

level to a gate level. These benefits have therefore affirmed 

the decision to use VHDL in this project, to model the 

Boundary Scan Test Architecture. 
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CHAPTER 5 

THE IEEE 1149.1 BOUNDARY SCAN ARCHITECTURE 

5.0 INTRODUCTION 

Up to now, the BIST test methods and general test principles 

have been described in the previous chapters. This chapter 

will describe the operation of the main components of the 

IEEE-JTAG standard in a structural way. Initially, the full 

architecture will be designed, simulated and tested without 

an application logic using the mentor Graphics Computer Aided 

Engineering system. The Boundary Scan Architecture will then 

be added to a 2-bit adder design example (An Application 

Logic ASIC) to give an insight to the test harness operation 

as described in Appendix 5. 

Figure 5.1 shows a block diagram of the general JTAG circuit 

used on a chip. It includes all the signals needed to 

integrate an on-chip internal scan. 
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Figure 5.1 The IEEE 1149.1/JTAG Architecture 

5.2 



5.1 JTAG BOUNDARY SCAN ARCHITECTURE TEST MODES 

There are two main modes of test operation that are supported 
by JTAG - 'Sample' mode and 'Non-sample' mode, see fig 5.2 

a, b. 

Non-sample mode operation is the normal mode for running 

tests on the chip, applying and capturing test data and 

running self-test functions. While in this mode, the chip is 

prevented from functioning normally. The test registers in 

the scan loops are kept in a hold state and stay held until a 

scan loop is selected. A test is then run on a desired part 
of the circuit. 

When Sample mode operation is in progress the chip is running 

normally, performing its normal system function, but by means 

of the JTAP controller the data passing through the Test 

Registers can be captured into the Test Registers and 

subsequently shifted out through the TDO pin. This is 

achieved without interfering with the chip function. Only 

Test Registers which are of the transparent type can be 

sampled as the clocked types cannot be shifted without 
interfering with the normal signal dataflow through the chip. 
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5.2 JTAG BOUNDARY SCAN ARCHITECTURE MAIN COMPONENTS 

The top-level schematic of the test logic defined by IEEE 

Standard 1149.1 includes three key blocks as shown in figure 

5.3. 

TEST 
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Figure 5.3 Simplified Block Diagram of JTAG 
Architecture 
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a) The TAP Controller 

This circuit responds to the control sequences supplied 

through the Test Access Port and generates the 

necessary clock and control signals required for the 

correct operation of the application logic and test 

structure. The JTAP controller provides a number of 

internal signals (DC1n and DC2n) that are connected to 

the DC1 and DC2 inputs of the test registers to control 

the main Test register functions as shown in figure 

5.1. 

b) Instruction Register 

This is a shift-register-based circuit, shown in figure 

5.3, which is serially loaded with the appropriate 
instruction to select a specific test to be performed. 

ý) The Test Data Registers 

These are shift-register-based circuits as shown in 

figure 5.3. The stimuli or conditioning values required 

by a particular test are loaded serially into the test 

data register that is selected by the current 
instruction. Following execution of the test, the 

results can be shifted out for examination. 

Each test data register is connected to the on-chip TAP 

which controls the operation of the tests and allows 

serial loading and unloading of instructions and test 

data to take place. The role of the embedded TAP within 

an integrated circuit is directly analogous to the 

"diagnostic" socket provided on many automobiles. It 

allows an external test processor to control and 

communicate with the various test features built into 

the product. 
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In addition, the test data registers can be connected 
to the various modules of the application logic within 
the chip or to the pins that are connected to the 

application logic, to allow tests to be performed on 
the application logic. 

The Test registers are connected together to form scan 
loops that are fed by serial input pin TDI. During 

test the scan loop is configured as a shift register 

and is used to load test data from the TDI pin and 

unload test data from the TDO pin (routed via the JTAP 

cell). 

Test registers must be placed between all input pins 

and the system logic. They also must be placed between 

all output pins and the system logic. This conforms to 

the basic JTAG/IEEE 1149-1 specifications of self-test 

and internal test which require test registers inside 

the system logic. Test registers on the output pins of 

the chip have extra update holding latches to prevent 
test data appearing at the chip outputs. This prevents 
the random signals on the output Test registers from 

upsetting other chips that are connected to the outputs 

pins. This is a requirement for JTAG/IEEE 1149-1 

conformance. This function is controlled by the UPHLD 

signal as shown in figure 5.1. 

5.3 THE TAP 

The TAP contains four or optionally, five pins [MAUND 87]. 
These are: 

" The test clock input (TCK): This is an independent clock 
of the chip system clock(s), so that test operations can 
be synchronised between the various chips on a printed 
wiring board. 
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Both the rising and falling edges of the clock are 
significant: the rising edge is used to load signals 
applied at the TAP input pins TMS (test mode select) and 
TDI (test data input), while the falling edge is used to 

clock signals out through the TAP test data output (TDO) 

pin (figure 5.4). As will be discussed later, the 
boundary-scan register as defined by the standard is 

controlled such that data is loaded from the system input 

pins on the rising edge of TCK while data is driven 

through system output pins on the falling edge. 

" The Test Mode Select Input (TMS): The operation of the 

test logic is controlled by the sequence of 1s and Os 

applied at this input, with the signal value typically 

changing on the falling edge of TCK. This sequence is fed 

to the TAP controller (which samples the value at TMS on 

each rising edge of TCK) by the other test logic blocks. 

TMS is either equipped with a pull-up resistor or 
otherwise is designed such that when it is not driven 
from an external source, the test logic perceives a logic 

1. 

" The Test Data Input (TDI): Data applied at this serial 
input are fed either into the instruction register or 
into a test data register, depending on the sequence 

previously applied at TMS. 

Typically, the signal applied at TDI will be controlled 
to change state following the falling edge of TCK, while 
the registers shift in the value received on the rising 
edge. 

Like TMS, TDI is either equipped with a pull-up resistor 
or otherwise is designed such that, when it is not driven 
from an external source, the test logic perceives a logic 

1. 
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" The Test Data Output (TDO) : This serial output from the 

test logic is fed either from the instruction register or 
from a test data register depending on the sequence 

previously applied at the TMS. During shifting, data 

applied at TDI will appear at TDO after a number of 

cycles of TCK determined by the length of the register 
included in the serial path. The signal driven through 

TDO changes state following the falling edge of TCK. when 
data are not being shifted through the chip, TDO is set 
to an inactive drive state (eg., high-impedance). 

" The Optional Test Reset Input (TRST) : The need to be 

able to initialise a circuit to a known starting state 
(the reset state) is crucial in testing . As will be 
discussed later, the TAP controller is designed so that 

this state can be quickly entered under control of TCK 

and TMS. 

The standard also requires that the test logic can be 

initialised on power-up independently of TCK and TMS. 

This can be achieved either by building features into the 

test logic itself (eg. a power-up reset circuit) or by 

adding the optional TRST signal to the TAP. Application 

of a0 at TRST asynchronously forces the test logic into 

its reset state. Note that, in this state, the test logic 

cannot interfere with the operation of the on-chip system 
logic, so TRST can also be viewed as a "test mode enable" 
input (BEEN 85]. 

By loading the signals applied to the test logic through 

chip input pins (eg., through TMS and TDI) on the rising 

edge of TCK, while using the falling edge to clock 
signals out through chip output pins (such as TDO), the 
operation of the IEEE Std 1149.1 test logic can be made 
race-free. 
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For example, when chips compatible with the standard are 
serially connected, data is applied to TDO by the first 

chip on half cycle of TCK prior to the time when they are 
loaded from the TDI input of the second. This allows time 

to account for delays in the serial path, skew between 

the clock fed to the neighbouring ICs, and other factors. 

TCK 

STATE 
ENTERED 

ACTIONS 
OCCURING 
ON FALLING 
EDGE OF TCK 

ACTIONS 
OCCURING 
ON RISING 
EDGE OF TCK 

Figure 5.4 Control Pipelinning 

Since TDO is set to an inactive drive state when no data 
is being shifted, the TAPS of individual chips can, if 

required, be connected to give parallel serial path at 
the board level. In such cases, a different TMS signal is 

required for each serial path. These signals should be 

controlled such that no two paths attempt to shift data 

simultaneously (WHET 881. 
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TDI TDI TDO TDI TDO 

TMS TCK TMS TCK 

TMS1 
TCK 
TMS2 

TDO 

TCK TMS Tck TMS 

TDI TDO TDI TDO 

TDO1 TD02 TD03 TDO4 

At the board level, the test signals can be controlled either 

by external automatic test equipment (ATE) or by an on-board 

bus-master chip. In the latter case, the bus-master chip 

might provide an interface between the interface defined by 

the IEEE Std 1149.1 TAP and some higher level test messaging 

system. 

5.4 BOUNDARY SCAN 

The boundary scan cell shown in figure 5.6 connects the 

external input pins to the internal functioning connections 

of the application logic (e. g. 2-bit adder). One cell for 

each independent connection is required. 
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Figure 5.6 Boundary Scan Details 

Boundary scan involves the inclusion of a controlled shift 

register which is connected from the input/output of the on- 

chip application logic to the device pins. The boundary scan 

cells have been designed so that they either accept serial 
input (test data or test instruction) or data from the 

standard input pins depending on the mode of operation. 

These boundary cells act as 3-way latching switch which can 

either: 
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1. Let data pass straight through giving standard 
operation. 

2. Isolate the external input, allowing data to be 

received from the serial input and passing it through 
to the application logic (the adder). 

3. sending serial data directly through the serial output 
bypassing the adder completely. 

The cells connected on the output act in a similar way to 

those on the input, isolating the adder output connections 
from the external output pins when certain instructions are 
loaded [ICCD 87]. 

The three functions have been implemented to conform to the 

IEEE regulations of the standard. Other optional 
instructions can be added depending on the device to be 

tested and the complexity of the design. 
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Figure 5.7-a Boundary Scan Cell (Input or Output) 
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5.4.1 BOUNDARY LOOP 0 RULES 

The JTAG/IEEE 1149-1 spec defines that test registers are 

placed on the periphery of the chip and are connected 

together to form a boundary loop (loop 0). 

In order for JTAG/IEEE 1149-1 spec conformance the following 

rules must be obeyed when connecting up the test registers 

on the boundary loop: - 
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a) All system input and output pins must pass through Test 

registers (including the system clock). 

b) For tri-state and bi-directional pins, the tri-state 

enable connection must also pass into the test register. 

(Where tri-state and bi-directional buses are used 

internally in a design, it is recommended that the 

internal tri-state enable should be passed into the test 

registers). 

c) Test registers on the output pins must be equipped with 

Update latches. Those output pins which are used for 

tri-state or bi-directional outputs can use a single 

data bit together with an update latch on the tri-state 

control line. 

d) All Test registers connecting on the input and output 

pins must be connected together to form a scan loop, and 

should be connected to JTAP controller cell loop input 

LO(loop 0). The order of the test registers in the 

scan-path is not important. 

e) For SAMPLE mode operation the test registers in boundary 

loop 0 must be made exclusively from transparent 

registers. 

5.4.2 THE TEST REGISTER TEST MODES 

In order to implement the different functions with the 

minimum of external control connections, each test register 

has two external control connections (DC1 and Dc2) plus an 

update latch control (UPHLD). These are used to select which 

of the main modes in which the test register is to operate. 
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DC1 DC2 Mode Name Description 

0 0 TEST Performs Test selected by control bits 

0 1 SHIFT Serial data shifted through scan loop 
1 0 RUN Non-test mode, Data passes from D to F 

1 1 HOLD Si nal data held on re ister 

Additionally there are two test control register bits that 

are shifted in series with the data bits. These control bits 

control which type of test sub-function is to be performed by 

the test register when the TEST mode is selected by DC1=0 and 

DC2=0 signals. 

DC1 DC2 TC1 TC2 Mode Name 

0 0 0 0 TEST HOLD 

0 0 0 1 TEST SIGNATURE-ANALYSE 

0 0 1 0 TEST SLIDE 
0 0 1 1 TEST PSEUDO-RAN GENERATE 

TC1 and TC2 are in series with the test register serial scan 

path, and are loaded during the shift operation. 

The DC1 and DC2 signals are normally supplied from the JTAP 

controller. 

5.4.2.1 RUN 

RUN mode is the state that the Test register is in during 

normal non-test chip operation, where data flows through the 

test register uninterrupted. The RUN mode is also used 
during test to apply and capture data simple tests. 
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Data passes from the D databit input pins to the F output 

pins. If the databits used are the transparent type then 

data is propagated immediately to the output, while if 

clocked data bits are used then F changes on the +ve edge of 

the clock CLK driving the Test register. If clocked databits 

are used then the EN Test register input is used to hold the 

input if EN = 0. Fig 5.8.1 shows diagrammatically the Test 

register in RUN mode. 

5.4.2.2 HOLD DATA 

Data is held on the test register. It is used either as an 

intermediate state whilst the JTAP controller is going 

through the state diagram in preparation for a test, or data 

is held stable on a Test register while other parts of the 

circuit is being shifted. Fig 5.8.2 shows the Test register 

in HOLD mode. 

5.4.2.3 SHIFT DATA 

Data is shifted into the test register (on pin SI) and out 

through the last data bit, see fig 5.8.3. The data shifted in 

can be used to set up the data presented to the inputs of the 

circuit being tested while the data shifted out can be the 

results of the data test. At the same time, the test 

register control bits TC1 and TC2 are also shifted and set 

up. 
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5.4.2.4 TEST PSEUDO-RANDOM GENERATE 

The test register is configured into a linear-feedback shift 

register which generates a maximal-length pseudo-random 

sequence at the test register data outputs. This sequence 

is presented to the inputs of the block of circuit being 

tested, and may be used to exhaustively test the circuit. 

See fig 5.8.4. 

5.4.2.5 TEST SIGNATURE-ANALYSE 

The test register is configured into a linear-feedback shift 

register and the data inputs are EXclusive ORed into the 

register, causing a signature to be generated at the end of 

the test see fig 5.8.5. It used to build up a signature 

from circuit outputs from circuit whilst the inputs are being 

tested with TEST PSEUDO-RANDOM-GENERATE or TEST SLIDE test 

modes. 

5.4.2.6 TEST SLIDE 

The test register data bits are configured into a shift 

register whose last bit output is fed back to the first bit 

input, thus recirculating the data as shown in fig 5.8.6. 

This test configuration is used to 'walk' patterns along the 

circuit inputs. An output signature can then be collected 

with the output test register set to TEST SIGNATURE-ANALYSE. 

5.4.2.7 TEST HOLD 

Data is held in the test register. In many tests it is 

required to hold data stable for the duration of the test 

while test operations are in progress in another part of the 

chip. 
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Figures 5.8.1,2,3,4,5,6 
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5.5 INSTRUCTION REGISTER 

The Instruction register is used to load in the required 

test operation code. It is responsible for providing the 

address and control signals required to access a particular 

scan path in the data register. 

ShiftlR 

TDI 

Data 

C1ockIR 

UpdateIl 

TREST* 
Reset* 

Instruction Bit 

TDO 

Figure 5.9 Instruction Register Block Diagram 

5.5.1 JTAP Instruction Register 

The instruction register is an 8 bit shift register taking 

its input from the TDI serial test data external input. 

The instruction is shifted in only in the SHIFT-IR(A) state 

and is clocked in on the +ve edge of TCK signal. The 

instruction only becomes active in the UPDATE-IR(D) state. 

When the instruction is being shifted in, the output of the 

instruction shift register is multiplexed on to the TDO 

output pin. The output changes on the -ve edge of TCK. 

TIT 

MSB LSB 
7 6 5 4 3 2 1 0 

IRUD IRINT IRDCIB IRDC2 IRLO IRL1 IRL2 IRL3 

Main Instruction Register Control Bits 
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_IR SAMPLE 
IR 

TSCKE 

Supplementary Control Bits 

IR 
RESET 

When an instruction is shifted in, 8 bits of data are loaded 
into the instruction register. Bits 7-4 (labelled IRUD, 
IRINT, IRDC1B, IRDC2) determine which test operation is to 
be performed on the scan path loop, while Bits 3-0 (labelled 
IRLO-3) determine which scan path loop is to be tested (note 

that the bit order is reversed). 

Three Supplementary Control Bits provide additional control 
(IRSAMPLE, IRTSCKE, IRRESET). These bits are not part of the 

serial instruction register path but are set and reset by 
decoding the 8 main instruction register bits 

Special escape codes on bits IRLO-3 are used to give extra 
functions not possible using the 8 bit instruction register 
alone. 

Six bits ST10-5 can be used to give general purpose status 
information. The status inputs are loaded into instruction 
register bits 0-5 when in the CAPTURE-IR state and are 
shifted out to the TDO pin when a new instruction is shifted 
in. 
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Bit Name Description 

MSB 7 IRUD Update Disable and Sample mode reset. 
Control the updating of the test 
registers via the UPHLD signal 
0= Update in UPDATE-DR(5) state + 
Sample mode reset 
1= Don't Update during UPDATE-DR(5) 
but hold old value 
When TRST=O or when in TEST-LOGIC-RESET 
(F) state IRUD=1 

6 IRINT Internal/External test select. Selects 

whether on Boundary loop 0, the input 
test registers hold data, or whether 
the output test registers hold data. 

0= External Test, outputs hold whilst 
inputs Capture. 

1= Internal Test, inputs hold whilst 
outputs Capture. Valid only when RUN 
is loaded into the Instruction register 

When TRST=O or in TEST-LOGIC-RESET(F) 
IRINT is set to 1 

5 IRDCIB DC Test select signals. Test control 
signals are applied to the selected 
loop during the RUN-TEST-IDLE(C) and 
CAPTURE-DR(6) states only. 
Note the IRDClB is inverted to 

4 IRDC2 maintain compatibility with the 
reserved instructions. 

3 IRLO Selects the loop to be 
SCAN operated on. Valid for 

SHIFT-DR(2) RUN-TEST-IDLE(C) 
2 IRL1 CAPTURE-DR(6) states only 

LOOP 
1 IRL2 Escape codes 1111 and 0001 

are used for special 
SELECT functions. 

LSB 0 IRL3 

5- 22 



5.5.2 RESERVED JTAG INSTRUCTIONS 

The JTAG/IEEE 1149-1 spec defines a number of specific 
instructions which are described below. 

Some of these instructions must be implemented to be JTAG 
compatible and some are optional. 

Instruction Register 
Bit 
765432 110 

Name Comments 

11111111 BYPASS Bypass register routed to TDO, 
sample mode operation enabled. Chip 
operates as normal. 

00000000 EXTEST Boundary Loop 0 is selected. 
Output pins are updated in UPDATE- 
DR(5) state. Data is captured from 
the input pins in the CAPTURE-DR(6) 
state. Normal Chip operation is 
interrupted 

11000000 INTEST Boundary Loop 0 is selected 
Output pins are not updated. Test 
Data is applied to the input of the 
chip and chip output data is captured 
into the boundary loop 0. Normal Chip 
operation is interrupted 

1X001011 SAMPLE Sample mode operation mode 
enabled on Boundary loop 0 and chip 
operates normally. Can only be used 
if Transparent databits are used on 
Boundary Loop 0. 

XX100011 RUNBIST Can be used to invoke an 
autonomous self-test in RUN-TEST-IDLE 
(C) state but only if the extra 
self-test circuitry fitted to 
CTRDC1,1 JTAP input pins. 
The implementation of this 
instruction is up to the designer. 

00000001 IDCODE If optional ID Register is 
used then this instruction will shift 
out the chip ID code. Normal chip 
o eration continues. 
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5.6 BYPASS REGISTER 

The Bypass register is a single cell register that is used 
to serially shift test data from TDI (Test Data Input) to 

TDO when testing of a particular device is not currently 

required. The data transmitted should be fed from TDI to 

TDO unaltered but will have a lag of one clock cycle. 

BYPASS_CLK 
4 (TDO ) 

BYPASS_SCAN rX 

0 

TDI 

BYPASS_CLK 
BYPASS_SCAI 

BYPASS_CLK 
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IN PHASE 
I CHANGES 

BYPA 

2D 

WITH TCK 
ON NEGATIVE EDGE TCK 

SS-SCAN Q 

L0 CAPTURE 

IH 
TDI SHIFT 

LX 
Q HOLD 

Figure 5.10 Bypass Register Block Diagram 
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5.7 DEVICE IDENTIFICATION REGISTER 

The Device Identification Register is an optional feature 

[WHET 87] of the Standard. When it is included in the test 
logic, it allows a binary data pattern to be read from the 

chip identifying the manufacturer, the part number and the 

variant. During testing this information might be used, for 

example, to verify that the correct IC has been mounted in 

each board location. 

DRCLK - 

ý-º 

TO NEXT CELL --4ý>- 

ID CODE BIT 
MUX 

FROM LAST CELL 

SHIFTDR 

MSB LSB 

VER DEVICE CODE MANUFACTURERS CODE 

[Ell 

(4 BITS) (16 BITS) (11 BITS) 

5.11 Device Identification Register Block Diagram 

If the designer chooses not to implement the ID register, it 

is necessary to connect the unused ID register input on the 

JTAP controller to the bypass register output. This ensures 

compatibility with the JTAG/IEEE 1149-1 spec in that when 
the ID register instruction is selected, the bypass register 

path is selected. 
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5.8 TEST ACCESS PORT (TAP) 

The purpose of the JTAP cell is to convert the external chip 
JTAG test control signals to internal signals used to 

control the test registers when testing takes place. The 

JTAP cell has an external interface which connects to I/O 

pins of the chip, together with an internal interface which 
connects to the internal test circuit. 

The block diagram for JTAP is shown in figures 5.12 and 
5.13. The state machine controls the main operation of the 

JTAP controller as shown in figure 5.14. It controls the 

operation of the internal testing. It also controls the 

shifting in and out of serial data from the scan loops and 

the shifting in and out of data from the instruction 

register. The Instruction register selects which scan loop 

is to be shifted or tested and the test to be performed. 
Under control of the JTAP state machine, instructions are 

shifted serially into the Instruction register via the TDI 

serial data pin. The loaded instruction then controls the 

tests to be performed. All serial data and instructions 

are shifted in via the TDI pin and, depending on which 

register is selected, the serial output is shifted out to 

the TDO pin. A single register Bypass path from TDI to TDO 

is provided to give a direct path from TDI to TDO. This 

gives shorter access to chips further along the serial data 

path. The JTAP controller provides connections to an 

optional ID register, whose purpose is to output serially an 
identity code that can be passed out to the tester. This 

register is optional and when not used, the Bypass register 
is connected in its place. The JTAP controller provides 
the signals required to control each scan path loop 
independently. 
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The connections to the JTAP controller can be divided into 

three categories: - 

- External Interface Signals - JTAG signals to the 

external chip pins. 

- Internal Interface Signals - Signals to control the 

internal test circuitry. 

- Local Interface Signals - Signals used to control a 
local ID register and unused scan path loops. 

5.8.1 JTAG SIGNALS (TCK, TMS, TDI, TDO, TRST) 

Access to the boundary scan and the data transmitted is via 

4 or 5 buffered I/O test pins called a test access port or 

TAP. 

There are four mandatory pins and one optional pin as listed 

below: 

TCK - test clock 
TMS - test mode select 
TDI - test data in 

TDO - test data out 

The optional pin: 
TRST *- test reset input pin 

- active low) 

The TRST* pin need only be added if, as in this case, there 

is no reset on power up' present. it provides asynchronous 
initialisation of the TAP controller by returning it to the 

(Test-Logic-Reset) state. 

TCK 

TCK is an external test clock used for shifting data through 

the cells. Note that it is totally independent of the system 

clock which means that data can be loaded without altering 
the current state of the device. 
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TMS 

TMS is used to change the current status of the TAP 

controller. If the TMS line is not driven, internal 

circuitry should send the controller into the 'Test-Logic- 

Reset' condition on five successive cycles of the TCK. It 

will remain in this state until the TMS line changes. 

TR 

Figure 5.12 TAP State Machine Block Diagram 

EJABLE 

CIR 
SDR 
UDR 

: CT) 

(3: 0) 

Note that the (Test-Logic-Reset) is the default condition in 

which normal operation of the device is obtained. This means 

that should the TMS line fail or be unused the device can 

still function normally. 

TDI 

TDI is used to load test data serially into the device via 

the Test Access Port to the first boundary cell. With the 

correct instruction this will be shifted left through all 

the cells on the rising edge of TCK until the controller 

status changes. 
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if a requirement exists where the test operation is to be 
repeated but with fresh data, the input to the TDI can be 
reloaded whilst the old data is being clocked out. 

TDO 

TDO is used to accept serial data that has been transferred 
through the device. Unlike the TDI, the test output data 
shifts on the falling edge of the clock to prevent race 
hazards across the register. 

TAP Controller 

The operation of the boundary scan cells and the 
conditioning of other inputs is controlled by the TAP 
controller. This is a state machine, which sets all the 
control signals required for the operation of JTAG. 

States are assigned a Hex number as shown in figure 5.14. 

The state machine is controlled solely by external input pin 
TMS (Test Mode Select) and clocked on the +ve edge of TCK 
(Test Clock). The TEST-LOGIC-RESET (F) state is the non- 
test state in which the chip is running normally. An 

asynchronous reset signal (TRST) is required to put the 

state machine into TEST-LOGIC-RESET (F) state and is 

normally present as a power-on-reset signal. Together with 
the contents of the instruction register, the state machine 
controls the timing of the shifting of serial data through 
the scan loops and the capturing and application of self- 
test functions. Two main paths in the state diagram 
determine whether the instruction register (IR) is shifted 
and loaded, or whether the scan paths (DR) are shifted or 
loaded. Self-Test is performed in the RUN-TEST-IDLE (C) 

and CAPTURE-DR (6) states. The instruction register's 
contents determine which type of test should be run during 
these states. 
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Figure 5.13-a TAP Controlling Instruction and Data 
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FIGURE 5.14 TAP Controller State Diagram 

Depending on the position and the current status of the machine 
16 possible states are possible, these are listed below: 
Exit2-DR 0 Update-DR 5 Pause-IR B 
Exitl-DR 1 Capture-DR 6 Run-Rest/Idle C 
Shift-DR 2 Select-DR-SCan 7 Update-IR D 
Pause-DR 3 Exit2-IR 8 Capture-IR E 
Select-IR-Scan 4 Exitl-IR 9 Test-Logic-Reset F 

Shift-IR A 
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5.9 RECOMMENDATIONS 

5.9.1 HOW TO LAY OUT THE TEST REGISTER 

The layout of the test register should be considered 

carefully in order to produce an efficient chip layout. The 

test registers should be arranged such that the pitch of the 

databits matches the pitch of the data lines coming from and 

going to the main logic. This ensures that data flow does 

not have to 'dog-leg' through the chip taking up silicon area 

as demonstrated in fig 5.15 a, b. 

The Tall databits have a width of 2 minor cells, while the 

Fat databits have a height of 2 minor cells as shown below. 

Therefore Test registers can be made to match data busses 

with any pitch down to 2 minor cells horizontally or 

vertically (whole cell numbers only! ). If a finer pitch is 

required it is possible to place two Test registers next to 

each other running in parallel thus giving an effective pitch 

of one minor cell. Routing Transparency through the databits 

ensures that signals can pass through the databits. 

TEST 
REGISTER 

Figure 5.15 a, b Test Register Layout Techniques 
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Where the horizontal pitch exceeds 5 or 6 minor cells for a 
horizontal Test register, the wasted gaps between the 

databits make the Test register inefficient. In this case 
instead of using the Tall databits, it may be more 

appropriate to use Fat databits which are 5 or 6 cells wide 
but only 2 cells high. obviously the connections between the 

Fat databits will not be optimum and external routing is 

required. However, the saved area is considerable. Likewise 

when vertical databit pitch is greater than 5 or 6 minor 

cells then Tall databits may be used. 

Wherever possible, use should be made of the butting cells to 

reduce the routing of the Test register. 

5.9.2 PSEUDO RANDOM TEST 

The JTAG/IEEE 1149-1 spec requires that a pseudo-random test 

is run in the RUN-TEST-IDLE(C) state and that the resulting 

signature should be independent of the number of clock cycles 
in the RUN-TEST-IDLE(C) state (above a minimum number). 
There is therefore a requirement to be able to freeze the 

signature after a given number of clock cycles when in the 

RUN-TEST-IDLE(C) state. 

Having this requirement means that blocks of logic can have 

their signatures predicted for a fixed number of clock 

cycles. As signature prediction for a pseudo-random test on 

a block of logic can be very CPU expensive, the ability to 
freeze the signature after a given number of clock cycles 

means that a signature prediction need only be determined 

once for a block of logic. It is also independent of the 
length of test. It is therefore recommended that a counter 
should be included which can be used to hold the result of 
the test after a given count. 
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5.9.3 AUTONOMOUS SELF-TEST (RUNBIST) 

It is possible to design into the test circuit an autonomous 
self-test function that can invoke a complete self test 

without the need to shift in complicated serial test data to 

run the self test. The intention is that the self-test is 

completely self running and can be invoked by a single 
RUNBIST instruction. Boundary loop 0 can be selected from 

the instruction register by more than one loop number. 

Boundary loop 0 serial data input passes through a 

multiplexer which provides an alternative source of serial 
data into the boundary loop from a ROM. The ROM contains 
the control bits and seed values that are needed for a 

pseudo-random test. 

5.10 CONCLUSIONS 

The IEEE 1049.1 JTAG structure has been described. The test 

architecture was successfully simulated at the register 
transfer level. The full simulation results are shown in 

Appendix 5A which are based initially on 4 test instructions 

including NOP, SAMPLE, EXTEST and BYPASS. 

The 'macro function' language facility (similar to 'C') was 

used to describe the stimuli needed to simulate the 

architecture fully. An application logic, a2 bit adder 

circuit, was then included. Both logic simulation and fault 

simulation was successfully carried out based on 6 test 
instructions which have been generated using macro-functions. 

The development, implementation and simulation of the JTAG 
architecture provided an understanding of the operation 
needed for developing the architecture behaviourally using 
VHDL. 
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CHAPTER 6 

HIGH LEVEL VHDL MODELLING OF 
BOUNDARY SCAN ARCHITECTURE 

6.0 INRODUCTION 

This Chapter presents VHDL Models developed for the different 

components of the JTAG Boundary Scan Architecture (BSA). It 

describes the techniques used for accurate, high level 

modelling of the BSA. 

Both Mentor Graphic's -System 1076 version 7 running on an 
Apollo 4500 workstation and View Logic's VHDL subset running 

on a PC-386 were used to develop, compile and validate the 
behavioural models of BSA. 

The chapter highlights the use of some of the features 

provided in VHDL, such as the Package procedural facility, 

when developing the BSA models. 
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6.1 BACKGROUND 

Functional level test generation continues to take an 
increasingly significant role in addressing the test 

requirements of digital circuits. A functional test examines 
the correctness of a given circuit's performance in its 

various modes of operation. Therefore, when functional-level 

test generation techniques are developed and applied to 
digital networks, determining the correctness of a logical 

operation, independent of specific implementation, is a 

primary objective. 

What is gained by using a high-level approach in applying 
Design-for-Test generation is freedom from the need for 

implementation details of circuits to be tested. Herein lies 

a marked advantage of a high-level methodology over many 

classical test generation strategies relying to a greater or 

lesser degree on specific structural information. Structural 
information is not readily available in many situations, thus 

negating the applicability of many test generation strategies 

relying on such information. 

For example, structural information is not always available 
in circuits designed with the aid of a silicon compiler or by 

using a Third Party cell library. Field Programmable Logic 

Devices also do not provide structural information for the 

user. In all cases however, functional descriptions of 
digital circuits are available and serve as a starting point 
for a high level approach. 

For a high-level approach to be successful, the functional 
description and logical behaviour of a digital device under 
test must be represented in a comprehensive and concise 
manner. 

The approach taken by MA Brewer and AD Friedman [BREU 80] 

is based on Functional Level Primitives to describe high- 

level representation. 
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Another approach suggested by UJ Dave and JH Patel [DAVE 

89] is based on two-level representations. This is a scheme 

used for representing the input-output behaviour of 

combinational circuits which rely solely on their 
corresponding functional description. 

Other schemes such as the use of binary decision diagram for 
describing high level logical behaviour of the circuit under 
test have been suggested by Akers, Abadir and others 
(Abad 85], [Aker 78]. 

The approach described in this chapter is based on the use of 
Hardware Description Language VHDL, to describe behaviourally 

the IEEE 1149.1 Boundary Scan Test Architecture [JTAG 901. 

6.2 MODELLING OF THE JTAG ARCHITECHTURE 

When a function rather than a structure is most important, it 
is possible to describe each component with a corresponding 
behavioural description. VHDL behavioural description is 

therefore used to represent the function of JTAG in terms of 
circuit and signal response to various stimuli. The VHDL 
models are also described using a schematic editor with an 
added attribute which links the circuit schematic to the 
behaviour of the component during the circuit simulation. 

After the successful simulation and refinement of the 
functional model of JTAG with the application circuit, it is 

then possible to substitute the behaviour with a vendor 
specific structural architecture. In this way the 
intellectual property rights of the component models supplied 
by the IC vendor are protected. 

The timing elements associated with each model of the BSA 
have been defined in a generic form. These declarations are 
made visible to all entities of JTAG through the use of the 
PACKAGE facility provided in VHDL. The 'declaration package' 
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contains all the necessary delay parameters. It gives the 

user the ability to define the desired delays easily. 

In addition the full JTAG architecture is described within 

the 'work package' later in this chapter, in order that the 

desired delays can be defined easily. (IEEE 88] [COEL 89] 

[LISP 89] 

6.3 JTAG BOUNDARY SCAN ARCHITECTURE TIMMING AND 

PERFORMANCE ISSUES 

6.3.1 CLOCK OPERATION 

The test logic must be capable of operating with TCK in the 

frequency range identified by the JTAG IEEE standard. The 

maximum frequency of�TCK must therefore be clearly specified. 

This rule is introduced in order to ensure a minimum 

acceptable level of performance for the test logic. The 

minimum performance for a data path on the test card will be 

dictated by the slowest model, with respect to the clock 

speed. The time taken to shift the data along the test data 

path on the card increases if the maximum clock frequency 

expected is reduced. 

A VHDL "TCK_GENERATOR" model was written for the TCK clock 

generator. This produces a clock with a 50% duty cycle and a 

PER period of 200 nanoseconds (which is the maximum period). 
The generation of the clock will only take place after a 

transition of '0' to '1' on the Run input. On the other hand, 

a transition of '1' to 10' on Run causes the clock generator 

to stop. In this way the TCK clock can be controlled. 

6.3.2 SET-UP AND HOLD TIMES 

Definition 1: The set-up time is the interval of time between 
the application of a signal at a data input terminal and the 
following active transition on a clock input terminal. 
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A value of b in figure 6.1. is an example of the set-up time 

for the data input terminal D. 

Definition 2: The hold time is the time interval during which 

a signal is saved at an input terminal after an active 

transition has taken place on a clock terminal. 

A value of c in figure 6.1. is an example for the hold time 

for the data input terminal D. 

D-Type 

Dbc 

CK 

Two wave forms for input signals 

a: duration of the clock pulse. 
Figure 6.1 Set-up and Hold Times 

6.3.3. PROPAGATION DELAY OF SIGNALS 

The propagation of a signal through a circuit is delayed by a 

time which is equal to the minimum at tpmin (Figure 6.2). 

This delay can be prolonged by factors external to the 

circuit, such as the input or mains voltage (the lowest 

voltage permitted must be considered). The other factor is 

temperature as the performance of a circuit deteriorates at 

very high temperatures. Figure 6.2 shows the minimum 

propagation time which is calculated by taking account of the 

worst parameters, where tpmin represents their best case. 
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Figure 6.2. Maximum and Minimum Propagation Delays 

There are several ways of modelling set-up and hold times 

with VHDL. Three methods are described below: 

" When there is a violation of time the simulator outputs a 

message identifying the time problem as well as the 

component which contains the violation. The model will 

propagate a state as if there had been no time violation 
and the simulation therefore continues. 

" Simulation continues and the models show an unknown state 

at the output when there has been a violation of time. 

" Other practices imply the use of minimal time with 
precision during the simulation of the logic function. 

Simulation models do not verify the violations and 
propagate a state without taking into account the possible 
time violations. 

The first method was chosen to model set-up and hold times of 

circuits. The VHDL language facilitates the modelling of 

propagation delays. VHDL also allows the description of two 

types of signal delays. The first type is inertial delay 

where a signal propagation is only carried out after the set- 

up time at a given level for a specified moment of time and 

given by the clause "after". 
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The second type is the transport delay, where all the changes 

on an input propagate to the output without reference to the 

duration of the set-up time. In the course of modelling 

this facility offered by VHDL was used and the delays have 

been symbolised by n and u mnemonics whose values' are 
developed by the generic clause. 

6.3.4 TDO-TDI INTERFACE 

The TDO pin must be able to control at least two TAP data 

input pins (TDI) described in the same technology. The 

logical levels used at the TAP pins should match those used 
in other pins in the assembly of the module. it is possible 
for a TDO to be connected to other test data paths on a 

circuit card. As a result, TDO is declared as a 3-state pin 
during modelling. 

6.4 VHDL MODELS FOR BOUNDARY SCAN ARCHITECTURE 

The Boundary Scan Architecture is broken up into several 
components which are easily found from integrated circuit 
suppliers. Each BSA component is described in terms of 
behaviour by a VHDL model. This makes it possible for the 

models to be extended for other test support and future 

enhancements. These models reside in a VHDL package and they 

are interconnected structurally in order to describe the 
target architecture. 

1 During simulation of the models, arbitrary delay 
values were given to the symbols to represent different 
propagation delays of signals. 

6- 7 



6.5 TAP CONTROLLER MODEL 

The black box model of the TAP Controller is described below. 

The VHDL model describes the Controller as a finite state 
machine (16 states) that responds to changes of TMS and TCK 

signals. 

Figure 6.3 identifies the interface input/output requirement 
for the TAP Controller. 

The "TAP CONTROLLER" is the name of a model entity of VHDL 

which describes the behaviour of the TAP controller. 

The functioning of the circuit is described by the 

architecture "tap-controller-behaviour", at a high level of 

abstraction and is independent of the particular structure. 
It is therefore only necessary to describe the required 
behaviour without presenting its characteristics. As the 
initial state of the controller is undetermined (during power 

on) it was necessary to add the state UNDEFINED in order to 

facilitate initialisation. 

The interface represents all the signals generated by this 

model, after a delay ODEL, in order to control the behaviour 

of all the registers and multiplexers. Therefore, it must 

assign specific values to a signal during each state reached 
by its particular function. Thus, if there is an event "O" to 

"1" on TCK and TMS was initialised, then the present state of 

the component will be changed to the following state if TMS 
is maintained at this logical level during a time equals to 

the Hold_Time or longer. This assumes TCK remains at a value 
of "l" during a minimum pulse duration Min_Pulse_Width_1, and 
TMS has a logic value which can alter the state according to 
the transition diagram after a time equals to the Setup Time 

or less. 
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If this is not the case, an error message of violation will 
be sent and the simulation will continue with the expected 
change as if there had been no violation. 

The Reset port is used by the instruction register and the 
boundary scan register cells which represent the control 

signals for the Tri-state and bidirectional pins. The 
Selectt port is used to select a serial data test port 
(either a serial instruction register output or a selected 
test data register). The Enablee port is used to validate 
the test data output buffer since it is a three state port. 
The three ports: ShiftlR, ClockIR and UpdatelR are used in 

the design of the instruction register. The ShiftDR, ClockDR 

and UpdateDR ports are used in the design of the test data 

registers. 

TMS 

TCK 

Reset 

Selectt 

Enablee 

ShiftlR 

Clock IR 

Update IR 

Shift DR 

Clock DR 

Update DR 

Figure 6.3 The TAP Controller 

library std, work; 
use std. standard. all; 
use work. declaration. all; 

6- 9 

0DEL 



ENTITY tap_controller IS 
generic (Setup_Time, Hold_time, Min_Pulse_Width_1, 

Min_Pulse_Width_0, S Odel, Odel: Time); 
PORT 
TMS, 
TCK: in bit; 
Reset, 
Selectt, 
Enablee, 
ShiftlR, 
ClockIR, 
UpdatelR, 
Shif tDR, 
ClockDR, 
UpdateDR : out bit 

ý: 

END tap controller; 

ARCHITECTURE tap_controller_behav of tap-controller IS 

signal state: state_tap := undefined ; 

BEGIN 

state_diagram: process (tck) 

begin 

if tck = '1' then 

case state is 

when Test_logic_reset=> if TMS='0' then 
state <=Run_state_idle after S_Odel; 

end if; 

when Run Test_Idle => if TMS ='1' then 
state <= select_DR_Scan after S_Odel; 
end if; 

when Select_DR_Scan => if TMS ='0' then 
state <= capture_DR after S_Odel; 
else 
state <= select_IR_scan after S_Odel; 
end if; 

when Capture_DR => if TMS = '0' then 
state <= shift_DR after S_Odel; 

else 
state <= Exit_l_DR after S Odel; 
end if; 

when Shift_DR => if TMS ='1' then 
state <= Exit_l_DR after S_Odel; 
end if; 
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when Exit-1-DR => if TMS ='0' then 
state <= Pause_DR after S_Odel; 

else 
state <= Update_DR after S_Odel; 
end if; 

when Pause_DR => if TMS =11' then 
state <= Exit_2_DR after S_Odel; 

end if; 

when Exit_2_DR => if TMS =10' then 
state <= shift_DR after S_Odel; 
else 
state <= Update_DR after S_Odel; 
end if; 

when Update_DR => if TMS ='0' then 
state <= capture_IR after S_Odel; 
else 
state <= Select_DR_Scan after S_Odel; 
end if; 

when Select_IR_Scan => if TMS =10' then 
state <= Capture_IR after S_Odel; 
else 
state <= Test_Logic_Reset after S_Odel; 
end if; 

when Shift_IR => if TMS =11' then 
state <= Exit_1_IR after S Odel; 
end if; 

when Exit_1_IR => TMS ='0' then 
state <= Pause_IR after S_Odel; 
else 
state <= Update_IR after S_Odel; 
end if; 

when Pause_IR => if TMS ='1' then 
state <= Exit_2_IR after S_Odel; 
end if; 

when Exit_2_IR => if TMS =10' then 
state <= Shift_IR after S_Odel; 
else 
state <= Update_IR after S_Odel; 
end if; 

When Update_IR => if TMS ='0' then 
state <= Run_Test_Idle after S_Odel; 
else 
state <= select_DR_SCAN after S_Odel; 
end if; 

when undefined => state <= Test_Logic_Reset 
after S_Odel; 
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end case; 

end if; 
end process STATE_DIAGRAM; 

SIG_GEN_1 : block(not TCK'stable and TCK='O' 
and state /=Undefined) 

begin 

Selectt <=guarded '1' after Odel when 
(state=exit-2-IR) or 
(state= Exit_l_IR) or (state= shift-IR) or 
(state= Pause_IR) or (state= Run_Test_Idle) or 
(state= Update_IR) or (state= Capture_IR) or 
(state= Test-Logic-Reset) else '0' after Odel; 

ClockIR <=guarded '0' after Odel when tck ='0' and 
(state= shift_IR or state= Capture_IR) else'l' 
after Odel; 

UpdatelR <=guarded '0' after Odel when tck ='0' and 
(state= Update_IR) else'l' after Odel; 

ClockDR <=guarded '0' after Odel when tck =10' and 
(state= Shift_DR or Capture_DR) else'l' 

after Odel; 
UpdateDR <=guarded '0' after Odel when Tck='0' and 

(state= Update_DR else '1' after Odel; 

end block SIG_GEN_1; 
END tap_controller_behav; 
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6.6 INSTRUCTION REGISTER MODEL 

The instruction register is represented by the VHDL model 

whose entity name is "REG_INSTRUCTION". The architecture of 

this entity "reg_instruction_behaviour" describes the 

behaviour of the register. Figure 6.4. illustrates the 

propagation delay in the path and the VHDL model used for 

defining the instruction register. In addition, it identifies 

the interface input/output requirement for the Instruction 

Register. 

INSTRUCT10N 

TDI 
TDO 

STATUS BIT'S 

ShiftlR 

TDI 

Data 

ClockIR 

Updatell 

TREST* 
Reset* 

Instruction Bit 

TDO 

Figure 6.4 The Instruction Register 
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The Instruction Register allows instructions to be entered 

serially into the test logic during an instruction register 

scan cycle. The user must enter the instruction through the 

serial test input (port TDI). The logical value of the 

serial output for the test data (port TDO) must be equal to 

the most significant instruction bit (S(S'RIGHT)). 

. 
The instruction bit output is updated at the end of the 
instruction scan cycle during the update IR Controller state. 

The clock input to the register in the serial path is only 
applied during the capture IR and shift IR Controller states. 

The reset port is used in order to initialise the reserved 
instruction register which represents a normal function (when 

the Reset value is 11011). 

The signals of the UpdatelR, ShiftlR and ClockIR ports 

generated by the TAP_CONTROLLER model are used to describe 

this register. The parallel outputs, represented by the 

Instruction port, are updated when there is a rising edge 
(positive edge) on UpdatelR. The value '1' of the ShiftlR 

port indicates that the instruction register has carried out 

a scan process. The parallel entries represented by the 

Status port are captured by the shift stage register just 

after a rising edge (positive edge) on the ClockIR port has 

occured. The two least significant Status bits must be fixed 

at "01" ('0' for the most significant bit), and they are used 

to check the integrity of the Boundary Scan Chain. 

This model does not represent the characteristics of the 
implantation of the instruction register components but it 

provides an accurate functional description. 

The timing elements (for shifting, updating and max delay 

etc) are taken into account by the various parameters shown 
in figure 6.5 and in VHDL code. 
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entity REG_INSTRUCTION is 

generic (Setup-Shift-Time, Hold-Shift-Time, 
MPluse_Width_Shift, Setup_Update Time, 
Hold_Update_Time, MPulse_Width_Update, 
Mux_Del, Stage_Shift_Del, Stage_Update_Del: 
Time); 

port( 
Reset, 
ClockIR, 
UpdatelR, 
ShiftlR, 
TDI : in Bit; 
Status : in Bit_vector; 
Instruction : out Bit_vector; 
TDO : out Bit 
); 

begin 
assert Instruction'Right> Instruction'Left 
report "Error in the range of Instruction" 
severity ERROR; 
assert (not (ClockIR'Delayed(Hold_Shift_Time) ='l')) or 

ClockIR'Delayed(Hold_Shift_Time)'Stable or 
(TDI'Stable(Setup_Shift_Time + Hold-Shift Time 
+ Mux_Del) and Status'Stable(Setup_ShiftTime 
+ Hold_Shift_Time + Mux_Del)) 

report "Setup or Hold Time Violation on TDI or Status 
Terminals in" & "REG_INSTRUCTION entity" 
severity WARNING; 
assert ClockIR'Stable or ClockIR='l' or 

ClockIR'Delayed(MPulse Width_Shift)='l' 
report "Pulse Width Failure on ClockIR in 

REG_INSTRUCTION entity" 
severity WARNING; 
assert UpdatelR'Stable or ClockIR='1' or 

UpdatelR'Delayed(MPulse_Width_Update)='1' 
report "Pulse Width Failure on UpdatelR in 

REG_INSTRUCTION entity" 
severity WARNING; 

end REG_INSTRUCTION; 

architecture reg_instruction_behaviour of REG_INSTRUCTION is 

signal S, SP : Bit_vector(Instruction'Range); 

begin 

SHIFT_STAGE : process (ClockIR) 
variable I: integer; 

begin 
if ClockIR='1' then 
if ShiftlR = '0' then 
S <=Status after Stage_Shift_Del+Mux_Del; 
else 
S <= TDI & S(0 to Instruction"Right -1) 

after Stage_Shift_Del + Mux_Del; 
end if; 
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end if; 

end process SHIFT_STAGE; 

assert (not (UpdatelR'Delayed(Hold_Update_Time)='1')) 
UPdateIR'Delayed(Hold_Update_Time)'Stable or 
S' Stable(Hold_Update_Time) 

report "Setup or Hold Time Failure in the 
REG_INSTRUCTION architecture" 
severity WARNING; 

UPDATE_STAGE : process(UpdatelR, Reset) 
begin 

if Reset ='0' then 
for I in Instruction'Range loop 
SP(I) <= '1' after Stage_Update_Del; 
end loop; 
else 

if UpdatelR ='1' then 
SP <= S after Stage_Update_Del; 
end if; 

end if; 
end process UPDATE_STAGE; 
Instruction <= SP; -- Delta Delay 

end reg_instruction_behaviour; 

w Q 
Instruction 0 

41 
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TDI 

Instruction 1 

MUX_Del ! 
Stage_Shift_Del 

Instruction (n) 

TDO 

Status(n)='1' 
Status(n-1)='0' 

Status(0) Stataus(1) Status(n) 

or 

Figure 6.5 Instruction Register with Timing Parameters 

6.7 INSTRUCTION DECODER MODEL 

The Black Box model for the Instruction Decoder is described 
below. Figure 6.6 shows the interface signals to this module. 
The timing element of the decoder is taken into account by the 
DEC_DEL parameter. 
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Figure 6.6 Instruction Decoder 

The decoding logic of instruction register depends 

essentially on the objective of the test logic. This means 

that the design of an instruction decoder changes from one 

chip to another according to the test logic built into that 

chip. For example, if we have a self-testable integrated 

circuit, the decoder must generate an additional signal in 

order to control the triggering of its test, when the 

appropriate instruction takes place. A flexible way of 
describing its behaviour is therefore necessary. However, the 

instruction decoder must have the instruction for decoding as 

its input, and the test mode together with the selected test 

data register signals as a minimum at its output (Figure 

6.6). 

The entity called Instruction_Decoder represents the 
interface of the VHDL model which describes the function of 
the decoding logic of the instructions. This is a black box 

model which receives the input and provides the output to its 

architecture (instruction decoder behaviour). Its behaviour 
is described at a high level of abstraction and is based on 
the generic type parameters provided by the user. 
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With this strategy one can avoid the problem of relying on 
the use of a particular structure. This model is described 

as follows: 

entity INSTRUCTION-DECODER is 
generic (Instruction_Set: Bit Vector; 

DR Select_Set, Test_Mode_set, 
Additional_Signals_set: Bit vector; 
open_check : Boolean; 
DEC_DEL : Time); 

port( 
Instruction : in Bit_Vector; 
DR_Select : out Bit vector; 
Test Mode : out Bit_vector; 
Additional_Signals : out Bit_vector 

end INSTRUCTION DECODER; 

architecture instruction_decoder_behaviour of 
INSTRUCTION DECODER is 

begin 

DECODER : process (instruction) 
variable Number_of_instruction : integer 

2**Instruction'Length; 
variable Count: integer : =O; 

begin 

count :=0; 
while count < Number_of_Instructions loop 
if instruction = instruction_set(Instruction'Length * count 

to Instruction'Length * (count+l)-l) then 
DR_select <=DR_Select_Set(DR_select'Length * count to 
DR select'Length * (count+l)-1) after DEC_DEL; 
Test Mode <= Test Mode_Set(Test_Mode'Length * count to 
Test Mode'Length * (count+l)-l) after DEC_DEL; 
if Open_Check then 

Additional_Signals <= 
Additional_Signals_Set(Additional_Signals'Length 
count to Additional_Signals'Length * (count+l)-1) 
after DEC_DEL; 

end if; 
exit; 

end if; 
count := count+l; 

end loop; 
assert (count < Number_of_Instructions) 
report "Illegal Instruction" 
severity WARNING; 

end process DECODER; 
end instruction_decoder_behaviour; 
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The instruction port represents the current instruction to be 

decoded. The value of this port must be an element of all the 
instructions supplied by the user using the parameter 
instruction-Set (the number of instructions making up this 

parameter must be equal to 2 Instruction' Length combinations and 

each one is of a length equal to Instruction'Length bits). 

There are three types of output port for this decoding whose 
logical values are generated after a delay of DEC DEL. The 

port DR_Select represents all the signals for the selection 

of test data registers designed to support a part of the test 

logic. The number of these signals is equal to the number 

of the registers. The corresponding information on the test 

mode must be propagated using all the signals represented by 

the Test Mode port. 

In the same way the number of these signals must be equal to 

the number of test types defined in the design. However, the 

Additional_Signals port represents all the additional 
signals, and its aim is to propagate the necessary 
information for the inclusion of additional test facilities. 
(for example a self testable circuit) built-in-test in 
integrated circuits. 

The necessary values for these three ports are supplied 

through the intermediary of the three parameters of a generic 

type which are respectively DR_Select_Set, Test_Mode_set 

and Additional_Signals_Set. However, the third port is not 

generally used. As a result, during the configuration of 

this component in VHDL, it is possible to use an open port 

using the "open" clause. Alternatively, a logic '1', 

Open_Check of the generic type, indicates the use of this 

port for a built-in test support. 
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6.8 BYPASS REGISTER MODEL 

The reg_bypass_behaviour is the name of the architecture for 

the entity REG-BYPASS of the VHDL model which represents a 
description, at a high level of abstraction, of the function 

of this register (Figure 6.7). 

AND_Del+ 
Bypass-Del 

Shi f tDR 10 
REG-BYPASS 

ClockDR (reg_ 
TDO bypass_ 

TDI behaviour) 

Select-Bypass 

Figure Bypass Register 

The modelling of the bypass register is simple. Its only 
function is to short circuit the test data inside an 
integrated circuit with the boundary scan architecture. 
When it is selected by the current instruction the value of 
the Select_Bypass port is equal to '1' or '0'. The value of 

this signal is generated by the instruction decoder. The 
bypass register must load a logical '0' in its single shift 

register if a rising edge (positive edge) on the ClockDR 

takes place and the value of the port ShiftDR (which is 

generated by "TAP-CONTROLLER") is fixed at '0'. The two 

ports TDI and TDO act respectively as serial input and output 
for this register. As a result, the test data is short 
circuited by these two ports with a delay equals to And_Del + 
Bypass_Del where And_Del is the delay of the logic port AND. 
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entity REG_BYPASS is 
generic (Setup_Time, 
Hold_Time, 
MPulse_Width, 
AND_Del, 
Bypass_Del: Time); 
port( 
Select_Bypass, 
ShiftDR, 
ClockDR, 
TDI: in Bit; 
TDO : out Bit 
); 

begin 
assert Setup_Time <=15ns and Hold-Time <=15ns 
report "15ns is recommended by JTAG as a maximum" 
severity WARNING; 
assert ClockDR'stable or ClockDR='l' or 

C1ockDR'Delayed(MPulse_Width)='1' 
report "Pulse width Time Failure on ClockDR" 
severity WARNING; 

end REG_BYPASS; 

architecture reg-bypass-behaviour of REG_BYPASS is 

begin 

main : block(Select_Bypass='1') 

signal S: Bit; 

begin 

S <=guardrd TDI and ShiftDR after AND_Del; 

assert (not (ClockDR'Delayed(Hold_Time)='1')) or 
ClockDR'Delayed(Hol(LTime)'Stable or 

report "Setup or Hold Time Failure on REG_BYPASS 
architectureI 
severity WARNING; 

BYPASS : process (ClockDR) 
begin 

if C1ockDR='1' then 
TDO <=S after Bypass_Del; 

end if; 

end process BYPASS; 

end block main; 
end reg_bypass_behaviour; 
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6.9 BOUNDARY SCAN REGISTER MODEL 

This register is composed of cells whose design is based on 
the test mode of the application logic. Figure 6.8. 
illustrates the complete interface and the different 
configurations according to the mode of test. 

NORMAL 

a w A 
ýý 

EXTERNAL/SAMPLE INTERNAL 

SLI, SC 11 SU SL' SC 'SU 

C_DEL M_DEL M_DEL C_DEL 

(a) The input boundary scan register (the cells of the unidirectional 
and bidirectional input pins and the clock). 

NORMAL 

a w 0 
Z1 

INTERNAL/SAMPLE EXTERNAL 

SLR SC 
liSU 

SL: SC : SU 

i 

C_DEL M_DEL M_DEL C_DEL 

(b) The output boundary scan register (the cells of the unidirectional 
and bidirectional output with three control states). 

C_Del : the delay taken by the multiplexer of the test mode control. 
M_Del : the delay taken by the multiplexer of capture/shift mode. 

Figure 6.7 Different Configurations Examples of the 
Boundary Shift Scan Register and Propagation Delays 
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The Parallel-input port represents the parallel inputs of the 
boundary scan register. The signals at this port are set by 

connecting the output signals of an integrated circuit to the 

external logic of the cells of the register, or connecting 
the signals entering the logic of the integrated circuit via 

other cells. On the other hand, the Parallel_Output port 
represents the parallel outputs of this register. The 

signals at this port are generated directly by the logic of 
the register cells themselves. Each bidirectional pin is 

represented by a Parallel_Input signal (the input direction) 

and a Parallel_Output signal (output direction). Either 
during the "Test-Logic-Reset" state of the controller, or 
when the mode controls are set for an internal test, the 

cells associated with the validation of signals must be 
initialised to the state which will force the system pins to 

a high impedance state. The Reset port is therefore included 

to invalidate the control signals when Reset is equal to 
logic "0° and the mode controls are set for an internal test. 

The signals at the ports UpdateDR, ClockDR and ShiftDR 

generated by the TAP_CONTROLLER component are used in the 
design of the logic of the boundary scan register. The 
UpdateDR port is used to update the boundary scan register 
stage. The ClockDR is the clock of the shift register (shift 

and capture the result). The ShiftDR port provides a control 
signal which indicates whether the process carried out by the 
boundary scan register is a shift cycle or not. The serial 
data input and output are represented respectively by the 
ports TDI and TDO. The Test MODE port presents the control 
signals of the boundary scan mode. The value on this port is 

generated by the instruction decoder. 
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Use Work. Declaration. all; 
entity REG_BSCN is 

generic (System_Pin_Types : String-vector; 
SUT_Capture, HT_Capture, MDEL, SUT_Update, 
HT_Update, C_DEL, Cap_Del, Upd_Del : Time); 
port ( 
Select_Bscan, 
Reset, 
ShiftDR 
C1ockDR, 
UpdateDR, 
TDI : in Bit; 
Parallel_Input : in Bit_vector; 
Test Mode : in Bit_vector(O to 1); 
Parallel_Output : out Bit_vector; 
TDO : out Bit 
); 

begin 

assert (not(C1ockDR'Delayed(HT_Capture)='1')) or 
ClockDR'Delayed(HT_Capture)'Stable or 
TDI'Stable(SUT_Capture + HT_Capture +MDEL) 

report "Setup or Hold Time Failure on TDI terminal in 
REG_BSCAN entity" 
severity WARNING; 

end REG_BSCAN; 

architecture reg_bscan_behaviour of REG_BSCAN is 

signal SL, SC, SU : Bit_vector(parallel_Input'Range); 

begin 

assert (not (ClockDR'Delayed(HT__ýCapture) ='l')) or 
ClockDR'Delayed(HT_Capture)'Stable or 
SL'Stable(SUT_Capture + HT-Capture +MDEL) 

report "Setup or Hold Time Failure on SL signal in" & 
"REG_BSCAN entity" 
severity WARNING; 

CAPTURE_SHIFT: process (ClockDR) 

begin 

if Select_Bscan='1' and ClockDR ='1' then 

case ShiftDR is 

when 10' => SC <= TDI & SC(0 to 
Parallel_Input'Right -1) after Cap_Del; 

end case; 
end if; 

end process CAPTURE_SHIFT; 
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SER_OUT : TDO <= SC(SC'Right); --Delta Delay 

assert (not(ClockDR'Delayed(HT_Capture)='1')) or 
C1ockDR'Delayed(HT_Capture)'Stable or 
SC'Stable(SUT_Capture + HT-Update) 

report "Setup or Hold Time Violation on SC signal in 
REG_BSCAN entity" & "architecture" 
severity WARNING; 

UPDATE : process (UpdateDR) 
begin 

if Select_Bscan='1' and UpdateDR ='l' then 

for I in Parallel_Input'Range loop 

case System_Pin Types(1) is 

when 'K' => null; -- the shift cell 
when 'C' => if Reset = '0' then 

SU(I) <='0' after Upd_Del; 
else 

SU(I) <= SC(I) after Upd_Del; 
end if; 

when others => su(I) <= SC(I) after Upd_Del; 
end case; 

end loop; 
end if; 
end process UPDATE; 

OUTPUT_MUX : process (SL, SU, Parallel_Input, 
Test Mode) 

begin 
if Select_Bscan ='1' then 
assert Test Mode /= "11" 
report "Undefined Test Mode" 
severity WARNING; 

for I in Parallel_Input'Range loop 
case System Pin_Types(I) is 

when 'K' => SL(I) <= Parallel_Input(I); 
when 'I' I 'B' => case test mode is 

when "00" I "01" =>SL(I)<=parallel_Input(I) 
after C_DEL; 

when "10" =>SL(I)<= SU(I) after C_DEL; 
When "11" => null; 

end case; 
when others=> case Test Mode is 

when "00" 1 "10" =>SL(I)<=parallel_Input(I) 
after C_DEL; 

when "01" =>SL(I)<= SU(I) after C_DEL; 
When "11" _> null; 

end case; 
end case; 

end loop; 
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case Test_Mode is 
when "00" => null; 
when "01" => for I in Parallel_Input'Range loop 

case System-Pin-Types(I) is 
when 'O'I 'P'I 'T'I "C" => Parallel_Output(I) 
<= SL(I); 
when others => null; 

end case; 
end loop; 

when "10" => for I in Parallel_Input'Range loop 
case System Pin_Types(I) is 

when 'I' I'B'I'K' => Parallel_Output(I) 
<= SL (I) ; 
when others =>null; 

end case; 
end loop; 
when "1111=> null; 

end case 
else -- normal 
for I in Parallel_Input'Range loop 

if System_Pin_Types(I) ='K' then 
Parallel_Output(I) <=Paralle_Input(I); 

else 
Parallel_Output(I) <=Paralle_Input(I) after 
C_DEL; 

end if; 
end loop; 

end if; 

end process OUTPUT_MUX; 

end reg_bscanbehaviour; 
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6.10 IDENTIFICATION REGISTER MODEL 

The REG_IDENT_BEHAVIOUR is the name of the architecture for 

the entity REG_IDENT of the VHDL model which represents a 
description for the function of this register at a high level 

of abstraction. Figure 6.9 shows the interface signals to 

this module. The timing elements of the decoder are taken 
into account by the Mux_del and Load_Del delay parameters. 

ID CODE(0) ID_CODE(N)='1' 

TDI p SR n kip. TD0 

Mux_De1+ 
Load_Del 

Mux_Del : The propagation delay taken by the Multiplexer. 

Load_Del: The propagation delay taken by the shift register. 

Figure 6.9 The Identification Register Model 

The ID code port represents the parallel input to this 

register which makes it possible to load an identification 

code. This register has a single path based on a shift 

register which does not have parallel outputs and as a result 

the interface of this entity does not contain the port 

UpdateDR. The two other ports ShiftDR and ClockDR, whose 

signals are generated by the component TAP-CONTROLLER, are 

used for the UpdateDR port design. The rising edge on ClockDR 

makes it possible to capture the identification code of the 

module. When the logical value of ShiftDR is 'l' the register 
is in a scan mode. All the operations of this register are 

controlled by the value of the Select_Ident port which 
indicates whether this register is selected by the current 
instruction. The TDI and TDO ports are the serial input and 
the output ports. 
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entity REG_IDENT is 
generic (Setup_Time, 
Load_Del: Time); 
port 
Select_Ident, 
ShiftDR, 
ClockDR, 
TDI: in Bit; 

Hold_Time, MPulseWidth, Mux_Del, 

ID_Code: in Bit vector; 
TDO: out Bit 

begin 
assert ClockDR'Stable or ClockDR='1' or 

ClockDR'Delayed(MPulse_Width)='1' 
report "Pulse width Failure on ClockDR in REG_IDENT entity" 
sevirity WARNING; 
assert Setup_Time <=15ns and Hold_Time <=15ns 
report "these two times are recommended by JTAG to be less 

than 15ns" 
severity WARNING; 
assert (not(ClockDR'Delayed(Hold_Time)='1')) or 

C1ockDR'Delayed(Hold_Time)'Stable or 
TDI'Stable(Setup(SetupTime+Hold_Time+Mux_Del) 

report "Setup or Hold Time Violation on TDI terminal" 
severity WARNING; 

end REG_IDENT; 

architecture reg_ident_behaviour of REG_IDENT is 
signal SR: Bit_vector(ID Code'Range); 

begin 

LOAD_SHIFT: process (ClockDR) 
variable I: integer; 

begin 

if Select_Ident='1' and ClockDR= 11' then 
if ShiftDR='O' then 

SR <=ID_Code after Mux_Del=Load Del; -- load 
else 

SR <=TDI & SR(O to ID_CODE'Right - 1) 
after Mux_Del + Load_Del; -- Shift 

end if; 
end if; 

end process LOAD_SHIFT; 

TDO <=SR(SR'Right); -- Delta Delay 

end reg_ident_behaviour; 
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6.11 MULTIPLEXER MUX_1 MODEL 

The behaviour of the multiplexer MUX_1 is described by the 

VHDL model whose entity is called MUX_1 and the architecture 

by mux_1_behaviour. Figure 6.10 illustrates the design of 

this multiplexer. Mux_Del represents the delay at port 

TDO_Test_Data_Registers. 

Mux_De 1 

Tdo Test_data_Register(0) 
Tdo_Test_data_Register(1) 
Tdo_Test_data_Register(2) 

Tdo_Test_data_Register(n) 

Instruction 

Figure 6.10 The MUX_1 Multiplexer Model 

use work. declaration. all; 

entity mux_l IS 

TDO 

generic ( 
instruction-set : bit vector; 
tdo_test_data_registers_set : integer; 
mux_del : time); 

port ( 
tdo_test_data_registers: in bit-vector; 
instruction : in bit-vector; 
tdo: out bit); 

end mux_l; 

architecture mux_l behau of mux_1 is 

signal ind: integer: =0; 
begin 

multiplexer: process (instruction, 
tdo_test_data_registers, ind) 

variable number_of_instructions: integer 
: =2**instruction'length; 
variable count: integer : =O; 
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begin 

if instruction'stable then 
tdo <=transport tdo_test_data_registers(ind) 
after 5ns; 
else 
count : =O; 
while count<number_of_instructions loop 

if instruction = 
instruction_set(instruction'length 
*count to instruction'length* 
(count+l)-1) then 

ind <=tdo_test_data_registers_set(count); 
tdo <=tdo_test_data_registers(ind) 
after 5ns; 
exit; 

end if; 
count: = count+l; 

end loop; 
assert count < number-of-instructions 
report "illegale instruction" 
severity WARNING; 
end if; 

end process multiplexer; 

end mux_1_behav; 

In order not to impose a particular instruction, the 

parameters of generic type are used to pass the necessary 
information. It covers all combinations of the 
2Instruction 'Length (the Instruction_Set parameter) and the 
TDO_Test_Data_Registers_Set which represents all the 

corresponding serial outputs contained in Instruction_Set. 
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6.12 MULTIPLEXER MUX_2 MODEL 

Figure 6.11 illustrates a design for this multiplexer. If the 

value of the Selectt port is equal to 1' the serial output 
of the instruction register (TDO_Instruction port) is 

multiplexed and its value is assigned to the TDO port with a 
delay of Mux_Del. otherwise the value of the Selectt port is 

that of the multiplexed serial output (the Tdo_Test_Data_ 
Registers port) and the current instruction including the 
test data registers (MUX_1). 

Mux_De 1 

Tdo_Test_Data_Registers 

Tdo_Instructior 

Selectt 

Figure 6.11 MUX_2 Model 

TDO 

The entity of this model is called MtX_2 and its behaviour is 
described by the mux_2_behaviour architecture. 

entity mux_2 is 
generic (mux_del : time); 
port ( 
tdo_test_data_registers, 
tdo_instruction, 
selectt : in bit; 
tdo : out bit 
); 

end mux_2; 

architecture mux_2_behav of mux_2 is 
begin 

multiplexer : 
process (selectt, 
tdo_test_data_registers, tdo_instruction) 
begin 

case selectt is 
when 10' =>tdo<=transport 
tdo_test_data_registers 
after mux_del; 
when '1' =>tdo<=transport 

6- 31 



tdo_instruction 
after mux_del; 
when others =>putline ("non test 

mode"); 
end case; 

end process multiplexer; 
end mux_2_behav; 

6.13 SERIAL OUTPUT BUFFER MODEL (TDO) 

The changes on the serial output represented by the TDO port, 

are delayed by the inclusion of aD type flip flop. This flip 

flop that is synchronised to the falling edge (negative edge) 

of TCK in the buffer of the TDO output. The TDO port is 

validated by the signal of the Enablee port when it is equal 

to '1'. The Input port is the input for the D flip flop 

(Figure 6.12). 

Input 

TCK 

EnablE 

TDO 

Figure 6.12 Serial Output Buffer 

use Work. Declaration. all; 
entity TDO_BUFFER is 

generic (Setup_Time, Hold_Time, Min-Pulse-Width, 
Del, TDO_Del : Time); 
port 
TCK, 
Enablee, 
Input : in Bit; 
TDO : out Tristate 
); 

begin 
assert (not(TCK'Delayed(HoldTime)=10')) or 

TCK'Delayed(Hold_Time)'Stable or 
Input'Stable(Setup_Time + Hold_Time) 

report "Setup or Hold Time Violation on Input terminal 
in" & "TDO_BUFFER entity" 
severity WARNING; 

end TDO_BUFFER; 
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architecture tdo_buffer_behaviour of TDO_BUFFER is 

begin 

OUTPUT_BUFFER : process (TCK) 

begin 

if TCK ='0' then 
if enablee =11' then 

case Input is 
when '0'=> TDO <= '0' 
when '1'=> TDO <= '1' 

end case; 
else 

after DEL + TDO_DEL; 
after DEL + TDO_DEL; 

TDO <='Zl after TDO_DEL; 
end if; 

end if; 

end process OUTPUT_BUFFER; 

end tdo_buffer_behaviour; 
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6.14 CONCLUSIONS 

All the components of the JTAG Boundary Scan Architecture 

were successfully modelled in VHDL. 

The package JTAG_STANDARD, was developed to provide the 

necessary declarations for the JTAG components separately 

from that of the application circuits in VHDL, as shown in 

Appendix 6A. This package will normally reside in the library 

of the design environment. The entity of a new design must 

therefore include this package in its context of analysis by 

calling it up, using the clauses "library" and "use". The 

information contained in this package is in fact transparent 

to the user who can use it according to the need without 

knowing the intrinsic structure. The user can add new 

declarations of defined components to support their test 

development. 

Appendix 6B describes the package declaration' which 

contains all the timing elements used by the JTAG 

architecture. 

The VHDL high level model of the JTAG architecture was 

simulated and its results are shown in Appendix 6C. The 

architecture model was then tested with an application logic, 

a2 bit adder, to demonstrate the connectivity and the 

validity of its operation as shown in Appendix 6D. The 

simulation results are also listed in Appendix 6D. 
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CHAPTER 7 

THE PARSING AND INSERTION ALGORITHM 

7.0 INTRODUCTION 

It is becoming increasingly common for electronic circuits to 

be designed, at least partially, by computer aided synthesis 

or by using semi-automated insertion tools. This naturally 
has an impact on the design cycle time . 

This chapter describes the design, development and operation 

of a high level parsing and insertion algorithm that will 

enable the integration of a Boundary Scan Test Architecture 
into an ASIC design in a semi-automatic way. 

The methodology applied for developing the algorithm is 

described. Examples demonstrating the operation of the 

proposed algorithm are given. The main features and 
limitations of the proposed tool are discussed. 
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7.1 AN OVERVIEW OF THE HIGH LEVEL PARSING AND 

INSERTION ALGORITHM 

Once the application logic (the ASIC) has been described in 

VHDL (or has been converted into a VHDL source code or a VHDL 

netlist), the next step is then to add the parameterised 
Boundary Scan Test Architecture to the design. 

However, in order to add the correct type of Boundary Scan 

Cells to the design, it is important to identify the type of 

the input/output terminal cells that have been used in the 

application logic. It is also important to note that whatever 
the design style of the application logic, in terms of 
behavioural, structural or data flow, the 'entity' definition 

of the design is always the same in VHDL. This is one of the 

attractive features of the VHDL Language. [IEEE 88] 

A high-level procedural algorithm has been developed in a 
standard high level language 'C'. [SCHI 88] it consists of 
two phases: a Parsing Phase, and an Insertion Phase. 

The parsing phase deals with identifying the mode of the 
input/output terminals as defined in the entity description 

of the application logic. 

Once the parser is executed, an output file <design. pin> will 
be generated in ASCII format. It contains a list of the 
input/output names, types and modes. This file will form one 

of the required inputs before the insertion phase. The parser 

will be referred to as the VCP parser (VHDL- C- Parser) in 

the subsequent sections. 
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The insertion phase deals with identifying the modes of the 
input/output terminals in the <design. pin> file. It then 

attaches the appropriate Boundary Scan Cells to the ASIC to 
form Boundary Loop 0 which is the Boundary Scan Register 

around the periphery of the ASIC. The next step the 

algorithm performs is to integrate the rest of the 

preprocessed generic Boundary Scan Architecture- the TAP, 

Instruction Register and decoder, Bypass register, 
Identification Register (Optional) and the multiplexers- into 

the ASIC design. The newly created entity will then be 

contained in the <name_jtag> output file. 

BSC-I VHDL 
DESCRIPTION 
OF JTAG 

BSC-O BEHAV 

BSC-Bi 

BSC-Tri 

MERGE 

'cI 
PARSER 

IC, 

Figure 7.1 A Generic Block Diagram of The VCP Parser 

7.2 THE VCP PARSER OPERATION 

The VCP was developed using the 'C' high level language. 
The main role of this parser is to search for the word 'PORT' 

as a keyword within the VHDL entity description of the 
design. It identifies the input/output list including name, 
mode, type and the order in which they appear within the 

entity description. 

CIRCUIT 
DESCRIPTION 
IN VHDL 

DESIGN 
WITH 
JTAG 
INCLUDED 

. 

'VHDL' 
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The parser then outputs an ASCII file, which contains a list 

of the port names in the same order they appeared in the VHDL 
description of the design, together with the port types. 

7.3 THE DEVELOPMENT OF VCP-VERSION 1 

An initial development of the parsing algorithm has resulted 
in the first version of VCP. The VCP basic algorithm is 
described below: 

a. Search for the Key Word PORT within the Entity 
description of the design. 

b. Identify the port list in the entity structure of the 
VHDL file (the design). 

c. Identify the modes of the Input/Output terminals used 
(IN, OUT, BIDIRECTIONAL, TRISTATE) 

d. Identify the order in which the I/Os appear in port list. 

e. Output an ASCII file which contains a list of the I/Os 

<vhdl_port_file> presented in the same order they 

appeared in the source file of the design. 

The basic operation of the proposed tool is described below 

using data flow diagrams. [WARD 86] The Context diagram 

represents the main process (the parent level) and identifies 

the primary inputs and outputs of the algorithm. 

Design Apply VHDL Design withBSA 
Description Design_ Description of Design_Plus_ 

in VHDL in_VHDL BSA to Design BSA_in_VHDL 
Description 

in VHDL 
.0 

Figure 7.2 C/DFD Context Diagram of VCP-Version 1 
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Level 0 (the first child) is represented by 7 processes and a 
store. The analysis was carried out using the MCASETM' tools 
from mentor Graphics running on an Apollo workstation. [MCAS7l 

Figure 7.3 Data Flow Diagram of VCP-Version 1 
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7.4 EXAMPLE OF THE OPERATION OF VCP-VERSION 1 

This version was tried out with a number of simple examples. 
The parser can be invoked from the shell on a UNIX based 

workstation or from the operating prompt in DOS on a PC by 

entering 

parser <file. hdl> 

where <file. hdl> is the design file to be parsed. 

The parser starts by looking for the ENTITY clause and once 
it has found it, it will then start looking for the PORT 

clause. [LIPS89] As soon as the PORT clause is found, the 

parser lists the inputs as 

-<i>- and the outputs as +<o>+ 
where -<i>- represents the input terminal name and +<o>+ 
represents the output terminal name. 

The parser then writes the list of ports to a 
<vhdl_port_file>. 

EXAMPLE 1 

The parser is operating with a2 input AND gate VHDL file 
described using the ViewLogic WorkviewTM VHDL environment 
running on a PC-386 : 

parser and. hdl 

entity and_gate is 
port (a, b : in vlbit; 

c: out vlbit); 
end and-gate; 

Architecture behav of and-gate is 
begin 
c <= a and b; 
end behav; 

The listing of the vhdl-port_file is as follows: 
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LIST 
INPUTS: 
a 
b 
OUTPUTS: 
c 

The results are correct when compared with the source file. 

EXAMPLE 2 

The parser is operating with aD type flip flop VHDL file 

described using the mentor Graphics System 1076TM' Version 7 

VHDL environment running on an Apollo/HP 400: 

parser DFF. hdl 

entity DFF is 
port 

d, clk : in bit; 
q: out bit 

end DFF; 

Architecture behav of DFF is 
begin 

if clk='1' then 

,q <= d after lns; 
end if; 

end; 
end behav; 

The listing of the vhdl_port_file is as follows: 

LIST 
INPUTS: 
d 
clk 
OUTPUTS: 
q 

The results are correct when compared with the source file. 
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EXAmPLE 3 

Consider the case where the DFF. HDL file described previously 

was hypothetically modified to represent an electronic 

circuit called test, and execute the parser as follows: 

parser test. hdl 

entity test is 

port 
d: inout bit; 
clk in bit vector (2 to 23); 
q out bit; 

constant Tp_Q_test : time: = 3. lns; 

end test; 

Architecture behav of test is 
begin 

if clk='1' then 
q <= d after Tp_Q_test; 

end if; 
end; 

end behav; 

The listing of the vhdl-port_file is as follows: 

LIST 
INPUTS: 
d 
OUTPUTS: 
clk 

As it can be seen from the above listing file the results are 

incorrect, as the d signal was listed as an input and the clk 

signal was listed as an output. In addition, the parser was 

not able to deal with the inout mode and the bit_vector type 

of entity declarations. The above example has highlighted 

some of the limitations of this version of VCP. The full 

limiting factors are described in the following section. 
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7.5 LIMITATION OF VCP-VERSION 1 

There are a number of operational limitations which have led 

to the development of version-2. These limitations are 

confined to the entity declaration of the VHDL source code of 

the design and include: 

1) The parser was not able to deal with separating 
characters such as ', ' or '-'. 

2) The parser was not able to deal with bus structures such 

as bit vector. 
3) There was no Syntax Checking facility. The intelligence 

of the parser is limited. It reads every thing after the 

key word 'port' from the beginning of the bracket till 

the end of the bracket. 

4) It was very strict in terms of the order the input/output 

terminal modes are defined within the entity declarative 

part. Therefore a mixture of port declaration modes is not 

allowed. For example, defining an input mode followed by 

an output and another input mode is not possible. 

port 
a in bit; 
q: out bit; 
b in bit; 

5) It did not output any information associated with the 

port list other than the names, and the order they 

appeared in the design. 
6) It did not support port modes inout and buffer. 

7) It did not have a facility to handle comments within the 

source file. 

However, the development of this initial version has provided 
an insight into the development version 2. 
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7.6 THE DEVELOPMENT OF VCP-VERSION 2 

The VCP version 2 was developed to overcome the shortcomings 

of the 1st version. In addition to the main requirements 
identified earlier, the additional features that the new 

version of VCP should process, include the following: 

1) It must be portable, and operate in both PC and 

workstation environments. 

2) It must operate with both the IEEE 1076 standard and with 

subsets of the VHDL implementation offered by the major 
CAE vendors. 

3) It must have a built in syntax checker in order to handle 

the randomness of the way the port modes are defined, and 

to extract the input/output information only. 

4) It must be able to handle comments defined in the source 
file. 

5) It must handle all port modes including inout and buffer. 

6) It must be fast to extract the input/output list with a 

compilation time of less than 10 seconds running on a PC- 

386 and extracting a nominal number of input/outputs of 
256. 

The algorithm reads a VHDL source file (the design) and 

extracts the top level input/output terminals from the design. 

It then generates an output file called <file_name. PIN>. The 

<file_name. PIN> file contains a listing of all the I/O names, 

modes, types, and buses including their widths. 
A bubble diagram structure (similar to a state machine) is 

shown below. 
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"Il 

Figure.. 7.4 a Bubble Diagram of VCP-Version 2 
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BRACKET 

WORD 

Figure 7.4 b Bubble Diagram of VCP-Version 2 
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WORD 

Figure 7.4 c Bubble Diagram of VCP-Version 2 
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The algorithm was implemented using a high level 'C' program. 
[TÜRB 88] The architecture of the EXTRACT. C program was based 

on a state machine's structural behaviour, which consisted of 

21 states, where all declarations such as in, out, inout, 

buffer, bus and comma were defined. It also included error 

messages if the VHDL syntax of the entity description was not 

correct. Functions were declared in the program to handle 

formats of the output data and also the comments that were 
included in the VHDL design file. In addition, A number of 

global variables were declared to include, for example, a 

maximum bus size of 256 bits, a maximum number of 
inputs/outputs of 1000 and a restriction on the number of 

characters in a file name, bus name and wire name. 

The main body of the program dealt with generating the output 
file <file. PIN> and the parsing process of the main key words 

such as Entity and Port. The extraction process was based on 
15 main cases as follows: 

CASE 1 : deals with the number and type of IN, OUT, INOUT 

and BUFFER. 

CASE 2 : deals with the PORT declaration. 
CASE 3 : deals with the first left bracket in the entity. 
CASE 4 : deals with comments in the entity. 
CASE 5 : deals with alphanumeric characters. 
CASE 6 : deals with commas and colons. 
CASE 7 : deals with unknown port_type. 
CASE 8 : deals with semi-colon and bracket. 
CASE 9 : deals with bus size. 
CASE 10 : deals with right bracket in the entity. 
CASE 11 : deals with blanks. 
CASE 12 : deals with errors. 
CASE 13 : deals with End Of File (EOF) being reached. 
CASE 14 : deals with I/O conflict on the output file. 

CASE 15 : deals with I/O conflict on the input file. 
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The program was successfully compiled using a standard Turbo C 

environment running on a PC-386. [TURB 88] It was then ported to 

the workstation environment and was re-compiled. 

7.7 EXAMPLE OF THE OPERATION OF VCP-VERSION 2 

This version was successfully tried out with a number of 

examples. The parser could still be invoked from either a 

UNIX or a DOS based environment. The EXTRACT call is: 

extract <design_file_name>. [hdl] 

EXAMPLE 1 

Extract is invoked with the 2 input AND gate VHDL file 

described earlier: 

extract and 
Messages will be printed on the display stating: 

<Extract/Note>: Extracting File "and. hdl" 
<Extract/Note>: Writing "and. pin" 

The generated listing of the and. pin file is described below 

using the following data output format. The row width is 76 

characters. 

PIN NAME PIN MODE PIN TYPE BUS WIDTH STARTING 

0 A IN vlbit 1 0 
1 B IN vlbit 1 0 
2 C OUT vlbit 1 0 

The results are correct when compared to the source file. 

EXAMPLE 2 

The parser is operating with the D type flip flop VHDL file 

described earlier: 

extract DFF 

Messages will be printed on the display stating: 
<Extract/Note>: Extracting File "DFF. hdl" 
<Extract/Note>: Writing "DFF. pin" 
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The generated listing of the DFF. pin file is described 

below: 

# PIN NAME PIN MODE PIN TYPE BUS WIDTH STARTING 

0 D IN Bit 1 0 
1 CLK IN Bit 1 0 
2 Q OUT Bit 1 0 

The results are correct when compared to the source file. 

EXAMPLE 3 

The parser is operating with the hypothetically modified 

circuit- test: 
extract test 

Messages will be printed on the display stating: 

<Extract/Note>: Extracting File "test. hdl" 
<Extract/Note>: Writing "test. pin" 

The generated listing of the test. pin file is shown below: 

# PIN NAME PIN MODE PIN TYPE BUS WIDTH STARTING 

0 D INOUT Bit 1 0 
1 CLK IN Bit VECTOR 21 2 
2 Q OUT Bit 1 0 

As can be seen from the above listing file the results are now 

correct when compared to the 'test. vhdl' source file. 

7.8 LIMITATION OF VCP-VERSION 2 

The primary limitation of this version is that it can not 

verify port modes as to whether they are defined in a pre- 

processed package declaration, or are self defined within the 

main entity declaration of the design file. However, this is 

not a major limitation and it was felt important to keep the 

tool simple. 
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7.9 THE INSERTION ALGORITHM 

The main function of this algorithm is to attach the 

necessary I/O cells to the application logic. The algorithm 

uses the <name. pin> file as one of its inputs to provide the 
basis for adding the JTAG to the VHDL design description. The 

<name. pin> file is effectively an encription of the original 
design entity. Four additional input files are also required 
by the INSERT algorithm. The input files include JTAG. COMP, 

JTAG. INSTS, JTAG. SIGNALS and JTAG. USE. These four files 

contain components, instances, signals and VHDL libraries 

needed for defining the new design file as will be described 
later. A new entity is then generated as a result of the 
insertion process and is stored in a file called <name_jtag>. 
This file contains the final design with the Boundary Scan 

Architecture attached to it. 

The basic steps of the insertion algorithm operation are as 
follows: 

a. Read the output ASCII file <name. pin> generated by the 
parsing algorithm. 

b. Rename the entity and gives it a JTAG extension. 

c. Add JTAG standard signals to the design entity. 

d. Add all JTAG components and the design entity. 

e. Add the standard instantiation of the JTAG components. 

f. Chains all the Boundary Scan Cells in the correct way to 
form Boundary Loop 0. 

g. Generate a new file which contains the newly defined 
design entity called <name_jtag>. 
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The following context diagram in figure 7.5 describes the 

basic aim of the insertion algorithm. The data flow diagram 

C/DFDO demonstrates the relationship between the two 

processes, 'parser 11 and Imerger. 21. [WARD 861 The 

hierarchical decomposition of the parser and merger DFD 

operations are also described in figure 7.6. 

The 'C' program to implement the insertion algorithm starts 

with checking the existence of the <name. pin> file. It 

defines the types and functions together with the structure 

used to store the port data. The total number of signals 

associated with the design inputs and outputs is then 

identified. The next step begins by adding the following four 

declaration files: 

JTAG. COMP Contains all components of the JTAG 

Architecture 
JTAG. INSTS Instantiates the JTAG components 

JTAG. SIGNALS Contains the standard JTAG signals 

JTAG. USE Encloses the required VHDL Libraries such as 

Vdeg_portable (VHDL Design Libraries) 

The program then inserts the original component definition. 

it converts the pin file into an internal structure and 

starts reading the first line of the pin file. This includes 

port names, port modes, port types, and the size of bus 

arrays. The signals between the bscan cells and the component 

are declared. The bscan cells are then attached to the port. 

A 'generate' function is subsequently used to identify and 

resolve bus arrays into the required port/signal structure, 

maintaining both the order and the bus width. A final 

Boundary Scan Loop 0 is generated for the application logic 

and is stored in the <name_jtag> file. 

An overview of the new VHDL entity architecture is given in 

figure 7.7. 
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7.10 DEMONSTRATION OF THE INSERTION ALGORITHM 

The insertion algorithm was successfully tested with a number 

of examples. The insert program could still be invoked from 

either a UNIX or a DOS based environment. The INSERT call is: 

insert <design_file_name>. [PIN) 

EXAMPLE 1 

This shows the insert program operating with an example 

circuit of DFF, after successfully completing the 

parsing/extraction stage and generating a DFF. PIN file. A 

VHDL description of the DFF entity is listed below: 

entity DFF is 
port 

d, clk : in bit; 
q: out bit 

The insert program is now invoked with the dff. pin port 
listing file: 

insert dff. pin 

This will generate a new file which integrates the behavioural 

description of JTAG Architecture with the DFF design. The name 

of the entity description of DFF will change to DFF_jtag and 

the resulting file name will also be called DFF_jtag. Extracts 

of this file is shown below: 

library vdeg_portable; 
use vdeg-portable. types. all; 
use work. declar. all; 

entity dff_jtag is 
port ( TCK, TMS, TDI : in Bit; 

TDO : out logic4; 
D: INOUT Bit; 
Clk : IN Bit; 
Q: OUT Bit); 

end dff_Jtag; 
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The architectural description of the dff component will also 
change to include all the signals needed for loops 0. (JTAG 90] 

component dff 
port 

D: INOUT Bit; 
Clk : IN Bit; 
Q: OUT Bit); 

end component; 

constant one-high : bit vector(0 to 7) := "00000001"; 

signal temp : bit vector(0 to 7) := one_high; 
signal shiftir, clockir, updateir : bit; 
signal shiftdr, clockdr, updatedr : bit; 
signal mode, inst_tdo, indent_tdo, enablee, reset: bit; 
signal data_tdo, selectt, select-id, buff_tdo, bypass_tdo 
bit; 
signal dr_select, instruction, test-mode, test_regs : 
bit_vector(0 to 7); 
signal int_D : Bit; 
signal int_Clk : Bit; 
signal int_Q : Bit; 
signal nextt : bit vector(0 to 3); 

begin 
test_regs(0) <= bypass_tdo; 
test_regs(1) <= indent_tdo; 
mode <= test_mode(0); select-id <= test-inode(l); 
nextt(0) <= TDI; 

The TAP controller is then connected to the rest of the design 

as shown below: 

tap : tap_c port map 
(tms, tck, reset, selectt, enablee, shiftir, 

clockir, updateir, shiftdr, updatedr, clockdr); 
bypass : bypass_reg port map 

(shiftdr, clockdr, TDI, bypass_tdo); 
instruct : reg_inst port 

map (reset, clockir, updateir, shiftir, TDI, temp, instruction, 
inst_tdo); 

ident : ident_reg port map(select_id, shiftdr, clockdr, 
tdi, indent_tdo); 

decoder : inst_decode port map(instruction, dr_select, 
test-mode, open); 

mux2 : mux_2 port map(data_tdo, inst_tdo, selectt, 
buff_tdo); 

muxl : mux_1 port map(test_regs, dr_select, data_tdo); 
tdo_buff : tdo_buffer port map(tck, enablee, buff_tdo, 

tdo)" 
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The nextt signal shown below is used to describe a bundle of 
signal structures which forms Boundary Loop 0. This is only 
used if there are no I/O buses in the design entity. 

bscanO : bscan port map(shiftdr, clockdr, updatedr, 
nextt(O), D, 

mode, nextt(1), int_D); 
bscanl : bscan port map(shiftdr, clockdr, updatedr, 

nextt(1), Cik, mode, nextt(2), int_Clk); 
bscan2 : bscan port map(shiftdr, clockdr, updatedr, 

nextt(2), int_Q, mode, nextt(3), Q); 

test_regs(2) <= nextt(3); 
end behav_jtag; 

Appendix 7D describes the full DFF_JTAG file. 

It is worth noting that the GENERATE concurrent VHDL CLIPS891 

statement is used in the INSERT program for generating regular 
bus structures. The general form of the generate statement is: 

label-identifier : generation_scheme generate 
concurrent statements 

end generate identifier; 

There are two kinds of generation schemes: the if scheme and 
the for scheme. Depending on the kind of generation scheme, 
the generate statement specifies a repetitive or conditional 
creation of the set of concurrent statements it contains. In 
this case the for_scheme is used to generate the bus for 
loop 0. The for_scheme declares a generate parameter and a 
discrete range defining the values that the generate 
parameter will take on. It connects boundary loop 0 which 
connects all the signals as a bus that contains a combination 
of the main signals. This will then prevent the connection of 
the secondary individual signals to the boundary loop. 

The parser/insert algorithm was successfully tested with a 
number of design examples. Appendix 7E demonstrates the 
operation of EXTRACT/INSERT with a CPU VHDL design where the 
generate statement was implemented to form boundary Scan 
loop 0. 
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7.11 CONCLUSIONS 

The Parsing/Extract algorithm was successfully designed and 
implemented. The EXTRACT program was tested with a range of 
design examples of various complexities, each with a successful 

outcome. 

The developed software could be considered as a complementary 
tool to an existing CAE based systems. It can also operate as a 

symantics checker for Entity descriptions. (Auli 89] 

Although many CAE vendors provide more than one tool to express 

a design as shown in figure 7.8, the EXTRACT program could 

still function as part of a CAE system. However, this requires 

the design expression to be converted into a VHDL source code 

or a VHDL netlist. 

Figure 7.8 Design Expressions and VCP 
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The Insertion algorithm was also successfully designed and 
implemented. The INSERT program is currently limited to a 

maximum of 256 I/Os. However, this can easily be modified to 

handle larger number of I/Os. 

It is worth noting that although the buffer port mode used to 

describe the bi-directional I/Os in VHDL (LIPS89] could be 

extracted and inserted automatically in the design, the 
designer is still required to control the direction of the 

signal as to whether it is performing input or output 

operation. 

The Extract/Insert environment was successfully tested on both 

PC and workstation type computers and has a fast operational 
speed. 
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CHAPTER 8 

COST IMPLICATIONS 

8.0 COST OF JTAG 

Any change made to an IC to increase testability inevitably 

incurs costs. Two main factors which affect cost implications 

are the additional physical requirement and the performance 
degradation. 

Adopting the JTAG architecture will require additional design 

time, cells, pads and four extra pins per device. This 

additional requirement will be heavily dependent upon the 

ASIC's function and processing technology, together with metal 

dimensions. It grows linearly with the number of boundary scan 

inputs and outputs. 

It is worth noting that the rate of growth is different for 

that of a soft VHDL developed macro, compared with that of a 

hard macro approach. Therefore, a trade-off between the 

development time and the chip size has to be considered for 

critically dense devices. 

There will also be some reduction in chip performance. A 

greater impact on the circuit's performance is likely to be 

that of the additional circuitry, which is required immediately 

before the output buffers on a design and which would typically 

add two gate delays to-signals leaving the device. Input 

signals would be similarly delayed. Although the importance of 

these delays can be minimised by careful design, there are 

always likely to be performance critical applications in which 

they will remain unacceptable. It is also recommended to have 

additional power and ground rails to the ASIC specifically for 

the JTAG circuit. 
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8.1 AREA COST 

The total gate count of the TAP controller, the instruction 

register and the instruction decoder is 243 gates. Even with 
the optional identification register, the total gate count for 

the core area is only 659 gates. For all but the very small 

arrays, this is insignificant. The real area penalty comes from 

the boundary scan chain itself, which is formed as a "hard" 

ring around the core area. Since the size of this ring is fixed 

for a specific ASIC family, the number and the types of I/Os 

used in a particular design are not significant - unless the 

design is I/O limited rather than gate limited. 

Once a particular die size is chosen based on the design 

complexity, the boundary scan chain overhead is thus fixed. 

Hence, it does not therefore matter how many of the available 
I/O pads are used. The I/O pad's overhead will vary as it 

represents a portion of the total die size. For a large die of 
100K gates, it represents 7% of the gates that would be 

available to a normal, non-JTAG design. For an average die of 
25K gates, the'portion represents 10%-13%. However, for a small 
die of 10K gates, the boundary scan I/O cells would represent 
22% of the gates that would be available for a non-JTAG design. 

For an even smaller die of 3K gates, the overhead for the 
'hard" boundary scan ring is approximately 40%, leaving an 

estimated usable 1400 gates in the core - but 243 (or 659 if 

the identification register is included) are needed for the TAP 

controller, making the total overhead nearer 50%. 

Thus for designs below approximately 10K gates in complexity, 
the benefits of the boundary scan need to be weighed very 

carefully against the large penalty. For larger designs, which 

are always going to include some design-for-testability logic, 

the area of implementing boundary scan can be almost 
negligible. 
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8.2 PIN, CELL CONNECTIONS AND POWER COSTS 

In addition to the four (optionally 5) pins required to 
implement the IEEE 1149.1 standard, the following connections 
must be considered: 

" DIN and DOUT. These signals connect the scan cell with 
the pad and core of the ASIC. Since each cell can be 
personalised as input and output, each line must be 
available on either side. Thus, two tracks are needed. 

" TDI and TDO. The scan data pass along these lines. Since 
the signals are daisy chained, a single track is 

required. 

" Global control signals. Four signals are necessary to 
control the operation of the latches and multiplexers in 
the scan cell. Each line must pass through the cells and 
therefore four tracks are necessary. 

" Power Supply. To avoid influences from other portions of 
the circuit, the boundary scan logic should be supplied 
by a separate power bus, which requires at least two 
tracks. 

With the hard ring of boundary scan I/O cells, some of the 
corner pads on the ASIC master slice can not be used for 
boundary I/Os. However, these pads can be used for power 
supply or for additional test pin inputs. 

8-3 



8.3 DELAY COST 

When the chip is operating in its normal mode, the inclusion of 
JTAG circuitry means that there is an additional 2-to-1 

multiplexer delay when going in to the device and a similar 
2-to-1 multiplexer delay when coming out. 

The delay through the multiplexer is dependent upon many 
factors: 

" The Voltage 

" The Temperature of chip operation 

" The Processing factor of the silicon 

" The Technology and Die Size in which the design has been 

developed 

" The Fanout from the multiplexer 

For example, using the LSI's CMOS LCA (Logic Cell Array) 10K, 

the additional delay incurred from including JTAG is 1.5ns and 
it is 1. Ons when using the LSI LCA 100K. These are worst case 

commercial figures. Therefore, the total impact on system 

performance is 2-3ns, approximately, on paths through the chip. 

This may be significant in some very critical cases, but for 

most designs it will represent no problem at all. 

8.4 DESIGN TIME COST AND COST BENEFIT OF THE TOOL 

Often, the decision to use new methodology such as JTAG, hinges 

on how it will affect the time taken to complete the design and 
to commence prototype manufacture. The impact of JTAG in this 

respect is very difficult to quantify. However, adding JTAG to 

an ASIC design whether translated from the IEEE 1149.1 

specifications, or using a specific IC library is normally a 
time consuming process. 
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Integrating the JTAG circuitry into the design by using the 

parsing/insertion tool is a relatively simple operation. 

Therefore, the primary cost reduction that can be attained from 

using the tool developed in this project, is that of reducing 

the time of the development phase. The tool enables the 

designer to provide a validated description of BSA including 

its test vectors automatically. Thus, the life cycle costing of 

the ASIC will be reduced, including not only in the design 

phase, but also in the structural testing phase of the chips 

after fabrication. 
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CHAPTER 9 

OVERALL CONCLUSIONS 

9.0 THE NOVEL APPROACH OF THE PROJECT 

The research work presented in this thesis has identified a 
new approach to integrating Boundary Scan Test Architecture 
automatically into an ASIC design. This has involved the 
development of an automated environment based on the creation 
and successful implementation of two main components: 

1) a parameterised behavioural model of BSA IEEE 1149.1 
standard using the IEEE 1076 Hardware Description 
Language VHDL. 

2) a new algorithm for developing a parsing and insertion 
tool to integrate the behavioural description of a BSA 
into an ASIC design. 

The novelty of this tool is that it provides the designer 
with a simple, yet a powerful, environment to include BSA 
into his/her ASIC design, with the minimum of effort. 

This approach is different to that of Hewlett Packard's BSDL 
language, referred to in chapter 3, in that the BSDL was 
developed as an extension to VHDL. BSDL allows the designer 
to describe BSA into his/her design manually using specific 
constructs provided by the language. Unlike the BSDL 
environment, the new tool described in this thesis enables 
the designer to use a pre-developed and tested high level 
VHDL model of BSA, which can be used at the system level of 
the ASIC development cycle. 
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The tool is also different to the Testability Improver (TIM) 
system developed by Philips, in that it is independent of any 
IC manufacturer and CAE vendor. It is aimed at the system / 
behavioural level of the ASIC design, where the TIM software 
can only be employed after the design has been created and 
converted into the register transfer level. 

When compared to other design automation test utilities such 
as TEA, ADAS, and TISSS described earlier in Chapter 3, the 
tool can be used as a facility that augments these vendor 
specific tools. For example, the EXTRACT program developed in 

this thesis can be used as a checker for VHDL semantics for 

any entity description of various design complexities. 

The VHDL model of BSA offers the designer complete freedom to 

change the generic parameters, such as propagation delays, of 
the BSA model to suite his/her particular application. In 

addition, the model could be used as a pre-developed and 
tested, standard library part which could be made available 
on any CAE data capture system. 

The tool can benefit the test engineer, by using one key 
information source for all boundary-scan characteristics, 
which reduces the possibility of error. It can also serve as 
a partial compliance check, as design errors may surface in 
the implementation of the test standard at the gate level 
using a specific IC library. 

The functional test vectors developed for the BSA could also 
be communicated from the designer to the target verification 
system or ATE, with little involvement from the test 
engineer. 
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The environment developed here has the advantage of being 

portable and can easily be incorporated into an existing CAE 

system. It has been tested with a number of design examples, 
illustrating its operational advantages. 

A number of CAE developers such as DAZIX and Innovation 

Research have expressed an interest in utilising the tool as 

an additional utility within their systems. 

9.1 ACHIEVEMENT OF AIM 

Boundary Scan is rapidly becoming a necessity. The 

implementation of boundary scan across the industry will 

solve numerous board test reliability problems and promises 

to save time while keeping cost down. The implementation 

requires widespread utilisation of IEEE Standard 1149.1. 

The work presented in this thesis provides a methodological 
framework, for integrating a high level VHDL behavioural 

model of the IEEE 1149.1 Boundary Scan Test Architecture into 

an ASIC design automatically,, using a design automation tool. 

The tool developed as part of this programme of research 

provides the designer with the ability to explore his/her 

design with BSA in a significantly reduced design time, 

since it removes the need to know the BSA's structural 

characteristics. The new tool therefore, encourages the 

designer to consider a test strategy from the initial stages 

of the ASIC development, rather than including testability 

features as an afterthought. 

The tool is based on a high level intelligent parsing and 
insertion algorithm which has been successfully implemented 

in 'C'. The parsing phase can be operated on an ASIC'S VHDL 

description to initially check the correctness of the VHDL 

syntax, and to generate 'a list of the design I/O terminals. 
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This data together with the VHDL behavioural description of 

BSA are then used by the insertion phase of the algorithm to 

create a new design with the BSA attached. 

9.2 ACHIEVEMENT OF OBJECTIVES 

The work developed in this thesis satisfies the two main 

objectives. The first, concentrates on translating the 

specifications of the IEEE 1149.1 BSA into parameterised 

behavioural models using the VHDL description language. The 

second, focuses on developing a parsing and insertion algorithm 

which enables the designer to integrate the behavioural model 

of BSA into her/his ASIC design. 

The BSA was initially developed and simulated structurally to 

conform with the IEEE 1149.1 standard. It was then tested with 

adder and 4-bit multiplier circuits to validate its operation. 

The VHDL IEEE 1076 standard was chosen to develop the necessary 

models of the BSA components. Its capability to describe 

digital systems at various abstraction levels and in three 

styles (Behavioural, Structural and Data Flow) has enforced the 

choice of this language for developing the BSA model. 

In addition, VHDL's ability to link design entities to their 

behavioural and structural description, resulted in defining an 

accurate BSA behavioural model with embedded structural 

properties including timing and control. 

The VHDL models of the BSA were developed using a combination 

of ECAD tools including Mentor Graphic's 1076 VHDL Environment 

(version 7), and the view Logic Version 4.1. Full simulation 

was carried out and consisted of the necessary test 

instructions including, NOP, SAMPLE, EXTEST and BYPASS. The 

timing elements associated with the modules were defined in a 

generic form within a VHDL package, so that the desired delays 

could easily be modified by the designer. 
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The architecture was modelled with an application logic and 6 
instruction tests were carried out in conformance with the IEEE 
standard. Fault simulation was also carried out to evaluate the 
quality and efficiency of the test vectors. 

The test vectors were developed using the 'C' based 'macro 
function' language to provide an easy integration path with 
back-end test verification tools and ATE. 

A full parameterised behavioural model was successfully 
developed, exhibiting the necessary test features which are 
normally confined to the structural level. 

An algorithm was then developed to enable the inclusion of BSA 
into the ASIC design. The first phase dealt with identifying 

where the Boundary Scan Cells were to be added, the order they 

were to appear in the design and their types, in order to form 

a scan loop 0. In doing so, the algorithm concentrates on the 
"Entity" part of the VHDL description of the design. It is 

capable of handling all I/o terminal types including inputs, 
outputs, bi-directional, tri-state and Bus types. Although the 
added architecture will primarily form the hardware 
infrastructure required for Boundary Scan Test, the TAP model 
was defined to cope with internal scan and other BIST 
requirements. 

The second phase of the algorithm dealt with the insertion of 
the TAP controller, the Instruction Register, the Instruction 
Decoder, the Bypass Register, the Identification Register 
(which is described generically) and the Test Register to form 
loop 0 into the ASIC design. 

The algorithm's specifications were described and analysed 
using a structured design approach including data flow and 
entity relation diagrams. It was then implemented in 'C' and 
was compiled on both PC-AT (DOS based) and workstation (Unix 
based) environments. 
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A number of examples such as a VHDL CPU core were successfully 
tested to verify the validity of the tool's operation. The tool 

compiles very quickly and requires no significant user time. 

Both the tool and the BSA model are easily maintainable as they 

are designed in a modular and hierarchical format. 

9- 6 



CHAPTER 10 

FUTURE WORK 

10.0 INTRODUCTION 

This chapter examines the potential for further developments on 

the work which has been carried out. There are 4 possible 

extensions to this work. The first examines the benefits of 
developing a graphical environment, similar to that of Data 

Flow diagrams, for defining VHDL constructs and therefore the 

BSA model. 

The second examines the possibility of extending the modeling 

environment of the BSA described in this project, to include 

mixed analogue and digital signals for testing analogue design 

parts such as Analogue to Digital Convertors and Comparators. 

It therefore examines the IEEE subsets of 1149 standard. 

The third considers the potential for linking the proposed 

environment developed by this project to a particular 
testability synthesis system, such as the one provided by DAZIX 

and Mentor Graphics. 

The final subject examines the potential role of Artificial 
Intelligence for developing a theory of reasoning that exploits 
the knowledge of structure and behaviour of a digital system. 
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10.1 GRAPHICAL REPRESENTATION OF VHDL 

A facility for graphically representating VHDL constructs will 
provide the designer with an alternative method of describing 
the VHDL representation of Boundary Scan Architecture into 
his/her design. With the emerging IEEE 1076 VHDL standard, VLSI 

systems are increasingly being designed using VHDL Hardware 
Description Language. This has often added to the burden that 
faces VLSI designers in learning a new language and method of 
description. In addition, hardware designers often favour 

graphical entry methods for VLSI system's design to semantical 
hardware descriptions. It is suggested that a graphical medium 
can often assist the designer in a better understanding of the 
behaviour and structure of a particular algorithm, and its 
implementation. The BSA components will have a unique 
graphical representation and can be added from a pre-determined 
library. It is therefore, envisaged that developing a graphical 
facility, coupled with the-parsing/insertion algorithm 
presented earlier in this thesis, will further encourage 
designers to include BSA in their designs. 

There are three common methods for describing structured 
diagrams which include: 

1) A structured diagram which shows the implementation of a 
block in terms of sub-blocks and their interconnects. 

2) A Petri-Net which is used to describe the control behaviour 
of the system. 

3) A Gantt Chart which illustrates the results of implementing 
a particular block in terms of silicon area occupied and 
the time required to compute the function. 
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It is important to concentrate on Hierarchical Abstract 
Descriptions of system design with embedded JTAG in order to 
limit the scope of the system being modelled to a degree which 
can be managed at one time. 

A number of papers describing the graphical methods for user 
interface, have been published. D. Morris, [MORI 88] for 

example, describes a methodology for formalising the use of 
diagrams in the design of microelectronic systems. He uses a 
top-down hierarchical graphical method for system design, with 
a high level of abstraction. It shows major modules and data 

paths, ending up the decomposition with discrete primitives at 
the bottom (level zero). 

CA Kuszynski, [KUSZ 90] describes a compiler which produces a 
graphical representation of the HDL STRICT. 

STRICT describes blocks in terms of their behaviour and 
structure. The Behaviour uses WHENEVER to sense lines and SET 
to assert them. The behavioural description is mandatory and 
describes what the block is supposed to do. The structure of 
the block describes how the behaviour is to be implemented 

using primitive components. The graphical representation is a 
hierarchical view of the text. At the top level, a simple 
rectangle is drawn with the name of the block. Petri nets can 
then be used to describe some of the behaviour but only as a 
set of token passing operations. 

J. Bain, [BAIN 88] describes the STELLA Schematic Capture tool 
for ELLA hardware description language. STELLA gives a 
hierarchical graphical representation of both behavioural and 
structural description styles. It allows designs to be entered 
as either text or schematics. 
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A. Reinikka et al, [REIN 89] describes an automatic synthesis 

of structural HDL descriptions from a graphical specification 

of an embedded ASIC. He describes a method using real time 

structured analysis to design and implement the ASIC. His 

reasons for using structured analysis is that, it has a simple 

graphical interface consisting of different levels of 

abstraction, together with a good representation of 

concurrency. [AUER 88], [OKKO 89], [LEPP 89]. 

AI Wasserman, [WASS 90] describes a method of representing 
object oriented designs using structured analysis techniques. 
The method builds on the Structure Chart notation. 

The Structure Chart represents a design as a number of 

communicating models. It shows functional calls in addition to 

the parameters which are sent and returned. A Class is 

represented as a rectangle. Operations which can be performed 

on the Class are described as overlaying boxes as shown below: 

<STACK> <STACK> 

1 9ITEM 
tI 

ITEM 

PUSH I_J POP 

STACK 
STACK DATA 

Figure 10.1 Graphical Representation of a Class 

Object oriented languages allow generic classes to be created. 
These are classes which are not complete until the run time is 

executed and when the parameters are supplied, such as record 
length. [ACKR 91] 
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Only the notation of an object oriented structured design shows 
the class interface. It does not show the behaviour or what the 
operations of a class actually do. It gives an overview of the 
system and shows how everything fits together. In this way it 
is very much like a Structured Chart. Structured Charts can be 
derived from data flow diagrams. [WARD 86] 

10.1.1 GRAPHICS HARDWARE DESCRIPTION LANGUAGES (GHDLs) 

The purpose of GHDLs is to provide an alternative graphical 
companion notation to HDL. They are analogous to logic diagrams 

which serve as a companion to Boolean equations. (AUER 88], 
[OKKO 89], [LEPP 89] 

The GHDL uses a hierarchy of blocks and a number of levels of 
abstraction. The register transfer level is the highest level 

of abstraction. The individual blocks are connected together, 
as far as possible, by abutment. This reduces the visual 
complexity. A2 input multiplexer is shown below: 

so 
0 

D 

s1 1 

A A, 
I ADDR 

so 
AND 

NOT D 

OR 

S1 

7t2 
ADDR 

Figure 10.2 GHDL Representations 

The diagram on the left shows the register transfer version of 
the multiplexer, and the diagram on the right is its logic 
representation. 

Other GHDLs are described but most of them only support the 
register transfer, logic and switch levels of abstraction. 
Those GHDLs that support behavioural constructs are very 
minimal. 
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10.1.2 GRAPHICS TO VHDL AUTOMATIC CONVERTER 

Products currently available on the market include the 
following: 

Express VHDL from i-Logix allows designers to create VHDL code 
using graphics rather than text. The tool has two high level 

modeling techniques. The first technique is to define the 
behaviour of a system using State Charts, in that it defines 
the system's functional blocks and what they are supposed to 
do. The second technique is to describe the data flow within 
the system using Activity Charts which define when each 
function is to be used. 

Stateview from Isdata allows state machines to be represented 
graphically and edited using a graphics editor. Both Mealy and 
Moore models can be represented. Arithmetic operations can be 

used to simplify complex branch equations. The representation 
is similar to algorithmic state machines. Complex conditions 
can be hidden in tables to reduce the complexity and the size 
of diagrams. The output can be in the form of VHDL code or 
other data formats form implementation in Programmable Logic 
Devices and Programmable Logic Arrays. 

The model used to represent the system in this case could be 
based on data flow diagrams and algorithmic state machines. The 
data flow diagrams could give a high level abstracted view of 
the system. The data flows could provide the abstract data 
types, such as enumerated data. A data dictionary could also be 

used to define these data types. 

A process could normally be created for events in the system's 
environment and a response in the form of a first-cut diagram 
could then be generated (i. e. drawn). 

This process could upwardly be refined until one process could 
then be used to represent the entire system. 
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The first-cut diagram could therefore be refined until each 

process can be represented as a high level algorithmic state 

machine (ASM). 

A possible example of an ASM of a simple ALU is shown below 

(GREE 86] : 

Figure 10.3 Example of Algorithmic State Machine 

This is a three state system with signals A, B and S. OP is a 

signal of an enumerated type which has two possible values ADD 

and SUB. The other three signal types can not be determined 

from the diagram so the data dictionary would have to be 

consulted. In each state not only can outputs be assigned 

values, but internal variables and signals can be set. In this 

way, loops and counters can be represented. 

The drawback of this is that although any construct can be 

represented, including those such as "GOTO" statements, VHDL 
does not support such statements and it is a bad practice to 

use them. This means that the representation must be limited to 

structured design techniques such as "FOR" and "WHILE" loops. 

All data flow transforms will be assumed to work concurrently. 
A controller state machine can be defined to enable the other 
transforms in the design. 
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When translating the graphical representation to VHDL, the 
individual ASMs will be converted into processes and procedures 
depending upon whether they are running concurrently, or 
whether they are being called by other state machines. The 
loops in the charts must be found and converted to "While" and 
"For" constructs. Single and multiple decisions will be 

converted to "If" and "Case" statements respectively. 

The variables and data types in 
to be declared and initialized. 

placed in a package so that the; 
The resulting VHDL will have to 
and will enable the integration 

graphically. 

the data dictionary will have 

The data type definitions are 

can be used by all entities. 

comply with IEEE 1076 standard 

of the JTAG insertion routine 

10.2 ANALOGUE IMPLEMENTATION 

The 1149 rules create functional test access to analog circuits 
as part of the integrated design. Internal test architectures 
designed with testable interfaces provide accurate, repeatable 
and cost effective test solutions, by eliminating the need for 

expensive test instrumentation, maintenance and calibration. In 
addition, the required test execution time for on-board test is 

much less than that of traditional ATE which typically operates 
over the IEEE 488 bus. Test access through a standard test bus, 

combined with flexible signal processing techniques create a 
powerful analog test capability to meet challenges such as that 
of Surface Mount Technology. 

10.2.1 ANALOGUE TEST APPROACH USING 1149.3 AND 1149.4 

SUBSETS 

The testability bus 1149 option, Real Time Analog Subset, 
allows a standard interface to the analog circuits either 
internal to the design, or externally with the use of 
ATE. [ARME 89] This option is used when it is not feasible to 
incorporate analog to digital (ADC) or digital to Analog (DAC) 

conversions within the module. 
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This subset uses many of the 1149, Real Time Testability Bus, 
signal lines providing necessary control in a mixed signal 
environment. The signals necessary to define the 1149.4 subset 
and some of the 1149.3 subset signals are listed in Figure 
10.4. 

SIGNAL NAME SIGNAL DESCRIPTION 

. RESET Initialise all testability circuitry 
ENABLE Enable all testability circuitry 
ASIN Analog real time test signal input 
ASOUT Analog real time test signal onput 
ASINEN Analog test signal input enable 
RTOUTEN Enable for D/A real time output lines 
TPAO-n Test point address lines for digital 

and analog real time data and signal 
inputs and outputs. 

Figure 10.4 1149.3 & 1149.4 signals 

Most analog circuits require a test stimulus in order to 

measure the resulting response. For a typical ATE environment 
this is accomplished with the use of several test points 
accessed by a bed-of-nails fixture via spring loaded test 
probes. Signals that are routed to and from the tester, often 
require the use of special buffering or signal conditioning, 
before evaluation by the test program software. This signal 
routing can be simplified with the use of the 1149.3 and 1149.4 

testability bus subsets. 

A standard test interface is being developed by the IEEE to 
control and process the analog test signal by using the 
internal test architecture. The architecture is mainly based 
on analog multiplexers-and analog de-multiplexers. 

10.3 LINKING THE ENVIRONMENT TO SYNTHESIS TOOLS 

Many CAE systems are capable of expressing designs using more 
than one method. In addition, most CAE vendors have now 
included logic synthesis tools as part of their design suite. 
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VHDL has provided a neutral environment in which the design can 

ultimately be converted into. This has facilitated the recent 

advancement in the synthesis technology. 

one of the potential applications of the tool developed in this 

project is to integrate it into a test synthesis system of a 

particular CAE vendor. For example, the tool developed in this 

thesis could conceivably be linked to the DAZIX Test Synthesis 

application (TESTSYN). TESTSYN is a tool which is primarily 

used for including internal scan in the ASIC design. It works 

on the principle of converting, where possible, the design 

flip-flop cells into scannable form by re-configuring the 

design and generating a new netlist. The VHDL parser and the 

boundary scan insertion algorithm can therefore, provide a 

complete Design For Test Environment. 

Figure 10.5 VCP and Synthesis 
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10.4 THE ARTIFICIAL INTELLIGENCE ROLE 

A theory for exploiting the knowledge of the structure and the 

behaviour of a digital system using first principles has 

recently been developed by Digital Equipment Corp., the Defense 

Advanced Research Projects Agency (DARPA) and MIT in the United 

States. 

Randall Davis of MIT (DAVI 891 has examined this theory in 

trouble-shooting digital electronic hardware. Davis claims 

that, a system based on reasoning from first principles is 

easier to construct because there is a way of systematically 

enumerating the required knowledge, the structure and behaviour 

of the device. The reasoning theory could be tested to deal 

with the difficulty that has arisen in developing high level 

test models, from a behavioural level to structural level, and 

not the other way around. Since this work is still in it's 

formative stages, there are still a number of questions about 
how accurate and successful this approach is. 
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APPENDICES 



APPENDIX 4A 

Simulation results of the VHDL 4-bit Multiplier described 

behaviourally. 



VHDL LISTING OF 4 BIT SERIAL MULTIPLIER MODEL 

VHDL Analyzer - V4.05; Workview 4.0,3000 Series 
Copyright (c) 1990 by Viewlogic Systems, Inc. 
Analyzing MULT1. vhd; Making multl. vsm multi. vli 
multl. lis. 

1: ENTITY multi IS 
2: PORT (a : IN vlbit_ld(0 TO 3); 
3: b : IN vlbit_ld(0 TO 3); 
4: q : OUT vlbit ld(0 TO 7); 
5: clock, start : IN vlbit); 
6: END multi; 
7: 
8: ARCHITECTURE behav OF multi IS 
9: 

10: BEGIN 
11: 
12: calculate : PROCESS (clock) 
13: 
14: VARIABLE cycle : INTEGER :=0; 
15: 
16: BEGIN 
17: 
18: IF (clock='1') AND (start='1') THEN 
19: IF cycle=4 THEN 
20: q <= mulum(a, b); 
21: cycle :=0; 
22: ELSE 
23: cycle := cycle + 1; 
24: END IF; 
25: END IF; 
26: 
27: END PROCESS calculate; 
28: 
29: END behav; 

0 errors; 0 warnings; 0 extensions; 0 notes. 

VHDL Analysis of MULT1. vhd completed. 



SIMULATION COMMAND FILE FOR THE MULTIPLIER - 
MULTI. CMD 

vector a a[0: 3] 
vector b b[0: 3] 
vector q q[0: 7] 
watch abq clock start 
radix hex abq 
wfm a 0=0\h 100=A\h 
wfm b 0=f\h 100=5\h 
stepsize 100 
clock clock 01 
cycle 10 
wfm start 0=0 50=1 
wfm q 
tabq clock start 
wave multl. wfm abq clock start 
run 20 
exit 



TIMING VERIFICATION OF 4 BIT MULTIPLIER (Page 1 of 2) 

Typical delays in use. 
All delays scaled by 1. 
Reading VHDL entity file multi. vli ... 
Reading VHDL package file 

C: \workview\standard\vhdllibs\std\STANDARD. VLI ... 
Loading VHDL entity MULTI ... 
Total of 1 digital modules were processed. 

multi 
time = 20. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 40. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 60. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 80. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 10O. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 120. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 140. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 160. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 180. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
time = 200. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X 
Simulation stopped at 200. Ons. 
(multl. cmd, 12): There are no waveforms on 'q' to 

delete! 
[time = 200. Ons] CLOCK 1 -> 0 
[time = 200. Ons] START X -> 0 
[time = 205. Ons] START 0 -> 1 
(time = 210. Ons) CLOCK 0 -> 1 
time = 220. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=1 
[time = 220. Ons] CLOCK 1 -> 0 
[time = 230. Ons] CLOCK 0 -> 1 
time = 240. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=1 
(time = 240. Ons) CLOCK 1 -> 0 
[time = 250. Ons] CLOCK 0 -> 1 
time = 260. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=1 
(time = 260. Ons] CLOCK 1 -> 0 
[time = 270. Ons] CLOCK 0 -> 1 
time = 280. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=1 
[time = 280. Ons] CLOCK 1 -> 0 
[time = 290. Ons] CLOCK 0 -> 1 
[time = 290. Ons] Q XX\H -> XX\H 
[time = 290. Ons] Q XX\H -> XX\H 
[time = 290. Ons] Q XX\H -> XX\H 
[time = 290. Ons] Q XX\H -> 3X\H 
[time = 290. Ons] Q 3X\H -> 3X\H 
[time = 290. Ons] Q 3X\H -> 3X\H 
[time = 290. Ons] Q 3X\H -> 3X\H 
[time = 290. Ons] Q 3X\H -> 32\H 
time = 300. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 300. Ons] CLOCK 1 -> 0 
[time = 310. Ons] CLOCK 0 -> 1 
time = 320. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 320. Ons] CLOCK 1 -> 0 
[time = 330. Ons] CLOCK 0 -> 1 
time = 340. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 340. Ons] CLOCK 1 -> 0 
[time = 350. Ons] CLOCK 0 -> 1 
time = 360. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 360. Ons] CLOCK 1 -> 0 
[time = 370. Ons] CLOCK 0 -> 1 
time = 380. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 



(Page 2 of 2) 

[time = 380. Ons] CLOCK 1 -> 0 
(time = 390. Ons] CLOCK 0 -> 1 
time = 400. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 400. Ons] CLOCK 1 -> 0 
[time = 410. Ons] CLOCK 0 -> 1 
time = 420. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 420.0ns] CLOCK 1 -> 0 
[time = 430. Ons] CLOCK 0 -> 1 
time = 440. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 440. Ons] CLOCK 1 -> 0 
[time = 450. Ons) CLOCK 0 -> 1 
time = 460. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 460. Ons] CLOCK 1 -> 0 
[time = 470. Ons] CLOCK 0 -> 1 
time = 480. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 480. Ons] CLOCK 1 -> 0 
[time = 490. Ons] CLOCK 0 -> 1 
time = 500. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 500.0ns] CLOCK 1 -> 0 
[time = 510.0ns] CLOCK 0 -> 1 
time = 520. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 520. Ons] CLOCK 1 -> 0 
[time = 530. Ons] CLOCK 0 -> 1 
time = 540. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 540. Ons] CLOCK 1 -> 0 
[time = 550. Ons] CLOCK 0 -> 1 
time = 560. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 560. Ons] CLOCK 1 -> 0 
[time = 570. Ons] CLOCK 0 -> 1 
time = 580. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
[time = 580. Ons] CLOCK 1 -> 0 
[time = 590. Ons] CLOCK 0 -> 1 
time = 600. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
Simulat ion stopped at 600. Ons. 

run 
[time = 600. Ons] CLOCK 1 -> 0 
[time = 610. Ons] CLOCK 0 -> 1 
time = 620. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1 
Simulat ion stopped at 620. Ons. 
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APPENDIX 4B 

Simulation results of the 4-bit Multiplier described 

structurally 
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APPENDIX 5A 

This appendix includes the design and simulation of the Boundary 

Scan Architecture. 4 test instructions have been used in this 

case and include the following: 

-NOP 

-SAMPLE 

-EXTEST 

-BYPASS 

The instructions have been generated using Macro-Functions 

available on the Mentor CAE system to allow ease of 

simulation. The Macro-Functions can easily be re-complied in 'C' 

to enable transportability of stimuli. 

The Macro-Functions include the following: 

- START The macro START has to be executed at the beginning 

of a simulation run. -It sets up the TAP-Controller 

in the SELECT-DR-SCAN state. 

- LDI NOP Loads the instruction NOP into the instruction 

register. 

- LDI SAMPLE Loads the Instruction SAMPLE into the instruction 

register. 

- LDI_EXTEST Loads the instruction EXTEST into the instruction 

register. 

- LDI_BYPASS Loads the instruction BYPASS into the instruction 

register. 

- INTEST [nb) Loads the instruction INTEST into the instruction 

register and executes INTEST. The nb argument is 



used to determine the number of clock cycles to 

wait in the RUN/IDLE-TEST state. The default 

value of nb is 1. 

- RUNBIST [nb] Loads the instruction RUNBIST into the instruction 

register and executes RUNBIST . The nb argument is 

used to determine the number of clock cycles to 

wait in the RUN/IDLE-TEST state. The default 

value of nb is 1. 

- LD_DATA data [nb] 

Loads DATA on the TDI. The data argument is 

preceded by $ or % in order to specify whether the 

data format is Hex ($) or Binary (%) . The optional 

nb argument limits the amount of data to be 

entered in serially on TDI. By default nb is 

equal to the length of the data argument. 

e. g. 
do ld_data. do %10010 means load TDI with 5 

data values. The first is 1. 

do ld_data. do $0 equals do ld_data. do %0000 

do ld_data. do $0 2 equals do ld_data. do %00 



# LoaD data into the the Data register 

# Processing and checks 
if " ($arg_l=") then 

write line EXIT : missing the number to enter -space 
exit macro 

end if 
assign nb "$arg_1 
assign nb_lengt "$size(nb) 
loop i1 "nb lengt 

assign nb[i] ^$toupper(nb[i]) 
end loop 
if ^(nb[l]='%') then 

assign data_lengt "(nb_lengt-1) 
dim data "(data_lengt) 
loop i2 "nb_lengt 

if A((nb[i]='1') or (nb[i]='0')) then 
assign data[i-1] "nb[i] 
else 
write line EXIT : data error in argument-1 -space 
exit macro 

end if 
end loop 
elseif A(nb[1]='$') then 

assign user ^$arg_2 
if "(user<>") then 

assign user lengt "$size(user) 
loop i1 "user lengt 

if "(user[i]<, 0' or user[i]>'9') then 
write line EXIT : data error in argument-2 
exit macro 

end if 
end loop 
assign data_lengt "user 
else 
assign data_lengt "(4*(nb_lengt-1)) 

end if 
dim data "(4*(nb_lengt-1)) 
dim nb bin 4 
loop i2 Anb_lengt 

if ^((nb[i]>=10' and nb[i]<='9') or (nb[i]>='A' and nb[i]< 
assign nb_bin "$convert radix(nb[i], 16,2) 
assign nb_bin_lengt "$size(nb_bin) 
assign offset "(4-nb_bin_lengt) 
loop j1 Anb_bin_lengt 

assign row "((i-2)*4+j+offset) 
assign data[row] ^nb_bin[j] 

end loop 
if "(offset<>O) then 

loop j1 "offset 
assign row "((i-2)*4+j) 
assign data[row] 0 

end loop 
end if 



else 
write line EXIT : 
exit macro 

end if 
end loop 
else 

data error in argument_1 -space 

write line EXIT : the argument-1 must be binary(%) or hexa($) - 
exit macro 

end if 

# Sending, of Stimuli 
FORCe tms 0#7 
RUN 10 
RUN 10 #6 
loop i1 ^(data_lengt-1) 

FORCe TDI "data[i] #2 
RUN 10 

end loop 
FORCe tms 1#2 
FORCe TDI "data[data_lengt] 

RUN 10 
FORCe TDI 0#1 
RUN 10 

RUN 10 #5 
#7 



# LoaD Instruction RUNBIST into the instruction register 

# Processing and checks 
assign tempo "$arg_1 
if "(tempo<> " and tempo<>'0') then 

assign tempo_lengt "$size(tempo) 
loop i1 "tempo_lengt 

if "(tempo[s]<10' or tempo[i]>'9') then 
write line EXIT : data error in argument_1 -space 
exit macro 

end if 
end loop 

else 
assign tempo 1 

end if 

# Sending of Stimuli 
FORCe tms 1 # 7 
RUN 10 
FORCe tms 0 # 4 
RUN 10 
RUN 10 # E 
FORCe TDI 1 # A 
RUN 10 
RUN 10 # A 
FORCe tms 1 # A 
FORCe TDI 0 
RUN 10 
RUN 10 # 9 
FORCe tms 0 # D 
RUN "(10*tempo -1) #C 
FORCe tms 1 
RUN 10, 

f #7 



I LoaD Instruction INTEST into the instruction register 

I Processing and checks 
assign tempo "$arg_1 
if "(tempo<> " and tempo<>'0') then 

assign tempo_lengt "$size(tempo) 
loop i1 "tempo_lengt 

if "(tempo[s]<10' or tempo[i]>'9') then 
write line EXIT : data error in argument-1 -space exit macro 

end if 
end loop 

else 
assign tempo 1 

end if 

Sending of Stimuli 
FORCe tms 1 # 7 
RUN 10 
FORCe tms 0 # 4 
RUN 10 
RUN 10 # E 
FORCe TDI 0 # A 
RUN 10 
FORCe TDI 1 # A 
RUN 10 
FORCe tms 1 # A 
FORCe TDI 0 
RUN 10 
RUN 10 # 9 
FORCe tms 0 # D 
RUN "(10*tempo-1) #C 
FORCe tms 1 
RUN 10 
FORCe tms 0 # 7 
RUN 10 
FORCe tms 1 # 6 
RUN 10 
RUN 10 # 1 
RUN 10 # 5 

# 7 
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# Functionnal test of the BYPASS basic cell 
RADix Binary 
ASSIgn hi_$list_radix Binary 
ASSIgn hi_$monitor_radix Binary 
TRAce CDR 

. LISt -Change Binary CDR 
MONitor Binary CDR 
TRAce. TDI 
LISt -Change Binary TDI 
MONitor Binary. TDI 
TRAce SDR 
LISt -Change Binary SDR 
MONitor Binary SDR 
TRAce TDO 
LISt -Change Binary TDO 
MONitor Binary TDO 
SCAle USer Time 1 
SCAle TRace Time 100 
INItialize XR 
VIEW Sheet sheetl / 
PERiod List 0 
PERiod Trace 0 
CLOck Period 50 

FORCe CDR 00 -Repeat 
FORCe cdr 1.25 -Repeat 
FORCe tdi 1 
FORCe sdr 0 
RUN 50 
FORCe sdr 1 
RUN 50 
FORCe tdi 0 
RUN 50 
FORCe tdi 1 
RUN 25 
RUN 25 
FORCe sdr 0 
RUN 25 
RUN 25 

# Functionnal test of the boundary-Scan cell for an input pin 
RADix Binary 
ASSIgn hi_$list_radix Binary 
ASSIgn hi_$monitor_radix Binary 
TRAce CDR 
LISt -Change Binary CDR 
MONitor Binary CDR 
TRAce SDR 
LISt -Change Binary SDR 
MONitor Binary SDR 
TRAce Pin_in 
LISt -Change Binary Pin_in 
MONitor Binary Pin_in 
TRAce L_Cell 



LISt -Change Binary L_Cell 
MONitor Binary L_Cell 
TRAce Pin out 
LISt -Change Binary Pin_out 
MONitor Binary Pin-out 
TRAce N 

_Cell LISt -Change Binary N 
_Cell MONitor Binary N Cell 

SCAle USer Time 1 
SCAle TRace Time 50 
INItialize XR 
PERiod List 0 
PERiod Trace 0 
CLOck Period 50 
FORCe cdr 00 -Repeat 
FORCe cdr 1 25 -Repeat 
FORCe sdr 0 

FORCe 1 
_cell 

1 
FORCe pin in 0 
RUN 50 
FORCe pin_in Os 
RUN 10 
FORCe sdr 1 
RUN 40 
FORCe pin_in 1 
RUN 10 
FORCe 1_cell 0 
RUN 10 
RUN 30, 
FORCe pin_in 1' 
RUN 10 
FORCe sdr 0 
RUN 40 

Functionnal test of the boundary-Scan cell for an output pin 
RADix Binary 
ASSIgn hi_$list_radix Binary 
ASSIgn hi_$monitor_radix Binary 
TRAce CDR 
LISt -Change Binary CDR 
MONitor Binary CDR 
TRAce UDR 
LISt -Change Binary UDR 
MONitor Binary UDR 
TRAce Mode 
LISt -Change, Binary Mode 
MONitor Binary Mode 
TRAce SDR 
LISt -Change Binary SDR 
MONitor Binary SDR 
TRAce L_Cell 
LISt -Change Binary L_Cell 
MONitor. Binary L_Cell 



TRAce N cell 
LISt -Change Binary N_cell 
MONitor Binary N 

_cell TRAce Pin in 
LISt -Change Binary Pin_in 
MONitor Binary Pin_in 
TRAce Pin-out 
LISt -Change Binary Pin out 
MONitor Binary Pin_out 
SCAle USer Time 1 
SCAle TRace Time 100 
INItialize XR 
VIEw'Sheet sheetl / 
PERiod List 0 
PERiod Trace 0 
CLOck Period 100 
FORCe cdr 00 -Repeat 
FORCe cdr 1 80 -Repeat 
FORCe udr 0 
FORCe mode 1 
FORCe sdr 0 
FORCe 1 

-cell 
1 

FORCe pin_in 0 
RUN 100 
SCAle TRace Time 100 
FORCe mode 0 
RUN 20 
FORCe pin_in 1 
RUN 20 
FORCe pin_in 0 
RUN 20 
RUN 40 
FORCe pin_in 1 
RUN 20 
FORCe mode 1 
RUN 20 
FORCe udr 1 
RUN 20 
FORCe 1_cell 0 
RUN 20 
FORCe sdr 1 
FORCe 1_cell 1 
RUN 20 
RUN 100 
FORCe mode 0 
RUN 20 
FORCe udr 0 
FORCe mode 1 
RUN 20 
FORCe udr 1 
RUN 20 
FORCe 1-cell 0 
RUN 40 
FORCe udr 0 



RUN 20 ' 
FORCe pin_in 0 
RUN 20 
FORCe mode 0 
RUN 20 
FORCe 1-cell 1 
RUN 40 
FORCe sdr 0 
RUN 100 

# Functionnal test of the Instruction register basic cell 
RADix Binary 
ASSIgn hi_$list_radix Binary 
ASSIgn hi_$monitor_radix Binary 
TRAce R* 
LISt -Change Binary R* 
MONitor Binary R* 
TRAce CIR 
LISt -Change Binary CIR 
MONitor Binary CIR 
TRAce SIR 
LISt -Change Binary SIR 
MONitor Binary SIR 
TRAce UIR 
LISt -Change Binary UIR 
MONitor Binary UIR 
TRAce Data 
LISt -Change Binary Data 
MONitor Binary Data 
TRAce L_Cell 
LISt -Change Binary L_Cell 
MONitor Binary L_Cell 
TRAce N_Cell 
LISt -Change Binary N_Cell 
MONitor Binary N_Cell 
TRAce Inst_Bit 
LISt -Change Binary Inst_Bit 
MONitor Binary Inst_Bit 
SCAle USer Time 1 
SCAle TRace Time 50 
INItialize XR 
VIEW Sheet sheetl / 
PERiod List 0 
PERiod Trace 0 
CLOck Period 50 
FORCe cir 00 -Repeat 
FORCe cir 1 25 -Repeat 
FORCe r* 1 
FORCe sir 0 
FORCe uir 0 
FORCe data 1 
FORCe 1-cell 0 
RUN 10 



FORCe r* 0 
RUN 10 
FORCe r* 1 
RUN 30 
FORCe uir 1 
RUN 10 
FORCe sir 1 
RUN 40 
FORCe uir 0 
RUN 10 
FORCe uir 1 
RUN 10 
FORCe - 1_cell 1 
RUN 10 
FORCe uir 0 
RUN 10 
FORCe uir 1 
RUN 10 
FORCe sir 0, 
RUN 10 
RUN 20 
FORCe data 0 
RUN 50 
FORCe uir 0 
RUN 10, 
FORCe uir 1 
RUN 10 



# Functional Test of the TAP_CONTROLLER 
# Setup of the windows 

RADix Hex 
ASSIgn hi_$list_radix Hex 
ASSIgn hi_$monitor_radix Hex 
TRAce TRST* 
LISt -Change Hex TRST* 
MONitor Hex TRST* 
TRAce TCK 
LISt -Change Hex TCK 
MONitor Hex TCK 
TRAce TMS 
LISt -Change Hex TMS 
MONitor Hex TMS 
TRAce STATE 
LISt -Change Hex STATE 
MONitor Hex STATE 
TRAce RESET* 
LISt -Change Hex RESET* 
MONitor Hex RESET* 
TRAce SELECT 
LISt -Change Hex SELECT 
MONitor Hex SELECT 
TRAce ENABLE 

LISt -Change Hex ENABLE 
MONitor Hex ENABLE 
TRAce SHIFTIR 
LISt -Change Hex SHIFTIR 
MONitor Hex SHIFTIR 
TRAce CLOCKIR 
LISt -Change Hex CLOCKIR 
MONitor Hex CLOCKIR 
TRAce UPDATEIR 
LISt -Change Hex UPDATEIR 
MONitor Hex UPDATEIR 
TRAce SHIFTDR 
LISt -Change Hex SHIFTDR 
MONitor Hex SHIFTDR 
TRAce CLOCKDR 
LISt -Change Hex CLOCKDR 
MONitor-Hex CLOCKDR 
TRAce UPDATEDR 
LISt -Change Hex UPDATEDR 
MONitor Hex UPDATEDR 
HlStory 10000 

# HISTORY Threshold = 0.0 (History 10000.0 -NOABS). Current time = 0.0 
SCAle USer Time 1 
SCAle'TRace time 200 
INItialize XR 
VIEw Sheet sheetl / 
PERiod List 0 
PERiod Trace 0 

# Stimulis' Setup 
CLOck Period 50 



FORCe tck 00 -Repeat 
FORCe tck 1 25 -Repeat 
FORCe trst* 0 
FORCe tms 0 

1 Initialisation on 
RUN 50 
RUN 50 
FORCe tms 1 
RUN 50 
FORCe trst* 1 
RUN 50 
RUN 50 

the F state 

# main loop' check then return in F 
FORCe tms 0 
RUN 50 
RUN 50 
RUN 50 
FORCe tms 1 
RUN 50 
RUN 50 
RUN 50 
RUN 50- 
RUN 50 
FORCe tms 0 
RUN 50 
FORCe tms 1 
RUN 50 

DR loop' check ( exhaustif check) then return in C 
FORCe tms 0 
RUN 50 
RUN 50 
RUN 50 
RUN 50 
FORCe tms 1 
RUN 50 
FORCe tms 0 
RUN 50 
RUN 50 
FORCe tms 1 
RUN 50 
FORCe tms 0 
RUN 50 
FORCe tms 1 
RUN 50 
FORCe tms 0 
RUN 50 
FORCe tms 1 
RUN 50 
RUN 50 
FORCe tms 0 
RUN 50 
FORCe tins 1 



RUN 50 

# DR loop' check 
FORCe tms 0 
RUN 50 
FORCe tms 1 
RUN 50 
RUN 50 
RUN 50ý 
RUN 50 

(short check) then return in 7 

# IR loop' check 
FORCe - tms 0 
RUN 50 
RUN 50 
RUN 50 
RUN 50 
FORCe tms 1 
RUN 50 
FORCe tms 0 
RUN 50 
RUN 50 
FORCe tms 1 
RUN 50, 
FORCe tms 0 
RUN 50 
FORCe tms 1 
RUN 50 
FORCe tms 0 
RUN 50 
FORCe tms 1 
RUN 50 
RUN 50 
FORCe tms 0 
RUN 50 
FORCe tms 1 
RUN 50 
RUN 50 

exhaustif check) then return in C 

# IR loop' check (short check) 
FORCe tms 0 
RUN 50 
FORCe tms 1 
RUN 50 
RUN 50 
RUN 50 
RUN 50 
RUN 50 
RUN 50 
MARK -2006.0, -59.0, Trace 
VIEW ALL 

then return in 7 



# LoaD data into the the Data register 
TRANSCRIPTing OFF 
assi prompts 'Which level would you like for TDI (1/0/return) 
FORCe tms 0#7 
RUN 10 
RUN 10 #6 
input "promptl level #2 
if "((level=111) or (level='0')) then 

FORCe TDI A level 
end if 
loop 

input "promptl level #2 
if, ^((level<>S1l) and (level<>'0')) then 

exit loop 

else 
RUN 10 
FORCe TDI "level 

end if 

end loop 
FORCe tms 1 #, 2 
RUN 10 
FORCe TDI 0#1 
RUN 10 
RUN 10 #5 

#7 



CHI P1/BEGIN. DO 

I Setup Window File 
VIEW Sheet sheetl / 
MARK -2.5,0.7, View 
DO /idea/sys/hi/macro/analysis/view_down I$243 
MARK -Rectangle -3.0,1.9, View 
VIEW ARea -0.8,0.2, View 
PROBe toto_1 -1.1,1.2, View 
PROBe toto-2 -0.1,0.2, View 
PROBe toto-3 -0.11-0.8, View 
PROBe toto_4 -1.1, -1.8, View 
DO /idea/sys/hi/macro/analysis/view_up 
DEFine Bus on_chip /I$243/toto_4 /I$243/toto-3 
PROBe-Reset_CH 0.612.2, View 
PROBe Run_S_T 0.4,1.7, View 
PROBe mode 0.8,1.7, View 
PROBe RTI 0.7, -1.3, View 
ASSIgn hi_$list_radix Hex 
ASSIgn hi_$monitor_radix Hex 
TRAce TRST* 
LISt -Change Hex TRST* 
MONitor Hex TRST* 
TRAce TCK 
LISt Hex TCK 
MONitor Hex TCK 
TRAce TMS 
LISt Hex TMS 
MONitor Hex TMS 
TRAce TDI 
LISt -Change Hex TDI 
MONitor Hex TDI 
TRAce Pin_In 
LISt -Change Hex Pin_In 
MONitor Hex Pin_In 
TRAce State 
LISt -Change Hex State 
MONitor Hex State 
TRAce Inst 
LISt -Change Hex Inst 
MONitor Hex Inst 
TRAce Data 
LISt -Change Hex Data 
MONitor Hex Data 
TRAce TDO 
LISt -Change Hex TDO 
MONitor Hex TDO 
TRAce Pin-Out 
LISt -Change Hex Pin-Out 
MONitor Hex Pin Out 
TRAce On_Chip 
LISt -Change Hex On 

- 
Chip 

MONitor Hex On_Chip 
TRAce Reset-CH 
LISt -Change Hex Reset 

- 
CH 

MONitor Hex Reset CH 

/I$243/toto-2 /I$243/tc 



TRAce Run_S_T 
LISt -Change Hex Run_S_T 
MONitor Hex Run_S_T 
TRAce MODE 
LISt -Change Hex MODE 
MONitor Hex MODE 
TRAce RTI 
LISt -Change Hex RTI 
MONitor Hex RTI 
SCAle USer Time 1 
SCAle TRace Time 50 
INItialize XR 
PERiod List 0 
PERiod Trace 0 
CLOck Period 14 
FORCe cik sys 00 -Repeat 
FORCe cik sys 15 -Repeat 
CLOck Period 10 
FORCe tck 00 -Repeat 
FORCe tck 15 -Repeat 
FORCe trst* 0 
FORCe pin_in 0 
RUN 6 
FORCe trst* 1 
RUN 4 



# Functionnal test of the jtag_1 architecture (6 instructions) 
# the path is /users/research/vhdlresearch/jtag mentor/jtag_1/chipl 
# this simulation file calls funct. do 

DO chipl/begin. do 
FORCe pin_in b 
DO start. do 
FORCe pin_in 3 
DO ldi_nop. do 
DO ld_data. do $fedc 
DO ld_data. do $4b01 
FORCe pin_in 9 
DO ld data. do $ae 
FORCe pin_in 8 
DO ldi_sample. do 
FORCe pin_in f 
DO ldi_sample. do 
FORCe pin_in 0 
DO ldi_sample. do 
FORCe pin_in f 
DO ldi_sample. do 
FORCe pin_in 9 
DO ld_data. do $fedc 
FORCe pin_in 7 
DO ld_data. do $00dc 
FORCe pin_in 9 
DO ld_data. do $00dc 
FORCe pin in 0 
DO ld data. do $af3f 
DO ldi_extest. do 
FORCe pin_in f 
DO ld data. do $01234b 
DO ldi_extest. do 
FORCe pin in 5 
DO ld_data. do $0 
FORCe pin_in a 
DO ld_data. do $7 
DO ld data. do $f 
FORCe pin_in 0 
DO ld_data. do $2 
FORCe pin_in 6 
DO ld_data. do $21 
FORCe pin_in e 
DO ldi_bypass. do 
FORCe pin_in 0 
DO ld_data. do %11110111101 
DO ld_data. do %1100010110101011001101 
force pin_in'b 
DO intest. do 4 
force pin_in f 
do runbist. do 
do ldi_nop. do 
force pin_in 4 
do runbist. do 5 



force pin_in 3 
do ld_data. do $390a 
force pin_in d 
do intest. do 3 
force pin_in 8 
do ld_data. do $fl 
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APPENDIX 5B 

This appendix includes the design and simulation of a2 bit Adder 

with JTAG included. Full logic simulation and fault simulation 
have been carried out. 6 test instructions have been generated 

using Macro-Functions available on the Mentor CAE system to allow 

ease of simulation. 
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# Test faults simulation file for ADDER 2BITS 

# PATH Jtagjnentor/jtag_1/chip to check/test adder/qfault old do 
# This 1st version contains 35 test-patterns. With QFAULT, we # expect diminish the number of test_patterns. 

CYCLe 10 5 
FORCe in 0 
FORCe in 1 10 
FORCe in 2 20 
FORCe in 4 30 
FORCe in 8 40 
FORCe in 11 50 
FORCe in 3 60 
FORCe in 6 70 
FORCe in C 80 
FORCe in 19 90 
FORCe in 13 100 
FORCe in 7 110 
FORCe in F 120 
FORCe in 1E 130 
FORCe in 1C 140 
FORCe in 18 150 
FORCe in 10 160 
FORCe in 1 170 
FORCe in 2 180 
FORCe in 5 190 
FORCe in 9 200 
FORCe in 15 210 
FORCe in B 220 
FORCe in 16 230 
FORCe in D 240 
FORCe in 1A 250 
FORCe in 14 260 
FORCe in 1D 270 
FORCe in 1B 280 
FORCe in 17 290 
FORCe in F 300 
FORCe in IF 310 
FORCe in 12 320 
FORCe in E 330 
FORCe in 9 340 
RUN 350 
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I Test faults simulation file for ADDER 2BITS 

I PATH jtag_mentor/jtag_1/chip_to_check/test_adder/gfault. do 
I This is the final list of the 8 patterns to send 
I in order to obtain 100% 

CYCLe 10 5 
FAUlt DICTionary 
FORCe in 0 
FORCe in 2 10 
FORCe in 11 20 
FORCe in F 30 
FORCe "in 18 40 
FORCe in 4 50 
FORCe in 1 60 
FORCe in 7 70 
RUN 80 

# Clock = 10 ns 
-r # Create FAULT. DICT 

# pattern 1 
# pattern 2 
# pattern 3 
# pattern 4 
# pattern 5 
# pattern 6 
# pattern 7 
# pattern 8 

(faults dictonary) 
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Nov 15 9: 43 1991 FAULT DICTIONARY LISTING for //apollol03/users/researci 

SENSOR PINS 
1: OUT(O) 
2: OUT(1) 
3: OUT(2) 

(left-most bit) 

(right-most bit) 

-------------------------------------------------------------------------- 
STEP 1 

GOOD VECTOR : 000 
FAULT VECTOR : --1 

{ /I$1/I$2/I$3/OUT/1, /I$1/I$2/I$3/I0/1, 
/I$1/I$2/I$2/I$2/OUT/1, /I$1/I$2/I$3/I1/1, /I$1/I$2/I$1 

FAULT VECTOR : -1- 
{ /I$1/I$1/I$3/OUT/1, /I$1/I$1/I$3/I0/1, 
/I$1/I$1/I$2/I$2/OUT/1, /I$1/I$1/I$3/I1/1, /I$1/I$1/I$1 
{ /I$1/I$2/I$2/I$1/IO/1 }{ /I$1/I$2/I$2/I$1/I1/1 } 
{ /I$1/I$2/I$2/I$1/OUT/1 }{ /I$1/I$2/I$1/I$1/I0/1 } 
{ /I$1/I$2/I$1/I$1/i1/1 }{ /I$1/I$2/I$1/I$1/OUT/1 } 

FAULT VECTOR : 1-- 
{ /I$1/I$1/I$2/I$1/I0/1 }{ /I$1/I$1/I$2/I$1/I1/1 } 
{ /I$1/I$1/I$2/I$1/OUT/1 }{ /I$1/I$1/I$1/I$1/I0/1 } 
{ /I$1/I$1/I$1/I$1/I1/1 }{ /I$1/I$1/I$1/I$1/OUT/1 } 

STEP 2 
GOOD VECTOR : 
FAULT VECTOR : 

FAULT VECTOR : 

010 
--1 
{ /I$1/I$2/I$2/I$2/I0/1 

-0- 
{ /I$1/I$2/I$2/I$1/I1/0 
{ /I$1/I$2/I$1/I$1/I0/0 

}{ /I$1/I$2/I$1/I$2/I1/1 } 

}{ /I$1/I$2/I$2/I$1/OUT/O } 
}{ /I$1/I$2/I$1/I$1/OUT/O } 

-------------------------------------------------------------------------- 
STEP 3 

GOOD VECTOR : 010 
FAULT VECTOR : --1 

{ /I$1/I$2/I$2/I$2/I1/1 } 
FAULT VECTOR : -0- 

{ /I$1/I$1/I$3/I0/0, /I$1/I$1/I$2/I$2/OUT/0, 
/I$1/I$1/I$2/I$2/I0/0, /I$1/I$1/I$2/I$2/I1/0 } 
{ /I$1/I$1/I$3/OUT/0 }{ /I$1/I$2/I$2/I$1/I0/0 } 

FAULT VECTOR : 1-- 
{ /I$1/I$1/I$2/I$1/I0/0 }{ /I$1/I$1/I$2/I$1/I1/O } 

FAULT VECTOR : 10- 
{ /I$1/I$1/I$1/I$1/I0/0 }{ /I$1/I$1/I$1/I$1/OUT/0 } 

-------------------------------------------------------------------------- 
STEP 4 

GOOD VECTOR : 011 
FAULT VECTOR : --0 



{ /I$1/I$2/I$3/I1/0, /I$1/I$2/I$1/I$2/OUT/0, 
/I$1/I$2/I$1/I$2/I0/0, /I$1/I$2/I$1/I$2/I1/O } 
{ /I$1/I$2/I$3/OUT/O } 

FAULT VECTOR-: --O- 
{ /I$1/I$1/I$3/I1/0, /I$1/I$1/I$1/I$2/OUT/0, 
/I$1/I$1/I$1/I$2/I0/0, /I$1/I$1/I$1/I$2/I1/0 } 
{ /I$1/I$2/I$1/I$1/I1/0 } 

FAULT VECTOR : 1-- 
{ /I$1/I$1/I$1/I$1/I1/0 } 



-------------------------------------------------------------------------- 
STEP 5 

GOOD VECTOR : 110 
FAULT VECTOR : --1 

{ /I$1/I$2/I$1/I$2/I0/1 } 
FAULT VECTOR : -01 

{ /I$1/I$1/I$2/I$2/I1/1 } 
FAULT VECTOR : 0-- 

{ /I$1/I$1/I$2/I$1/OUT/O } 

-------------------------------------------------------------------------- 
STEP 6 

GOOD VECTOR : 100 
FAULT VECTOR : -1- 

{ /I$1/I$1/I$2/I$2/IO/1 }{ /I$1/I$1/I$1/I$2/IO/1 } 

-------------------------------------------------------------------------- 
STEP 7 

GOOD VECTOR : 100 
FAULT VECTOR : -1- 

{ /I$1/I$1/I$1/I$2/I1/1 } 

-------------------------------------------------------------------------- 
STEP 8 

GOOD VECTOR : 001 
FAULT VECTOR : --0 

{ /I$1/I$2/I$3/I0/0, /I$1/I$2/I$2/I$2/OUT/0, 
/I$1/I$2/I$2/I$2/I0/0, /I$1/I$2/I$2/I$2/I1/0 } 



# Simulation of real generation of test patterns on design 'Chip2' 
# PATH jtag_mentor/jtag_1/chip2/funct. do 
#8 patterns optomised by QUICKFAULT are sent in and 
# the results are collected at TDO 

DO chip2/begi 
DO start. do 
DO ld_data. do 
DO ld_data. do 
DO ld_data. do 
DO ld data. do 
DO ld_data. do 
DO ld data. do 
DO ld data. do 
DO lddata. do 
DO ld_data. do 

n. do 

%00000 
%010 
%001 
%111 
%000 
%100 
%001 
%00111 
%000 

# $00 
# $02 
# $11 
# $OF 
# $18 
# $04 
# $01 
# $07 
# Output of previous result 
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Appendix 6A 

The following software was written to describe the VHDL 

package of JTAG_STANDARD. It contains the high level models 
of the JTAG full architecture. It also demonstrates the 

power of using facilities such as 'PACKAGE' or 'LIBRARY' in 

designing a system. 



use work. declar. all; 
package JTAG_STANDARD is 

component TAP-CONTROLLER 
generic (Setup_Time, Hold time, Min Pulse Width_1, 
Min PulseWidth_0, S_Odel, Odel: Time); 
PORT ( 
TMS, 
TCK: in bit; 
Reset, 
Selectt, 
Enable, 
ShiftlR, 
ClockIR, 
UpdatelR, 
ShiftDR, 
UpdateDR, 
ClockDR : out bit 

end component; 

component REG-INSTRUCTION 
generic 
(Setup_Shift Time, Hold_Shift Time, MPulse Width Shift, 

Setup Update_Time, HoldUpdate Time, MPulseWidth Update, 
Mux Del, Stage_Shift_Del, Stage Update_Del: time); 

port( 
Reset, 
ClockIR, 
UpdatelR, 
ShiftlR, 
TDI: in bit; 
Status: in bit vector; 
Instruction: out bit vector; 
TDO: out bit); 

end component; 

component INSTRUCTION DECODER 
generic (Instruction set: bit vector; 

DR select Set, Test Mode Set, Additional_Signals_Set: 
bit vector; 
Open_Check: Boolean; 
DEC_DEL: Time); 

port ( 
Instruction: in bit_vector(0 t 
DR Select: out bit vector(0 t 
Test Mode: out bit vector(0 t 
Additional_Signals : out Bit_ 

o 7); 
o 7); 
o 7); 
vector 

end component; 



component BYPASS REG 
generic (Setup Time, 

Hold 
- 

Time, 
MPulse_width, 
AND Del, 
Bypass Del : Time) 

Port( 
ShiftDR, ClockDR, 
TDI: in bit; 
TDO: out bit); 

component end; 

component REG_BSCAN 
generic (System, 

_pintype_types: SUT Capture_, HT_Capture, 
port ( 
Select_Bscan, 
Reset, 
ShiftDR, 
ClockDR, 
UdateDR, 
TDI: in Bit; 
Parallel Input: in Bit vector; 
Test Mode: in Bit_vector(0 to 1); 
Parallel_Output: out Bit_vector; 
TDO: out Bit 

component end; 

entity IDENT_REG 
generic (Setup time, Hold Hold_Time, MWidth, Mux Del: Time) 
port( 
Select_Ident, 
ShiftDR, 
ClockDR, 
TDI: in Bit; 
ID Code: in Bit vector; 
TDÖ: out Bit 

end component; 

component MUX 1 
generic (Instruction Set : Bit vector; 

TDO Test Datä Registers_Set : integer vector; 
Mux_Del : Time); 

port ( 
TDO_Test Data Registers: in Bit vector; 
Instruction : in Bit vector; 
TDO: out Bit); 

end component; 

String vector; 
MDEL, SUT Update, HT Update, 



component mux_2 
generic (Mux_DEL : Time) 
port ( 
Tdo_Test_Data_Registers, 
Tdo Instruction, 
Selectt : in Bit; 
TDO : out Bit 

end component; 

entity TDO Buffer is 
generic (setup time, 

Tdo del: Time) 
hold time, Min_pulse width, Del, 

port ( 
TCK, 
Enablee, 
Input: in Bit; 
TDO: out Tristate 

end component; 

end JTAG_STANDARD; 



Appendix 6B 

The following software was written to describe the VHDL 
package of Declaration. It contains all the timing elements 
used in JTAG. 

library std, work; 
use std. standard. all; 
PACKAGE Declaration IS 

TYPE integer vector is array (integer 
integer; 

TYPE tristate IS 

'Z', -- high impedance 
'0', -- logic zero 
'1' -- logic one 

TYPE state 
- 

tap IS 

Test Logic Reset, 
Run Test 

_Idle, Select DR Scant 
Capture_ DR, 
Shift 

- 
DR, 

Exit 
_1 

DR, 
Pause_DR, 
Exit 2 DR, 
Upda_te DR, 
Select IR Scan, 
CaptureIR, 
Shift I, 
Exit 

_1_IR, Update 
' 

IR, 
Undefined 

TYPE System pins IS 

range <>) of 

(' K' , --clock, 
'I', --Input, 
'B', --Bidirectional_Input, 
'O', --Output, 
'P', --Bidirectional-Output 
'T', --Tri state, 
'C' --Control 

TYPE String_vector is array (integer range <>) of 
System_pins; 

END declaration; 



Appendix 6C 

This appendix describes the connectivity of the VHDL high 

level model of the JTAG architecture and its simulation 

results. 

PATH: /USER/RESEARCH/VHDLRESEARCH/JTAG VHDL/JTAG 0/CHIP1 
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Appendix 6D 

This appendix describes the connectivity of the VHDL high 

level model of the JTAG architecture with an application 
logic, a2 bit adder. It demonstrates the connectivity and 
the validity of its operation together with the simulation 
results. 

PATH: /USER/RESEARCH/VHDLRESEARCH/JTAG VHDL/JTAG 0/CHIP2 
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Appendix 7A 

'C' SOURCE CODE FOR VCP VERSION 1 



/* Status VCP - version 1, final, 3rd August 1992*/ 

/* This program is used to extract top level I/O's from a 
VHDL source file. -The Output is a file containing a port 
list and port type which is currently restricted to be of 
type IN or OUT. */ 

#include <stdio. h> 
#include <ctype. h> 
#include <string. h> 

#define found 1 
#define notfound 0 
#define false (1==2) 
#define true (1==1) 
#define MAX_KEYWORD_LENGTH 255 
#define MAX_FILENAME_LENGTH 255 
#define MAX-NO-INPUTS 100 
#define MAX_NO_OUTPUTS 100 
#define NAME LENGTH 255 

char filename[MAX FILENAME_LENGTH]; 
FILE *vhdl_source; 
FILE *port names; 
char array_of_inputs[MA)NO INPUTS][NAME_LENGTH]; 
char array_of_outputs[MAX_NO_OUTPUTS][NAME_LENGTH]; 
char keyword[MAX_KEYWORD_LENGTH]; 
int find_keywordC); 
int no-of-Outputs; 
int no-of-inputs; 

main( int argc, char *argv[] ) 

int array-index = 0; 

if( argc !=2) 

printf(" \n You must supply a VHDL source code filename 
as an argument to this program e. g. parse_vhdl <filename> 
\n"); 

exit o; ; 

strcpy(filename, argv[l]); 
if ( (vhdl_source = fopen(filename, "r")) _= NULL ) 

printf("\n The selected file does not exist in current 
working directory. \n"); 

exit o; ; 
} 

printf("\nParsing file %s \n \n", filename); 
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printf("Looking for ENTITY 
printf ("<l>") ; 
strcpy(keyword, "ENTITY"); 
printf ("<2>") ; 
if ( find_keyword("ENTITY") 
printf("Found ENTITY clause 
else 

printf("ERROR ENTITY clause 
\n") ; 

; exit o; 

printf("<3>"); 

clause \n \n"); 

\n \n") ; 

not found in VHDL source \n 

printf("Looking for PORT clause \n \n"); 
printf ("<4>") ; 
strcpy(keyword, "PORT"); 
printf("5"); 
if ( find keyword("PORT'l) 
printf("FOUND PORT clause \n \n"); 
else 

printf("ERROR PORT clause not found in VHDL source \n 
\n"); - 

exit(); 

/* Get Port data */ 
printf ("<6>") ; 
make port_array () ; 

printf("Writing list of ports to vhdl port_file \n"); 

port-names = fopen("vhdl_port file", "w"); 

fputs("INPUTS: \n", port_names); 

for(array_index = 0; array_index 1= no_of_inputs; 
array_index++) 

/* printf("Input %d is %s 
\n", array_index, array_of_inputs[array_index]); */ 

fputs(array_of_inputs[array_index], port names); 
fputs("\n", port_names); 

fputs("OUTPUTS: \n", port names); 

for(array_index = 0; array_index 1= no_of_outputs; 
array_index++) 

/* printf("Output %d is %s 
\n", array_index, array_of_outputs[array_index]); */ 

fputs(array_of_outputs[array_index], port_names); 
fputs("\n", port_names); 

} 
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fclose(vhdl source); 
fclose(port names); 

exit(; /*temp*/ 

/******************************************************** 
/* function to test for existaence of keyword in a VHDL 
file */ 

find_keyword( keyword ) 

char keyword[MAX KEYWORD_LENGTH]; 
{ 

int pos; 
int word= false; 
char pres_string[MAXKEYWORD LENGTH]; 
char pres_char; 
printf("<Key 1>"); 
printf("<Key 2>"); 
while ((pres_char=toupper(getc(vhdl_source)))1= EOF) 

if ((pres_char! =' ') && isalpha(pres_char)) 

if (! word) 

pos=0; 
word=true; 
} 

pres_string[pos++]=pres_char; 
printf (" . ") ; 

else 
if (word) 

pres_string (pos] =NULL; 
printf(" <%s>\n", pres_string); 
if (strcmp(keyword, pres_string)==0) 

return(found); 
else 

-word=false; 
} 

else 
printf("+"); 

return(notfound); 

/******************************************************** 
********************************************************/ 

VCP Version 13 



/******************************************************** 
********************************************************/ 
/* This function generates IN and OUT arrays to hold the 
port names */ 
/* were at the end of port and scanning for the port 
names / 

make_port_array() 
{ 

char port char; 
int order; 
int char index; 

order = 0; 
char index = 0; - 
printf ("<11>") ; 
port-Char- getc(vhdl_source); 
printf("<12>"); 
while (lisalnum(port_char)) /* find start of inputs 

ASSUMES inputs start with an alphabetic character ??? 

port char = getc(vhdl_source); 

printf("<13>\n"); 
while ( port char !=': ') /* build list of input 

ports */ 

while(isalnum(port_char)) 

array_of_inputs[order][charindex++] - port_char; 
/* need string array to hold names of max len 

port-char = getc(vhdl_source); 

array_ofinputs[order](char index) = NULL; 
printf("_-<%s>-\n", array_of_inputs[order]); 
order++; /* next port 
char index = 0; 
no of inputs = order; 
while ((! isalnum(port char)) && (port char! ==': ')) 

port char = getc(vhdl_source); 
} 

while ( port_char !='; ' ) /* find end of input 
declaration 

{ 
port-char = getc(vhdl_source); 

while ( lisalnum(port_char) ) 
output list */ 

{ 
port-char = getc(vhdl_source); 

order = 0; 
char index = 0; 

/* find start of 
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while ( port-char !=': ') /* build list of output 
ports 

{ 
while ( isalnum(port_char) ) 
{ 

array of_outputs[order][charindex++] - port_char; 
/* need string array to hold names of max len */ 

port-char = getc(vhdl_source); 

array_of outputs[order][char index] - NULL; 
printf("+<%s>+\n", array_of_outputs[order]); 
order++; /* next port 
char index = 0; 
no of outputs = order - 1; 
while (("iisalnum(port_char)) && (port_charl=': ')) 

port-char = getc(vhdl_source); 
} 

)x 
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Appendix 7B 

'C' SOURCE CODE FOR VCP VERSION 2 



/* 
** 

* Extract top level I/Os from a VHDL source. 
** 
* EXTRACT. C 
** 
* BY S. MEDHAT Version 1.3 
* Bournemouth University (U. K) 26/09/92 
* 
* This software program reads a VHDL design source 
* file and extracts the top level I/Os from its 
* entity description generating an output file 
* called filemane. PIN where all I/O names, modes, 
* types and bus width are listed. 
** 
******************************************************* 

The architecture of EXTRACT. C is based upon a state 
machine structure behaviour which consists of 21 
states. 

The prototype of EXTRACT call is : 

extract <design file name>[. hdl] 

#include "lib. h" /* Include string macro-functions */ 

/************* Declaration of the 21 states ************/ 

typedef enum { 
in, 
out, 
inout, 
buffer, 
portl, 
port2, 
bracket, 
word, 
blanks, 
coma, 
colon, 
type, 
key, 
blank2, 
bus, 
blank3, 
size, 
blanko, 
semi 

- 
colon, 

end, 
errors 
) states-t; 
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/********** Declaration of function prototypes *********/ 

void format-data(); /* Format output data */ 
void commentsO; /* Handle comments */ 

/********** Declaration of global variables ************/ 

int top-size; 
int bottom size; 
int bus size; 
int _ pin_no; 
int error no; 

char *ptr word; 
char *ptr_type; 
char *ptr_bus; 
char in_filename[50]; /* Name of the input file */ 
char out filename[50] ; /* Name of the output file */ 
char type_name[20]; /* Type name storage 
char bottom[5]; /* Low index bus 
char top[s]; /* High index bus 
char bus_name[20]; /* Bus name storage 
char base mem[1000]; /* Data processing me mory */ 

FILE *infile; '/* Stream of input resource 
FILE *outfile; /* Stream of output resource */ 

boolean stop; /* Exit program */ 
boolean error; /* Error detected */ 

enum states_t token; /* Token of the pseudo-state machine */ 

******************************************************* 
** 
* EXTRACT program body * 
** 
******************************************************* 

*1 

main(int argc, char *argv[]) 

/*** Usage errors detection ***/ 

if (argc! =2) 

printf(" Usage: extract 
<design_file_name>[. hdl]\n"); 

exit(); 
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/*** Filename errors detection ***/ 

strcpy(in_filename, argv[l]); 
strcpy(out filename, argv[l]); 
strcat(in_filename, ". hdl"); 
strcat(out_filename, ". pin"); 
if ((infile=fopen(in_filename, "r"))==NULL) 

t 
printf("\n<Extract/Error>: \"%s\" 

does not exist\n", in_filename); 
; exit o; 

if ((outfile=fopen(outfilename, "w"))==NULL) 

printf("\n<Extract/System>: Cannot open output 

exit(; 
file (%s) \n", out_filename) ; 

/*** Insert the output file header ***/ 

fprintf(outfile, "# PIN NAME PIN MODE 
PIN TYPE BUS WIDTH STARTING\n"); 

fprintf(outfile, �----------------------------------- 
----------------------------------------- 

ýnýýý ; 

/*** Send a message on the screen (Start processing) ***/ 

printf("\n<Extract/Note>: Extracting File \"%s\"\n" 

, in_filename) ; 

/*** Initialisation of variables ***/ 

ptr word=base mem; 
ptr type=type name; 
ptr bus=bus_name; 
stop=error=FALSE; 
token=in; /* Token in state "IN" */ 

/**************** Start data processing ***************/ 

while (! stop && ! error) 
{ 
switch (token) 

{ 

/* State IN : Look for a keyword "IN" 
/* if found --> state PORTI 
/* else --> state OUT */ 
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case in 
{ 

if (search 
_key(infile, 

"IN")) token=portl; 
else token=out; 
break; 

/* State OUT : Look for a keyword "OUT" */ 
/* if found --> state PORTI 
/* else --> state INOUT */ 

case out : 
{ 

if ((infile=fopen(in_filename, "r"))==NULL) 
(token=errors; error_no=15; ) 

if (search key(infile, "OUT")) token=portl; 
else token=inout; 
break; 

/* State INOUT : Look for a keyword "INOUT" 
/* if found --> state PORTI 
/* else --> state BUFFER */ 

case inout : 

if ((infile=fopen(in_filename, "r"))==NULL) 
(token=errors; error_no=15; ) 

if (search key(infile, "INOUT")) token=portl; 
else token=buffer; 
break; 

/* State BUFFER : Look for a keyword "BUFFER" */ 
/* if found --> state PORT]. 
/* else --> state ERROR(l) */ 

case buffer : 
{ 

if ((infile=fopen(in_filename, "r"))==NULL) 
(token=errors; error no=15; ) 

if (search 
_key(infile, 

"BUFFER")) token=portl; 
else (token=errors; error_no=l; ) 
break; 

/* State PORTI 
/* if found --> 
/* else --> 

Look for the 
state PORT2 
state ERROR(2) 

keyword "PORT" */ 

*/ 
case portl : 

if ((infile=fopen(infilename, "r"))==NULL) 
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(token=errors; error_no=15; ) 
if (search key(infile, "PORT")) token=port2; 
else (token=errors; error_no=2; ) 
break; 

} 

/* State PORT2 : Look for the next left-bracket */ 
/* if found --> state BRACKET 
/* if comment --> state COMMENTS */. 
/* if space --> state PORT2 
/* if other --> state ERROR(3) */ 

case port2 : 
{ 

if (isspace(next_char)) 
(token=port2; next_char=fgetc(infile); ) 

else if (next_char=='(') token=bracket; 
else if (next char=='-') comments(); 

else (token=errors; error no=3; ) 
break; 

} 
/* State BRACKET : Look for next word */ 
/* if found --> -state WORD 
/* if comment --> state COMMENTS */ 
/* if space --> state BRACKET 
/* if other --> state ERROR(5) */ 

case bracket : 
of 

(! next char_separ(infile, VHDL)) token=word; 
else if (isspace(next char)) token=bracket; 

:: '-') comments(); else if (next char-- 
else (token=errors; error no=5; ) 

break; 

/* State WORD: Read the next char of the port name*/ 
/* if coma --> state COMA 
/* if colon --> state COLON 
/* if VHDL Ascii --> state WORD 
/* if other --> state ERROR(5) */ 

case word : 

*ptr word++=toupper(next_char); 
while (! next char separ(infile, VHDL)) 

*ptr word++=next_char; 
*ptr word++='\0'; 
if (isspace(next char)) token=blankl; 
else if (next_char==': ') token=colon; 

else if (next char==', ') token=coma; 
else (token=errors; error no=5; ) 

break; 
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} 

/* State BLANK1 : Ignore all blanks char */ 
/* if coma --> state COMA 
/* if colon --> state COLON 
/* if space --> state BLANK1 
/* if comment --> state COMMENTS 
/* if other --> state ERROR(6) */ 

case blanks : 

if (isspace(next char=fgetc(infile))) token=blankl; 
else if (next char=='-') comments(); 

else if (next char==': ') token=colon; 
else if (next char==', ') token=coma; 

else (to_ken=errors; error_no=6; ) 
break; 

/* State COMA : Look for the next port name 
/* if VHDL Ascii --> state WORD 
/* if space --> state BLANK1 
/* if comment --> state COMMENTS 
/* if other --> state ERROR(5) */ 

case coma : 
$' 

if (! next 
_char 

separ(infile, VHDL)) token=word; 
else if (next char=='-') comments(); 

else if (! isspace(next char)) 
(token=errors; error no=5; ) 

break; 

/* State COLON : Ignore all blanks char */ 
/* if space --> state COLON 
/* if VHDL Ascii --> state TYPE 
/* if comment --> state COMMENTS 
/* if other --> state ERROR(5) */ 

case colon : 
{ 
if (! next _char 

separ(infile, VHDL)) 
{ token=type; *ptr type++=toupper(next_char); ) 

else if (next char=='-') comments(); 
else i_(! isspace(next char)) 

(token=errors; error no=5; ) 
break; 

/* State TYPE : Look for the next port type 
/* if VHDL Ascii --> state TYPE 
/* if space --> state KEY 
/* if other --> state ERROR(5) */ 
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case type 
{ 

if (! next char separ(infile, VHDL)) 
(token=type; *ptr type++=toupper(next char); ) 

else 
{ 

*ptr type='\0I; 
ptr type=type_name; 
if (isspace(next_char)) token=key; 
else {token=errors; error_no=5; ) 

break; 
} 

/* State KEY : Check the validity of the port type 
/* if OK --> state BLANK2 
/* else --> state ERROR(7) */ 

case key : 

token=blank2; 
if ((strcmp(type_name, "IN"))! =0) 

if ((strcmp(type_name, "OUT"))! =0) 
if ((strcmp(type_name, "INOUT"))! =0) 

if ((strcmp(type_name, "BUFFER"))i=0) 
(token=errors; error_no=7; ) 

break; 

/* State BLANK2 : Ignore all blanks char */ 
/* if space --> state BLANK2 
/* if VHDL Ascii --> state BUS 
/* if comment --> state COMMENTS */ 
/* if other --> state ERROR(5) */ 

case blank2 : 
{ 
bus size=l; 
bottom size=O; 
if (! next_char separ(infile, VHDL)) 

(token=bus; *ptr bus++=toupper(next_char); ) 
else if (isspace(next char)) token=blank2; 

else if (next_char=='-') comments(); 
else (token=errors; error no=5; ) 

break; 

/* State-BUS : Read the next char of the bus name 
/* if left-bracket --> state SIZE */ 
/* if right-bracket --> state END 
/* if space --> state BLANK3 
/* if VHDL Ascii --> state BUS 
/* if other --> state ERROR(5) */ 
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case bus : 

if (! next char separ(infile, VHDL)) 
*ptr bus++=tolower(next_char); 

else 

*ptr bus++='\o'; 
ptr Sus=bus-name; 
if (isspace(next char)) token=blank3; 

else if (next char=='; ') 
(token=semi colon; format data(); ) 

else if (next char=='(') token-size; 
else if (next char--') ') token-end; 

else (token=errors; error_no=5; ) 

break-; 

/* State BLANK3 : Ignore all blanks char 
/* if left-bracket --> state SIZE 
/* if semi-colon --> state SEMI_COLON 
/* if space --> state BLANK3 
/* if comment --> state COMMENTS 
/* if other --> state ERROR(8) 

case blank3 
{ 

if (isspace(nextchar=fgetc(infile))) token=blank3; 
else if (nex_t char=='; ') 

(token=semicolon; format data(); ) 
else if (next_char=='(') token=size; 

else if(next_char==')') token=end; 
else if (next_char=='-') comments(); 

else (token=errors; error_no=5; ) 
break; 

/* State SIZE : Look for the next separater */ 
/* if right-bracket --> state END 
/* if semi-colon --> state COLON SEMI 
/* if space --> state - BLANK4 
/* if other --> state ERROR(9,10,11) */ 

case size 
{ 

bottom size=atoi(*bottom=take_nextword(infile, KEY)); 
if ((strcmp(take next_word(i_nfile, KEY), "TO"))I=0) 

(token=errors; error_no=ll; ) 
else 

( 
top size=atoi(*top=take_next word(infile, KEY)) 

if ((bus size=topsize-bottom size)<2) 
(token=errors; error no=9; ) 

else if (next char==')') token=blanko; 
else (token=errors; error no=10; ) 
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} 
break; 

/* State BLANK4 : Ignore all blanks char 
/* if right-bracket --> state END 
/* if semi-colon --> state SEMI COLON 
/* if space --> state - BLANK4 
/* if comment --> state COMMENTS 
/* if other --> state ERROR(12) */ 

case blanko : 
{ 

do next char=fgetc(infile); 
while (isspace(next_char)); 

if(next char==')') token=end; 
else if (next char=='; ') 

(token=semi colon; format 
_data(); 

) 
else if (next char=='-') comments(; 

else {token=errors; error no=12; ) 
break; 

} 

/* State SEMI_COLON : Look for the next port name */ 
/* if VHDL Ascii --> state WORD 
/* if space --> state SEMI-COLON 
/* if comment --> state COMMENTS 
/* if other --> state ERROR(5) */ 

case semi-colon 
{ 
if (! next char separ(infile, VHDL)) token=word; 
else if (isspace(next_char)) token-semi-colon; 

; else if (next 
_char==' -') comments o; 

else (token=errors; error no=5; ) 
break; 

/* State END : Terminal state */ 

case end : 

*ptr word='\0'; 
format data(); 

printf("<Extract/Note>: Writing \"%s\"\n", 
out-filename); 

stop=TRUE; 
break; 
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/* State ERRORS : Print a error message on screen */ 

case errors 

switch (error_no) 

{ 
case 1: (printf("<Extract/Error>: No IN, OUT, 

INOUT or BUFFER in this design\n"); break; ) 
case 2: (printf("<Extract/Error>: Cannot find the 

PORT declaration statement\n"); break; ) 
case 3: (printf("<Extract/Error>: <Left-bracket> 

expected but '%c' found\n", nextchar); break; ) 
case 4: (printf("<Extract/Erro_r>: Comment expected 

but '%c' found\n", next_char); break; ) 
-case 5: (printf("<Extract/Error>: Alphanum 

character expected but '%c' found\n", next_char); 
break; ) 

case 6: (printf("<Extract/Error>: <Coma> or 
<Colon> expected but '%c'found\n", next char); 

break; ) 
case 7: (printf("<Extract/Error>: '%s' unknown 

port-type <IN, OUT, INOUT, BUFFER>\n", type_name); 
break; ) 

case 8: (printf("<Extract/Error>: <Semi-colon> or 
<bracket> expected but '%c' found\n", next_char); 
break; ) 

case 9: (printf("<Extract/Error>: Erroneous bus 
size\n"); break; ) 

case 10 : (printf("<Extract/Error>: <Right-bracket> 
expected but '%c' found\n", next_char); break; ) 

case 11 : (printf("<Extract/Error>: <TO> expected 
but '%c' found\n", next_char); break; ) 

case 12 : (printf("<Extract/Error>: <Semi-colon> or 
<Right-bracket> expected but '%c' found\n", 
next_char); break; ) 

case 13 : (printf("<Extract/Error>: <EOF> reached 
but data extracting unfinished\n"); break; ) 

case 14 : (printf("<Extract/System>: I/O conflict 
on the output file (%s)\n", out_filename); break; ) 

case 15 : (printf("<Extract/System>: I/O conflict 
on the input file (%s)\n", in_filename); break; ) 

/** Insert the last data line in the output file **/ 

if (error_no! =14) format_data(); 
error=TRUE; 
break; 

) 

} 
} 
/*** Close all the file and quit program ***/ 
if*((fclose(infile)) ! =NULL) 

printf("<Extract/System>: Cannot close properly the 
file %s\n", in filename); 

if ((fclose(outfile)) ! =NULL) 
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printf("<Extract/System>: Cannot close properly the 
file %s\n", out_filename); 

} 

******************************************************* 
** 
* Function FORMAT DATA 
* 
******************************************************* 

This function write data processed into the output 
file with a pre-defined format. 

*1 
void format-data( 

*ptr word='\0'; 
ptr word=base mem; 
while (*ptr word) 

fprintf(outfile, "%-3d %-20s %-9s %-20s %2d 
%2d\n", pin_no, ptr word, type_name, bus_name, 
bus 'size, bottom size) ; 

while (*ptr word++); 
pin_no++; 

ptr word=base_mem; 
*ptr word='\0'; 

1* 
******************************************************* 
** 
* Function COMMENT 

******************************************************* 

This function ignores all characters included in a 
comment procedure then comes back at the current 
state. 

void comments() 
( 
if ((next_char=fgetc(infile))=='-') 

while (((next_char=fgetc(infile))! ='\0') && 
(next_char! =EOF)); 

if (next_char==EOF) (token=errors; error no=13; ) 
} 

else (token=errors; error_no=4; ) 
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/* Library of file functions for the VHDL parser */ 

#include <stdio. h> 
#include <string. h> 
#include <ctype. h> 

#define TRUE (1==1) 
#define FALSE (1==O) 
#define FOUND TRUE 
#define NOTFOUND FALSE 
#define VHDL " 1'#$%'()()+, -&. V :; <=>? []\\ý\n\tý\"ý\ý" 

typedef unsigned char boolean; 

typedef enum (NAME, KEY) format; 

boolean next char separ(FILE *infile, char *separ list); 
int find next separ(FILE *infile, char *separ list); 
char *take_next_word(FILE *infile, enum format 
out fmt) ; 
int search_key(FILE *infile, char *keyword); 

char next char; 

/*********************** 
** 
* NEXT-CHAR-SEPAR 
** 

boolean next char separ(infile, separ list) 
FILE *infile; /* Point on the input file */ 
char *separ_list; /* List of characters of separation 

boolean cont; 

next char=fgetc(infile); 
if (next char! =EOF) 

if (*separ_list) 
{ 
while, ((*separ list) && 

(cont=(next char! =*separ list))) 
separ list++; 

return(! cont); 

else 
return (lisalnum(next_char)); 

else 
return (TRUE) 



ý*********************** 
** 
* FIND_NEXT_SEPAR 
* 
***********************ý 
int find next separ(infile, separ list) 
FILE *infile; /* Point on the input file */ 
char *separ_list; /* List of characters of separation */ 

while(lnext_char separ(infile, separ list)) 
return(next_char); 

/********************** 
** 
* TAKE-NEXT-WORD 
** 
**********************/ 
char *take_next_word(infile, out_fmt) 
FILE *infile; /* Point on the input file */ 
enum format out_fmt; /* Filtering of output flow */ 
t 
char word[30], *ptr; 
int (*filterl) (), (*filter2) (); 

ptr=word; 
if (out_fmt==KEY) filterl=filter2=toupper; 
else 

( 
filterl=toupper; 
filter2=tolower; 

while ((next Char separ(infileiVHDL)) 
(next_char! =EOF)); 
if (next_char! =EOF) 

{ 
*ptr++= (* f ilterl) (next char) ; 
while (! next_char separ(infile, VHDL)) 

*ptr++= (*filter2) (next_char) ; 
*ptr='\0'; 
return(&word); 

else 
return (NULL) 



/******************** 
** 
* SEARCH-KEY 
** 

int search 
_key(infile, 

keyword) 
FILE *infile; /* Point on the input file */ 
char *keyword; /* Point the reference Keyword */ 

char *ptr; 

do 

ptr=take_next word(infile, KEY); 
if (strcmp(ptr, keyword)==O) return(FOUND) 

I 
while (*ptr! =NULL); 
return(NOTFOUND); 

I 
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/* JTAG insertion program. Takes the file "name". pin 
/* from extract and inserts the jtag acrchitecture into */ 
/* the vhdl decription. 
/* The new entity becomes "name"_jtag. 
/* This is also the name of the 
/* resulting file. 
/* *1 
/********************************************************/ 
#include <stdio. h> 
#include <string. h> 
#include "lib. h" 
functions */ 

/* defines types and 

port_struct port_list[200); 
the 

int num ports; 
int num int_sigs; 

/* structure used to store 

port data */ 

/* total number of signals */ 

FILE *infile, *outfile; 
void tinsert_file () ; 
void insert_compdef(); 
char get space(); 
void get_org port_list() 
void put_int signals(; 
void put__bscan_cells(); 

main(argc, arge) 
int argc; 
char *argv[]; 

name */ 
/* contains file 

{ 

char infilename[50], out_filename[50]; 
char en_t_name[50]; 
int n; 

if (argc! =2) 

printf(" Usage: insert <pin_file_name[. pin]>\n"); 
exit o; ; 

strcpy(ent_name, argv[1]); 
strcpy(infilename, argv[l]); 
strcpy(out_filename, argv[l])f 
strcat(in_filename, ". pin"); 
strcat(out_filename, "_jtag. vhdl"); 
if ((infile=fopen(in_filename, "r"))==NULL) 

printf("fin<Insert/Error>: \"ts\" does not 
exist\n", in_filename); 

exit o; ; 



if ((outfile=fopen(out_filename, "w"))==NULL) /* check 
that file exists. 

printf("\n<Insert/System>: Cannot open output file 
(%s) \n", out-filename) ; 

exitO; 

insert file("jtag. use", outfile); 
/* add library declarations */ 

fprintf(outfile, "\nentity %s_jtag is\n", ent name); 
fprintf(outfile, " port(TCK, TIMS, TDI : in bit; \n"); 

/* put port declarations */ 
fprintf(outfile, " TDO : out logic4; \n"); 
get_org_port list(in_filename); 

/* fill port structure */ 
for (n =-0; n< num_ports; n++) ( 

fprintf(outfile, " %s : %s 
%s", port_list[n]. name, port_list[n]. mode, port list[n]. type) 

if (port_list[n]. size > 1) 
fprintf (outf ile, " (%d to 

%d)", port list[n]. min, port_list[n]. max); 
if (n == num_ports-1) 

fprintf(outfile, "); \n"); 
else 

fprintf(outfile, "; \n") 

fprintf(outfile, "end %s_jtag; \n", ent name) 
fprintf(outfile, "\narchitecture behav_jtag 

is\n\n", ent name); 
insert file("jtag. comps", outfile); 

add component declarations */ 
insert_compdef(ent_name, outfile); 
fprintf(outfile, "\n"); 
insert file("jtag. signals",, outfile); 

add standard signals */ 
put int signals(outfile); 
fpr_intf(outfile, "\nbegin\n"); 

of %s_jtag 

/* 

1* 

insert file("j tag. insts", outfile); /* add standard 
instances 

put_bscancells(outfile); 
fprintf(o_utfile, "end behav_jtag; \n"); 

void insert file(in_name, out_file) /* routine for 
inserting ascii files to a stream */ 

char *in_name; 
FILE *out file; 

char c; 
FILE *in file; 
if ((in_file=fopen(in_name, 

printf("\n<Insert/Error>: 
exist\n", in_name); 

exit(; 

"r") ) _=NtJLL) 

\"%s\" does not 



while((c = fgetc(in_file)) != EOF) 
fputc(c, out_file); 

void insert 
_compdef(ent_name, 

file) /* inserts the 
original component definition */ 

char *ent name;, 
FILE *file; 

int n; 

fprintf(file, "component %s\n", ent name); 
fprintf(file, "port (\n"); 
for (n = O; m< num,. 

-Ports; 
n++) 

fprintf (file, " %s : %s 
%s", port_list[n]. name, port_list[n]. mode, port_list[n]. type); 

if (port_list[n]. size > 1) 
fprintf(file, "(%d to 

%d)", port_list[n]. min, port_list[n]. max); 
if (n == num ports-1) 

fprintf (file, ") ; \n") ; 
else 

fprintf (file, "; \n" ) 

fprintf(file, "end component; \n"); 

i 
char get space(file) 
input stream */ 

FILE *file; 

/* read blank space from 

char, c; 

while ((c = fgetc(file) ) 
if (lisspace(c)) 

break; 

return(c); 

void get_org port_list(pin_file name) 
file into an internal structure 

char *pin_file name; 

i= EOF) ( 

{ 
FILE *pin_file; 
char *ptr name; 
char *ptr type; 
char *ptr mode; 
portstruct *ptr_struct; 
char _c; 
int width, bottom, top; 

/* converts pin 



int n; 

pin_file = fopen(pin_file name, "r"); 
ptr struct = port_list; 
num_ports = -1; 

do { 
ptr_name = ptr_struct->name; 
ptr_type = ptr_struct->type; 
ptr_mode = ptr struct->mode; 

do ( 
if (isdigit (c) ) 

of pin file */ 
break; 

/* find first line 

while ((c = fgetc(pin_file)) != EOF); 

while ((c = fgetc(pin_file)) 1= EOF) 
if (isspace(c)) 

break; 

c= get space(pin file); 
*ptr name++ = c; 
while ((c = fgetc(pin_file)) 

if (isspace(c)) 
break; 

else 
*ptr name++ = c; 

*ptr name = 1\01; 
c= get_space(pin file); 
*ptr mode++ = c; 
while ((c = fgetc(pin_file)) 

if (isspace(c)) 
break; 

else 
*ptr mode++ = C; 

*ptr mode = 1\01; 
c= get_space(pin file); 
*ptr type++ = c; 
while ((c = fgetc(pin file)) 

if (isspace(c)) 
break; 

else 
*ptr_type++ = c; 

!= EOF) ( 

/* get port name */ 

1= EOF) ( 

/* get port mode */ 

!= EOF) { 

*ptr type = 1\01; 
c= get space (pin_f ile) ; 
ungetc(C, pinfile) ; 
fscanf(pin f_ile, "%d", &width); 
c= get space(pin file); 
ungetc(c, pin_file); 
fscanf (pin file, "%d", &bottom) ; 
top = bottom + width; 
ptr struct->max = top; 

/* get port type */ 



ptr_struct->min = bottom; 
arrays */ 

ptr_struct->size = width; 

c- fgetc(pin file); 
ptr struct++; 
num ports++; 
) while (c != EOF); 

void put_int signals(file) 
the bscan cells and the component 

FILE *file; 

int n; 

/* get size of 

declare the signals between 
*ý 

nun intsigs = 0; 
for (n _=0; n< numports; n++) 

if (port_list[n]. size == 1) ( 
fprintf(file, "signal int_%s 

%s; \n", port_list[n]. name, port list[n]. type); 
num int_sigs++; 

} 
else { 

fprintf(file, "signal int %s : %s(%d to 
%d); \n", port_list[n]. name, port_list[n]. type, port list[n]. min 
, port_list[n]. max); 

num int_sigs+= port_list[n]. size; 

fprintf(file, "signal nextt : bit_vector(0 to 
%d); \n", num int_sigs); 
} 

void put_bscan_cells(file) /* add the bscan cells 
to the file */- 

FILE *file; 

int n, a; 
int gen = 0; 
int sig num=o; 

for (n = O; n < num_ports; n++) 
if (strncmp(port list[n]. mode, "IN", 2) == 0 && 

port_list[n]. size == 1) 
fprintf(file, " bscan%d : bscan port map(shiftdr, 

clockdr, updatedr, nextt(%d), %s, mode, nextt(%d), 
int_%s); \n", n, sig_num, port_list[n]. name, sig_num+l, port_list[ 
n]. name); 

sig_num++; 

else if (port_list[n]. size == 1) 
fprintf(file, " bscan%d : bscan port map(shiftdr, 

clockdr, updatedr, nextt(%d), int_%s, mode, nextt(%d), 
%s); \n", n, sig_num, port_list[n]. name, sig num+l, port_list[n]. n 
ame) ; 

sig_num++; 



else if (strncmp(port_list[n]. mode, "IN", 2) __: 0) ( 
/* use generate for buses */ 

fprintf(file, " Gad : for I in 0 to %d 
generate\n", gen, port_list[n]. size-1); 

fprintf(file, " bscan_gen%d : bscan port 
map(shiftdr, clockdr, updatedr, nextt(%d + I), %s(I+%d), 
mode , nextt(%d+I+1), 
int %s(%d+I)); \n", gen, sig_num, port_list[n]. name, port_list[n] 
. min, sig_num, port_list[n]. name, port list[n]. min); 

fprintf(file, " end generate; \n"); 
sig_num+= port_list[n]. size; 
gen++; 

} 
else { 

fprintf(file, " Gad : for I in 0 to %d 
generate\n", gen, port_list[n]. size-1); 

fprintf(file, " bscan_gen%d : bscan port 
map(shiftdr, clockdr, updatedr, nextt(%d + I), int_%s(I+%d), 
mode , nextt(%d+I+l), 
%s(%d+I)); \n", gen, sig_num, port_list[n]. name, port_list[n]. min 
, sig_num, port 

_list[n]. 
name, port_list[n]. min); 

fprintf (file, " end generate; \n") ; 
sig_num+= port_list[n]. size; 
gen++; 

i } 
fprintf(file, "\n test regs(2) <= 

nextt (%d) ; \n", num int_sigs) ; 



Appendix 7D 

EXTRACT/INSERT environment used with a DFF design example 1. 



library vdeg portable; 
use vdeg_portable. types. all; 
use, work. declar. all; 

entity dff_jtag is 
port(TCK, TMS, TDI : in bit; 

TDO :. out logic4; 
D: INOUT Bit; 
Clk : IN Bit; 
Q: OUT Bit); 

end dff_jtag; 

architecture behau jtag of dff_jtag is 

component bscan 
generic (Setup_Time, 
Hold_Time, 
Mux_Del, 
Dtype_Del : Time :=3 ns); 
Port (ShiftDR, C1ockDR, UpdateDR, 

Last Cell, S 
_In, 

Mode: in bit; 
Next Cell: inout bit; 
S_Out: out bit); 

end component; 

component tdo buffer 
generic (setup_time, 

Tdo del: Time :=3 ns) 
port( 
TCK, 
Enablee, 
Input: in Bit; 
TDO: out Logic4 

end component; 

hold time, Min_, pulse width, Del, 

component bypass_reg 
generic (Setup_Time, 
Hold Time, 
MPulse_width, 
AND Del, 
Bypass Del : Time :=3 ns) 
Port (ShiftDR, ClockDR, 

TDI: in bit; 
TDO: out bit); 

end component; 

component inst decode 
generic (Instruction_set: bitvector :_ "00000000"; 

DR_select_Set, Test Mode_Set, Additional Signals_Set 
: bit vector := "00000000"; 
Open_Check: Boolean := false; 
Dec Del: time :=3 ns); 

port ( Instruction: in bit vector(0 to 7); 
DR Select: out bit vector(0 to 7); 



Test Mode: out bit vector(0 to 7); 
Additional Signals : out bit_vector(O to 

7)); 
end component; 

component ident reg 
generic 

(setup_time, Hold_Time, MPulse_Width, Mux_Del: Time :=3 ns; 
ID code : bit_vector 

11000000000000000111); 
port( 
Select_Ident, 
ShiftDR, 
C1ockDR, 
TDI: in Bit; 
TDO:, out Bit 

end component; 

component reg_inst 
generic 

(Setup_Shift Time, Hold Shift_Time, MPulse Width Shift, 

Setup Update_Time, Hold Update_Time, MPulse Width Update, 
Mux_Del, Stage_Shift Del, Stage Update_Del: time 

:=3 ns) ; 

port(Reset, 
ClockIR, 
UpdatelR, 
ShiftlR, 
TDI: in bit; 
Status: in bit_vector(O TO 7); 
Instruction: out bit_vector(O TO 7); 
TDO: out bit); 

end component; 

component mux 1 
generic 
instruction_set : bit_vector(O to 7) :a 

"00000000"; 
tdo_test 

_data _registers-set : integer vector 
(0,0,0,0,0,0,0,0); 

mux_del : time :=3 ns); 
port ( 
tdotest data registers: in bit vector(0 to 7); 
instruction : in bit_vector(0 to 7); 
tdo: out bit); 

end component; 

component mux 2 
generic (mux_del : time :=3 ns); 
-port ( 
tdo_test 

_data _registers, tdo_instruction, 
-selectt : in bit; 
-tao : out bit); 

end component; 



component tap_c 
generic (Setup_Time, Hold time, Min Pulse Width 11 

Min_Pulse Width_0, S_Odel, Odel: Time 3 
ns) ; 

PORT 
TMS, 
TCK: in bit; 
Reset, 
Selectt, 
Enable, 
ShiftlR, 
ClockIR, 
UpdatelR, 
ShiftDR, 
UpdateDR, 
ClockDR : out bit 

end component; 

component dff 
port ( 

D: INOUT Bit; 
Clk : IN Bit; 
Q: OUT Bit); 

end component; 

constant one high : bit vector(0 to 7) :- "00000001"; 

signal temp : bit vector(0 to 7) := one high; 
signal shiftir, clockir, updateir : bit; 
signal shiftdr, clockdr, updatedr : bit; 
signal mode, inst tdo, indent tdo, enablee, reset: bit; 
signal data_tdo, selectt, select_id, buff_tdo, bypass_tdo 
: bit; 
signal dr select, instruction, test mode, test_regs : 
bit vector(0 to 7); 
signal int D: Bit; 
signal int Clk : Bit; 
signal int_Q : Bit; 
signal nextt : bit vector(0 to 3); 

begin 
test regs(0) <= bypass tdo; 
test_regs(l) <= indent_tdo; 
mode <= test mode(0); 
select_id <= test_mode(1); 
nextt(0) <= TDI; 

tap : tap_c port map 
(tms, tck, reset, selectt, enablee, shiftir, 

clockir, updateir, shiftdr, updatedr, clockdr); 
bypass : bypass_reg port map 

(shiftdr, clockdr, TDI, bypass tdo); 



instruct : reg_inst port 
map(reset, clockir, updateir, shiftir, TDI, temp, instruction, i 
nst_tdo); 

ident : ident reg port map(select_id, shiftdr, 
clockdr, tdi, indent tdo); 

decoder : inst_decode port map(instruction, dr_select, 
test mode, open); 

mux2 : mux 2 port map(data_tdo, inst_tdo, selectt, 
buff tdo); 

muxi : mux 1 port map(test regs, dr_select, data_tdo); 
tdo_buff : tdo_buffer port map(tck, enablee, buff tdo, 

tdo) ; 
bscanO : bscan port map(shiftdr, clockdr, updatedr, 

nextt(O), D, mode, nextt(1), int D); 
bscanl : bscan port map(shiftdr, clockdr, updatedr, 

nextt(l), Clk, mode, nextt(2), int Clk); 
bscan2 : bscan port map(shiftdr, clockdr, updatedr, 

nextt(2), int Q, mode, nextt(3), Q); 

test regs(2) <= nextt(3); 
end behav_jtag; 



Appendix 7E 

EXTRACT/INSERT environment used with a CPU design example 2. 



-- ibrary vdeg. portable; -- 
use vdeg_portable. types. all; 
entity cpu is 
port 

clock, sel : in logic4; 
enable : in logic4; 
data : inout BusAnd(l to 8); 
addr : inout BusAnd(1 to 8); 
zero : out logic4; 
rd : inout logic4; 
rdl : inout logic4; 
wri : inout logic4; 
wr : inout logic4 

end cpu ; 
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I PIN NAME PIN MODE PIN TYPE BUS WIDTH STARTING 

0 Clock IN Logic4 1 0 
1 Sel IN Logic4 1 0 
2 Enable IN Logic4 1 0 
3 Data INOUT Busand 7 1 
4 Addr OUT Busand 7 1 
S Zero OUT Logic4 1 0 
6 Rd INOUT Logic4 1 0 
7 Rdl INOUT Logic4 1 0 
8 Wrl INOUT Logic4 1 0 
9 Wr INOUT Logic4 1 0 
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component cpu is 
port ( 

Clock : IN Logic4; 
Sel : IN Logic4; 
Enable : IN Logic4; 
Data : INOUT Busand(l 
Addr : OUT Busand(l to 
Zero : OUT Logic4; 
Rd : INOUT Logic4; 
Rdl : INOUT Logic4; 
Wri : INOUT Logic4; 
Wr : INOUT Logic4); 

end component; 

to 8); 
8); 

constant one-high : bit_vector(0 to 7) := 000000001`; 

shiftir, clockir, updateir : bit; 
shiftdr, clockdr, updatedr : bit; 
mode, inst_tdo, indent_tdo, enablee, reset: bit; 
data_tdo, selectt, select_id, buff_tdo, bypass_tdo : bit; 
dr_select, instruction, test node, test_regs : bit_vector(O 
int_Clock : Logic4; 
int Sel : Logic4; 
int_Enable : Logic4; 
int Data : Busand(l to 8); 
int_Addr : Busand(l to 8); 
int_Zero : Logic4; 
int Rd : Logic4; 
int_Rdl : Logic4; 
int Wri : Logic4; 
int Wr : Logic4; 
next : bit_vector(O to 22); 

begin 
test_regs(0) <= bypass_tdo; 
test_regs(l) <= indent_tdo; 
mode <= test mode(0); 
select_id <= test_mode(1); 

to 7); 

tap : tap-controller port map (tms, tck, reset, selectt, enablee, shiftir, 
clockir, updateir, shiftdr, updatedr, clockdr); 

bypass : bypss_reg port map (shiftdr, clockdr, TDI, bypass_tdo); 
instruct : reg-instruction port map(reset, clockir, updateir, shiftir, TDI, one_high, instruc 
ident : indent-reg port map(select_id, shiftdr, clockdr, tdi, indent_tdo); 
decoder : instruction_decoder port map(instruction, dr_select, test-Mode, open); 
mux2 : mux2 port map(data_tdo, inst_tdo, selectt, buff_tdo); 
muxl : muxl port map(test_regs, dr_select, data_tdo); 
tdo_buff : tdo_buffer port map(tck, enablee, buff_tdo, tdo); 
bscan0 : bscan port map(shiftdr, clockdr, updatedr, next(0), Clock, mode, next(l), int_ 
bscanl : bscan port map(shiftdr, clockdr, updatedr, next(1), Sel, mode, next(2), int Se 
bscan2 : bscan port map(shiftdr, clockdr, updatedr, next(2), Enable, mode, next(3), int 
GO : for I in 0 to 6 generate 

bscan_genO : bscan port map(shiftdr, clockdr, updatedr, next(3 + I), Data(I+1), mode 
end generate; 
C1 : for I in 0 to 6 generate 

bscan_genl : bscan port map(shiftdr, clockdr, updatedr, next(10 + I), int Addr(I+1), 

end generate; 
bscan5 : bscan port map(shiftdr, clockdr, updatedr, next(17), int_Zero, mode, next(18), 
bscan6 : bscan port map(shiftdr, clockdr, updatedr, next(18), Rd, mode, next(19), int_R 
bscan7 : bscan port map(shiftdr, clockdr, updatedr, next(19), Rdl, mode, next(20), int_ 
bscan8 : bscan port map(shiftdr, clockdr, updatedr, next(20), Wrl, mode, next(21), int_ 
bscan9 : bscan port map(shiftdr, clockdr, updatedr, next(21), Wr, mode, next(22), int W 

test_regs(2) <= next(22); 
end behav_jtag; 
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component REG_INSTRUCTION is 
generic (Setup_Shift_Time, Hold_Shift_Time, MPulse Width_Shift, 

Setup_Update_Time, HoldUpdate_Time, MPulse_Width_Update, 
Mux_Del, Stage_Shift_Del, Stage_Update_Del: time :=3 ns); 

port(Reset, 
ClockIR, 
UpdatelR, 
ShiftlR, 
TDI: in bit; 
Status: in bit vector(0 TO 7); 
Instruction: out bit_vector(O TO 7); 
TDO: out bit); 

end component; 

component mux_1 IS 
generic 
instruction_set : bit_vector(0 to 7); 
tdo_test_data_registers_set : integer; 
mux_del : time :=3 ns); 
port ( 
tdo_test_data_registers: in bit_vector(0 
instruction : in bit_vector(0 to 7); 
tdo: out vlbit); 

lend component ; 

component mux_2 is 
generic (mux_del : time :=3 ns); 
port 
tdo_test_data_registers, 
tdo_instruction, 
selectt : in bit; 
tdo : out bit); 

end component; 

to 7); 

[component REG_BSCAN is 
generic (System_pin_type_types: String_vector; 
SUT_Capture, HT_Capture, MDEL, SUT Update, HT Update 

port( 
Select_Bscan, 
Reset, 
ShiftDR, 
ClockDR, 
UdateDR, 
TDI: in Bit; 
Parallel_Input: in Bit vector; 
TestUode: in Bit vector(0 to 1); 
Paralleloutput: out Bit_vector; 
TDO: out Bit 

end component; 

: time :=3 ns); 

component tap_controller IS 
generic (Setup Time, Hold_time, Min_Pulse Width_1, 

Min_Pulse_Width_0, S_Odel, Odel: Time :=3 ns); 
PORT 
TMS, 
TCK: in bit; 
Reset, 
Selectt, 
Enable, 
ShiftlR, 
ClockIR, 
UpdatelR, 
ShiftDR, 
UpdateDR, 
ClockDR : out bit 

end component; 
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entity cpu_jtag is 
port(TCK, TMS, TDI, TDO : in bit; 

Clock : IN Logic4; 
Sel : IN Logic4; 
Enable : IN Logic4; 
Data : INOUT Busand(l to 8); 
Addr : OUT Busand(l to 8); 
Zero : OUT Logic4; 
Rd : INOUT Logic4; 
Rdl : INOUT Logic4; 
Wrl : INOUT Logic4; 
Wr : INOUT Logic4); 

end cpu_jtag; 

architecture behau jtag of cpu_jtag is 

component BSCAN is 
generic (Setup_Time, 
Hold_Time, 
Mux_Del, 
Dtype_Del : Time :=3 ns); 
Port (ShiftDR, ClockDR, UpdateDR, 

Last_Cell, S_In, Mode: in bit; 
Next_Cell: buffer bit; 
S -Out: out bit); 

end component; 

component TDO_Buffer is 
generic (setup_time, hold_time, Min_pulse width, Del, Tdo_del: Time :=3 ns); 
port( 
TCK, 
Enablee, 
Input: in Bit; 
TDO: out Tristate 

end component; 

component BYPASS_REG is 
generic (Setup Time, 
Hold_Time, 
MPulse_width, 
AND_Del, 
Bypass_Del : Time :=3 ns); 
Port (ShiftDR, ClockDR, 

TDI: in bit; 
TDO: out bit); 

lend component; 

component INSTRUCTION_DECODER is 
generic (Instruction_set: bit_vector; 

DR_select Set, Test_Mode_Set, Additional Signals_Set 
: bit_vector, 
Open_Check: Boolean; 
Dec_Del: time :=3 ns); 

port ( Instruction: in bit_vector(O to 7); 
DR_Select: out bit vector(0 to 7); 
Test Mode: out bit vector(0 to 7); 
Additional Signals : out bit_vector(O to 7)); 

end component; 

component IDENT_REG is 
generic (setup_time, Hold_Time, MPulse_Width, Mux_Del: Time :=3 ns); 
port( 
Select_Ident, 
ShiftDR, 
ClockDR, 
TDI: in Bit vector; 
TDO: out Bit 

end component; 
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-- ibrary vdeg_portable; -- 
use vdeg portable. types. all; 
entity cpu is 
port 

clock, sel : in logic4; 
enable : in logic4; 
data : inout BusAnd(l to 8); 
addr : inout BusAnd(l to 8); 
zero : out logic4; 
rd : inout logic4; 
rdl : inout logic4; 
wrl : inout loaic4: 
wr : inout logic4 

end cpu; 
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I 
- 

PIN NAME 
------ 

PIN MODE 
----------------- 

PIN TYPE 
--- -- 

BUS WIDTH STARTING 
- 

0 ---------- 
Clock IN 

------ --- 
Logic4 

---------------- 
1 

----------- 
0 

1 Sel IN Logic4 1 0 
2 Enable IN Logic4 1 0 
3 Data INOUT Busand 7 1 
4 Addr OUT Busand 7 1 
5 Zero OUT Logic4 1 0 
6 Rd INOUT Logic4 1 0 
7 Rdl INOUT Logic4 1 0 
8 Wri INOUT Logic4 1 0 
9 Wr INOUT Logic4 1 0 
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entity cpu_jtag is 
port(TCK, TMS, TDI, TDO : in bit; 

Clock : IN Logic4; 
Sel : IN Logic4; 
Enable : IN Logic4; 
Data : INOUT Busand(l to 8); 
Addr : OUT Busand(l to 8); 
Zero : OUT Logic4; 
Rd : INOUT Logic4; 
Rdl : INOUT Logic4; 
Wrl : INOUT Logic4; 
Wr : INOUT Logic4); 

end cpu_jtag; 

architecture behav_jtag of cpu_jtag is 

component BSCAN is 
generic (Setup_Time, 
Hold Time, 
Mux_Del, 
Dtype_Del : Time :=3 ns); 
Port (ShiftDR, ClockDR, UpdateDR, 

Last_Cell, S_In, Mode: in bit; 
Next_Cell: buffer bit; 
S_Out: out bit); 

end component; 

component TDO_Buffer is 
generic (setup_time, hold-time, Min_pulse_width, Del, Tdo_del: Time :=3 ns); 
port( 
TCK, 
Enablee, 
Input: in Bit; 
TDO: out Tristate 

end component; 

component BYPASS_REG is 
generic (Setup_Time, 
Hold-Time, 
MPulse_width, 
AND_Del, 
Bypass_Del : Time :=3 ns); 
Port (ShiftDR, ClockDR, 

TDI: in bit; 
TDO: out bit); 

end component; 

component INSTRUCTION_DECODER is 
generic (Instruction_set: bit_vector; 

DR_select Set, Test_Mode_Set, Additional_Signals_Set 
: bit_vector, 
Open_Check: Boolean; 
Dec_Del: time :=3 ns); 

port ( Instruction: in bit vector(0 to 7); 
DR_Select: out bit_vector(O to 7); 
Test_Mode: out bit_vector(0 to 7); 
Additional Signals : out bit vector(0 to 7)); 

end component; 

component IDENT_REG is 
generic (setup_time, Hold_Time, MPulse_Width, Mux_Del: Time :=3 ns); 
port( 
Select_Ident, 
ShiftDR, 
ClockDR, 
TDI: in Bit vector; 
TDO: out Bit 

end component; 
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component cpu is 
port ( 

end component; 

to 8); 
8); 

constant one_high : bit_vector(O to 7) := 0000000010; 

signal shiftir, clockir, updateir : bit; 
signal shiftdr, clockdr, updatedr : bit; 
signal mode, inst_tdo, indent_tdo, enablee, reset: bit; 
signal data_tdo, selectt, select_id, buff_tdo, bypass_tdo : bit; 
signal dr_select, instruction, test-mode, test_regs : bit_vector(0 to 7); 
signal int_Clock : Logic4; 
signal int_Sel : Logic4; 
signal int_Enable : Logic4; 
signal int_Data : Busand(l to 8); 
signal int_Addr : Busand(l to 8); 
signal int_Zero : Logic4; 
signal int_Rd :. Logic4; 
signal int_Rdl : Logic4; 
signal int Wrl : Logic4; 
signal int Wr : Logic4; 
signal next : bit_vector(0 to 22); 

begin 
test_regs(O) <= bypass_tdo; 
test_regs(l) <= indent_tdo; 
mode <= test_mode(0); 
select-id <= test_mode(l); 

tap : tap_controller port map (tms, tck, reset, selectt, enablee, shiftir, 
clockir, updateir, shiftdr, updatedr, clockdr); 

bypass : bypss_reg port map (shiftdr, clockdr, TDI, bypass_tdo); 
instruct : reg-instruction port map(reset, clockir, updateir, shiftir, TDI, one_high, instruc 
ident : indent_reg port map(select_id, shiftdr, clockdr, tdi, indent_tdo); 
decoder : instruction decoder port map(instruction, dr_select, test-mode, open); 
mux2 : mux2 port map(data_tdo, inst_tdo, selectt, buff_tdo); 
muxl : muxl port map(test_regs, dr_select, data_tdo); 
tdo_buff : tdo_buffer port map(tck, enablee, buff_tdo, tdo); 
bscanO : bscan port map(shiftdr, clockdr, updatedr, next(O), Clock, mode, next(l), int_ 
bscani : bscan port map(shiftdr, clockdr, updatedr, next(l), Sel, mode, next(2), int_Se 
bscan2 : bscan port map(shiftdr, clockdr, updatedr, next(2), Enable, mode, next(3), int 
GO : for I. in 0 to 6 generate 

bscan_genO : bscan port map(shiftdr, clockdr, updatedr, next(3 + I), Data(I+1), mode 
end generate; 
G1 : for I in 0 to 6 generate 

bscan_geni : bscan port map(shiftdr, clockdr, updatedr, next(10 + I), int_Addr(I+1), 
end generate; 
bscan5 : bscan port map(shiftdr, clockdr, updatedr, next(17), int_Zero, mode, next(18), 
bscan6 : bscan port map(shiftdr, clockdr, updatedr, next(18), Rd, mode, next(19), int_R 
bscan7 : bscan port map(shiftdr, clockdr, updatedr, next(19), Rdl, mode, next(20), int_ 
bscan8 : bscan port map(shiftdr, clockdr, updatedr, next(20), Wrl, mode, next(21), int_ 
bscan9 : bscan port map(shiftdr, clockdr, updatedr, next(21), Wr, mode, next(22), int W 

test_regs(2) <= next(22); 
end behav_jtag; 

Clock : IN Logic4; 
Sel : IN Logic4; 
Enable : IN Logic4; 
Data : INOUT Busand(l 
Addr : OUT Busand(1 to 
Zero : OUT Logic4; 
Rd : INOUT Logic4; 
Rdl : INOUT Logic4; 
Wrl : INOUT Logic4; 
Wr : INOUT Logic4); 
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APPENDIX F- JTAG. COMP FILE 

This file contains all components of the JTAG 
Architecture 

component bscan 
generic (Setup Time, 
Hold 

" 
Time, 

Mux_Del, 
Dtype_Del : Time :=3 ns); 
Port (ShiftDR, ClockDR, UpdateDR, 

Last Cell, S 
_In, 

Mode: in bit; 
Next_Cell: inout bit; 
S_Out: out bit); 

end component; 

component tdo buffer 
generic (setup_time, 

Tdodel: Time : =_3 ns) 
po_rt( 
TCK, 
Enablee, 
Input: in Bit; 
TDO: out Logic4 

end component; 

hold time, Min_pulse width, Del, 

component bypass_reg 
generic (Setup_Time, 
Hold Time, 
MPulse_width, 
AND_Del, 
Bypass_Del : Time :=3 ns) 
Port (ShiftDR, ClockDR, 

TDI: in bit; 
TDO: out bit); 

end component; 

component inst decode 
generic (Instruction_set: bit_vector := "00000000"; 

DR_select_Set, Test Mode Set, Additional_Signals_Set 
: bit vector := "00000000"; 
open 

_Check: 
Boolean := false; 

Dec Del: time :=3 ns); 
port ( Instruction: in bit vector(0 to 7); 

DR Select: out bit vector(0 to 7); 
Test Mode: out bit vector(0 to 7); 
Additional_Signals : out bit_vector(O to 

7)); 
end component; 



component ident reg 
generic 

(setup time, Hold Time, MPulse Width, Mux De1: Time :=3 ns; 
ID code : bit vector 

"0000000000000001"); 
port( 
Select Ident, 
ShiftDR, 
ClockDR, 
TDI: in Bit; 
TDO: out Bit 

end component; 

component reg_inst 
generic 

(Setup_Shift_Time, HoldShift Time, MPulse Width_Shift, 

Setup Update Time, Hold Update Time, MPulse_WidthUpdate, 
Mux Del, Stage_Shift_Del, Stage_Update_Del: time 

"- 3 ns)" 

port(Reset, 
ClockIR, 
UpdatelR, 
ShiftlR, 
TDI: in bit; 
Status: in bit vector(0 TO 7); 
Instruction: out bit_vector(0 TO 7); 
TDO: out bit); 

end component; 

component mux_1 
generic ( 
instruction_set : bit vector(0 to 7) 

"00000000"; 
tdo_test data_registers_set : integer vector 

(0,0,0,0,0,0,0,0); 
mux del : time :=3 ns); 
port ( 
tdo test data_registers: in bit vector(0 to 7); 
instruction : in bit vector(0 to 7); 
tdo: out bit); 

end component; 

component mux 2 
generic (mux_del : time :=3 ns); 
port ( 
tdo test data registers, 
tdo_instruction, 
selectt : in bit; 
tao : out bit); 

end component; 



component tap_c 
generic (Setup_Time, Hold_time, Min Pulse Width 1, 

Min_Pulse_Width_O, S_Odel, Odel: Time :-3 
ns) ; 

PORT 
TMS, 
TCK: in bit; 
Reset, 
Selectt, 
Enable, 
ShiftlR, 
C1ockIR, 
UpdatelR, 
ShiftDR, 
UpdateDR, 
ClockDR : out bit 

end component; 



APPENDIX F- JTAG. INB FILE 

This file instantiates the JTAG Components 

test regs(0) <= bypasstdo; 
test regs(t) <= indent__tdo; 
mode <= test mode(0); 
select_id <= test mode(l); 
nextt(0) <= TDI; 

tap : tap_c port map 
(tms, tck, reset, selectt, enablee, shiftir, 

clockir, updateir, shiftdr, updatedr, clockdr); 
bypass : bypass_reg port map 

(shiftdr, clockdr, TDI, bypass_tdo); 
instruct : reg_inst port 

map(reset, clockir, updateir, shiftir, TDI, temp, instruction, i 
nst tdo) ; 

ident : ident reg port map(select_id, shiftdr, 
clockdr, tdi, indent tdo); 

decoder : inst_decode port map(instruction, dr_select, 
test mode, open); 

mux2 : mux_2 port map(data_tdo, inst_tdo, selectt, 
buff tdo); 

müxi : mux_1 port map(testregs, dr select, data_tdo); 
tdo_buff : tdo_buffer port_map(tck, enablee, buff_tdo, 

tdo); 



APPENDIX F- JTAG. SIG FILE 

This file contains the standard JTAG signals 

constant one high : bit vector(0 to 7) :_ "00000001"; 

signal temp : bit vector(0 to 7) := one high; 
signal shiftir, clockir, updateir : bit; 
signal shiftdr, clockdr, updatedr : bit; 
signal mode*, inst_tdo, indent_tdo, enablee, reset: bit; 
signal data_tdo, selectt, select_id, buff_tdo, bypass_tdo 
: bit; 
signal dr select, instruction, test mode, test_regs : 
bit vector(0 to 7); 



APPENDIX F- JTAG. USE FILE 

This file encloses the required VHDL Libraries 

library vdegportable; 
use vdegportable. types. all; 
use work. declar. all; 
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