
High Level Behavioural Modelling of
Boundary Scan Architecture

S. S. A. Med h at
Bournemouth University

PhD 1993

High Level Behavioural Modelling of
Boundary Scan Architecture

Sa'ad Sabih Ahmed Medhat

Submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy under the conditions for the

award of higher degrees of the Bournemouth University.

APRIL 1993

Bournemouth University

In Collaboration with:

Siemens Plessey Systems, Christchurch, Dorset

ACKNOWLEDGEMENTS

The author wishes to express his thanks and gratitude to a

number of people, who have given their time and resources to

support the research in this thesis.

To Mr Alan Potton, Director of Studies, of the Bournemouth

University, for his aid in academic matters relating to

content presentation of this thesis.

To Professor Ted Pritchard, of Huddersfield University and

to Mr. Brian Wilkins of Southampton University, both for

their invaluable contributions and suggestions through the

research.

To Martin Linda and Toby Williams, of Siemens Plessey

Systems, and Ian Black of Mentor Graphics, for their

industrial advice and guidance.

To David Lincoln and Maurice Downing, Apollo Systems Group

at Bournemouth University for trouble-shooting workstation

problems.

The author's greatest thanks go, of course, to his family

for their support, encouragement and understanding.

INDEX

SUMMARY I
RATIONALE II
INTRODUCTION IV
AIM VI
OBJECTIVES VI
THESIS TAXONOMY VII

CHAP TER 1

OVERVIEW OF TEST TECHNOLOGY PRIOR TO JTAG

1.0 INTRODUCTION 1-1
1.1 DEFINITIONS 1-2
1.2 BACKGROUND 1-2
1.3 TEST TECHNOLOGY PRIOR TO IEEE 1149.1 STANDARD 1-7
1.4 COST OF TEST 1-9

CHAP TER 2
DESIGN FOR TEST AND TEST TECHNIQUES

2.0 INTRODUCTION 2-1
2.1 VLSI TEST PROCESS 2-2

2.2 VLSI TEST PHASES 2-2
2.3 THE DEFINITION OF A TESTABLE BLOCK 2-3
2.4 DESIGN TECHNIQUES FOR TESTABILITY 2-4
2.5 AD-HOC DESIGN TECHNIQUES FOR TESTABILITY 2-5
2.5.1 INITIALISATION 2-7
2.5.2 A METHOD OF TESTING COUNTERS 2-7
2.5.3 REDUCING THE TEST PIN COUNT 2-9
2.6 AD-HOC TECHNIQUES - FOR AND AGAINST 2-10
2.7 STRUCTURED DESIGN TECHNIQUES FOR TESTABILITY 2-11
2.7.1 PRINCIPLES OF INTERNAL SCAN PATH DESIGN 2-13
2.8 SCAN PATH TESTING - FOR AND AGAINST 2-15
2.9 BUILT-IN SELF-TEST AND STRUCTURED DESIGN FOR TEST 2-16
2.10 BUILT-IN SELF-TEST - FOR AND AGAINST 2-18
2.11 COMBINATION OF SCAN PATH AND BUILT-IN-

SELF-TEST TECHNIQUES 2-20
2.12 HYBRID DESIGN FOR TEST - FOR AND AGAINST 2-20
2.13 TEST ACCESS AND BOUNDARY SCAN 2-22
2.14 BOUNDARY SCAN AND IN-SYSTEM TESTING 2-27
2.15 BOUNDARY SCAN AND SYSTEM TEST INTERFACE 2-27
2.16 BOUNDARY SCAN AND SOFTWARE ELEMENTS 2-28
2.17 ADVANTAGES OF BOUNDARY SCAN PATH 2-29
2.18 CONCLUSIONS 2-29

CHAP TER 3
REVIEW OF BOUNDARY SCAN DESIGN

3.0 INTRODUCTION 3-1
3.1 TRENDS IN THE ELECTRONICS INDUSTRY 3-2
3.2 THE STANDARDISATION EFFORT 3-3
3.3 IMPLEMENTATION OF BOUNDARY SCAN ARCHITECTURE

INTO INTEGRATED CIRCUITS 3-3
3.4 IEEE 1149.1 CONFORMANCE TESTING 3-7
3.5 BOUNDARY SCAN & BUILT IN SELF TEST 3-8
3.6 ADAPTATION TO CAE TOOLS 3-9
3.7 BSA AND TEST PATTERN GENERATION 3-9
3.8 BSA AND ATE 3-10
3.9 BSA AND POWER SUPPLY TERMINALS 3-14
3.10 BSA AND ANALOG COMPONENTS 3-15
3.11 SYSTEM COMPANY APPLICATIONS OF BSA 3-15
3.12 BSA AND RELATED DEVELOPMENTS 3-16
3.13 VHDL FOR CAD/CAE/CAT 3-16
3.14 VHDL FEATURES FOR CAD/CAE/CAT 3-21
3.15 IN CONCLUSION - THE PROPOSED PROJECT 3-22

CHAPTER 4
VHDL DESIGN AND MODELLING TECHNIQUES

4.0 INTRODUCTION TO VHDL 4-1

4.1 DEFINITION OF VHDL 4-2
4.2 OPEN - SYSTEM DESIGN AUTOMATION ARCHITECTURE 4-2
4.3 VHDL AND THE ASIC DESIGN PROCESS 4-2
4.4 VHDL DESIGN HIERARCHY 4-5
4.5 VHDL MODES OF OPERATION 4-9
4.6 VHDL STRUCTURES 4-10
4.7 VHDL DESIGN HIERACHY AND DATA BASE 4-10
4.8 DESIGN DESCRIPTION METHODS 4-12
4.8.1 STRUCTURAL DESCRIPTION 4-13
4.8.2 BEHAVIORAL DESCRIPTION 4-16
4.8.3 DATA FLOW DESCRIPTION 4-19
4.9 BEHAVIORAL MODELLING OF 4 BIT MULTIPLIER 4-20
4.9.1 VHDL BEHAVIOURAL MODEL OF MULTIPLIER 4-22
4.9.2 SIMULATION AND TEST VECTORS 4-22
4.10 CONCLUSIONS 4-23

CHAPTER 5
THE IEEE 1149.1 BOUNDARY SCAN ARCHITECTURE

5.0 INTRODUCTION 5-1
5.1 JTAG BOUNDARY SCAN ARCHITECTURE TEST MODES 5-2
5.2 JTAG BOUNDARY SCAN ARCHITECTURE MAIN COMPONENTS 5-5
5.3 THE TAP 5-7
5.4 BOUNDARY SCAN 5-11
5.4.1 BOUNDARY LOOP 0 RULES 5-14
5.4.2 THE TEST REGISTER TEST MODES 5-15
5.4.2.1 RUN 5-16

5.4.2.2 HOLD DATA 5-17
5.4.2.3 SHIFT DATA 5-17
5.4.2.4 TEST PSEUDO-RANDOM GENERATE 5-18
5.4.2.5 TEST SIGNATURE-ANALYSE 5-18
5.4.2.6 TEST SLIDE 5-18
5.4.2.7 TEST HOLD 5-18
5.5 INSTRUCTION REGISTER 5-20
5.5.1 JTAP INSTRUCTION REGISTER 5-20
5.5.2 RESERVED JTAG INSTRUCTIONS 5-23
5.6 BYPASS REGISTER 5-24
5.7 DEVICE IDENTIFICATION REGISTER 5-25
5.8 TEST ACCESS PORT (TAP) 5-26
5.8.1 JTAG SIGNALS (JCK, TMS, TDI, TDO, TRST) 5-27

5.9 RECOMMENDATIONS 5-32
5.9.1 HOW TO LAY OUT THE TEST REGISTER 5-32
5.9.2 PSEUDO RANDOM TEST 5-33
5.9.3 AUTONOMOUS SELF-TEST (RUNBIST) 5-34
5.10 CONCLUSIONS 5-34

CHAPTER 6
HIGH LEVEL VHDL MODELLING OF BOUNDARY SCAN
ARCHITECTURE

6.0 INRODUCTION 6-1
6.1 BACKGROUND 6-2
6.2 MODELLING OF THE JTAG ARCHITECHTURE 6-3
6.3 JTAG BOUNDARY SCAN ARCHITECTURE TIMMING AND

PERFORMANCE ISSUES 6-4
6.3.1 CLOCK OPERATION 6-4
6.3.2 SET-UP AND HOLD TIMES 6-4
6.3.3. PROPAGATION DELAY OF SIGNALS 6-5
6.3.4 TDO-TDI INTERFACE 6-7
6.4 VHDL MODELS FOR BOUNDARY SCAN ARCHITECTURE 6-7
6.5 TAP CONTROLLER MODEL 6-8
6.6 INSTRUCTION REGISTER MODEL 6-13
6.7 INSTRUCTIOM DECODER MODEL 6-16
6.8 BYPASS REGISTER MODEL 6-20
6.9 BOUNDARY SCAN REGISTER MODEL 6-22
6.10 IDENTIFICATION REGISTER MODEL 6-27
6.11 1 MODEL MULTIPLEXER MUX 6-29
6.12 _ MULTIPLEXER MUX 2 MODEL 6-31
6.13 _ SERIAL OUTPUT BUFFER MODEL (TDO) 6-32
6.14 CONCLUSIONS 6-34

CHAP TER 7
THE PARSING AND INSERTION ALGORITHM

7.0 INTRODUCTION 7-1
7.1 AN OVERVIEW OF THE HIGH LEVEL PARSING AND 7-2

INSERTION ALGORITHM
7.2 THE VCP PARSER OPERATION 7-3
7.3 THE DEVELOPMENT OF VCP-VERSION 1 7-4
7.4 EXAMPLE OF THE OPERATION OF VCP-VERSION 1 7-6
7.5 LIMITATION OF VCP-VERSION 1 7-9
7.6 THE DEVELOPMENT OF VCP-VERSION 2 7-10
7.7 EXAMPLE OF THE OPERATION OF VCP-VERSION 2 7-15
7. '8 LIMITATION OF VCP-VERSION 2 7-16
7.9 THE INSERTION ALGORITHM 7-17

7.10 DEMONSTRATION OF THE INSERTION ALGORITHM 7-22
7.11 CONCLUSIONS 7-25

CHAPTER 8
COST IMPLICATIONS

8.0 COST OF JTAG 8-1
8.1 AREA COST 8-2
8.2 PIN, CELL CONNECTIONS AND POWER COSTS 8-3
8.3 DELAY COST 8-4
8.4 DESIGN TIME COST AND COST BENEFIT OF THE TOOL 8-4

CHAPTER 9
OVERALL CONCLUSIONS

9.0 THE NOVEL APPROACH OF THE PROJECT
9.1 ACHIEVEMENT OF AIM
9.2 ACHIEVEMENT OF OBJECTIVES

CHAP TER 10
FUTURE WORK

10.0 INTRODUCTION
10.1 GRAPHICAL REPRESENTATION OF VHDL
10.1.1 GRAPHICS HARDWARE DESCRIPTION LANGUAGES GHDLS
10.1.2 GRAPHICS TO VHDL AUTOMATIC CONVERTER
10.2 ANALOGUE IMPLEMENTATION
10.2.1 ANALOGUE TEST APPROACH USING 1149.3 AND 1149.4
10.3 LINKING THE ENVIRONMENT TO SYSNTHESIS TOOLS
10.4 THE ARTIFICIAL INTELLIGENCE ROLE

SUBSETS

9-1
9-3
9-4

10-1
10-2
10-5
10-6
10-8
10-8
10-9

10-11

APPENDICES

SUMMARY

This project involves the development of a software tool

which enables the integration of the IEEE 1149.1/JTAG
Boundary Scan Test Architecture automatically into an ASIC
(Application Specific Integrated Circuit) design.

The tool requires the original design (the ASIC) to be
described in VHDL-IEEE 1076 Hardware Description Language.

The tool consists of the two major elements:
i) A parsing and insertion algorithm developed and

implemented in 'C';
ii) A high level model of the Boundary Scan Test

Architecture implemented in 'VHDL'.

The parsing and insertion algorithm is developed to deal

with identifying the design Input/Output (I/O) terminals,

their types and the order they appear in the ASIC design.

It then attaches suitable Boundary Scan Cells to each I/O,

except power and ground and inserts the high level models of

the full Boundary Scan Architecture into the ASIC without

altering the design core structure.

I

RATIONALE

The concepts of Boundary Scan, and its embodiment in the IEEE

standard 1149.1 (JTAG), are now a fundamental part of Design-

for-Test. The success of the Boundary Scan Architecture (BSA)

ultimately depends on its popularity with Integrated Circuit

(IC) users, rather than semiconductor manufacturers. However,

chip and board manufacturers wanting to use JTAG are

confronted with the lack of software tools to support them.

In addition, the unavailability of generic models of the
boundary scan test architecture has often hindered and
dissuaded designers from developing BSA in accordance with
the IEEE standard, and then including it into their designs.

It is also worth noting that although some ASIC vendors have

started to provide a set of boundary scan test cells in their

libraries, they have failed in providing the associated test

vectors. Furthermore, the designer is required to be able to

understand the IC manufacturer configuration of the standard,

and then include the necessary test cells in accordance with

the guidelines outlined in the specifications of the IEEE

standard. The other factor that ASIC/System Designers require

when contemplating a new design is the ability to try out

ideas at the behavioural/algorithmic level, and to explore a

particular test strategy.

It is therefore suggested that there is a need for a facility

to make JTAG architecture available in a behavioural format

which is both easily applied and economical in simulation
time.

The difficulty that arises in developing high-level models is

that the testability features such as internal scan, and BIST
(Built-in-self-test) are normally confined to the structural
level. This is when internal state information is encoded
into individual bits as represented by the flip-flops on the
internal scan path(s), and the test signals have precise
structural destinations inside the circuit.

II

Thus, the question that arises is how to back-annotate the
high-level models developed presumably in the earlier steps
of the top-down process with the test information that
becomes known at the lower levels. Once such accurate high-

level models are available, the testability features intended

for structural testing could be used in the development of
simplified functional tests of the system to a specific
internal state. In the normal (mission) mode, the system

could then be taken through a number of state transitions to

verify a particular functional feature (eg asynchronous
coupling to verify correct time / synchronisataion), and the

resulting state could then be scanned out for verification.

This research project involves the development of a

parameterised behavioural model of testability features as

specified by the proposed IEEE 1149.1 standard. The IEEE

Hardware Description Language standard (VHDL 1076-1987) will
be used to describe the different models. The project will

examine the use of a suitable VHDL behavioural modelling

style that will allow a consistent integration of testability

features to be extracted from the structural level, and

subsequently included in the behavioural models of the

components. It will also develop an algorithm which enables

the integration of the BSA models into an ASIC design.

III

INTRODUCTION

As the density of integrated circuits mounted on a printed

circuit board increases, the problem of testing these boards

and systems increases too. Manufacturers typically use in-

circuit and functional board test systems to detect defects

in their products.

An in-circuit test was originally designed to verify the

goodness of connections and the operation of components on a

board. Conversely, a functional tester verifies the

function of the entire board/system through its edge

connectors. The board is thus tested as close to the normal

operating conditions as possible.

In-circuit test techniques however, are faced with increasing

difficulties due to surface-mount technology and multi-layer

boards. Whilst the functional test technique is better in

coping with these problems, it carries a penalty of requiring

the generation of comprehensive and complex test programs.

Despite the above difficulties, the majority of components

available on the open market offer only Ad-hoc facilities to

ease the testing problem. The JTAG group (Joint Test Action

Group) initially provided standard and structured testability

features on integrated circuits to simplify testing of boards

and systems. The JTAG effort was continued by the IEEE

standardisation committee, which resulted in the proposed
testability standard 1149. It covers different types of

circuits and test techniques.

This research project concentrates on the 1149.1 portion of
the proposed standard, which is the outgrowth of the JTAG

work and relates to the testing of synchronous digital

circuits.

IV

The aim of the standard is to allow different manufacturers
to provide testability features on their integrated circuits
in such a way that boards constructed using chips from
different sources could form the necessary scan paths and
communicate test control information on the board. It is

foreseen that eventually the majority of the off-the-shelf
components would contain such features.

Another standardisation effort is being expended by IEEE to

provide common means for describing the behaviour/structure

of integrated circuits, boards and systems using the IEEE

1076 VHDL language.

It is possible that components available
be supplied with their models written in

development of models of systems using t

would not only reduce the duplication of
models, but also help with the evolution
its maintenance.

on the market could
VHDL to aid in the

he components. This

work in developing

of the product and

The models supplied with such components would most likely be

behavioural rather than structural, so that the proprietary

nature of designs would be protected. In addition, only such
high-level models would be useful in modelling complex
systems consisting of the interconnects of the components, as

otherwise the verification of these systems by simulation

would become too slow for practical purposes. It requires
the accurate high-level models to be developed for

components, with all of the behavioural features that these

components exhibit. Therefore, all testability features that

are provided inside the components must be included.

This research project takes advantage of the two IEEE
standards and develops the required parameterised VHDL models
of JTAG together with a mechanism for inserting the BSA
(Boundary Scan Architecture) into an ASIC design in a semi-
automatic way.

V

AIM

To design an HDL modelling tool that hides structural details

of JTAG 1149.1 from the ASIC designer, and enables the
insertion of the Boundary-Scan Architecture in a

semi-automatic way.

OBJECTIVES

a) To create a parameterised behavioural model of the IEEE

1149.1 Boundary Scan Architecture using VHDL IEEE 1076

standard.

b) To integrate the Boundary Scan Architecture onto an

ASIC design in a semi-automatic way.

c) To devise a strategy for mapping between levels of

description of a design.

VI

THESIS TAXONOMY

The thesis consist of 10 chapters organised as follows:

CHAPTER 1: Overview of Test Technology Prior to JTAG

It provides an overview of the test technology prior to IEEE

1149.1. The background to the problem of test is briefly

described. It explains the non-viability of applying

exhaustive testing to VLSI systems. The commercial and

engineering considerations associated with design for test at

various levels along the system's integration path are also
highlighted. In addition, the need for Accessibility to

enable system testing is identified.

CHAPTER 2: Design for Test and Test Techniques

It reviews some of the ideas behind VLSI circuit testing and

highlights the problems of testing both combinational and

sequential logic. The aim of circuit testing is identified

including both functional and post fabrication testing. Both

the Ad-Hoc and the Structured Approaches to Design for

Testability are described. The advantages and disadvantages

of both techniques are outlined.

CHAPTER 3: Review of Boundary Scan Design

It reviews the recent literature on Boundary Scan Design. A

historical background to the development of JTAG and the IEEE

1149.1. Boundary Scan Architecture is provided. In addition,

this chapter examines the suitability of VHDL for use in the

Computer Aided Design and Test environment. It therefore
identifies the motivating factors behind the implementation

of this project. In doing so it also identifies the

originality of this work and where this proposed research

relates to recent development in the field.

VII

CHAPTER 4: VHDL Design and Modelling Techniques

It reviews the main features of VHDL Hardware Description

Language. It identifies where VHDL could be used at the

various stages of the system development cycle. VHDL design

hierarchy and data base structure is discussed. VHDL

Description styles are also highlighted. A full design

example and simulation using a4 bit serial multiplier is

fully described.

CHAPTER 5: The IEEE 1149.1 Boundary Scan Test

Architecture

This chapter describes the main operation of the main

components of the IEEE JTAG standard in a structural way. The

architecture is then tested with a simple application logic.

Full simulation results are included.

CHAPTER 6: High Level VHDL Modeling of Boundary Scan

Architecture

This chapter describes the use of Hardware Description

Language VHDL, to describe behaviourally the IEEE 1149.1

Boundary Scan Test Architecture.

High level VHDL models of the JTAG Boundary Scan Architecture

(BSA) are developed and tested, using both Mentor Graphics -

workstation-based environment and View Logic's PC-based

environment.

The use of VHDL facilities such as 'PACKAGE and 'LIBRARY' for

declaring timing elements associated with each model are

highlighted.

VIII

CHAPTER 7: The Parsing and Insertion Algorithm

This chapter describes the design, development and operation

of a high level parser/insertion algorithm developed in "C".

The parsing phase deals with identifying the mode of the

input/output terminals as defined in the entity description

of the application logic. The insertion phase deals with

attaching the appropriate Boundary Scan Cells to the ASIC.

The chapter also integrates the rest of the pre-processed

generic Boundary Scan Architecture- the TAP, Instruction

Register and Decoder, Bypass Register, Identification

Register (Optional) and the Multiplexers- into the ASIC

design in a semi-automatic way. Examples demonstrating the

operation of the algorithm are given.

CHAPTER 8: Cost Implications

Cost and performance implications resulting from the

inclusion of JTAG into an ASIC design are identified and

discussed.

CHAPTER 9: Overall Conclusions

Concluding discussion relating to the achievement of aims and

objectives is presented. This chapter also highlights the

novel outcome of this project.

CHPATER 10: Future Work

This chapter examines the potential for future development on

the work which has been carried out.

IX

CHAPTER 1

OVERVIEW OF TEST TECHNOLOGY PRIOR TO JTAG

1.0 INTRODUCTION

Integrated Circuit technology is now moving from Very Large

Scale Integration (VLSI) to Ultra Large Scale Integration
(ULSI). This major increase in gate count has brought about a
decrease in gate costs along with improvements in

performance. All of these attributes of ULSI are welcomed by

industry. A problem which has never been adequately solved
however, is that of determining in a cost effective way

whether a component, a module or a board has been

manufactured correctly.

The ability to test is a fundamental problem when designing

complex systems, in particular VLSI and ULSI circuits. It is

a requirement which must be integrated at the earliest stages

of the design cycle from the specification level through

functional design to the structural circuit design.

This chapter provides an overview of the test technology

prior to the IEEE 1149.1. [JTAG 90] It briefly describes the
background to the problem of test and explains the non-

viability of applying exhaustive testing to VLSI systems. It

also highlights the commercial and engineering considerations
associated with design for test at various levels along the

systems' integration path. In addition, it identifies the

need for accessibility to enable system testing.

1- 1

1.1 DEFINITIONS

This section clarifies some of the terms associated with

test. [WILL 83], [GREE 86], [AGRA 82], GRAS 80]

TESTING is the Process of Determining the Absence or

Presence and in some cases the Location, of One or More

Design Flaws, Manufacturing Defects, or Field Defects in a

Chip, Board or System.

TESTABILITY is a Design Characteristic which allows the

Status (Operable, Inoperable, or Degraded) of an Item to be

Determined and the Isolation of Faults within the Item to be

Performed in a Timely manner, so as to Reduce Both Test Time

and Cost.

DESIGN FOR TESTABILITY (DFT) is a Deliberate design

Effort (s) Expended to Ensure that Unit is Testable.

1.2 BACKGROUND

In the last few years CMOS technology has become increasingly

dominant for realizing ultra Large Scale Integrated Circuits.

The popularity of this technology is due to its high density

and low power requirement. The ability to realise very

complex circuits on a single chip has brought about a

revolution in the world of electronics and computers.

[MAUN 84], [McAN 87], [PARK 86].

Testing has become a very time consuming process. The

«Problem� is considered to be the resultant of many of the

factors listed below:

1- 2

a. Increasing Circuit Complexity.

Increasing IC Complexity results from increasing IC circuit

densities and consequential gate to pin ratios. In addition,

packaging can complicate the testing problem as a result of

new packaging technology such as Surface Mount, Double Sided

Boards, Multi-layer Boards, Conformal Coating and Multi-Chip

Modules.

b. Increasing Test Generation and Fault Simulation Costs.

The problem with test pattern generation and fault simulation

costs is related to the running time which is likely to be an

exponential function of the number of gates. [IRIS 84]

[BRED 80]

c. Expensive Automatic Test Equipment.

The disparity between the costs of the tester and the UUT

(Unit Under Test) is substantial! Increasing circuit

densities have helped and hindered. Using VLSI in ATE has

lowered the tester cost. However, using VLSI in the UUT has

increased the tester costs.

Other Contributors to the Problem of Testing include:

d. Poor design and test organisational interfaces.

e. Lack of design for testability.
f. Incompatibility within and between design

and test CAE tools.
g. Lack of test requirements.
h. Lack of logic and fault simulation.
i. Test Engineer's lack of access to simulation or

diagnostic vectors.
j. Schedule pressures.
k. Real estate constraints.
1. Performance penalties.

1- 3

Logic designers as far back as the early 1960's were

confronted with testing fairly complicated systems on PCBs.

They did not have the sophisticated software/hardware we have

today to aid them in this task. They had to resort to

primitive methods such as exhaustive testing and/or littering

their PCB's with test points, neither of which can be applied

today to our more complex systems integrated on single chips.

Exhaustive testing can easily be seen to be non-viable if you

consider some basic examples. For example, in a combinational

circuit with n inputs there are 2n possible input patterns

necessary to step through the truth table. Thus: for n=4,

we have 16 steps; n=8,256 steps; n=16,65536 steps and so

on. To simply test the circuits functionally, the number of

steps is seen to rise rapidly. Another more interesting

example is to consider a circuit with 100 nodes each node of

which may take on one of three states: good, stuck-at-0,

stuck-at-1. There are therefore 3100 possible outcomes. If

we arranged to test for all these, taking only igsec per

test, then the complete test would take 3100 = 1047µsec = 3.2

x 1033 years, somewhat longer than the expected life of the

earth!

For sequential circuits the problem grows even more. If m

stored state devices (flip-flops) are present then there are

2m possible internal states and thus with n inputs we would

have to step through 2(n+m) input patterns to do a full

functional test. [GRAS 80], [GOEL 80]

The foregoing discussion has only considered logical function

testing. Even if the transient behaviour of a circuit is

controlled and separated from the functional testing,

stepping through the truth tables is often not sufficient as

some faults are pattern sequence dependent. If this is the

case then strictly all possible transitions of input patterns
should be covered.

1- 4

As an example consider a 2-input circuit (such as a half-

adder) where there are 22 possible input patterns. Each of

these 4 patterns can be followed by any one of the three

remaining patterns and thus there are 4x3 transitions to

investigate, three times the length of. a simple truth table

functional test. For a 3-input circuit (such as a full-

adder) there are 8x7 transitions; for a 4-input circuit 16x15

transitions and so on.

The difficulties with exhaustive testing are insurmountable

and techniques have been developed to reduce the task of

testing to manageable proportions. [FUN 78]

A major contributor to testability is the Accessibility of

internal circuit nodes via the Tester. Accessibility is

impacted by such factors as :

" Whether the circuit contains storage elements.

" How many inverting levels of logic there are between I/O

pins.

" The fan-in and fan-out within the circuit.

" The number of pins and test points.

Accessibility is comprised of two components: CONTROLLABILITY

and OBSERVABILITY. [WILL 83] [TRIS 84] [AGRA 821

CONTROLLABILITY : is the ability to establish a specific

signal value at each node in a circuit by setting values on

the circuits inputs.

OBSERVABILITY : is the ability to determine the signal

value at any node in a circuit by controlling the circuit's
inputs and observing its outputs.

1- 5

The Characteristics of circuits with poor controllability
include circuits that require a unique input pattern or a
lengthy, complex pattern sequence to establish the state of

each node. In addition, many types of circuits are inherently

uncontrollable such as:

Decoders and selectors,
Circuits with feedback,

Serial sequential circuits,

Oscillators and clock generators,
Discriminators,

Electro-mechanical Transducer sensors, and
Regulators.

The-types of circuits with poor observability include

circuits that require a unique input pattern or a lengthy,

complex sequence of input patterns to propagate the state of

each node to the outputs of the circuit.

Many circuits are inherently unobservable, such as:

Sequential circuits,
Circuits with global feedback,

Embedded RAMs, ROMS, PLAs,

Concurrent error checking circuits, and
Circuits with redundant nodes.

1- 6

1.3 TEST TECHNOLOGY PRIOR TO IEEE 1149.1 STANDARD

Over the years, automatic test equipment (ATE) used to test

electronic products has evolved to cope with continued
increases both in the number of integrated circuit packages
used on as a single board and in the complexity of the
integrated circuits (ICs) themselves. [MAUN 84][GREE 88]

Typically, manufacturers of loaded boards will use high pin

count in-circuit and functional board test systems, either
separately or in sequence, to detect defects and to enable
high quality levels in shipped products.

Using in-circuit test technique, tests are applied directly

to individual components by back-driving their connections
from other devices in the product. The objective is to apply

the appropriate test sequence for the component regardless of

the environment in which it is used.

Direct access is made to the components outputs to monitor

the test results, enabling the function of each component in

the circuit and interconnections between the various

components to be checked. [BARD 82](BUDD 88] This method

reduces the expense of test development for each circuit

since the same test can be applied irrespective of where the

IC is used. This is the case as long as an ICs functionality

is not modified by externally wired connections (eg. by

direct connection to power or ground). Clearly, the process

requires extensive access to the circuit, because every
connection must be driven and monitored directly to apply the
test to individual components. This access is provided
through a bed-of-nails interface in which spring-loaded
probes are used to make contact with the interconnections on
the PWB as shown in figure 1.1.

1- 7

EJI
CORE B

PRINTED WIRING BOARD

Figure 1.1 In Circuit Test

The principal interface in the functional test technique is

used to apply test stimuli and to observe the responses which

are read at normal terminations such as the edge connector.
[WILL 83] [PARK 86] Access may also be made to connections
internal to the loaded board, but this is more limited to

monitoring, rather than to driving, the connection. In

contrast to in-circuit testing, the functional test technique

is able to confirm that the various components used to

construct the product interact correctly, that the overall

required function is achieved in process, and the correctness

of both the components in the circuit and their
interconnections is verified.

The achievement of a thorough test is however a difficult

task since tests must be generated separately for each board.

This task can be both time-consuming and extremely expensive,

sometimes prohibitively so. [GOEL 80]

Due to the differences in operation and failure detection

capability between in-circuit and functional test techniques,

a common approach is to use the two techniques in sequence to

achieve high quality test. Initial product screening is

performed by using an in-circuit test system since this is

able to rapidly detect and diagnose the most common failures
in newly assembled boards. For example, those errors that
have resulted from soldering mistakes and incorrect or
wrongly inserted components can be detected in this way.

1- 8

Once a loaded board has passed the screening test, it is

passed forward to a functional test system where checks are

made for more complex (and less frequent) failures caused by

faulty interaction between components.

To allow the mix between the two test techniques to be more

easily optimised for a given product, test equipment that

supports both techniques within a single system has become

more available recently.

1.4 COST OF TEST

There are commercial and engineering considerations when
designing for test. [GOEL80][WILL 83] It is a general

principle of electronics systems design that the further

along the system integration path, the more expensive it is

to replace a faulty component. Order of magnitude comparisons

given in the following table and figure 1.2:

Stage at which fault is detected

Die

Packaged chip

PCB

System at factory

System in operation

Log 1
Unit
of
Cost 2

£3

dost of replacement

£0.10

£1.00
£10.00

£100.00

£1000.00

Figure 1.2 Cost of Test

1- 9

Device Board System Field

The consequential costs of a chip failure during system
operation, for example in a critical aircraft control system,

can be orders of magnitude higher than these.

A set of test vectors (diagnostic patterns of is and Os)

which identify virtually all faults at the die stage provide

great savings, since the chance of a post-fabrication fault

developing is much lower than that of a fault being

introduced during fabrication.

The strategy for test vector development needs to take a

number of cost factors into account, including those of
design, computer resources, fabrication, wafer test,

packaging, component test, board test, system test, and field

test. All of these need to be balanced in relation to the

size of the production run and the figures in the table 1.2

of this section. [WILL 83][AGRA 82]

1- 10

REFERENCES

[JTAG 90] IEEE Standard 1149.1-1990 "Test Access Port and

Boundary Scan Architecture.

[WILL 83] TW Williams, et KP Parker, "Design for

Testability ... A Survey? " IEEE Proc. of IEEE Vol

71, no 1 January 1983, pp 998-112.

[IRIS 84] E Trischler "An Integrated Design for Testability

& Automatic Test Pattern Generation System: an

Overview" the 21st Design Automation Conference

1984 IEEE pp 209-215.

[AGRA 82] VD Agrawal, MR Mercer "Testability Measures

... What do they Tell us? " Proc. of 1982 Test

Conference 1982, pp 391-396.

[ARAB 86] J Arabian, "Test equipment-boards and Board Level

Testing" Advanced in CAD for VLSI, Vol 5 VLSI

Testing, edited by TW Williams, North Holland, pp

239-275,1986.

[BARD 821 PH Bardell, WH McAnney, "Self-Testing of Multi-

chip logic Modules", the IEEE Design Automation

Conference, 1982 pp 309-313.

(BREU 80] MA Breuer and AD Friedman, "Functional Level

Primitives in test Generation, " IEEE Transactions

on Computers Vol c-29, no 3, March 1980 pp 223-

235.

[BUDD 88] W. O. Budde, "Modular Test processor for VLSI Chips

and High Density PC Boards". IEEE Transactions on

Computer Aided Design. Vol 7 No & 10 October 1988,

pp 1118-1124.

1- 11

[FUN 78] S Funastu, W Wakatsuki and A Yamada, "Designing

digital Circuits with easily testable

consideration, " Proc. of 15th ACM/IEEE Design

Automation Conference 1978 pp 231-235.

[GOEL 80] P Goel, "Test Generation Cost Analysis and

Projections" Proc of 17th Design Automation

Conference, 1980 pp 77-84

[GRAS 80] J Grason, et AW Nagle "Digital Test Generation

and Design for Testability", Proc of the 17th

Design Automation Conference, 1980 pp 175-189.

[GREE 86] D Green, "Modern Logic Design', Electronic System

Engineering Series, Addison - Wesley Publishing

Co. In 1986.

[GRUS 88] M Gruetzner "Design for Testability for Wafer

Scale Integration interconnect Systems, Design &

Test Methodology" Int'l Test Conference 1988, IEE

pp 146-152.

[MAUN 84] C Maunder, D Roberts et N Sinnadural, "Chip

carrier based systems and their testability",

Hybrid Circuits, No 5 Autumn 1984, pp 29-36

[McAN 87] W McAnney, P Bardell and J Savir, "Built-in Test

for VLSI: pseudo random techniques" John Wiley &

Sons, New York 1987.

[PARK 86] KP Parker, Hewlett-Packard, "Testability:

Barriers to acceptance", IEEE Design & Test,

October 1986 pp 11-15

1- 12

CHAPTER 2

DESIGN FOR TEST AND TEST TECHNIQUES

2.0 INTRODUCTION

This chapter reviews some of the ideas behind VLSI circuit

testing and highlights the problems of testing both

combinational and sequential logic. The aim of circuit

testing for both functional and post-fabrication is

identified. The requirements for a testable block is also

described. In addition, the chapter discusses some of the

techniques for Design for Testability including Ad-Hoc and

Structured approaches. It also identifies the advantages and

disadvantages of the discussed techniques.

Test methods such as pseudo-random testing and deterministic

pattern testing are described. The scan test method both

internal and external is described in some detail. The

chapter then identifies the benefits offered by IEEE 1149.1

Standard, when implementing a standard test interface to the

unit under test.

2- 1

2.1 VLSI TEST PROCESS

The process of VLSI circuit testing has two major facets:

a. test generation
b. test verification

Test generation is the process of enumerating stimuli for a

circuit which will demonstrate its correct operation. Test

verification is the process of proving that a set of tests

are effective. To date, formal proof has been impossible in

practice. Fault Simulation has been the best alternative,

yielding a quantitative measure of test effectiveness. With

the vast increase in circuit density, the ability to generate

test patterns automatically and conduct fault simulation with

these patterns has drastically waned.

As a result, some manufacturers are foregoing these more

rigorous approaches and are accepting the risks of shipping a

defective product. One alternative approach to addressing

this problem is embodied in a collection of techniques known

as "Design for Testability°. Design for Testability, in the

context of VLSI is gaining great importance.

2.2 VLSI TEST PHASES

In the complete Application Specific Integrated Circuit
(ASIC) design and fabrication cycle, there are two test

phases, as shown in figure 2.1:

" functional testing, to check whether the circuit conforms
to its original specification.

" post-fabrication testing, to ensure that each die has been

fabricated without any faults. These tests are used to

check for differences between the operation of each
individual die and an ideal chip.

2- 2

Start

Structural

Specify test vector
Circuit

Structural
Enter/Edit simulation
Design

Compare
functional Fabrication
simulation Functional
against test vector
circuit
spec Post-fab

Functional test
simulation

N Function Y Results
Correct N the same?

Y

Accept
die

Iý End

Figure 2.1: Flow Chart Illustration of Various Test

Stages

2.3 THE DEFINITION OF A TESTABLE BLOCK

Before discussing the various techniques to achieve Design

for Test, it is important to define what is a testable block

in VLSI design.

A testable block is a section of a chip which can be isolated

from the rest of the chip. It has a definable boundary

between it and the rest of the chip. It also has a manageable

amount of circuitry to test as a single section. In many
instances the testable blocks will match the natural

partitions and hierarchy of the design which is normally
encouraged as a good design practice. A testable block many
be any of :

" Combinational logic with no internal feedback,

"A single clocked pipeline state of circuitry,
"A paracell such as RAM and ROM, and
" Multiple pipeline stages.

2- 3

it is possible to have several of the above sections

connected together with test registers only at the inputs and

outputs. The fewer the number of test registers used in a
design, the more complex the test sequence that has to be

used in the test registers in order to perform the complete

section test. A sensible compromise has to be reached in

order to work out how much circuitry can be placed in a
testable block.

In non-test mode the test registers can be used as normal

clocked registers. Thus when partitioning the design into

testable blocks, it can be more economic to choose existing

clocked registers in the design and replace them with clocked

test registers. This dual function of the test register

effectively reduces the amount of test circuitry overhead

than might otherwise be required.

Test registers can be placed around the testable block, and a

series of test sequences postulated that give adequate fault

coverage. If the resulting test sequence is too lengthy and

complicated, it may be necessary to split the testable block

further into smaller blocks, to reduce this problem.

2.4 DESIGN TECHNIQUES FOR TESTABILITY

Design for Testability (DFT) techniques are divided into two

categories. The first category is that of the ad hoc'

techniques for solving the test problem. These techniques are

used to solve a problem for a given design and are not

generally applicable to all designs.

The second category is that of the 'structured' approaches.
The 'structured' techniques are more generally applicable and

usually involve a set of design rules by which the designs

are implemented. The objective of a structured approach is to

reduce the sequential complexity of a network to aid test

generation and test verification. Figure 2.2 compares the
two techniques in term of life cycle test cost.

2- 4

Life Cycle Cummulative
Test Cost

,t

Figure 2.2 Ad-hoc Vs Structured Test

2.5 AD-HOC DESIGN TECHNIQUES FOR TESTABILITY

The first ad hoc approach is partitioning. Partitioning is

the ability to disconnect one portion of a network from

another portion of a network in order to make testing easier.

The second approach is that of adding extra test points and

is used at the board level.

The third ad hoc approach, is that of Bus Architecture

Systems. This is similar to the partitioning approach and

allows one to 'divide and conquer' - that is, to be able to

reduce the network to smaller sub-networks which are much

more manageable. These sub-networks are not necessarily
designed with any design for testability in mind.

The fourth technique which bridges both the structured
approach and the ad hoc approach is that of 'Signature
Analysis'. Signature Analysis requires some design rules at
the board level, but is not directed at the same objective as

structure approaches are - that is, the ability to observe
and control the state variables of a sequential machine.

2- 5

Design Manufacture Support Time

Signature analysis mode can be used to collect a signature
from circuitry driven by a pseudo-random sequence or slide
test data. The output from a PR test is collected on a test

register configured in TEST SIGNATURE ANALYSE mode. See fig
2.3.

TEST REGISTER TEST REGISTER

101/01011

1001101 000101111

1/011110 0/01111ü

1110011
0 TIES SLtt

ýý
011011011

011/00/
.

: 0
!f 010011000

1011100 1 i 1/0011010

ra ."
ýýý

v. h
`

TEST TEST
MEUDO- N4DO1 PINATURE

GENERATE ANALYN

Figure 2.3 Signature Analysis SlOMTURE-101101011

A faulty circuit produces a different signature. This is

because the circuit behaves differently under the same

pseudo-random input sequence, which is collected from the

circuit outputs onto the test register as a corrupted

signature.

The length of a test register determines the length of the

signature. An N bit test register produces an N bit

signature, this means that there are 2N possible signature
combinations. A fault in the circuit will produce a
corrupted signature which can be any one of the 2N possible
values. It is possible for a faulty circuit to produce a
corrupted signature which is exactly the same as the fault
free signature and this would go undetected (fault aliasing).
The probability of this happening is in a random circuit can
be shown to be 1/(2N).

2- 6

Therefore it is strongly recommended that if a test register

is going to be used in TEST SIGNATURE ANALYSE mode, that the

length of the test register be made greater than or equal to

10 bits (ie = <1/1024). The larger the test register the more

data bits that can be used to build up a single signature,

thus minimising the risk of an undetected fault. Extra unused

bits in the test register can be used to build up the length

to 10 bits.

Signature analyse mode can be used to build up signature from

many types of test. Any self-test that produces an output

every clock cycle can be 'captured' by a test register in

signature analyse mode. This is applicable for tests using

the slide mode.

Sections 2.5.1 to 2.5.3 describe additional ad-hoc test

techniques.

2.5.1 INITIALISATION

In order to be able to test the state of any circuit element,

it must be initialised to a known value at the start of the

test. This is one of the reasons for including a reset in all

the DFT elements. The initial state of an element is

immaterial for operational purposes but it must be reset

before a structured test commences.

2.5.2 A METHOD OF TESTING COUNTERS

Consider the following example shown in figure 2.4. For an

n-bit counter, the final state is only attained after the

application of 2n clock cycles. If this output feeds another

m-bit counter, making it increment only once every 2n clock

cycles, the final state of the second counter is only
attained after 2(n+m) clock cycles. In such a situation, the
first counter is generally a frequency divider and the second
is a state counter.

2- 7

For typical values of n(10) and m(4), the final state is only
reached every 214 (or 16384) clock cycles.

r

r

ee SBC: n bit v

> ck

ck
frequency divider

r
e SBC: m bit

ck c(O: m-1)

m

state count

Figure 2.4 Counter Chain

V

n+m
state 2

It is almost impossible to generate an acceptable set of

structural test vectors for a circuit of this nature. if they

are to cover all the states of the second counter, they will

take far too long to run through the simulator, or may exceed

its limiting number of vectors.

The solution is to break the counter chain, as shown in

figure 2.5, by multiplexing a test signal into the line which

joins the two counters. The output from the first counter is

also carried to a test output. This is the most general

solution to the problem and creates three additional pads.

tin

rr

r

ee SBC: n bit v
> ck

ck frequency divider

mux n+m
state 2

ar
bee

SBC: m bit v

_x > ck c(O: m-1)

m

state count

tctrl

tout

Figure 2.5 Breaking a Counter Chain with Test Signals

2- 8

2.5.3 REDUCING THE TEST PIN COUNT

It is important to plan the DFT technique in such a way to

minimise the additional number of input/output signals. A

reduction in the number of the pads and the number of gates

can sometimes be obtained by combining the test control and

test data signals. Consider the following example in figure

2.6. When a counter chain is broken, the test link must

eventually be driven to 1 when in test mode. If this is the

case, the multiplexer, test control and test data lines can
be replaced by an OR gate and a single test line. The test

line is low in operational mode and high in test mode.

tst

r

e

ck

tout

Figure 2.6 Reducing the number of Test Signals

fm

Alternatively, test data can be brought in and out by

replacing input and output data pads by bi-directional pads
controlled by tri-states, as shown in figure 2.7.

2- 9

tstcrl

data in

reset

Figure 2.7 Bi-directional Pads used for Test

Input/output

In operational mode, these pads operate in the conventional
direction. In test mode they work in the opposite sense and

test data goes in via output pads, out via input pads. The

only additional pad is the test control pad, which also

controls the direction of the tri-state drivers.

2.6 AD-HOC TECHNIQUES - FOR AND AGAINST

There are a number of advantages in adopting the ad-hoc

approach to design for test. These include:

a. The functional circuit forms the basis of the additional
test circuitry.

b. Both functional and structural tests are simplified.

c. Test vector generation time and cost can be significantly
reduced.

d. Advantage can be taken of the pins in the chip package
which would otherwise be unused.

2- 10

There are disadvantages in these techniques, including the
following:

a. There is an increase in chip area and pin count, although
the latter can be minimised.

b. The operational speed of the circuit is reduced due to

.
additional multiplexers in critical signal lines.

c. The test components are additional potential sources of
fabrication faults.

d. A testability analyser can indicate the best position for

test points, but the process of inserting them and

generating test vectors cannot, in general, be automated.

2.7 STRUCTURED DESIGN TECHNIQUES FOR TESTABILITY

Structured techniques allow the test generation problem to be

reduced to one of generating tests for combinational logic.

One of the structured testability approaches is that of

Scan-Set Logic. In this approach shift registers are used to

load and unload data and are not part of the system data

path. Not all system latches are necessarily controllable

and observable via the shift register.

Another approach which is that of Built-In Logic Block

Observation (BILBO). This technique has attributes of both

the LSSD (Level Sensitive Scan Design) network and the Scan

Path network. It has the ability to separate the network
into combinational and sequential parts, and has the

attribute of Signature Analysis - that is, employing linear

feed back shift registers.

2- 1].

All the structured approaches allow controllability and

observability of the state variables in the sequential

machine. The test generation and fault simulation can
therefore be directed more at a combinational network, rather

than at a sequential network. In general a synchronous

sequential circuit can be represented in block diagram as

shown in figure 2.8. [WILL 83][WILL 86]

PI PO

SV Secondary Variables
CL = Combinational Logic

Figure 2.8 A Synchronous Sequential Circuit

PI are the primary inputs, PO are the primary outputs, SV are

the state/secondary variables, CL is the combinational logic,

and FF are the system flip-flops. The CL block will be made

up of an input block generating the excitation logic to the

flip-flops and an output logic block generating the primary

outputs. As both these sub-blocks are driven by the same

inputs, ie the PI's and the SV's, they can be lumped together

as one CL block.

To test the CL block we need to have direct control over all

of its inputs, of which only the PI's are so available. We

also need direct observability of its 0/P's, but again only
the P0's are available. Testing the FF block is equally
difficult as the SV's can neither be controlled nor observed
directly.

The most widely used of ways that have emerged to overcome
these difficulties are all based on a structured design

approach known as scan-path.

2- 12

Scan design reduces the complexity of the test generation
problem for circuits with stored-state devices (flip-flops)
and global feedback by using a 'divide and conquer'
philosophy. This benefit is at the expense of increased

circuit complexity to enable the necessary partitioning
('silicon overhead') which in turn can introduce unwanted
further system delays.

2.7.1 PRINCIPLES OF INTERNAL SCAN PATH DESIGN

The principles of internal scan-path design can be summarised
as follows: -

(a) the stored state devices can be tested in isolation

(b) the future-state of the secondary state variables can be

set independently

(c) the outputs of the combinational logic block can be

observed directly.

To do this it is important to establish a scan-path through

the stored state devices by the addition of multiplexers as

shown in figure 2.9.

PO
SDO

PI

M.
SDI

rn uM
FF1

CL
rnuz
2 FF2 Es
ý

IkF3

Figure 2.9 A Scan-Path

ST s

2- 13

Three extra connections are shown: two inputs SDI and M
(scan-data-in and mode respectively) and one output SDO,
scan-data-out. With M set to divert the flip-flop inputs away
from the CL block as scan-in/scan-out mode is entered, the
flip-flops are connected as one long shift register with SDI
as the serial input and SDO the serial output. This data
path is known as the scan-path. Normal operating mode is re-
entered with M set to connect the flip-flop inputs directly
to the CL block.

The steps of a suitable test strategy could be as follows: -

(1) Select the scan-path and test scan the shift register
by: -

(a) Flush testing a '1' through a background of '0's and a
'0' through a background of '1's. This tests the

ability of each flip-flop to assume either state.

(b) Shift testing using the sequence 00110011.... This
exercises each flip-flop through all possible
transitions.

(2) Determine a set of tests for the CL block assuming: -

(a) Total control of all inputs (PI's & SV's).

(b) Direct observability of all the CL block outputs (P0's

and those to the flip-flop inputs).

(3) Apply each test as follows: -

(a) Select scan-path mode. Pre-load the flip-flops with
test input values and establish test input values on
the PI Is.

2- 14

(b) Select normal mode. The steady-state output response

of the CL block can now be clocked into the flip-

flops.

(c) Return to scan-path mode and clock out the contents of
the flip-flops. Compare these values plus the PO

values with the expected fault-free response.

It can be seen that the 'divide and conquer' approach has

reduced the testing of the flip-flops to a standard procedure

and the only test-generation problem that remains is that of

generating a compact test set for the combinational block.

Scan path circuit elements are based on a storage element

such as a D-type flip-flop, with a multiplexer to choose
between the scan path input and operational data input. These

are built up into synchronously reset enable (E-type) and
toggle (T-type) flip flops.

2.8 SCAN PATH TESTING - FOR AND AGAINST

Structural design for test, of which scan path testing is an
implementation, has a number of benefits. These include the

following:

a. The test circuitry is an integral part of the circuit
design. Provided that the circuit has a hierarchical

structure of storage elements and combinational blocks,

the scan path is easily incorporated.

b. The scan path breaks the circuit into separate
combinational blocks, which are generally small and

easily tested modules. Feedback loops are disabled in the

process. All storage elements are directly controllable
and observable, and the controllability/observability

path to or from each combinational element links to the

nearest storage element.

2- 15

c. Scan path testing can be combined with path sensitization
and justification techniques to develop test vectors, or
with random test sequence generation techniques which can
be incorporated on- chip.

d. A scan path, by breaking the circuit into a number of
separate combinational blocks enables automatic test
pattern generation software to be applied to the circuit.

Weighted against these significant benefits are the
disadvantages of additional circuitry:

a. The additional gating in the scan path elements and the
scan path linkage itself can give rise to a significant
increase in chip area, with consequent cost increases.

b. Three additional pads are required: scan control, scan in

and scan out. However, it is, possible to multiplex the
latter two with data input and output pads, as these are

not used during scan path testing.

c. The multiplexers in the scan path elements cause
additional delay.

d. Scan path testing is not possible for level-sensitive

elements such as RAM and ROM as it is an edge triggered

technique.

2.9 BUILT-IN SELF-TEST AND STRUCTURED DESIGN FOR TEST

The method of path sensitization and- justification, when used
on its own or in conjunction with a technique such as scan
path testing, is a deterministic method of generating test
vectors. The return for an extensive outlay of time to
develop test vectors is a set of structural test vectors
which may achieve the ideal of full fault coverage, but in
practice, falls somewhat short of this ideal.

2- 16

The alternative non-deterministic approach is to generate a
large set of random test data automatically. If the set is

large enough (and sufficiently random) it should give
adequate fault coverage. The random test vectors may be

generated by circuits included on-chip, hence the name given

to this technique built-in self-test (BIST). Not only does

BIST remove-the need for test vector generation altogether
(all the circuit requires is a clock sequence of the

appropriate length while in test mode), but also it means a

circuit may be tested at any time while it is in operation.

Figure 2.10 demonstrates an example circuit with PRBS

generator and signature analysis register. The random test

data are generated by one or more pseudo random binary

sequence (PRBS) generator modules (also known as linear

feedback shift registers (LFSR), and multiplexed into the

input data stream when the circuit is in test mode. A PRBS

generator is based'on an n-bit shift register which produces

a random stream of 2n-1 bits. Although the bit stream is

statistically random, the same stream is produced each time

the PRBS is reset.

The output is shifted into a signature analysis register,

which produces a distinctive pattern depending on the entire

data stream it receives. An n-bit signature analysis register

will produce a different signature for a single-bit variation

in an input of 2n-1.

The signature may be compared with the fault-free signature
by a comparator circuit, and a single go/no go output

produced.

2- 17

r

e
tctrl

dl

d2

C

r

e PRBS rb
>ck mux

a
bx

c

r

e PRBS r
>ck IMUX

a
bx

c

r= reset
e= enable
tctrl= test control
ck= clock
dl, d2= data inputs
dout= data output

Serial circuit with PRBS

Generator and Signature

Analysis Register

Figure 2.10

r.:
e,

y

a
b

Function

-al
Circuit

>ck

rd
e

> ck

Comparator

Expected
Signature

2.10 BUILT-IN SELF-TEST - FOR AND AGAINST

dout

go/
nogo

Built-in self-test has a number of advantages, in particular:

a. There is no need to generate any test vectors - they are

produced automatically on-chip. This saves a great deal

of time and cost in circuit development.

2- 18

b. A number of theoretical studies have shown that non-
deterministic test vectors give approximately the same
fault coverage as deterministic vectors for typical

circuits. [TRIS 84]

c. Field tests can be carried out on the chip.

The disadvantages of the technique are as follows:

a. Without a full fault simulation run (which is not

generally possible) there is no certainty that the random

test data stream is covering all the possible 'stuck-at'

faults in the circuit. If the circuit contains a large

number of components with high fan-in such as 4-input AND

gates (for which the probability of getting a1 output is

only 1/16) then the chances of putting all the nets into

all states are reduced.

b. The PRBS generator(s) and signature analysis registers

create an overhead in silicon area, and can themselves be

source of faults. In addition they require a control

test pad, as well as a go/no go pad, although the latter

may be multiplexed with a data output pad. However,

existing D-types can be used to form PRBS generators and

signature analysis registers.

2- 19

2.11 COMBINATION OF SCAN PATH AND BUILT-IN SELF-TEST

TECHNIQUES

A number of the DFT techniques outlined previously may be

used in on a single design. In particular:

a. Testability analysis is used to identify obscure nets for

attention by ad-hoc DFT techniques.

b. Path sensitization and justification can be used on the

combinational blocks of circuits which includes a scan

path, in order to generate test vectors to be applied via
the scan path.

c. A PRBS generator may be used to provide the input into

the scan path, and a signature analysis register to

analyse the scan path output.

d. The PRBS generator, signature analysis generator, scan

path and operational register can be amalgamated into a

single Built-in Logic Block Observer (BILBO), which is

used for all registers in the circuit.

This technique is known as hybrid design for test which is of

particular significance.

2.12 HYBRID DESIGN FOR TEST - FOR AND AGAINST

Hybrid design for test techniques are the most powerful
available for many circuits. Their benefits include the
following:

a. There is no need to develop the structural test vectors -
these are generated on-chip when chip is in test mode.

2- 20

b. The chip may be tested at any time while it is in

operation.

C. The use of the scan path means that the combinational
depth of the circuit is reduced, and chances of obscure
nets not being tested are reduced.

d. The test circuitry is an integral part of the circuit,
and requires only the minimum of additional design

effort.

The disadvantages of the technique is the silicon
overhead as follows:

a. Hybrid design for test creates a significant silicon

overhead in the PRBS generator, signature analysis

register and scan path register, or the large BILBO

registers. However, this overhead can be reduced by

checking whether a BILBO implementation is smaller than

one with a separate PRBS generator and signature
analysis register. If BILBO implementation is chosen,

registers in the middle of the scan path can be scan path

versions, rather than full BILBOs.

b. The additional circuitry is in itself an additional
source of fabrication faults and circuit delay.

2- 21

2.13 TEST ACCESS AND BOUNDARY SCAN

The 'Bed of nails' technique is becoming increasingly

impractical, both because of lengthening back-drive times. In

the face of miniaturisation, this technique is unsuited to

todays boards with surface mount and Pin Grid Array devices,

hybrid substrates, mother-daughter board assemblies and

boards with components on both sides. conformal coatings are

damaged by probing and need repair afterwards.

The best solution to the test access problem is to move the

ATE's (Automatic Test Equipment) test pattern registers

directly into the boundary pins of the components to be

tested. This overcomes the need for both probes and for

logic-family-programmable buffers.

The increased program execution time due to serialisation is

offset by configuring test registers as pseudo random pattern

generators and signature compressors. (Attempts to do this in

ATE systems were frustrated by the difficulty of mapping ATE

bits into relevant register groups). Resulting test programs

can be short enough to fit in a , small on-board memory.

A standard for the serial bus link to these on-board test

registers has emerged. The Boundary Scan proposal by JTAG

(Joint Test Action Group) was ratified in Autumn 1989.

Boundary scan is a method of gaining test access to

components within a circuit board, without using bed of nails

or expensive Automatic Test Equipment. It is especially

necessary for densely packed assemblies such as surface

mount, double sided boards, hierarchical assemblies and

silicon hybrids.

2- 22

Test registers, embedded in the boundaries of components and
functional blocks, can interrupt the normal flow of signals

under the control of a global 'Test Mode Select' signal.
Test data are shifted serially in and out of these registers,

which are connected in one or more 'Boundary Scan Chains' as

shown in figure 2.11. Tests are performed both on the inter-

connections and on the components themselves. Data transfer
is minimised where possible by configuring registers as

pseudo random generators and signature gatherers. With
improved goods-in testing of new components, design errors

are minimised using improved design methods and simulation.

Boundary
Scan
Path

Pad

Figure 2.11 Boundary Scan Path

The IEEE Std 1149.1 - 1990, IEEE Standard Test Access Port

JTAG (JTAG 90], defines circuitry that may be built into an

Integrated Circuit to assist in the test, maintenance and

support of assembled printed circuit boards.

The circuitry includes a standard interface through which
instructions and test data are communicated. A set of test
features is defined, including a boundary scan register, such
that the component is able to respond to a minimum set of
instructions designed to assist with the testing of assembled
printed circuit boards.

2- 23

This standard defines test logic that can be included in an
integrated circuit to provide standardised approaches to:

" testing the interconnections between integrated circuits
once they have been assembled into a printed circuit
board or other substrates;

" testing the integrated circuit itself; and

" observing and modifying circuit activity during the
component's normal operation.

JTAG involves inserting special Test Register cells into the

chip design. The Test Registers are strategically placed to

intercept the signals that pass between blocks of logic.

The Test Registers are able to perform a number of different

test functions which are used to test the blocks of logic.

When the circuit is not being tested, the test registers act

as normal clocked or direct signal buffers and do not
interfere with the normal operation of the chip. See fig

2.12a.

However during testing, the test registers are re-configured
to form shift registers. Test Registers are connected
together serially to form a 'Scan Loop', where serial data

can be shifted in from a test input pin (TDI) and serial data

can be shifted out via a test output pin (TDO) see fig 2.12b.

2- 24

TDI
TDO

TCK JTAO
*

nM

Tus

ý-

o C °

0

A
0 iaa- 1r gýs

t "' 0I o

"-ý
{

r.,,, ýý,

i A4

' °

B
°

0- E
tom

L A?

"OUNDARYIOO

Figure 2.12b Chip in Shift Mode

2-25

Thus it is possible to load into the circuit a predetermined

set of values which are applied to the inputs of the internal

circuitry. Once loaded, the test registers can apply the data

directly to the internal circuitry.

The outputs from the internal circuitry are also connected to

test registers. After a test has been completed, the output

test registers are loaded with the result of the test. The

test registers are then configured again to form a scan loop

and the result is shifted out and appears at the TDO pin.

A controller cell (JTAP) is required to control the test

registers. This cell requires 4 external test connections to

control the complete test of the chip using a JTAG/IEEE

1149.1 protocol which is explained in more detail later.

The test registers can be configured into pseudo-random

pattern generators, to exhaustively test a block of internal

circuitry. Test registers on the outputs build up a

signature, which is then shifted out for comparison, see fig

2.12c.

Toi
IDO

COMMOLUM

A 10

SIGNATURE
ter r. -

ANALYSE
PSEUDO-RANDOM ti GENERATE D , -.

BE ý-ý

Figure 2.12c Chip Performing a Pseudo-Random Test

2- 26

Although a single scan loop is all that is required, to

reduce data shifting times, the test registers can be

connected to form several parallel scan loops.

The test program primarily drives the JTAP (JTAG Test Access

Port) controller on the chip. The complete BIST test program

is made up from a series of individual shift and pseudo-

random self-test operations which are controlled from the

JTAG test interface. These test operations test out the

individual blocks of the chip. The test program will contain

all the serial data to load into the scan loops that is to be

applied to the internal blocks of logic, plus the seeds and

expected signatures for the pseudo-random tests. The JTAG

hardware on a chip can be extended to include autonomous

self-test. This is where the complete self-test of the chip

is run automatically without the need to shift in data from

the external JTAG interface.

2.14 BOUNDARY SCAN AND IN-SYSTEM TESTING

An immediate benefit of Boundary Scan is the ability to test

a board and diagnose faults without removing it from a host

system. Since this uses the system power supplies, the only

equipment needed for field service is a personal computer to

drive the serial test bus. This will reduce the cost of

testing with the personal computer costing a few thousand

pounds compared to ATE costing a few tens of thousands of

pounds.

2.15 BOUNDARY SCAN AND SYSTEM TEST INTERFACE

To select the boards to be tested by the scan chain and to

cater for missing boards, a hierarchical gateway at the
interface to each board will be needed. This will allow for

boards to be missed out of the scan chain, for the scan chain

to be split into a several parallel paths around a board or
back-plane re-converging later on.

2- 27

Each board can have its own on-board scan chain test program
and interpreter. This can be run as an execution of the JTAG
'run self test' instruction, clocked by the back-plane test
bus clock.

The gateway and on-board program interpreter should be

embodied in a test interface chip which could be obtained
from IC manufacturers such as Texas Instruments.

it is expected that, in many applications, the gateway and

other features will be embodied in larger VLSI devices

performing other primary functions on the board.

2.16 BOUNDARY SCAN AND SOFTWARE ELEMENTS

Development of software tools to support the inclusion of

Boundary Scan Testing from back-plane level down to the ASIC

level are being carried out by many companies.

For board level testing, the tool that currently available
for use is the Interactive Diagnostics Workstation running on

a personal computer (PC). The boundary scan is normally
driven from the PC via a software interface to a parallel

port.

When the user chooses the route of the hardware description
files, the Scan Chain Map Compiler reads the files and builds

a map of the Boundary Scan Chain. This will be complex since
it has a hierarchical shape.

The resultant presentation will normally display the scan
chain graphically, and the user is able to choose the board,

component to be displayed. Elements that have failed a test
are subsequently highlighted.

The user can apply new test patterns, either graphically,
textually, or from a file (test program).

a- 28

Test patterns are intended to be derivable from design

simulations. At the highest design level, patterns are

written in terms of the primary inputs and outputs of
functional blocks or components. The scan Chain Instruction

Compiler cross references these to the scan chain positions

and calculates the necessary routing instructions for the

hierarchical scan path.

2.17 ADVANTAGES OF BOUNDARY SCAN PATH

The inclusion of serial scan paths in digital circuits has

long offered an attractive route to increasing the

controllability and observability of an ASIC implementation

or a circuit panel for test purposes. For example: -

a. The inclusion of bouni

offers an alternative
probing to detect and
It avoids the need to
surface mount devices

condition.

dary scan paths 'around' components

implementation to in-circuit

diagnose open and short circuits.

physically probe the fragile

which can affect the failure

b. The monitoring of system performance. Whilst it is

unlikely that embedded scan paths can be used to define

, at speed' testing of a system, the opportunity exists to

use them to 'capture' data during real time operation of

the system.

2.18 CONCLUSIONS

Typical fault classes today are production faults including

shorts, opens, components inserted wrongly and wrong

components inserted. These production faults comprise 99.5%

of all faults. The other 0.5% of faults are from faulty

components. The maintenance faults occur from open circuits

and faulty components

2- 29

This chapter has discussed both the Ad Hoc and the Structured

approaches of testability. In summary, the Ad Hoc Testability

techniques are applied on top of existing designs. They are

specific to the logic under test. The Structured Testability

techniques are designed-in up front, which complies with the

Concurrent Engineering concept. The techniques form a

consistent approach and are typically scan-based.

The availability of a 'standard' such as the IEEE 1149.1 to

define an implementation of scan path method is considered to

have immense benefits. The definition of a consistent
implementation method facilitates:

a. A standard electrical interface to the UTT. Consequently,
it allows the use of standard 'external' physical test

equipment. The test software must still be customized for

the application, but suitable design tools should be

readily available.

b. The design of the scan paths to be embodied in individual

sub-circuits, of either an ASIC or a circuit board, is

such that they can be efficiently combined to implement
the overall system test.

c. The availability of merchant parts and ASIC cells to
implement scan paths efficiently. This significantly

reduces the overhead', in terms of unit price and unit

volume, which is associated with designing and developing

scan path circuits.

d. The opportunity for the test vectors employed in the

simulation of an ASIC to be 'directly' employed to

validate the components themselves when they are mounted

on a circuit panel, thereby achieving a consistency of
test conditions.

2- 30

e. The opportunity to combine the test vectors designed for

individual components, to define part of a board test

sequence, ie., implementing the system test strategy in a
hierarchical fashion.

f. The development of Computer Aided Engineering (CAE)

'tools' to automate the placement of scan paths, the

generation of test stimulus data and response data, the

translation of component level 'files' to compile system
level tests.

2- 31

REFERENCES

[PARK 861 KP Parker, Hewlett-Packard, "Testability:

Barriers to acceptance", IEEE Design & Test,

October 1986 pp 11-15.

[JTAG 90] IEEE Standard 1149.1-1990 "Test Access Port and
Boundary Scan Architecture.

(PARK 87] KP Parker, "Integrating Design and Test: Using

CAE tools for ATE Programming", Published by

Computer Society Press of the IEEE, 1987.

[SCHW 871 AF Schwartz, "Computer Aided Design of
Microelectronic Circuits and Systems,
Fundamentals, Methods and Tools" vol 2, Digital
Circuit Aspects and State of the Art, Academic
Press 1987.

[IRIS 84] E Trischler "An Integrated Design for Testability
& Automatic Test Pattern Generation System: an
Overview" the 21st Design Automation Conference
1984 IEEE pp 209-215.

[WILL 86] TW Williams, "Design for Testability", Advances
in CAD for VLSI Testing, edited by TW Williams,

North Holland Publishing 1986, pp 95-160.

[WILL 83] TW Williams, et KP Parker, "Design for

Testability ... A Survey? " IEEE Proc. of IEEE Vol

71, no 1 January 1983, pp 998-112.

2- 32

CHAPTER 3

REVIEW OF BOUNDARY SCAN ARCHITECTURE

3.0 INTRODUCTION

The Joint Test Action Group (JTAG) was founded in 1985 as a
result of an initiative within the Philips Group of companies
to develop and promote structured design-for-test techniques.
It has been able to create a broad consensus for Boundary
Scan Test Architecture. The JTAG standard was the first
formal effort by users to identify their testability

requirements to Semiconductor manufactures.

originally, the Boundary Scan Architecture (BSA) test defined
by the JTAG was a simple scan interface to support board
level test. As the JTAG grew to include more companies, other

needs had to be considered and as a result, the original BSA

architecture was expanded to satisfy these needs. The JTAG

proposal version 2.0 was published in March 1988 and formed

the basis of the actual standardisation architecture of
P1149.1 IEEE Committee.

This chapter reviews the recent literature on Boundary Scan

Design. It examines the history of VHDL development and

summarises VHDL related technologies, including computer
Aided Design, Engineering and Test (CAD, CAE, CAT). it then
identifies both the motivating factors behind the
implementation of this research project and the development
frame work.

3- 1

3.1 TRENDS IN THE ELECTRONICS INDUSTRY

The driving forces behind the JTAG initiative were two fold;

the increasing use of Surface Mount packaged devices, and

Application Specific Integrated Circuits (ASICs) on printed

circuit boards (PCBs). These trends are continuing in the

90's. In January 1989, Pound reported that 48% of electronic

system companies had adopted surface mount technology, and

that this percentage was rising [POUND 89]. This view is

echoed by Cole, who also gave the prediction that the ASIC

market would rise from its 1988 figure of 15% to 21% by 1993

[COLE 89].

Bursky also predicts the increasing use of ASICs, (and what
he terms "user-specific ICs"), with sizes reaching to 30M

transistors at geometries of 0.25 micron by the year 2000
[BURS 89]. He comments that the design time for such devices

will reduce from 2 years to 9 months. The dominant packaging
styles will be flip-chip and tape-automated bonding. Bursky's
final comment was that testing problems will eventually be

solved only by the adoption of both internal (device core
logic) and external (device boundary) scan architectures.

Bassett et al. discussed the trends in ASIC usage within IBM.

Up to 500 signal pins and 100K gates is now common, with size

forecasts to increase to 300K gates [BASS 89]. IBM has the

ability to include internal scan paths (based on Level-

Sensitive Scan Design -LSSD- architecture) in their devices,

and the authors state that the design philosophy has now been

extended to include input/output boundary scan to reduce the

number of driver/sensor pins required on the tester. The

motivation for this is to reduce the overall testing. IBM's

proprietary version of boundary scan is described in [DUPT

84] and more recently in [BASS 90].

3- 2

3.2 THE STANDARDISATION EFFORT

JTAG was merged into the IEEE P1149 Testability Standards
Committee (TBSC) in 1988, following exposure of JTAG's status
at the 1987 International Test Conference [BEEN 87]. The TBSC

operated under the section of the IEEE Computer Society's
Test Technology Technical Committee [IEEE 90]. At that time,
P1149 test group was developing a standardized test bus to

provide access to test support functions built into the

circuit board. An agreement between the P1149 group and the
Joint Test Action Group (JTAG) permitted the incorporation of
JTAG's effort into the 1149.1 minimum serial subset of the
standard. The agreement proved JTAG's development of the
proposal document and prototyped the proposed test access
port (TAP) and boundary scan architecture. It also resulted
in the first of a set of new standards - IEEE Standard 1149.1

-1990.

Other specifications are still in preparation: p1149.2, the
Extended Serial Test Bus, P1149.3, the Real Time Test Bus;

and P1149.5 the Back Plane Test and Maintenance Bus (based on
the earlier VHSIC TM Bus [TBUS 87], [AVRA 871. Each of these

standards will be free standing when they finally emerge. The

overall P1149 document will provide a guide to the overall
structure of the set of 1149. n series of documents.

3.3 IMPLEMENTATION OF BOUNDARY SCAN ARCHITECTURE INTO

INTEGRATED CIRCUITS

The response of semiconductor manufacturers to the promotion
effort has been very encouraging, with companies such as
Plessey, National Semi, VLSI Technology Inc, Motorola, AT &T,
Texas Instruments, LSI Logic, NCR, NEC, LSTI, SGS Thomson and
Philips Components introducing BSA features into their ASIC
libraries.

3- 3

In 1990, Philips Components responded to the new standard by

providing their ASIC engineers with a tool kit containing a
library of soft macros from which an optimised BSA circuit

can be assembled. In addition, Philips have recently
developed a Testability IMprover (TIM) Software system, which
integrates their soft macros into their ASIC technology. This

effort was initially to exploit the use of BSA for their in-

house ASIC design activity. The use of this tool has now been

extended to work from a mentor Graphics CAE System [PHIL 90],

as most of their designs are implemented using the Mentor

system.

An interesting factor about TIM is the concept of the "Single

Transport Chain" IMAUN 90]. Consider the various parallel
registers in the 1149.1 architecture: Instruction, Bypass,
Identification, Boundary Scan, and User-Specific. In general,
a register element is capable of three fundamental actions:
capture, shift and update. "Capture" and "Up-Date" mean to

transfer data to or from a parallel input to outputs of the

register. "Shift" means to transfer register data serially
through elements of the register. Not all register elements

contain all-these features, for example, the identification

register does not contain an update function. But all

register elements contain a core shift function. Furthermore,

only one register is connected from TDI to TDO at any one

time. As a result, the shift elements can be considered to be

a shared resource, for example a single transport chain, as

shown in figure 3.1, thereby reducing the final number of

memory elements needed to implement the various registers.

T

DO

3- 4

Figure 3.1 Single Transport Chain with Various Outlets
SOURCE: JOURNAL OF ELECTRONIC TESTING: THEORY AND APPLICATIONS, 2,
11-25 (1991), KLUWER ACADEMIC PUBLISHERS, BENNETTS R AND OSSEYRAN A.

Texas Instruments have led the way in introducing BSA
features into both commercial and ASIC devices [MCLE 89]. The
first devices to emerge were modified forms of their register
and latch "octals". Code named 74BCT8244/8245/8373/8374,

these devices are replacements for the standard 244/245/...

devices, although not directly pin-for-pin compatible because

of the extra pin-outs required for the boundary scan
features. The BSA octals contain boundary scan cells on the
inputs and the outputs, a full TAP controller, and extra
facilities to configure output cells into a pseudo-random
number generator (to generate test stimulus to other
devices). They also include input cells into a parallel
signature analyser to capture and compress the responses from

other devices. On bus-orientated designs, these octals
provide a means of isolating and controlling major system
components (e. g. the memory and processor) and areas of glue
logic. [PERR 89]

Texas Instruments have also announced a new range of devices
to be used at board level for controlling the test of other
on-board devices compatible with 1149.1. This range includes:
74ACT8990 Test Bus Controller: 74ACT8997/8999 Scan Path
Selectors; 74ACT8994 16-bit Digital Bus Monitor. These devices

are part of TI's Systems Controllability Observability
Partitioning Environment (SCOPE), which is supported by the
Advanced Support System for Emulation and Test (ASSET).

The article by McLean (MCLE 89] contains details of the
implementation of boundary scan cells in TI'S 1.0 micron CMOS

TSC500 standard cell library. This library contains fourteen
different cells, including a 1149.1 TAP controller and
various forms of boundary scan cells. The impact on
propagation delay is quoted as being 0.5ns per scan cell. In
terms of additional gates, each scan cell requires around 15

gates to implement, and each bit of the instruction register
requires 11 gates. The TAP Controller requires less than 200

gates. TI has also included 1149.1 features in their 0.8

micron 100K BiCMOS gate array library.

3- 5

Finally, McLean describes TI's 32 bit TMS320C30 Digital
Signal Processor. This device makes extensive use of both
internal and boundary scan paths and, although not strictly

compatible with 1149.1, the facilities go along way to

providing the features of the standard. The reason for the

slight incompatibility is that the design of this chip
started before the standard was finalised. As a result, TI
had to make implementation decisions before the final version
of the standard. The newer TMS320C5X is fully compatible with
the standard.

Perry states in his article in IEEE Spectrum on the Intel
1860 microprocessor, the successor to Intels 80X86

microprocessor family, that the new microprocessor will
incorporate BSA features [PERK 89]. It also appeared that
Motorola had incorporated a TAP interface MC68040
microprocessor [TIME 89]. Other companies started to
introduce 1149.1 features into their standard products. These
companies included Lattice Semiconductors (PLD family) and
AT &T (digital signal processors).

An interesting BSA IC-implementation was presented by van
Rissen at the 1989 European Test Conference [VAN 89],
describinga hierarchical test architecture based on the JTAG

proposal. The architecture was designed to ensure testability

at board and chip levels and to aid self-test of macros in

the chip.

Board level controllers for the application of boundary scan
tests are emerging. Vining of Texas Instruments (VINI 89],
describes the design of trade versions of an interface chip,
called the Scan Bus Master which interfaces between a 16-bit

processor bus and a TAP. Ballew and Streb of AT &T [BALL 89]
describe a device called PROBE ASIC.

3- 6

An earlier paper by Lien and Bruer [LIEN 881 describes a
Module Test and Maintenance Controller for use in a
hierarchical test and maintenance environment. The controller
for a 1149.1 board is detailed. The design is similar to both

TI and AT &T designs, but is based on an earlier provisional

version of the 1149.1 standard.

Halliday [HALL 89] also describes the use of BSA devices

(for example TI octals) for increasing controllability and

observability during prototype testing.

3.4 IEEE 1149.1 CONFORMANCE TESTING

The paper by Dahbura, Uyar and Yau [DARB 89] describes a
method for generating conformance tests for an 1149.1 TAP

controller and for the instruction register. The method is
based on the theory of checking experiments as applied to
finite state machines, but uses a de-generate form called a
Unique Input/Output (UIO) sequence. A UIO sequence is an
input/output sequence of minimum length starting from one of
the states, Si, that could not be produced starting from any

other state in the circuit. The TAP controller is a classical
Moore machine, and from a test point of view, it is only

necessary to demonstrate the existence of each of its sixteen

states and each of the specified transitions. It is not

necessary to locate the cause of failure if failure occurs.
If it were, then the more complete form of checking

experiment would have to be used.

The sequences produced use a form of flush test (110011

sequences) to check the behaviour of the instruction

register, - bypass register, boundary scan register and
identification register (if it exists). The length of the

sequence is dependant upon the length of the boundary scan

path, N(bs) and the length of the instruction register N
(ir), and is given by:

3- 7

589 + 12 N(bs) + 23N(ir) (no identification register)
or
1658 + 12N(bs) + 44N(ir) (with 32 bit Identification

register)

The techniques described in the paper have formed the basis

for a recent commercial offering from AT &T called TAPDANCE
[TAPD 90].

3.5 BOUNDARY SCAN & BUILT IN SELF TEST

BSA provides access to device Built In Self Test (BIST),

although its primary benefit is for board testing. This
allows device self test routines to be triggered as part of
the functional board test, or even as part of a start up
procedure.

There has therefore been a significant amount of development

work in this field in the last two years. In general BSA

cells developed by Plessey, Siemens, SGS Thomson, Motorola,
Texas Instruments and AT &T support BIST and can be

configured as pseudo-random test vector generators and
signature analysers [DETT 89], [MCLE 89].

AT &T Bell Labs have devised an architecture for combining
BSA and BIST techniques [SCHO 88] and outlined a complete
test program for testing boards equipped with BSA and BIST
(TULL 89]. Signetics Corp. described a systematic test

process that combines BSA and BIST [USZY 89]. Philips

presented the specifications and design of a self test

mechanism for static RAMs compatible with the BSA (DEKK 89].
IBM [BLANC 84] made use of SRLs on primary inputs and primary
outputs in their LSSD On Chip Self Test (LOCST) architecture.
Other articles dealing with boundary scan and BIST are
[VAN 89], [GLOS 89], [BRGL 89], [WANG 89], [HUDS 89].

3- 8

3.6 ADAPTATION TO CAE TOOLS

The major concern of designers and test engineers when they
decide to adopt the BSA is their lack of experience, the

scarcity of support tools and the impact on their development

time schedule. Use of BSA will only be widespread when the
tools required to implement and support this test technique
are available and when the full implications of BSA
implementation are well known.

Recent publicity and promotion of Design for Test (DFT)

techniques have been noted by vendors of CAD tools [Gt7NN 90).

Chip and Board manufacturers wanting to use these techniques

were confronted with the lack of software tools to support
them. However in 1989, Gateway Automation (now part of
Cadence), HHB Systems (now part of Racal Redac), and Teradyne
began to offer design verification packages for scan path
techniques.

VLSI Technology Inc, has announced their Test Engineers
Assistant (TEA) [HALL 89], a CAD environment with tools to

support the design of testable devices. TEA interfaces with
ADAS, VHDL, and TISSS and with commercially available tools

to allow design capture, functional verification, design for

testability, fault simulation, and test program generation
for particular ATE.

3.7 BSA AND TEST PATTERN GENERATION

Because most of todays e

complex, the electronics
for automatic generation
coverage. BSA simplifies
partitioning the overall
circuits.

Lectronic circuits are dense and
industry is eager to develop methods
of test programs with high fault

the test generation problem by

circuit into a collection of smaller

3- 9

As early as 1982, Goel and McMahon [GOEL 87] presented a
technique for assembling a test for interconnect failures
assuming the existence of boundary scan cells in the devices.
This work has been extended by Wagner (WAGN 87], Hassan et al
(HASS 88] and Jarwala and Yau [DRAW 89].

Generally, the interconnect pattern generation algorithms are
either one step algorithms or adaptive algorithms. One step
algorithms rely on a sufficient set of patterns to first
detect the fault and then provide enough information to allow
accurate analyses of the cause of the fault. Adaptive
algorithms contain a fixed sequence section (to detect
condition) followed by an adaptive section (to enable fault
location with the minimum of additional sequences). The first
algorithm of this type was reported by Goel and McMahon [GOEL
87] and subsequent algorithms (one test and optimal C Test)
by Jarwala and Yau [JARW 89].

3.8 BSA AND ATE

Both chip and board manufacturers are beginning to use scan
path techniques for design verification and/or production
tests. The major problem is the lack of ATE hardware and
software tools to support this. In 1988, Gateway Design
Automation HHB and Teradyne (among others), offered limited
design verification packages and Gillytron Inc (now called
Brothers Electronics) announced a device tester tailored to
verify the design of ICs equipped with scan circuit [BST 89,
issue 1, P. 4].

The Gillytron scan tester is based on the VXI backplane and
controlled by a PC. Two other PC-based testers for scan based
boards are the ASSETT system developed at Texas Instruments
and Marconi's Checkmate/Midata 510 low cost ATE, equipped
with boundary scan card and ATPG software package [BST 89,
issue 2, p. 5).

3- 10

IMS have announced support for scan, including boundary scan,

on their XL device verification tester; similarly

Semiconductor Test Systems on their STS8500 device tester

[MCLE 89].

Teradynes' response to the impending need for board testing

tools to support BSA boards was the introduction of the L300

board test family "representing a new definition of

combinational testing, including concepts of BSA, LSSD and

BIST" [VERS 89]. The L300 board tester automatically

generates patterns and provides the algorithms necessary to

diagnose the failed nets on boards equipped with boundary

scan. The implemented BSA strategy is described in [HAN1 89].

Another important development was the joint TYPHOON project
between Motorola and Schlumberger Technology's ATE division

to develop a device tester for the next generation of

Motorola devices supporting the 1149.1 standard [TIME 89].

The specification of the ATE was impressive; dynamic tests on
1024 pin CMOS, bipolar or BiCMOS chips at frequencies up to
80MHz, and all this for just $1,500 per pin.

Clearly, it is not sufficient just to provide hardware
facilities on the testers. There must also be some overall
test strategy, taking into account the fact that most boards

in the future will probably contain a mix of devices - some

with BSA features, and others without. Those devices with BSA

features provide access to the non-BSA devices through the
boundary scan cells and the interconnects between the two

types of device. Hansen called this form of access "virtual
ATE channels" [ROSE 891, [HAN2 89], [HAN3 891.

Halliday et al of Texas Instruments [HALL 89] also discussed

the use of the TI'S octals to enhance both controllability

and observability of non-boundary scan devices on a printed

circuit board. This approach enables a form of cluster
testing, that is, the non-BSA devices are treated as a single

entity (cluster) and tested from the periphery.

3- 11

In this respect, cluster testing is similar in application to

the more familiar form of cluster testing through a bed of

nails.

Given that the boards will contain a mix of BSA and non-BSA
devices , and that there will be limited in-circuit access

through the bed-of-nails fixtures, a possible strategy is as
follows:

Power off nail contact integrity

Tests: short tests

Power On TRST test

tests: daisy chain test BSA

BYPASS test (*) Infrastructure

BOUNDARY SCAN test (*) Tests

Chip identification test

board interconnect tests
analog device tests

digital device tests, including BIST cluster tests

lperformance test

(*) Note these two test are optional . They are only performed if the

BYPASS and the BOUNDARY SCAN paths were not tested at chip test.

The daisy chain test checks the chip-to-chip TDO and TDI

interconnects through the instruction registers, by loading

the hard-wired 01 sequences. These values provide the basis

for the distributed checkerboard test. An all-1s sequence is

fed in from the TDI edge connector, leaving the instruction

register holding the mandatory BYPASS instruction. A further

checkerboard is then passed through all the bypass register

bits to check their behaviour. Finally, the instruction

register is loaded with a mandatory SAMPLE/PRELOAD

instruction and a further checkerboard is used to check out

the boundary scan registers.

3- 12

The chip identification test interrogates the contents of all

chips containing an Identification register. Devices without

an Identification register are automatically configured into

their BYPASS function. Capturing the identification values
into the Identification register places a1 in the least-

significant position of the 32 bit identification register.
Capturing the BYPASS register places a0 in the BYPASS

register. This difference allows "blind" interrogation of a
board containing a collection of 1149.1 devices - some with
Identification register and some without (MAUN 90]. This has

value on boards containing different variations of
programmable devices such as EPLDs and EPROMs.

Once it is known that the BSA infrastructure is working, then

the remaining tests can be applied followed by analog and
digital device tests where necessary. In addition, cluster
tests using the boundary scan cells can be used as virtual
ATE channels.

Full exploitation of the advantages of the BSA technique in

the field of fault diagnosis will require a close partnership
between the CAE and ATE vendors. The ultimate goal is to

create an integrated environment for the incorporation and

the use of BSA for design, test and diagnosis purposes and

supporting international standard formats. An important step
in this direction has been taken by Hewlett-Packard. Parker

and Oresjo outlines a "strawman" draft of a language called

Boundary Scan Description Language (BSDL) to describe the

features of a device conforming to the 1149.1 standard.
[PARK 90]

The BSDL language allows the description of information about
the testability features in devices that are compliant with
IEEE Standard 1149.1 - 1990. This information is needed by

tools which will make use of these testability features. Such
tools include design verification, testability analysis, test

generation and diagnosis.

3- 13

The syntax of the language was developed as a VHDL subset
[PARK 90]. The language describes the basic boundary scan
information fundamental to an application, but it is not rich
enough to support advanced capabilities. It does not give the
flexibility to describe logic functions that may be
incorporated in the boundary register itself, such as Texas
Instruments have provided in their current set of devices
[TI 1988]. Extensions to the language are being developed and
the language has recently been ratified by the JTAG
Committee.

3.9 BSA AND POWER SUPPLY TERMINALS

In a novel paper, van de Lagemaat [LAGE 89] described an
application of boundary scan to the on-board testing of
multiple power supply terminals into a single device. Many

complex devices require multiple supply voltage and multiple
ground connections for reasons to do with noise immunity. The

problem is - how to detect open circuits in the internal bond

wires of these groups of connections?

Consider multiple supply voltage terminals. If all the

terminals are correctly connected, then the voltage
difference between them is of the order of 10mV. If one or

more of the connection is open circuit , then the voltage
difference is more like 100mV. This gives a basis for

carrying out an open circuit test - measure the voltage
between the connections inside the device.

The technique described in the paper advocates the use of a

circuit similar to a RAM sense amplifier to sense the
difference in the analog voltage and convert it into a
corresponding digital voltage. The output of the sense
amplifier is then captured by an observe only boundary scan

cell, and thus made observable through the boundary scan
chain.

3- 14

3.10 BSA AND ANALOG COMPONENTS

Very little has been done yet on the application of BSA to

analog or mixed signal devices. Fasang of National

Semiconductor has described a multiplexer/de-multiplexer

technique for partitioning the analog and digital sections of

a mixed signal device [RASA 89]. Output boundary scan cells

are used to observe the digitised output of the analog part

of the circuit, and input boundary scan cells are used to

control the input to the digital part of the circuit. The

boundary scan cells used for these purposes are not part of

the normal input/output pins of the device.

3.11 SYSTEM APPLICATIONS OF BSA

It is too early to report on system company applications of

boundary scan, with one notable exception - that of the

Apollo Company (now part of Hewlett Packard). The design of

the Apollo DN10000 workstation included the use of boundary

scan features [DEVI 88] in the gate arrays. These scan cells

were not compatible with the 1149.1 since the Standard was

still in its earlier JTAG form when the DN10000 design

decisions were made. Nevertheless, all gate arrays on the

DN10000 board included observe only boundary scan cells on

the pin-out of the chip, linked to form an "external ring"

The cells were then used to act as an observer of the results

on tests applied internally to the devices and to the

interconnects. In principle therefore, the external ring

followed the spirit of 1149.1.

3- 15

3.12 BSA AND RELATED DEVELOPMENTS

Among other papers related to boundary scan, Landis [LAND 891

describes the use of 1149.1 as a standard interface for wafer
testing to reduce test complexity and costs. Bassett et al
[BASS 89] discusses the architecture of a logic device tester
for components equipped with BSA and array BIST. Hassan et

al [HASS 89] proposes a test scheme for NON-BST glue logic
interconnects using modified BSA cells for fast test-vector

application and evaluation. The paper is an extension of the

earlier paper from Hassan (HASS 88].

Levitt and Abraham [LEVI 89] and Dislis et al [DISL 89] deal

with the economics of DFT measure like scan, BIST and BSA.
Levitt and Abraham consider the general problem of cost
justifying the inclusion of scan (any form) into the design

of an integrated circuit. Factors include: gate count
increase, effect on yield, number of die per wafer, and cost
per die. The effect on profitability is then considered.
Profitability has been defined in terms of "time-to-market
slippage" and is related to the ease or difficulty of
creating test programs. This is a simplified approach but

future version of the analysis will include more complex
factors such as the effect of pattern generation and fault

simulation costs.

Finally, Swan et al [SWAN 89] describes a modified gate array
using the 1149.1 TAP to increase controllability and
observability inside the chip. Advantage can then be taken of
the increased testability at chip and board level.

3.13 VHDL FOR CAD/CAE/CAT

The life cycle of a typical digital system starts with system

engineering and specification, which then proceeds into
hardware and (software) design and development, manufacturing
and field service and completes the cycle with re-procurement
engineering.

3- 16

The life cycle of a commercial digital system ranges from 6

to 12 years and is very sensitive to competition and

timeliness in introducing a new system to the market.

Therefore, one of the major concerns is the efficiency and

compatibility of the CAD/CAE/CAT tool set to reduce the time

from requirement identification to system delivery. The life

span of a military digital system may on the other hand range
from 15 to 25 years so the components may become obsolete
before a system is ready for use.

Additional problems of logistic support and re-procurement

engineering must be taken into account. Military systems are

also on average more complex and involve more organisations
than their commercial counterparts. During the product life

cycle , companies which have developed the technology or
inserted the technology in a hardware design, may not be

involved in full production and logistic support.

In addition, there are a large variety of incompatible

CAD/CAE/CAT tools each of which may require a special
language and a specific interface , and data and control
format. For the most part, these languages are proprietary,
having evolved from old designs which do not have the
features of modern languages. Some of these languages are
difficult for designers to read, understand or use. Each of
the tools and its supporting language is designed to support

a limited number of abstractions or design methodologies.

This makes sharing of design among different organisations or

across levels of design difficult. To cross tool or vendor
boundaries, interface software or translators are often

required, which are prone to additional errors. Design

languages and test vector languages are not compatible

causing inefficiency and additional errors.

Test vectors used at chip level are not correlated with those
for the board level testing. Up to 50% of the ASICs designs

which pass the initial chip level test do not pass the board

3- 17

level test because of design problems or test compatibility
problems.

VHDL was developed by the DoD VHSIC program as part of the

Integrated Design Automation System (IDAS). The history of
its development which has been well-reported, will not be

repeated here. VHDL did not evolve from an existing hardware

description language, it was developed specifically to meet

well-defined requirements.

Basically, VHDL describes a hardware component or building
block (module, chip, device) as a design entity. A design

entity consists of two parts: an interface description and a
body description. The interface descriptions define the
input/output ports through which the design entity
communicates with the outside worlds. The body description
defines the internal operation or organisation of the entity.
in VHDL, the entity declaration is used to define the
interface between a given design entity and the environment
in which it is used. The architecture body defines the body

of the design entity. It specifies the relationship between

the input and the output of a design, and may be expressed in

terms of behaviour, data flow, structure or any combination

of these.

The behavioural model is represented by a data transformation

and a timing relation in response to a data transformation at
the input. The basic concept of a structural model is

represented by the component, the port and the signal. The

component corresponds to a hardware building block. A port is

the point of connection to their components and the point
through which data flows in or out of the components. A

signal is defined as a path from one component to another
component along which data flows.

In the VHDL behavioural model, the concept is very similar to

those used in functional simulations using High-Order

Language (HOL).

3- 18

Algorithms or functions are used to describe the behaviour of

the system. Output responses are calculated from the

corresponding inputs. The basic statement for a behavioural

description is the process statement. Each process statement
defines a specific action to be performed which models the

specific behaviour. The action is triggered when the value of

one of its sensitivity signals (signals specified by the

designer) changes. In the sequential model, the action is

defined by the sequential order of the statements in the

process.

VHDL provides sequential statements such as IF, ELSE, CASE,

LOOP, WAIT, PROCEDURE CALL, to define the algorithms or
functions which model the behaviour of the system. Concurrent

statements are also provided to simplify description of

processes which have the same behaviour. A behavioural

description provides the information on how a building block

behaves without the details of how it is constructed. This

type of description is useful in top-down design and
functional decomposition, in communication design among
different design groups and in describing a device without
disclosing proprietary details of its design.

A VHDL description can also be expressed in data flow format.

VHDL provides several concurrent signal assignment statements

which are triggered by changes in value of the input to a

signal assignment statement and executed asynchronously with

respect to one another. The execution of the concurrent

assignment signal involves computing new output values after

a specified or a default delay to the output signals of the

statements.

The structural description in VHDL parallels the physical

system closely. The basic elements of structural description

are ports and their connections. In VHDL port declaration,

the number and mode of ports, the direction of the data flow

and the type of data are described.

3- 19

Structural descriptions define components and their

interconnects using signal constructs to define paths among

components. The component instantiation statement specifies

an instance of a component and which port or signal is to be

connected to. A generate statement provides a means for

iterative or conditional elaboration of a portion of the

description for components which exhibit some degree of

regularity. Generic statements provide a means for

instantiating components to pass values to another

instantiated component. The configuration specification

specifies the section of entity declaration and architecture
body for each component instance.

VHDL also provides the capability to mix various description

models. This allows the design of different portions of the

system to proceed without having all the structure details

available. In addition it enables use of behavioural

simulation for portions of the design which have been

simulated structurally. Therefore in this way simulation of a

larger piece of design can be carried out more rapidly.

There are many ways to integrate VHDL into an EDA

environment. Each CAE vendor uses its own approach to

implement VHDL. Some vendors implement a VHDL subset to

facilitate interfacing with their existing environments and

tool sets, to allow transition of the current customer base

to full VHDL implementation at a later date. Others elect to

implement the full capability as specified in the language

reference manual (LRM). Some vendors use an intermediate

language, others directly compile from VHDL source code to

simulation language. Some vendors have bridged VHDL to other

tools such as editors, debuggers, logic synthesis or even

RTL-level synthesis. Still others have interfaced the VHDL

based simulator to their automatic test generation tools. DoD

have developed a tester-independent test support software

(TISSS) environment, and defined a test vector generation
language (TVL), which is a subset of VHDL. All these provide

a link between design and test.

3- 20

3.14 VHDL FEATURES FOR CAD/CAE/CAT

VHDL's capability, support, interface and potential benefits

during the life cycle in general, and for design and test

specifically, are summarised below:

" Formal precise, human-readable and easily understood
description for use in all phases of the life cycle

" Machine processable and simulatable
" Technology independent

" Tool set, data type and environment-independent
" Design modularity and re-usability

" Overall hardware system acquisition process

" Acquisition and logistic support
" Efficient management of the design and the design data,

library, configuration control
" Interface with High Order Language (HOL)

" Compatibility with other standards

Benefits in Systems Engineering. Hardware Design and

Development

" Various combinations of abstractions - behavioural, data

flow, structural

" Partition of functions and structures

" Sequential and concurrent processes

" Multiple design methodologies; top-down, bottom-up or

mixed
" Various digital modeling techniques: Boolean, finite

state, algorithmic and functional

" Both synchronous and asynchronous designs

" Various design methodologies: custom standard and macro

cells, ASIC, gate array, off-the-shelf components or any

combination.

3- 21

" Different styles of description and documentation;
behavioural, structural, data flow, procedural or various
combinations.

" Design for testability
" Compatibility with test vector language

" Test independent support software environment

" Compatible data type between design modelling and test
" Boundary scan test concept at board and module levels

Ben in Re-procurement Encxineerina

" Technology independent design descriptions
" Test independent test descriptions
" Simulator independent modeling

3.15 IN CONCLUSION - THE PROPOSED PROJECT

A need for implementing JTAG in designing ASICs was
recognised in 1989. A mechanism that will shield the ASIC
designer from becoming involved in interpreting and designing
the JTAG 1149.1 Standard is needed. This could take the form

of automatic or semi-automatic injection of JTAG into an
ASIC, in a format which is both generic and technology non-
specific.

The emergence of VHDL as the IEEE 1076 Standard Hardware
Description Language has resolved the problem of portability
and independency. This enforced the choice of VHDL as the
modeling tool for this project.

in addition, VHDL's ability to model digital systems at
behavioural and structural levels, has enabled the
development of JTAG high level behavioural models but
preserved the features that are normally exhibited at the
structural level.

3- 22

This research encompasses the development of a software tool
that will enable the ASIC designer to include the full 1149.1
BSA into the design in a semi-automatic way.

The work models the BSA both structurally and behaviourally

using VHDL. It also develops a parser which identifies and
extracts a list of the input/output terminals of the ASIC
design. It then inserts the full BSA high level parameterised
models into the design, without altering the structure or the
order of I/O terminals of the original design.

The parsing insertion environment has to be simple, portable
and independent of any CAE environment. Therefore, it needs
to be developed in a high level programming language such as
"C". Unlike the Hewlett-Packard BSDL language, the work
therefore concentrates on developing high level testability
models of JTAG using VHDL. This takes advantage of the
language facilities provided by VHDL in dealing with the
problem of annotating internal state information from the
structural or RTL level to a much higher level.

The tool is not intended to be an aid to synthesis. It does

not deal with performance, speed and area issues. It is

mainly a tool that will assist the designer to include JTAG
into his/her design with ease. The design (ASIC) has to be

either described in VHDL or has been converted to a VHDL
description. The test features could be included in the
design right from the behavioural description level.
The test vectors for testing JTAG are developed and fault

graded.

The environment has been tested with simple examples using a
suitable CAE system in order to simulate the design with the
JTAG models included.

3- 23

REFERENCES

[PARK 891 K Parker, "The impact of Boundary Scan on Board
Test", IEEE Design and Test of Computers, August
1989 pp 18-31.

[JTAG 901 IEEE Standard 1149.1-1990 "Test Access Port and
Boundary Scan Architecture.

[ROBI 90] GD Robinson "Boundary Scan impact on Board Test

Strategies" Prod. Electo. May 1990, pp 1-8.

[EVAN 89] S Evanczuk, "IEEE 1149.1: a designer's reference"
High Performance Systems August 1989 pp 52 - 60.

[POUND 89] R Pound "The Technological State of the Industry"
Electronic Packaging and Products, January 1989 pp
68-71.

[COLE 89] HC Cole, "Making the right moves in ASICS",
Electronics November 1989, pp 56-59.

[BAS1 89] RW Bassett et al., "Low cost testing of High

Density Logic Components", Proc IEEE Inter. Test
Conf. 1989 pp 550-557.

(BURS 89] D Bursky, "Digital ICs in the 1990s: Nearly
unlimited on-chip resources", Electronic Design 11
January 1989 pp 79-89.

[MAUN 901 CM Maunder and RE Tulloss, "The Test Access Port

and Boundary Scan Architecture: Tutorial of IEEE
1149.1 and its applications" IEEE Computer Society
Press 1990.

[BEEN 871 CM Maunder and FM Beenker, "Boundary Scan: A
framework for Structured Design for Test", Proc.
IEEE Inter. Test Conf. 1987 pp 714-723.

3- 24

(IEEE 90] IEEE Testability Bus Standards Committee, details
from the Chairman, Gordon Robinson, GenRad Inc,
Concord, MA USA.

[TBUS 871 °VHSIC phase 2 interoperability standards: TM-Bus

Specification", version 30, November 9,1987.

Available from JP Letellier, Naval Research Lab,

Code 5305, Washington DC 20375, USA.

[AURA 87] L Avra, "A VHSIC ETM-Bus compatible Test and
Maintenance Interface", Proc. IEEE Inter. Test

Confer. 1987 pp 964-971.

[DETT 89] R Dettmer "JTAG setting the standard for Boundary

Scan Testing", ZEE Review, February 1989, pp49-52.

(BST 89] BST News, a quarterly publication of ESPRIT-2

Project 2478 on Boundary Scan Test. Issue 1 was

published in March 1989. Details available from

BST Project Secretariat, HJK p818, CFT Automation,

Philips NPB, Box 218,5600 MD Eindhoven, Holland.

(DUPT 84] S das Dupta et al. "Chip Partitioning Aid: A

Design Technique for Portability and Testability
in VLSI" Proc ACM/IEEE Design Automation Conf,
1984 pp 203-208.

[PHIL 901 "Boundary Scan Test: The Structural Design for

Test Standard" 1990. A brochure available from any
Philips Components ASIC Design Centre.

[MCLE 89] D McLean et al., "Bringing 1149.1 into the real
world" High Performance Syst., August 1989 pp 61-
70.

tWILS 89] R Wilson, "TI takes the lead in JTAG support",
Compu. Design New Ed., January 1989.

3- 25

[PERK 89] TS Perry "Intel's Secret is out", IEEE Spectrum,
April; 1989.

(VAN 89] RP van Rissen et al., "Design and Implementation

of Hierarchical Testable Architecture using
Boundary Scan Standard", Proc. European Test

Confer., 1989 pp 112-126.

[VINI 89] S Vining, "Trade-off decisions made for a P1149.1

controller design" Proc IEEE Inter. Test Confer.,

1989 pp 47-54.

[BALL 89] WD Ballew and LM Streb, "Board Level Boundary

Scan: Regaining Observability with an Additional

IC", Proc., IEEE Inter. Test Confer. 1989 pp 182-

189.

[LIEN 88] JC Lien and MA Bruer, "A Universal Test and
Maintenance Controller for Modules and Boards, "

IEEE Trans. Indus. Electron., 36(2): 231-240,

1988.

[DARB 89] AT Dahbura, M Umit Uyar and CW Yau, "An Optimal

test sequence for the JTAG/IEEE P1149.1 Test

Access Port Controller, " Proc. IEEE Inter. Test

Confer., 1989 pp 55-62.

(SCHO 88] HN Scholz et al, "ASIC Implementation of Boundary

Scan and BIST, " Proc. Inter Custom Microelectronic

Confer., November 1988, London Heathrow.

(TULL 891 RE Tulloss et al., "BIST and Boundary Scan for

Board Level Test: Test Program Pseudocode, " Proc.

European Test. Confer., 1989 pp 106-111.

(USZY 89] PA Uszynski et al, "Hybrid Global test Strategy",

High Perform. Syst., January 1989 pp 68-74.

3- 26

[DEKK 891 R Dekker et al, "Realistic Built in Self Test for

Static RAMs" IEEE Design Test Comput., February

1989 pp 27-34.

[BLANC 84] JJ le Blanc, "LOCST: A Built in Self Test

Technique", IEEE Design Test Comput., November

1984, pp 45-52.

[GLOS 891 CS Gloster and F Brglez, "Boundary scan with

Built-in Self Test, " IEEE Design Test Comput.,

February 1989 pp 36-44.

[BRGL 89] F Brglez, C Gloster and G Kedem, "Hardware based

weighted random pattern generation for boundary

scan, " Proc IEEE Inter. Test Confer., 1989 pp 264-

274.

(WANG 89] LT Wang et al, "A Self test and self diagnosis

architecture for boards using boundary scan, "

Proc. European Test Confer., 1989 pp 119-126.

(GUNN 901 L Gunn, "CAE in the 1990's: Will users want

performance or integration? " Electronics Design,

11 January 1990 pp 53-63.

[HALL 89] JJ Hallenbeck et al, MThe Test Engineers

Assistant: A support environment for hardware

design for testability', IEEE Computer, April 1989

pp 59-68.

(SAMA 891 A Samad and M Bell, "Automating ASIC Design-for-

Testability: The VLSI Test Assistant", IEEE Inter.

Test Conf. 1989 pp 819-828.

[MCLE 891 J McLeod, "Bringing down the cost of ATE",

Electronics November 1989 pp 76-79.

3- 27

[FLUK 89] JM Fluke Jr, "Standardizing instruments will
increase competitiveness, " IEEE Spectrum January
1989 pp 50-52.

[GOEL 871 P Goel and MT McMahon, "Electronic chip-in-place
test, " Proc. IEEE Inter. Test Conf., 1987 pp 83-

90.

[WAGN 871 PT Wagner, "interconnect testing with boundary

scan", Proc. IEEE Inter. Test Conf., 1987 pp 52-

57.

[HASS 88] A Hassan et al, "Testing and diagnosis of
interconnects using boundary scan architecture, N

Proc. IEEE Inter. Test Conf. 1988 pp 126-137.

[JARW 89] N Jarwala and CW Yau, "A new framework for

analysing test generation and diagnosis algorithms
for wiring interconnects, " Proc. IEEE Inter. Test

Conf. 1989 pp 63-70.

(HAN1 891 P Hansen et al. "Tough Board Test Problems solved

with boundary scan", Electronics Test, June 1989

pp 34-40.

[VERS 89] L Vereen, "Board Tester supports Boundary Scan",

Electronics Test, June 1989 pp 30-31.

[TIME 89] Electronics Times, 29th June p 12.

[ROSE 89] P Hansen and C Roseblatt, Nhandling the transition

to boundary scan for boards, " High Perform. Syst.,

August 1989 pp 74-81.

[HAN2 891 P Hansen, "Testing conventional logic and memory

cluster using boundary scan devices as virtual ATE

channels, " Proc. IEEE Inter. Test Conf. 1989 pp
166-173.

3- 28

(HAN3 89] P Hansen, "Strategies for testing VLSI boards

using boundary scan, " Electronic Engineering,

November 1989, pp 103-111.

[HALL 891 A Halliday, G Young and A Crouch, "Prototype

testing simplified by scannable buffers and
latches, " Proc. IEEE Inter. Test Conf. 1989 pp 174-

181.

[PARK 90] K Parker and S Oresjo, :A language for describing

boundary-scan devices, ' to be presented at the
1990 IEEE Inter. Test Conf.

(LAGE 89] D van de Lagemaat, "testing multiple power
connections with boundary scan, ' Proc. European
Test Conf., 1989 pp 127-130.

(RASA 891 P Rasang, "Boundary scan and its application to

analog-digital ASICS testing in a board/system

environment, " Proc. IEEE 1989 Custom IC Conf., pp
22.4.1-22.4.4.

[DEVI 881 BI Dervisoglu, "Using scan technology for debug

and diagnostics in a workstation environment",
Proc. IEEE Inter. Test Conf. 1988 pp 976-986.

(LAND 89] DL Landis, "A self-test system architecture for

re-configurable WSI, " Proc. IEEE Inter. Test

Conf. 1989 pp 275-282.

[HASS 89] A Hassan et al., "Testing of glue logic
interconnects using boundary scan architecture",
Proc. IEEE Inter. Test Conf. 1989 pp 700-711.

(LEVI 891 ME Levitt and JA Abraham, "The economies of scan
design, ", Proc. IEEE Inter. Test Conf. 1989 pp
869-874.

3- 29

[DISL 89] C Dislis et al., "Cost analysis of test method
environments, " Proc. IEEE Inter. Test Conf. 1989

PP 875-883.

[SAWN 89] G Swan, Y Trivedi and D Wharton, "Crosscheck -a

practical solution for ASIC testability, Proc.

IEEE Inter. Test Conf. 1989 pp 903-908.

(HUDS 88] CL Hudson, "integrating BIST and boundary scan on

a board, " Proc. Natl. Commun. Forum, 3-5 October

1988 pp 1796-1800.

[TAPD 90] TAPDANCE, details available from AT &T, P. O. Box

4911, Room 112-3A33, Warren, Ni 07059-0911 USA.

[BASS 90] RW Bassett et al, "Boundary scan design principle

for efficient LSSD ASIC testing", IBM J Res.

Devel., 34(2/3): 339-354,1990.

[TI 19881 Texas Instruments, Data Sheet (Preliminary)

SN54BCT8374, SN74BCT8374 Boundary Scan Device with

Octal D-Type Flip-Flop, TI Inc., Dallas TX, 1988.

3- 30

CHAPTER 4

VHDL DESIGN AND MODELLING TECHNIQUES

4.0 INTRODUCTION TO VHDL

Hardware Description languages (HDL) provide a way to

textually represent physical electronic systems. (Wax 1],

(Wax 2]. They are used for the description, documentation and

communication of digital electronic designs. More recently,

they have been used for design verification, simulation and

synthesis.

VHDL - 1076 (VHSIC (Very High Speed Integrated Circuits)

Hardware Description Language) is an IEEE Standard since 1987

(stan 1076]. "It is a formal notation intended for use in

all phases of the creation of electronic systems. It supports
the development, verification, synthesis and testing of
hardware designs, the communication of hardware design

data..... " [Preface to the IEEE Standard VHDL Language

Reference Manual] and especially the SIMULATION of hardware

descriptions. Note that this chapter is not meant as an
introduction to VHDL; that is beyond the scope of this

thesis. The complete VHDL specification is documented in the

current IEEE standard manual [stan 1076].

This chapter gives an overview of the VHDL language. It

identifies the reasons for choosing VHDL as the modelling
language for modelling the Boundary Scan Architecture. It

also highlights the main ingredients of the modelling

environment. In doing so, it describes the various
description styles and abstraction levels available for the

designer. In addition, this chapter describes the role of

VHDL in the design cycle of digital systems and identifies

where VHDL fits within the CAD environment.

4- 1

4.1 DEFINITION OF VHDL

VHDL is a language which can be interpreted by humans and

machines. It is used to define the behaviour of an electronic

circuit or system in an unambiguous way. In conjunction with

appropriate CAE software tools (such as Mentor Graphic's

HQUICKSIMN), it can also define and implement simulation of a

system or circuit.

The language allows simulation to take place from the

SYSTEM level down to the GATE level. The language can be used

to define the behaviour of entire systems, single boards,

chips, single gates or an intermediate structure.

The most immediate and widespread use of VHDL is in the

design and simulation of integrated circuits.

4.2 OPEN - SYSTEM DESIGN AUTOMATION ARCHITECTURE

Utilising VHDL as the HDL language for implementing ASIC

designs will enable the use of CAE environments which support

an open-system architecture (such as Mentor Graphics), with

the well defined ability to interpret standards to ensure

effective interfaces for the designer and his/her tool.

4.3 VHDL AND THE ASIC DESIGN PROCESS

As Integrated Circuit complexity increases, circuits become

more specialised and their broad applicability decreases.

There are several reasons why a standard hardware description

language like VHDL is important to the ASIC (Application

Specific integrated Circuit) design process.

4- 2

1) The ASIC design approach requires advanced design

automation systems with clearly defined interfaces
between the customer and the vendor. This can shorten
the development cycle thereby reducing the associated
costs.

The three issues critical to the ASIC market that need

to be dealt with are the design interface, true second

sourcing and high performance fabrication processes.

These issues are the driving forces behind the new

approach. Since CAD advancements have happened so

quickly, conventional Integrated Circuit manufacturers
have been unable to catch up with CAD interface

technology.

2) VHDL provides user documentation of the ASIC design

and facilitates design second sourcing.

In an ASIC design service, vendors usually cannot
supply detailed documentation such as manuals, books

and application notes typically associated with
standard components because every device is different

and may or may not be vendor designed.

3) VHDL enables the ASIC design service vendors to

protect proprietary design system elements, giving

them a competitive advantage.

Figure 4.1 demonstrates where VHDL is used in relation to the

system design process.

4- 3

Equipment level
specification
Environmental test
plan

TEAMWORK

Structured Analysis of
equipment
functional requirements

SOFTWARE DEVLOPMENT

ADA Code Generator
ADA Program
Description
Language ABSTRACT HARDWARE
'C' Manual Coding BEHAVIOURAL DEFINITION

Using VHDL (VHSIC hardware
description language

HIGH LEVEL ANALOGUE
HARDWARE DESCRIPTION HIGH LEVEL DIGITAL

HARDWARE DEFINITION
Using AHDL (VHDL) or
SABER high level Using VHDL or ELLA
language

HARDWARE PARTITIONING

Manual partitioning of
the Hardware Functions
using information
derived from the System
requirements, and
behavioural analysis.

Module design
Specifications
ASIC Design specifications
Firmware, DSP design
specification Module
description in high level

DIGITAL SIGNAL
PROCESSING
ARCHITECTURE
ANALYSIS

MODULE REQUIRMENTS REVIEW

1ectronic VLSI/DSP Power Firmware DSP
1Module ASIC Supply Deeign Pzoceaeor
Design DeeiQn Design Function Developmen

FIGURE 4.1 VHDL AND SYSTEMS DESIGN

PERFORMANCE ANALYSIS

System Modelling using
PAM - Performance
Assessment Modeller
DYSMAP- Dynamic System

4- 4

VHDL is currently used after the hardware functions derived

from the system analysis stage have been partitioned.
it is at this point in the design cycle that the use of VHDL

is most appropriate. An important advantage of VHDL

description at the system hardware level is that, for the

first time, simulation becomes a realistic possibility.

Features such as unambiguous hardware description and

reusable hardware sub-systems are obvious and highly

desirable objectives, allowing alternative designs to be

simulated and design trade-offs to be investigated.

4.4 VHDL DESIGN HIERARCHY

Three main views of design hierarchy are behavioural,

structural and physical. The more established HDL's tend to

cover just one of these three views and have a dedicated

application.

The behavioural model describes the relationships between the

ports of a node without referring to the internal logic or

the physical structure.

VHDL serves as a vehicle for investigating new approaches to

design techniques, models and automation in areas such as

test, synthesis and simulation. Knowledge about hardware

properties and characteristics, applicable to design is the

very essence of language constructs comprising VHDL.

The various representations call for different areas of

expertise, e. g. at the functional level one needs skills in

the fields of architecture and machine design. At the

structural level a good background in logic design and

simulation would be essential.

4- 5

VHDL offers a framework for more behaviour-orientated design,

in which the behavioural axis has Boolean expression at the

lower levels. Algorithms are the next level up. The highest

design level is the system input/output specification.

The ability to consider electronic system software and

hardware jointly has tremendous potential in improving

software/hardware performance trade-off analysis and system

synthesis.

The structural model describes a node in terms of its sub-

components and their inter-connections. When more than just

structural information is needed, such as size or position of

ports around the perimeter, then it is integrated with the

physical model.

To cover all aspects of design a HDL really needs to be able

to have all of these aspects, but at different points in

time. For example, detailed structural information would not

be wanted in the first stages when the design is more

abstract. The four uses of VHDL are: -

" Specification of the functionality and performance of a

board or system with a view to simulation and

verification of the design.

" As a source level description of hardware with a view to

using logic synthesis tools to generate the physical

implementation of a design.

" The modelling of components for inclusion in simulations

at a detailed level.

0 As a design transfer language.

4- 6

Simulation - VHDL was designed to be used for a specific

application or device and therefore, it cannot be synthesized

easily.

Modelling - VHDL enables abstract models to be defined.

These models can not, however, be mapped directly to the

physical realisation. Indirect methods are available to

enable this mapping using alternative design tools e. g. ELLA.

Transfer - VHDL can describe hardware at any level to cope

with all types of designs and eventualities.

VHDL is mainly used for digital design and, although at the

most abstract level analogue components can be described in a

software like language, it cannot be used for the detailed

design. Analogue HDL tools are therefore used for these

parts.

Although there were many HDL's before VHDL it was the first

to be standardised across the industry, making it the first

truly standard HDL. VHDL has freed HDL'S from vendors,
enabling portability of designs, and of standard models of
devices. One risk of this is that vendors will produce sub-

sets and Vendor specific naming which will reduce this

portability and be a great pity.

VHDL is maintaining the principles of Systems Analysis by

enabling members of a team to work concurrently on different

points of the overall design. The use of a common language

enables the communication process which is essential if the

design team is to function effectively.

4- 7

When VHDL is employed, there can be many individuals working

on different aspects of the design: system engineers

developing global models and running system simulation;

Hardware designers working on functional block diagrams;

Test engineers designing appropriate test strategies.

VHDL was designed to help the engineer to organise the design

process.

The basis of abstraction is a design 'entity', which gives

the designer the 'black-box' model. It is essentially the

interface to the outside world, input/ output ports, and an

'Architectural Body' which describes the structural and

behavioural functions of the entity. There can be multiple

architectural bodies for one design entity all giving

different views of the same object

FIGURE 4.2 A VHDL DESIGN ENTITY

VHDL supports libraries from which designers can select pre-

compiled designs and reference them in their design.

4- 8

VHDL's real strength is in its ability to model a system over

a wide range of abstractions and thus there is no ambiguity

concerning movement from one level to another.

The area of design that VHDL is covering is from the systems

analysis and division down to the gate level. VHDL cannot
deal with switch or circuit level descriptions. it therefore

needs to be supported by CAE tools to transfer the

description into their schematic and simulation tools.

To summarise the attributes of VHDL, it: -

" Supports the design phase of development

" Interacts directly with humans and is immediately

understandable
" Helps in the management of a design

" Communicates design information between people

" Supports the whole spectrum of design and test from

system to chip.

4.5 VHDL MODES OF OPERATION

VHDL has two modes of operation:

1. Concurrent

2. Sequential

Concurrent -In the concurrent mode ALL statements that have

been queued for evaluation are evaluated at the same time.

This closely matches the action of the hardware devices in

real life.

Sequential - in this mode of operation all statements are

evaluated in strict sequence. No simulation time passes
during execution unless explicitly stated in the code.

4- 9

In order to simulate electronic hardware designs, the
following information is required:

" Structural descriptions of the design (netlist or

schematic)

" Behavioural model for each device in the design (VHDL

source or model library)

" Stimulus for the design (test vectors)

" Design configuration information (specify which version

of each device model to use during simulation).

4.6 VHDL STRUCTURES

VHDL models basically consists of two basic structures:

1. Entities

2. Architectures

Entities. These consist of the external worlds view of the

model. They consist of port declarations of the inputs and

outputs of the circuit and a number of common parameters such

as rise and fall times.

Architectures. This section consists of the VHDL structural

information. The circuit components, port to circuit

connections and internal signals are all declared in this

section. There are three basic levels of abstraction, these

being the behavioural, data flow, and structural.

4.7 VHDL DESIGN HIERACHY AND DATA BASE

The basic structure within a VHDL design is the design

entity. A single design consists of (potentially) many design

entities, each entity describes the inputs and outputs of the

design.

4- 10

The entity declaration does not describe how the design

entity functions, it simply defines the inputs and the

outputs, thus providing an external view of the entity. Each

design entity has at least one, but perhaps, more

architectures associated with the entity declaration. Each

architecture provides one possible way of describing the

functionality of the design entity or one possible
implementation of the design entity. Design entities may be

hierarchically nested. This means that if one design entity
is used in more than one part of the design, then it only

needs to be defined once, but may be referenced (or

instantiated) multiple times. VHDL gives us the flexibility to

describe a design while maintaining any type of hierarchical

partitioning or nesting.

Architectures describe how a particular implementation of a
design entity should function. Architectures consist of two

parts: the architecture declaration and the architecture
body. The architecture declaration describes the various
items used within the architecture body. These items include

signals (which can be considered the same as wires) and

references to other design entities which are nested inside

the architecture. Within an architecture body may appear two

types of statements, concurrent and sequential. These

statements are used to describe the functionality of the

architecture. VHDL's concurrent and sequential statements are

an attempt to describe circuits which exhibit parallel and

serial behaviour respectively. The basic data construct

within both sequential and concurrent code is the assignment

construct.

The main factors which make VHDL a better hardware
description language to use are:

4- 11

a) It has evolved from a set of user requirements
b) It includes Timing thus avoiding dependence on the

simulation environment.
c) It can produce many different views and abstractions of

the same model
d) It helps in the Organisation of a design.

4.8 DESIGN DESCRIPTION METHODS

System-1076 provides a textual method of describing a

hardware design rather than a schematic representation. The

following are various System-1076 methods for describing

hardware architectures:

" Structural description method - expresses the design as

an arrangement of interconnected components.

" Behavioural description method - describes the functional

behaviour of a hardware design in terms of circuit and

signal response to various stimuli. The hardware

behaviour is described algorithmically without showing
how it is structurally implemented.

" Data-flow description method - similar to a register-
transfer language. This method describes the function of

a design by'defining the flow of information from one
input or register to another register or output.

All three methods of describing the hardware architecture can
be intermixed in a single design description.

4- 12

4.8.1 STRUCTURAL DESCRIPTION

This subsection identifies some of the language constructs

that are in a System-1076 structural description, by using an

example of a two-input multiplexer. The description provides

an overview, but not a complete representation, of all the

language building blocks found in a structural description. A

System-1076 structural description of a hardware design is

similar to a schematic representation because the

interconnectivity of the components is shown. This is

illustrated in this subsection with a comparison of a simple

NETEDTM (from mentor Graphics) design to a System-1076

structural description of the same circuit.

Figures 4.3 and 4.4 show the symbol-schematic representation

of the two-input multiplexer. Note the pin names on the

inside of the MUX symbol in Figure 4.3 match the net names of

the inputs and output of the schematic in figure 4.4. This

ensures connectivity between the two NETED sheets. The input

and output ports (DO_IN, D1_IN, SEL_IN, and Q_OUT) are

unrelated to the underlying sheet. They are used during

simulation to access the inputs and output.

DO_IN

D1_IN

QOUT

SEL_IN

Figure 4.3 Symbol Representation of Two-Input

Multiplexer

4- 13

dO

sel

dl

q

Figure 4.4 Schematic Representation of Two-Input

Multiplexer

Figure 4.5 shows a System-1076 structural description of the

two-input multiplexer. The system-1076 code contains comments

that are set off with a double dash (--) symbol. Any text

appearing between the double dash and the end of a line is

ignored by the compiler. (See lines 1,3,6,8,18 20 through

22, and 25 in figure 4.5) Descriptive comments make the code

easier to read.

1 -- entity declaration
2 ENTITY Mux IS
3 PORT (dO, dl, sel: IN Bit; q: OUT bit); --port clause
4 END mux;
5
6 -- architecture body
7 ARCHITECTURE structure OF mux IS
8 COMPONENT and2 -- architecture declarative part
9 PORT (a, b: IN bit; z: OUT bit);
10 END COMPONENT;
11 COMPONENT or2
12 PORT (a, b: IN bit; z: OUT bit);
13 END COMPONENT;
14 COMPONENT inv
15 PORT (i: IN bit; z: OUT bit);
16 END COMPONENT;
17
18 SIGNAL, aa, ab, nsel : bit; --signal declaration
19
20 FOR ul : inv USE ENTITY invrt (behav);

-- configuration
21 FOR u2, u3 : and2 USE ENTITY and_gt (dflw);

-- specifications
22 FOR u4 : or2 USE ENTITY or_gt(archl);
23

4- 14

24 BEGIN
25 ul: inv PORT MAP (sel, nsel);

-- architecture statement
26 u2: and2 PORT MAP (nsel, dl, ab);
27 u3: and2 PORT MAP (d0, sel, aa);
28 u4: or2 PORT MAP (aa, ab, q);
29 END structure;

Figure 4.5: Code Example of Structural Description for

a Multiplexer

The two-input MUX represented by figure 4.5 is a basic design

unit. The entity declaration at the top of figure 4.5 (lines

2 through 4) defines the interface between the entity and the

environment outside of the entity.

This entity declaration contains a
input channels (signals d0, dl and

and an output channel (signal q in

The signals are of a pre-defined t:
declared elsewhere to describe all
for each signal.

port clause that provides

sel in figure 4.5 line 3)

figure 4.5, line 3).

1pe called bit which is

possible values (0 or 1)

The architecture body (lines 7 through 29) describes the

relationships between the entity inputs and outputs in a

structural way.

The various components (and2, or2, and inv) that form the

mux entity in figure 4.5 are declared in the architecture
declarative part (lines 9 through 16). Signals (aa, ab, and

nsel) are also declared in the architecture body (line 18) to

represent the output of the two AND gates (u2 and u3) and the

inverter (u1).

The configuration specifications in lines 20 through 22 bind

each component instance to a specific entity which describes

how each component operates.

4- 15

As an example, the component ul used in line 25 is bound to

an architecture called behav for an entity called inverter.

The architecture statement part (lines 25 through 28)

describes the connections between the components within the

entity. It is in this part that the declared components are

instantiated.

4.8.2 BEHAVIORAL DESCRIPTION

The following identifies some of the major language

constructs found in a behavioural description using the

previous MUX example and a four-bit example. Structural

description method can now be compared with the behavioural

description method described in this section.

A System-1076 behavioural description represents the function

of a design in terms of circuit and signal response to

various stimulus.

In the design shown in figures 4.5 through 4.9, the behaviour

of the MUX was determined by the connections between the

inverter, and AND gates, and the OR gate. The function of

these gates is generally understood.

In a more complex design, the components U1 through U4 in

figure 4.5 could represent entities that have complicated
functions such as a central processing unit or a bus

controller. When function and not structure is most
important, each component can employ a corresponding
behavioural description.

Figure 4.6 shows the System-1076 code which defines the MUX

behaviour.

4- 16

The behavioural description in figure 4.6 and the structural
description in figure 4.5 both contain an entity declaration

and an architecture body. In practice you would not have both

the behavioural and structural architecture body shown in

figures 4.5 and 4.6 in one source file. The designer can
first write the entity declaration in one design file, the

behavioural architecture in another design file and the

structural architecture in still another design file. In an

actual design after the entity declaration is written and

compiled, one might write a behavioural architecture next, to

allow testing of the overall circuit functions.

i -- entity declaration
2 ENTITY Mux IS
3 PORT (d0, dl, sel: IN Bit; q: OUT bit); --port clause
4 END mux;
5
6 -- architecture body
7 ARCHITECTURE behavioural OF mux IS
8 BEGIN
9 f1: -- process statement
10 PROCESS (d0, dl, sel) -- sensitivity list
11 BEGIN
12 IF sel = '0' THEN -- process statement part
13 q <= dl;
14 ELSE
15 q <= d0;
16 END IF;
17 END PROCESS f1;
18 END behavioural;

Figure 4.6 Code Example of Behavioural Description

for a Multiplexer

A behavioural description model is also useful to stimulate
inputs of other System-1076 models during simulation.

The major difference between the structural and behavioural

descriptions of the MUX is that the architecture body in

figure 4.6 contains a process statement.

4- 17

The process statement describes a single, independent process
that defines the behaviour of a hardware design or design

portion. The basic format process statement is as follows:

process statement label:
process (sensitivity-list)
process_declarative_part
begin

process_statement_part
end process label;

The process statement in figure 4.6 begins with the process
label f1 followed by a colon (line 9). The process label
is optional but is useful to help differentiate this process
from other processes in a larger design.

Following the reserved word process is an optional

sensitivity list (located between the parenthesis). The

sensitivity list in figure 4.6 (line 10) consists of the

signal names d0, dl, and sel. During simulation, whenever a

signal in the sensitivity list changes state, that process is

executed.

In the MUX example, whenever, d0, dl, or sel change state,

process fl is executed and the state of the output signal is

changed accordingly. Each process in a System-1076 design

description is executed once during initialisation of the
System-1076 hardware model.

The heart of the process statement in figure 4.6 is the if,

statement contained in the process statement part. The basic

format of an if, statement is as follows:

4- 18

if statement if condition then
sequence_of_statements

else if condition then
sequence-of-statements

else
sequence-of-statements

end if;

4.8.3 DATA FLOW DESCRIPTION

The following identifies some of the major language

constructs found in a data-flow description using the

previous MUX example. The VHDL data-flow description and a

register-transfer language description are similar in that

they describe the function of a design by defining the flow

of information from one input or register to another register

or output.

The data-flow and behavioural descriptions are similar in

that both use a process to describe the functionality of a

circuit- see figure 4.7. A behavioural description explicitly
calls a single, independent process with process statement by

using one or more of the following concurrent statements for

each implied process:

0 Block statement

" Concurrent procedure call
" Concurrent assertion statement

" Concurrent signal assignment

In addition to these language constructs, the Block statement

and Component Instantiation statement are also concurrent

statements but are not found in a data-flow description.

Concurrent statements define interconnected processes and
blocks that together describe the overall behaviour or

structure of a design.

4- 19

A concurrent statement executes asynchronously with respect

to other concurrent statements.

1 -- entity declaration
2 ENTITY Mux IS
3 PORT (d0, dl, sel: IN Bit; q: OUT bit); --port clause
4 END mux;
5
6 -- architecture body
7 ARCHITECTURE data-flow OF mux IS
8. BEGIN
9 csl : -- concurrent sig assignment statement
10 q <= dl WHEN sel = 00" ELSE -- conditional sig. ass.
11 dO WHEN sel
12 END data_flow

FIGURE 4.7 Code Example of Data-Flow Description for a

Multiplexer

4.9 BEHAVIORAL MODELLING OF 4 BIT MULTIPLIER

In this section a behavioural model of a4 bit serial

multiplier will be designed. This circuit will be used as an

example to demonstrate this modelling style of VHDL.

The design consists of series of successive shift and add

routines, which work in basically the same way as multiplying

two numbers on paper. The main difference, is that on paper

the shifting for each number is done first and then the whole

lot added together to determine the result. This is different

to the hardware design which keeps account of the last shift

sum and adds it to the subtotal. In this way only one

accumulation register is needed, so saving on gates and

resulting in smaller die size at less expense. The other

difference, mainly related to binary multiplication, is that

no calculation is performed to the multiplicand if the next

bit to be multiplied is a zero.

4- 20

The multiplication process implemented contains three
registers as can be seen from the top level multiplier
schematic.

behar

Z(7: 0)

i(3: 0)
b(3: 0)

en%b1e

Figure 4.8: Structural Description of 4 bit multiplier

One register (the four 4 bit multiplier register) is used to
store one of the two four bit numbers to be multiplied
together, the other 4 bit number is loaded into the eight bit
multiplicand register to be shifted through. Loading is

accomplished by previously resetting the registers to zero
via the parallel clear and loading the values on to the
preset. Any 'one' present in the word set, the appropriate
cell will change to a high state.

The output is achieved by successive shifting and add
instructions via the 8 bit accumulator. Note that if a zero
is multiplied the accumulator latch is inhibited and the
multiplicand is shifted left one cycle.

4- 21

4.9.1 VHDL BEHAVIOURAL MODEL OF MULTIPLIER

This section describes the behavioural description of a4 bit

multiplier in VHDL.

ENTITY multi IS
PORT (a : IN vlbit_1d(0 TO 3);

b : IN vlbit_1d(0 TO 3);
q : OUT vibit_1d(0 TO 7);
clock, start : IN vlbit);

END multi;

ARCHITECTURE behav OF multi IS

BEGIN

calculate : PROCESS (clock)

VARIABLE cycle : INTEGER :=0;

BEGIN
IF (clock=111) AND (start='1') THEN

IF cycle=4 THEN
q <= mulum(a, b);
cycle :=0;

ELSE
cycle := cycle + 1;

END IF;
END IF;

END PROCESS calculate;

END behav;

Figure 4.9: Behavioural Description of Multiplier

4.9.2 SIMULATION AND TEST VECTORS

Test Vectors are used to verify the functionality of the

device after manufacture. The test vectors generated for the

multiplier are shown in the simulation wave forms in the

appendix. The inputs (in decimal) loaded to test the device

are as follows: 5*3= 15

4- 22

This resulted in a ripple through output of 'OF' which tested

that the first four pins could be driven high, whilst the

next four bits remained low. Other tests that were used are:

15 * 15 = 225 which gives the maximum count available.
0*8=0 which gives low level output.

This does not provide a full test of all circuit nodes with

all possible combinations, but proves the viability of the
device to perform the mathematical computations required.

4.10 CONCLUSIONS

VHDL was chosen as the Behavioural Description Language for

modelling the Boundary Scan Architecture in this project for

several reasons. It is a well documented standard, it is

gaining popular acceptance, it supports both abstraction
hierarchy and design hierarchy (with its structural and

procedural constructs) and it is not tied to any one vendor's
design system.

The different implementations of the multiplier have
demonstrated the design approaches that are becoming

available in todays market. VHDL thus offers a number of
benefits over other hardware description languages. These

include its availability as a public standard, its ability to

support different design methodologies and design

technologies, its independence of both technology and

process, and its capability to support a wide range of
hardware descriptions of a digital system, from a behavioural

level to a gate level. These benefits have therefore affirmed

the decision to use VHDL in this project, to model the

Boundary Scan Test Architecture.

4- 23

REFERENCES

(Wax1] R. Waxman, "The VHSIC Hardware Description

Language- A Glimpse of the Future, " IEEE Design

and Test of Computers (April 1986)

(Wax2] R. Waxman, "Hardware Design Languages for Computer

Design and Test", IEEE Computer Volume 19 (April

1986)

[Coell] David R. Coelho. The VHDL Handbook, Kluwer

Academic Publishers.

[Ceeda9l] S Medhat, J McGinty, N Sheridan. The Use of VHDL

in a VLSI Matrix Manipulation Processor Design.

CEEDA 91, pp 320-324 Bournemouth, UK March 1991.

(stan 1076] IEEE Press, IEEE Standard VHDL Reference Manual,

IEEE 1076 - 1987, Montvale, NJ, 1986.

4- 24

CHAPTER 5

THE IEEE 1149.1 BOUNDARY SCAN ARCHITECTURE

5.0 INTRODUCTION

Up to now, the BIST test methods and general test principles

have been described in the previous chapters. This chapter

will describe the operation of the main components of the

IEEE-JTAG standard in a structural way. Initially, the full

architecture will be designed, simulated and tested without

an application logic using the mentor Graphics Computer Aided

Engineering system. The Boundary Scan Architecture will then

be added to a 2-bit adder design example (An Application

Logic ASIC) to give an insight to the test harness operation

as described in Appendix 5.

Figure 5.1 shows a block diagram of the general JTAG circuit

used on a chip. It includes all the signals needed to

integrate an on-chip internal scan.

5- 1

BOUNDARY LOOP0

TEST REGISTER TEST REGISTER TEST REGISTER

LOOP I

TEST REGISTER TEST REGISTER

LOOP2

TEST REGISTER TEST REGISTER

(OPTIONAL)

r -ý' -r -r -r -r -r -I
10 REGISTER

1- J- J- J- J- J- J-

T«TIONAL IOU RESET TSCKEB ýIK K Un
1

IDCK IDOL SYP UPHLD ITCKEBISCKEBIIIIII
CT11EM DC MUR

COUNTER L
UPDATE CLOCK
RESET ENABLES CONTROL

1 "Eli-TEST CrL" LOCAL
DECODER

CIRCUIT I INTERFACE INTERNAL INTERFACE CTRDeý

BYPASS
REQ OUTPUT

CONTROL
T DOP DOP

LOOP SELECT DON T

TIN
Tp INSTRUCTION REGISTER

TRST
TRST

JTAO JTAP
TUB

TUS STATE
CONTROLLER
MAL ROCS LL

MACNNE

I STATUS INPUTS
TCK STLn

JTAO TEST I
CLOCK I

ITCK INTERNAL TEST CLOCK
TCK DRIVES ALL TRANSPARENT

TEST REGISTERS

ISCK MAIN INTERNAL SYSTEM
fCK 0 CLOCK . ALL CLOCKED

TEST REGISTERS
NORMAL JTAO CLOCK GATING
SYSTEM AND BUFFERING CEL

CLOCK NIPUT
OPTIONAL)

Figure 5.1 The IEEE 1149.1/JTAG Architecture

5.2

5.1 JTAG BOUNDARY SCAN ARCHITECTURE TEST MODES

There are two main modes of test operation that are supported
by JTAG - 'Sample' mode and 'Non-sample' mode, see fig 5.2

a, b.

Non-sample mode operation is the normal mode for running

tests on the chip, applying and capturing test data and

running self-test functions. While in this mode, the chip is

prevented from functioning normally. The test registers in

the scan loops are kept in a hold state and stay held until a

scan loop is selected. A test is then run on a desired part
of the circuit.

When Sample mode operation is in progress the chip is running

normally, performing its normal system function, but by means

of the JTAP controller the data passing through the Test

Registers can be captured into the Test Registers and

subsequently shifted out through the TDO pin. This is

achieved without interfering with the chip function. Only

Test Registers which are of the transparent type can be

sampled as the clocked types cannot be shifted without
interfering with the normal signal dataflow through the chip.

5- 3

TDI TDO

TCK JTAG JTAP
CONTROLLER

TMS

"
"

"C

"
"

D

"

E"
"B

BOUNDARY LOOP
-11 -

01

Figure 5.2a JTAG Sample Mode

5-4

5.2 JTAG BOUNDARY SCAN ARCHITECTURE MAIN COMPONENTS

The top-level schematic of the test logic defined by IEEE

Standard 1149.1 includes three key blocks as shown in figure

5.3.

TEST
REGI.

BOUNDARY A Application
SCAN Logic

REGISTER
A

ADDITIONAL ------ "
DATA R11

REGISTERS 1-
---_-

(OPTIONAL)

R2
1

BYPASS REGISTER ------"

INSTRUCTION gR
REGISTER

Vcc
Y

ýf-

IR

TDI

Vcc

TMS TEST
ACCES,

TCX PORT

BOUNDARY SCAN
-CELL

L
A
T
C
H

Figure 5.3 Simplified Block Diagram of JTAG
Architecture

EN

TDO

5- 5

a) The TAP Controller

This circuit responds to the control sequences supplied

through the Test Access Port and generates the

necessary clock and control signals required for the

correct operation of the application logic and test

structure. The JTAP controller provides a number of

internal signals (DC1n and DC2n) that are connected to

the DC1 and DC2 inputs of the test registers to control

the main Test register functions as shown in figure

5.1.

b) Instruction Register

This is a shift-register-based circuit, shown in figure

5.3, which is serially loaded with the appropriate
instruction to select a specific test to be performed.

ý) The Test Data Registers

These are shift-register-based circuits as shown in

figure 5.3. The stimuli or conditioning values required

by a particular test are loaded serially into the test

data register that is selected by the current
instruction. Following execution of the test, the

results can be shifted out for examination.

Each test data register is connected to the on-chip TAP

which controls the operation of the tests and allows

serial loading and unloading of instructions and test

data to take place. The role of the embedded TAP within

an integrated circuit is directly analogous to the

"diagnostic" socket provided on many automobiles. It

allows an external test processor to control and

communicate with the various test features built into

the product.

5- 6

In addition, the test data registers can be connected
to the various modules of the application logic within
the chip or to the pins that are connected to the

application logic, to allow tests to be performed on
the application logic.

The Test registers are connected together to form scan
loops that are fed by serial input pin TDI. During

test the scan loop is configured as a shift register

and is used to load test data from the TDI pin and

unload test data from the TDO pin (routed via the JTAP

cell).

Test registers must be placed between all input pins

and the system logic. They also must be placed between

all output pins and the system logic. This conforms to

the basic JTAG/IEEE 1149-1 specifications of self-test

and internal test which require test registers inside

the system logic. Test registers on the output pins of

the chip have extra update holding latches to prevent
test data appearing at the chip outputs. This prevents
the random signals on the output Test registers from

upsetting other chips that are connected to the outputs

pins. This is a requirement for JTAG/IEEE 1149-1

conformance. This function is controlled by the UPHLD

signal as shown in figure 5.1.

5.3 THE TAP

The TAP contains four or optionally, five pins [MAUND 87].
These are:

" The test clock input (TCK): This is an independent clock
of the chip system clock(s), so that test operations can
be synchronised between the various chips on a printed
wiring board.

5- 7

Both the rising and falling edges of the clock are
significant: the rising edge is used to load signals
applied at the TAP input pins TMS (test mode select) and
TDI (test data input), while the falling edge is used to

clock signals out through the TAP test data output (TDO)

pin (figure 5.4). As will be discussed later, the
boundary-scan register as defined by the standard is

controlled such that data is loaded from the system input

pins on the rising edge of TCK while data is driven

through system output pins on the falling edge.

" The Test Mode Select Input (TMS): The operation of the

test logic is controlled by the sequence of 1s and Os

applied at this input, with the signal value typically

changing on the falling edge of TCK. This sequence is fed

to the TAP controller (which samples the value at TMS on

each rising edge of TCK) by the other test logic blocks.

TMS is either equipped with a pull-up resistor or
otherwise is designed such that when it is not driven
from an external source, the test logic perceives a logic

1.

" The Test Data Input (TDI): Data applied at this serial
input are fed either into the instruction register or
into a test data register, depending on the sequence

previously applied at TMS.

Typically, the signal applied at TDI will be controlled
to change state following the falling edge of TCK, while
the registers shift in the value received on the rising
edge.

Like TMS, TDI is either equipped with a pull-up resistor
or otherwise is designed such that, when it is not driven
from an external source, the test logic perceives a logic

1.

5- 8

" The Test Data Output (TDO) : This serial output from the

test logic is fed either from the instruction register or
from a test data register depending on the sequence

previously applied at the TMS. During shifting, data

applied at TDI will appear at TDO after a number of

cycles of TCK determined by the length of the register
included in the serial path. The signal driven through

TDO changes state following the falling edge of TCK. when
data are not being shifted through the chip, TDO is set
to an inactive drive state (eg., high-impedance).

" The Optional Test Reset Input (TRST) : The need to be

able to initialise a circuit to a known starting state
(the reset state) is crucial in testing . As will be
discussed later, the TAP controller is designed so that

this state can be quickly entered under control of TCK

and TMS.

The standard also requires that the test logic can be

initialised on power-up independently of TCK and TMS.

This can be achieved either by building features into the

test logic itself (eg. a power-up reset circuit) or by

adding the optional TRST signal to the TAP. Application

of a0 at TRST asynchronously forces the test logic into

its reset state. Note that, in this state, the test logic

cannot interfere with the operation of the on-chip system
logic, so TRST can also be viewed as a "test mode enable"
input (BEEN 85].

By loading the signals applied to the test logic through

chip input pins (eg., through TMS and TDI) on the rising

edge of TCK, while using the falling edge to clock
signals out through chip output pins (such as TDO), the
operation of the IEEE Std 1149.1 test logic can be made
race-free.

5- 9

For example, when chips compatible with the standard are
serially connected, data is applied to TDO by the first

chip on half cycle of TCK prior to the time when they are
loaded from the TDI input of the second. This allows time

to account for delays in the serial path, skew between

the clock fed to the neighbouring ICs, and other factors.

TCK

STATE
ENTERED

ACTIONS
OCCURING
ON FALLING
EDGE OF TCK

ACTIONS
OCCURING
ON RISING
EDGE OF TCK

Figure 5.4 Control Pipelinning

Since TDO is set to an inactive drive state when no data
is being shifted, the TAPS of individual chips can, if

required, be connected to give parallel serial path at
the board level. In such cases, a different TMS signal is

required for each serial path. These signals should be

controlled such that no two paths attempt to shift data

simultaneously (WHET 881.

5- 10

TDI TDI TDO TDI TDO

TMS TCK TMS TCK

TMS1
TCK
TMS2

TDO

TCK TMS Tck TMS

TDI TDO TDI TDO

TDO1 TD02 TD03 TDO4

At the board level, the test signals can be controlled either

by external automatic test equipment (ATE) or by an on-board

bus-master chip. In the latter case, the bus-master chip

might provide an interface between the interface defined by

the IEEE Std 1149.1 TAP and some higher level test messaging

system.

5.4 BOUNDARY SCAN

The boundary scan cell shown in figure 5.6 connects the

external input pins to the internal functioning connections

of the application logic (e. g. 2-bit adder). One cell for

each independent connection is required.

5- 11

TDI1 TDI2 TDI3 TDI4

Figure 5.5 Different Configurations of the

Boundary Scan Register

TMS

I

TDI

DIN
EI lil [-b>? Ot

4

TDO

TDI

)OUT

Figure 5.6 Boundary Scan Details

Boundary scan involves the inclusion of a controlled shift

register which is connected from the input/output of the on-

chip application logic to the device pins. The boundary scan

cells have been designed so that they either accept serial
input (test data or test instruction) or data from the

standard input pins depending on the mode of operation.

These boundary cells act as 3-way latching switch which can

either:

5- 12

1. Let data pass straight through giving standard
operation.

2. Isolate the external input, allowing data to be

received from the serial input and passing it through
to the application logic (the adder).

3. sending serial data directly through the serial output
bypassing the adder completely.

The cells connected on the output act in a similar way to

those on the input, isolating the adder output connections
from the external output pins when certain instructions are
loaded [ICCD 87].

The three functions have been implemented to conform to the

IEEE regulations of the standard. Other optional
instructions can be added depending on the device to be

tested and the complexity of the design.

SDR

[IDDE

L_CELL

Pix ix

CDR
UDR

x_CELL

pix ovr

Figure 5.7-a Boundary Scan Cell (Input or Output)

5- 13

''"""`'`"'"" ""'""'`"ON CHIP SYSTEM LAGI

INPUT
PIN

DI DI DI DI DI DI DI

HOHO HOHOHOHOH0
in to V1 to to VI in M to V) W Vl ca th

DO DO DO DO DO D°

d-
M

ý3

D

BIDIRECTIONAL
PIN

ý1

D

3 STATE PIN OUTPUT PIN

ON CHIP SYSTEM LAGIC;:; i:: <:,

Figure 5.7-b Different Input/Output Types of BSC

5.4.1 BOUNDARY LOOP 0 RULES

The JTAG/IEEE 1149-1 spec defines that test registers are

placed on the periphery of the chip and are connected

together to form a boundary loop (loop 0).

In order for JTAG/IEEE 1149-1 spec conformance the following

rules must be obeyed when connecting up the test registers

on the boundary loop: -

5- 14

a) All system input and output pins must pass through Test

registers (including the system clock).

b) For tri-state and bi-directional pins, the tri-state

enable connection must also pass into the test register.

(Where tri-state and bi-directional buses are used

internally in a design, it is recommended that the

internal tri-state enable should be passed into the test

registers).

c) Test registers on the output pins must be equipped with

Update latches. Those output pins which are used for

tri-state or bi-directional outputs can use a single

data bit together with an update latch on the tri-state

control line.

d) All Test registers connecting on the input and output

pins must be connected together to form a scan loop, and

should be connected to JTAP controller cell loop input

LO(loop 0). The order of the test registers in the

scan-path is not important.

e) For SAMPLE mode operation the test registers in boundary

loop 0 must be made exclusively from transparent

registers.

5.4.2 THE TEST REGISTER TEST MODES

In order to implement the different functions with the

minimum of external control connections, each test register

has two external control connections (DC1 and Dc2) plus an

update latch control (UPHLD). These are used to select which

of the main modes in which the test register is to operate.

5- 15

DC1 DC2 Mode Name Description

0 0 TEST Performs Test selected by control bits

0 1 SHIFT Serial data shifted through scan loop
1 0 RUN Non-test mode, Data passes from D to F

1 1 HOLD Si nal data held on re ister

Additionally there are two test control register bits that

are shifted in series with the data bits. These control bits

control which type of test sub-function is to be performed by

the test register when the TEST mode is selected by DC1=0 and

DC2=0 signals.

DC1 DC2 TC1 TC2 Mode Name

0 0 0 0 TEST HOLD

0 0 0 1 TEST SIGNATURE-ANALYSE

0 0 1 0 TEST SLIDE
0 0 1 1 TEST PSEUDO-RAN GENERATE

TC1 and TC2 are in series with the test register serial scan

path, and are loaded during the shift operation.

The DC1 and DC2 signals are normally supplied from the JTAP

controller.

5.4.2.1 RUN

RUN mode is the state that the Test register is in during

normal non-test chip operation, where data flows through the

test register uninterrupted. The RUN mode is also used
during test to apply and capture data simple tests.

5- 16

Data passes from the D databit input pins to the F output

pins. If the databits used are the transparent type then

data is propagated immediately to the output, while if

clocked data bits are used then F changes on the +ve edge of

the clock CLK driving the Test register. If clocked databits

are used then the EN Test register input is used to hold the

input if EN = 0. Fig 5.8.1 shows diagrammatically the Test

register in RUN mode.

5.4.2.2 HOLD DATA

Data is held on the test register. It is used either as an

intermediate state whilst the JTAP controller is going

through the state diagram in preparation for a test, or data

is held stable on a Test register while other parts of the

circuit is being shifted. Fig 5.8.2 shows the Test register

in HOLD mode.

5.4.2.3 SHIFT DATA

Data is shifted into the test register (on pin SI) and out

through the last data bit, see fig 5.8.3. The data shifted in

can be used to set up the data presented to the inputs of the

circuit being tested while the data shifted out can be the

results of the data test. At the same time, the test

register control bits TC1 and TC2 are also shifted and set

up.

5- 17

5.4.2.4 TEST PSEUDO-RANDOM GENERATE

The test register is configured into a linear-feedback shift

register which generates a maximal-length pseudo-random

sequence at the test register data outputs. This sequence

is presented to the inputs of the block of circuit being

tested, and may be used to exhaustively test the circuit.

See fig 5.8.4.

5.4.2.5 TEST SIGNATURE-ANALYSE

The test register is configured into a linear-feedback shift

register and the data inputs are EXclusive ORed into the

register, causing a signature to be generated at the end of

the test see fig 5.8.5. It used to build up a signature

from circuit outputs from circuit whilst the inputs are being

tested with TEST PSEUDO-RANDOM-GENERATE or TEST SLIDE test

modes.

5.4.2.6 TEST SLIDE

The test register data bits are configured into a shift

register whose last bit output is fed back to the first bit

input, thus recirculating the data as shown in fig 5.8.6.

This test configuration is used to 'walk' patterns along the

circuit inputs. An output signature can then be collected

with the output test register set to TEST SIGNATURE-ANALYSE.

5.4.2.7 TEST HOLD

Data is held in the test register. In many tests it is

required to hold data stable for the duration of the test

while test operations are in progress in another part of the

chip.

5- 18

Figures 5.8.1,2,3,4,5,6

TU TAI

. co

DC1. I
00.1

DATA U DATA ONE

TmaI cowl

DC,.,
DC:..

so 90

DCl. I

0c3.1

$MAL SCAM M. DAM LOOP PP JT Tf1T Al
7IR11i0U1i11 COIF

CCM111W

TCit DCl .9
CI ." DC7. "
cs. 1 CONT OL I. -

d

tcx

-I . --.

0

KFAAL IC AN
LOOP KNIT I !O

TUT Ili
corn

Del. I

I

Tw Ri
COMA

DCI ..
DC). I

W

W

5-19

5.5 INSTRUCTION REGISTER

The Instruction register is used to load in the required

test operation code. It is responsible for providing the

address and control signals required to access a particular

scan path in the data register.

ShiftlR

TDI

Data

C1ockIR

UpdateIl

TREST*
Reset*

Instruction Bit

TDO

Figure 5.9 Instruction Register Block Diagram

5.5.1 JTAP Instruction Register

The instruction register is an 8 bit shift register taking

its input from the TDI serial test data external input.

The instruction is shifted in only in the SHIFT-IR(A) state

and is clocked in on the +ve edge of TCK signal. The

instruction only becomes active in the UPDATE-IR(D) state.

When the instruction is being shifted in, the output of the

instruction shift register is multiplexed on to the TDO

output pin. The output changes on the -ve edge of TCK.

TIT

MSB LSB
7 6 5 4 3 2 1 0

IRUD IRINT IRDCIB IRDC2 IRLO IRL1 IRL2 IRL3

Main Instruction Register Control Bits

5- 20

_IR SAMPLE
IR

TSCKE

Supplementary Control Bits

IR
RESET

When an instruction is shifted in, 8 bits of data are loaded
into the instruction register. Bits 7-4 (labelled IRUD,
IRINT, IRDC1B, IRDC2) determine which test operation is to
be performed on the scan path loop, while Bits 3-0 (labelled
IRLO-3) determine which scan path loop is to be tested (note

that the bit order is reversed).

Three Supplementary Control Bits provide additional control
(IRSAMPLE, IRTSCKE, IRRESET). These bits are not part of the

serial instruction register path but are set and reset by
decoding the 8 main instruction register bits

Special escape codes on bits IRLO-3 are used to give extra
functions not possible using the 8 bit instruction register
alone.

Six bits ST10-5 can be used to give general purpose status
information. The status inputs are loaded into instruction
register bits 0-5 when in the CAPTURE-IR state and are
shifted out to the TDO pin when a new instruction is shifted
in.

5- 21

Bit Name Description

MSB 7 IRUD Update Disable and Sample mode reset.
Control the updating of the test
registers via the UPHLD signal
0= Update in UPDATE-DR(5) state +
Sample mode reset
1= Don't Update during UPDATE-DR(5)
but hold old value
When TRST=O or when in TEST-LOGIC-RESET
(F) state IRUD=1

6 IRINT Internal/External test select. Selects

whether on Boundary loop 0, the input
test registers hold data, or whether
the output test registers hold data.

0= External Test, outputs hold whilst
inputs Capture.

1= Internal Test, inputs hold whilst
outputs Capture. Valid only when RUN
is loaded into the Instruction register

When TRST=O or in TEST-LOGIC-RESET(F)
IRINT is set to 1

5 IRDCIB DC Test select signals. Test control
signals are applied to the selected
loop during the RUN-TEST-IDLE(C) and
CAPTURE-DR(6) states only.
Note the IRDClB is inverted to

4 IRDC2 maintain compatibility with the
reserved instructions.

3 IRLO Selects the loop to be
SCAN operated on. Valid for

SHIFT-DR(2) RUN-TEST-IDLE(C)
2 IRL1 CAPTURE-DR(6) states only

LOOP
1 IRL2 Escape codes 1111 and 0001

are used for special
SELECT functions.

LSB 0 IRL3

5- 22

5.5.2 RESERVED JTAG INSTRUCTIONS

The JTAG/IEEE 1149-1 spec defines a number of specific
instructions which are described below.

Some of these instructions must be implemented to be JTAG
compatible and some are optional.

Instruction Register
Bit
765432 110

Name Comments

11111111 BYPASS Bypass register routed to TDO,
sample mode operation enabled. Chip
operates as normal.

00000000 EXTEST Boundary Loop 0 is selected.
Output pins are updated in UPDATE-
DR(5) state. Data is captured from
the input pins in the CAPTURE-DR(6)
state. Normal Chip operation is
interrupted

11000000 INTEST Boundary Loop 0 is selected
Output pins are not updated. Test
Data is applied to the input of the
chip and chip output data is captured
into the boundary loop 0. Normal Chip
operation is interrupted

1X001011 SAMPLE Sample mode operation mode
enabled on Boundary loop 0 and chip
operates normally. Can only be used
if Transparent databits are used on
Boundary Loop 0.

XX100011 RUNBIST Can be used to invoke an
autonomous self-test in RUN-TEST-IDLE
(C) state but only if the extra
self-test circuitry fitted to
CTRDC1,1 JTAP input pins.
The implementation of this
instruction is up to the designer.

00000001 IDCODE If optional ID Register is
used then this instruction will shift
out the chip ID code. Normal chip
o eration continues.

5- 23

5.6 BYPASS REGISTER

The Bypass register is a single cell register that is used
to serially shift test data from TDI (Test Data Input) to

TDO when testing of a particular device is not currently

required. The data transmitted should be fed from TDI to

TDO unaltered but will have a lag of one clock cycle.

BYPASS_CLK
4 (TDO)

BYPASS_SCAN rX

0

TDI

BYPASS_CLK
BYPASS_SCAI

BYPASS_CLK

G1

1

1

IN PHASE
I CHANGES

BYPA

2D

WITH TCK
ON NEGATIVE EDGE TCK

SS-SCAN Q

L0 CAPTURE

IH
TDI SHIFT

LX
Q HOLD

Figure 5.10 Bypass Register Block Diagram

5- 24

5.7 DEVICE IDENTIFICATION REGISTER

The Device Identification Register is an optional feature

[WHET 87] of the Standard. When it is included in the test
logic, it allows a binary data pattern to be read from the

chip identifying the manufacturer, the part number and the

variant. During testing this information might be used, for

example, to verify that the correct IC has been mounted in

each board location.

DRCLK -

ý-º

TO NEXT CELL --4ý>-

ID CODE BIT
MUX

FROM LAST CELL

SHIFTDR

MSB LSB

VER DEVICE CODE MANUFACTURERS CODE

[Ell

(4 BITS) (16 BITS) (11 BITS)

5.11 Device Identification Register Block Diagram

If the designer chooses not to implement the ID register, it

is necessary to connect the unused ID register input on the

JTAP controller to the bypass register output. This ensures

compatibility with the JTAG/IEEE 1149-1 spec in that when
the ID register instruction is selected, the bypass register

path is selected.

5- 25

5.8 TEST ACCESS PORT (TAP)

The purpose of the JTAP cell is to convert the external chip
JTAG test control signals to internal signals used to

control the test registers when testing takes place. The

JTAP cell has an external interface which connects to I/O

pins of the chip, together with an internal interface which
connects to the internal test circuit.

The block diagram for JTAP is shown in figures 5.12 and
5.13. The state machine controls the main operation of the

JTAP controller as shown in figure 5.14. It controls the

operation of the internal testing. It also controls the

shifting in and out of serial data from the scan loops and

the shifting in and out of data from the instruction

register. The Instruction register selects which scan loop

is to be shifted or tested and the test to be performed.
Under control of the JTAP state machine, instructions are

shifted serially into the Instruction register via the TDI

serial data pin. The loaded instruction then controls the

tests to be performed. All serial data and instructions

are shifted in via the TDI pin and, depending on which

register is selected, the serial output is shifted out to

the TDO pin. A single register Bypass path from TDI to TDO

is provided to give a direct path from TDI to TDO. This

gives shorter access to chips further along the serial data

path. The JTAP controller provides connections to an

optional ID register, whose purpose is to output serially an
identity code that can be passed out to the tester. This

register is optional and when not used, the Bypass register
is connected in its place. The JTAP controller provides
the signals required to control each scan path loop
independently.

5- 26

The connections to the JTAP controller can be divided into

three categories: -

- External Interface Signals - JTAG signals to the

external chip pins.

- Internal Interface Signals - Signals to control the

internal test circuitry.

- Local Interface Signals - Signals used to control a
local ID register and unused scan path loops.

5.8.1 JTAG SIGNALS (TCK, TMS, TDI, TDO, TRST)

Access to the boundary scan and the data transmitted is via

4 or 5 buffered I/O test pins called a test access port or

TAP.

There are four mandatory pins and one optional pin as listed

below:

TCK - test clock
TMS - test mode select
TDI - test data in

TDO - test data out

The optional pin:
TRST *- test reset input pin

- active low)

The TRST* pin need only be added if, as in this case, there

is no reset on power up' present. it provides asynchronous
initialisation of the TAP controller by returning it to the

(Test-Logic-Reset) state.

TCK

TCK is an external test clock used for shifting data through

the cells. Note that it is totally independent of the system

clock which means that data can be loaded without altering
the current state of the device.

5- 27

TMS

TMS is used to change the current status of the TAP

controller. If the TMS line is not driven, internal

circuitry should send the controller into the 'Test-Logic-

Reset' condition on five successive cycles of the TCK. It

will remain in this state until the TMS line changes.

TR

Figure 5.12 TAP State Machine Block Diagram

EJABLE

CIR
SDR
UDR

: CT)

(3: 0)

Note that the (Test-Logic-Reset) is the default condition in

which normal operation of the device is obtained. This means

that should the TMS line fail or be unused the device can

still function normally.

TDI

TDI is used to load test data serially into the device via

the Test Access Port to the first boundary cell. With the

correct instruction this will be shifted left through all

the cells on the rising edge of TCK until the controller

status changes.

5- 28

if a requirement exists where the test operation is to be
repeated but with fresh data, the input to the TDI can be
reloaded whilst the old data is being clocked out.

TDO

TDO is used to accept serial data that has been transferred
through the device. Unlike the TDI, the test output data
shifts on the falling edge of the clock to prevent race
hazards across the register.

TAP Controller

The operation of the boundary scan cells and the
conditioning of other inputs is controlled by the TAP
controller. This is a state machine, which sets all the
control signals required for the operation of JTAG.

States are assigned a Hex number as shown in figure 5.14.

The state machine is controlled solely by external input pin
TMS (Test Mode Select) and clocked on the +ve edge of TCK
(Test Clock). The TEST-LOGIC-RESET (F) state is the non-
test state in which the chip is running normally. An

asynchronous reset signal (TRST) is required to put the

state machine into TEST-LOGIC-RESET (F) state and is

normally present as a power-on-reset signal. Together with
the contents of the instruction register, the state machine
controls the timing of the shifting of serial data through
the scan loops and the capturing and application of self-
test functions. Two main paths in the state diagram
determine whether the instruction register (IR) is shifted
and loaded, or whether the scan paths (DR) are shifted or
loaded. Self-Test is performed in the RUN-TEST-IDLE (C)

and CAPTURE-DR (6) states. The instruction register's
contents determine which type of test should be run during
these states.

5- 29

I

)o

I

I

Figure 5.13-a TAP Controlling Instruction and Data

Registers

5- 30

MSB LSB

n+"-; F

TF; ýT
L

LCX, IC

L RUN

RESET

TM; -O

RUN

TEST/ TM5 1

ID 11F. "

TMS- 0

RUN/HOLD RUN/HOLD

SELECT TMs=1
DR SCAN SELECT

IR SCAN
TMS<1

TMS=0
TMS"0

TM =1 CAPTURE
DR

AS
INSTRUCTION

TMs=i CAPTURE. E
ID RUN/HOLD

REGISTER
TMS= 0

TMS=O

SHIF T
DR

2

SHIFT
SHIFT A

IR RUN/HOLD

TMS=0
TMS=1 TMS=O

TMS=1

EXIT(1) TMS= Q
EXIT(I) TMS=1

DR 1 RUN/HOLD
RUN/HOLD

TMS=O TMS=O

PAUSE
RUN/HOLD PAUSE B

DR
IR RUN/HOLD

TMS=O TMS=1
TMS=O TMS=1

EXIT(2)
DR RUN/HOLD EXIT(2)

TMS=O TMS- 0IR RUN / Ht_)L[l

TMS=1 TMS=1

UPDATE
1

UPDATE
D

RUN/HOLD RUN/HOLD
DR I

TMS=0 TMS: 0

TMS=1 TMS=1
TMS=O

TMS=O

FIGURE 5.14 TAP Controller State Diagram

Depending on the position and the current status of the machine
16 possible states are possible, these are listed below:
Exit2-DR 0 Update-DR 5 Pause-IR B
Exitl-DR 1 Capture-DR 6 Run-Rest/Idle C
Shift-DR 2 Select-DR-SCan 7 Update-IR D
Pause-DR 3 Exit2-IR 8 Capture-IR E
Select-IR-Scan 4 Exitl-IR 9 Test-Logic-Reset F

Shift-IR A

5- 31

5.9 RECOMMENDATIONS

5.9.1 HOW TO LAY OUT THE TEST REGISTER

The layout of the test register should be considered

carefully in order to produce an efficient chip layout. The

test registers should be arranged such that the pitch of the

databits matches the pitch of the data lines coming from and

going to the main logic. This ensures that data flow does

not have to 'dog-leg' through the chip taking up silicon area

as demonstrated in fig 5.15 a, b.

The Tall databits have a width of 2 minor cells, while the

Fat databits have a height of 2 minor cells as shown below.

Therefore Test registers can be made to match data busses

with any pitch down to 2 minor cells horizontally or

vertically (whole cell numbers only!). If a finer pitch is

required it is possible to place two Test registers next to

each other running in parallel thus giving an effective pitch

of one minor cell. Routing Transparency through the databits

ensures that signals can pass through the databits.

TEST
REGISTER

Figure 5.15 a, b Test Register Layout Techniques

5- 32

Where the horizontal pitch exceeds 5 or 6 minor cells for a
horizontal Test register, the wasted gaps between the

databits make the Test register inefficient. In this case
instead of using the Tall databits, it may be more

appropriate to use Fat databits which are 5 or 6 cells wide
but only 2 cells high. obviously the connections between the

Fat databits will not be optimum and external routing is

required. However, the saved area is considerable. Likewise

when vertical databit pitch is greater than 5 or 6 minor

cells then Tall databits may be used.

Wherever possible, use should be made of the butting cells to

reduce the routing of the Test register.

5.9.2 PSEUDO RANDOM TEST

The JTAG/IEEE 1149-1 spec requires that a pseudo-random test

is run in the RUN-TEST-IDLE(C) state and that the resulting

signature should be independent of the number of clock cycles
in the RUN-TEST-IDLE(C) state (above a minimum number).
There is therefore a requirement to be able to freeze the

signature after a given number of clock cycles when in the

RUN-TEST-IDLE(C) state.

Having this requirement means that blocks of logic can have

their signatures predicted for a fixed number of clock

cycles. As signature prediction for a pseudo-random test on

a block of logic can be very CPU expensive, the ability to
freeze the signature after a given number of clock cycles

means that a signature prediction need only be determined

once for a block of logic. It is also independent of the
length of test. It is therefore recommended that a counter
should be included which can be used to hold the result of
the test after a given count.

5- 33

5.9.3 AUTONOMOUS SELF-TEST (RUNBIST)

It is possible to design into the test circuit an autonomous
self-test function that can invoke a complete self test

without the need to shift in complicated serial test data to

run the self test. The intention is that the self-test is

completely self running and can be invoked by a single
RUNBIST instruction. Boundary loop 0 can be selected from

the instruction register by more than one loop number.

Boundary loop 0 serial data input passes through a

multiplexer which provides an alternative source of serial
data into the boundary loop from a ROM. The ROM contains
the control bits and seed values that are needed for a

pseudo-random test.

5.10 CONCLUSIONS

The IEEE 1049.1 JTAG structure has been described. The test

architecture was successfully simulated at the register
transfer level. The full simulation results are shown in

Appendix 5A which are based initially on 4 test instructions

including NOP, SAMPLE, EXTEST and BYPASS.

The 'macro function' language facility (similar to 'C') was

used to describe the stimuli needed to simulate the

architecture fully. An application logic, a2 bit adder

circuit, was then included. Both logic simulation and fault

simulation was successfully carried out based on 6 test
instructions which have been generated using macro-functions.

The development, implementation and simulation of the JTAG
architecture provided an understanding of the operation
needed for developing the architecture behaviourally using
VHDL.

5- 34

REFERENCES

[IEEE 11491 IEEE Standard 1149.1, 'A Standard Test Access Port

and Boundary Scan Architecture' May 1990.

(MAUND 87] Maunder C and Beenker F 'Boundary Scan: A

Framework for Structured Design For Test'

Proceedings IEEE International Test Conference,

1987, pp. 714-123.

[BEEN 851 Beenker, F 'Systematic and Structured Methods for

Digital Board Testing, 'Proceedings IEEE

International Test Conference, 1985, pp. 380-385.

[WHET 88] Whetsel, L 'A View of the JTAG Port and

Architecture', ATE & Instrumentation Conference

West, January 1988, pp 385-401.

[ICCD 87] Pradham, M. M., Tulloss R. E., Beenker, F. P. M., and

Bleeker, H., 'Developing a Standard for Boundary

Scan Implementation, SProc. International

Conference on Computer Design, Rye, New York,

October 5-8,1987, pp. 426-466.

[WHET 87] Whetsel, L'A proposed Standard Test Bus and

Boundary Scan Architecture', Application Paper,

Texas Instruments Inc, Test Automation Dept, USA.

5- 35

CHAPTER 6

HIGH LEVEL VHDL MODELLING OF
BOUNDARY SCAN ARCHITECTURE

6.0 INRODUCTION

This Chapter presents VHDL Models developed for the different

components of the JTAG Boundary Scan Architecture (BSA). It

describes the techniques used for accurate, high level

modelling of the BSA.

Both Mentor Graphic's -System 1076 version 7 running on an
Apollo 4500 workstation and View Logic's VHDL subset running

on a PC-386 were used to develop, compile and validate the
behavioural models of BSA.

The chapter highlights the use of some of the features

provided in VHDL, such as the Package procedural facility,

when developing the BSA models.

6- 1

6.1 BACKGROUND

Functional level test generation continues to take an
increasingly significant role in addressing the test

requirements of digital circuits. A functional test examines
the correctness of a given circuit's performance in its

various modes of operation. Therefore, when functional-level

test generation techniques are developed and applied to
digital networks, determining the correctness of a logical

operation, independent of specific implementation, is a

primary objective.

What is gained by using a high-level approach in applying
Design-for-Test generation is freedom from the need for

implementation details of circuits to be tested. Herein lies

a marked advantage of a high-level methodology over many

classical test generation strategies relying to a greater or

lesser degree on specific structural information. Structural
information is not readily available in many situations, thus

negating the applicability of many test generation strategies

relying on such information.

For example, structural information is not always available
in circuits designed with the aid of a silicon compiler or by

using a Third Party cell library. Field Programmable Logic

Devices also do not provide structural information for the

user. In all cases however, functional descriptions of
digital circuits are available and serve as a starting point
for a high level approach.

For a high-level approach to be successful, the functional
description and logical behaviour of a digital device under
test must be represented in a comprehensive and concise
manner.

The approach taken by MA Brewer and AD Friedman [BREU 80]

is based on Functional Level Primitives to describe high-

level representation.

6- 2

Another approach suggested by UJ Dave and JH Patel [DAVE

89] is based on two-level representations. This is a scheme

used for representing the input-output behaviour of

combinational circuits which rely solely on their
corresponding functional description.

Other schemes such as the use of binary decision diagram for
describing high level logical behaviour of the circuit under
test have been suggested by Akers, Abadir and others
(Abad 85], [Aker 78].

The approach described in this chapter is based on the use of
Hardware Description Language VHDL, to describe behaviourally

the IEEE 1149.1 Boundary Scan Test Architecture [JTAG 901.

6.2 MODELLING OF THE JTAG ARCHITECHTURE

When a function rather than a structure is most important, it
is possible to describe each component with a corresponding
behavioural description. VHDL behavioural description is

therefore used to represent the function of JTAG in terms of
circuit and signal response to various stimuli. The VHDL
models are also described using a schematic editor with an
added attribute which links the circuit schematic to the
behaviour of the component during the circuit simulation.

After the successful simulation and refinement of the
functional model of JTAG with the application circuit, it is

then possible to substitute the behaviour with a vendor
specific structural architecture. In this way the
intellectual property rights of the component models supplied
by the IC vendor are protected.

The timing elements associated with each model of the BSA
have been defined in a generic form. These declarations are
made visible to all entities of JTAG through the use of the
PACKAGE facility provided in VHDL. The 'declaration package'

6- 3

contains all the necessary delay parameters. It gives the

user the ability to define the desired delays easily.

In addition the full JTAG architecture is described within

the 'work package' later in this chapter, in order that the

desired delays can be defined easily. (IEEE 88] [COEL 89]

[LISP 89]

6.3 JTAG BOUNDARY SCAN ARCHITECTURE TIMMING AND

PERFORMANCE ISSUES

6.3.1 CLOCK OPERATION

The test logic must be capable of operating with TCK in the

frequency range identified by the JTAG IEEE standard. The

maximum frequency of�TCK must therefore be clearly specified.

This rule is introduced in order to ensure a minimum

acceptable level of performance for the test logic. The

minimum performance for a data path on the test card will be

dictated by the slowest model, with respect to the clock

speed. The time taken to shift the data along the test data

path on the card increases if the maximum clock frequency

expected is reduced.

A VHDL "TCK_GENERATOR" model was written for the TCK clock

generator. This produces a clock with a 50% duty cycle and a

PER period of 200 nanoseconds (which is the maximum period).
The generation of the clock will only take place after a

transition of '0' to '1' on the Run input. On the other hand,

a transition of '1' to 10' on Run causes the clock generator

to stop. In this way the TCK clock can be controlled.

6.3.2 SET-UP AND HOLD TIMES

Definition 1: The set-up time is the interval of time between
the application of a signal at a data input terminal and the
following active transition on a clock input terminal.

6- 4

A value of b in figure 6.1. is an example of the set-up time

for the data input terminal D.

Definition 2: The hold time is the time interval during which

a signal is saved at an input terminal after an active

transition has taken place on a clock terminal.

A value of c in figure 6.1. is an example for the hold time

for the data input terminal D.

D-Type

Dbc

CK

Two wave forms for input signals

a: duration of the clock pulse.
Figure 6.1 Set-up and Hold Times

6.3.3. PROPAGATION DELAY OF SIGNALS

The propagation of a signal through a circuit is delayed by a

time which is equal to the minimum at tpmin (Figure 6.2).

This delay can be prolonged by factors external to the

circuit, such as the input or mains voltage (the lowest

voltage permitted must be considered). The other factor is

temperature as the performance of a circuit deteriorates at

very high temperatures. Figure 6.2 shows the minimum

propagation time which is calculated by taking account of the

worst parameters, where tpmin represents their best case.

6- 5

Figure 6.2. Maximum and Minimum Propagation Delays

There are several ways of modelling set-up and hold times

with VHDL. Three methods are described below:

" When there is a violation of time the simulator outputs a

message identifying the time problem as well as the

component which contains the violation. The model will

propagate a state as if there had been no time violation
and the simulation therefore continues.

" Simulation continues and the models show an unknown state

at the output when there has been a violation of time.

" Other practices imply the use of minimal time with
precision during the simulation of the logic function.

Simulation models do not verify the violations and
propagate a state without taking into account the possible
time violations.

The first method was chosen to model set-up and hold times of

circuits. The VHDL language facilitates the modelling of

propagation delays. VHDL also allows the description of two

types of signal delays. The first type is inertial delay

where a signal propagation is only carried out after the set-

up time at a given level for a specified moment of time and

given by the clause "after".

6- 6

t- setup t- hold

The second type is the transport delay, where all the changes

on an input propagate to the output without reference to the

duration of the set-up time. In the course of modelling

this facility offered by VHDL was used and the delays have

been symbolised by n and u mnemonics whose values' are
developed by the generic clause.

6.3.4 TDO-TDI INTERFACE

The TDO pin must be able to control at least two TAP data

input pins (TDI) described in the same technology. The

logical levels used at the TAP pins should match those used
in other pins in the assembly of the module. it is possible
for a TDO to be connected to other test data paths on a

circuit card. As a result, TDO is declared as a 3-state pin
during modelling.

6.4 VHDL MODELS FOR BOUNDARY SCAN ARCHITECTURE

The Boundary Scan Architecture is broken up into several
components which are easily found from integrated circuit
suppliers. Each BSA component is described in terms of
behaviour by a VHDL model. This makes it possible for the

models to be extended for other test support and future

enhancements. These models reside in a VHDL package and they

are interconnected structurally in order to describe the
target architecture.

1 During simulation of the models, arbitrary delay
values were given to the symbols to represent different
propagation delays of signals.

6- 7

6.5 TAP CONTROLLER MODEL

The black box model of the TAP Controller is described below.

The VHDL model describes the Controller as a finite state
machine (16 states) that responds to changes of TMS and TCK

signals.

Figure 6.3 identifies the interface input/output requirement
for the TAP Controller.

The "TAP CONTROLLER" is the name of a model entity of VHDL

which describes the behaviour of the TAP controller.

The functioning of the circuit is described by the

architecture "tap-controller-behaviour", at a high level of

abstraction and is independent of the particular structure.
It is therefore only necessary to describe the required
behaviour without presenting its characteristics. As the
initial state of the controller is undetermined (during power

on) it was necessary to add the state UNDEFINED in order to

facilitate initialisation.

The interface represents all the signals generated by this

model, after a delay ODEL, in order to control the behaviour

of all the registers and multiplexers. Therefore, it must

assign specific values to a signal during each state reached
by its particular function. Thus, if there is an event "O" to

"1" on TCK and TMS was initialised, then the present state of

the component will be changed to the following state if TMS
is maintained at this logical level during a time equals to

the Hold_Time or longer. This assumes TCK remains at a value
of "l" during a minimum pulse duration Min_Pulse_Width_1, and
TMS has a logic value which can alter the state according to
the transition diagram after a time equals to the Setup Time

or less.

6- 8

If this is not the case, an error message of violation will
be sent and the simulation will continue with the expected
change as if there had been no violation.

The Reset port is used by the instruction register and the
boundary scan register cells which represent the control

signals for the Tri-state and bidirectional pins. The
Selectt port is used to select a serial data test port
(either a serial instruction register output or a selected
test data register). The Enablee port is used to validate
the test data output buffer since it is a three state port.
The three ports: ShiftlR, ClockIR and UpdatelR are used in

the design of the instruction register. The ShiftDR, ClockDR

and UpdateDR ports are used in the design of the test data

registers.

TMS

TCK

Reset

Selectt

Enablee

ShiftlR

Clock IR

Update IR

Shift DR

Clock DR

Update DR

Figure 6.3 The TAP Controller

library std, work;
use std. standard. all;
use work. declaration. all;

6- 9

0DEL

ENTITY tap_controller IS
generic (Setup_Time, Hold_time, Min_Pulse_Width_1,

Min_Pulse_Width_0, S Odel, Odel: Time);
PORT
TMS,
TCK: in bit;
Reset,
Selectt,
Enablee,
ShiftlR,
ClockIR,
UpdatelR,
Shif tDR,
ClockDR,
UpdateDR : out bit

ý:

END tap controller;

ARCHITECTURE tap_controller_behav of tap-controller IS

signal state: state_tap := undefined ;

BEGIN

state_diagram: process (tck)

begin

if tck = '1' then

case state is

when Test_logic_reset=> if TMS='0' then
state <=Run_state_idle after S_Odel;

end if;

when Run Test_Idle => if TMS ='1' then
state <= select_DR_Scan after S_Odel;
end if;

when Select_DR_Scan => if TMS ='0' then
state <= capture_DR after S_Odel;
else
state <= select_IR_scan after S_Odel;
end if;

when Capture_DR => if TMS = '0' then
state <= shift_DR after S_Odel;

else
state <= Exit_l_DR after S Odel;
end if;

when Shift_DR => if TMS ='1' then
state <= Exit_l_DR after S_Odel;
end if;

6- 10

when Exit-1-DR => if TMS ='0' then
state <= Pause_DR after S_Odel;

else
state <= Update_DR after S_Odel;
end if;

when Pause_DR => if TMS =11' then
state <= Exit_2_DR after S_Odel;

end if;

when Exit_2_DR => if TMS =10' then
state <= shift_DR after S_Odel;
else
state <= Update_DR after S_Odel;
end if;

when Update_DR => if TMS ='0' then
state <= capture_IR after S_Odel;
else
state <= Select_DR_Scan after S_Odel;
end if;

when Select_IR_Scan => if TMS =10' then
state <= Capture_IR after S_Odel;
else
state <= Test_Logic_Reset after S_Odel;
end if;

when Shift_IR => if TMS =11' then
state <= Exit_1_IR after S Odel;
end if;

when Exit_1_IR => TMS ='0' then
state <= Pause_IR after S_Odel;
else
state <= Update_IR after S_Odel;
end if;

when Pause_IR => if TMS ='1' then
state <= Exit_2_IR after S_Odel;
end if;

when Exit_2_IR => if TMS =10' then
state <= Shift_IR after S_Odel;
else
state <= Update_IR after S_Odel;
end if;

When Update_IR => if TMS ='0' then
state <= Run_Test_Idle after S_Odel;
else
state <= select_DR_SCAN after S_Odel;
end if;

when undefined => state <= Test_Logic_Reset
after S_Odel;

6- 11

end case;

end if;
end process STATE_DIAGRAM;

SIG_GEN_1 : block(not TCK'stable and TCK='O'
and state /=Undefined)

begin

Selectt <=guarded '1' after Odel when
(state=exit-2-IR) or
(state= Exit_l_IR) or (state= shift-IR) or
(state= Pause_IR) or (state= Run_Test_Idle) or
(state= Update_IR) or (state= Capture_IR) or
(state= Test-Logic-Reset) else '0' after Odel;

ClockIR <=guarded '0' after Odel when tck ='0' and
(state= shift_IR or state= Capture_IR) else'l'
after Odel;

UpdatelR <=guarded '0' after Odel when tck ='0' and
(state= Update_IR) else'l' after Odel;

ClockDR <=guarded '0' after Odel when tck =10' and
(state= Shift_DR or Capture_DR) else'l'

after Odel;
UpdateDR <=guarded '0' after Odel when Tck='0' and

(state= Update_DR else '1' after Odel;

end block SIG_GEN_1;
END tap_controller_behav;

6- 12

6.6 INSTRUCTION REGISTER MODEL

The instruction register is represented by the VHDL model

whose entity name is "REG_INSTRUCTION". The architecture of

this entity "reg_instruction_behaviour" describes the

behaviour of the register. Figure 6.4. illustrates the

propagation delay in the path and the VHDL model used for

defining the instruction register. In addition, it identifies

the interface input/output requirement for the Instruction

Register.

INSTRUCT10N

TDI
TDO

STATUS BIT'S

ShiftlR

TDI

Data

ClockIR

Updatell

TREST*
Reset*

Instruction Bit

TDO

Figure 6.4 The Instruction Register

6- 13

The Instruction Register allows instructions to be entered

serially into the test logic during an instruction register

scan cycle. The user must enter the instruction through the

serial test input (port TDI). The logical value of the

serial output for the test data (port TDO) must be equal to

the most significant instruction bit (S(S'RIGHT)).

.
The instruction bit output is updated at the end of the
instruction scan cycle during the update IR Controller state.

The clock input to the register in the serial path is only
applied during the capture IR and shift IR Controller states.

The reset port is used in order to initialise the reserved
instruction register which represents a normal function (when

the Reset value is 11011).

The signals of the UpdatelR, ShiftlR and ClockIR ports

generated by the TAP_CONTROLLER model are used to describe

this register. The parallel outputs, represented by the

Instruction port, are updated when there is a rising edge
(positive edge) on UpdatelR. The value '1' of the ShiftlR

port indicates that the instruction register has carried out

a scan process. The parallel entries represented by the

Status port are captured by the shift stage register just

after a rising edge (positive edge) on the ClockIR port has

occured. The two least significant Status bits must be fixed

at "01" ('0' for the most significant bit), and they are used

to check the integrity of the Boundary Scan Chain.

This model does not represent the characteristics of the
implantation of the instruction register components but it

provides an accurate functional description.

The timing elements (for shifting, updating and max delay

etc) are taken into account by the various parameters shown
in figure 6.5 and in VHDL code.

6- 14

entity REG_INSTRUCTION is

generic (Setup-Shift-Time, Hold-Shift-Time,
MPluse_Width_Shift, Setup_Update Time,
Hold_Update_Time, MPulse_Width_Update,
Mux_Del, Stage_Shift_Del, Stage_Update_Del:
Time);

port(
Reset,
ClockIR,
UpdatelR,
ShiftlR,
TDI : in Bit;
Status : in Bit_vector;
Instruction : out Bit_vector;
TDO : out Bit
);

begin
assert Instruction'Right> Instruction'Left
report "Error in the range of Instruction"
severity ERROR;
assert (not (ClockIR'Delayed(Hold_Shift_Time) ='l')) or

ClockIR'Delayed(Hold_Shift_Time)'Stable or
(TDI'Stable(Setup_Shift_Time + Hold-Shift Time
+ Mux_Del) and Status'Stable(Setup_ShiftTime
+ Hold_Shift_Time + Mux_Del))

report "Setup or Hold Time Violation on TDI or Status
Terminals in" & "REG_INSTRUCTION entity"
severity WARNING;
assert ClockIR'Stable or ClockIR='l' or

ClockIR'Delayed(MPulse Width_Shift)='l'
report "Pulse Width Failure on ClockIR in

REG_INSTRUCTION entity"
severity WARNING;
assert UpdatelR'Stable or ClockIR='1' or

UpdatelR'Delayed(MPulse_Width_Update)='1'
report "Pulse Width Failure on UpdatelR in

REG_INSTRUCTION entity"
severity WARNING;

end REG_INSTRUCTION;

architecture reg_instruction_behaviour of REG_INSTRUCTION is

signal S, SP : Bit_vector(Instruction'Range);

begin

SHIFT_STAGE : process (ClockIR)
variable I: integer;

begin
if ClockIR='1' then
if ShiftlR = '0' then
S <=Status after Stage_Shift_Del+Mux_Del;
else
S <= TDI & S(0 to Instruction"Right -1)

after Stage_Shift_Del + Mux_Del;
end if;

6- 15

end if;

end process SHIFT_STAGE;

assert (not (UpdatelR'Delayed(Hold_Update_Time)='1'))
UPdateIR'Delayed(Hold_Update_Time)'Stable or
S' Stable(Hold_Update_Time)

report "Setup or Hold Time Failure in the
REG_INSTRUCTION architecture"
severity WARNING;

UPDATE_STAGE : process(UpdatelR, Reset)
begin

if Reset ='0' then
for I in Instruction'Range loop
SP(I) <= '1' after Stage_Update_Del;
end loop;
else

if UpdatelR ='1' then
SP <= S after Stage_Update_Del;
end if;

end if;
end process UPDATE_STAGE;
Instruction <= SP; -- Delta Delay

end reg_instruction_behaviour;

w Q
Instruction 0

41
re b
a

aý
rn

ýI
TDI

Instruction 1

MUX_Del !
Stage_Shift_Del

Instruction (n)

TDO

Status(n)='1'
Status(n-1)='0'

Status(0) Stataus(1) Status(n)

or

Figure 6.5 Instruction Register with Timing Parameters

6.7 INSTRUCTION DECODER MODEL

The Black Box model for the Instruction Decoder is described
below. Figure 6.6 shows the interface signals to this module.
The timing element of the decoder is taken into account by the
DEC_DEL parameter.

6- 16

,r
W
A
i

U
W
A

SCAN LOOP ADDITIONAL DR SELECT

SELECT SIGNALS

Figure 6.6 Instruction Decoder

The decoding logic of instruction register depends

essentially on the objective of the test logic. This means

that the design of an instruction decoder changes from one

chip to another according to the test logic built into that

chip. For example, if we have a self-testable integrated

circuit, the decoder must generate an additional signal in

order to control the triggering of its test, when the

appropriate instruction takes place. A flexible way of
describing its behaviour is therefore necessary. However, the

instruction decoder must have the instruction for decoding as

its input, and the test mode together with the selected test

data register signals as a minimum at its output (Figure

6.6).

The entity called Instruction_Decoder represents the
interface of the VHDL model which describes the function of
the decoding logic of the instructions. This is a black box

model which receives the input and provides the output to its

architecture (instruction decoder behaviour). Its behaviour
is described at a high level of abstraction and is based on
the generic type parameters provided by the user.

6- 17

INSTRUCT10N

With this strategy one can avoid the problem of relying on
the use of a particular structure. This model is described

as follows:

entity INSTRUCTION-DECODER is
generic (Instruction_Set: Bit Vector;

DR Select_Set, Test_Mode_set,
Additional_Signals_set: Bit vector;
open_check : Boolean;
DEC_DEL : Time);

port(
Instruction : in Bit_Vector;
DR_Select : out Bit vector;
Test Mode : out Bit_vector;
Additional_Signals : out Bit_vector

end INSTRUCTION DECODER;

architecture instruction_decoder_behaviour of
INSTRUCTION DECODER is

begin

DECODER : process (instruction)
variable Number_of_instruction : integer

2**Instruction'Length;
variable Count: integer : =O;

begin

count :=0;
while count < Number_of_Instructions loop
if instruction = instruction_set(Instruction'Length * count

to Instruction'Length * (count+l)-l) then
DR_select <=DR_Select_Set(DR_select'Length * count to
DR select'Length * (count+l)-1) after DEC_DEL;
Test Mode <= Test Mode_Set(Test_Mode'Length * count to
Test Mode'Length * (count+l)-l) after DEC_DEL;
if Open_Check then

Additional_Signals <=
Additional_Signals_Set(Additional_Signals'Length
count to Additional_Signals'Length * (count+l)-1)
after DEC_DEL;

end if;
exit;

end if;
count := count+l;

end loop;
assert (count < Number_of_Instructions)
report "Illegal Instruction"
severity WARNING;

end process DECODER;
end instruction_decoder_behaviour;

6- 18

The instruction port represents the current instruction to be

decoded. The value of this port must be an element of all the
instructions supplied by the user using the parameter
instruction-Set (the number of instructions making up this

parameter must be equal to 2 Instruction' Length combinations and

each one is of a length equal to Instruction'Length bits).

There are three types of output port for this decoding whose
logical values are generated after a delay of DEC DEL. The

port DR_Select represents all the signals for the selection

of test data registers designed to support a part of the test

logic. The number of these signals is equal to the number

of the registers. The corresponding information on the test

mode must be propagated using all the signals represented by

the Test Mode port.

In the same way the number of these signals must be equal to

the number of test types defined in the design. However, the

Additional_Signals port represents all the additional
signals, and its aim is to propagate the necessary
information for the inclusion of additional test facilities.
(for example a self testable circuit) built-in-test in
integrated circuits.

The necessary values for these three ports are supplied

through the intermediary of the three parameters of a generic

type which are respectively DR_Select_Set, Test_Mode_set

and Additional_Signals_Set. However, the third port is not

generally used. As a result, during the configuration of

this component in VHDL, it is possible to use an open port

using the "open" clause. Alternatively, a logic '1',

Open_Check of the generic type, indicates the use of this

port for a built-in test support.

6- 19

6.8 BYPASS REGISTER MODEL

The reg_bypass_behaviour is the name of the architecture for

the entity REG-BYPASS of the VHDL model which represents a
description, at a high level of abstraction, of the function

of this register (Figure 6.7).

AND_Del+
Bypass-Del

Shi f tDR 10
REG-BYPASS

ClockDR (reg_
TDO bypass_

TDI behaviour)

Select-Bypass

Figure Bypass Register

The modelling of the bypass register is simple. Its only
function is to short circuit the test data inside an
integrated circuit with the boundary scan architecture.
When it is selected by the current instruction the value of
the Select_Bypass port is equal to '1' or '0'. The value of

this signal is generated by the instruction decoder. The
bypass register must load a logical '0' in its single shift

register if a rising edge (positive edge) on the ClockDR

takes place and the value of the port ShiftDR (which is

generated by "TAP-CONTROLLER") is fixed at '0'. The two

ports TDI and TDO act respectively as serial input and output
for this register. As a result, the test data is short
circuited by these two ports with a delay equals to And_Del +
Bypass_Del where And_Del is the delay of the logic port AND.

6- 20

entity REG_BYPASS is
generic (Setup_Time,
Hold_Time,
MPulse_Width,
AND_Del,
Bypass_Del: Time);
port(
Select_Bypass,
ShiftDR,
ClockDR,
TDI: in Bit;
TDO : out Bit
);

begin
assert Setup_Time <=15ns and Hold-Time <=15ns
report "15ns is recommended by JTAG as a maximum"
severity WARNING;
assert ClockDR'stable or ClockDR='l' or

C1ockDR'Delayed(MPulse_Width)='1'
report "Pulse width Time Failure on ClockDR"
severity WARNING;

end REG_BYPASS;

architecture reg-bypass-behaviour of REG_BYPASS is

begin

main : block(Select_Bypass='1')

signal S: Bit;

begin

S <=guardrd TDI and ShiftDR after AND_Del;

assert (not (ClockDR'Delayed(Hold_Time)='1')) or
ClockDR'Delayed(Hol(LTime)'Stable or

report "Setup or Hold Time Failure on REG_BYPASS
architectureI
severity WARNING;

BYPASS : process (ClockDR)
begin

if C1ockDR='1' then
TDO <=S after Bypass_Del;

end if;

end process BYPASS;

end block main;
end reg_bypass_behaviour;

6- 21

6.9 BOUNDARY SCAN REGISTER MODEL

This register is composed of cells whose design is based on
the test mode of the application logic. Figure 6.8.
illustrates the complete interface and the different
configurations according to the mode of test.

NORMAL

a w A
ýý

EXTERNAL/SAMPLE INTERNAL

SLI, SC 11 SU SL' SC 'SU

C_DEL M_DEL M_DEL C_DEL

(a) The input boundary scan register (the cells of the unidirectional
and bidirectional input pins and the clock).

NORMAL

a w 0
Z1

INTERNAL/SAMPLE EXTERNAL

SLR SC
liSU

SL: SC : SU

i

C_DEL M_DEL M_DEL C_DEL

(b) The output boundary scan register (the cells of the unidirectional
and bidirectional output with three control states).

C_Del : the delay taken by the multiplexer of the test mode control.
M_Del : the delay taken by the multiplexer of capture/shift mode.

Figure 6.7 Different Configurations Examples of the
Boundary Shift Scan Register and Propagation Delays

6- 22

SHIFT

C_Del

SHIFT

C_Del

The Parallel-input port represents the parallel inputs of the
boundary scan register. The signals at this port are set by

connecting the output signals of an integrated circuit to the

external logic of the cells of the register, or connecting
the signals entering the logic of the integrated circuit via

other cells. On the other hand, the Parallel_Output port
represents the parallel outputs of this register. The

signals at this port are generated directly by the logic of
the register cells themselves. Each bidirectional pin is

represented by a Parallel_Input signal (the input direction)

and a Parallel_Output signal (output direction). Either
during the "Test-Logic-Reset" state of the controller, or
when the mode controls are set for an internal test, the

cells associated with the validation of signals must be
initialised to the state which will force the system pins to

a high impedance state. The Reset port is therefore included

to invalidate the control signals when Reset is equal to
logic "0° and the mode controls are set for an internal test.

The signals at the ports UpdateDR, ClockDR and ShiftDR

generated by the TAP_CONTROLLER component are used in the
design of the logic of the boundary scan register. The
UpdateDR port is used to update the boundary scan register
stage. The ClockDR is the clock of the shift register (shift

and capture the result). The ShiftDR port provides a control
signal which indicates whether the process carried out by the
boundary scan register is a shift cycle or not. The serial
data input and output are represented respectively by the
ports TDI and TDO. The Test MODE port presents the control
signals of the boundary scan mode. The value on this port is

generated by the instruction decoder.

6- 23

Use Work. Declaration. all;
entity REG_BSCN is

generic (System_Pin_Types : String-vector;
SUT_Capture, HT_Capture, MDEL, SUT_Update,
HT_Update, C_DEL, Cap_Del, Upd_Del : Time);
port (
Select_Bscan,
Reset,
ShiftDR
C1ockDR,
UpdateDR,
TDI : in Bit;
Parallel_Input : in Bit_vector;
Test Mode : in Bit_vector(O to 1);
Parallel_Output : out Bit_vector;
TDO : out Bit
);

begin

assert (not(C1ockDR'Delayed(HT_Capture)='1')) or
ClockDR'Delayed(HT_Capture)'Stable or
TDI'Stable(SUT_Capture + HT_Capture +MDEL)

report "Setup or Hold Time Failure on TDI terminal in
REG_BSCAN entity"
severity WARNING;

end REG_BSCAN;

architecture reg_bscan_behaviour of REG_BSCAN is

signal SL, SC, SU : Bit_vector(parallel_Input'Range);

begin

assert (not (ClockDR'Delayed(HT__ýCapture) ='l')) or
ClockDR'Delayed(HT_Capture)'Stable or
SL'Stable(SUT_Capture + HT-Capture +MDEL)

report "Setup or Hold Time Failure on SL signal in" &
"REG_BSCAN entity"
severity WARNING;

CAPTURE_SHIFT: process (ClockDR)

begin

if Select_Bscan='1' and ClockDR ='1' then

case ShiftDR is

when 10' => SC <= TDI & SC(0 to
Parallel_Input'Right -1) after Cap_Del;

end case;
end if;

end process CAPTURE_SHIFT;

6- 24

SER_OUT : TDO <= SC(SC'Right); --Delta Delay

assert (not(ClockDR'Delayed(HT_Capture)='1')) or
C1ockDR'Delayed(HT_Capture)'Stable or
SC'Stable(SUT_Capture + HT-Update)

report "Setup or Hold Time Violation on SC signal in
REG_BSCAN entity" & "architecture"
severity WARNING;

UPDATE : process (UpdateDR)
begin

if Select_Bscan='1' and UpdateDR ='l' then

for I in Parallel_Input'Range loop

case System_Pin Types(1) is

when 'K' => null; -- the shift cell
when 'C' => if Reset = '0' then

SU(I) <='0' after Upd_Del;
else

SU(I) <= SC(I) after Upd_Del;
end if;

when others => su(I) <= SC(I) after Upd_Del;
end case;

end loop;
end if;
end process UPDATE;

OUTPUT_MUX : process (SL, SU, Parallel_Input,
Test Mode)

begin
if Select_Bscan ='1' then
assert Test Mode /= "11"
report "Undefined Test Mode"
severity WARNING;

for I in Parallel_Input'Range loop
case System Pin_Types(I) is

when 'K' => SL(I) <= Parallel_Input(I);
when 'I' I 'B' => case test mode is

when "00" I "01" =>SL(I)<=parallel_Input(I)
after C_DEL;

when "10" =>SL(I)<= SU(I) after C_DEL;
When "11" => null;

end case;
when others=> case Test Mode is

when "00" 1 "10" =>SL(I)<=parallel_Input(I)
after C_DEL;

when "01" =>SL(I)<= SU(I) after C_DEL;
When "11" _> null;

end case;
end case;

end loop;

6- 25

case Test_Mode is
when "00" => null;
when "01" => for I in Parallel_Input'Range loop

case System-Pin-Types(I) is
when 'O'I 'P'I 'T'I "C" => Parallel_Output(I)
<= SL(I);
when others => null;

end case;
end loop;

when "10" => for I in Parallel_Input'Range loop
case System Pin_Types(I) is

when 'I' I'B'I'K' => Parallel_Output(I)
<= SL (I) ;
when others =>null;

end case;
end loop;
when "1111=> null;

end case
else -- normal
for I in Parallel_Input'Range loop

if System_Pin_Types(I) ='K' then
Parallel_Output(I) <=Paralle_Input(I);

else
Parallel_Output(I) <=Paralle_Input(I) after
C_DEL;

end if;
end loop;

end if;

end process OUTPUT_MUX;

end reg_bscanbehaviour;

6- 26

6.10 IDENTIFICATION REGISTER MODEL

The REG_IDENT_BEHAVIOUR is the name of the architecture for

the entity REG_IDENT of the VHDL model which represents a
description for the function of this register at a high level

of abstraction. Figure 6.9 shows the interface signals to

this module. The timing elements of the decoder are taken
into account by the Mux_del and Load_Del delay parameters.

ID CODE(0) ID_CODE(N)='1'

TDI p SR n kip. TD0

Mux_De1+
Load_Del

Mux_Del : The propagation delay taken by the Multiplexer.

Load_Del: The propagation delay taken by the shift register.

Figure 6.9 The Identification Register Model

The ID code port represents the parallel input to this

register which makes it possible to load an identification

code. This register has a single path based on a shift

register which does not have parallel outputs and as a result

the interface of this entity does not contain the port

UpdateDR. The two other ports ShiftDR and ClockDR, whose

signals are generated by the component TAP-CONTROLLER, are

used for the UpdateDR port design. The rising edge on ClockDR

makes it possible to capture the identification code of the

module. When the logical value of ShiftDR is 'l' the register
is in a scan mode. All the operations of this register are

controlled by the value of the Select_Ident port which
indicates whether this register is selected by the current
instruction. The TDI and TDO ports are the serial input and
the output ports.

6- 27

entity REG_IDENT is
generic (Setup_Time,
Load_Del: Time);
port
Select_Ident,
ShiftDR,
ClockDR,
TDI: in Bit;

Hold_Time, MPulseWidth, Mux_Del,

ID_Code: in Bit vector;
TDO: out Bit

begin
assert ClockDR'Stable or ClockDR='1' or

ClockDR'Delayed(MPulse_Width)='1'
report "Pulse width Failure on ClockDR in REG_IDENT entity"
sevirity WARNING;
assert Setup_Time <=15ns and Hold_Time <=15ns
report "these two times are recommended by JTAG to be less

than 15ns"
severity WARNING;
assert (not(ClockDR'Delayed(Hold_Time)='1')) or

C1ockDR'Delayed(Hold_Time)'Stable or
TDI'Stable(Setup(SetupTime+Hold_Time+Mux_Del)

report "Setup or Hold Time Violation on TDI terminal"
severity WARNING;

end REG_IDENT;

architecture reg_ident_behaviour of REG_IDENT is
signal SR: Bit_vector(ID Code'Range);

begin

LOAD_SHIFT: process (ClockDR)
variable I: integer;

begin

if Select_Ident='1' and ClockDR= 11' then
if ShiftDR='O' then

SR <=ID_Code after Mux_Del=Load Del; -- load
else

SR <=TDI & SR(O to ID_CODE'Right - 1)
after Mux_Del + Load_Del; -- Shift

end if;
end if;

end process LOAD_SHIFT;

TDO <=SR(SR'Right); -- Delta Delay

end reg_ident_behaviour;

6- 28

6.11 MULTIPLEXER MUX_1 MODEL

The behaviour of the multiplexer MUX_1 is described by the

VHDL model whose entity is called MUX_1 and the architecture

by mux_1_behaviour. Figure 6.10 illustrates the design of

this multiplexer. Mux_Del represents the delay at port

TDO_Test_Data_Registers.

Mux_De 1

Tdo Test_data_Register(0)
Tdo_Test_data_Register(1)
Tdo_Test_data_Register(2)

Tdo_Test_data_Register(n)

Instruction

Figure 6.10 The MUX_1 Multiplexer Model

use work. declaration. all;

entity mux_l IS

TDO

generic (
instruction-set : bit vector;
tdo_test_data_registers_set : integer;
mux_del : time);

port (
tdo_test_data_registers: in bit-vector;
instruction : in bit-vector;
tdo: out bit);

end mux_l;

architecture mux_l behau of mux_1 is

signal ind: integer: =0;
begin

multiplexer: process (instruction,
tdo_test_data_registers, ind)

variable number_of_instructions: integer
: =2**instruction'length;
variable count: integer : =O;

6- 29

begin

if instruction'stable then
tdo <=transport tdo_test_data_registers(ind)
after 5ns;
else
count : =O;
while count<number_of_instructions loop

if instruction =
instruction_set(instruction'length
count to instruction'length
(count+l)-1) then

ind <=tdo_test_data_registers_set(count);
tdo <=tdo_test_data_registers(ind)
after 5ns;
exit;

end if;
count: = count+l;

end loop;
assert count < number-of-instructions
report "illegale instruction"
severity WARNING;
end if;

end process multiplexer;

end mux_1_behav;

In order not to impose a particular instruction, the

parameters of generic type are used to pass the necessary
information. It covers all combinations of the
2Instruction 'Length (the Instruction_Set parameter) and the
TDO_Test_Data_Registers_Set which represents all the

corresponding serial outputs contained in Instruction_Set.

6- 30

6.12 MULTIPLEXER MUX_2 MODEL

Figure 6.11 illustrates a design for this multiplexer. If the

value of the Selectt port is equal to 1' the serial output
of the instruction register (TDO_Instruction port) is

multiplexed and its value is assigned to the TDO port with a
delay of Mux_Del. otherwise the value of the Selectt port is

that of the multiplexed serial output (the Tdo_Test_Data_
Registers port) and the current instruction including the
test data registers (MUX_1).

Mux_De 1

Tdo_Test_Data_Registers

Tdo_Instructior

Selectt

Figure 6.11 MUX_2 Model

TDO

The entity of this model is called MtX_2 and its behaviour is
described by the mux_2_behaviour architecture.

entity mux_2 is
generic (mux_del : time);
port (
tdo_test_data_registers,
tdo_instruction,
selectt : in bit;
tdo : out bit
);

end mux_2;

architecture mux_2_behav of mux_2 is
begin

multiplexer :
process (selectt,
tdo_test_data_registers, tdo_instruction)
begin

case selectt is
when 10' =>tdo<=transport
tdo_test_data_registers
after mux_del;
when '1' =>tdo<=transport

6- 31

tdo_instruction
after mux_del;
when others =>putline ("non test

mode");
end case;

end process multiplexer;
end mux_2_behav;

6.13 SERIAL OUTPUT BUFFER MODEL (TDO)

The changes on the serial output represented by the TDO port,

are delayed by the inclusion of aD type flip flop. This flip

flop that is synchronised to the falling edge (negative edge)

of TCK in the buffer of the TDO output. The TDO port is

validated by the signal of the Enablee port when it is equal

to '1'. The Input port is the input for the D flip flop

(Figure 6.12).

Input

TCK

EnablE

TDO

Figure 6.12 Serial Output Buffer

use Work. Declaration. all;
entity TDO_BUFFER is

generic (Setup_Time, Hold_Time, Min-Pulse-Width,
Del, TDO_Del : Time);
port
TCK,
Enablee,
Input : in Bit;
TDO : out Tristate
);

begin
assert (not(TCK'Delayed(HoldTime)=10')) or

TCK'Delayed(Hold_Time)'Stable or
Input'Stable(Setup_Time + Hold_Time)

report "Setup or Hold Time Violation on Input terminal
in" & "TDO_BUFFER entity"
severity WARNING;

end TDO_BUFFER;

6- 32

DEL TDO_DEL

JW

architecture tdo_buffer_behaviour of TDO_BUFFER is

begin

OUTPUT_BUFFER : process (TCK)

begin

if TCK ='0' then
if enablee =11' then

case Input is
when '0'=> TDO <= '0'
when '1'=> TDO <= '1'

end case;
else

after DEL + TDO_DEL;
after DEL + TDO_DEL;

TDO <='Zl after TDO_DEL;
end if;

end if;

end process OUTPUT_BUFFER;

end tdo_buffer_behaviour;

6- 33

6.14 CONCLUSIONS

All the components of the JTAG Boundary Scan Architecture

were successfully modelled in VHDL.

The package JTAG_STANDARD, was developed to provide the

necessary declarations for the JTAG components separately

from that of the application circuits in VHDL, as shown in

Appendix 6A. This package will normally reside in the library

of the design environment. The entity of a new design must

therefore include this package in its context of analysis by

calling it up, using the clauses "library" and "use". The

information contained in this package is in fact transparent

to the user who can use it according to the need without

knowing the intrinsic structure. The user can add new

declarations of defined components to support their test

development.

Appendix 6B describes the package declaration' which

contains all the timing elements used by the JTAG

architecture.

The VHDL high level model of the JTAG architecture was

simulated and its results are shown in Appendix 6C. The

architecture model was then tested with an application logic,

a2 bit adder, to demonstrate the connectivity and the

validity of its operation as shown in Appendix 6D. The

simulation results are also listed in Appendix 6D.

6- 34

REFRENCES

[BRED 80] M. A. Breuer and A. D. Friedman, Functional Level

Primitives in Test Generation, IEEE Trans. on

Computers, Volume C29, No. 3, pp 223-235, March

1980.

[DAVE 891 U. J. Dave and J. H. Patel, A Functional-Level Test

Generation Methodology using Two-Level

Representations. 26th ACM/IEEE Design Automation

Conference. pp 722-724 USA, Jun 1989.

[ABAD 851 M. S. Abadir and H. K. Reghbati, Functional

Specification and Testing of Logic Circuits. Comp

& Maths with Appls, Volume C-il, No. 12, pp 1143-

1153,1985.

[AKER 78] A. B. Akers. Functional Testing with Binary

Decision Diagrams. Proceedings of the 8th

International Conference on Fault Tolerant

Computing, pp. 82-92, June 1978.

[MITCH 84] Steinberg & Mitchell. A knowledge based approach

to VLSI CAD Redesign System. Proceedings ACM IEEE

21 Design Automation Conference 1984.

[WILL 90] John T Willey & Gary F Gordon. The VHDL Language

for Design Automation. Electronic Product

Design, February 1990.

[DETT 89] Dettmer R. JTAG Setting the Standard for

Boundary-Scan Testing. IEEE Review. February

1989.

[COEL 89] David R. Coelho. The VHDL Handbook, Kluwer

Academic Publishers 1989.

6- 35

(LIPS 891 VHDL : Hardware Description and Design, Kluwer

Academic Publishers 1989.

[IEEE 88] IEEE Standard VHDL Language Reference Manual -
STD 1076,1987. (New York: IEEE: 1988).

[JTAG 90] IEEE Standard 1149.1, 'A Standard Test Access

Port and Boundary Scan Architecture' May 1990.

6- 36

CHAPTER 7

THE PARSING AND INSERTION ALGORITHM

7.0 INTRODUCTION

It is becoming increasingly common for electronic circuits to

be designed, at least partially, by computer aided synthesis

or by using semi-automated insertion tools. This naturally
has an impact on the design cycle time .

This chapter describes the design, development and operation

of a high level parsing and insertion algorithm that will

enable the integration of a Boundary Scan Test Architecture
into an ASIC design in a semi-automatic way.

The methodology applied for developing the algorithm is

described. Examples demonstrating the operation of the

proposed algorithm are given. The main features and
limitations of the proposed tool are discussed.

7- 1

7.1 AN OVERVIEW OF THE HIGH LEVEL PARSING AND

INSERTION ALGORITHM

Once the application logic (the ASIC) has been described in

VHDL (or has been converted into a VHDL source code or a VHDL

netlist), the next step is then to add the parameterised
Boundary Scan Test Architecture to the design.

However, in order to add the correct type of Boundary Scan

Cells to the design, it is important to identify the type of

the input/output terminal cells that have been used in the

application logic. It is also important to note that whatever
the design style of the application logic, in terms of
behavioural, structural or data flow, the 'entity' definition

of the design is always the same in VHDL. This is one of the

attractive features of the VHDL Language. [IEEE 88]

A high-level procedural algorithm has been developed in a
standard high level language 'C'. [SCHI 88] it consists of
two phases: a Parsing Phase, and an Insertion Phase.

The parsing phase deals with identifying the mode of the
input/output terminals as defined in the entity description

of the application logic.

Once the parser is executed, an output file <design. pin> will
be generated in ASCII format. It contains a list of the
input/output names, types and modes. This file will form one

of the required inputs before the insertion phase. The parser

will be referred to as the VCP parser (VHDL- C- Parser) in

the subsequent sections.

7- 2

The insertion phase deals with identifying the modes of the
input/output terminals in the <design. pin> file. It then

attaches the appropriate Boundary Scan Cells to the ASIC to
form Boundary Loop 0 which is the Boundary Scan Register

around the periphery of the ASIC. The next step the

algorithm performs is to integrate the rest of the

preprocessed generic Boundary Scan Architecture- the TAP,

Instruction Register and decoder, Bypass register,
Identification Register (Optional) and the multiplexers- into

the ASIC design. The newly created entity will then be

contained in the <name_jtag> output file.

BSC-I VHDL
DESCRIPTION
OF JTAG

BSC-O BEHAV

BSC-Bi

BSC-Tri

MERGE

'cI
PARSER

IC,

Figure 7.1 A Generic Block Diagram of The VCP Parser

7.2 THE VCP PARSER OPERATION

The VCP was developed using the 'C' high level language.
The main role of this parser is to search for the word 'PORT'

as a keyword within the VHDL entity description of the
design. It identifies the input/output list including name,
mode, type and the order in which they appear within the

entity description.

CIRCUIT
DESCRIPTION
IN VHDL

DESIGN
WITH
JTAG
INCLUDED

.

'VHDL'

7- 3

The parser then outputs an ASCII file, which contains a list

of the port names in the same order they appeared in the VHDL
description of the design, together with the port types.

7.3 THE DEVELOPMENT OF VCP-VERSION 1

An initial development of the parsing algorithm has resulted
in the first version of VCP. The VCP basic algorithm is
described below:

a. Search for the Key Word PORT within the Entity
description of the design.

b. Identify the port list in the entity structure of the
VHDL file (the design).

c. Identify the modes of the Input/Output terminals used
(IN, OUT, BIDIRECTIONAL, TRISTATE)

d. Identify the order in which the I/Os appear in port list.

e. Output an ASCII file which contains a list of the I/Os

<vhdl_port_file> presented in the same order they

appeared in the source file of the design.

The basic operation of the proposed tool is described below

using data flow diagrams. [WARD 86] The Context diagram

represents the main process (the parent level) and identifies

the primary inputs and outputs of the algorithm.

Design Apply VHDL Design withBSA
Description Design_ Description of Design_Plus_

in VHDL in_VHDL BSA to Design BSA_in_VHDL
Description

in VHDL
.0

Figure 7.2 C/DFD Context Diagram of VCP-Version 1

7- 4

Level 0 (the first child) is represented by 7 processes and a
store. The analysis was carried out using the MCASETM' tools
from mentor Graphics running on an Apollo workstation. [MCAS7l

Figure 7.3 Data Flow Diagram of VCP-Version 1

7- 5

7.4 EXAMPLE OF THE OPERATION OF VCP-VERSION 1

This version was tried out with a number of simple examples.
The parser can be invoked from the shell on a UNIX based

workstation or from the operating prompt in DOS on a PC by

entering

parser <file. hdl>

where <file. hdl> is the design file to be parsed.

The parser starts by looking for the ENTITY clause and once
it has found it, it will then start looking for the PORT

clause. [LIPS89] As soon as the PORT clause is found, the

parser lists the inputs as

-<i>- and the outputs as +<o>+
where -<i>- represents the input terminal name and +<o>+
represents the output terminal name.

The parser then writes the list of ports to a
<vhdl_port_file>.

EXAMPLE 1

The parser is operating with a2 input AND gate VHDL file
described using the ViewLogic WorkviewTM VHDL environment
running on a PC-386 :

parser and. hdl

entity and_gate is
port (a, b : in vlbit;

c: out vlbit);
end and-gate;

Architecture behav of and-gate is
begin
c <= a and b;
end behav;

The listing of the vhdl-port_file is as follows:

7- 6

LIST
INPUTS:
a
b
OUTPUTS:
c

The results are correct when compared with the source file.

EXAMPLE 2

The parser is operating with aD type flip flop VHDL file

described using the mentor Graphics System 1076TM' Version 7

VHDL environment running on an Apollo/HP 400:

parser DFF. hdl

entity DFF is
port

d, clk : in bit;
q: out bit

end DFF;

Architecture behav of DFF is
begin

if clk='1' then

,q <= d after lns;
end if;

end;
end behav;

The listing of the vhdl_port_file is as follows:

LIST
INPUTS:
d
clk
OUTPUTS:
q

The results are correct when compared with the source file.

7- 7

EXAmPLE 3

Consider the case where the DFF. HDL file described previously

was hypothetically modified to represent an electronic

circuit called test, and execute the parser as follows:

parser test. hdl

entity test is

port
d: inout bit;
clk in bit vector (2 to 23);
q out bit;

constant Tp_Q_test : time: = 3. lns;

end test;

Architecture behav of test is
begin

if clk='1' then
q <= d after Tp_Q_test;

end if;
end;

end behav;

The listing of the vhdl-port_file is as follows:

LIST
INPUTS:
d
OUTPUTS:
clk

As it can be seen from the above listing file the results are

incorrect, as the d signal was listed as an input and the clk

signal was listed as an output. In addition, the parser was

not able to deal with the inout mode and the bit_vector type

of entity declarations. The above example has highlighted

some of the limitations of this version of VCP. The full

limiting factors are described in the following section.

7- 8

7.5 LIMITATION OF VCP-VERSION 1

There are a number of operational limitations which have led

to the development of version-2. These limitations are

confined to the entity declaration of the VHDL source code of

the design and include:

1) The parser was not able to deal with separating
characters such as ', ' or '-'.

2) The parser was not able to deal with bus structures such

as bit vector.
3) There was no Syntax Checking facility. The intelligence

of the parser is limited. It reads every thing after the

key word 'port' from the beginning of the bracket till

the end of the bracket.

4) It was very strict in terms of the order the input/output

terminal modes are defined within the entity declarative

part. Therefore a mixture of port declaration modes is not

allowed. For example, defining an input mode followed by

an output and another input mode is not possible.

port
a in bit;
q: out bit;
b in bit;

5) It did not output any information associated with the

port list other than the names, and the order they

appeared in the design.
6) It did not support port modes inout and buffer.

7) It did not have a facility to handle comments within the

source file.

However, the development of this initial version has provided
an insight into the development version 2.

7- 9

7.6 THE DEVELOPMENT OF VCP-VERSION 2

The VCP version 2 was developed to overcome the shortcomings

of the 1st version. In addition to the main requirements
identified earlier, the additional features that the new

version of VCP should process, include the following:

1) It must be portable, and operate in both PC and

workstation environments.

2) It must operate with both the IEEE 1076 standard and with

subsets of the VHDL implementation offered by the major
CAE vendors.

3) It must have a built in syntax checker in order to handle

the randomness of the way the port modes are defined, and

to extract the input/output information only.

4) It must be able to handle comments defined in the source
file.

5) It must handle all port modes including inout and buffer.

6) It must be fast to extract the input/output list with a

compilation time of less than 10 seconds running on a PC-

386 and extracting a nominal number of input/outputs of
256.

The algorithm reads a VHDL source file (the design) and

extracts the top level input/output terminals from the design.

It then generates an output file called <file_name. PIN>. The

<file_name. PIN> file contains a listing of all the I/O names,

modes, types, and buses including their widths.
A bubble diagram structure (similar to a state machine) is

shown below.

ý- 10

START

"Il

Figure.. 7.4 a Bubble Diagram of VCP-Version 2

7- 11

BRACKET

WORD

Figure 7.4 b Bubble Diagram of VCP-Version 2

7- 12

WORD

Figure 7.4 c Bubble Diagram of VCP-Version 2

7- 13

The algorithm was implemented using a high level 'C' program.
[TÜRB 88] The architecture of the EXTRACT. C program was based

on a state machine's structural behaviour, which consisted of

21 states, where all declarations such as in, out, inout,

buffer, bus and comma were defined. It also included error

messages if the VHDL syntax of the entity description was not

correct. Functions were declared in the program to handle

formats of the output data and also the comments that were
included in the VHDL design file. In addition, A number of

global variables were declared to include, for example, a

maximum bus size of 256 bits, a maximum number of
inputs/outputs of 1000 and a restriction on the number of

characters in a file name, bus name and wire name.

The main body of the program dealt with generating the output
file <file. PIN> and the parsing process of the main key words

such as Entity and Port. The extraction process was based on
15 main cases as follows:

CASE 1 : deals with the number and type of IN, OUT, INOUT

and BUFFER.

CASE 2 : deals with the PORT declaration.
CASE 3 : deals with the first left bracket in the entity.
CASE 4 : deals with comments in the entity.
CASE 5 : deals with alphanumeric characters.
CASE 6 : deals with commas and colons.
CASE 7 : deals with unknown port_type.
CASE 8 : deals with semi-colon and bracket.
CASE 9 : deals with bus size.
CASE 10 : deals with right bracket in the entity.
CASE 11 : deals with blanks.
CASE 12 : deals with errors.
CASE 13 : deals with End Of File (EOF) being reached.
CASE 14 : deals with I/O conflict on the output file.

CASE 15 : deals with I/O conflict on the input file.

7- 14

The program was successfully compiled using a standard Turbo C

environment running on a PC-386. [TURB 88] It was then ported to

the workstation environment and was re-compiled.

7.7 EXAMPLE OF THE OPERATION OF VCP-VERSION 2

This version was successfully tried out with a number of

examples. The parser could still be invoked from either a

UNIX or a DOS based environment. The EXTRACT call is:

extract <design_file_name>. [hdl]

EXAMPLE 1

Extract is invoked with the 2 input AND gate VHDL file

described earlier:

extract and
Messages will be printed on the display stating:

<Extract/Note>: Extracting File "and. hdl"
<Extract/Note>: Writing "and. pin"

The generated listing of the and. pin file is described below

using the following data output format. The row width is 76

characters.

PIN NAME PIN MODE PIN TYPE BUS WIDTH STARTING

0 A IN vlbit 1 0
1 B IN vlbit 1 0
2 C OUT vlbit 1 0

The results are correct when compared to the source file.

EXAMPLE 2

The parser is operating with the D type flip flop VHDL file

described earlier:

extract DFF

Messages will be printed on the display stating:
<Extract/Note>: Extracting File "DFF. hdl"
<Extract/Note>: Writing "DFF. pin"

7- 15

The generated listing of the DFF. pin file is described

below:

PIN NAME PIN MODE PIN TYPE BUS WIDTH STARTING

0 D IN Bit 1 0
1 CLK IN Bit 1 0
2 Q OUT Bit 1 0

The results are correct when compared to the source file.

EXAMPLE 3

The parser is operating with the hypothetically modified

circuit- test:
extract test

Messages will be printed on the display stating:

<Extract/Note>: Extracting File "test. hdl"
<Extract/Note>: Writing "test. pin"

The generated listing of the test. pin file is shown below:

PIN NAME PIN MODE PIN TYPE BUS WIDTH STARTING

0 D INOUT Bit 1 0
1 CLK IN Bit VECTOR 21 2
2 Q OUT Bit 1 0

As can be seen from the above listing file the results are now

correct when compared to the 'test. vhdl' source file.

7.8 LIMITATION OF VCP-VERSION 2

The primary limitation of this version is that it can not

verify port modes as to whether they are defined in a pre-

processed package declaration, or are self defined within the

main entity declaration of the design file. However, this is

not a major limitation and it was felt important to keep the

tool simple.

7- 16

7.9 THE INSERTION ALGORITHM

The main function of this algorithm is to attach the

necessary I/O cells to the application logic. The algorithm

uses the <name. pin> file as one of its inputs to provide the
basis for adding the JTAG to the VHDL design description. The

<name. pin> file is effectively an encription of the original
design entity. Four additional input files are also required
by the INSERT algorithm. The input files include JTAG. COMP,

JTAG. INSTS, JTAG. SIGNALS and JTAG. USE. These four files

contain components, instances, signals and VHDL libraries

needed for defining the new design file as will be described
later. A new entity is then generated as a result of the
insertion process and is stored in a file called <name_jtag>.
This file contains the final design with the Boundary Scan

Architecture attached to it.

The basic steps of the insertion algorithm operation are as
follows:

a. Read the output ASCII file <name. pin> generated by the
parsing algorithm.

b. Rename the entity and gives it a JTAG extension.

c. Add JTAG standard signals to the design entity.

d. Add all JTAG components and the design entity.

e. Add the standard instantiation of the JTAG components.

f. Chains all the Boundary Scan Cells in the correct way to
form Boundary Loop 0.

g. Generate a new file which contains the newly defined
design entity called <name_jtag>.

7- 17

The following context diagram in figure 7.5 describes the

basic aim of the insertion algorithm. The data flow diagram

C/DFDO demonstrates the relationship between the two

processes, 'parser 11 and Imerger. 21. [WARD 861 The

hierarchical decomposition of the parser and merger DFD

operations are also described in figure 7.6.

The 'C' program to implement the insertion algorithm starts

with checking the existence of the <name. pin> file. It

defines the types and functions together with the structure

used to store the port data. The total number of signals

associated with the design inputs and outputs is then

identified. The next step begins by adding the following four

declaration files:

JTAG. COMP Contains all components of the JTAG

Architecture
JTAG. INSTS Instantiates the JTAG components

JTAG. SIGNALS Contains the standard JTAG signals

JTAG. USE Encloses the required VHDL Libraries such as

Vdeg_portable (VHDL Design Libraries)

The program then inserts the original component definition.

it converts the pin file into an internal structure and

starts reading the first line of the pin file. This includes

port names, port modes, port types, and the size of bus

arrays. The signals between the bscan cells and the component

are declared. The bscan cells are then attached to the port.

A 'generate' function is subsequently used to identify and

resolve bus arrays into the required port/signal structure,

maintaining both the order and the bus width. A final

Boundary Scan Loop 0 is generated for the application logic

and is stored in the <name_jtag> file.

An overview of the new VHDL entity architecture is given in

figure 7.7.

7- 18

J t-Q-
behav

C/DFO 0- Vhdl Insert ion

Jta9_ behev

VHDL
description vhdl_ Vhdl

Insertion

.0

C/DFD CONTEXT - jtag

vhdl
VHDL and

JTAG

Figure 7.5 Context Diagram of Parser-Insertion

Operation

7- 19

list

nods
.4

vMlý add -
bmwic

vfdlý "ll"
A

Jt§GL s

C/QD 2- rr'p'

Figure 7.6 Data Flow Diagrams of Parser-Insertion

Operation

7- 20

C/DFD 1- parser

I-

Figure 7.7 Overview of VHDL Architecture

7-21

with JTAG

7.10 DEMONSTRATION OF THE INSERTION ALGORITHM

The insertion algorithm was successfully tested with a number

of examples. The insert program could still be invoked from

either a UNIX or a DOS based environment. The INSERT call is:

insert <design_file_name>. [PIN)

EXAMPLE 1

This shows the insert program operating with an example

circuit of DFF, after successfully completing the

parsing/extraction stage and generating a DFF. PIN file. A

VHDL description of the DFF entity is listed below:

entity DFF is
port

d, clk : in bit;
q: out bit

The insert program is now invoked with the dff. pin port
listing file:

insert dff. pin

This will generate a new file which integrates the behavioural

description of JTAG Architecture with the DFF design. The name

of the entity description of DFF will change to DFF_jtag and

the resulting file name will also be called DFF_jtag. Extracts

of this file is shown below:

library vdeg_portable;
use vdeg-portable. types. all;
use work. declar. all;

entity dff_jtag is
port (TCK, TMS, TDI : in Bit;

TDO : out logic4;
D: INOUT Bit;
Clk : IN Bit;
Q: OUT Bit);

end dff_Jtag;

7- 22

The architectural description of the dff component will also
change to include all the signals needed for loops 0. (JTAG 90]

component dff
port

D: INOUT Bit;
Clk : IN Bit;
Q: OUT Bit);

end component;

constant one-high : bit vector(0 to 7) := "00000001";

signal temp : bit vector(0 to 7) := one_high;
signal shiftir, clockir, updateir : bit;
signal shiftdr, clockdr, updatedr : bit;
signal mode, inst_tdo, indent_tdo, enablee, reset: bit;
signal data_tdo, selectt, select-id, buff_tdo, bypass_tdo
bit;
signal dr_select, instruction, test-mode, test_regs :
bit_vector(0 to 7);
signal int_D : Bit;
signal int_Clk : Bit;
signal int_Q : Bit;
signal nextt : bit vector(0 to 3);

begin
test_regs(0) <= bypass_tdo;
test_regs(1) <= indent_tdo;
mode <= test_mode(0); select-id <= test-inode(l);
nextt(0) <= TDI;

The TAP controller is then connected to the rest of the design

as shown below:

tap : tap_c port map
(tms, tck, reset, selectt, enablee, shiftir,

clockir, updateir, shiftdr, updatedr, clockdr);
bypass : bypass_reg port map

(shiftdr, clockdr, TDI, bypass_tdo);
instruct : reg_inst port

map (reset, clockir, updateir, shiftir, TDI, temp, instruction,
inst_tdo);

ident : ident_reg port map(select_id, shiftdr, clockdr,
tdi, indent_tdo);

decoder : inst_decode port map(instruction, dr_select,
test-mode, open);

mux2 : mux_2 port map(data_tdo, inst_tdo, selectt,
buff_tdo);

muxl : mux_1 port map(test_regs, dr_select, data_tdo);
tdo_buff : tdo_buffer port map(tck, enablee, buff_tdo,

tdo)"

7- 23

The nextt signal shown below is used to describe a bundle of
signal structures which forms Boundary Loop 0. This is only
used if there are no I/O buses in the design entity.

bscanO : bscan port map(shiftdr, clockdr, updatedr,
nextt(O), D,

mode, nextt(1), int_D);
bscanl : bscan port map(shiftdr, clockdr, updatedr,

nextt(1), Cik, mode, nextt(2), int_Clk);
bscan2 : bscan port map(shiftdr, clockdr, updatedr,

nextt(2), int_Q, mode, nextt(3), Q);

test_regs(2) <= nextt(3);
end behav_jtag;

Appendix 7D describes the full DFF_JTAG file.

It is worth noting that the GENERATE concurrent VHDL CLIPS891

statement is used in the INSERT program for generating regular
bus structures. The general form of the generate statement is:

label-identifier : generation_scheme generate
concurrent statements

end generate identifier;

There are two kinds of generation schemes: the if scheme and
the for scheme. Depending on the kind of generation scheme,
the generate statement specifies a repetitive or conditional
creation of the set of concurrent statements it contains. In
this case the for_scheme is used to generate the bus for
loop 0. The for_scheme declares a generate parameter and a
discrete range defining the values that the generate
parameter will take on. It connects boundary loop 0 which
connects all the signals as a bus that contains a combination
of the main signals. This will then prevent the connection of
the secondary individual signals to the boundary loop.

The parser/insert algorithm was successfully tested with a
number of design examples. Appendix 7E demonstrates the
operation of EXTRACT/INSERT with a CPU VHDL design where the
generate statement was implemented to form boundary Scan
loop 0.

7- 24

7.11 CONCLUSIONS

The Parsing/Extract algorithm was successfully designed and
implemented. The EXTRACT program was tested with a range of
design examples of various complexities, each with a successful

outcome.

The developed software could be considered as a complementary
tool to an existing CAE based systems. It can also operate as a

symantics checker for Entity descriptions. (Auli 89]

Although many CAE vendors provide more than one tool to express

a design as shown in figure 7.8, the EXTRACT program could

still function as part of a CAE system. However, this requires

the design expression to be converted into a VHDL source code

or a VHDL netlist.

Figure 7.8 Design Expressions and VCP

7- 25

The Insertion algorithm was also successfully designed and
implemented. The INSERT program is currently limited to a

maximum of 256 I/Os. However, this can easily be modified to

handle larger number of I/Os.

It is worth noting that although the buffer port mode used to

describe the bi-directional I/Os in VHDL (LIPS89] could be

extracted and inserted automatically in the design, the
designer is still required to control the direction of the

signal as to whether it is performing input or output

operation.

The Extract/Insert environment was successfully tested on both

PC and workstation type computers and has a fast operational
speed.

7- 26

REFERENCES

(COEL 891

(LIPS 891

(IEEE 88]

[JTAG 90]

[SCHI 88]

(TURK 88]

David R. Coelho. The VHDL Handbook, Kluwer
Academic Publishers 1989.

VHDL : Hardware Description and Design, Kluwer
Academic Publishers 1989.

IEEE Standard VHDL Language Reference Manual -STD
1076,1987. (New York: IEEE: 1988).

IEEE Standard 1149.1, 'A Standard Test Access Port
and Boundary Scan Architecture' May 1990.

Herbert Schildt. Using TURBO C, Programming
Series. Borland Osborne/McGraw Hill 1988.

Borland Turbo C User Guide Version 2,1988.

[WARD 86] P. T. Ward, S. J. Mellor, Structured Development for

Real Time Systems, Vol 1-3. Yourdon Press, NY.
1986.

[MCAS 7] MCASETM' Structured Analysis Manual from Mentor
Graphics version 7.

(Auli 89] Auli Reinikka, Antti Auer, Ari Okkonen, Automatic
Synthesis of Structural HDL Description from
Graphic Specification of Embedded ASICS,
Microprocessing and microprogramming 27,1989 pp.
473-478.

7- 27

CHAPTER 8

COST IMPLICATIONS

8.0 COST OF JTAG

Any change made to an IC to increase testability inevitably

incurs costs. Two main factors which affect cost implications

are the additional physical requirement and the performance
degradation.

Adopting the JTAG architecture will require additional design

time, cells, pads and four extra pins per device. This

additional requirement will be heavily dependent upon the

ASIC's function and processing technology, together with metal

dimensions. It grows linearly with the number of boundary scan

inputs and outputs.

It is worth noting that the rate of growth is different for

that of a soft VHDL developed macro, compared with that of a

hard macro approach. Therefore, a trade-off between the

development time and the chip size has to be considered for

critically dense devices.

There will also be some reduction in chip performance. A

greater impact on the circuit's performance is likely to be

that of the additional circuitry, which is required immediately

before the output buffers on a design and which would typically

add two gate delays to-signals leaving the device. Input

signals would be similarly delayed. Although the importance of

these delays can be minimised by careful design, there are

always likely to be performance critical applications in which

they will remain unacceptable. It is also recommended to have

additional power and ground rails to the ASIC specifically for

the JTAG circuit.

8-1

8.1 AREA COST

The total gate count of the TAP controller, the instruction

register and the instruction decoder is 243 gates. Even with
the optional identification register, the total gate count for

the core area is only 659 gates. For all but the very small

arrays, this is insignificant. The real area penalty comes from

the boundary scan chain itself, which is formed as a "hard"

ring around the core area. Since the size of this ring is fixed

for a specific ASIC family, the number and the types of I/Os

used in a particular design are not significant - unless the

design is I/O limited rather than gate limited.

Once a particular die size is chosen based on the design

complexity, the boundary scan chain overhead is thus fixed.

Hence, it does not therefore matter how many of the available
I/O pads are used. The I/O pad's overhead will vary as it

represents a portion of the total die size. For a large die of
100K gates, it represents 7% of the gates that would be

available to a normal, non-JTAG design. For an average die of
25K gates, the'portion represents 10%-13%. However, for a small
die of 10K gates, the boundary scan I/O cells would represent
22% of the gates that would be available for a non-JTAG design.

For an even smaller die of 3K gates, the overhead for the
'hard" boundary scan ring is approximately 40%, leaving an

estimated usable 1400 gates in the core - but 243 (or 659 if

the identification register is included) are needed for the TAP

controller, making the total overhead nearer 50%.

Thus for designs below approximately 10K gates in complexity,
the benefits of the boundary scan need to be weighed very

carefully against the large penalty. For larger designs, which

are always going to include some design-for-testability logic,

the area of implementing boundary scan can be almost
negligible.

8-2

8.2 PIN, CELL CONNECTIONS AND POWER COSTS

In addition to the four (optionally 5) pins required to
implement the IEEE 1149.1 standard, the following connections
must be considered:

" DIN and DOUT. These signals connect the scan cell with
the pad and core of the ASIC. Since each cell can be
personalised as input and output, each line must be
available on either side. Thus, two tracks are needed.

" TDI and TDO. The scan data pass along these lines. Since
the signals are daisy chained, a single track is

required.

" Global control signals. Four signals are necessary to
control the operation of the latches and multiplexers in
the scan cell. Each line must pass through the cells and
therefore four tracks are necessary.

" Power Supply. To avoid influences from other portions of
the circuit, the boundary scan logic should be supplied
by a separate power bus, which requires at least two
tracks.

With the hard ring of boundary scan I/O cells, some of the
corner pads on the ASIC master slice can not be used for
boundary I/Os. However, these pads can be used for power
supply or for additional test pin inputs.

8-3

8.3 DELAY COST

When the chip is operating in its normal mode, the inclusion of
JTAG circuitry means that there is an additional 2-to-1

multiplexer delay when going in to the device and a similar
2-to-1 multiplexer delay when coming out.

The delay through the multiplexer is dependent upon many
factors:

" The Voltage

" The Temperature of chip operation

" The Processing factor of the silicon

" The Technology and Die Size in which the design has been

developed

" The Fanout from the multiplexer

For example, using the LSI's CMOS LCA (Logic Cell Array) 10K,

the additional delay incurred from including JTAG is 1.5ns and
it is 1. Ons when using the LSI LCA 100K. These are worst case

commercial figures. Therefore, the total impact on system

performance is 2-3ns, approximately, on paths through the chip.

This may be significant in some very critical cases, but for

most designs it will represent no problem at all.

8.4 DESIGN TIME COST AND COST BENEFIT OF THE TOOL

Often, the decision to use new methodology such as JTAG, hinges

on how it will affect the time taken to complete the design and
to commence prototype manufacture. The impact of JTAG in this

respect is very difficult to quantify. However, adding JTAG to

an ASIC design whether translated from the IEEE 1149.1

specifications, or using a specific IC library is normally a
time consuming process.

8-4

Integrating the JTAG circuitry into the design by using the

parsing/insertion tool is a relatively simple operation.

Therefore, the primary cost reduction that can be attained from

using the tool developed in this project, is that of reducing

the time of the development phase. The tool enables the

designer to provide a validated description of BSA including

its test vectors automatically. Thus, the life cycle costing of

the ASIC will be reduced, including not only in the design

phase, but also in the structural testing phase of the chips

after fabrication.

8-5

REFERENCES

[EM&T 90] Electronics Manufacture & Test Magazine 1990 Vol.
9, Part 3

[IEE 89] IEE Review February 1989, "Printed Circuit Boards

are Becoming Harder to Test. The JTAG could have

the Answer. "

(SLIC 91] Gartner p, Buchner T, Roos G, and Schwerderski T,

"Boundary Scan and its Application to IMS Gate
Forest" Institute for Microelectronics Stuttgart,
Allmandring 30a, D-7000 Stuttgart 80, Germany.
Journal of Semiconductor ICs, Vol. 9, No. 2,
Elsevier Science Publishers 1991, England.

[D&TC 90] Van Rissen R P, Kerkhoff HG and Kloppenburg A,

"Designing and Implementing an Architecture with
Boundary Scan". IEEE Design & Test of Computers,
February 1990.

[RITA 901 D'Souza D, "JTAG and Hitachi's Auto Diagnosis",
Hitachi America Ltd, 2000 Sierra Point Parkway,

Brisbane, CA 94005-1819 USA. 1990

8-6

CHAPTER 9

OVERALL CONCLUSIONS

9.0 THE NOVEL APPROACH OF THE PROJECT

The research work presented in this thesis has identified a
new approach to integrating Boundary Scan Test Architecture
automatically into an ASIC design. This has involved the
development of an automated environment based on the creation
and successful implementation of two main components:

1) a parameterised behavioural model of BSA IEEE 1149.1
standard using the IEEE 1076 Hardware Description
Language VHDL.

2) a new algorithm for developing a parsing and insertion
tool to integrate the behavioural description of a BSA
into an ASIC design.

The novelty of this tool is that it provides the designer
with a simple, yet a powerful, environment to include BSA
into his/her ASIC design, with the minimum of effort.

This approach is different to that of Hewlett Packard's BSDL
language, referred to in chapter 3, in that the BSDL was
developed as an extension to VHDL. BSDL allows the designer
to describe BSA into his/her design manually using specific
constructs provided by the language. Unlike the BSDL
environment, the new tool described in this thesis enables
the designer to use a pre-developed and tested high level
VHDL model of BSA, which can be used at the system level of
the ASIC development cycle.

9- 1

The tool is also different to the Testability Improver (TIM)
system developed by Philips, in that it is independent of any
IC manufacturer and CAE vendor. It is aimed at the system /
behavioural level of the ASIC design, where the TIM software
can only be employed after the design has been created and
converted into the register transfer level.

When compared to other design automation test utilities such
as TEA, ADAS, and TISSS described earlier in Chapter 3, the
tool can be used as a facility that augments these vendor
specific tools. For example, the EXTRACT program developed in

this thesis can be used as a checker for VHDL semantics for

any entity description of various design complexities.

The VHDL model of BSA offers the designer complete freedom to

change the generic parameters, such as propagation delays, of
the BSA model to suite his/her particular application. In

addition, the model could be used as a pre-developed and
tested, standard library part which could be made available
on any CAE data capture system.

The tool can benefit the test engineer, by using one key
information source for all boundary-scan characteristics,
which reduces the possibility of error. It can also serve as
a partial compliance check, as design errors may surface in
the implementation of the test standard at the gate level
using a specific IC library.

The functional test vectors developed for the BSA could also
be communicated from the designer to the target verification
system or ATE, with little involvement from the test
engineer.

9- 2

The environment developed here has the advantage of being

portable and can easily be incorporated into an existing CAE

system. It has been tested with a number of design examples,
illustrating its operational advantages.

A number of CAE developers such as DAZIX and Innovation

Research have expressed an interest in utilising the tool as

an additional utility within their systems.

9.1 ACHIEVEMENT OF AIM

Boundary Scan is rapidly becoming a necessity. The

implementation of boundary scan across the industry will

solve numerous board test reliability problems and promises

to save time while keeping cost down. The implementation

requires widespread utilisation of IEEE Standard 1149.1.

The work presented in this thesis provides a methodological
framework, for integrating a high level VHDL behavioural

model of the IEEE 1149.1 Boundary Scan Test Architecture into

an ASIC design automatically,, using a design automation tool.

The tool developed as part of this programme of research

provides the designer with the ability to explore his/her

design with BSA in a significantly reduced design time,

since it removes the need to know the BSA's structural

characteristics. The new tool therefore, encourages the

designer to consider a test strategy from the initial stages

of the ASIC development, rather than including testability

features as an afterthought.

The tool is based on a high level intelligent parsing and
insertion algorithm which has been successfully implemented

in 'C'. The parsing phase can be operated on an ASIC'S VHDL

description to initially check the correctness of the VHDL

syntax, and to generate 'a list of the design I/O terminals.

9- 3

This data together with the VHDL behavioural description of

BSA are then used by the insertion phase of the algorithm to

create a new design with the BSA attached.

9.2 ACHIEVEMENT OF OBJECTIVES

The work developed in this thesis satisfies the two main

objectives. The first, concentrates on translating the

specifications of the IEEE 1149.1 BSA into parameterised

behavioural models using the VHDL description language. The

second, focuses on developing a parsing and insertion algorithm

which enables the designer to integrate the behavioural model

of BSA into her/his ASIC design.

The BSA was initially developed and simulated structurally to

conform with the IEEE 1149.1 standard. It was then tested with

adder and 4-bit multiplier circuits to validate its operation.

The VHDL IEEE 1076 standard was chosen to develop the necessary

models of the BSA components. Its capability to describe

digital systems at various abstraction levels and in three

styles (Behavioural, Structural and Data Flow) has enforced the

choice of this language for developing the BSA model.

In addition, VHDL's ability to link design entities to their

behavioural and structural description, resulted in defining an

accurate BSA behavioural model with embedded structural

properties including timing and control.

The VHDL models of the BSA were developed using a combination

of ECAD tools including Mentor Graphic's 1076 VHDL Environment

(version 7), and the view Logic Version 4.1. Full simulation

was carried out and consisted of the necessary test

instructions including, NOP, SAMPLE, EXTEST and BYPASS. The

timing elements associated with the modules were defined in a

generic form within a VHDL package, so that the desired delays

could easily be modified by the designer.

9- 4

The architecture was modelled with an application logic and 6
instruction tests were carried out in conformance with the IEEE
standard. Fault simulation was also carried out to evaluate the
quality and efficiency of the test vectors.

The test vectors were developed using the 'C' based 'macro
function' language to provide an easy integration path with
back-end test verification tools and ATE.

A full parameterised behavioural model was successfully
developed, exhibiting the necessary test features which are
normally confined to the structural level.

An algorithm was then developed to enable the inclusion of BSA
into the ASIC design. The first phase dealt with identifying

where the Boundary Scan Cells were to be added, the order they

were to appear in the design and their types, in order to form

a scan loop 0. In doing so, the algorithm concentrates on the
"Entity" part of the VHDL description of the design. It is

capable of handling all I/o terminal types including inputs,
outputs, bi-directional, tri-state and Bus types. Although the
added architecture will primarily form the hardware
infrastructure required for Boundary Scan Test, the TAP model
was defined to cope with internal scan and other BIST
requirements.

The second phase of the algorithm dealt with the insertion of
the TAP controller, the Instruction Register, the Instruction
Decoder, the Bypass Register, the Identification Register
(which is described generically) and the Test Register to form
loop 0 into the ASIC design.

The algorithm's specifications were described and analysed
using a structured design approach including data flow and
entity relation diagrams. It was then implemented in 'C' and
was compiled on both PC-AT (DOS based) and workstation (Unix
based) environments.

9- 5

A number of examples such as a VHDL CPU core were successfully
tested to verify the validity of the tool's operation. The tool

compiles very quickly and requires no significant user time.

Both the tool and the BSA model are easily maintainable as they

are designed in a modular and hierarchical format.

9- 6

CHAPTER 10

FUTURE WORK

10.0 INTRODUCTION

This chapter examines the potential for further developments on

the work which has been carried out. There are 4 possible

extensions to this work. The first examines the benefits of
developing a graphical environment, similar to that of Data

Flow diagrams, for defining VHDL constructs and therefore the

BSA model.

The second examines the possibility of extending the modeling

environment of the BSA described in this project, to include

mixed analogue and digital signals for testing analogue design

parts such as Analogue to Digital Convertors and Comparators.

It therefore examines the IEEE subsets of 1149 standard.

The third considers the potential for linking the proposed

environment developed by this project to a particular
testability synthesis system, such as the one provided by DAZIX

and Mentor Graphics.

The final subject examines the potential role of Artificial
Intelligence for developing a theory of reasoning that exploits
the knowledge of structure and behaviour of a digital system.

10- 1

10.1 GRAPHICAL REPRESENTATION OF VHDL

A facility for graphically representating VHDL constructs will
provide the designer with an alternative method of describing
the VHDL representation of Boundary Scan Architecture into
his/her design. With the emerging IEEE 1076 VHDL standard, VLSI

systems are increasingly being designed using VHDL Hardware
Description Language. This has often added to the burden that
faces VLSI designers in learning a new language and method of
description. In addition, hardware designers often favour

graphical entry methods for VLSI system's design to semantical
hardware descriptions. It is suggested that a graphical medium
can often assist the designer in a better understanding of the
behaviour and structure of a particular algorithm, and its
implementation. The BSA components will have a unique
graphical representation and can be added from a pre-determined
library. It is therefore, envisaged that developing a graphical
facility, coupled with the-parsing/insertion algorithm
presented earlier in this thesis, will further encourage
designers to include BSA in their designs.

There are three common methods for describing structured
diagrams which include:

1) A structured diagram which shows the implementation of a
block in terms of sub-blocks and their interconnects.

2) A Petri-Net which is used to describe the control behaviour
of the system.

3) A Gantt Chart which illustrates the results of implementing
a particular block in terms of silicon area occupied and
the time required to compute the function.

10- 2

It is important to concentrate on Hierarchical Abstract
Descriptions of system design with embedded JTAG in order to
limit the scope of the system being modelled to a degree which
can be managed at one time.

A number of papers describing the graphical methods for user
interface, have been published. D. Morris, [MORI 88] for

example, describes a methodology for formalising the use of
diagrams in the design of microelectronic systems. He uses a
top-down hierarchical graphical method for system design, with
a high level of abstraction. It shows major modules and data

paths, ending up the decomposition with discrete primitives at
the bottom (level zero).

CA Kuszynski, [KUSZ 90] describes a compiler which produces a
graphical representation of the HDL STRICT.

STRICT describes blocks in terms of their behaviour and
structure. The Behaviour uses WHENEVER to sense lines and SET
to assert them. The behavioural description is mandatory and
describes what the block is supposed to do. The structure of
the block describes how the behaviour is to be implemented

using primitive components. The graphical representation is a
hierarchical view of the text. At the top level, a simple
rectangle is drawn with the name of the block. Petri nets can
then be used to describe some of the behaviour but only as a
set of token passing operations.

J. Bain, [BAIN 88] describes the STELLA Schematic Capture tool
for ELLA hardware description language. STELLA gives a
hierarchical graphical representation of both behavioural and
structural description styles. It allows designs to be entered
as either text or schematics.

10- 3

A. Reinikka et al, [REIN 89] describes an automatic synthesis

of structural HDL descriptions from a graphical specification

of an embedded ASIC. He describes a method using real time

structured analysis to design and implement the ASIC. His

reasons for using structured analysis is that, it has a simple

graphical interface consisting of different levels of

abstraction, together with a good representation of

concurrency. [AUER 88], [OKKO 89], [LEPP 89].

AI Wasserman, [WASS 90] describes a method of representing
object oriented designs using structured analysis techniques.
The method builds on the Structure Chart notation.

The Structure Chart represents a design as a number of

communicating models. It shows functional calls in addition to

the parameters which are sent and returned. A Class is

represented as a rectangle. Operations which can be performed

on the Class are described as overlaying boxes as shown below:

<STACK> <STACK>

1 9ITEM
tI

ITEM

PUSH I_J POP

STACK
STACK DATA

Figure 10.1 Graphical Representation of a Class

Object oriented languages allow generic classes to be created.
These are classes which are not complete until the run time is

executed and when the parameters are supplied, such as record
length. [ACKR 91]

10- 4

Only the notation of an object oriented structured design shows
the class interface. It does not show the behaviour or what the
operations of a class actually do. It gives an overview of the
system and shows how everything fits together. In this way it
is very much like a Structured Chart. Structured Charts can be
derived from data flow diagrams. [WARD 86]

10.1.1 GRAPHICS HARDWARE DESCRIPTION LANGUAGES (GHDLs)

The purpose of GHDLs is to provide an alternative graphical
companion notation to HDL. They are analogous to logic diagrams

which serve as a companion to Boolean equations. (AUER 88],
[OKKO 89], [LEPP 89]

The GHDL uses a hierarchy of blocks and a number of levels of
abstraction. The register transfer level is the highest level

of abstraction. The individual blocks are connected together,
as far as possible, by abutment. This reduces the visual
complexity. A2 input multiplexer is shown below:

so
0

D

s1 1

A A,
I ADDR

so
AND

NOT D

OR

S1

7t2
ADDR

Figure 10.2 GHDL Representations

The diagram on the left shows the register transfer version of
the multiplexer, and the diagram on the right is its logic
representation.

Other GHDLs are described but most of them only support the
register transfer, logic and switch levels of abstraction.
Those GHDLs that support behavioural constructs are very
minimal.

10- 5

10.1.2 GRAPHICS TO VHDL AUTOMATIC CONVERTER

Products currently available on the market include the
following:

Express VHDL from i-Logix allows designers to create VHDL code
using graphics rather than text. The tool has two high level

modeling techniques. The first technique is to define the
behaviour of a system using State Charts, in that it defines
the system's functional blocks and what they are supposed to
do. The second technique is to describe the data flow within
the system using Activity Charts which define when each
function is to be used.

Stateview from Isdata allows state machines to be represented
graphically and edited using a graphics editor. Both Mealy and
Moore models can be represented. Arithmetic operations can be

used to simplify complex branch equations. The representation
is similar to algorithmic state machines. Complex conditions
can be hidden in tables to reduce the complexity and the size
of diagrams. The output can be in the form of VHDL code or
other data formats form implementation in Programmable Logic
Devices and Programmable Logic Arrays.

The model used to represent the system in this case could be
based on data flow diagrams and algorithmic state machines. The
data flow diagrams could give a high level abstracted view of
the system. The data flows could provide the abstract data
types, such as enumerated data. A data dictionary could also be

used to define these data types.

A process could normally be created for events in the system's
environment and a response in the form of a first-cut diagram
could then be generated (i. e. drawn).

This process could upwardly be refined until one process could
then be used to represent the entire system.

10- 6

The first-cut diagram could therefore be refined until each

process can be represented as a high level algorithmic state

machine (ASM).

A possible example of an ASM of a simple ALU is shown below

(GREE 86] :

Figure 10.3 Example of Algorithmic State Machine

This is a three state system with signals A, B and S. OP is a

signal of an enumerated type which has two possible values ADD

and SUB. The other three signal types can not be determined

from the diagram so the data dictionary would have to be

consulted. In each state not only can outputs be assigned

values, but internal variables and signals can be set. In this

way, loops and counters can be represented.

The drawback of this is that although any construct can be

represented, including those such as "GOTO" statements, VHDL
does not support such statements and it is a bad practice to

use them. This means that the representation must be limited to

structured design techniques such as "FOR" and "WHILE" loops.

All data flow transforms will be assumed to work concurrently.
A controller state machine can be defined to enable the other
transforms in the design.

10- 7

When translating the graphical representation to VHDL, the
individual ASMs will be converted into processes and procedures
depending upon whether they are running concurrently, or
whether they are being called by other state machines. The
loops in the charts must be found and converted to "While" and
"For" constructs. Single and multiple decisions will be

converted to "If" and "Case" statements respectively.

The variables and data types in
to be declared and initialized.

placed in a package so that the;
The resulting VHDL will have to
and will enable the integration

graphically.

the data dictionary will have

The data type definitions are

can be used by all entities.

comply with IEEE 1076 standard

of the JTAG insertion routine

10.2 ANALOGUE IMPLEMENTATION

The 1149 rules create functional test access to analog circuits
as part of the integrated design. Internal test architectures
designed with testable interfaces provide accurate, repeatable
and cost effective test solutions, by eliminating the need for

expensive test instrumentation, maintenance and calibration. In
addition, the required test execution time for on-board test is

much less than that of traditional ATE which typically operates
over the IEEE 488 bus. Test access through a standard test bus,

combined with flexible signal processing techniques create a
powerful analog test capability to meet challenges such as that
of Surface Mount Technology.

10.2.1 ANALOGUE TEST APPROACH USING 1149.3 AND 1149.4

SUBSETS

The testability bus 1149 option, Real Time Analog Subset,
allows a standard interface to the analog circuits either
internal to the design, or externally with the use of
ATE. [ARME 89] This option is used when it is not feasible to
incorporate analog to digital (ADC) or digital to Analog (DAC)

conversions within the module.

10- 8

This subset uses many of the 1149, Real Time Testability Bus,
signal lines providing necessary control in a mixed signal
environment. The signals necessary to define the 1149.4 subset
and some of the 1149.3 subset signals are listed in Figure
10.4.

SIGNAL NAME SIGNAL DESCRIPTION

. RESET Initialise all testability circuitry
ENABLE Enable all testability circuitry
ASIN Analog real time test signal input
ASOUT Analog real time test signal onput
ASINEN Analog test signal input enable
RTOUTEN Enable for D/A real time output lines
TPAO-n Test point address lines for digital

and analog real time data and signal
inputs and outputs.

Figure 10.4 1149.3 & 1149.4 signals

Most analog circuits require a test stimulus in order to

measure the resulting response. For a typical ATE environment
this is accomplished with the use of several test points
accessed by a bed-of-nails fixture via spring loaded test
probes. Signals that are routed to and from the tester, often
require the use of special buffering or signal conditioning,
before evaluation by the test program software. This signal
routing can be simplified with the use of the 1149.3 and 1149.4

testability bus subsets.

A standard test interface is being developed by the IEEE to
control and process the analog test signal by using the
internal test architecture. The architecture is mainly based
on analog multiplexers-and analog de-multiplexers.

10.3 LINKING THE ENVIRONMENT TO SYNTHESIS TOOLS

Many CAE systems are capable of expressing designs using more
than one method. In addition, most CAE vendors have now
included logic synthesis tools as part of their design suite.

10- 9

VHDL has provided a neutral environment in which the design can

ultimately be converted into. This has facilitated the recent

advancement in the synthesis technology.

one of the potential applications of the tool developed in this

project is to integrate it into a test synthesis system of a

particular CAE vendor. For example, the tool developed in this

thesis could conceivably be linked to the DAZIX Test Synthesis

application (TESTSYN). TESTSYN is a tool which is primarily

used for including internal scan in the ASIC design. It works

on the principle of converting, where possible, the design

flip-flop cells into scannable form by re-configuring the

design and generating a new netlist. The VHDL parser and the

boundary scan insertion algorithm can therefore, provide a

complete Design For Test Environment.

Figure 10.5 VCP and Synthesis

10- 10

The VCP developed environment
could be integrated as part of
the Synthesis core

10.4 THE ARTIFICIAL INTELLIGENCE ROLE

A theory for exploiting the knowledge of the structure and the

behaviour of a digital system using first principles has

recently been developed by Digital Equipment Corp., the Defense

Advanced Research Projects Agency (DARPA) and MIT in the United

States.

Randall Davis of MIT (DAVI 891 has examined this theory in

trouble-shooting digital electronic hardware. Davis claims

that, a system based on reasoning from first principles is

easier to construct because there is a way of systematically

enumerating the required knowledge, the structure and behaviour

of the device. The reasoning theory could be tested to deal

with the difficulty that has arisen in developing high level

test models, from a behavioural level to structural level, and

not the other way around. Since this work is still in it's

formative stages, there are still a number of questions about
how accurate and successful this approach is.

10- 11

REFERENCES

(Mori 88] Morris, C. J. Theaker, P. B. Whitehead, Structured
Abstract Schematics, The Computer Journal Vol. 31,

No. 3,1988 pp 193 - 200.

[KUSZ 90] C. A. Kuszynski, T. Busfield, A. M Koelmans,
M. R. McLauchlan, D. J. Kinniment, Graphical
Representation of a Hardware Description Language,
IEE proceedings, Vol 137, Pt. E, No 6, Nov 1990 pp.
462-468.

(Bain 88] J. Bain, STELLA, A Schematic Capture Tool for ELLA,
Proceedings of the International Custom
Microelectronics Conference, Nov 1988, Paper 36,

pp. 36.0-36.7.

(Rein 89] Auli Reinikka, Antti Auer, Ari Okkonen, Automatic
Synthesis of Structural HDL Description from

Graphic Specification of Embedded ASICs,
Microprocessing and microprogramming 27,1989 pp.
473-478.

[AUER 88] A. Auer, P. Kemppainen, A. Okkonen, V. Seppanen,
Automatic Code Generation of Embedded Real Time
Systems, Microprocessing and Microprogramming 24,

1988, pp. 51-56.

(OKKO 89] A. Okkonen, A. Auer, SOKRATES-SA: A Formal
Specification Method for Real Time Systems.
Microprocessing and Microprogramming 27,1989.

(LEPP 89] T. Leppanen, Automatic Transformation from
Structured Analysis to Hardware Description
Language, MSc Thesis. University of Oulu 1989 (in

Finnish).

10- 12

(WASS 90] A. I. Wasserman, P. A. Pircher, R. J Muller, The Object

Oriented Structured Design Notation for Software

Design Representation, Computer Vol 3, March 1990.

(ACKR 911 M. Ackroyd, D. Daum, Graphical Notation for Object

Oriented Design and Programming, Journal of Object-

Oriented Programming, Vol 1, January 1991.

[WARD 86] P. T. Ward, S. J. Mell

Real Time Systems,
1986.

r, Structured Development for

Vol 1-3. Yourdon Press, NY.

[GREE 86] D. Green, Modern Logic Design, Addison-Wesley, 1986.

(ARME 89] Arment E. L., and Coomb W. D.,
for Digital and Analog SMT.
Instrumental Conference. C. A.

Application of JTAG

Test 1989, ATE and

USA 1989.

10- 13

APPENDICES

APPENDIX 4A

Simulation results of the VHDL 4-bit Multiplier described

behaviourally.

VHDL LISTING OF 4 BIT SERIAL MULTIPLIER MODEL

VHDL Analyzer - V4.05; Workview 4.0,3000 Series
Copyright (c) 1990 by Viewlogic Systems, Inc.
Analyzing MULT1. vhd; Making multl. vsm multi. vli
multl. lis.

1: ENTITY multi IS
2: PORT (a : IN vlbit_ld(0 TO 3);
3: b : IN vlbit_ld(0 TO 3);
4: q : OUT vlbit ld(0 TO 7);
5: clock, start : IN vlbit);
6: END multi;
7:
8: ARCHITECTURE behav OF multi IS
9:

10: BEGIN
11:
12: calculate : PROCESS (clock)
13:
14: VARIABLE cycle : INTEGER :=0;
15:
16: BEGIN
17:
18: IF (clock='1') AND (start='1') THEN
19: IF cycle=4 THEN
20: q <= mulum(a, b);
21: cycle :=0;
22: ELSE
23: cycle := cycle + 1;
24: END IF;
25: END IF;
26:
27: END PROCESS calculate;
28:
29: END behav;

0 errors; 0 warnings; 0 extensions; 0 notes.

VHDL Analysis of MULT1. vhd completed.

SIMULATION COMMAND FILE FOR THE MULTIPLIER -
MULTI. CMD

vector a a[0: 3]
vector b b[0: 3]
vector q q[0: 7]
watch abq clock start
radix hex abq
wfm a 0=0\h 100=A\h
wfm b 0=f\h 100=5\h
stepsize 100
clock clock 01
cycle 10
wfm start 0=0 50=1
wfm q
tabq clock start
wave multl. wfm abq clock start
run 20
exit

TIMING VERIFICATION OF 4 BIT MULTIPLIER (Page 1 of 2)

Typical delays in use.
All delays scaled by 1.
Reading VHDL entity file multi. vli ...
Reading VHDL package file

C: \workview\standard\vhdllibs\std\STANDARD. VLI ...
Loading VHDL entity MULTI ...
Total of 1 digital modules were processed.

multi
time = 20. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 40. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 60. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 80. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 10O. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 120. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 140. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 160. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 180. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
time = 200. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=X
Simulation stopped at 200. Ons.
(multl. cmd, 12): There are no waveforms on 'q' to

delete!
[time = 200. Ons] CLOCK 1 -> 0
[time = 200. Ons] START X -> 0
[time = 205. Ons] START 0 -> 1
(time = 210. Ons) CLOCK 0 -> 1
time = 220. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=1
[time = 220. Ons] CLOCK 1 -> 0
[time = 230. Ons] CLOCK 0 -> 1
time = 240. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=1
(time = 240. Ons) CLOCK 1 -> 0
[time = 250. Ons] CLOCK 0 -> 1
time = 260. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=1
(time = 260. Ons] CLOCK 1 -> 0
[time = 270. Ons] CLOCK 0 -> 1
time = 280. Ons A=A\H B=5\H Q=XX\H CLOCK=1 START=1
[time = 280. Ons] CLOCK 1 -> 0
[time = 290. Ons] CLOCK 0 -> 1
[time = 290. Ons] Q XX\H -> XX\H
[time = 290. Ons] Q XX\H -> XX\H
[time = 290. Ons] Q XX\H -> XX\H
[time = 290. Ons] Q XX\H -> 3X\H
[time = 290. Ons] Q 3X\H -> 3X\H
[time = 290. Ons] Q 3X\H -> 3X\H
[time = 290. Ons] Q 3X\H -> 3X\H
[time = 290. Ons] Q 3X\H -> 32\H
time = 300. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 300. Ons] CLOCK 1 -> 0
[time = 310. Ons] CLOCK 0 -> 1
time = 320. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 320. Ons] CLOCK 1 -> 0
[time = 330. Ons] CLOCK 0 -> 1
time = 340. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 340. Ons] CLOCK 1 -> 0
[time = 350. Ons] CLOCK 0 -> 1
time = 360. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 360. Ons] CLOCK 1 -> 0
[time = 370. Ons] CLOCK 0 -> 1
time = 380. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1

(Page 2 of 2)

[time = 380. Ons] CLOCK 1 -> 0
(time = 390. Ons] CLOCK 0 -> 1
time = 400. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 400. Ons] CLOCK 1 -> 0
[time = 410. Ons] CLOCK 0 -> 1
time = 420. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 420.0ns] CLOCK 1 -> 0
[time = 430. Ons] CLOCK 0 -> 1
time = 440. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 440. Ons] CLOCK 1 -> 0
[time = 450. Ons) CLOCK 0 -> 1
time = 460. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 460. Ons] CLOCK 1 -> 0
[time = 470. Ons] CLOCK 0 -> 1
time = 480. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 480. Ons] CLOCK 1 -> 0
[time = 490. Ons] CLOCK 0 -> 1
time = 500. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 500.0ns] CLOCK 1 -> 0
[time = 510.0ns] CLOCK 0 -> 1
time = 520. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 520. Ons] CLOCK 1 -> 0
[time = 530. Ons] CLOCK 0 -> 1
time = 540. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 540. Ons] CLOCK 1 -> 0
[time = 550. Ons] CLOCK 0 -> 1
time = 560. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 560. Ons] CLOCK 1 -> 0
[time = 570. Ons] CLOCK 0 -> 1
time = 580. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
[time = 580. Ons] CLOCK 1 -> 0
[time = 590. Ons] CLOCK 0 -> 1
time = 600. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
Simulat ion stopped at 600. Ons.

run
[time = 600. Ons] CLOCK 1 -> 0
[time = 610. Ons] CLOCK 0 -> 1
time = 620. Ons A=A\H B=5\H Q=32\H CLOCK=1 START=1
Simulat ion stopped at 620. Ons.

N

m
H
a
H
H
a '. o
o cc

U
H
ca z ao

a cý woz
. 't, ' .ZH E-4 Z
ö. ýw

cn o
H

52
wwui
P, 4 PQ 0
z4 0A C9
Hä

>
C

Hý

K
K

o1
-o

OI
O

O

a c*,

O
O c-i O

4 IC, v

u oC

O
I-

-Cc: CM Cr U In

APPENDIX 4B

Simulation results of the 4-bit Multiplier described

structurally

ýc o t. o "-+ CY mori tu mo "-. cv m to to N --VVVVVVVVVVVVVVVV

O 0ý VOOOO .OA .0 J2 NNNNNNNN

+ + + + + + + + + + + + + + + + + +
O
O

m
m

++ + + + + + + + + + + + + + + + + + a,
O
O

r

++ + + + + + + + + + + + + + + + + + CD
O

raL O

CD
CO

++ + + + + + + + + + + + + + + + + +
O

In
in

+ + + + + + + + + + + + + + + + + + CM
O
O

++ + + + + + + + + + + + + + + +
O
O

m
CIL m

++ + + + + + + + + + + + + + + + + + o
0
0
N
N

t+ f + + f + + + f +
CIL
+ + + t + + + + CD

m
O

Ei. CL

kg 1 kg

r_
0
41
cc

E
cn

ca
0
41

4
V)

H u1
N

3A

aý o

H
H Cq

ZZ

C'
vý
r,
M

a

N

APPENDIX 5A

This appendix includes the design and simulation of the Boundary

Scan Architecture. 4 test instructions have been used in this

case and include the following:

-NOP

-SAMPLE

-EXTEST

-BYPASS

The instructions have been generated using Macro-Functions

available on the Mentor CAE system to allow ease of

simulation. The Macro-Functions can easily be re-complied in 'C'

to enable transportability of stimuli.

The Macro-Functions include the following:

- START The macro START has to be executed at the beginning

of a simulation run. -It sets up the TAP-Controller

in the SELECT-DR-SCAN state.

- LDI NOP Loads the instruction NOP into the instruction

register.

- LDI SAMPLE Loads the Instruction SAMPLE into the instruction

register.

- LDI_EXTEST Loads the instruction EXTEST into the instruction

register.

- LDI_BYPASS Loads the instruction BYPASS into the instruction

register.

- INTEST [nb) Loads the instruction INTEST into the instruction

register and executes INTEST. The nb argument is

used to determine the number of clock cycles to

wait in the RUN/IDLE-TEST state. The default

value of nb is 1.

- RUNBIST [nb] Loads the instruction RUNBIST into the instruction

register and executes RUNBIST . The nb argument is

used to determine the number of clock cycles to

wait in the RUN/IDLE-TEST state. The default

value of nb is 1.

- LD_DATA data [nb]

Loads DATA on the TDI. The data argument is

preceded by $ or % in order to specify whether the

data format is Hex ($) or Binary (%) . The optional

nb argument limits the amount of data to be

entered in serially on TDI. By default nb is

equal to the length of the data argument.

e. g.
do ld_data. do %10010 means load TDI with 5

data values. The first is 1.

do ld_data. do $0 equals do ld_data. do %0000

do ld_data. do $0 2 equals do ld_data. do %00

LoaD data into the the Data register

Processing and checks
if " ($arg_l=") then

write line EXIT : missing the number to enter -space
exit macro

end if
assign nb "$arg_1
assign nb_lengt "$size(nb)
loop i1 "nb lengt

assign nb[i] ^$toupper(nb[i])
end loop
if ^(nb[l]='%') then

assign data_lengt "(nb_lengt-1)
dim data "(data_lengt)
loop i2 "nb_lengt

if A((nb[i]='1') or (nb[i]='0')) then
assign data[i-1] "nb[i]
else
write line EXIT : data error in argument-1 -space
exit macro

end if
end loop
elseif A(nb[1]='$') then

assign user ^$arg_2
if "(user<>") then

assign user lengt "$size(user)
loop i1 "user lengt

if "(user[i]<, 0' or user[i]>'9') then
write line EXIT : data error in argument-2
exit macro

end if
end loop
assign data_lengt "user
else
assign data_lengt "(4*(nb_lengt-1))

end if
dim data "(4*(nb_lengt-1))
dim nb bin 4
loop i2 Anb_lengt

if ^((nb[i]>=10' and nb[i]<='9') or (nb[i]>='A' and nb[i]<
assign nb_bin "$convert radix(nb[i], 16,2)
assign nb_bin_lengt "$size(nb_bin)
assign offset "(4-nb_bin_lengt)
loop j1 Anb_bin_lengt

assign row "((i-2)*4+j+offset)
assign data[row] ^nb_bin[j]

end loop
if "(offset<>O) then

loop j1 "offset
assign row "((i-2)*4+j)
assign data[row] 0

end loop
end if

else
write line EXIT :
exit macro

end if
end loop
else

data error in argument_1 -space

write line EXIT : the argument-1 must be binary(%) or hexa($) -
exit macro

end if

Sending, of Stimuli
FORCe tms 0#7
RUN 10
RUN 10 #6
loop i1 ^(data_lengt-1)

FORCe TDI "data[i] #2
RUN 10

end loop
FORCe tms 1#2
FORCe TDI "data[data_lengt]

RUN 10
FORCe TDI 0#1
RUN 10

RUN 10 #5
#7

LoaD Instruction RUNBIST into the instruction register

Processing and checks
assign tempo "$arg_1
if "(tempo<> " and tempo<>'0') then

assign tempo_lengt "$size(tempo)
loop i1 "tempo_lengt

if "(tempo[s]<10' or tempo[i]>'9') then
write line EXIT : data error in argument_1 -space
exit macro

end if
end loop

else
assign tempo 1

end if

Sending of Stimuli
FORCe tms 1 # 7
RUN 10
FORCe tms 0 # 4
RUN 10
RUN 10 # E
FORCe TDI 1 # A
RUN 10
RUN 10 # A
FORCe tms 1 # A
FORCe TDI 0
RUN 10
RUN 10 # 9
FORCe tms 0 # D
RUN "(10*tempo -1) #C
FORCe tms 1
RUN 10,

f #7

I LoaD Instruction INTEST into the instruction register

I Processing and checks
assign tempo "$arg_1
if "(tempo<> " and tempo<>'0') then

assign tempo_lengt "$size(tempo)
loop i1 "tempo_lengt

if "(tempo[s]<10' or tempo[i]>'9') then
write line EXIT : data error in argument-1 -space exit macro

end if
end loop

else
assign tempo 1

end if

Sending of Stimuli
FORCe tms 1 # 7
RUN 10
FORCe tms 0 # 4
RUN 10
RUN 10 # E
FORCe TDI 0 # A
RUN 10
FORCe TDI 1 # A
RUN 10
FORCe tms 1 # A
FORCe TDI 0
RUN 10
RUN 10 # 9
FORCe tms 0 # D
RUN "(10*tempo-1) #C
FORCe tms 1
RUN 10
FORCe tms 0 # 7
RUN 10
FORCe tms 1 # 6
RUN 10
RUN 10 # 1
RUN 10 # 5

7

m
^ p _

o

.. o O

. M N
/ý
"" "

O
V V W

f" C
in Q

"ý ö Z
Q. O .ý º N

F W 0)

ö L
" O

U U)
A (D

3 +1 -r O

.. C O -ý-'
U C U
L 0
O -, +

c U U) ö w mz
C) c OCE 14-M i W 0 W ~W - Tý

7

O 0-4 W 0 Ili N C9
W

o UN
ý-+

°-
: ýw

0 cr. h " cntC L 0 .L r IC O {'' ¢ - it... C

C3

" C N .L CD
O f'

,. p C
m O

M. & 0
'4-S M 0- ... D f- L

11 ̀ -) L N
cum" 0

m 4-
W

ILI -90 L
'h

Ö
w c
Q M

ä

r
In
=

Y
u
r

a o O
I-

v
V> >C R

C = c. ý p
(n
cr- C

-4
IL

s cc C3 y
"" M "

.r
ºý
r+

M
it

" a
a

.

. 09
M

"

" f O O

.0 i z cc c ° n i ä h
in in n

L

4

O

OO
u

c

4A i r
O

t t
O

Y

n

CC Y Y " "
 " YOUS ONX

ouoa 0D 4J0 N ouoa uooa ýouoa ouoa
I-

F
in

L
/i1 =ä ou ua 0a

r--+4

4 Oo 00 o tl
K3 cl

0
L. Q O u 12

_
_ _ _

C
O

U
Is

0
F

cl:

""~Q= Z OU= OG=
= ÖOZ

O"a= u""= CMM2 u O" UC2

öuöä
a" Oa

ZA

.iL
r r rr r º- º-

r

ý� r. r r

H

1- P
h

. -r m

U
) C

Z º-+

'
: :

U

OD
. r.

o m

-
x L I / = 00 . C

C= O r-+ C= W
f-, . -3 . -, 0-4 F-, cc
V) C GD U

O

O
"" O

N O

NW
=mO U,
UZO U7 Q.. Z
cc W Om º-+

I. - O N
n

m
N , -

F 0: * º-+ L

F Q)
W
2r c ac a-- (0

U
U

W O

L

z (' C
cc 0

N O u

Ü
°C ac U in cc

crZ
L ý

Cr) 4
z 0) Ic

M

c

O O O C

41 O in cn O

r -J _

O
F-

U a)
-v C 0

0o W L
a)

Ü
O

0o 0
a)

Ü

C
oo U

U

co

N
m

v z
o n.

m
c in
c

Y L
CD

"1 r
V

". O
0
Q)

-D
pb r

0
. 1-j

T

p 00 1
J

L

N .+m 0

s y
v H

cm M U)
rr «-ý rr M-

[ý
}-
U7I

J

.. co
m

o
a I- o p o

k
a.

M
" w w

0 0 C 0
U) in M s

En
{

U)

Ö

Öm

Ö
O
. ö 0

0
N

0
=

Ö
U3

0

0
O

s ö 9

Ö

t s

o in j in
i 4'

..
in

IC
o 2

a 4
C
0 l L
u

0

U7 N V)
:mm in

m-
c U, v °v ti

"-ý tz v ac w
OOZOOOm
1- UW in _5

cI of cI OUR
vu lü ti ü

CD
C77
c

O

N
a)
O

N

N

L
m

N

O)
m

O

0
O

CD
0
F-

r--r
a)
U

L
a)

Co

Q)

L

0)
0)

m
a

m

co u

O
1 m C U

I
C

C

X a

O
C
O

L
O

m

C

L

C
z

O

O1

6 6 6 C

1L
C C cc - cc cc

-0 . -4 p r-" C] D
O I (!) CD U

C U
I

G.. J

D

0
L

JW

00

0

0

LJ

Functionnal test of the BYPASS basic cell
RADix Binary
ASSIgn hi_$list_radix Binary
ASSIgn hi_$monitor_radix Binary
TRAce CDR

. LISt -Change Binary CDR
MONitor Binary CDR
TRAce. TDI
LISt -Change Binary TDI
MONitor Binary. TDI
TRAce SDR
LISt -Change Binary SDR
MONitor Binary SDR
TRAce TDO
LISt -Change Binary TDO
MONitor Binary TDO
SCAle USer Time 1
SCAle TRace Time 100
INItialize XR
VIEW Sheet sheetl /
PERiod List 0
PERiod Trace 0
CLOck Period 50

FORCe CDR 00 -Repeat
FORCe cdr 1.25 -Repeat
FORCe tdi 1
FORCe sdr 0
RUN 50
FORCe sdr 1
RUN 50
FORCe tdi 0
RUN 50
FORCe tdi 1
RUN 25
RUN 25
FORCe sdr 0
RUN 25
RUN 25

Functionnal test of the boundary-Scan cell for an input pin
RADix Binary
ASSIgn hi_$list_radix Binary
ASSIgn hi_$monitor_radix Binary
TRAce CDR
LISt -Change Binary CDR
MONitor Binary CDR
TRAce SDR
LISt -Change Binary SDR
MONitor Binary SDR
TRAce Pin_in
LISt -Change Binary Pin_in
MONitor Binary Pin_in
TRAce L_Cell

LISt -Change Binary L_Cell
MONitor Binary L_Cell
TRAce Pin out
LISt -Change Binary Pin_out
MONitor Binary Pin-out
TRAce N

_Cell LISt -Change Binary N
_Cell MONitor Binary N Cell

SCAle USer Time 1
SCAle TRace Time 50
INItialize XR
PERiod List 0
PERiod Trace 0
CLOck Period 50
FORCe cdr 00 -Repeat
FORCe cdr 1 25 -Repeat
FORCe sdr 0

FORCe 1
_cell

1
FORCe pin in 0
RUN 50
FORCe pin_in Os
RUN 10
FORCe sdr 1
RUN 40
FORCe pin_in 1
RUN 10
FORCe 1_cell 0
RUN 10
RUN 30,
FORCe pin_in 1'
RUN 10
FORCe sdr 0
RUN 40

Functionnal test of the boundary-Scan cell for an output pin
RADix Binary
ASSIgn hi_$list_radix Binary
ASSIgn hi_$monitor_radix Binary
TRAce CDR
LISt -Change Binary CDR
MONitor Binary CDR
TRAce UDR
LISt -Change Binary UDR
MONitor Binary UDR
TRAce Mode
LISt -Change, Binary Mode
MONitor Binary Mode
TRAce SDR
LISt -Change Binary SDR
MONitor Binary SDR
TRAce L_Cell
LISt -Change Binary L_Cell
MONitor. Binary L_Cell

TRAce N cell
LISt -Change Binary N_cell
MONitor Binary N

_cell TRAce Pin in
LISt -Change Binary Pin_in
MONitor Binary Pin_in
TRAce Pin-out
LISt -Change Binary Pin out
MONitor Binary Pin_out
SCAle USer Time 1
SCAle TRace Time 100
INItialize XR
VIEw'Sheet sheetl /
PERiod List 0
PERiod Trace 0
CLOck Period 100
FORCe cdr 00 -Repeat
FORCe cdr 1 80 -Repeat
FORCe udr 0
FORCe mode 1
FORCe sdr 0
FORCe 1

-cell
1

FORCe pin_in 0
RUN 100
SCAle TRace Time 100
FORCe mode 0
RUN 20
FORCe pin_in 1
RUN 20
FORCe pin_in 0
RUN 20
RUN 40
FORCe pin_in 1
RUN 20
FORCe mode 1
RUN 20
FORCe udr 1
RUN 20
FORCe 1_cell 0
RUN 20
FORCe sdr 1
FORCe 1_cell 1
RUN 20
RUN 100
FORCe mode 0
RUN 20
FORCe udr 0
FORCe mode 1
RUN 20
FORCe udr 1
RUN 20
FORCe 1-cell 0
RUN 40
FORCe udr 0

RUN 20 '
FORCe pin_in 0
RUN 20
FORCe mode 0
RUN 20
FORCe 1-cell 1
RUN 40
FORCe sdr 0
RUN 100

Functionnal test of the Instruction register basic cell
RADix Binary
ASSIgn hi_$list_radix Binary
ASSIgn hi_$monitor_radix Binary
TRAce R*
LISt -Change Binary R*
MONitor Binary R*
TRAce CIR
LISt -Change Binary CIR
MONitor Binary CIR
TRAce SIR
LISt -Change Binary SIR
MONitor Binary SIR
TRAce UIR
LISt -Change Binary UIR
MONitor Binary UIR
TRAce Data
LISt -Change Binary Data
MONitor Binary Data
TRAce L_Cell
LISt -Change Binary L_Cell
MONitor Binary L_Cell
TRAce N_Cell
LISt -Change Binary N_Cell
MONitor Binary N_Cell
TRAce Inst_Bit
LISt -Change Binary Inst_Bit
MONitor Binary Inst_Bit
SCAle USer Time 1
SCAle TRace Time 50
INItialize XR
VIEW Sheet sheetl /
PERiod List 0
PERiod Trace 0
CLOck Period 50
FORCe cir 00 -Repeat
FORCe cir 1 25 -Repeat
FORCe r* 1
FORCe sir 0
FORCe uir 0
FORCe data 1
FORCe 1-cell 0
RUN 10

FORCe r* 0
RUN 10
FORCe r* 1
RUN 30
FORCe uir 1
RUN 10
FORCe sir 1
RUN 40
FORCe uir 0
RUN 10
FORCe uir 1
RUN 10
FORCe - 1_cell 1
RUN 10
FORCe uir 0
RUN 10
FORCe uir 1
RUN 10
FORCe sir 0,
RUN 10
RUN 20
FORCe data 0
RUN 50
FORCe uir 0
RUN 10,
FORCe uir 1
RUN 10

Functional Test of the TAP_CONTROLLER
Setup of the windows

RADix Hex
ASSIgn hi_$list_radix Hex
ASSIgn hi_$monitor_radix Hex
TRAce TRST*
LISt -Change Hex TRST*
MONitor Hex TRST*
TRAce TCK
LISt -Change Hex TCK
MONitor Hex TCK
TRAce TMS
LISt -Change Hex TMS
MONitor Hex TMS
TRAce STATE
LISt -Change Hex STATE
MONitor Hex STATE
TRAce RESET*
LISt -Change Hex RESET*
MONitor Hex RESET*
TRAce SELECT
LISt -Change Hex SELECT
MONitor Hex SELECT
TRAce ENABLE

LISt -Change Hex ENABLE
MONitor Hex ENABLE
TRAce SHIFTIR
LISt -Change Hex SHIFTIR
MONitor Hex SHIFTIR
TRAce CLOCKIR
LISt -Change Hex CLOCKIR
MONitor Hex CLOCKIR
TRAce UPDATEIR
LISt -Change Hex UPDATEIR
MONitor Hex UPDATEIR
TRAce SHIFTDR
LISt -Change Hex SHIFTDR
MONitor Hex SHIFTDR
TRAce CLOCKDR
LISt -Change Hex CLOCKDR
MONitor-Hex CLOCKDR
TRAce UPDATEDR
LISt -Change Hex UPDATEDR
MONitor Hex UPDATEDR
HlStory 10000

HISTORY Threshold = 0.0 (History 10000.0 -NOABS). Current time = 0.0
SCAle USer Time 1
SCAle'TRace time 200
INItialize XR
VIEw Sheet sheetl /
PERiod List 0
PERiod Trace 0

Stimulis' Setup
CLOck Period 50

FORCe tck 00 -Repeat
FORCe tck 1 25 -Repeat
FORCe trst* 0
FORCe tms 0

1 Initialisation on
RUN 50
RUN 50
FORCe tms 1
RUN 50
FORCe trst* 1
RUN 50
RUN 50

the F state

main loop' check then return in F
FORCe tms 0
RUN 50
RUN 50
RUN 50
FORCe tms 1
RUN 50
RUN 50
RUN 50
RUN 50-
RUN 50
FORCe tms 0
RUN 50
FORCe tms 1
RUN 50

DR loop' check (exhaustif check) then return in C
FORCe tms 0
RUN 50
RUN 50
RUN 50
RUN 50
FORCe tms 1
RUN 50
FORCe tms 0
RUN 50
RUN 50
FORCe tms 1
RUN 50
FORCe tms 0
RUN 50
FORCe tms 1
RUN 50
FORCe tms 0
RUN 50
FORCe tms 1
RUN 50
RUN 50
FORCe tms 0
RUN 50
FORCe tins 1

RUN 50

DR loop' check
FORCe tms 0
RUN 50
FORCe tms 1
RUN 50
RUN 50
RUN 50ý
RUN 50

(short check) then return in 7

IR loop' check
FORCe - tms 0
RUN 50
RUN 50
RUN 50
RUN 50
FORCe tms 1
RUN 50
FORCe tms 0
RUN 50
RUN 50
FORCe tms 1
RUN 50,
FORCe tms 0
RUN 50
FORCe tms 1
RUN 50
FORCe tms 0
RUN 50
FORCe tms 1
RUN 50
RUN 50
FORCe tms 0
RUN 50
FORCe tms 1
RUN 50
RUN 50

exhaustif check) then return in C

IR loop' check (short check)
FORCe tms 0
RUN 50
FORCe tms 1
RUN 50
RUN 50
RUN 50
RUN 50
RUN 50
RUN 50
MARK -2006.0, -59.0, Trace
VIEW ALL

then return in 7

LoaD data into the the Data register
TRANSCRIPTing OFF
assi prompts 'Which level would you like for TDI (1/0/return)
FORCe tms 0#7
RUN 10
RUN 10 #6
input "promptl level #2
if "((level=111) or (level='0')) then

FORCe TDI A level
end if
loop

input "promptl level #2
if, ^((level<>S1l) and (level<>'0')) then

exit loop

else
RUN 10
FORCe TDI "level

end if

end loop
FORCe tms 1 #, 2
RUN 10
FORCe TDI 0#1
RUN 10
RUN 10 #5

#7

CHI P1/BEGIN. DO

I Setup Window File
VIEW Sheet sheetl /
MARK -2.5,0.7, View
DO /idea/sys/hi/macro/analysis/view_down I$243
MARK -Rectangle -3.0,1.9, View
VIEW ARea -0.8,0.2, View
PROBe toto_1 -1.1,1.2, View
PROBe toto-2 -0.1,0.2, View
PROBe toto-3 -0.11-0.8, View
PROBe toto_4 -1.1, -1.8, View
DO /idea/sys/hi/macro/analysis/view_up
DEFine Bus on_chip /I$243/toto_4 /I$243/toto-3
PROBe-Reset_CH 0.612.2, View
PROBe Run_S_T 0.4,1.7, View
PROBe mode 0.8,1.7, View
PROBe RTI 0.7, -1.3, View
ASSIgn hi_$list_radix Hex
ASSIgn hi_$monitor_radix Hex
TRAce TRST*
LISt -Change Hex TRST*
MONitor Hex TRST*
TRAce TCK
LISt Hex TCK
MONitor Hex TCK
TRAce TMS
LISt Hex TMS
MONitor Hex TMS
TRAce TDI
LISt -Change Hex TDI
MONitor Hex TDI
TRAce Pin_In
LISt -Change Hex Pin_In
MONitor Hex Pin_In
TRAce State
LISt -Change Hex State
MONitor Hex State
TRAce Inst
LISt -Change Hex Inst
MONitor Hex Inst
TRAce Data
LISt -Change Hex Data
MONitor Hex Data
TRAce TDO
LISt -Change Hex TDO
MONitor Hex TDO
TRAce Pin-Out
LISt -Change Hex Pin-Out
MONitor Hex Pin Out
TRAce On_Chip
LISt -Change Hex On

-
Chip

MONitor Hex On_Chip
TRAce Reset-CH
LISt -Change Hex Reset

-
CH

MONitor Hex Reset CH

/I$243/toto-2 /I$243/tc

TRAce Run_S_T
LISt -Change Hex Run_S_T
MONitor Hex Run_S_T
TRAce MODE
LISt -Change Hex MODE
MONitor Hex MODE
TRAce RTI
LISt -Change Hex RTI
MONitor Hex RTI
SCAle USer Time 1
SCAle TRace Time 50
INItialize XR
PERiod List 0
PERiod Trace 0
CLOck Period 14
FORCe cik sys 00 -Repeat
FORCe cik sys 15 -Repeat
CLOck Period 10
FORCe tck 00 -Repeat
FORCe tck 15 -Repeat
FORCe trst* 0
FORCe pin_in 0
RUN 6
FORCe trst* 1
RUN 4

Functionnal test of the jtag_1 architecture (6 instructions)
the path is /users/research/vhdlresearch/jtag mentor/jtag_1/chipl
this simulation file calls funct. do

DO chipl/begin. do
FORCe pin_in b
DO start. do
FORCe pin_in 3
DO ldi_nop. do
DO ld_data. do $fedc
DO ld_data. do $4b01
FORCe pin_in 9
DO ld data. do $ae
FORCe pin_in 8
DO ldi_sample. do
FORCe pin_in f
DO ldi_sample. do
FORCe pin_in 0
DO ldi_sample. do
FORCe pin_in f
DO ldi_sample. do
FORCe pin_in 9
DO ld_data. do $fedc
FORCe pin_in 7
DO ld_data. do $00dc
FORCe pin_in 9
DO ld_data. do $00dc
FORCe pin in 0
DO ld data. do $af3f
DO ldi_extest. do
FORCe pin_in f
DO ld data. do $01234b
DO ldi_extest. do
FORCe pin in 5
DO ld_data. do $0
FORCe pin_in a
DO ld_data. do $7
DO ld data. do $f
FORCe pin_in 0
DO ld_data. do $2
FORCe pin_in 6
DO ld_data. do $21
FORCe pin_in e
DO ldi_bypass. do
FORCe pin_in 0
DO ld_data. do %11110111101
DO ld_data. do %1100010110101011001101
force pin_in'b
DO intest. do 4
force pin_in f
do runbist. do
do ldi_nop. do
force pin_in 4
do runbist. do 5

force pin_in 3
do ld_data. do $390a
force pin_in d
do intest. do 3
force pin_in 8
do ld_data. do $fl

0
C,
O

z O

E-+
U
H

E-+

O
H

C,

ti
[t,
O

O
H

w

CL
C°i3

-i2" tý OI
rr01

a=c üsöcöö
L+ j

LA
N in

ff f f f f f f f f 0
to
w
U, Pl

ff f f f f f f f f m
Cl)
N
m

m
M to

wm
n

fff " f f f f " f f m
MI.
ch in =P , N N

O
CLL CD

00

N

WIL

CD
in
N
N

ff f f
696
f f f f f f m

m
O
CD
N

ff f f f
46

f f f f f co
m
N
N

C;
CD
N
w

fff f
ry Co.

f f f m

O
Ln

fff f f f f f f f 0
m
m
CD
w

fff f f f f f f f m
m
N
N

ff f f 46 f f f f f f m

m
CD
in

O
N
N

C

0
c7
d
H
h

Lý
O

C
y

ZI
C,
d
H
ti

APPENDIX 5B

This appendix includes the design and simulation of a2 bit Adder

with JTAG included. Full logic simulation and fault simulation
have been carried out. 6 test instructions have been generated

using Macro-Functions available on the Mentor CAE system to allow

ease of simulation.

CM 0 " M

N
..

z'
r*i
- r. O O
a o 0 0

., a . .. º- .0
m

c (.ý
° " cn cr:

'ý C Z
p - O O

ö
º- a N

�

M

" L
.0
91 -4. -3

N
x

U
L L L

ö O
Ö w 2 -ZN

j

-0

r
a-
rW WO

"'ý"ý

W 0-4 C v

w ti Cfl
ac ýý N C

` ý
ö

ýý
c f- h Z

cr. 92 r ýa n L º
n

c
O : º - h

N
O

O
ý

"
V

C
N
U

J2
 M5

0 ei]
+" M v

""C c
QYrid

,ý F-

W

4
ä"W r. li

f
rM

f ; A L
._ .. _t 0

c /ý
i ö

uý
CC
p

G
.r

F . .

ä
F

ý W
0. -

x

r

N
O >-

v' 1 in Y
`r Y = V N
C
, u a

C O

I--
N O _J

CC
u-

QD i
C U

+ý ý1 Q
co Q

7N V)
V V V/

W C

p U cý
cl: c M

1 cc
-4

CC mm Ci U -O
U

E Q)
W
C

Ft CO - C
-ýI

i W
F-

.. O
N ..

Q v

0
F-

C
Q 9

IL
03

x
s.

O O co
O N in

.

-- I F -, - I F ý l T I T r
V

a - 0 a'
0 co 0 co

O
V) cI

o tm ry- 0
-"' ¢

.. ý tJ

.
a. 1o a o

LU
. o . N CO Q

0 a O s ö C,

uC

co W-4

n Q Q m co

lgI m
ö
= ac

ö
cm W)

ö
z Ic

öööäö
n vl = cc in in 32 cm °) = ae

o ü0U0U0

LL in CE Ww O_
Om O OO m

ui

S

C

V

ý.. + e
N
to

cc
0
U)

0

C

0

m

C `O

L

N

m

.ýN
NO

N

L0

m

m

O

O
O

O 0 0)
(! 7 (17 U

0 V+U 0 UU

cr- m Lc9]
L
W

' CD O C
Üým Cr m

.ý
ýý
0 I m C U

I
CL z

C

CL

CL
C

C
a
L
0

C
U

C
0
U
0

L
C

'O
C

0
m

we cc V-+ Oa
-0 --+ O P-+ OO
O1 cn mU

ZC U)
"-0

I.. _!

DI
C

C

0-

Z
CL
Z

.ý 0
m 9) o

CL
z C

c
c
L
O

y' o =

U

x C

U
x 0 to c

U

L C: CD 0 O
i C

x
0
O mm -
U

x "A . -+

rj j O
c to c P-4

'O -r+
ö ö - N

O I O m p 0
x C U +1

-ý+ x
C W

., ý C

C) CL

CD
U c I c
Z V-4 0

L . r.

00 U
uu

---- - - - 00 DO L I
ý

I mm I mm -

.0
O a:) - qcm L

C3 -+U 0

- -- _ "_
I mm

C3 O W C)
O 0

-0 °D
M

w
"

-o LO ~

w C

N I I °° U, I a I (j) I
_ _ I --

J I
CD O ö

0 0 (n L
U C

mm -3

O

U

+3 a) O C O O C C r-' ý' C!)
O

(0 "O O W O O ---4 ý-+ '-' 0) m
CD 0 U (n a.. Ü 0

F- 0 l C

r.. ' I x
n. cn Q. J W

CD

U

o a

U I .ý o
a- a

om

oo IC mm
m

l
o, Z CD

(D DL) L
0

I I ý--ý
O O
(n (n

I
z

I
z C

C

I I N
_

L
O

-º-ý C Q) 0 C C+ [r- - 0
.

U) W -0 C] C] 0 "-+
0 o Z I U cn m

a n- --i

U

Test faults simulation file for ADDER 2BITS

PATH Jtagjnentor/jtag_1/chip to check/test adder/qfault old do
This 1st version contains 35 test-patterns. With QFAULT, we # expect diminish the number of test_patterns.

CYCLe 10 5
FORCe in 0
FORCe in 1 10
FORCe in 2 20
FORCe in 4 30
FORCe in 8 40
FORCe in 11 50
FORCe in 3 60
FORCe in 6 70
FORCe in C 80
FORCe in 19 90
FORCe in 13 100
FORCe in 7 110
FORCe in F 120
FORCe in 1E 130
FORCe in 1C 140
FORCe in 18 150
FORCe in 10 160
FORCe in 1 170
FORCe in 2 180
FORCe in 5 190
FORCe in 9 200
FORCe in 15 210
FORCe in B 220
FORCe in 16 230
FORCe in D 240
FORCe in 1A 250
FORCe in 14 260
FORCe in 1D 270
FORCe in 1B 280
FORCe in 17 290
FORCe in F 300
FORCe in IF 310
FORCe in 12 320
FORCe in E 330
FORCe in 9 340
RUN 350

(D

w
J
U

U

m

O
W
F-
U
W
F-
LU
O

t!,
F-
J

Q
Li

Z

O :: j'
U

lf)

. -A

m
I-
N
1-4

q--q

W--4

CE)

w
rn

Co z
w
J
U

U
CD

LO

(r)

N

W--4

CD 000
m cu . -o

I 13o sllnbL

i

CZ)

W-4

E)
ö

w
J U

U

n cr)
"w

n

V

I--

Q
Lt. (%) 0J10i1ý0 SI1fld4 ld101

CD 000 co (D =' N

I Test faults simulation file for ADDER 2BITS

I PATH jtag_mentor/jtag_1/chip_to_check/test_adder/gfault. do
I This is the final list of the 8 patterns to send
I in order to obtain 100%

CYCLe 10 5
FAUlt DICTionary
FORCe in 0
FORCe in 2 10
FORCe in 11 20
FORCe in F 30
FORCe "in 18 40
FORCe in 4 50
FORCe in 1 60
FORCe in 7 70
RUN 80

Clock = 10 ns
-r # Create FAULT. DICT

pattern 1
pattern 2
pattern 3
pattern 4
pattern 5
pattern 6
pattern 7
pattern 8

(faults dictonary)

cc

w J
U

U

03

W
F--
v
w
I- w
0
ci,

CL
LL

Zr

0 U o2i32I o sl1nu.

N

(0

W
Ln M

Z

W
J
U

U

CIO

CV

W-4

OOOO
tr) N "--+

V) I

C

o 0 0
. -1 - OD (0 C \i
Q

CD

m

0

W
J
U

U

F-
V)
W
F-

"s1

u-I t/. l 0 102120 Sllfld. J 14101

Nov 15 9: 43 1991 FAULT DICTIONARY LISTING for //apollol03/users/researci

SENSOR PINS
1: OUT(O)
2: OUT(1)
3: OUT(2)

(left-most bit)

(right-most bit)

--
STEP 1

GOOD VECTOR : 000
FAULT VECTOR : --1

{ /I$1/I$2/I$3/OUT/1, /I$1/I$2/I$3/I0/1,
/I$1/I$2/I$2/I$2/OUT/1, /I$1/I$2/I$3/I1/1, /I$1/I$2/I$1

FAULT VECTOR : -1-
{ /I$1/I$1/I$3/OUT/1, /I$1/I$1/I$3/I0/1,
/I$1/I$1/I$2/I$2/OUT/1, /I$1/I$1/I$3/I1/1, /I$1/I$1/I$1
{ /I$1/I$2/I$2/I$1/IO/1 }{ /I$1/I$2/I$2/I$1/I1/1 }
{ /I$1/I$2/I$2/I$1/OUT/1 }{ /I$1/I$2/I$1/I$1/I0/1 }
{ /I$1/I$2/I$1/I$1/i1/1 }{ /I$1/I$2/I$1/I$1/OUT/1 }

FAULT VECTOR : 1--
{ /I$1/I$1/I$2/I$1/I0/1 }{ /I$1/I$1/I$2/I$1/I1/1 }
{ /I$1/I$1/I$2/I$1/OUT/1 }{ /I$1/I$1/I$1/I$1/I0/1 }
{ /I$1/I$1/I$1/I$1/I1/1 }{ /I$1/I$1/I$1/I$1/OUT/1 }

STEP 2
GOOD VECTOR :
FAULT VECTOR :

FAULT VECTOR :

010
--1
{ /I$1/I$2/I$2/I$2/I0/1

-0-
{ /I$1/I$2/I$2/I$1/I1/0
{ /I$1/I$2/I$1/I$1/I0/0

}{ /I$1/I$2/I$1/I$2/I1/1 }

}{ /I$1/I$2/I$2/I$1/OUT/O }
}{ /I$1/I$2/I$1/I$1/OUT/O }

--
STEP 3

GOOD VECTOR : 010
FAULT VECTOR : --1

{ /I$1/I$2/I$2/I$2/I1/1 }
FAULT VECTOR : -0-

{ /I$1/I$1/I$3/I0/0, /I$1/I$1/I$2/I$2/OUT/0,
/I$1/I$1/I$2/I$2/I0/0, /I$1/I$1/I$2/I$2/I1/0 }
{ /I$1/I$1/I$3/OUT/0 }{ /I$1/I$2/I$2/I$1/I0/0 }

FAULT VECTOR : 1--
{ /I$1/I$1/I$2/I$1/I0/0 }{ /I$1/I$1/I$2/I$1/I1/O }

FAULT VECTOR : 10-
{ /I$1/I$1/I$1/I$1/I0/0 }{ /I$1/I$1/I$1/I$1/OUT/0 }

--
STEP 4

GOOD VECTOR : 011
FAULT VECTOR : --0

{ /I$1/I$2/I$3/I1/0, /I$1/I$2/I$1/I$2/OUT/0,
/I$1/I$2/I$1/I$2/I0/0, /I$1/I$2/I$1/I$2/I1/O }
{ /I$1/I$2/I$3/OUT/O }

FAULT VECTOR-: --O-
{ /I$1/I$1/I$3/I1/0, /I$1/I$1/I$1/I$2/OUT/0,
/I$1/I$1/I$1/I$2/I0/0, /I$1/I$1/I$1/I$2/I1/0 }
{ /I$1/I$2/I$1/I$1/I1/0 }

FAULT VECTOR : 1--
{ /I$1/I$1/I$1/I$1/I1/0 }

--
STEP 5

GOOD VECTOR : 110
FAULT VECTOR : --1

{ /I$1/I$2/I$1/I$2/I0/1 }
FAULT VECTOR : -01

{ /I$1/I$1/I$2/I$2/I1/1 }
FAULT VECTOR : 0--

{ /I$1/I$1/I$2/I$1/OUT/O }

--
STEP 6

GOOD VECTOR : 100
FAULT VECTOR : -1-

{ /I$1/I$1/I$2/I$2/IO/1 }{ /I$1/I$1/I$1/I$2/IO/1 }

--
STEP 7

GOOD VECTOR : 100
FAULT VECTOR : -1-

{ /I$1/I$1/I$1/I$2/I1/1 }

--
STEP 8

GOOD VECTOR : 001
FAULT VECTOR : --0

{ /I$1/I$2/I$3/I0/0, /I$1/I$2/I$2/I$2/OUT/0,
/I$1/I$2/I$2/I$2/I0/0, /I$1/I$2/I$2/I$2/I1/0 }

Simulation of real generation of test patterns on design 'Chip2'
PATH jtag_mentor/jtag_1/chip2/funct. do
#8 patterns optomised by QUICKFAULT are sent in and
the results are collected at TDO

DO chip2/begi
DO start. do
DO ld_data. do
DO ld_data. do
DO ld_data. do
DO ld data. do
DO ld_data. do
DO ld data. do
DO ld data. do
DO lddata. do
DO ld_data. do

n. do

%00000
%010
%001
%111
%000
%100
%001
%00111
%000

$00
$02
$11
$OF
$18
$04
$01
$07
Output of previous result

tD

O ,b

0-4

z Ln H "-a
CID

y

0
o + + + + + + + z

N
v
.

CO + + + + ++

.i1O waý

JASS'` ; SRýCt1oh

öi ý ii. i+ i.. i, i +M . iý . ice
I= ,

O
CZ)

+++++

[n

o ýuC cp+++++t+

decoke < <ý i
C,

O
p

+ + + + + + ++

N

p t t t t t t t t

F' Fj F'

7 7 O O ý-º 3 n O
oD 0) 00 W O ý-+ O U) 7; in

7
1

-'
1

7
1

0

0 0
f

0
9

w

11 l- --

Aa\ca Sýri"ýýtý

I-J TO

Too cYCNe

NoýQ ýý'ýýýe\

q
,I- ow . ý. oc A'to-49&

oVn con`eý1ýs

e

TEXT BOUND INTO

THE SPINE

z

0-4 z ru

z ru
.ý I1

0 ö + + + + + + + + + + fi tt + +
z II

i

m

+ ++ + + + + + + + + + + + + ++ + + ++

Ö

3 U)
J

o ^a
4 ö + ++ + + + + + + + + + + + + ++ + + ++

ö-
ýo I,

co
rn
ö + ++ + + + + + + f + + + + + ++ + +

r
N

/ O ++ + + + + + + + + + + + + + f++

N

T. r

"

p
tt t t t t t t t t t t + t t t+

v ;r
s [

40 0
s

WOVV

b"
N 6

m
(A ö ++ + + m" m

+

-O
-O
-1

1., ß. IV
13

O ýiýý

++

+II+ +

+

O -n
P"
J
CO
"

z

O
a

mMM3r -- mQQN Cl OmOO -1 -4 N --i -4 -1
. 03 O73 . -. -OO r+ S t") M)

OD co OD a e+ e+' .+O 7r 17 11 La w0 '3 C3 '"' ON= U)

a# r ". rmWm0 cr II.. p' r" "'I
mm0 '7 '7 '7 &.. - ... OOC-mx
WWN033073

0
0

O

x 1
III i

cý ý III I
r ,., cn III I

ö + + ++ + + + ttt + + +) +

>Z

AOtttttttt+{1 `hýý:
on.

1z
33

1'
N a

(2uß f ý-¢sý '. d1c.
°o +++++++++++++ , fie, \, aa,

t... ý, 1ý"Qý: er

CjLN&
CT) ý' K rouý`. 1v

('.)

+++++++++++++

m

0
co
p + ++ + + + + + + + + + ++

O

otPýt. eý o

itGcý\OÖ
CZ)

O

+ ++ + + + + + + ++ + + ++
0

ö6
~' o
v
"

1
o

01 1
CD + ++ + + + + + + + + + ++ _

.

CD + ++ + + + + + + + + +

.. .º". " 3N O' OmAA -4 -1 U) -4 -1 -1
7770.... .. .ý3.. r-, p p, 3 3'
oD oD OD O. -j (L) UJ O7 7C' O-O in 7C UI
. -º ý-º e+ CD v- -4

OOO "-- to ýt
2QOvvv

Xx
ýi It

Z
z
y
z

z

M

h

i

k

p
Lt.

r
j

i

i
L

III
III

rru

++++++++++ttt

p+++++++++++++++++p+

oC

I

+

...............

C13
CD
6

M
. a)

ru Ul

2m al CD ++

CD

.
CD . .

.

+

pºQ\öo4

Äeýýcer,

sýMUJ; ý

+
tobe

+

dºhveh
!oo ýp pw.

+ ýý

e, cý, ý

Sýcwý ýý

1

+ + I+II+ CW;

r

CD

N
p

+ + + + + + + + + + + + + + + + +++ + +

-1ý

-T

ý4
WNW)

"
00
"-

Z7

00
. --

"
ao
"-

3
O
0-
m

-
3
r«
m

r
7
r"
m

"""
3
"-"
m

m
7
0
c'

O
º-"
7r

0
«.
'7

N
_ v

Q'

_ w

O

_ 03

m
3
0

0
rr
-7

0
r
JK'

-1
O
0

-1
O
'-' 0

rol
N U)

J m x
W w (V 7 7 ýD 7 7 v `ý m

U
H

z

U

9 H

0
H z
0 V

H
0
a
H
ti
a

W

H
ti

O O
cc cc cc

* W F- U J F- ýG F- F- Y
F- I- W W m LL u Q LL u cc
to Y (n Q (n J Q ý--ý O O ý-+ O 0
cc: U x i- W W Z J CL J CL
F- F- 1- !) N W to u > V) u O

it ý. ii. . iiý
+++++++f++

m
cu

++ CXL ++tt++++O .

O
CC)
Q)

I+ r-+j I+ I. *I I+ +I +1 +11+ +I +11+

co

++ ++ ++ ++ +++ a)

O
N

in.

dL ++ + ++ ++ o
' .

a
rn
rn

+1 +11+ +1 +11+ 'llýI
++++t+t+O + +11+ t

m 91
m

E-

E-
bi a
U)

z
0

z
U)

W4 rn
C'

a 0-4

C4

z
ýI

4U

N

U

C. ý

H
W

2: 1

h'i

p .. Y
GC

M

ºý- Is.. YO9 r+
yY

- 6- º-
O`-m-.

9tOO.

VI

F-

in

N

IQ in

CD
CD Pl

IAL m
A
N

ff f f f f " f " f m

m
N

WL
OL

N

ff f f f f f f f f m

N
N
N

4 CD

to
m w
N

N

k%L
r

fff f f f " f f f f m

CD

IQ.

m
N

ff f f f
la

f f f f f m
CD h

co
m
w

fff f f f " " f f m
m
N
n

Al.

co
N

co I
06 N

C

LI LH
-

U
H(ý

z

H
hol

w

ti

0
z 0

z 1-4

M
a a
PLO

vý
aý

ro

Appendix 6A

The following software was written to describe the VHDL

package of JTAG_STANDARD. It contains the high level models
of the JTAG full architecture. It also demonstrates the

power of using facilities such as 'PACKAGE' or 'LIBRARY' in

designing a system.

use work. declar. all;
package JTAG_STANDARD is

component TAP-CONTROLLER
generic (Setup_Time, Hold time, Min Pulse Width_1,
Min PulseWidth_0, S_Odel, Odel: Time);
PORT (
TMS,
TCK: in bit;
Reset,
Selectt,
Enable,
ShiftlR,
ClockIR,
UpdatelR,
ShiftDR,
UpdateDR,
ClockDR : out bit

end component;

component REG-INSTRUCTION
generic
(Setup_Shift Time, Hold_Shift Time, MPulse Width Shift,

Setup Update_Time, HoldUpdate Time, MPulseWidth Update,
Mux Del, Stage_Shift_Del, Stage Update_Del: time);

port(
Reset,
ClockIR,
UpdatelR,
ShiftlR,
TDI: in bit;
Status: in bit vector;
Instruction: out bit vector;
TDO: out bit);

end component;

component INSTRUCTION DECODER
generic (Instruction set: bit vector;

DR select Set, Test Mode Set, Additional_Signals_Set:
bit vector;
Open_Check: Boolean;
DEC_DEL: Time);

port (
Instruction: in bit_vector(0 t
DR Select: out bit vector(0 t
Test Mode: out bit vector(0 t
Additional_Signals : out Bit_

o 7);
o 7);
o 7);
vector

end component;

component BYPASS REG
generic (Setup Time,

Hold
-

Time,
MPulse_width,
AND Del,
Bypass Del : Time)

Port(
ShiftDR, ClockDR,
TDI: in bit;
TDO: out bit);

component end;

component REG_BSCAN
generic (System,

_pintype_types: SUT Capture_, HT_Capture,
port (
Select_Bscan,
Reset,
ShiftDR,
ClockDR,
UdateDR,
TDI: in Bit;
Parallel Input: in Bit vector;
Test Mode: in Bit_vector(0 to 1);
Parallel_Output: out Bit_vector;
TDO: out Bit

component end;

entity IDENT_REG
generic (Setup time, Hold Hold_Time, MWidth, Mux Del: Time)
port(
Select_Ident,
ShiftDR,
ClockDR,
TDI: in Bit;
ID Code: in Bit vector;
TDÖ: out Bit

end component;

component MUX 1
generic (Instruction Set : Bit vector;

TDO Test Datä Registers_Set : integer vector;
Mux_Del : Time);

port (
TDO_Test Data Registers: in Bit vector;
Instruction : in Bit vector;
TDO: out Bit);

end component;

String vector;
MDEL, SUT Update, HT Update,

component mux_2
generic (Mux_DEL : Time)
port (
Tdo_Test_Data_Registers,
Tdo Instruction,
Selectt : in Bit;
TDO : out Bit

end component;

entity TDO Buffer is
generic (setup time,

Tdo del: Time)
hold time, Min_pulse width, Del,

port (
TCK,
Enablee,
Input: in Bit;
TDO: out Tristate

end component;

end JTAG_STANDARD;

Appendix 6B

The following software was written to describe the VHDL
package of Declaration. It contains all the timing elements
used in JTAG.

library std, work;
use std. standard. all;
PACKAGE Declaration IS

TYPE integer vector is array (integer
integer;

TYPE tristate IS

'Z', -- high impedance
'0', -- logic zero
'1' -- logic one

TYPE state
-

tap IS

Test Logic Reset,
Run Test

_Idle, Select DR Scant
Capture_ DR,
Shift

-
DR,

Exit
_1

DR,
Pause_DR,
Exit 2 DR,
Upda_te DR,
Select IR Scan,
CaptureIR,
Shift I,
Exit

_1_IR, Update
'

IR,
Undefined

TYPE System pins IS

range <>) of

(' K' , --clock,
'I', --Input,
'B', --Bidirectional_Input,
'O', --Output,
'P', --Bidirectional-Output
'T', --Tri state,
'C' --Control

TYPE String_vector is array (integer range <>) of
System_pins;

END declaration;

Appendix 6C

This appendix describes the connectivity of the VHDL high

level model of the JTAG architecture and its simulation

results.

PATH: /USER/RESEARCH/VHDLRESEARCH/JTAG VHDL/JTAG 0/CHIP1

CD

ööö

0vv

-O-Z . 12
CL 0- -ý

10

O

h

Q
ý- L öWm

H. u
in

Ö

W=
w

C
=Q�

Q 04

04 u M

"
S

Z
c3 er_

Zffl

!-W
NS
2
-ö

Y

 M 0
Y a. -

sac
cuxa

G)
A

c

c o
-+ F-
CL

Sý M uni ; LI
º
I. -

ý. n
: .. CC Ic

i u
bug

c_3 r - v)

m
L

U 7)
0

.cO UC
LO
O -r-4

co
OC
U
NC

4-
L0
O

"O . 4.3
C to

N
O . *-3

m
LO 1

F-
L
0

m 4-

F-

o ..
v m

0
0 .ý .+
O c

G O

IL - w w
m

C O 0 O
_

m m m m = : s i s S i

0

_
o°rs fl

= vii h
=

c
=

C in If
c3 O O O O O O O

n d C

v

OI Co
0

.. H°-
h

i,

ä � K.
W O -ý > c Co
a c
W d d N

a
ö m

H N

CD I Vl (n V) to

H iý i f f

C
h C IM C rf C h cm

u c3 0ü ä ä
ü

ä

I
ü ä ü

r z
H
ti

c2 c2 x c2 c2 0 O
uw in c2 m N

= In

C

0

0 uI
CIO a H
pa H a
.. a

ýI
H ti

in
cc

Y
u
I-

N
m
F-

N w
N
w
cc

I-
W J
W
to

w
m
Q
Z
W

CC
º-"
LL

(1)

m
º-"
CJ O
J
u

w -
Q
O
CL
m

ac
O
ti.

(n

ac
O t
O
J
u

ö w
O
CL

+ + + + + + + + + + C

O
V
(a cm

+ + + + + + + + + + a,

O

m Cu

+ + + + 7 7 + + + + a,

O
co
O

+ + + + + + + + + + a,

O
Lf
co

+ + + + + + + + + + + 0

O
Cu
m

+ + + + + + + o
0
rn
rn

+ + + + + + + + + + o
0 co
Co

+ + + + + + + + + + + C

0 m
m

z
0

0

U) z

a

ti

0
z 0 0-1

Ha

rn
C'

+J
y
GO

d

<-- U

N

6I
O

N
44

Ei

W
V

ß.

v
oý
tý a
ti
a a s

cý a H ti

C

-+ Y~f Y Ifl ý'+ 0

cc U :C0

f-

"
VI

fffffff"

In N
"

"
"
m

"
s N

N

in

Al

Sn

8!

*11*11*111*1143rý
ö
N

s

m m MW

If ýýCINCIJi110 1.
<-- E 119001-16

ON
0-0

aj N
V

. 51. . 11.11. ILI . 11.11fe

Appendix 6D

This appendix describes the connectivity of the VHDL high

level model of the JTAG architecture with an application
logic, a2 bit adder. It demonstrates the connectivity and
the validity of its operation together with the simulation
results.

PATH: /USER/RESEARCH/VHDLRESEARCH/JTAG VHDL/JTAG 0/CHIP2

s`
i

0 0 » « N
r
v

=r
a

- a

-
- o CD O

t-
CD

«
Go SI
m

C

.r
CL

U.

º-ý
7

O

v

O
O p

W

`r
U)

Z
ý-+

F_
W
cc

~
N

O

"

"

j

oW
I- _
N

0
93 I. y w 11 cr. i

º- Qc

Qe
c2

Z
O' W

LLJ

"L

in uj

ü

 M a

'Sc
CvJ

W r e Ä 0 w
� . .J r .

3i

J
O

U IT Vr

s Ö F C

o .. � Y

o 0
.. º-

c

C
.. 0

v
in

L

N
C

X N .ý
U
L L U
O 7

Q O N
0 C ý

1 0
Z
L
O 0 1

3
O

.. '' .M C

LD m -9-4
Q t CO

''"' 1- L
a L

m 0

w
P1 V

0
M

S

U
Y

O
O O

of f-

W 1-
UO (! 7
ZO
WZ m ý-+

-C 0)
-+-3 C

O
C

U 0
`-' 4- U

m

L L
a) . 4-3 z

r O O " Aft. U) C 0_ `ý O
-r 4 -, --ý

U p 0-4
O

0
C N ý'

CE: U
aý cc L

,9
ý u ö C -+-ý
W z c Q

"

U C H r 0

0.4 w L
cr- ý H U) L
z z c a)

ý-+)
c

i0 cc (C = cc:
H t--ý º-ý

ca x
co
i-

ti

. -ý m

U
ý C

Z ý-+

S
L
a)

Q)
CD
L

s C
0

-r -. f

U
w x % L

w U)
C

W 1-4
Z

OI

to C C) U = U)
O U m

J

A
0
U

En
z

oý

ti

A

H
ti

J
U O

1 -v CL C O

0
s
m

.o

ED Co
_. C C
-4--s O

L +'
O U

L

CD CO
-O C
O -r+
U
CD

S
C +'
O -r+

-ý 3

U C
3 O
L -, -+

+-3 O
0 L
C N

H

CD V--4
r-I II

r M
O

O O 7
F- 0 0

x
s

O O O
(r) in cr) m = m 3m

^ =ä ý

'
ýR

1iT J t 1
i

*0
C C

° ° CL i
s^

n
s c

n
: W 4" .)

_
t L. J

_v _ü _ü al I
0

». W" o
-0 3 vn in

_° ¢t Lu
.. a- a8W 31-

0- m; k Ö

0 ýI C
O W-+ O ý-+ -"

I3b

m11mJ m= # m= im

i ö0., 00 II ö ö ö0
m

= {C Nf =C vs in ICN=C
in =C tf

V

"+ Q: in W 0.. C
OOm O OO m
1-- V2 V) Om

W

O

C
L

Co
m

LO

m

ýN

OO

Nc

L0

N
-w

m
O

O

O

0 O
H

.a

N
N

0

J

v
F

D
C
D
D

m

0

L
CD

I'
N

_. -I
O)
CD
L

Co

O
a

c cc:
OO

I- (n u

-6-3
7 P-+
0 I m C U

I
CL z

C

CL
4-1

CL
c

c
0
L
0
te-

r-f

w 0

O
U

L
O

C

O

"D
CD
U
C
C

1
C

W

CD C C= r-+ LL cc
'O --+ C1 -+ D C]
OIcmu

CU

CL J

-ý
7 ý-+
o . -4
C U

I
0.. Z

CL

. -,
z
0

cn
a w

.. a

U)

O
Z

U
N
In

OI

Cý

H

A

C9
f-I

CL
4-3

0
C
C

L
0

cl-

m
0

C
O
U
N

L
O

'O
C

O
-92

"D C
U
C
C

-C C
W

mC cc "-+ cc cc
'U -"-4 O r-+ OO
oI U") mU

CU
ft-4 I
C- J

-1ý

(!, U) U

-0

N

L
C)

-O
-O
cc:

U

CO CD V--4 W--4
-. --r c r_ m cc m

0 () U

C

s m

a)

.. - NO L

m U Q)
'E ao -O

LL

L C)
W

0

cO v m -ý U
W1 = C= m

o)

vl Cc
H
'' U

0 (I) U

C
t
m

.o

.1

Q)

U

L
a)

-a
"0
cl:

(4

O

r- m

z
UI
w
U

H

U
O

ti

a

ti

1
NYN
suzö
H 1ý 1ý H

I
C

d

L

1
C

`+

W
1ý
c

N

.
"
c

-

O
.ý
" O

O
o h-

11

ý+
O

O'

C
.+ d

O
N
r

m
m

4 CD
m
in N
T

CD

CD
N

ab. r

016

N

0
m
N
N

m

N
N

ID
O

N

m
N

21.
N
r

m
h

m
. IN N

ti

m
m
m

516

m
In

Im .

m
in

I

99.

l

0

U)

U
Cý
0
a
z 0

U
1-I

H
3

CC H
ti
w 0
z 0

rý-

z f-1

0

ca

o'
o'

y

04

ýC

Appendix 7A

'C' SOURCE CODE FOR VCP VERSION 1

/* Status VCP - version 1, final, 3rd August 1992*/

/* This program is used to extract top level I/O's from a
VHDL source file. -The Output is a file containing a port
list and port type which is currently restricted to be of
type IN or OUT. */

#include <stdio. h>
#include <ctype. h>
#include <string. h>

#define found 1
#define notfound 0
#define false (1==2)
#define true (1==1)
#define MAX_KEYWORD_LENGTH 255
#define MAX_FILENAME_LENGTH 255
#define MAX-NO-INPUTS 100
#define MAX_NO_OUTPUTS 100
#define NAME LENGTH 255

char filename[MAX FILENAME_LENGTH];
FILE *vhdl_source;
FILE *port names;
char array_of_inputs[MA)NO INPUTS][NAME_LENGTH];
char array_of_outputs[MAX_NO_OUTPUTS][NAME_LENGTH];
char keyword[MAX_KEYWORD_LENGTH];
int find_keywordC);
int no-of-Outputs;
int no-of-inputs;

main(int argc, char *argv[])

int array-index = 0;

if(argc !=2)

printf(" \n You must supply a VHDL source code filename
as an argument to this program e. g. parse_vhdl <filename>
\n");

exit o; ;

strcpy(filename, argv[l]);
if ((vhdl_source = fopen(filename, "r")) _= NULL)

printf("\n The selected file does not exist in current
working directory. \n");

exit o; ;
}

printf("\nParsing file %s \n \n", filename);

VCP Version 11

printf("Looking for ENTITY
printf ("<l>") ;
strcpy(keyword, "ENTITY");
printf ("<2>") ;
if (find_keyword("ENTITY")
printf("Found ENTITY clause
else

printf("ERROR ENTITY clause
\n") ;

; exit o;

printf("<3>");

clause \n \n");

\n \n") ;

not found in VHDL source \n

printf("Looking for PORT clause \n \n");
printf ("<4>") ;
strcpy(keyword, "PORT");
printf("5");
if (find keyword("PORT'l)
printf("FOUND PORT clause \n \n");
else

printf("ERROR PORT clause not found in VHDL source \n
\n"); -

exit();

/* Get Port data */
printf ("<6>") ;
make port_array () ;

printf("Writing list of ports to vhdl port_file \n");

port-names = fopen("vhdl_port file", "w");

fputs("INPUTS: \n", port_names);

for(array_index = 0; array_index 1= no_of_inputs;
array_index++)

/* printf("Input %d is %s
\n", array_index, array_of_inputs[array_index]); */

fputs(array_of_inputs[array_index], port names);
fputs("\n", port_names);

fputs("OUTPUTS: \n", port names);

for(array_index = 0; array_index 1= no_of_outputs;
array_index++)

/* printf("Output %d is %s
\n", array_index, array_of_outputs[array_index]); */

fputs(array_of_outputs[array_index], port_names);
fputs("\n", port_names);

}

VCP Version 1 '2

fclose(vhdl source);
fclose(port names);

exit(; /*temp*/

/**
/* function to test for existaence of keyword in a VHDL
file */

find_keyword(keyword)

char keyword[MAX KEYWORD_LENGTH];
{

int pos;
int word= false;
char pres_string[MAXKEYWORD LENGTH];
char pres_char;
printf("<Key 1>");
printf("<Key 2>");
while ((pres_char=toupper(getc(vhdl_source)))1= EOF)

if ((pres_char! =' ') && isalpha(pres_char))

if (! word)

pos=0;
word=true;
}

pres_string[pos++]=pres_char;
printf (" . ") ;

else
if (word)

pres_string (pos] =NULL;
printf(" <%s>\n", pres_string);
if (strcmp(keyword, pres_string)==0)

return(found);
else

-word=false;
}

else
printf("+");

return(notfound);

/**
**/

VCP Version 13

/**
**/
/* This function generates IN and OUT arrays to hold the
port names */
/* were at the end of port and scanning for the port
names /

make_port_array()
{

char port char;
int order;
int char index;

order = 0;
char index = 0; -
printf ("<11>") ;
port-Char- getc(vhdl_source);
printf("<12>");
while (lisalnum(port_char)) /* find start of inputs

ASSUMES inputs start with an alphabetic character ???

port char = getc(vhdl_source);

printf("<13>\n");
while (port char !=': ') /* build list of input

ports */

while(isalnum(port_char))

array_of_inputs[order][charindex++] - port_char;
/* need string array to hold names of max len

port-char = getc(vhdl_source);

array_ofinputs[order](char index) = NULL;
printf("_-<%s>-\n", array_of_inputs[order]);
order++; /* next port
char index = 0;
no of inputs = order;
while ((! isalnum(port char)) && (port char! ==': '))

port char = getc(vhdl_source);
}

while (port_char !='; ') /* find end of input
declaration

{
port-char = getc(vhdl_source);

while (lisalnum(port_char))
output list */

{
port-char = getc(vhdl_source);

order = 0;
char index = 0;

/* find start of

VCP Version 14

while (port-char !=': ') /* build list of output
ports

{
while (isalnum(port_char))
{

array of_outputs[order][charindex++] - port_char;
/* need string array to hold names of max len */

port-char = getc(vhdl_source);

array_of outputs[order][char index] - NULL;
printf("+<%s>+\n", array_of_outputs[order]);
order++; /* next port
char index = 0;
no of outputs = order - 1;
while (("iisalnum(port_char)) && (port_charl=': '))

port-char = getc(vhdl_source);
}

)x

VCP Version 15

Appendix 7B

'C' SOURCE CODE FOR VCP VERSION 2

/*
**

* Extract top level I/Os from a VHDL source.
**
* EXTRACT. C
**
* BY S. MEDHAT Version 1.3
* Bournemouth University (U. K) 26/09/92
*
* This software program reads a VHDL design source
* file and extracts the top level I/Os from its
* entity description generating an output file
* called filemane. PIN where all I/O names, modes,
* types and bus width are listed.
**

The architecture of EXTRACT. C is based upon a state
machine structure behaviour which consists of 21
states.

The prototype of EXTRACT call is :

extract <design file name>[. hdl]

#include "lib. h" /* Include string macro-functions */

/************* Declaration of the 21 states ************/

typedef enum {
in,
out,
inout,
buffer,
portl,
port2,
bracket,
word,
blanks,
coma,
colon,
type,
key,
blank2,
bus,
blank3,
size,
blanko,
semi

-
colon,

end,
errors
) states-t;

Extract. C 1

/********** Declaration of function prototypes *********/

void format-data(); /* Format output data */
void commentsO; /* Handle comments */

/********** Declaration of global variables ************/

int top-size;
int bottom size;
int bus size;
int _ pin_no;
int error no;

char *ptr word;
char *ptr_type;
char *ptr_bus;
char in_filename[50]; /* Name of the input file */
char out filename[50] ; /* Name of the output file */
char type_name[20]; /* Type name storage
char bottom[5]; /* Low index bus
char top[s]; /* High index bus
char bus_name[20]; /* Bus name storage
char base mem[1000]; /* Data processing me mory */

FILE *infile; '/* Stream of input resource
FILE *outfile; /* Stream of output resource */

boolean stop; /* Exit program */
boolean error; /* Error detected */

enum states_t token; /* Token of the pseudo-state machine */

**
* EXTRACT program body *
**

*1

main(int argc, char *argv[])

/*** Usage errors detection ***/

if (argc! =2)

printf(" Usage: extract
<design_file_name>[. hdl]\n");

exit();

Extract. C 2

/*** Filename errors detection ***/

strcpy(in_filename, argv[l]);
strcpy(out filename, argv[l]);
strcat(in_filename, ". hdl");
strcat(out_filename, ". pin");
if ((infile=fopen(in_filename, "r"))==NULL)

t
printf("\n<Extract/Error>: \"%s\"

does not exist\n", in_filename);
; exit o;

if ((outfile=fopen(outfilename, "w"))==NULL)

printf("\n<Extract/System>: Cannot open output

exit(;
file (%s) \n", out_filename) ;

/*** Insert the output file header ***/

fprintf(outfile, "# PIN NAME PIN MODE
PIN TYPE BUS WIDTH STARTING\n");

fprintf(outfile, �-----------------------------------

ýnýýý ;

/*** Send a message on the screen (Start processing) ***/

printf("\n<Extract/Note>: Extracting File \"%s\"\n"

, in_filename) ;

/*** Initialisation of variables ***/

ptr word=base mem;
ptr type=type name;
ptr bus=bus_name;
stop=error=FALSE;
token=in; /* Token in state "IN" */

/**************** Start data processing ***************/

while (! stop && ! error)
{
switch (token)

{

/* State IN : Look for a keyword "IN"
/* if found --> state PORTI
/* else --> state OUT */

Extract. C 3

case in
{

if (search
_key(infile,

"IN")) token=portl;
else token=out;
break;

/* State OUT : Look for a keyword "OUT" */
/* if found --> state PORTI
/* else --> state INOUT */

case out :
{

if ((infile=fopen(in_filename, "r"))==NULL)
(token=errors; error_no=15;)

if (search key(infile, "OUT")) token=portl;
else token=inout;
break;

/* State INOUT : Look for a keyword "INOUT"
/* if found --> state PORTI
/* else --> state BUFFER */

case inout :

if ((infile=fopen(in_filename, "r"))==NULL)
(token=errors; error_no=15;)

if (search key(infile, "INOUT")) token=portl;
else token=buffer;
break;

/* State BUFFER : Look for a keyword "BUFFER" */
/* if found --> state PORT].
/* else --> state ERROR(l) */

case buffer :
{

if ((infile=fopen(in_filename, "r"))==NULL)
(token=errors; error no=15;)

if (search
_key(infile,

"BUFFER")) token=portl;
else (token=errors; error_no=l;)
break;

/* State PORTI
/* if found -->
/* else -->

Look for the
state PORT2
state ERROR(2)

keyword "PORT" */

*/
case portl :

if ((infile=fopen(infilename, "r"))==NULL)

Extract. C 4

(token=errors; error_no=15;)
if (search key(infile, "PORT")) token=port2;
else (token=errors; error_no=2;)
break;

}

/* State PORT2 : Look for the next left-bracket */
/* if found --> state BRACKET
/* if comment --> state COMMENTS */.
/* if space --> state PORT2
/* if other --> state ERROR(3) */

case port2 :
{

if (isspace(next_char))
(token=port2; next_char=fgetc(infile);)

else if (next_char=='(') token=bracket;
else if (next char=='-') comments();

else (token=errors; error no=3;)
break;

}
/* State BRACKET : Look for next word */
/* if found --> -state WORD
/* if comment --> state COMMENTS */
/* if space --> state BRACKET
/* if other --> state ERROR(5) */

case bracket :
of

(! next char_separ(infile, VHDL)) token=word;
else if (isspace(next char)) token=bracket;

:: '-') comments(); else if (next char--
else (token=errors; error no=5;)

break;

/* State WORD: Read the next char of the port name*/
/* if coma --> state COMA
/* if colon --> state COLON
/* if VHDL Ascii --> state WORD
/* if other --> state ERROR(5) */

case word :

*ptr word++=toupper(next_char);
while (! next char separ(infile, VHDL))

*ptr word++=next_char;
*ptr word++='\0';
if (isspace(next char)) token=blankl;
else if (next_char==': ') token=colon;

else if (next char==', ') token=coma;
else (token=errors; error no=5;)

break;

Extract. C S

}

/* State BLANK1 : Ignore all blanks char */
/* if coma --> state COMA
/* if colon --> state COLON
/* if space --> state BLANK1
/* if comment --> state COMMENTS
/* if other --> state ERROR(6) */

case blanks :

if (isspace(next char=fgetc(infile))) token=blankl;
else if (next char=='-') comments();

else if (next char==': ') token=colon;
else if (next char==', ') token=coma;

else (to_ken=errors; error_no=6;)
break;

/* State COMA : Look for the next port name
/* if VHDL Ascii --> state WORD
/* if space --> state BLANK1
/* if comment --> state COMMENTS
/* if other --> state ERROR(5) */

case coma :
$'

if (! next
_char

separ(infile, VHDL)) token=word;
else if (next char=='-') comments();

else if (! isspace(next char))
(token=errors; error no=5;)

break;

/* State COLON : Ignore all blanks char */
/* if space --> state COLON
/* if VHDL Ascii --> state TYPE
/* if comment --> state COMMENTS
/* if other --> state ERROR(5) */

case colon :
{
if (! next _char

separ(infile, VHDL))
{ token=type; *ptr type++=toupper(next_char);)

else if (next char=='-') comments();
else i_(! isspace(next char))

(token=errors; error no=5;)
break;

/* State TYPE : Look for the next port type
/* if VHDL Ascii --> state TYPE
/* if space --> state KEY
/* if other --> state ERROR(5) */

Extract. C 6

case type
{

if (! next char separ(infile, VHDL))
(token=type; *ptr type++=toupper(next char);)

else
{

*ptr type='\0I;
ptr type=type_name;
if (isspace(next_char)) token=key;
else {token=errors; error_no=5;)

break;
}

/* State KEY : Check the validity of the port type
/* if OK --> state BLANK2
/* else --> state ERROR(7) */

case key :

token=blank2;
if ((strcmp(type_name, "IN"))! =0)

if ((strcmp(type_name, "OUT"))! =0)
if ((strcmp(type_name, "INOUT"))! =0)

if ((strcmp(type_name, "BUFFER"))i=0)
(token=errors; error_no=7;)

break;

/* State BLANK2 : Ignore all blanks char */
/* if space --> state BLANK2
/* if VHDL Ascii --> state BUS
/* if comment --> state COMMENTS */
/* if other --> state ERROR(5) */

case blank2 :
{
bus size=l;
bottom size=O;
if (! next_char separ(infile, VHDL))

(token=bus; *ptr bus++=toupper(next_char);)
else if (isspace(next char)) token=blank2;

else if (next_char=='-') comments();
else (token=errors; error no=5;)

break;

/* State-BUS : Read the next char of the bus name
/* if left-bracket --> state SIZE */
/* if right-bracket --> state END
/* if space --> state BLANK3
/* if VHDL Ascii --> state BUS
/* if other --> state ERROR(5) */

Extract. C 7

case bus :

if (! next char separ(infile, VHDL))
*ptr bus++=tolower(next_char);

else

*ptr bus++='\o';
ptr Sus=bus-name;
if (isspace(next char)) token=blank3;

else if (next char=='; ')
(token=semi colon; format data();)

else if (next char=='(') token-size;
else if (next char--') ') token-end;

else (token=errors; error_no=5;)

break-;

/* State BLANK3 : Ignore all blanks char
/* if left-bracket --> state SIZE
/* if semi-colon --> state SEMI_COLON
/* if space --> state BLANK3
/* if comment --> state COMMENTS
/* if other --> state ERROR(8)

case blank3
{

if (isspace(nextchar=fgetc(infile))) token=blank3;
else if (nex_t char=='; ')

(token=semicolon; format data();)
else if (next_char=='(') token=size;

else if(next_char==')') token=end;
else if (next_char=='-') comments();

else (token=errors; error_no=5;)
break;

/* State SIZE : Look for the next separater */
/* if right-bracket --> state END
/* if semi-colon --> state COLON SEMI
/* if space --> state - BLANK4
/* if other --> state ERROR(9,10,11) */

case size
{

bottom size=atoi(*bottom=take_nextword(infile, KEY));
if ((strcmp(take next_word(i_nfile, KEY), "TO"))I=0)

(token=errors; error_no=ll;)
else

(
top size=atoi(*top=take_next word(infile, KEY))

if ((bus size=topsize-bottom size)<2)
(token=errors; error no=9;)

else if (next char==')') token=blanko;
else (token=errors; error no=10;)

Extract. C 8

}
break;

/* State BLANK4 : Ignore all blanks char
/* if right-bracket --> state END
/* if semi-colon --> state SEMI COLON
/* if space --> state - BLANK4
/* if comment --> state COMMENTS
/* if other --> state ERROR(12) */

case blanko :
{

do next char=fgetc(infile);
while (isspace(next_char));

if(next char==')') token=end;
else if (next char=='; ')

(token=semi colon; format
_data();

)
else if (next char=='-') comments(;

else {token=errors; error no=12;)
break;

}

/* State SEMI_COLON : Look for the next port name */
/* if VHDL Ascii --> state WORD
/* if space --> state SEMI-COLON
/* if comment --> state COMMENTS
/* if other --> state ERROR(5) */

case semi-colon
{
if (! next char separ(infile, VHDL)) token=word;
else if (isspace(next_char)) token-semi-colon;

; else if (next
_char==' -') comments o;

else (token=errors; error no=5;)
break;

/* State END : Terminal state */

case end :

*ptr word='\0';
format data();

printf("<Extract/Note>: Writing \"%s\"\n",
out-filename);

stop=TRUE;
break;

Extract. C 9

/* State ERRORS : Print a error message on screen */

case errors

switch (error_no)

{
case 1: (printf("<Extract/Error>: No IN, OUT,

INOUT or BUFFER in this design\n"); break;)
case 2: (printf("<Extract/Error>: Cannot find the

PORT declaration statement\n"); break;)
case 3: (printf("<Extract/Error>: <Left-bracket>

expected but '%c' found\n", nextchar); break;)
case 4: (printf("<Extract/Erro_r>: Comment expected

but '%c' found\n", next_char); break;)
-case 5: (printf("<Extract/Error>: Alphanum

character expected but '%c' found\n", next_char);
break;)

case 6: (printf("<Extract/Error>: <Coma> or
<Colon> expected but '%c'found\n", next char);

break;)
case 7: (printf("<Extract/Error>: '%s' unknown

port-type <IN, OUT, INOUT, BUFFER>\n", type_name);
break;)

case 8: (printf("<Extract/Error>: <Semi-colon> or
<bracket> expected but '%c' found\n", next_char);
break;)

case 9: (printf("<Extract/Error>: Erroneous bus
size\n"); break;)

case 10 : (printf("<Extract/Error>: <Right-bracket>
expected but '%c' found\n", next_char); break;)

case 11 : (printf("<Extract/Error>: <TO> expected
but '%c' found\n", next_char); break;)

case 12 : (printf("<Extract/Error>: <Semi-colon> or
<Right-bracket> expected but '%c' found\n",
next_char); break;)

case 13 : (printf("<Extract/Error>: <EOF> reached
but data extracting unfinished\n"); break;)

case 14 : (printf("<Extract/System>: I/O conflict
on the output file (%s)\n", out_filename); break;)

case 15 : (printf("<Extract/System>: I/O conflict
on the input file (%s)\n", in_filename); break;)

/** Insert the last data line in the output file **/

if (error_no! =14) format_data();
error=TRUE;
break;

)

}
}
/*** Close all the file and quit program ***/
if*((fclose(infile)) ! =NULL)

printf("<Extract/System>: Cannot close properly the
file %s\n", in filename);

if ((fclose(outfile)) ! =NULL)

Extract. C 10

printf("<Extract/System>: Cannot close properly the
file %s\n", out_filename);

}

**
* Function FORMAT DATA
*

This function write data processed into the output
file with a pre-defined format.

*1
void format-data(

*ptr word='\0';
ptr word=base mem;
while (*ptr word)

fprintf(outfile, "%-3d %-20s %-9s %-20s %2d
%2d\n", pin_no, ptr word, type_name, bus_name,
bus 'size, bottom size) ;

while (*ptr word++);
pin_no++;

ptr word=base_mem;
*ptr word='\0';

1*

**
* Function COMMENT

This function ignores all characters included in a
comment procedure then comes back at the current
state.

void comments()
(
if ((next_char=fgetc(infile))=='-')

while (((next_char=fgetc(infile))! ='\0') &&
(next_char! =EOF));

if (next_char==EOF) (token=errors; error no=13;)
}

else (token=errors; error_no=4;)

Extract. C 11

/* Library of file functions for the VHDL parser */

#include <stdio. h>
#include <string. h>
#include <ctype. h>

#define TRUE (1==1)
#define FALSE (1==O)
#define FOUND TRUE
#define NOTFOUND FALSE
#define VHDL " 1'#$%'()()+, -&. V :; <=>? []\\ý\n\tý\"ý\ý"

typedef unsigned char boolean;

typedef enum (NAME, KEY) format;

boolean next char separ(FILE *infile, char *separ list);
int find next separ(FILE *infile, char *separ list);
char *take_next_word(FILE *infile, enum format
out fmt) ;
int search_key(FILE *infile, char *keyword);

char next char;

/***********************
**
* NEXT-CHAR-SEPAR
**

boolean next char separ(infile, separ list)
FILE *infile; /* Point on the input file */
char *separ_list; /* List of characters of separation

boolean cont;

next char=fgetc(infile);
if (next char! =EOF)

if (*separ_list)
{
while, ((*separ list) &&

(cont=(next char! =*separ list)))
separ list++;

return(! cont);

else
return (lisalnum(next_char));

else
return (TRUE)

ý***********************
**
* FIND_NEXT_SEPAR
*
***********************ý
int find next separ(infile, separ list)
FILE *infile; /* Point on the input file */
char *separ_list; /* List of characters of separation */

while(lnext_char separ(infile, separ list))
return(next_char);

/**********************
**
* TAKE-NEXT-WORD
**
**********************/
char *take_next_word(infile, out_fmt)
FILE *infile; /* Point on the input file */
enum format out_fmt; /* Filtering of output flow */
t
char word[30], *ptr;
int (*filterl) (), (*filter2) ();

ptr=word;
if (out_fmt==KEY) filterl=filter2=toupper;
else

(
filterl=toupper;
filter2=tolower;

while ((next Char separ(infileiVHDL))
(next_char! =EOF));
if (next_char! =EOF)

{
ptr++= (f ilterl) (next char) ;
while (! next_char separ(infile, VHDL))

*ptr++= (*filter2) (next_char) ;
*ptr='\0';
return(&word);

else
return (NULL)

/********************
**
* SEARCH-KEY
**

int search
_key(infile,

keyword)
FILE *infile; /* Point on the input file */
char *keyword; /* Point the reference Keyword */

char *ptr;

do

ptr=take_next word(infile, KEY);
if (strcmp(ptr, keyword)==O) return(FOUND)

I
while (*ptr! =NULL);
return(NOTFOUND);

I

Appendix 7C

'C' SOURCE CODE FOR THE INSERTION PROGRAM

/* JTAG insertion program. Takes the file "name". pin
/* from extract and inserts the jtag acrchitecture into */
/* the vhdl decription.
/* The new entity becomes "name"_jtag.
/* This is also the name of the
/* resulting file.
/* *1
/**/
#include <stdio. h>
#include <string. h>
#include "lib. h"
functions */

/* defines types and

port_struct port_list[200);
the

int num ports;
int num int_sigs;

/* structure used to store

port data */

/* total number of signals */

FILE *infile, *outfile;
void tinsert_file () ;
void insert_compdef();
char get space();
void get_org port_list()
void put_int signals(;
void put__bscan_cells();

main(argc, arge)
int argc;
char *argv[];

name */
/* contains file

{

char infilename[50], out_filename[50];
char en_t_name[50];
int n;

if (argc! =2)

printf(" Usage: insert <pin_file_name[. pin]>\n");
exit o; ;

strcpy(ent_name, argv[1]);
strcpy(infilename, argv[l]);
strcpy(out_filename, argv[l])f
strcat(in_filename, ". pin");
strcat(out_filename, "_jtag. vhdl");
if ((infile=fopen(in_filename, "r"))==NULL)

printf("fin<Insert/Error>: \"ts\" does not
exist\n", in_filename);

exit o; ;

if ((outfile=fopen(out_filename, "w"))==NULL) /* check
that file exists.

printf("\n<Insert/System>: Cannot open output file
(%s) \n", out-filename) ;

exitO;

insert file("jtag. use", outfile);
/* add library declarations */

fprintf(outfile, "\nentity %s_jtag is\n", ent name);
fprintf(outfile, " port(TCK, TIMS, TDI : in bit; \n");

/* put port declarations */
fprintf(outfile, " TDO : out logic4; \n");
get_org_port list(in_filename);

/* fill port structure */
for (n =-0; n< num_ports; n++) (

fprintf(outfile, " %s : %s
%s", port_list[n]. name, port_list[n]. mode, port list[n]. type)

if (port_list[n]. size > 1)
fprintf (outf ile, " (%d to

%d)", port list[n]. min, port_list[n]. max);
if (n == num_ports-1)

fprintf(outfile, "); \n");
else

fprintf(outfile, "; \n")

fprintf(outfile, "end %s_jtag; \n", ent name)
fprintf(outfile, "\narchitecture behav_jtag

is\n\n", ent name);
insert file("jtag. comps", outfile);

add component declarations */
insert_compdef(ent_name, outfile);
fprintf(outfile, "\n");
insert file("jtag. signals",, outfile);

add standard signals */
put int signals(outfile);
fpr_intf(outfile, "\nbegin\n");

of %s_jtag

/*

1*

insert file("j tag. insts", outfile); /* add standard
instances

put_bscancells(outfile);
fprintf(o_utfile, "end behav_jtag; \n");

void insert file(in_name, out_file) /* routine for
inserting ascii files to a stream */

char *in_name;
FILE *out file;

char c;
FILE *in file;
if ((in_file=fopen(in_name,

printf("\n<Insert/Error>:
exist\n", in_name);

exit(;

"r")) _=NtJLL)

\"%s\" does not

while((c = fgetc(in_file)) != EOF)
fputc(c, out_file);

void insert
_compdef(ent_name,

file) /* inserts the
original component definition */

char *ent name;,
FILE *file;

int n;

fprintf(file, "component %s\n", ent name);
fprintf(file, "port (\n");
for (n = O; m< num,.

-Ports;
n++)

fprintf (file, " %s : %s
%s", port_list[n]. name, port_list[n]. mode, port_list[n]. type);

if (port_list[n]. size > 1)
fprintf(file, "(%d to

%d)", port_list[n]. min, port_list[n]. max);
if (n == num ports-1)

fprintf (file, ") ; \n") ;
else

fprintf (file, "; \n")

fprintf(file, "end component; \n");

i
char get space(file)
input stream */

FILE *file;

/* read blank space from

char, c;

while ((c = fgetc(file))
if (lisspace(c))

break;

return(c);

void get_org port_list(pin_file name)
file into an internal structure

char *pin_file name;

i= EOF) (

{
FILE *pin_file;
char *ptr name;
char *ptr type;
char *ptr mode;
portstruct *ptr_struct;
char _c;
int width, bottom, top;

/* converts pin

int n;

pin_file = fopen(pin_file name, "r");
ptr struct = port_list;
num_ports = -1;

do {
ptr_name = ptr_struct->name;
ptr_type = ptr_struct->type;
ptr_mode = ptr struct->mode;

do (
if (isdigit (c))

of pin file */
break;

/* find first line

while ((c = fgetc(pin_file)) != EOF);

while ((c = fgetc(pin_file)) 1= EOF)
if (isspace(c))

break;

c= get space(pin file);
*ptr name++ = c;
while ((c = fgetc(pin_file))

if (isspace(c))
break;

else
*ptr name++ = c;

*ptr name = 1\01;
c= get_space(pin file);
*ptr mode++ = c;
while ((c = fgetc(pin_file))

if (isspace(c))
break;

else
*ptr mode++ = C;

*ptr mode = 1\01;
c= get_space(pin file);
*ptr type++ = c;
while ((c = fgetc(pin file))

if (isspace(c))
break;

else
*ptr_type++ = c;

!= EOF) (

/* get port name */

1= EOF) (

/* get port mode */

!= EOF) {

*ptr type = 1\01;
c= get space (pin_f ile) ;
ungetc(C, pinfile) ;
fscanf(pin f_ile, "%d", &width);
c= get space(pin file);
ungetc(c, pin_file);
fscanf (pin file, "%d", &bottom) ;
top = bottom + width;
ptr struct->max = top;

/* get port type */

ptr_struct->min = bottom;
arrays */

ptr_struct->size = width;

c- fgetc(pin file);
ptr struct++;
num ports++;
) while (c != EOF);

void put_int signals(file)
the bscan cells and the component

FILE *file;

int n;

/* get size of

declare the signals between
*ý

nun intsigs = 0;
for (n _=0; n< numports; n++)

if (port_list[n]. size == 1) (
fprintf(file, "signal int_%s

%s; \n", port_list[n]. name, port list[n]. type);
num int_sigs++;

}
else {

fprintf(file, "signal int %s : %s(%d to
%d); \n", port_list[n]. name, port_list[n]. type, port list[n]. min
, port_list[n]. max);

num int_sigs+= port_list[n]. size;

fprintf(file, "signal nextt : bit_vector(0 to
%d); \n", num int_sigs);
}

void put_bscan_cells(file) /* add the bscan cells
to the file */-

FILE *file;

int n, a;
int gen = 0;
int sig num=o;

for (n = O; n < num_ports; n++)
if (strncmp(port list[n]. mode, "IN", 2) == 0 &&

port_list[n]. size == 1)
fprintf(file, " bscan%d : bscan port map(shiftdr,

clockdr, updatedr, nextt(%d), %s, mode, nextt(%d),
int_%s); \n", n, sig_num, port_list[n]. name, sig_num+l, port_list[
n]. name);

sig_num++;

else if (port_list[n]. size == 1)
fprintf(file, " bscan%d : bscan port map(shiftdr,

clockdr, updatedr, nextt(%d), int_%s, mode, nextt(%d),
%s); \n", n, sig_num, port_list[n]. name, sig num+l, port_list[n]. n
ame) ;

sig_num++;

else if (strncmp(port_list[n]. mode, "IN", 2) __: 0) (
/* use generate for buses */

fprintf(file, " Gad : for I in 0 to %d
generate\n", gen, port_list[n]. size-1);

fprintf(file, " bscan_gen%d : bscan port
map(shiftdr, clockdr, updatedr, nextt(%d + I), %s(I+%d),
mode , nextt(%d+I+1),
int %s(%d+I)); \n", gen, sig_num, port_list[n]. name, port_list[n]
. min, sig_num, port_list[n]. name, port list[n]. min);

fprintf(file, " end generate; \n");
sig_num+= port_list[n]. size;
gen++;

}
else {

fprintf(file, " Gad : for I in 0 to %d
generate\n", gen, port_list[n]. size-1);

fprintf(file, " bscan_gen%d : bscan port
map(shiftdr, clockdr, updatedr, nextt(%d + I), int_%s(I+%d),
mode , nextt(%d+I+l),
%s(%d+I)); \n", gen, sig_num, port_list[n]. name, port_list[n]. min
, sig_num, port

_list[n].
name, port_list[n]. min);

fprintf (file, " end generate; \n") ;
sig_num+= port_list[n]. size;
gen++;

i }
fprintf(file, "\n test regs(2) <=

nextt (%d) ; \n", num int_sigs) ;

Appendix 7D

EXTRACT/INSERT environment used with a DFF design example 1.

library vdeg portable;
use vdeg_portable. types. all;
use, work. declar. all;

entity dff_jtag is
port(TCK, TMS, TDI : in bit;

TDO :. out logic4;
D: INOUT Bit;
Clk : IN Bit;
Q: OUT Bit);

end dff_jtag;

architecture behau jtag of dff_jtag is

component bscan
generic (Setup_Time,
Hold_Time,
Mux_Del,
Dtype_Del : Time :=3 ns);
Port (ShiftDR, C1ockDR, UpdateDR,

Last Cell, S
_In,

Mode: in bit;
Next Cell: inout bit;
S_Out: out bit);

end component;

component tdo buffer
generic (setup_time,

Tdo del: Time :=3 ns)
port(
TCK,
Enablee,
Input: in Bit;
TDO: out Logic4

end component;

hold time, Min_, pulse width, Del,

component bypass_reg
generic (Setup_Time,
Hold Time,
MPulse_width,
AND Del,
Bypass Del : Time :=3 ns)
Port (ShiftDR, ClockDR,

TDI: in bit;
TDO: out bit);

end component;

component inst decode
generic (Instruction_set: bitvector :_ "00000000";

DR_select_Set, Test Mode_Set, Additional Signals_Set
: bit vector := "00000000";
Open_Check: Boolean := false;
Dec Del: time :=3 ns);

port (Instruction: in bit vector(0 to 7);
DR Select: out bit vector(0 to 7);

Test Mode: out bit vector(0 to 7);
Additional Signals : out bit_vector(O to

7));
end component;

component ident reg
generic

(setup_time, Hold_Time, MPulse_Width, Mux_Del: Time :=3 ns;
ID code : bit_vector

11000000000000000111);
port(
Select_Ident,
ShiftDR,
C1ockDR,
TDI: in Bit;
TDO:, out Bit

end component;

component reg_inst
generic

(Setup_Shift Time, Hold Shift_Time, MPulse Width Shift,

Setup Update_Time, Hold Update_Time, MPulse Width Update,
Mux_Del, Stage_Shift Del, Stage Update_Del: time

:=3 ns) ;

port(Reset,
ClockIR,
UpdatelR,
ShiftlR,
TDI: in bit;
Status: in bit_vector(O TO 7);
Instruction: out bit_vector(O TO 7);
TDO: out bit);

end component;

component mux 1
generic
instruction_set : bit_vector(O to 7) :a

"00000000";
tdo_test

_data _registers-set : integer vector
(0,0,0,0,0,0,0,0);

mux_del : time :=3 ns);
port (
tdotest data registers: in bit vector(0 to 7);
instruction : in bit_vector(0 to 7);
tdo: out bit);

end component;

component mux 2
generic (mux_del : time :=3 ns);
-port (
tdo_test

_data _registers, tdo_instruction,
-selectt : in bit;
-tao : out bit);

end component;

component tap_c
generic (Setup_Time, Hold time, Min Pulse Width 11

Min_Pulse Width_0, S_Odel, Odel: Time 3
ns) ;

PORT
TMS,
TCK: in bit;
Reset,
Selectt,
Enable,
ShiftlR,
ClockIR,
UpdatelR,
ShiftDR,
UpdateDR,
ClockDR : out bit

end component;

component dff
port (

D: INOUT Bit;
Clk : IN Bit;
Q: OUT Bit);

end component;

constant one high : bit vector(0 to 7) :- "00000001";

signal temp : bit vector(0 to 7) := one high;
signal shiftir, clockir, updateir : bit;
signal shiftdr, clockdr, updatedr : bit;
signal mode, inst tdo, indent tdo, enablee, reset: bit;
signal data_tdo, selectt, select_id, buff_tdo, bypass_tdo
: bit;
signal dr select, instruction, test mode, test_regs :
bit vector(0 to 7);
signal int D: Bit;
signal int Clk : Bit;
signal int_Q : Bit;
signal nextt : bit vector(0 to 3);

begin
test regs(0) <= bypass tdo;
test_regs(l) <= indent_tdo;
mode <= test mode(0);
select_id <= test_mode(1);
nextt(0) <= TDI;

tap : tap_c port map
(tms, tck, reset, selectt, enablee, shiftir,

clockir, updateir, shiftdr, updatedr, clockdr);
bypass : bypass_reg port map

(shiftdr, clockdr, TDI, bypass tdo);

instruct : reg_inst port
map(reset, clockir, updateir, shiftir, TDI, temp, instruction, i
nst_tdo);

ident : ident reg port map(select_id, shiftdr,
clockdr, tdi, indent tdo);

decoder : inst_decode port map(instruction, dr_select,
test mode, open);

mux2 : mux 2 port map(data_tdo, inst_tdo, selectt,
buff tdo);

muxi : mux 1 port map(test regs, dr_select, data_tdo);
tdo_buff : tdo_buffer port map(tck, enablee, buff tdo,

tdo) ;
bscanO : bscan port map(shiftdr, clockdr, updatedr,

nextt(O), D, mode, nextt(1), int D);
bscanl : bscan port map(shiftdr, clockdr, updatedr,

nextt(l), Clk, mode, nextt(2), int Clk);
bscan2 : bscan port map(shiftdr, clockdr, updatedr,

nextt(2), int Q, mode, nextt(3), Q);

test regs(2) <= nextt(3);
end behav_jtag;

Appendix 7E

EXTRACT/INSERT environment used with a CPU design example 2.

-- ibrary vdeg. portable; --
use vdeg_portable. types. all;
entity cpu is
port

clock, sel : in logic4;
enable : in logic4;
data : inout BusAnd(l to 8);
addr : inout BusAnd(1 to 8);
zero : out logic4;
rd : inout logic4;
rdl : inout logic4;
wri : inout logic4;
wr : inout logic4

end cpu ;

11/19/92 3 s4O PM Pagel

I PIN NAME PIN MODE PIN TYPE BUS WIDTH STARTING

0 Clock IN Logic4 1 0
1 Sel IN Logic4 1 0
2 Enable IN Logic4 1 0
3 Data INOUT Busand 7 1
4 Addr OUT Busand 7 1
S Zero OUT Logic4 1 0
6 Rd INOUT Logic4 1 0
7 Rdl INOUT Logic4 1 0
8 Wrl INOUT Logic4 1 0
9 Wr INOUT Logic4 1 0

111/19/92 3s40 PM Pagel

component cpu is
port (

Clock : IN Logic4;
Sel : IN Logic4;
Enable : IN Logic4;
Data : INOUT Busand(l
Addr : OUT Busand(l to
Zero : OUT Logic4;
Rd : INOUT Logic4;
Rdl : INOUT Logic4;
Wri : INOUT Logic4;
Wr : INOUT Logic4);

end component;

to 8);
8);

constant one-high : bit_vector(0 to 7) := 000000001`;

shiftir, clockir, updateir : bit;
shiftdr, clockdr, updatedr : bit;
mode, inst_tdo, indent_tdo, enablee, reset: bit;
data_tdo, selectt, select_id, buff_tdo, bypass_tdo : bit;
dr_select, instruction, test node, test_regs : bit_vector(O
int_Clock : Logic4;
int Sel : Logic4;
int_Enable : Logic4;
int Data : Busand(l to 8);
int_Addr : Busand(l to 8);
int_Zero : Logic4;
int Rd : Logic4;
int_Rdl : Logic4;
int Wri : Logic4;
int Wr : Logic4;
next : bit_vector(O to 22);

begin
test_regs(0) <= bypass_tdo;
test_regs(l) <= indent_tdo;
mode <= test mode(0);
select_id <= test_mode(1);

to 7);

tap : tap-controller port map (tms, tck, reset, selectt, enablee, shiftir,
clockir, updateir, shiftdr, updatedr, clockdr);

bypass : bypss_reg port map (shiftdr, clockdr, TDI, bypass_tdo);
instruct : reg-instruction port map(reset, clockir, updateir, shiftir, TDI, one_high, instruc
ident : indent-reg port map(select_id, shiftdr, clockdr, tdi, indent_tdo);
decoder : instruction_decoder port map(instruction, dr_select, test-Mode, open);
mux2 : mux2 port map(data_tdo, inst_tdo, selectt, buff_tdo);
muxl : muxl port map(test_regs, dr_select, data_tdo);
tdo_buff : tdo_buffer port map(tck, enablee, buff_tdo, tdo);
bscan0 : bscan port map(shiftdr, clockdr, updatedr, next(0), Clock, mode, next(l), int_
bscanl : bscan port map(shiftdr, clockdr, updatedr, next(1), Sel, mode, next(2), int Se
bscan2 : bscan port map(shiftdr, clockdr, updatedr, next(2), Enable, mode, next(3), int
GO : for I in 0 to 6 generate

bscan_genO : bscan port map(shiftdr, clockdr, updatedr, next(3 + I), Data(I+1), mode
end generate;
C1 : for I in 0 to 6 generate

bscan_genl : bscan port map(shiftdr, clockdr, updatedr, next(10 + I), int Addr(I+1),

end generate;
bscan5 : bscan port map(shiftdr, clockdr, updatedr, next(17), int_Zero, mode, next(18),
bscan6 : bscan port map(shiftdr, clockdr, updatedr, next(18), Rd, mode, next(19), int_R
bscan7 : bscan port map(shiftdr, clockdr, updatedr, next(19), Rdl, mode, next(20), int_
bscan8 : bscan port map(shiftdr, clockdr, updatedr, next(20), Wrl, mode, next(21), int_
bscan9 : bscan port map(shiftdr, clockdr, updatedr, next(21), Wr, mode, next(22), int W

test_regs(2) <= next(22);
end behav_jtag;

11/19/92 3s40 PM Page3

component REG_INSTRUCTION is
generic (Setup_Shift_Time, Hold_Shift_Time, MPulse Width_Shift,

Setup_Update_Time, HoldUpdate_Time, MPulse_Width_Update,
Mux_Del, Stage_Shift_Del, Stage_Update_Del: time :=3 ns);

port(Reset,
ClockIR,
UpdatelR,
ShiftlR,
TDI: in bit;
Status: in bit vector(0 TO 7);
Instruction: out bit_vector(O TO 7);
TDO: out bit);

end component;

component mux_1 IS
generic
instruction_set : bit_vector(0 to 7);
tdo_test_data_registers_set : integer;
mux_del : time :=3 ns);
port (
tdo_test_data_registers: in bit_vector(0
instruction : in bit_vector(0 to 7);
tdo: out vlbit);

lend component ;

component mux_2 is
generic (mux_del : time :=3 ns);
port
tdo_test_data_registers,
tdo_instruction,
selectt : in bit;
tdo : out bit);

end component;

to 7);

[component REG_BSCAN is
generic (System_pin_type_types: String_vector;
SUT_Capture, HT_Capture, MDEL, SUT Update, HT Update

port(
Select_Bscan,
Reset,
ShiftDR,
ClockDR,
UdateDR,
TDI: in Bit;
Parallel_Input: in Bit vector;
TestUode: in Bit vector(0 to 1);
Paralleloutput: out Bit_vector;
TDO: out Bit

end component;

: time :=3 ns);

component tap_controller IS
generic (Setup Time, Hold_time, Min_Pulse Width_1,

Min_Pulse_Width_0, S_Odel, Odel: Time :=3 ns);
PORT
TMS,
TCK: in bit;
Reset,
Selectt,
Enable,
ShiftlR,
ClockIR,
UpdatelR,
ShiftDR,
UpdateDR,
ClockDR : out bit

end component;

11/19/92 3: 40 PM Paget

entity cpu_jtag is
port(TCK, TMS, TDI, TDO : in bit;

Clock : IN Logic4;
Sel : IN Logic4;
Enable : IN Logic4;
Data : INOUT Busand(l to 8);
Addr : OUT Busand(l to 8);
Zero : OUT Logic4;
Rd : INOUT Logic4;
Rdl : INOUT Logic4;
Wrl : INOUT Logic4;
Wr : INOUT Logic4);

end cpu_jtag;

architecture behau jtag of cpu_jtag is

component BSCAN is
generic (Setup_Time,
Hold_Time,
Mux_Del,
Dtype_Del : Time :=3 ns);
Port (ShiftDR, ClockDR, UpdateDR,

Last_Cell, S_In, Mode: in bit;
Next_Cell: buffer bit;
S -Out: out bit);

end component;

component TDO_Buffer is
generic (setup_time, hold_time, Min_pulse width, Del, Tdo_del: Time :=3 ns);
port(
TCK,
Enablee,
Input: in Bit;
TDO: out Tristate

end component;

component BYPASS_REG is
generic (Setup Time,
Hold_Time,
MPulse_width,
AND_Del,
Bypass_Del : Time :=3 ns);
Port (ShiftDR, ClockDR,

TDI: in bit;
TDO: out bit);

lend component;

component INSTRUCTION_DECODER is
generic (Instruction_set: bit_vector;

DR_select Set, Test_Mode_Set, Additional Signals_Set
: bit_vector,
Open_Check: Boolean;
Dec_Del: time :=3 ns);

port (Instruction: in bit_vector(O to 7);
DR_Select: out bit vector(0 to 7);
Test Mode: out bit vector(0 to 7);
Additional Signals : out bit_vector(O to 7));

end component;

component IDENT_REG is
generic (setup_time, Hold_Time, MPulse_Width, Mux_Del: Time :=3 ns);
port(
Select_Ident,
ShiftDR,
ClockDR,
TDI: in Bit vector;
TDO: out Bit

end component;

11/19/92 3: d0 PM - Pagel

-- ibrary vdeg_portable; --
use vdeg portable. types. all;
entity cpu is
port

clock, sel : in logic4;
enable : in logic4;
data : inout BusAnd(l to 8);
addr : inout BusAnd(l to 8);
zero : out logic4;
rd : inout logic4;
rdl : inout logic4;
wrl : inout loaic4:
wr : inout logic4

end cpu;

11/19/92 3: 40 PM Pagel

I
-

PIN NAME

PIN MODE

PIN TYPE
--- --

BUS WIDTH STARTING
-

0 ----------
Clock IN

------ ---
Logic4

1

0

1 Sel IN Logic4 1 0
2 Enable IN Logic4 1 0
3 Data INOUT Busand 7 1
4 Addr OUT Busand 7 1
5 Zero OUT Logic4 1 0
6 Rd INOUT Logic4 1 0
7 Rdl INOUT Logic4 1 0
8 Wri INOUT Logic4 1 0
9 Wr INOUT Logic4 1 0

11/19/92 3s40 PM Pagel

entity cpu_jtag is
port(TCK, TMS, TDI, TDO : in bit;

Clock : IN Logic4;
Sel : IN Logic4;
Enable : IN Logic4;
Data : INOUT Busand(l to 8);
Addr : OUT Busand(l to 8);
Zero : OUT Logic4;
Rd : INOUT Logic4;
Rdl : INOUT Logic4;
Wrl : INOUT Logic4;
Wr : INOUT Logic4);

end cpu_jtag;

architecture behav_jtag of cpu_jtag is

component BSCAN is
generic (Setup_Time,
Hold Time,
Mux_Del,
Dtype_Del : Time :=3 ns);
Port (ShiftDR, ClockDR, UpdateDR,

Last_Cell, S_In, Mode: in bit;
Next_Cell: buffer bit;
S_Out: out bit);

end component;

component TDO_Buffer is
generic (setup_time, hold-time, Min_pulse_width, Del, Tdo_del: Time :=3 ns);
port(
TCK,
Enablee,
Input: in Bit;
TDO: out Tristate

end component;

component BYPASS_REG is
generic (Setup_Time,
Hold-Time,
MPulse_width,
AND_Del,
Bypass_Del : Time :=3 ns);
Port (ShiftDR, ClockDR,

TDI: in bit;
TDO: out bit);

end component;

component INSTRUCTION_DECODER is
generic (Instruction_set: bit_vector;

DR_select Set, Test_Mode_Set, Additional_Signals_Set
: bit_vector,
Open_Check: Boolean;
Dec_Del: time :=3 ns);

port (Instruction: in bit vector(0 to 7);
DR_Select: out bit_vector(O to 7);
Test_Mode: out bit_vector(0 to 7);
Additional Signals : out bit vector(0 to 7));

end component;

component IDENT_REG is
generic (setup_time, Hold_Time, MPulse_Width, Mux_Del: Time :=3 ns);
port(
Select_Ident,
ShiftDR,
ClockDR,
TDI: in Bit vector;
TDO: out Bit

end component;

11/19/92 3: 40 PM Pagel

component cpu is
port (

end component;

to 8);
8);

constant one_high : bit_vector(O to 7) := 0000000010;

signal shiftir, clockir, updateir : bit;
signal shiftdr, clockdr, updatedr : bit;
signal mode, inst_tdo, indent_tdo, enablee, reset: bit;
signal data_tdo, selectt, select_id, buff_tdo, bypass_tdo : bit;
signal dr_select, instruction, test-mode, test_regs : bit_vector(0 to 7);
signal int_Clock : Logic4;
signal int_Sel : Logic4;
signal int_Enable : Logic4;
signal int_Data : Busand(l to 8);
signal int_Addr : Busand(l to 8);
signal int_Zero : Logic4;
signal int_Rd :. Logic4;
signal int_Rdl : Logic4;
signal int Wrl : Logic4;
signal int Wr : Logic4;
signal next : bit_vector(0 to 22);

begin
test_regs(O) <= bypass_tdo;
test_regs(l) <= indent_tdo;
mode <= test_mode(0);
select-id <= test_mode(l);

tap : tap_controller port map (tms, tck, reset, selectt, enablee, shiftir,
clockir, updateir, shiftdr, updatedr, clockdr);

bypass : bypss_reg port map (shiftdr, clockdr, TDI, bypass_tdo);
instruct : reg-instruction port map(reset, clockir, updateir, shiftir, TDI, one_high, instruc
ident : indent_reg port map(select_id, shiftdr, clockdr, tdi, indent_tdo);
decoder : instruction decoder port map(instruction, dr_select, test-mode, open);
mux2 : mux2 port map(data_tdo, inst_tdo, selectt, buff_tdo);
muxl : muxl port map(test_regs, dr_select, data_tdo);
tdo_buff : tdo_buffer port map(tck, enablee, buff_tdo, tdo);
bscanO : bscan port map(shiftdr, clockdr, updatedr, next(O), Clock, mode, next(l), int_
bscani : bscan port map(shiftdr, clockdr, updatedr, next(l), Sel, mode, next(2), int_Se
bscan2 : bscan port map(shiftdr, clockdr, updatedr, next(2), Enable, mode, next(3), int
GO : for I. in 0 to 6 generate

bscan_genO : bscan port map(shiftdr, clockdr, updatedr, next(3 + I), Data(I+1), mode
end generate;
G1 : for I in 0 to 6 generate

bscan_geni : bscan port map(shiftdr, clockdr, updatedr, next(10 + I), int_Addr(I+1),
end generate;
bscan5 : bscan port map(shiftdr, clockdr, updatedr, next(17), int_Zero, mode, next(18),
bscan6 : bscan port map(shiftdr, clockdr, updatedr, next(18), Rd, mode, next(19), int_R
bscan7 : bscan port map(shiftdr, clockdr, updatedr, next(19), Rdl, mode, next(20), int_
bscan8 : bscan port map(shiftdr, clockdr, updatedr, next(20), Wrl, mode, next(21), int_
bscan9 : bscan port map(shiftdr, clockdr, updatedr, next(21), Wr, mode, next(22), int W

test_regs(2) <= next(22);
end behav_jtag;

Clock : IN Logic4;
Sel : IN Logic4;
Enable : IN Logic4;
Data : INOUT Busand(l
Addr : OUT Busand(1 to
Zero : OUT Logic4;
Rd : INOUT Logic4;
Rdl : INOUT Logic4;
Wrl : INOUT Logic4;
Wr : INOUT Logic4);

11/19/92 3s40 PM Page3

APPENDIX F- JTAG. COMP FILE

This file contains all components of the JTAG
Architecture

component bscan
generic (Setup Time,
Hold

"
Time,

Mux_Del,
Dtype_Del : Time :=3 ns);
Port (ShiftDR, ClockDR, UpdateDR,

Last Cell, S
_In,

Mode: in bit;
Next_Cell: inout bit;
S_Out: out bit);

end component;

component tdo buffer
generic (setup_time,

Tdodel: Time : =_3 ns)
po_rt(
TCK,
Enablee,
Input: in Bit;
TDO: out Logic4

end component;

hold time, Min_pulse width, Del,

component bypass_reg
generic (Setup_Time,
Hold Time,
MPulse_width,
AND_Del,
Bypass_Del : Time :=3 ns)
Port (ShiftDR, ClockDR,

TDI: in bit;
TDO: out bit);

end component;

component inst decode
generic (Instruction_set: bit_vector := "00000000";

DR_select_Set, Test Mode Set, Additional_Signals_Set
: bit vector := "00000000";
open

_Check:
Boolean := false;

Dec Del: time :=3 ns);
port (Instruction: in bit vector(0 to 7);

DR Select: out bit vector(0 to 7);
Test Mode: out bit vector(0 to 7);
Additional_Signals : out bit_vector(O to

7));
end component;

component ident reg
generic

(setup time, Hold Time, MPulse Width, Mux De1: Time :=3 ns;
ID code : bit vector

"0000000000000001");
port(
Select Ident,
ShiftDR,
ClockDR,
TDI: in Bit;
TDO: out Bit

end component;

component reg_inst
generic

(Setup_Shift_Time, HoldShift Time, MPulse Width_Shift,

Setup Update Time, Hold Update Time, MPulse_WidthUpdate,
Mux Del, Stage_Shift_Del, Stage_Update_Del: time

"- 3 ns)"

port(Reset,
ClockIR,
UpdatelR,
ShiftlR,
TDI: in bit;
Status: in bit vector(0 TO 7);
Instruction: out bit_vector(0 TO 7);
TDO: out bit);

end component;

component mux_1
generic (
instruction_set : bit vector(0 to 7)

"00000000";
tdo_test data_registers_set : integer vector

(0,0,0,0,0,0,0,0);
mux del : time :=3 ns);
port (
tdo test data_registers: in bit vector(0 to 7);
instruction : in bit vector(0 to 7);
tdo: out bit);

end component;

component mux 2
generic (mux_del : time :=3 ns);
port (
tdo test data registers,
tdo_instruction,
selectt : in bit;
tao : out bit);

end component;

component tap_c
generic (Setup_Time, Hold_time, Min Pulse Width 1,

Min_Pulse_Width_O, S_Odel, Odel: Time :-3
ns) ;

PORT
TMS,
TCK: in bit;
Reset,
Selectt,
Enable,
ShiftlR,
C1ockIR,
UpdatelR,
ShiftDR,
UpdateDR,
ClockDR : out bit

end component;

APPENDIX F- JTAG. INB FILE

This file instantiates the JTAG Components

test regs(0) <= bypasstdo;
test regs(t) <= indent__tdo;
mode <= test mode(0);
select_id <= test mode(l);
nextt(0) <= TDI;

tap : tap_c port map
(tms, tck, reset, selectt, enablee, shiftir,

clockir, updateir, shiftdr, updatedr, clockdr);
bypass : bypass_reg port map

(shiftdr, clockdr, TDI, bypass_tdo);
instruct : reg_inst port

map(reset, clockir, updateir, shiftir, TDI, temp, instruction, i
nst tdo) ;

ident : ident reg port map(select_id, shiftdr,
clockdr, tdi, indent tdo);

decoder : inst_decode port map(instruction, dr_select,
test mode, open);

mux2 : mux_2 port map(data_tdo, inst_tdo, selectt,
buff tdo);

müxi : mux_1 port map(testregs, dr select, data_tdo);
tdo_buff : tdo_buffer port_map(tck, enablee, buff_tdo,

tdo);

APPENDIX F- JTAG. SIG FILE

This file contains the standard JTAG signals

constant one high : bit vector(0 to 7) :_ "00000001";

signal temp : bit vector(0 to 7) := one high;
signal shiftir, clockir, updateir : bit;
signal shiftdr, clockdr, updatedr : bit;
signal mode*, inst_tdo, indent_tdo, enablee, reset: bit;
signal data_tdo, selectt, select_id, buff_tdo, bypass_tdo
: bit;
signal dr select, instruction, test mode, test_regs :
bit vector(0 to 7);

APPENDIX F- JTAG. USE FILE

This file encloses the required VHDL Libraries

library vdegportable;
use vdegportable. types. all;
use work. declar. all;

PAPERS PUBLISHED

MSC 92,23 Annual Modelling and Simulation Conference.

Pittsburgh, USA. 30 April -1 May 1992. Sponsored by IEEE.

Paper Title: 'Automatic Generation and Insertion of

Boundary Scan Architecture'.

EMS 92, European Modelling and Simulation Conference 1992,

York, UK. 1-3 June 1992. Sponsored by SCS. Paper Title:

'Modelling and Automatic Generation of Boundary Scan

Architecture'.

Poster Session Paper:

7th UK EDA Workshop, Newcastle Upon Tyne, UK. 6-9 December

1992. Paper Title: 'Automatic Insertion of Boundary

Scan Architecture'.

