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Abstract—Raw data of point cloud is often noisy and with
topological defects (such as holes), which cause problem-
s including faulty connection and inaccurate structure. As
a result, the surface reconstruction of point cloud data is
a highly challenging problem. This work proposes a novel
method, which improves the surface quality compared with
existing methods. Our method combines both the local detailed
features and the global topological information during the
reconstruction process. To facilitate the feature refinement,
we first pre-process the point cloud data by relocating each
point, upsampling the point data, and optimizing normals to
enhance the features and geometric details. We then identify
the topological information by segmenting the geometry and
constructing curve skeletons for each part and guide the surface
reconstruction with the skeletons by minimal user interaction.
We demonstrate the effectiveness of our methods with various
examples, where our reconstruction can fill out missing data
and preserve sharp features.

Keywords-Surface reconstruction; Segmentation; Enhanced
features; Curve skeleton

I. INTRODUCTION

Fully developed three-dimensional (3D) scanners can now

produce 3D point cloud representing increasingly complex

models, which is an important data source of computer

graphics research. Nowadays, point cloud is easily acquired

for our purposes, but the data are usually noisy, sparse,

and unorganized. A large amount of research effort and

attention have been paid to the reconstruction of meaningful

surface models from point cloud in the past three decades

[1, 2]. However, surface reconstruction from incomplete

point cloud is still a challenging and unresolved problem.

Our work is inspired by the observation that the points

of one division share the same characteristics and rep-

resent a substructure. Segmentation is considered useful

for analyzing various aspects of a scene such as locating

and recognizing parts, classification, and feature extraction.

Although there are many segmentation [3] and reconstruc-

tion algorithms, there is no reconstruction methods use the

segmentation information in surface reconstruction and few

methods are for incomplete point cloud. Meanwhile, the goal

of user-interactive editing in the pipeline of surface recon-

struction is also compromised in the majority of existing

works.

Based on the aforementioned motivations, we propose a

novel method that integrates both segmentation and curve

skeletonization to accomplish the goal of surface recon-

struction from incomplete point cloud. First, the point cloud

data undergoes the procedure of data pre-processing. After

preprocessing, we conduct a segmentation operation consid-

ering spatial and geometric features of a model to create

meaningful point cloud divisions or subsets. Last, curve

skeletons are extracted for individual segments and used as

new editing handles and features for improving fine detail

reconstruction.

The aim of our work is to extend the previous success

of point cloud segmentation into our surface reconstruction,

which has been used for hole filling and template-based

surface reconstruction.

II. RELATED WORK

A. Point cloud segmentation

3D point cloud segmentation classifies parts of point cloud

with the same properties into the same region. [2] used a 3D

moving fovea to process parts of a scene with different levels

of resolution, which helped recognize and identify objects in

point cloud. [4] defined the reconstruction task as a labeling

problem. They applied point cloud segmentation to define

content into rooms and the outside area as a pre-processing

filter to accelerate their computing and simplify the process-

ing, which inspired our approach of applying segmentation

for full reconstruction. To show the effectiveness of 3D point

cloud segmentation, we utilized the segmentation results as

a pre-processing step for final reconstruction.
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B. Curve skeletons

A few methods [5, 6] have been developed for curve

skeleton extraction from incomplete point cloud. [5] evolved

deformable snakes based on surface tension control or

smoothness priors for topological and geometric reconstruc-

tion. [7] extended curve skeletons with medial sheets to

reconstruct noncylindrical geometry. In existing works, sur-

face reconstruction with incomplete data does not primarily

consider sharp features. Inspired by the fact that a curve

skeleton is an abstraction of data that can tolerate missing

data, we have extended the existing method to radical

cases in which a large amount of data is missing. Using

the segmentation results, our approach takes advantages of

allowing simple user interaction for guidance cues preserve

and enhance sharp features.

C. 3D reconstruction

The task of reconstruction is from point cloud to automat-

ically construct mesh models, which are convenient to store,

edit, render, and animate. The core aims of reconstruction

are to recover missing data and preserve model shapes. In the

past 20 years, surface reconstruction technology has made

considerable progress [1], ranging from explicit reconstruc-

tion to implicit function-based reconstruction. Most recent

methods have focused on priori knowledge oriented specific

model reconstruction and interactive reconstruction in re-

sponse to serious deficiencies in point cloud. [4] presented

an automatic approach to the parametric reconstruction of

3D building models from indoor point cloud. It took human

inputs as a first guess, and later treated the reconstruction

problem as a labeling problem that was solved by energy

minimization. [8] introduced a statistical model using a Pois-

son distribution to extract feature points from point cloud. In

contrast to the model in [4], their approach did not require

any prior knowledge of the surface. Their reconstruction is

affected by noise and sampling quality, which we address

in our approach to enhancing the overall performance of

reconstruction.

III. PRE-PROCESSING

A. Simplification

A new point cloud set which reflects information of un-

derlying shape by improving local projection operator(LOP)

[9] is conducted.

Given the original captured point set P = {pj}j∈J ⊂
R3, the LOP algorithm projects an arbitrary point set X =
{xi}i∈I ⊂ R3 onto the original captured set P , and then

minimizes the sum of distances from projected set Q =
{qi}i∈I to set P .

(a) (b) (c)

Figure 1. The disadvantage of LOP on the Japanese lady. (a) Raw data.
(b) Arbitrary points in the raw data set. (c) LOP.

We improve LOP in two ways to overcome its disad-

vantages: (i) If the raw data is highly non-uniform, the

projected results will also be nonuniform, an illustration of

Figure 1 is used to show the disadvantage. In Figure 1, it

is obvious that the result is nonuniform in the rectangle.

To address this problem, we use adaptive density weights

in LOP. (ii) The operation is still isotropic because it does

not consider sharp features. To preserve sharp features,

we import anisotropic neighbors into the first term of the

LOP. Finally, our improved LOP algorithm updates each

q
(k)
i ∈ Q(k) in iteration k using the following equations.

The first iteration is:

q
(1)
i =

∑
j∈J pjς(nj , pj − q

(0)
i )

∑
j∈J ς(nj , pj − q

(0)
i )

(1)

We define the weighted densities for each point pj in P
and qi in Q during the iteration k by
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∑
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w
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where nj is the normal vector of the point pj . The normal
vector can be calculated by PCA. ρ and w are the local
adaptive weighted densities, they can allow higher densities

near sharp features. Finally, the projected result for q
(k)
i can

then be defined as
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where ||.|| is the L2-norm, and μ is the weight parameter

which used to balance attraction and repulsion. Further, ρ
and w are the adaptive density weights, and ς is used to

consider the normal directions that can be used to indicate

approximately where the edges indicate sharp features. In

our experiments, we set μ = 0.4, η(r) = −r. Further, θ and

ς can be expressed as follows:

θ(r) = e−r2/(h/4)2

ς(nj , pj − pj′) = e−(nT
i (pj−pj′ ))

2/σ2
p

σp = distbb/
√|J |

(4)

where parameter θ is a rapidly decreasing smooth weight

function with support radius h, that defines the size of the

influence neighborhood and can be adjusted adaptively. We

use a default value of h = 4
√
distbb/|J | where dist is the

diagonal length of set P ’s bounding box.

Figure 2 shows the results of simplifying a point cloud

using the proposed method compared to the results obtained

by [9]. In our method, owing to the density weights ρ and

w, the attraction is relaxed by ρ with respect to the attractive

energy, and the repulsion in dense areas is strengthened by

weight w with respect to the repulsive energy. Hence, our

algorithm obtains more uniformly spaced points than LOP.

(a) Raw data (b) LOP [9] (c) Ours

Figure 2. Point cloud simplified by 20 iterations

B. Feature enhancement

In this paper, an improved edge-preserving upsampling

(EAR) [10] is used to enhance features. For each insertion,

this method adds a new point bk + dknk in two steps:

finding the near-sparsest insertion base bk, and optimizing

the projection distance dk to move the point onto the latent

surface.

Considering an existing point si and its neighbors in the

(a) Simplified points (b) EAR in [10] (c) Our method

Figure 3. Upsampling results of EAR and our method.

set Nsi , the EAR inserts a new point using:

maximizes C (b) = minsi′∈Nsi ||b− si′ − nT
i′(b− si′)ni′ ||

∑
si∈Nbk

(nT (s− si))
2
θ(||s− si||)ϕ(n− ni)

(5)

where ϕ(n,ni) = e−(
1−nT

i
n
i′

1−cosα )
2

, b is the base location, si
is an existing point, set Nsi is its neighbors, θ can be got

from Equation (4).

(a) (b) (c) (d)

Figure 4. Segmentation results

Moreover, to minimize the weighted total projection dis-

tance and add new points along the sharp edges, we intro-

duce the anisotropic neighbors to enhance features. Finally,

the calculation of projection distance using our method is as

follows:

dk(bk,n) =

∑
si∈Nbk

(nT(bk − si))ς(n, bk − si)ϕ(n,ni)
∑

si∈Nbk

ς(n, bk − si)ϕ(n,ni)
(6)

where ϕ can be got from Equation (5).

Figure 3 compares the results of EAR in [10] and our

method. As we can see, EAR inserts some points evenly

along some edges, while our method inserts points that

maintain sharper edges.

IV. SURFACE RECONSTRUCTION

A. Segmentation

Point cloud segmentation is one of the key technologies

for 3D reconstruction. In this paper, we use a self-adaptive

segmentation algorithm, this algorithm consists of two main

steps: automatic selection of the centers according to the

extracted features and segmentation of the points according

to the centers [11].

In the process of center selection, a center has a high

density compared to its surrounding neighbors with lower
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(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j)

Figure 5. Curve skeletons: (a) and (e) skeleton of unsegmented points, (b)-(c) and (f)-(i) parts of the skeleton, and (d) and (j) skeleton of segmented
point cloud.

density and a large diversity with respect to other centers.

The centers can be measured by representativeness value and

diversity value.

Representativeness can be measured by a point that has

a higher density than its neighbors. The diversity can be

measured by computing the minimum distance between a

point and other points with densities that are higher than

that of a point. We determine the centers using Equation

(10):

spAtt
i = log νi + log δi

νRep
i = 1 +

∑
i′∈I θ(||pi′ − pi||)

δDiv
i = mini′<i||pi′ − pi||

(7)

where δ is the diversity value, ν is the representativeness

value, and θ is the same as defined in Equation (4).

After obtaining the centers, each remaining point is

assigned to the same cluster as its nearest neighbor of

higher density. Using this method, the segmentation can be

completed, and the results of segmentation are shown in

Figure 4.

V. COMPARISON AND ANALYSIS

A. L1-curve skeleton

To obtain the geometric representation, the L1-medial

skeleton [6] is used to represent the curve skeleton. It

iteratively projects points to produce the L1-medians of

the local neighborhoods. We use the following definition

to obtain a set of projected points M = {ml}l∈L in each

segmented clusters:

Figure 6. Reconstruction of the plant model using our method compared
with the Morfit results. (a)Morfit results, (b) results of our method and each
part of the segmented reconstruction.

mk+1
l =

∑
i∈I ziα

l
i∑

i∈I α
l
i

+ μσk
l

∑
l′∈L\{l} (m

k
l −mk

l′)β
l
l′∑

l′∈L\{l} β
l
l′

(8)

where

βl
l′ =

θ(||mk
l −mk

l′ ||)
||mk

l −mk
l′ ||2

, αl
i =

θ(||mk
l −mk

i ||)
||mk

l −mk
i ||

,

σl =
λ2
l

λ0
l
+λ1

l
+λ2

l

, λ is eigenvalue, and λ0
l ≤ λ1

l ≤ λ2
l .

The aforementioned iterative projection produces a set of

points M = {ml}l∈L, which can form a skeleton of the

underlying shape. The final results of the L1-curve skeleton

are shown in Figure 5. As shown in rectangle, our skeleton is

similar to the original shape. We compare the unsegmented

with segmented results to demonstrate our results, where the

topology of the models has been improved.
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(a) Raw data (b) Skeleton (c) Poisson (d) Morfit (e) Ours

Figure 7. Results comparison on lady model

#Fig Lady(Morfit) Lady(Our) Plant(Morfit) Plant(Our)
#BE 0 0 0 0
#CE 0 0 3 0
#PS 3 1 4 1
#SS 0 0 0 0

Table I
COMPARISON OF THE NUMBER OF USER INTERACTION [12]. #BE:

NUMBER OF SKELETAL BRANCHES EDITED/ADDED/REMOVED; #CE:
NUMBER OF PROFILE CURVES EDITED; #PS: NUMBER OF STROKES TO

INDICATE SWEEP PATHS; #SS: NUMBER OF SHARPENING STROKES.

After getting the skeleton of data, we applied an interac-

tive Morfit [12] to reconstruct each part of the segmentation.

The separate parts are fused as an ensemble of general

cylinders around the curve skeleton. The Morfit algorithm

allows users to edit the model on a larger scale. For

the L1-center skeleton of the model, users can adjust the

model by disconnection, connection, pruning, extension, and

deformation, and hence unambiguously express the model

topology. We performed them for each part of the model

and obtained the reconstructed results of each part using

Morfit.
Figure 6 contrasts the effects of using our method and

Morfit of a plant model obtained from [6], and Table 1 gives

the number of interactions for this model. The improvement

of the models is clear. For the plant model, Figure 6(b) shows

the reconstructed results of each part after the segmentation

of the point cloud. The algorithm keeps the sharp features

well which are highlighted in the pink rectangle compared

with the highlighted in the same part of the Morfit algorithm

in Figure 6(a). In Figure 6(a), it can be seen that the blade

are smooth and similar, the reconstruction results of them

have minor difference. In addition, the number of human

interaction of our proposed method is less than that of

Morfit, and the efficiency of reconstruction is also improved.

B. Comparison
In this section, we show the reconstruction results ob-

tained by our method on models compared with those

obtained by other methods.
In Figure 7, the results of the lady model show that

our algorithm can deal with incomplete point cloud (Figure

7(e)), which provides the most faithful reconstruction result

with only one path stroke and editing. Figure 7(b) is the

extracted skeleton model, which better represents the model.

Figure 7(c) is the model reconstructed using the Poisson-

based algorithm directly from the original point cloud. This

is less adaptable to the incompleteness of the point cloud.

Figure 7(e) is the result of reconstruction according to the

result of Figure 7(b). From Figure 7(d) and Figure 7(e), for

the left arm of the lady body, our reconstruction results are

more slim, the shape is better fitting to the original complete

model. And for the enlarged part, our reconstruction results

are smoother.

(a) Raw data (b) Morfit (c) Ours

Figure 8. Reconstructed model according to different parts adopting
different algorithms

In Figure 8, we reconstructed the mouse model to demon-

strate the effects of segmentation and feature enhancement.

We implemented and compared Morfit’s method and ours.

The method of Morfit is to reconstruct the model directly,

and ours is divided into two processes. The first process

is to divide the model. The second process reconstructs

the segmented model for different segmentation part. In

the model, after segmentation, the parts of the eye and toe

were applied with Poisson reconstruction, and others were

applied with Morfit. As can be seen from Figure 8(b), the
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reconstruction of the eyes part can show the details of the

orbit, the reconstruction results of toe also have clear edges

and distinct contours. Obviously, the details of the result are

closer to the original model and represent the surface change

more real.

VI. CONCLUSION

This work constructs a mesh surface from a point cloud,

with its advantages in preserving fine details, handling

incomplete data and allowing flexible user interactions com-

pared with existing works. Our method first includes a pre-

processing step, which improves the quality of point cloud

distribution and enhances sharp features, and next conducts

the curve-skeleton-based reconstruction, which smooths the

surface according to the extracted 1D structure. In the

pre-processing, our resampling simplification improves the

quality of the point distribution with uniform density using

attractive and repulsive forces. It also improves the LOP with

a customized anisotropic operator and is capable of process-

ing highly nonuniform distributions to produce satisfactory

results in cases where LOP may fail.

The feature enhancement is achieved via two approaches.

One is EAR to add new points near the sharp features

to better preserve their shapes. The other optimizes the

normal distribution considering the anisotropic features with

different point clusters, distinguishing normals across dis-

continuities.

Segmentation and 1D curve skeletons are adopted for

surface extraction. Thus, building a complex shape can be

divided into many simple subsets of building the parts with

regular/simple shapes. Our approach requires fewer user

interactions without degenerating the quality and efficiency

of the output. For the final outputs, our results present

more feature details, whereas existing methods such as

the Poisson-based method and Morfit tend to overfit the

surface and smooth out small details. The limitations of the

proposed method are its dependence on the extraction of

representative curve skeletons. If the models have a highly

complex structure/shape, the method requires several user

edits and obtains many segments. Our future work is to

investigate the case of objects with complex shapes and

identify suitable solutions that are effective in terms of both

usability and accuracy.

ACKNOWLEDGMENT

This work was partially funded by the National Natural

Science Foundation of China (61402374, 61702433), the

National High-tech research and Development Program (863

Program: 2013AA10230402), China Postdoctoral Science

Foundation (2014M562457), China Postdoctoral Science

Foundation (2016M600506) and 1st NRF-NSFC Joint Re-

search Grant (6161101193). The authors acknowledge Shen-

zhen Key Lab of Visual Computing and Visual Analytics for

the source data and the models.

REFERENCES

[1] M. Berger, A. Tagliasacchi, and S. Lee, “State of

the art in surface reconstruction from point clouds,”

Eurographics Star Reports, vol. 1, no. 1, 2014.

[2] R. Gomes, B. Silva, and L. Rocha, “Efficient 3d object

recognition using foveated point clouds,” Computers &
Graphics, vol. 37, no. 5, pp. 496–508, 2013.

[3] D. Aliaga, G. Daniel, and B. Bedrich, “Coupled seg-

mentation and similarity detection for architectural

models,” Acm Transactions on Graphics, vol. 34, no. 4,

p. 104, 2015.

[4] S. Ochmann, V. Richard, and K. Reinhard, “Automat-

ic reconstruction of parametric building models from

indoor point clouds,” Computers & Graphics, vol. 54,

no. C, pp. 94–103, 2015.

[5] L. Guo, L. Liu, and H. Zheng, “Analysis, recon-

struction and manipulation using arterial snakes,” Acm
Transactions on Graphics, vol. 29, no. 6, p. 152, 2010.

[6] H. Huang, S. Wu, and C. Daniel, “L1-medial skeleton

of point cloud,” Acm Transactions on Graphics, vol. 32,

no. 4, pp. 1–8, 2013.

[7] A. Tagliasacchi, M. Olson, and H. Zhang, “Vase:

Volume-aware surface evolution for surface recon-

struction from incomplete point clouds,” in Computer
Graphics Forum, 2011, pp. 1563–1571.

[8] Y. Zhang, G. Geng, and X. Wei, “A statistical approach

for extraction of feature lines from point clouds,”

Computers & Graphics, vol. 56, no. C, pp. 31–45,

2016.

[9] Y. Lipman, C. Daniel, and L. David, “Parameterization-

free projection for geometry reconstruction,” Acm
Transactions on Graphics, vol. 26, no. 3, p. 22, 2007.

[10] H. Huang, S. Wu, and M. Gong, “Edge-aware point set

resampling,” Acm Transactions on Graphics, vol. 32,

no. 1, p. 9, 2013.

[11] Y. Fan, M. Wang, N. Geng, D. He, J. Chang, and

J. J. Zhang, “A self-adaptive segmentation method for

a point cloud,” The Visual Computer, pp. 1–15, 2017.

[12] K. Yin, H. Huang, and H. Zhang, “Morfit:interactive

surface reconstruction from incomplete point clouds

with curve-driven topology and geometry control,” Acm
Transactions on Graphics, vol. 33, no. 6, pp. 1–12,

2014.

102


