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Abstract. We present a novel integral-based Material Point Method
(MPM) using state based peridynamics structure for modeling elasto-
plastic material and fracture animation. Previous partial derivative based
MPM studies face challenges of underlying instability issues of particle
distribution and the complexity of modeling discontinuities. To alleviate
these problems, we integrate the strain metric in the basic elastic con-
stitutive model by using material point truss structure, which outweighs
differential-based methods in both accuracy and stability. To model plas-
ticity, we incorporate our constitutive model with deviatoric flow theory
and a simple yield function. It is straightforward to handle the problem
of cracking in our hybrid framework. Our method adopts two time inte-
gration ways to update crack interface and fracture inner parts, which
overcome the unnecessary grid duplication. Our work can create a wide
range of material phenomenon including elasticity, plasticity, and frac-
ture. Our framework provides an attractive method for producing elasto-
plastic materials and fracture with visual realism and high stability.

Keywords: Material Point Method - Peridynamics - Elastoplastic mod-
eling.

1 Introduction

Physically-based modeling of elastoplastic material has been an active research
topic for many years in compute graphics, particularly for its appealing appli-
cation in visual effects industry. Scenes involving elastoplastic deformation are
very common, for example, clothes moving with wind, rubber toys bouncing on
the floor, or plastic board damaged by high speed impact. In order to model such
realistic behaviors under different circumstances, the robust simulation method
needs to be capable of handling complex topological changes and various contact
responses, such as collision and cohesion. To find the simulation method that can
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naturally model elastoplastic material along with complex topological changes
is the current focus of the field.

Meshless simulation methods are powerful in dealing with complicated topo-
logical changes since it does not require high quality mesh and efforts to overcome
the issues from severe mesh distortion. The MPM [23][24] is an extension of the
particle-in-cell (PIC) method. It combines the Eulerian Cartesian grids and La-
grangian material points for tracking mass, momentum and deformation on par-
ticles [20]. It can naturally process material point distribution and self-collisions.
It also has been proved to be especially suitable for animating materials that
undergo large deformations [10]. Despite its physical realism and geometrical
convenience, the traditional MPM solver has several disadvantages: 1)Due to
the governing equation based on spatial derivatives of displacements, the results
are sensitive to the underlying particle distribution [6]. Also it has difficulty in
solving singularity along discontinuities. 2)To observe boundary details, MPM
has to maintain a fine resolution grid which brings high computational costs for
particle-grid transfer throughout the whole simulation domain. While researchers
have extensively studied refining regions of particular interest by using adaptive
grid [4], the ability to simulate detailed discontinuities dynamics, such as crack
propagation, is still limited.

Recently, peridynamics has gained its popularity in meshless simulation for
discontinuous deformation. It was originally proposed by Silling [16] and has
been adopted mainly for studying fracture dynamics due to its integral based
constitutive model. Peridynamics is not suitable for handling large deformation
due to the fact that initial bond connections are not in consistent with the con-
figuration where topological changes are severe. Based on this fact, there are not
a lot of mature models and experiments in continuum mechanics being adopted
by peridynamics methods for animating elastoplastic material [28]. Furthermore,
its point-based nature leads additional efforts to handle contacts.

Aiming at alleviating above problems, we propose an integral-based MPM
framework with peridynamics structure for modeling elastoplastic material and
fractures. We present three main contributions:

Elasticity We equip material point with virtual bonds and family points.
The elastic energy density function is redefined in an integral way with this truss
structure. Varied stiffness of elastic materials can be simulated with high realism
and stability.

Plasticity The virtual bond structure makes our model trivial to model
plastic behaviors. We use a novel method to extract plasticity from the deviatoric
part of constitutive model and accumulate plastic increment permanently at
particle-grid transfer step.

Fracture We handle crack definition and propagation through screening
virtual bonds. The fracture criterion combines the deformation status of single
material point and the grid cell. We update fracture surfaces and fracture inner
parts in different time integration methods. Our method avoids the difficulty of
duplicating grids and large computation cost brought by multiple particle-grid
transfer process.
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After discussing related work in Section 2, we outline our method and explain
integral-based governing equation in Section 3. Section 4 describes the consti-
tutive model for modeling elastoplastic material in details. Crack definition and
propagation are discussed in Section 5. Experimental examples for evaluating our
method and discussion of results are give in Section 6. In Section 7 we conclude
the method and explain our future work.

2 Related Work

Elastoplastic continuum modeling Terzopoulos and Fleischer [26][27] pio-
neered the plastic simulation methods in computer graphics. O’Brien and col-
leagues [14] incorporated finite element method (FEM) with multiplicative plas-
ticity model and obtained realistic motion for a much wider range of materials.
Later, Gerszewski et al. [5] adopted deformation gradient for animating elastic
behaviors based on point method. Levin [11] rediscretized elasticity on a Eu-
lerian grid, which is similar to MPM grid. Based on previous hybrid grid and
particle modeling method, Stomakhin [21] incorporated energetically consistent
invertible elasticity model into MPM for modeling snow varying phase effects.
Recently, Chen [3] presented a novel elastoplastic constitutive model to handle
brittle fracture and ductile fracture in peridynamics-based framework. At the
same time, many researchers focused on developing the real time and haptic
simulator. For example, Salsedo et al. [15] designed the HAPTEX system using
dynamically variable spatial resolution to reduce the computational burden dur-
ing rendering the fabrics, which was extended by Bottcher [1][2] by implementing
separated computation threads for different simulation scales.

Material Point Method MPM is a hybrid grid-particle method using a regu-
lar Eulerian Cartesian grid to treat self-collision and fracture naturally, proposed
by Sulsky [23][24]. Later, Stomakhin et al. [21] introduced MPM into computer
graphics and obtained a variety of snow phenomenon. Jiang and his colleagues
proved that MPM is a useful method for granular materials by animating sand
[9]. Tampubolon extended the MPM to simulate multi-phase behaviors through
using multiple grids, such as porous sand and water interactions [25]. A major-
ity of elastoplastic MPM works for computer graphics [22][8] focus on resolving
intensive collision scenarios on the surface or the curve with millions degrees
of freedom. Unlike above studies, our method incorporates integral-based con-
stitutive model to replace typical partial derivative based model. This helps
us alleviate the instability and difficulty issues from particle distribution of ar-
bitrary elastoplastic deformation. With virtual bonds, constitutive model can
demonstrate detailed topological changes smaller than grid cell.

Peridynamics Silling proposed the peridynamics theory [16] as an efficient non-
local continuum theory to uniformly solve problems involving both continuities
and discontinuities [18][3][6]. Instead of using spatial differential formulations,
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peridynamics uses spatial integral equations as the governing equations. Its ap-
plication sparked the engineering field, such as multiscale material modeling [19]
and crack dynamics [17]. Later, Levine [12] introduced the peridynamics the-
ory to computer graphics. He revisited brittle fracture studies by characterizing
peridynamics as spring-mass systems. Currently, most research [3][6] focused on
how to reformulate elastic constitutive models and produce persuasive effects.
However, the theoretical equivalence of peridynamics compared to continuum
mechanics remains unclear [28]. A lot of mature theories and experiments in con-
tinuum mechanics have not been adopted for peridynamics in computer graphic.
This motivates us to define the integral-based constitutive model equipped with
peridynamics structure within MPM framework for versatile elastoplastic defor-
mation and self-collision detection.

3 Method

The governing equation of MPM arises from basic conservation of mass and
momentum [21]. Back to weak formulation which is obtained by multiplying
the balance of momentum and integrating the governing equation over initial
volume, we propose an integral force density function F*(z,) to replace spatial
derivatives of displacement and redefine the weak formulation as:

/ papdu,df2 + / pF*(zp)du,d? = / pbpdu,ds2 + / pou,Tdll (1)
Q Q Q "

where (2 denotes the integrating region in the current configuration, p is density,
ay is the acceleration of particle p, du, is the virtual displacement (infinitesimal
feasible changes where constraints remain satisfied). b, is the body force, for
example, gravity. 7, is the surface traction on part of the boundary I’;.

F*(z,) = /H [T < ap,z, >-T<mz,, >]/pdH,, (2)

Tp

F*(zp) is the internal force density function constructed in an integral way. mp/
is the neighbor point of point x,. When incorporating peridynamics theory, we
construct the truss structure for each material point as: the neighbor material
points H,, of material point z, are referred as its family members. x, has in-
teraction with all its family members at same time. Each interaction is operated
by a virtual bond. T' < z,, .T; > represents the interaction force between z, and

xpl. The F*(x)) avoids using the spatial derivatives of displacements 5(;; ”: . We

will discuss details of the constitutive model in Section 4.

In the MPM framework, the material domain at ¢™ is discretised with parti-
cles at x;. Each particle has volume V', mass m,, velocity v, and other physical
quantities, such as deformation matrix Fj,, Lamé parameters p, and A,, plastic
yield parameters 1. In each time step, a new grid is generated. Grid node I is
used to store nodal parameters, such as position x;, mass my, velocity vy, force
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fr- Our framework adopts dyadic products of one-dimensional cubic B-splines
as basic weight function in [21] during particle-grid transfer process. Here we
outline the full update procedure:

1)Particle-to-grid transfer Transfer material point mass m, and momen-
tum (mv), to the grid.

2)Compute internal forces The internal force of grid node I is calculated
by the stress tensor of each point, presented as f{N" = 37\ m, Ny () F*(2,)V .
Our method presents this equation based on our integral-based energy function.
The detailed description of the update rule for F*(x,) is given in Section 4.

3)Update Grid Momentum Nodal velocities are updated by 5;”“ =+
Atfr/m? for explicit time integration. fr is the total force.

4)Grid-based body collisions Grid velocity U}H'l is updated by collision
field and friction parameter from [21].

5)Grid-to-particle transfer Transfer updated nodal velocity U?H and mo-
mentum (mv)?+1 to particle.

6)Particle collisions Modify v;”‘l by collision field on particle level to ob-
tain detailed deformation behaviors on the boundary.

T)Fracture Based on the current particle distribution and the deformation
status of grid cell, we remove virtual bond that intersects with fracture plane.
The fracture model is discussed in Section 5.

4 Constitutive Models

In this section, we describe our constitutive model in details. We start with
elastic model, then incorporate plasticity in a consistent frame.

4.1 Elastic Model

When we only consider elasticity in continuum mechanics, the elastic energy
density function [20] can be defined as:

A
E* = p|[Fe = Re|* + 5 (e = 1)° 3)

where F, is the deformation gradient tensor, R. is rotation matrix and J, =
det(F,). We can decompose this equation into the combination of two parts
in the view of different contributions to topological changes: u||F, — R.|* as
deviatoric part; %(Je —1)? as isotropic part. However, F, is based on the spatial
derivatives of displacement which leads to the inability of constitutive model
to compute singularity issues, such as discontinuities. We adopt the concept of
integral deformation matrix F), in [6] to describe the local deformation which has
similar meaning to F, but is represented by the integration of displacement and
peridynamics structure. When the initial bond state and deformed bond between
material point z, and ocp/ are X = xp—xp/ andY =y, —yp/, deformation matrix
F,, shown in Equation 4 represents the average deformation status of point z,,.
H,, represents all family members. w(Y") is linear weight function. ® is dyadic
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product operator defined by Silling [16]. Thus an average deformed bond is
calculated as Y = F; X.

Fy, =D _ w®)Y XD wy)oX]™! (4)

H H.

Tp Tp

With these concepts, Equation 3 is reformulated as the combination of devi-
atoric component and isotropic component :

B — I; w(y)(uEdev + %Eiso) (5)

Edev = (% — 1)% describes deformed energy similar to mass spring system
but removes the influence from different bond length in order to simulate material
with the same stiffness. It uses the average deformed bond length. Similarly,
Eiso = (% — 1)? represents single bond deformation energy.

Then the elastic force density function T' < zp, xp/ > for the material point
pair of zpand xp/ is obtained through gTw’ as:
P

/ 2uw — — Aw )
T<zp,ap, >= W(Y — | X|dirY') + W(Y — | X|dirY) (6)
where ‘2)‘572 (|Y| — | X|)dirY depends on all neighbours, so it presents the shear

stress effects. |3\(“|’2 (Y| — | X|)dirY denotes spring force between by z, and z,’,

so the direction follows the deformed bond. Using Equation 2 and Equation 6,
the internal force of grid node I for updating nodal momentum is:

INT =N iy Ni () [ wY) (T < apozy > ~T <z 2y >)V] ()
H

Tp

Compared to many existing methods, our method only needs the current vir-
tual bond state Y, so the local step is fast. Our method avoids the singular value
decomposition (SVD) to extract elastic deformation gradient in [21]. The advan-
tages of avoiding SVD are obvious: we obtain a better stability for simulation
with large time steps as in [6]; also reduce the complexity of plasticity definition
in MPM framework.

4.2 Plastic Model

Many methods [21][29] take out the part of elastic deformation gradient tensor
that exceeds the yield function and push it into plastic deformation gradient
calculation. Due to the hybrid structure in our method, the plasticity can be
extracted simply on our integral-based elastic model. Singularity issues can be
overcome easily without any extra efforts.

Our plastic model is purely from deviatoric plastic flow [3] theory. Firstly,
we reformulate our elastic model in Equation 6 in order to adapt it for modeling
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plasticity. |Y| — | X| and |Y| — | X| are average and single bond extension. When
the deformation is smooth enough under small neighbor horizon, we predict
Y| —|X]| ~ |Y|—|X|. Then we have:

2uw

L= Aw .
= WUY\ — | X))dirY + — (|Y]| — | X|)dirY (8)

T<zp,x, > X]2

Based on the plastic flow theory, the unified displacement is decomposed
into isotropic and deviatoric part, e = (|Y| — |X|)/|X| = €**° + ed’. Plastic
deformation eP is extracted from e?v. Then we integrate the plasticity into
Equation 8:

2pw
RY

. = A ;
(e%° + ed®v — eP)dirY + ﬂ(elso + e — ePYdiry  (9)

T <zp,m)p >= IX|

We make the best use of our bond-particle-grid structure and define the yield
function as f(Egey):

(Edev)2
2

2uw Aw
= X))
(X1 X

Edev == ( edev - ep)’ f(Edev) = - wp (10)

where 1, is controllable plastic material parameter. We use f(Ege,) to decide
if the current configuration enters the plastic regime. If f(Fge,) < 0, the defor-
mation is still within the elastic domain. If f(FEg.,) > 0, part of deformation
occurred as plasticity. We project the deformation back to yield surface and add
plastic increment AeP to eP permanently as Equation 11.

X .
AeP = |()\)|[Edev — /2¢psign(Egey)] (11)
This model is still valid for elastic when eP varnishes in the equations. This
constitutive model can be used for both elastic and elastoplastic materials in
MPM.

5 Fracture

Crack simulation is a bottleneck of the MPM [13]. To processing the disconti-
nuities at the interfaces, special treatments for creating cracks and partitioning
fracture fragments into multigrid and multiple velocity fields are approaches [7].
When an excessive number of cracking interfaces are involved, the computation
of multiple grid transferring can be very expensive. Additionally, the strategy
to duplicate grid is limited because during simulation small fragments are nu-
merous and randomly generated so it is hard to duplicate grid for each crack
interface.

The dynamics with discontinuities is straightforward to compute in our MPM
framework. If we simply remove over-deformed bonds like [3], it leads to nu-
merous small fragments in deformed area rather than several crack lines after



8 Y. Lyu et al.

collision happens. We now propose to generate crack cut by fracture plane based
on analyses of single point and global deformation status in gird cell.
Firstly, we define the fracture criterion by removing the plastic displacement
as:
e—eP
|X| (1 + pinaetiue)

where pinactive 1S the percentage of broken bond in total bond numbers in the
grid cell where the material point stays.

After screening the material points whose [ exceeds the threshold, we use
cluster method to sort these points into several deformed areas based on posi-
tion and normal. For each area, we calculate the central point and the largest
deformed bond. Next step we use the central point position and the bond direc-
tion as normal to construct fracture plane for each area. Any bond intersected by
the fracture plane will be removed. That is how crack line occurs. With pinactive,
this method can effectively reduce the number of small fracture pieces. Because
if one grid has too many broken bonds, the active bonds in this grid cell are less
possible to be removed.

In the MPM, grid cell size decides the resolution of whole simulation. This
also works for crack dynamics. In experiments, we transfer particle velocity to
three grid cells in any direction to get stable, smooth results. When two sides
of crack line are within this range, they will share another fragment informa-
tion through transfer. Therefore using only one grid leads to ”fracture sticky to
each other” effects. We alleviate this problem by applying two time integration
ways: material points on the crack surface are updated by its own bond forces;
other material points which don’t have any broken bonds (in the fragment inner
parts) are updated by grids as normal. Thus we avoid the information mixture
of different crack fragments.

l (12)

6 Result and Discussion

Fig.1: The moving cloths with different material parameters show different bending
stiffness. From left to right: p =2 x 10%, p = 1.5 x 10°, u = 1 x 105,
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Fig. 2: Shooting ball to elastic and plastic boards show visibly different results. In the
first row, elastic board can recover to initial shape after the collision. The second row
shows that plastic board keeps deformed topology.

We implemented our method and tested examples in this section. All our
examples are run in Houdini software, including material point discretization,
vorinoi fracture generation and rendering. We use Houdini Development Kit(HDK)
tools to customise nodes for material point dynamics. Eigen library is equipped
with dynamics nodes. We use explicit time integration for the ease of implemen-
tation.

Implementation. We list the modeling types, parameter settings and the
performance data in Table 1 for all the examples presented in the paper. We add
ghost particles on object boundary to guarantee that each material point have
similar family density.

Elastoplastic model validation. We use several examples with different
material properties to evaluate our method. Fig. 1 shows the examples of gar-
ment anchored by clothespins. With varied bending stiffness parameters u, the
experiments present the realistic and fine wrinkles. Fig. 2 shows the comparison
of elastic board and plastic board collided by a ball. Our model can create correct
behaviors. With complex topology objects, this method still works as in Fig. 3.
Fig. 4 shows the simulation of ductile plastic fracture. Fig. 5 demonstrates the
stretching beams deformation with different material stiffness.

Limitations and Future work. This paper presents a lot of examples with
elastic and plastic material. However, there are still some works which need to be
achieved in the future. Firstly, we represent fracture with Houdini voronoi struc-
ture which is represented by polygon with random vertex number. It is unable
to generate the arbitrary fracture shape. The resolution is limited to the number
and size of voronoi pieces. Incorporating tetrahedron structure for embedded
geometry modeling is the future option for cooking detailed cracking interfaces.
Secondly, we only apply plastic fracture models with deformed topology. Some
important complex models should be covered in future work, such as brittle
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-

(d)

Fig. 3: The collision between two identical bunnies with different materials. This ex-
ample demonstrates the different deformation of elastic bunny (in the first row) and
plastic bunny (in the second row). Collision happens in (a) and (c). Elastic bunnies
can recover as in (b). Plastic bunny deforms afterwards in (d).

Fig. 5: Stretch beams with different ma-
Fig.4: Simulation of plastic wall col- terial parameters. From left to right,
lided by a sphere. bending stiffness p are: 0, 50, 500.

Table 1: modeling information for all examples

Type c;irzig(cc,il)l A(Kpa) u(Kpa) v, t;racmre At (ms)
reshold
Cloth Mesh 0.005 1x10® | 2x10%,1.5x10°,1x10¢ | 1x10% 1x10%0 0.1
Elastic board Mesh 0.02 3x106 1.5x10° 1x10% 1x10% 0.02
Plastic board Mesh 0.02 5x10° 1.5x10° 1000 1x10% 0.0001
Elasticbunny |70 001 | 1x108 1x10° 1X10% | 1x10% 0.1
plasticbunny | P01l 001 | 1x108 3x10° 300 1x10% 0.01
Broken board | Voronoi | 0.005 1x10° 5x10* 500 0.05 0.001
Stretching beam | Mesh 0.05 500 0,50,500 1x10%5 1x10%% 100
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glass crack and complex crack propagation. Finally, we use explicit integration
for its straightforwardness in HDK. It requires very small substeps for dealing
with huge displacement. Alternatively, the current study implements projective
dynamics implicit integration method for fast simulation. It can obtain stable
and robust results under large substeps. Our future work will focus on addressing
above limitations and obtaining versatile and realistic elastoplastic performance.

7 Conclusion

We present an integral-based constitutive model within the Material Point Method
framework. Our method demonstrates various elastic deformation and plastic de-
formation scenarios. Fracture can be modelled robustly without any singularity
issues. Additionally, our method presents a novel integral-based view for multi-
material modeling and fractures modeling, which has potential to inspire future
research in the field.
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