
FFMRA: A Fully Fair Multi-Resource Allocation Algorithm in Cloud Environments

Hamed Hamzeh1, Sofia Meacham1 Kashaf Khan2 Keith Phalp1 and Angelos Stefanidis1

1Faculty of Science and Technology, Bournemouth University, UK.
hamzehh@bournemouth.ac.uk, smeacham@bournemouth.ac.uk, kphalp@bournemouth.ac.uk, astefanidis@bournemouth.ac.uk

2British Telecom, Ipswich, UK, kashaf.khan@bt.com

Abstract—The need for effective and fair resource allocation
in cloud computing has been identified in the literature and
in industrial contexts for a while. Cloud computing seen as
a promising technology, offers usage-based payment, scalable
and on-demand computing resources. However, during the
past decade, the growing complexity of the IT world has
resulted in making Quality of Service (QoS) in the cloud a
challenging subject and an NP-hard problem. Specifically, the
fair allocation of resources in the cloud becomes particularly
interesting when many users submit several tasks which require
multiple resources. Research in this area has been increasing
since 2012 by introducing the Dominant Resource Fairness
(DRF) algorithm as an initial attempt to solve the fair resource
allocation problem in the cloud. Although DRF meets a sort
of desirable fairness properties, it has been proven to be
inefficient in certain conditions. Noticeably, DRF and other
works in its extension are not intuitively fair after all. Those
implementations have been unable to utilize all the resources in
the system, leaving the system in an imbalanced situation with
respect to each specific system resource. In order to address
those issues, we propose in this paper a novel algorithm namely
a Fully Fair Multi-Resource Allocation Algorithm in Cloud
Environments (FFMRA) which allocates resources in a fully
fair way considering both dominant and non-dominant shares.
The results from the experiments conducted in CloudSim
show that FFMRA provides approximately 100% recourse
utilization, and distributing them fairly among the users while
meeting desirable fairness features.

Keywords-Allocation; Cloud computing; dominant; non-
dominant; fairness; resource;

I. INTRODUCTION

Cloud computing is a growing technological trend that

provides on-demand, pay-as-you-use, and wide range of

resources based on the Internet[1]. By its nature, it also

abstracts hardware resources and simplifies the computa-

tional operations. Cloud introduces three delivery models

known as Infrastructure as a Service (IaaS), Platform as a

Service (PaaS) and Software as a Service (SaaS). Each of

those layers, provisions a sort of specific services for users

and providers. Due to the diversity of resources involved,

cloud is a heterogeneous environment which makes resource

allocation an interesting issue.

In general, tasks submitted by users require multiple

resources. Some tasks are CPU intensive, like computational

tasks that are mainly dependent on processing, while other

tasks, such as video encoding, are RAM intensive[2]. Hence,

the distribution of such resources among users remains an

NP-hard problem.

There are various examples in the literature discussing re-

source allocation in cloud computing environments. The best

ways for distributing resources among users with varying

demands have been investigated extensively in[3]. As part

of this work, different quality metrics were introduced and

among them, fairness has been identified as an important and

challenging issue , attracting more attention in recent years

by the research community. Essentially, fairness is seen as an

intuitive concept and one can define his/her own perspective

of fairness[4]. The concepts of fairness and equality have

different definitions, whereby equality is the quality of being

the same quantity while fairness is the quality of having a

fair situation [5].

Any fair allocation algorithm is subject to adhering to

some desirable fairness features[6]. Identifying the concept

of fairness is an important research question in cloud

systems, which can be addressed by proposing optimiza-

tion methods, suitable allocation and scheduling algorithms.

How to allocate resources in a fair way is still open

to investigation. As part of an early attempt, Dominant

Resource Fairness (DRF) was introduced in [7],attracting

much attention as a result of its good fairness features.

However, it was subsequently proven to be inefficient when

deployed across multiple servers, hence the use of DRF in

a naive extension form leads to a highly inefficient resource

allocation [8]. While previous works in this area have been

limited only to dominant resources, they do not appear to be

intuitively fair[9]. The unfairness problem of DRF has been

recently investigated in the Apache Mesos environment [10].

However, it is useful to reconsider fairness by equalizing

both dominant and non-dominant resources that could affect

fairness, and the balance of the system by evenly distributing

resources among the users.

In this paper, we propose FFMRA as a new fair allocation

algorithm which equalizes dominant and non-dominant re-

sources. While dominant share is the maximum share that a

user has been allocated of any resource, non-dominant is the

minimum amount of that resource. In FFMRA, users with

dominant resource can maximize their allocation without

279

2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation

978-1-7281-4034-6/19/$31.00 ©2019 IEEE
DOI 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00091

starving others.

We then show that FFMRA meets desirable fairness

features. FFMRA is pareto efficient, which means that no

user is able to increase her allocation without decreasing

others allocations. Also, FFMRA fulfills envy-free property

which means that no user prefers the allocations of other

users. Additionally, FFMRA meets some other allocation

features, such as sharing incentive and strategy-proof.

Finally, we analyze the performance of FFMRA in terms

of resource allocation and utilization using the CloudSim

simulation tool supported by randomly generated workloads.

We show that FFMRA distributes resources fairly among

users and provides approximately 100% utilization of re-

sources.

The rest of the paper is organized as follows: Section II

gives a brief overview of recent conducted works in DRF and

its extensions. Section III illustrates the motivation behind

this work. Section IV describes the proposed algorithm and

related formulations. Section V represents the evaluations

and experiments. Section VI analyses the fairness properties

of FFMRA; and Our conclusions are drawn in section VII.

II. RELATED WORKS

Fair allocation of resources has been investigated in differ-

ent contexts, such as the well-known cake-cutting problem

[11]. As a well-established algorithm, Max-Min fairness [12]

has been commonly used in fair resource allocation in a

variety of cases. Initially, most of the research in this area has

been in relation to the single-resource type using Max-Min

fairness, as shown by [13] [14] who assume only one type of

resource, such as the CPU. However, since cloud indicates

a higher variety of resources, multiple resources need to

be considered. To address the inefficiency problem associ-

ated with DRF, some researchers have suggested different

ways to improve its performance and efficiency in multiple

server environment. Other allocation policies, as shown in

[15][16][17] are not proven to be fair with respect to fairness

properties like pareto-optimal and sharing incentive [7].

DRF is recognized widely as the most important fair

resource allocation algorithm. In trying to address the prob-

lems associated with DRF, several attempts were made to

design and develop more scalable and efficient allocation

algorithms. While DRF considers only single server envi-

ronments, the cloud consists of multiple servers that make

DRF inefficient to use on a single server basis. In this

section we review the most important research work in

relation to DRF policy. The research work in [18] proposed

Dominant Resource Fairness with Heterogeneous servers

(DRFH) as a generalization of DRF which considers DRF

on heterogeneous servers. Like DRF, DRFH guarantees

desirable fairness properties. In a multi server setting, a

user may have dominant resources on different servers. As

such, DRFH calculates the global dominant resource of each

user. The best fit heuristic design has been proposed to use

the algorithm in a real world system. Although this work

demonstrates improvements in terms of overall resource

utilization, the results also show that RAM utilization has

not reached desired utilization point. In [19] the authors

proposed a new server-based algorithm to overcome the

existing issues in DRF. To fulfill the trade-off between

fairness and efficiency, the resource allocation was done

by maximizing per-server utility functions using particular

classes. Similar to other works, the algorithm in [19] meets

certain good fairness features. The main point of the work

conducted is to calculate the dominant resources based on

each server, including the virtual dominant resource. Overall,

the algorithm is shown to improve the resource utilization

and meets the fairness properties. However, according to

the results of some of the conducted experiments, certain

resources are found not fully-utilized.

The research work in [20] suggests a fair resource allo-

cation algorithm using Nash Bargaining (NB) mechanism

and Lexicographical Max-Min Fair (LMMF) to maximize

the resource utilization and meet the fair allocation prop-

erties taking into account multiple tasks submissions by

users. Three metrics are considered for analyzing different

mechanisms such as computational efficiency, fairness and

incentive compatibility. In [21] authors propose a long-term

multi-resource fairness algorithm named H-MRF. The idea

behind this algorithm is that, unlike other algorithms, H-

MRF targets pay-as-you-use computing systems. Since, DRF

has RAM-less properties, users are able to cheat and mis-

report their demands, hence, H-MRF tackles this issue. The

tests carried out show that H-MRF offers good performance

improvements and shared benefits. In [22] a new multi

resource allocation algorithm was proposed in order to solve

the efficiency of fair resource allocation. DRBF takes into

account the bottlenecked resources and places them in dif-

ferent queues, while using linear programming for resource

allocation, based on dominant resources. Based on the test

conducted, DRBF provides 100% resource utilization and

better fair allocation. However, similar to other work in this

area, it seems that DRBF is not able to provide an intuitive

fair allocation, since some users with dominant resources

may not able to increase their allocations. The research

carried out in [23] compares DRF and Proportional Fairness

(PF) in terms of efficiency and it indicates that PF is more

efficient than DRF in terms of resource utilization as the

resource wastage in PF is less than that of DRF. The work

in [24] examines the multi type resource allocation problem

in an distributed computing environment and considers Peer-

to-Peer (P2P) systems which have become more popular. It

also meets better fairness conditions in DRF. The results

from the various tests show that this proposed algorithm

outperforms DRF in terms of native extension on different

servers

280

III. MOTIVATION

In the previous section, we explained that DRF and similar

algorithms in its extension are not intuitively fair. DRF

considers only dominant resources and equalizes them to

calculate the allocation. This way of resource distribution

may lead to an inefficient and imbalanced allocation which

means that if one considers X% of CPU in the resource pool

for all dominant resources, it should also consider the same

X% amount of RAM. This process should also be applied

for non-dominant shares to achieve a totally fair system.

At this point it is worth reviewing DRF’s working scheme.

DRF is the generalization of Max-Min fairness which aims

to allocate resources fairly among different users competing

over multiple resources. The intuition behind DRF is to

equalize dominant shares of each user. As an example (see

Table I), there is a system with two resource types (CPU,

RAM) in which two users (A, B) submit their tasks with

demand vectors (1 CPU, 4 RAM) and (3 CPU, 1 RAM)

respectively. If the capacity of the resource pool is (9

CPU, 18 RAM), dominant share for user A is RAM since

(1/9 < 4/18) and for user B is CPU since (3/9 > 1/18).
Accordingly, DRF allocates (3 CPU, 12 RAM) for user

A and (6 CPU, 2 RAM) for user B. So the proportion

of allocation based on the total resource pool capacity is

(6/9, 12/18) in which 6/9 = 12/18. So, we can say

that the distribution of resources is balanced for dominant

shares. If we consider non-dominant shares, the proportion is

(3/9, 2/18) for both users in which (3/9 �= 2/18). Hence,

the allocation is not balanced for non-dominants. In that

case, 4GB of RAM is left unused under DRF allocation. Lets

take a look at a system with more than two users considering

Dominant Resource with Bottlenecked Fairness(DRBF)[22].

DRBF is a generalization of Bottleneck Aware Allocation

(BAA). It captures the concept of fairness and efficiency by

dividing users in different queues with respect to dominant

resources. According to table II, although DRBF provides a

fair allocation and full utilization of resources, however, it

is not intuitively fair so that it is not able as to distribute

resource fairly among users. As can be seen in Table

II, in DRBF dominant shares in CPU get totally lower

proportion of resources of the resource pool compared to

dominant RAM shares. Also, according to the same table,

it is clear that User B with dominant share on CPU is

not able to maximize her allocation that is the same for

DRF, due to that the system resources are not being well-

distributed, since only dominant shares are considered. To

be more clear, elaborating this point further, the sum of

allocations for dominant and non-dominant CPU shares in

DRBF are 4.8 + 5 = 9.8 and 3.9 + 4.6 = 8.5 respectively.

Similarly, for dominant and non-dominant RAM shares we

have 15.6+ 16.1 = 31.7 and 1.6+ 3 = 4.6. The allocations

for non-dominants are considerable high compared to the

allocations for dominant shares in both resource types. In

order to determine how whether the allocation is balanced

or not, it is necessary to calculate the proportion of allocation

for dominant shares for each specific resource type. Since,

the capacities of CPU and RAM are 18 and 36 respectively,

the proportion of CPU in the resource pool for all CPU

dominant shares is 9.8/18 = 0.54 and for dominant RAM

shares is 31.7/36 = 0.88 of which 0.54 �= 0.88. For

non-dominant CPU and RAM shares, the proportions are

8.5/18 = 0.47 and 4.6/36 = 0.12 in which 0.47 �= 0.12.

Interestingly, DRBF pushes most of the proportion of the

resource pool to dominant RAM shares and, as a result,

dominant CPU shares are not able to utilize the system

resource fairly. By looking at DRF, the proportions are

11/18 = 0.61 and 26/36 = 0.72 for dominant CPU and

RAM shares respectively in which 0.61 �= 0.72. For non-

dominant CPU and RAM, the proportions are 7/18 = 0.38
and 5/36 = 0.13 respectively in which 0.38 �= 0.13. Simi-

larly, under DRF allocation and according to this example,

there is a considerable resource wastage in RAM since DRF

utilizes only 72% of RAM in the resource pool which is

not efficient. These analysis indicate that considering only

dominant shares is not enough to show that a system is fair.

This motivates us to propose a new fair resource allocation

algorithm, namely FFMRA, in cloud computing systems. We

advocate that all resources in the resource pool should be

distributed evenly with respect to each resource type.

Table I: The allocation of resources in DRF and FFMRA

with resource capacity (9 CPU, 18 RAM)

Users User A User B

Resources (CPU , RAM) (CPU , RAM)

Requested (1 , 4) (3 , 1)

DRF (3 , 12) (6 , 2)

FFMRA (2 , 14) (7 , 4)

IV. FFMRA

FFMRA is inspired by DRF, however, it considers and

equalizes both dominant and non-dominant shares. In order

to understand how FFMRA works, we refer to the example

in previous section that two users are competing over

two resources. Initially, FFMRA calculates the contribution

of dominant and non-dominant resource in the resource

pool. This gives a good correlation between both types of

resources which helps to keep the system in a balanced

condition.

A. Problem formulation

Given that dki and ndki represent dominant and non-

dominant resources vectors of k resource types, dki and ndki
can be calculated as follows:

dki = max(
rki

Ck
max

) (1)

281

ndki = min(
rki

Ck
max

) (2)

where rki indicates requested resource type k by user i
which is always positive (rki > 0) and Ck

max represents the

maximum capacity of resource type k. If total capacity of

the resource pool(sum of the capacity of all resources) is

indicated by T , then the proportion of total resources for

dominant and non-dominant shares in (1) and (2) indicated

by dpi and ndpi are calculated as follows:

dpi =

∑
dki ∗ T∑

dki +
∑

ndki
(3)

ndpi =

∑
ndki ∗ T∑

dki +
∑

ndki
(4)

Consequently, according to (3) and (4) and given that

x1, x2, ..., xn are the number of allocated tasks for each user,

in that case the allocation for each user is calculated based

on the following optimization problem:

maximize (x1, x2, ..., xn)

subject to

n∑

i=1

rki .xi ≤ Cmax
i .

n∑

i=1

dki .xi ≤ dpi .

n∑

i=1

ndki .xi ≤ ndpi .

(5)

Formulas (3) and (4) indicate the correlation between

dominant and non-dominant shares since, dpi and ndpi are

calculated based on the contribution of both shares in the

resource pool based on
∑

dki +
∑

ndki .

Table II: The allocation and utilization of resources in

FFMRA which is normilized by where user 1 has dominant

share in RAM and user 2 has dominant share in CPU.

CPU RAM

User 1 0.222222 0.777778

User 2 0.777778 0.222222

utilization 1 1

Table III: The allocation and utilization of resources in DRF

where user 1 has dominant share in RAM and user 2 has

dominant share in CPU.

CPU RAM

User 1 0.333333 0.666667

User 2 0.666667 0.111111

utilization 1 0.777778

B. A scenario with two users

Based on the example in Table I, if we assume that

i1, i2, j1, j2 are the number of tasks allocated to both users

and the capacity of the resource pool is (9 CPU, 18

RAM), user A gets (i1, 4i2) and user B gets(3j1, j2). Hence,

according to algorithm 1, the total demands of dominant

resources are 7(four dominant RAM tasks for user A and

three CPU dominant tasks for user B) which is 2 for non-

dominants(one non-dominant CPU task for user A and one

non dominant RAM task for user B). As far as the total

number of resources in the resource pool is 27, by applying

the proportionality, dominant and non-dominant shares get

21/27 and 6/27 of the resource pool respectively.

So, by specifying the proportion of dominant and non-

dominant shares, we are ready to calculate the allocation

for each user with the following optimization problems:

maximize (i2, j1)

subject to 4i2 + 3j1 ≤ 21.

maximize (i1, j2)

subject to i1 + j2 ≤ 6.

Solving above linear optimization equations gives, i1 =
3.5, j1 = 2, i2 = 2.3 and j2 = 4. So the final allocation will

be (2 CPU, 14 RAM) for user A and (7 CPU, 4 RAM)

for user B. Hence, by comparing those allocations with

DRF(Table I), not only the overall status of the system is

fair but also the utilization is 100% for both resources. Also,

according to table I, FFMRA utilizes 100% of resources and

outperforms DRF in terms of resource utilization since DRF

utilizes 14/18 of RAM and leaves 4/18 unused whereas

FFMRA utilizes 18/18 of RAM. Furthermore, DRF allo-

cates more CPU to user A who has non-dominant share in

that resource. As a result, user B with dominant CPU share

gets 6 CPU whereas FFMRA allocates only 2 CPU to user

A and 7 CPU for user B. At the same time, DRF is not able

to offer maximum resources to user A who has dominant

resource in RAM and it allocates only 12 RAM to that user,

whilst FFMRA allocates 14 RAM to user A and 4 CPU for

user B who has non-dominant shares in RAM. Tables II and

III indicate how FFMRA maintains fairness and efficiency.

Table II shows FFMRA distributing resources fairly among

dominant and non-dominant shares and utilizing from the

resource pool’s capacity. According to table III, although

DRF maintains fairness for dominant shares, however the

contribution of those shares in FFMRA in the resource pool

and also resource utilization is higher compared to DRF.

C. A scenario with more than two users

As a general solution, for a system with more users,

the allocation can be calculated using algorithm 1 which

gives an alternative and simple calculation to work out the

allocation for each user. This is note that, after distributing

282

resources among all dominant and non-dominant shares of

each specific resource type, the allocation for each user is

relaxed to proportional sharing that can be seen in parts 13

and 14 of Algorithm 1.

(a) CPU allocation

(b) RAM allocation

Figure 1: The distribution and allocation of resources in three

different algorithms.

Table IV: Resource allocation in three different algorithms

with resource capacity (18 CPU, 36 RAM)

Users User A User B User C User D

Demands 3 , 1 5 , 3 1 , 5 2 , 7

DRF 6 , 2 5 , 3 3 , 12 4 , 14

DRBF 4.8 , 1.6 5 , 3 3.9 , 15.6 4.6 , 16.1

FFMRA 5.7 , 3.4 7.7 , 5.4 1.8 , 12.3 2.8 , 14.3

According to Table IV, the proportion of allocation for

dominant CPU and RAM shares are 13.4/18 = 0.74 and

26.6/36 = 0.74 respectively of which 0.74 = 0.74. For non-

dominant CPU and RAM shares, we have 4.6/18 = 0.25
and 8.8/36 = 0.25 of which 0.25 = 0.25. Therefore,

Algorithm 1 FFMRA algorithm

1: C ← (c1, c2, ..., ci) � Capacity vector

consists of capacity for each resource ci such as CPU,

RAM and etc.

2: TC ← Σci � sum of the capacity of all resources

3: U ← (u1, u2, ..., ui) � total users in the system

4: D ← (d1, d2, ..., di) � dominant shares vector consist

of all the shares which are dominant

5: ND ← (nd1, nd2, ..., ndi) � non-dominant shares

vector consist of all the shares which are non-dominant

6: nD � number of dominant shares

7: nND � number of non-dominant shares

8: SD ← ΣD � sum of all dminant shares

9: SND ← ΣND � sum of all non-dominant shares

10: PD ← TC ∗ SD/SD + SND � The proportion of

total resource pool capacity for dominant shares

11: PND ← TC ∗ SND/SD + SND � The proportion

of total resource pool capacity for non-dominant shares

12: for each ui do
13: A(di)← di + (((PD ∗ ci)/TC)/nD) � The

allocation for each user who has dominant share in any

specific resource type

14: A(ndi)← ndi + (((PND ∗ ci)/TC)/nND) � The

allocation for each user who has non-dominant share in

any specific resource type

FFMRA maintains the balance in the system by distributing

resources evenly among dominant and non dominant shares.

Also, according to Figure 1a, FFMRA tries to allocate more

resources to dominant shares so that as shown in Figure

1, DRF and DRBF allocates considerably less resources to

CPU dominant shares since by looking at Figure 1b, DRF

and DRBF allocates more resource to RAM dominant shares

especially DRBF which considers more Ram in the resource

pool to dominant shares. Considering that the allocation

of CPU resource for dominant shares in DRF and DRBF

has been reduced to increase RAM allocation of dominant

shares, it contradicts the fair resource allocation, so the

balance of the system is not maintained. However, the

numerical analysis reveals the fact that FFMRA keeps the

system in a balanced situation and distributes resources fairly

than DRF and DRBF.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of FFMRA

in terms of resource allocation and utilization. We use the

CloudSim simulation tool to compare FFMRA with DRF

by considering four users submitted tasks over two types of

resources (CPU and RAM). To compare the allocation of

resources in FFMRA and DRF we setup the configuration

of the system to (mips=8000, pe count=1,RAM=16384)

with 100 iterations in milliseconds. All the resource are

283

assumed to be divisible and all the demands are positive.

Workloads have been generated randomly from a stochastic

data generator. In this specific experiment, users 2 and 3

are dominant in CPU and users 1 and 4 are dominant in

RAM. According to Figure 2(a), FFMRA tries to allocate

more resources to dominants and it considers approximately

70-75% of CPU in the resource pool for dominant shares.

However, according to Figure 2(b), DRF allocates more

resource to non-dominant shares. It leads to an unfair

allocation since dominant shares needs more resources to

run their intensive tasks. On the other hand, and according

to Figure 3(a) and (b), again FFMRA allocates considerably

more resources to dominant shares compared to DRF and

allocates approximately 70-75% of RAM in the resource

pool for dominants. So, FFMRA tries to keep the system

in a stable and balanced condition. In other words, when

we consider 70% of the resource pool’s CPU capacity for

dominant shares, it is necessary to consider the same amount

of the resource pool’s RAM capacity for dominants.

In order to evaluate the performance of FFMRA and

compare it with DRF in terms of utilization, we conducted

tests in a large-scale system using randomly selected work-

loads in time series simulations with 500 iterations and 300

virtual machines. According to Figures 4 and 5, FFMRA

outperforms DRF in CPU and RAM utilization. Specifically,

it shows extremely higher RAM utilization compared to

DRF. It is worth nothing that, despite the theoretical nature

of the experiments, the utilization in practical evaluations

is not exactly 100% due to some users not requesting any

specific resource type. We believe that the performance of

FFMRA will be more tangible in the real-time environments

like Apache mesos or VmWare Vsphere in which users dy-

namically join and depart from the system. However, at the

moment, FFMRA policy gives fairer allocation and efficient

utilization than DRF especially in large-scaled systems.

VI. FAIRNESS PROPERTIES ANALYSIS

In this section we explore how FFMRA is able to meet

some desirable fairness properties.

• Theorem 1. FFMRA satisfies envy-freeness.

Proof: Assuming that D represents set of all dominant

shares in entire system. If R = (r1, r2, ..., ri) indicates

each specific resource in the system like CPU, RAM,

and etc. based on algorithm 1 FFMRA considers equal

proportion of the resource pool capacity for each spe-

cific resource in R. So, as an example, for each specific

resource in R if we assume ri and r
′
i are two users

with dominant shares so that ri > r
′
i and both get the

allocation based on Max-Min fairness algorithm which

allocates resources according to what they ask for and

divides the remaining equally among the users, hence,

r
′
i is not be able to envy ri. Therefore, FFMRA meets

envy-free property.

(a) FFMRA

(b) DRF

Figure 2: The allocation of CPU in DRF and FFMRA

Proof: Given that we have two groups of tasks denoted

by r, r∗, and FFMRA increases the allocation of dom-

inant shares of all users in each group based on the

maximum share by proportionality. Indeed, FFRDRF

sums up all dominant shares together and gives them

the highest proportion of total capacity of the system.

So, by balancing the load in each specific resource, we

make sure that each dominant resource share will get

at least 1/n of resource capacity. As an example in

the second scenario with four users, PD for dominant

resources over RAM is 26.6. So, this is more than

the half of the RAM capacity in which by applying

Max-Min fairness, we guarantee that FFMRA satisfies

sharing incentive property.

• Theorem 3 FFMRA satisfies pareto-efficient.

Proof: Again, assuming that r, r∗ denote RAM and

CPU intensive tasks respectively. Any resource of a task

284

(a) FFMRA

(b) DRF

Figure 3: The allocation of RAM in DRF and FFMRA

Figure 4: CPU utilization

Figure 5: RAM utilization

in r, r∗ is able to increase its dominant resource without

decreasing the allocation of other tasks. In another

word, if there are two users i and j which are using

a saturated resource r, then increasing the dominant

share of user i would be decreasing the dominant share

of user j. However, in every step of FFMRA algorithm

by increasing the dominant resource of a user, another

users dominant share is increased as well. So, the

algorithm is pareto-efficient.

• Theorem 4. FFMRA meets strategy-proof in which

users are not able to misreport their demands.

Proof: Assume that a user considers demand vectors dr
and d

′
r in which dr and d

′
r denote true and misreported

demands respectively. Given that FFMRA increases

dominant shares based on available resources in each

stage, if a user with dr tries to manipulate the server by

d
′
r and considering that the capacity constraint is taken

into account, in that case the constraint will be violated

by misreporting the true demand by any user. So, it is

not possible for a user to misreport her demand under

FFMRA allocation policy.

VII. CONCLUSION

In this paper, we proposed FFMRA as a new fair allo-

cation algorithm in cloud environments, inspired by DRF

as the first fair resource allocation algorithm in the cloud.

Although DRF has good fairness features, it contains certain

drawbacks in terms of efficiency and fairness. We presented

that considering only dominant shares is not enough to

meet fairness in the cloud. Hence, by taking into account

both dominant and non-dominant resources we attempted to

provide a new fair allocation algorithm. In order to evaluate

our proposed algorithm, we compared FFMRA with DRF.

Our comparison showed that DRF is not able to maintain

the system in a balanced state and some users may not

285

be able to increase their allocation to meet their needs.

Based on the same results, FFMRA gives around 100%

utilization of resources and guarantees that each user gets

their desired resources. As part of the attempt to further this

work, we are currently in the design and implementation

stage of this algorithm which is being developed with the BT

Group plc and it is based on the on their cloud application

requirements. The CloudSim environment was selected for

the first phase of the work to simulate and get initial results

before deploying the algorithm to the cloud platform. We

are currently working on applying this algorithm within the

companys in-house agile cloud methodologies. Last but not

least, we plan to extend our work to areas of user experience

and socio-technical algorithms, and investigate the societal

impact of fairness algorithms in several application contexts.

REFERENCES

[1] R. Buyya, J. Broberg, and Goscinski Andrzej, Cloud comput-
ing: principles and paradigms. Hoboken, NJ: Wiley, 2011.

[2] G. Lee, B-G. Chn and R. H. Kats,Heterogeneity-Aware Re-
source Allocation and Scheduling in the Cloud, Proceedings of
the 3rd USENIX conference on Hot topics in cloud computing.
June, 2011.

[3] F. L. Pires and B. Barn, Cloud computing resource allocation
taxonomies, International Journal of Cloud Computing, vol. 6,
no. 3, p. 238, 2017.

[4] M. Fleurbaey, Defining fairness,Fairness, Responsibility, and
Welfare , pp. 1540, 2008.

[5] M. Li and D. P. Tracer, Interdisciplinary Perspective on Fair-
ness, Equity, and Justice. S.l.: Springer, 2019.

[6] E. Meskar and B. Liang, Fair multi-resource allocation with
external resource for mobile edge computing, IEEE INFOCOM
2018 - IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), 2018.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, Dominant resource fairness: Fair allocation of
multiple resource types.inProc. USENIX NSDI , vol. 11, 2011,
pp. 2424.

[8] W. Wang, B. Li, and B. Liang, Dominant resource fairness
in cloud computing systems with heterogeneous servers, IEEE
INFOCOM 2014 - IEEE Conference on Computer Communi-
cations, 2014.

[9] P. Poullie, T. Bocek and B. Stiller, ”A Survey of the State-
of-the-Art in Fair Multi-Resource Allocations for Data Cen-
ters,” in IEEE Transactions on Network and Service Man-
agement, vol. 15, no. 1, pp. 169-183, March 2018. doi:
10.1109/TNSM.2017.2743066

[10] P. Saha, A. Beltre and M. Govindaraju, ”Exploring the
Fairness and Resource Distribution in an Apache Mesos Envi-
ronment,” 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), San Francisco, CA, 2018, pp. 434-
441.doi: 10.1109/CLOUD.2018.00061

[11] S. J. BRAMs and A. D. Taylor, Fair division, 1996.

[12] E. Danna, A. Hassidim, H. Kaplan, A. Kumar, Y. Mansour,
D. Raz, and M. Segalo Upward Max Min Fairness, 2012
Proceedings IEEE INFOCOM, 2012.

[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg, Quincy: Fair scheduling for distributed
computing clusters. In SOSP 09, 2009.

[14] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica. Delay Scheduling.

[15] H. Moulin., Fair Division and Collective Welfare. The MIT
Press, 2004.

[16] H. Varian., Equity, envy, and efciency. Journal of Economic
Theory, 9(1):6391, 1974.

[17] H. P. Young., Equity: in theory and practice. Princeton
University Press, 1994.

[18] W. Wang, B. Li, and B. Liang, Dominant resource fairness
in cloud computing systems with heterogeneous servers, IEEE
INFOCOM 2014 - IEEE Conference on Computer Communi-
cations, 2014.

[19] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar,
and Y. Zhao, An Efficient and Fair Multi-Resource Allocation
Mechanism for Heterogeneous Servers, IEEE Transactions on
Parallel and Distributed Systems, pp. 11, 2018.

[20] D. Zarchy, D. Hay, and M. Schapira, Capturing resource
tradeoffs in fair multi-resource allocation, 2015 IEEE Confer-
ence on Computer Communications (INFOCOM), 2015.

[21] S. Tang, Z. Niu, B. He, B.-S. Lee, and C. Yu, Long-Term
Multi-Resource Fairness for Pay-as-you Use Computing Sys-
tems, IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 5, pp. 11471160, Jan. 2018.

[22] L. Zhao, M. Du and L. Chen, ”A new multi-resource alloca-
tion mechanism: A tradeoff between fairness and efficiency in
cloud computing”, China Communications, vol. 15, no. 3, pp.
57-77, 2018.

[23] Y. Jin and M. Hayashi, Efficiency comparison between pro-
portional fairness and dominant resource fairness with two dif-
ferent type resources, 2016 Annual Conference on Information
Science and Systems (CISS), 2016.

[24] Q. Zhu and J. C. Oh, An Approach to Dominant Resource
Fairness in Distributed Environment, Current Approaches in
Applied Artificial Intelligence Lecture Notes in Computer
Science, pp. 141150, 2015.

286

