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Active Online Learning for Social Media
Analysis to Support Crisis Management

Daniela Pohl, Abdelhamid Bouchachia SMIEEE, and Hermann Hellwagner SMIEEE

Abstract—People use social media (SM) to describe and discuss different situations they are involved in, like crises. It is therefore
worthwhile to exploit SM contents to support crisis management, in particular by revealing useful and unknown information about
the crises in real-time. Hence, we propose a novel active online multiple-prototype classifier, called AOMPC. It identifies relevant
data related to a crisis. AOMPC is an online learning algorithm that operates on data streams and which is equipped with active
learning mechanisms to actively query the label of ambiguous unlabeled data. The number of queries is controlled by a fixed
budget strategy. Typically, AOMPC accommodates partly labeled data streams. AOMPC was evaluated using two types of data:
(1) synthetic data and (2) SM data from Twitter related to two crises, Colorado Floods and Australia Bushfires. To provide a
thorough evaluation, a whole set of known metrics was used to study the quality of the results. Moreover, a sensitivity analysis
was conducted to show the effect of AOMPC’s parameters on the accuracy of the results. A comparative study of AOMPC against
other available online learning algorithms was performed. The experiments showed very good behavior of AOMPC for dealing
with evolving, partly-labeled data streams.

Index Terms—Online Learning, Multiple Prototype Classification, Active Learning, Social Media, Crisis Management
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1 INTRODUCTION

The primary task of crisis management is to identify
specific actions that need to be carried out before
(prevention, preparedness), during (response), and
after (recovery and mitigation) a crisis occurred [28].
In order to execute these tasks efficiently, it is help-
ful to use data from various sources including the
public as witnesses of emergency events. Such data
would enable emergency operations centers to act and
organize the rescue and response. In recent years,
a number of research studies [47] have investigated
the use of social media as a source of information
for efficient crisis management. A selection of such
studies, among others, encompasses Norway Attacks
[45], Minneapolis Bridge Collapse [35], California
Wildfire [62], Colorado Floods [18], and Australia
Bushfires [23], [22]. The extensive use of SM by people
forces (re)thinking the public engagement in crisis
management regarding the new available technolo-
gies and resulting opportunities [13].

Our previous work on SM in emergency response
focused on offline and online clustering of SM mes-
sages. The offline clustering approach [48] was ap-
plied to identify sub-events (specific hotspots) from
SM data of a crisis for an after-the-fact analysis. Online
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clustering [46] was used to identify sub-events that
evolve over time in a dynamic way. In particular,
online feature selection mechanisms were devised as
well, so that SM data streams can be accommodated
continuously and incrementally.

It is interesting to note that people from emergency
departments (e.g., police forces) already use SM to
gather, monitor, and to disseminate information to
inform the public [21]. Hence, we propose a learning
algorithm, AOMPC, that relies on active learning to
accommodate the user’s feedback upon querying the
item being processed. Since AOMPC is a classifier, the
query is related to labeling that item.

The primary goal in using user-generated contents
of SM is to discriminate valuable information from
irrelevant one. We propose classification as the dis-
crimination method. The classifier plays the role of
a filtering machinery. With the help of the user, it
recognizes the important SM items (e.g., tweets), that
are related to the event of interest. The selected items
are used as cues to identify sub-events. Note that an
event is the crisis as such, while sub-events are the top-
ics commonly discussed (i.e., hotspots like flooding,
collapsing of bridges, etc. in a specific area of a city)
during a crisis. These sub-events can be identified
by aggregating the messages posted on SM networks
describing the same specific topic [46], [49].

We propose a Learning Vector Quantization (LVQ)-
like approach based on multiple prototype classifica-
tion. The classifier operates online to deal with the
evolving stream of data. The algorithm, named active
online multiple prototype classifier (AOMPC), uses un-
labeled and labeled data which are tagged through
active learning. Data items which fall into ambiguous
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regions are selected for labeling by the user. The
number of queries is controlled by a budget. The
requested items help to direct the AOMPC classifier to
a better discriminatory capability. While AOMPC can
be applied to any streaming data, here we consider in
particular SM data.

The contributions of this paper are as follows:
• An original online learning algorithm, AOMPC,

is proposed to handle data streams in an efficient
way. It is a multi-prototype LVQ-like algorithm
inspired by our previous work [9], [8].

• As part of AOMPC, an active learning strategy
is introduced to guide AOMPC towards accurate
classification, and in this paper towards sub-
event detection. Such a strategy makes use of
budget and uncertainty notions to decide when
and what to label.

• AOMPC is evaluated on different data: synthetic
datasets (synthetic numerical data, generated mi-
croblogs, which are geo-tagged) and real-world
datasets collected from Twitter related to two
crises, Colorado Floods in 2013 and Australia
Bushfires in 2013. The choice and the use of all
these datasets was motivated by their diversity.
That allows to thoroughly evaluate AOMPC be-
cause these datasets have different characteristics.

• A sensitivity analysis based on the different
AOMPC parameters and datasets is carried out.

• A comparison of AOMPC against well-known
online algorithms is conducted and discussed.

The paper has the following structure. Section 2
presents the related work covering streaming and
SM analysis. Section 3 introduces the classification
algorithm and describes the processing steps, includ-
ing the active learning facets. Section 4 discusses the
empirical evaluation of AOMPC after describing the
datasets used. Section 5 concludes the paper.

2 RELATED WORK

The problem addressed in this paper is related to sev-
eral topics: multiple prototype and Learning Vector
Quantization (LVQ) classification, online learning for
classification, active learning with budget planning,
and social media analysis (i.e., natural language pro-
cessing). A short overview of these topics is presented
in the following.

2.1 Multiple Prototype Classification and LVQ
Classification
A prototype-based classification approach operates on
data items mapped to a vector representation (e.g.,
vector space model for text data). Data points are clas-
sified via prototypes considering similarity measures.
Prototypes are adapted based on items related/similar
to them.

A Rocchio classifier [37] is an example of a single
prototype-based classifier. It distinguishes between

two classes, e.g., “relevant” and “irrelevant”. In real
world-scenarios, due to the nature of the data, it
is often not possible to describe the data with a
single prototype-based classifier. Multiple prototype
classifiers (i.e., several prototypes) are needed.

Self organizing maps (SOM) introduced by Koho-
nen [32] are an unsupervised version of prototype-
based classification, also known as LVQ. In this
case, prototypes are initialized (e.g., randomized) and
adapted. SOM was also used for SM analysis in the
context of crisis management to identify important
hotspots [48].

LVQ has been applied to several areas, e.g., robotics,
pattern recognition, image processing, text classifica-
tion etc. [20], [32], [60]. LVQ - in the context of sim-
ilarity representation, rather then vector-based repre-
sentation - is analyzed by Hammer et al. [25]. Mokbel
et al. [38] describe an approach to learn metrics for
different LVQ classification tasks. They suggest a met-
ric adaptation strategy to automatically adapt metric
parameters.

Bezdek et al. [6] review several offline multiple
prototype classifiers, e.g., LVQ, fuzzy LVQ, and the
deterministic Dog-Rabbit (DR) model. The latter limits
the movement of prototypes and is similar to our
approach. However, in contrast to our approach, DR
uses offline adaptation of the learning rate. The time-
based learning rate of our algorithm considers con-
cept drift (i.e., changes of the incoming data) directly
during the update of the prototypes.

In contrast to the previous approaches,
Bouchachia [8] proposes an incremental supervised
LVQ-like competitive algorithm that operates online.
It consists of two stages. In the first stage (learning
stage), the notions of winner reinforcement and rival
repulsion are applied to update the weights of the
prototypes. In the second stage (control stage), two
mechanisms, staleness and dispersion are used to get
rid of dead and redundant prototypes.

A summary of different prototype based learning
approaches can be found in Biehl et al. [7]. In this
study, we deal with online real-time classification and
we propose a multi-prototype quantization algorithm,
where the winning prototype is adapted based on
the input. In particular, the algorithm relies on online
learning and active learning.

2.2 Online Learning and Active Learning (with
Budget Planning)

Online learning receives data items in a continuous
sequence and processes them once to classify them
accordingly [64]. Bouchachia and Vanaret [10], [11]
use Growing Gaussian Mixture Models for online
classification. Compared to the algorithm proposed
in this work, there is a difference in adapting the
learning rate and representing the prototypes. Reuter
et al. [52] use multiple prototypes representing an
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event. New incoming items are assigned to the most
similar events (by using an offline-trained SVM) or
otherwise new events are created.

Another important topic in streaming analysis is
active learning to improve results of classification
with an amount of labeled data actively asked by
the system [55]. Ienco et al. [29] use a pre-clustering
step to identify relevant items to be labeled by the
user. In Smailović et al. [57] active learning is used to
improve the sentiment analysis of incoming tweets as
an indicator for stock movements. Hao et al. [27] de-
sign two active learning algorithms (Active Exponen-
tially Weighted Average Forecaster and Active Greedy
Forecaster) which includes feedback of experts for
labeling. The approach considers confidence of la-
bels from the classifier compared to a set of experts.
Hao et al. [26] also introduce online active learning
considering second order information, e.g. based on
covariance matrix. Ma et al. [36] combine decision
trees with active learning. This approach improves the
learning step for decision trees. Bouguelia et al. [12]
use instance weighting for active online learning.
They consider the weight that must be changed to
cause the classifier changing its prediction. If only a
small change in weight changes the original classifi-
cation, then the classifier is highest uncertain about
the item.

Monzafari et al. [39] study different batch-based
active learning approaches and define two uncertainty
strategies to query labels from crowdsourcing plat-
forms. In addition, the authors also define a budget
or goal constraint to limit labeling. Žliobaitė et al. [63]
use active learning combined with streaming data.
They suggest several processing mechanisms to iden-
tify uncertainty regions especially for handling data
drifts. It is also important to minimize the number of
queries, asking an expert for labels. Žliobaitė et al. [63]
include a moving average over the incoming items
and the amount of already labeled items to estimate
the budget. We adopted this mechanism together with
the uncertainty strategies.

Based on categorization of active learning ap-
proaches by Settles et al. [55], our implementation
is classified as a stream-based selective sampling
approach, considering different strategies to request
instances for labeling. In addition, we use an online
feature selection approach described later.

2.3 Social Media Analysis for Crisis Management

Recent research studies SM from several technical
perspectives. Due to space limitations, we describe
existing SM analysis frameworks mostly in the con-
text of crisis management, although there are several
frameworks in other contexts, e.g., Twitterbeat [56]
and HarVis [2]. Backfried et al. [3] describe an analysis
approach based on visual analytics for combining
information from different sources with a specific

focus on multilingual issues. Vieweg and Hodges [30],
[61] describe the Artificial Intelligence for Disaster Re-
sponse (AIDR) platform, where persons annotate in-
coming tweets (similar to Amazon Mechanical Turk).
The tweets are then used to train classifiers to identify
more relevant tweets. AIDR allows to classify incom-
ing tweets based on different information categories,
e.g., damage report, casualties, advises, etc. Chen et
al. [15] analyse tweets related to Flu to identify topics
for predicting the Flu-peak. Neppalli et al. [40] per-
form sentiment analysis based on social media related
to Hurricane Sandy. The work shows that sentiment
of users is related to the distance of the Hurricane
to the users. Twitcident described by Abel et al. [1]
is a framework to search and filter Twitter messages
through specific profiles (e.g., keywords). Terpstra et
al. [59] show the usage of Twitcident in crisis manage-
ment. Tweak-the-Tweet introduced by Starbird et al.
[58] defines a grammar which can be easily integrated
in tweets and therefore automatically parsed. Also,
TEDAS described by Li et al. [34] is a system to detect
high-level events (e.g., all car accidents in a certain
time period) using spatial and temporal information.
Yin et al. [66], [65] design a situational awareness
platform for SM. Tweets are analyzed based on bursty
keywords to identify emergent incidents. Ragini et
al. [50] combine several techniques to identify people
in danger. They examined rule based classification
and several machine learning approaches, like SVM,
for hybrid classification.

Additional information on social media analy-
sis in different crises can be found in Reuter and
Kaufhold [51]. Due to the importance of SM, it is
our aim to support emergency management when
using the content of SM platforms. Currently, there are
systems with crowd-sourcing platform characteristics,
but no procedure (like active learning) is available to
directly involve emergency management personnel in
filtering relevant information.

3 ACTIVE ONLINE MULTIPLE PROTOTYPE
CLASSIFIER (AOMPC)
Due to the fact that SM data is noisy, it is important
to identify relevant SM items for the crisis situation at
hand. The idea is to find an algorithm that performs
this classification and also handles ambiguous items
in a reasonable way. Ambiguous denotes items where
a clear classification is not possible based on the
current knowledge of the classifier. The knowledge
should be gained by asking an expert for feedback.
The algorithm should be highly self-dependent, by
asking the expert only labels for a limited number
of items.

Therefore, we propose an original approach that
combines different aspects - such as online learn-
ing and active learning - to build a hybrid classi-
fier, AOMPC. AOMPC learns from both, labeled and
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TABLE 1
List of symbols used

Variable Description
x Input (one item) received by the data stream X

with btCT batches
V Set of currently known prototypes
α A parameter used in Alg. 1 to compute the stal-

eness of a prototype. It is given as: α = e
−log2
β ,

where β is the half-life span, denoted hereafter
as (1/2)-life-span, described in [31] that refers to
the amount of time required for a quantity to fall
to half its value as measured at the beginning
of the time period.

I Set of indices i indicating the prototypes vi

dist Appropriate distance measure; see Algorithm 2
UT Threshold used to identify uncertainty
CT Current time
LTU Last time the prototype was updated (i.e., the

winner)
S List of nearest prototypes in ascending order to

the current input x
label Labels are: relevant, irrelevant, and unknown

unlabeled data, in a continuous and evolving way.
In this context, AOMPC is designed to distinguish
between relevant and irrelevant SM data related to
a crisis situation in order to identify the needs of
individuals affected by the crisis. AOMPC relies on
active learning. It implies the intervention of a user in
some situations to enhance its effectiveness in terms
of identifying relevant data and the related event in
the SM stream of data (see Fig. 1). The user is asked to
label an item if there is a high uncertainty about the
classification as to whether it is relevant or irrelevant.
The classifier assigns then the item (be it actively
labeled or unlabeled) to the closest cluster or uses it to
create a new cluster. A cluster - in this case - represents
either relevant (i.e., specific information about the
crisis of interest) or irrelevant information (i.e., not
related to the crisis). The process flow and the steps of
AOMPC are shown in Fig. 1. AOPMC is described in
Algorithm 1. The used symbols are defined in Tab. 1.
CT and LTU are updated in batch-mode due to the
feature selection method used (see Section 3.3 for
details). The algorithm could also be used in item-
wise mode. The general idea of this algorithm is
that the longer a prototype is stale (not updated), the
slower it should move to a new position. The learning
rate α is a function of the last time the prototype was
a winner (i.e., α can be seen as a forgetting factor). The
winning prototype is computed based on the learning
rate (steps 5-6). If there is an uncertainty detected
(see Section 3.2) and enough budget is available (see
Section 3.1), the label is queried (steps 7-11). Other-
wise (e.g., not enough budget) the winning prototype
defines the label (step 16). When a prototype wins the
competition among all other neighboring prototypes
based on the queried label, it is updated to move in
the direction of the new incoming item (steps 17-20).
In case the new input comes with new features, the
prototype’s feature vector is extended to cover those

Algorithm 1 : Steps of AOMPC
Input: Data stream X
Output: List of prototypes V

1: CT=1; LTU=CT;
2: Let CT and LTU indicate the current time and the last

time a prototype was updated respectively
3: for batch btCT of X do
4: for incoming input x of btCT do
5: Compute distance ϕi between x and all prototypes

vi, i = 1 · · · |V | = I , as follows:
if (inaction(vi) > 0) ϕi = inaction(vi) · dist(vi, x)

else ϕi = dist(vi, x) end if (1)

such that inaction(vi) = 1− α(CT−vi.LTU)

6: Compute list of nearest prototypes S
based on sorted index I such that
S = createSortedList(I, (x, y)) : (ϕx ≤ ϕy)

7: check = uncertainty(x) and within budget();
8: if check = true then
9: Query the label of x

10: else
11: x.label = unknown
12: end if
13: if S 6= {} then
14: Let j be the index of the closest prototype: j =

S(1)
15: if x.label = unknown then
16: Assign the data item to vj

17: else
18: if x.label = vj .label then
19: Reinforce vj with x using only the common

features:
vj = vj + αCT−LTU (x− vj)

20: Add the non-common features of x to vj :
vj .feature = αCT−LTU (x.feature)

21: else
22: Go to line 26
23: end if
24: end if
25: else
26: Initialize a new prototype: vnew=x
27: vnew.label = x.label; vnew.LTU = CT
28: V = V ∪ {vnew}
29: end if
30: end for
31: Update winning clusters in btCT with LTU = CT
32: CT = CT + 1;
33: end for

new textual features (see step 20). In general, AOMPC
is capable of accommodating new features. In the case
of textual input, like in this study, the evolution of the
vocabulary over time is captured. When no prototype
is sufficiently close to the new item (step 22), a new
prototype is created to accommodate that item (steps
26-28).

Algorithm 1 relies on the computation of the dis-
tance between the input and the existing prototypes
(e.g., Euclidean distance in Algorithm 2). Because the
SM items usually consist of a textual description (c.f.,
tweets), we apply the Jaccard coefficient [37] as a
text-based distance (dist text) (see Algorithm 2, steps
2-3). If the social media items consist of two parts,
the body of the message and the geo-location that
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Fig. 1. Processing steps

indicates where the message was issued in terms
of coordinates, then we apply a combined distance
measure (dist text+dist geo)/2. Specifically, dist text
refers to the Jaccard coefficient, while dist geo is the
Haversine distance [53], [5] described in Algorithm 2,
steps 4-7. The coordinates are expressed in terms of
latitude and longitude.

Moreover steps 4-12 of Algorithm 1 are related to
the active learning part. The algorithm starts by check-
ing whether the new input item lies in the uncertainty
region between the relevant and irrelevant prototypes
and whether there is enough budget for labeling this
item. More details follow in the next section.

3.1 Definition of Budget
The idea of active learning is to ask for user feedback
instead of labeling the incoming data item automat-
ically. To limit the number of interventions of the
user, a so called budget, is defined. Budget can be
understood as the maximum number of queries to the
user. We adapt the method presented in [63] to imple-
ment active learning in the context of online multiple
prototype classification. In step 7 of Algorithm 1, the
method within budget() checks if enough budget is
available for querying the user. The consumed budget
after k items, bk is defined in [63] as follows:

uk = uk−1λ+ labelingk; λ = (w − 1)/w; bk =
uk
w

(3)

where uk estimates the amount of labels already
queried by the system in the last w steps. The window
w acts as memory [63] (e.g., last 100 item steps)
described by λ. Hence, λ describes the fraction of

Algorithm 2 : dist(v, x)
Input: Prototype v , input x
Output: Distance of (v,x)

1: if the input is a social media item then
2: Compute the textual distance (Jaccard) as follows:

dist text = 1− jaccard, where:
jaccard = |A ∩B|/|A ∪B|;

3: distance = dist text;
4: if the input is a composed social media item then
5: Compute the geo-location distance as follows:

dist geo = 1−H(v.geo co, x.geo co)/π
where:

H(x1, x2) = 2 · atan2(
√
φ,

√
1− φ)

φ = sin2(
∆lat

2
) + cos(x1.lat) ·

cos(x2.lat) · sin2(
∆lon

2
)

∆lat = x2.lat− x1.lat,

∆lon = x2.lon− x1.lon

6: distance = (dist geo+ dist text)/2;
7: end if
8: else
9: Note: the input is no social media item

10: Compute the Euclidean distance as follows:

dist Euclidean(v, x) =

√√√√ M∑
i=1

(vi − xi)2 (2)

11: end if

including value uk−1. labelingk updates uk based on
the requested label (i.e., labelingk = 0 if no label
was queried and labelingk = 1 if there was a label
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requested) for the current item k.
An upper bound B is defined describing the maxi-

mum number of requested labels. B is the fraction of
data from window w that can be labeled (i.e., B = 0.2
are 20%). At each step, one input is processed. The
within budget() procedure in Algorithm 1 checks if
enough budget is available (i.e., bk < B). If so, the
algorithm queries the label of the ambiguous input.

3.2 Which Data Items to Query?

In active learning, before querying the label, one
has to decide which data points to query. Obviously
one has to find those points, for which the classifier
is not confident about the assignment decision (see
Algorithm 1, step 7). In this paper, we use a simple
mechanism based on the neighboring prototype prox-
imity and labels. An input x is queried if its two most
closest prototypes, vi and vj with distances ϕi and ϕj ,
respectively, and where i = S(1) and j = S(2), have
different labels. Eq. 4 below formalizes the test which
is called simple conflicting neighborhood (SCN) hereafter.

uncertainty(x) =


1 if (|S| < 2) or

(|ϕi − ϕj | < UT and
vi.label 6= vj .label)

0 otherwise

(4)

However, to make the selection more constrained, a
second variant is introduced. In fact, it is worthwhile
to look at the border area of the inter-class uncertainty
regions, where the labels are very important/useful.
This border area could be used to track concept drift.

Eq. 5 shows the constraint by multiplying the
threshold UT by a random number m that has a uni-
form distribution in unit interval [0,1] (m ∼ U(0, 1))
[63]. This variant is called controlled variable conflicting
neighborhood (CVCN).

uncertainty(x) =



1 if (|S| < 2) or
(|ϕi − ϕj | < (UT ∗m)

and vi.label 6= vj .label
where m ∼ U(0, 1))

0 otherwise

(5)

Moreover, the threshold UT can be continuously
updated, as proposed in [63], according to the follow-
ing rule:
uncertainty(x) =


1 if (|S| < 2) or

(|ϕi − ϕj | < UT and
vi.label 6= vj .label)

0 otherwise
UT = UT + (−1)uncertainty ∗ step

(6)

where step is set to 0.01 as suggested in [63]. We name
this variant dynamic conflicting neighborhood (DCN).
In the given equation it is combined with the SCN

strategy. Additionally, we combined it with the CVCN
strategy given above.

As a baseline for comparison, we implement a ran-
dom version (see Eq. 7). We name this variant random
conflicting neighborhood (RCN).

uncertainty(x) =



1 if (|S| < 2) or
(|ϕi − ϕj | < r

and vi.label 6= vj .label
where r ∼ U(0, 1) is a
random variable)

0 otherwise

(7)

We also implemented another version, called Ran-
dom (R) that assumes a fixed uncertainty given by UT
as shown in Eq. 8.

uncertainty(x) =



1 if (|S| < 2) or
(r < UT )

where r ∼ U(0, 1) is a
random variable)

0 otherwise

(8)

We ignore an absolute pure random version r < B,
because it would increase the number of queries
drastically compared to the other uncertainty variants.

3.3 Dynamic Representation of Social Media
Stream
The SM items considered in our work are textual
documents and therefore their representation will rely
on the standard tf-idf [46], [37]. In this case, a doc-
ument is represented as a bag-of-words. However,
because social media documents arrive online and
are processed as batches, tf-idf should be adapted
to meet the streaming requirement [46]. Basically,
the importance of a word is measured based on the
number of incoming documents containing that word.
Thus, the evolution of a term’s importance should be
reflected in the formulation of tf-idf. Here, we use a
factor that scales tf-idf so that the importance increases
and decreases according to the term’s presence in the
incoming batches (see Eq. 9).

scaled tf idft,d = importancet,τ · tft,d · idft (9)

The importance factor importancet,τ of term t is cal-
culated over batches (windows) marked by time τ .
The length of the batch is defined by the user (e.g., 30
minutes). It depends on the nature of the crisis. Slow
evolution of the crisis may require longer windows,
while fast evolution requires short windows. Terms
with low importance value are removed from the
index. For instance, if importance < 0.2, then 80%
of the term’s importance is lost. The importance of
a term is computed as follows:

importancet,τ = gt,τ/g maxt (10)
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where gt,τ is the weight of term t obtained at time
τ . The weight gt,τ is refreshed based on intermediate
sampling intervals (i.e., sub-batches, like every 10
minutes). g maxt is the maximum weight the term
t reached. gt,τ is expressed as follows:

gt,τ =

{
(1− γ) · ut,τ + γ · gt,τ−1 if ut,τ > gt,τ−1

(1− δ) · ut,τ + δ · gt,τ−1 otherwise
(11)

where ut,τ describes the incoming SM items contain-
ing t till time τ and gt,τ−1 is the weight of term t of
the previous sampling interval τ − 1. Case 1 of Eq. 11
shows how fast terms are learned (i.e., a smaller γ
corresponds to faster increase of importance). Case 2
of Eq. 11 shows how fast terms should be forgotten
(i.e., a higher δ corresponds to slower forgetting or
decrease of importance). The values γ and δ are
empirically set by the user. We suggest that γ < δ so
that terms are learned faster, compared to forgetting
them again.

4 EVALUATION

In the following we present the experimental setting
including the datasets and the metrics we used. We
then describe the experiments and their outcomes.

4.1 Synthetic Datasets
To evaluate AOMPC, we use two synthetic datasets.
The first one is a 2-dimensional numerical dataset
and the second one is a collection of SM messages
artificially generated by a tool. These datasets allow
to observe the behavior of the algorithm, especially
because it simulates data drift. The artificial SM data
is used to evaluate the online classifier on geo-tagged
textual data which is close to the real-world data.

The simple 2-dimensional synthetic dataset is based
on Gaussian data (GD). GD consists of 4 batches (see
Fig. 2) which are sequentially presented to AOMPC.
Each batch consists of 200 points, generated by two
Gaussians which actually represent two clusters. The
upper clusters (100 points each), denoted as ’x’, are as-
sumed “irrelevant”, while the lower clusters, denoted
as ’o’, are assumed “relevant”. Batch-4 given in Fig. 2
contains a virtual or temporary drift caused by abrupt
changes of the feature values [24].

The geo-tagged text collection, synthetic social media
dataset (SSMD), was generated using a tool1 we orig-
inally developed for integrating SM into emergency
exercises (i.e., training of first responders). We gener-
ated microblogs using a data generation tool we de-
veloped and which is based on a set of predefined text
snippets that describe sub-events like ”vehicles and
garbage dumps on fire”, ”police attacked by rioters”,
and ”shop on fire nearby” (see Fig. 3(a)). The ran-
domly generated data follows the timeline of the UK

1. http://www.bridgeproject.eu/content/bridge information
intelligence flyer.pdf, [Accessed: August 2014]
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Fig. 2. GD dataset to simulate the stream appearing in
the order batch-1, batch-2, batch-3, batch-4

riots (see [4]) described as an XML file (see Fig. 3(b)).
This way we generate data which describes incidents
close to what happened in reality. The XML file covers
the different phases and particularly the sub-events
of the UK riots which are marked as relevant or
irrelevant using a tag (relevant) to provide the ground
truth for the experiments. Irrelevant sub-events in the
data are represented by real-world tweets collected
from Twitter in relation to a given location (e.g., Lon-
don), while relevant sub-events are based on the text
snippets. On the other hand, additional data, in the
form of textual annotations, was collected from Flickr
and YouTube and was labeled based on the real-world
sub-events of the riots (see [48]). In total, we used a
collection of 1227 messages, mostly covering London
districts. The data collected over 28 hours (’2011-08-06
19:44:00’ to ’2011-08-07 23:44:00’) covers several calm
periods during the riots. The data is split into 30-
minutes batches to observe the behavior of AOMPC.
The number of messages relevant to the riots is 312,
with 116 distinct text messages. Furthermore, there are
915 irrelevant messages with 789 distinct messages. In
all, the dataset contains approximately 322 repetitions
of text messages. Repetition refers to messages that are
very similar and correspond to retweets.

4.2 Real-World Datasets
The CrisisLexT26 collection [41] was recently made
available to the community. It consists of Twitter data
related to 26 crises around the world. Each crisis is de-
scribed by 1,000 items which were randomly selected
and labeled through a crowdsourcing platform. The
class labels of the items were assigned by the majority
of three crowdsourcing workers. Four categories are
available: related to the crisis and informative, related to
the crisis - but not informative, not related and not appli-
cable. In our case, we have considered items relevant
only when they are labeled as related to the crisis and
informative. Otherwise, they are considered irrelevant.

We selected two datasets from the CrisisLexT26
collection: Colorado Floods (CF) and Australia Bush-
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(a) Data Generation Tool GUI (b) UK riots stream in XML format

Fig. 3. Data Generation Tool

fires (AB) which are dated but not geo-tagged. CF
data is from the period ’2013-09-12 07:00:00’ - ’2013-
09-29 10:00:00’. The data is somewhat imbalanced,
the number of relevant items is larger than that of
the irrelevant ones. CF data consists of 751 relevant
items and 224 irrelevant items and approximately
189 repetitions. Considering the number of relevant
and irrelevant items of SSMD, CF has an opposite,
but very similar, distribution. AB data is from the
period ’2013-10-17 05:00:00’ - ’2013-10-29 12:30:00’.
It consists of 645 relevant, 408 irrelevant items and
approximately 385 retweets.

4.3 Evaluation Measures

Because AOMPC combines clustering and classifica-
tion, we developed a combined performance measure,
called combined quality measure (CQM), to evaluate the
algorithms. It is defined as follows:

CQM = [0.3 ∗
∑|Bt|
i=1 vmi

|Bt|
] + (12)

[0.5 ∗
∑|Bt|
i=1 (1− eri/100)

|Bt|
] +

[0.2 ∗ (1− (Q/#items))]

It refers to two other known measures, namely the
validity measure (VM) and the error-rate (ER) mea-
sure (see Appendix A for details). In terms of active
learning budget B, the number of queries (Q) has
been taken into account. In Eq. 12, Bt is the set of
batches (Bt = {bt1, · · · , bt|Bt|}) and vmi and eri are
the values of VM and ER for batch bti respectively.
#items is the number of items. As shown in Eq. 12,
the measures are weighted based on their importance.
ER is weighted with a factor of 0.5 due to its high
importance, followed by VM with weight 0.3. Finally,
the number of queries is weighted with 0.2. A high
value of CQM corresponds to high clustering quality.

4.4 Experiments and Results
We conducted extensive analysis. In particular, we
did a sensitivity analysis to observe the effect of the
algorithm’s parameters: α, β, the threshold UT (see
Alg. 1 and Tab. 1), and the budget B (see Sec. 3.1).
In this section, we describe the outcome of the ex-
periments on the datasets using different settings as
shown in Tab. 2. We focus on the performance of
the different uncertainty strategies using CQM. The
α-setting represents the fixed and variable α settings.

TABLE 2
Evaluation Parameters

Parameter Values/Instances
B B = 0.1, 0.2, . . . 0.5 with w = 100
UT 0.1, 0.2, 0.3
β 1, 2, 3, 4
fixed α 0.01 and 0.03

variable α α = e
−log(3)

β as (1/3)-life-span

α = e
−log(2)

β as (1/2)-life-span

α = e
log(2/3)

β as (2/3)-life-span

α = e
log(7/8)

β as (7/8)-life-span
Active Learning Method SCN, CVCN, SCN with DCN,

CVCN with DCN, R, and RCN
α-setting #1 equals to 0.01 (fixed α)
α-setting #2 equals to 0.03 (fixed α)
α-setting #3 equals to (1/3)-life-span (var. α)
α-setting #4 equals to (1/2)-life-span (var. α)
α-setting #5 equals to (2/3)-life-span (var. α)
α-setting #6 equals to (7/8)-life-span (var. α)

Gaussian Dataset (GD). Considering the most sen-
sitive parameters, namely B and α (see Appendix B),
the effect of active learning methods is illustrated in
Fig. 4. The other parameters B and UT are discussed
in Appendix B. In general it can be seen that the
uncertainty strategy R yields the lowest CQM value
and that RCN tends to query more often, since the
pure random threshold r varies between 0 and 1 (see
Sec. 3.2). For example, SCN has a query ratio of 0.14
and RCN a ratio of 0.2 to achieve a similar ER value
(SCN with ER=1.250 and RCN with ER=1.370). On
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Fig. 4. Results of the different active learning methods using the Gaussian data (GD) and the CQM measure.

average, SCN variants show the most stable results,
while the CVCN variants slightly increase CQM for
small values of B (i.e., B ≤ 0.2), because they focus
on concept drift near to the uncertainty boundary.

Synthetic Social Media Dataset (SSMD). The ac-
tive learning strategies (SCN, CVCN, SCN with DCN
and CVCN with DCN) given in Fig. 5 show that
they outperform the random method R. Again, RCN
shows good performance due to the higher variety
of the threshold. For CVCN with DCN 0.22 queries
and RCN 0.24 queries out of B = 0.3 are requested,
reaching an ER of 7.3225 and 7.4984, respectively. A
high value of B increases the overall quality of the re-
sults independently of the method (i.e., more labeled
data is available to build the classification model).
The CVCN options performs best for high values of
B for the different α settings. In general, the active
learning options SCN with DCN and CVCN with DCN
perform best. This might indicate that concept drift
appears along the uncertainty region border as those
“with DCN” methods vary the border by changing
UT . This behavior is expected, since data varies in
a small range, i.e., geo-data within London area with
similar incidents (damages caused by riots).

Colorado Floods (CF). Fig. 6 illustrates the outcome
of AOMPC on the CF data for the different active
learning strategies. The results of CF indicate good
performance for the fixed α values and especially
for a low budget B. The results corresponding to
variable α are better than those obtained with fixed
α. Note that higher α leads to fast update of the
AOMPC prototypes and that variable α requires less
queries (see Tab. 5). Based on the Levenshtein distance
(ldis) ([33], for calculating similarity between charac-
ter strings), there exist 105 items with similar text (i.e.,
ldis ≤ 0.2) in CF, which is a quite small number.

This also indicates that the length of the repeating
text fragments are very small (105 vs. 189 repetitions
of text). Therefore, the small number of similar items
for this long period of the crisis and the performance
related to the variable α with a fast adaptation are
an indication that there are drifts in CF not near the
inter-class border as defined by UT .

Australian Bushfires (AB). AOMPC’s results on
AB are illustrated in Fig. 7. The variable α shows
nearly the same performance, but this time it is worse
compared to the values obtained on CF. The AB
dataset has a high amount of similar items, which
is 582 (items with ldis ≤ 0.2). This high amount of
similar items is an indicator that changes in data are
more common around the boundary, because similar
vocabulary within the items is used. AOMPC shows
the best performance with a fixed α value for all
budget settings. Due to the high similarity between
items combined with conflicting labels, it is more dif-
ficult to distinguish between relevant and irrelevant
items. Consider the following example, which shows
the same tweet, but labeled differently [41] (Related-
and-informative and Not-related):

• Wed Oct 16 17:12:46 +0000 2013: ”RT @Xxxxx: A
dog has risked its life to save a litter of newborn
kittens from a house fire in Melbourne, Australia
http://t.co/Gz..”,Eyewitness,Affected individuals,Related
and informative

• Wed Oct 16 17:13:57 +0000 2013: ”RT @Xxxxx: A dog has
risked its life to save a litter of newborn kittens from a
house fire in Melbourne, Australia http://t.co/Gz...”,Not la-
beled,Not labeled,Not related

AB is an interesting dataset for testing the algorithms
under various conditions. Fixed α provides much
better quality on AB compared to other α-settings as
shown in Fig. 7. Considering Figs. 7 and 6, we can
conclude a fixed learning rate of α and “with DCN”
active learning strategies produce good performance
for both CF and AB, especially, for low values of B.
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Fig. 5. Results of the different active learning methods using the synthetic social media dataset (SSMD) and the
CQM measure
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Fig. 6. Results of the different active learning methods using the Colorado Floods dataset (CF) and the CQM
measure

4.5 Comparative Studies: AOMPC vs. Others

Beside the experiments with different datasets and pa-
rameters, we compare AOMPC against the unsuper-
vised k-means algorithm that operates without labels
and against a set of supervised online algorithms that
require full labeling. This choice should help assess
AOMPC against the extreme ends of the labeling
spectrum:

• k-means: Given the online setting, the algorithm
is run on batches of the data, setting the number
of clusters to 10. For the real-world datasets (CF
and AB) k-means has been initialized with 5
clusters, because there are fewer items per batch
compared to the other datasets. For each batch

bti ∈ Bt of the data stream, the final centers ob-
tained from the previous batch serve to initialize
the centers of the current batch.

• Discriminative Online (Good?) Matlab Algo-
rithms (DOGMA) [42]: The following algorithms
are considered: PA-I [17], RBP and Perceptron
[14], Projectron [44], Projectron++ [44], Forgetron
(Kernel-Based Perceptron) [19], and Online Inde-
pendent Support Vector Machines (OISVM) [43].
Because these algorithms are fully supervised,
they are trained on all labeled data that is allowed
by the budget B.

Running k-means on the different datasets produces
the results shown in Tab. 3. CQM is calculated con-
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Fig. 7. Results of the different active learning methods using the Australia Bushfires dataset (AB) and the CQM
measure

TABLE 3
K-means: Avg. results for GD, SSMD, CF, and AB

Q VM ER CQM
GD 0 0.8270 2.8750 0.9337
SSMD 0 0.8143 4.7216 0.9207
CF 0 0.9608 0.9235 0.9836
AB 0 0.9477 1.3056 0.9778

sidering that k-means requires no queries (Q = 0).
Items of a cluster are assigned the label of the majority.
This assignment is performed after each batch and
it is the base for computing the quality measures. It
can be seen that for SSMD, k-means produces lower
CQM compared to those of GD. This is also true in
the case of AOMPC. Considering Fig. 4 and Fig. 5, it
can be seen that AOMPC performs well. Comparing
the results of k-means in Tab. 3 with the results of
AOMPC in Tab. 5, the AOMPC values represent a
good performance: AOMPC processes each data point
only once and then discards it, whereas k-means uses
all data points for computation. Clearly, the CQM val-
ues in Tab. 3 for CF and AB are very high, caused by
low values of ER. For CF and AB, we used the same
batch size (i.e., every 30 minutes) as for the generated
SSMD dataset. More often, only a handful items are
contained in the individual batches. Due to the small
number of items per batch, it is not possible that
relevant and irrelevant items are highly mixed within
the created clusters of each batch. Hence, assignments
are clear/unambigious.

The results of DOGMA algorithms related to the
datasets are displayed in Tab. 4 for the best and
worst cases. Details on the remaining algorithms can
be found in Appendix C. Note that the DOGMA
algorithms operate with the maximum amount of
labels given by the budget. Hence, the training data
is as large as the maximum number of items allowed

TABLE 4
Best and worst CQM of DOGMA Algorithms (GD,

SSMD, CF, AB)

Q B VM ER CQM

G
D

Forgetron 80 0.1 0.3029 32.5500 0.6081
OISVM 80 0.1 0.8084 3.2625 0.9062
RBP 160 0.2 0.3188 31.9500 0.5959
OISVM 160 0.2 0.8217 2.9000 0.8920
Forgetron 240 0.3 0.4100 25.3625 0.6362
OISVM 240 0.3 0.8153 3.0250 0.8695
RBP 320 0.4 0.2099 38.6750 0.4896
OISVM 320 0.4 0.8180 2.9750 0.8505
RBP 400 0.5 0.4811 20.9000 0.6398
OISVM 400 0.5 0.8157 3.0250 0.8296

SS
M

D

PA-I 123 0.1 0.7228 5.4406 0.8696
Projectron++ 123 0.1 0.4202 11.5303 0.7484
Projectron++ 246 0.2 0.4105 10.5367 0.7305
OISVM 246 0.2 0.8427 10.1921 0.8619
PA-I 369 0.3 0.7636 2.2302 0.8579
Forgetron 369 0.3 0.5593 9.7172 0.7592
RBP 492 0.4 0.5025 9.0046 0.7257
OISVM 492 0.4 0.8834 5.0767 0.8596
PA-I 615 0.5 0.8647 1.2505 0.8532
RBP 615 0.5 0.6244 5.3916 0.7604

C
F

PA-I 98 0.1 0.7631 17.5100 0.8214
Projectron++ 98 0.1 0.7137 28.4213 0.7520
PA-I 196 0.2 0.7728 15.9354 0.8122
RBP 196 0.2 0.7141 23.7132 0.7557
PA-I 294 0.3 0.8039 13.8672 0.8118
Forgetron 294 0.3 0.7180 29.8722 0.7060
PA-I 392 0.4 0.8222 12.7396 0.8030
Forgetron 392 0.4 0.7117 28.5864 0.6906
PA-I 490 0.5 0.8405 11.3371 0.7955
Forgetron 490 0.5 0.7353 24.1613 0.6998

A
B

PA-I 106 0.1 0.6791 22.9801 0.7688
Projectron++ 106 0.1 0.6440 32.6142 0.7101
PA-I 212 0.2 0.7094 20.9924 0.7678
Forgetron 212 0.2 0.6643 29.6821 0.7109
PA-I 318 0.3 0.7428 17.6217 0.7747
RBP 318 0.3 0.6707 27.3168 0.7046
PA-I 424 0.4 0.7751 16.0927 0.7721
Forgetron 424 0.4 0.6870 24.4803 0.7037
Forgetron 530 0.5 0.7086 22.5930 0.6996
OISVM 530 0.5 0.8087 13.6702 0.7743

by the budget. The CQM value is calculated such that
Q = B · #items. The evaluation measures are com-
puted based on each batch for comparison. DOGMA
algorithms are trained based on randomly selected
items from the dataset in advance. To ensure a fair
comparison of DOGMA algorithms against AOMPC,
we applied a 10-cross-validation strategy. The results
in Tab. 4 show that in the case of GD, most of the
DOGMA algorithms produce lower CQM compared
to AOMPC results, which are illustrated in Fig. 4.
It is an indication that the DOGMA algorithms are
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TABLE 5
Best results of AOMPC based on budget B

B Query strategies α (β for Q VM ER CQM
var. α) (Q/#items)

G
D

0.1 SCN 0.03 79.0 (0.10) 0.8460 2.3750 0.9222
0.2 SCN 1/2 (4) 113.0 (0.14) 0.9180 1.2500 0.9409
0.3 SCN 1/2 (4) 114.0 (0.14) 0.9180 1.2500 0.9406
0.4 SCN 1/2 (4) 114.0 (0.14) 0.9180 1.2500 0.9406
0.5 SCN 1/2 (4) 114.0 (0.14) 0.9180 1.2500 0.9406

SS
M

D

0.1 CVCN with DCN 0.03 113.0 (0.09) 0.7080 12.2120 0.8329
0.2 SCN 1/3(1) 140.0 (0.11) 0.8440 12.2762 0.8690
0.3 SCN 0.03 300.0 (0.24) 0.9161 8.8391 0.8817
0.4 CVCN with DCN 0.01 256.0 (0.21) 0.8640 5.8791 0.8881
0.5 CVCN with DCN 0.03 238.0 (0.19) 0.8876 9.4269 0.8804

C
F

0.1 SCN 1/2 (2) 27.0 (0.03) 0.7451 18.0411 0.8278
0.2 CVCN 1/2 (2) 32.0 (0.03) 0.7463 18.0141 0.8273
0.3 RCN 2/3 (2) 223.0 (0.23) 0.8050 13.4949 0.8283
0.4 SCN 0.03 297.0 (0.30) 0.8261 11.6488 0.8287
0.5 SCN 0.03 297.0 (0.30) 0.8261 11.6488 0.8287

A
B

0.1 CVCN with DCN 0.01 117.0 (0.11) 0.6669 31.4934 0.7204
0.2 CVCN with DCN 0.03 215.0 (0.20) 0.7325 27.7243 0.7403
0.3 SCN 0.01 304.0 (0.29) 0.7383 22.7398 0.7501
0.4 CVCN with DCN 0.01 343.0 (0.33) 0.7607 18.8053 0.7690
0.5 CVCN 0.03 380.0 (0.36) 0.7728 17.4619 0.7723

inefficient when dealing with changes in data, like
the one artificially introduced in batch-4 of GD (see
Fig. 2 of Sec. 4.1). In case of SSMD, CQM values
obtained by most of the DOGMA algorithms (see
Tab. 4) look similar to those values corresponding
to the best active learning method of AOMPC (see
Fig. 5 “with DCN” active learning methods). OISVM
and PA-I produce the best performance on SSMD. In
all, AOMPC performs well for on-the-fly querying.
The DOGMA results related to CF and AB are also
given in Tab. 4. Considering CQM as representative
measure, DOGMA produced similar results to those
produced by AOMPC shown in Figs. 6 and 7.

In a nutshell, AOMPC shows good performance
compared to DOGMA, although the selection of items
to query is performed on the fly. In addition, DOGMA
algorithms use fully labeled data, while AOMPC uses
only a subset of labeled data whose size is upper
bounded by the budget.

4.6 Discussion and Future Work

The advantage of AOMPC compared to the other al-
gorithms is the continuous processing of data streams
and incremental update of knowledge, where the
existing prototypes act as memory for the future. Here
forgetting of outdated knowledge is controlled by α,
which also depends on the budget. Learning serves to
adapt and/or create clusters in a continuous way. The
algorithm queries labels on-the-fly for continuously
updating the classification model. In summary, it can
be said that budget B and threshold UT are related
to each other. Increasing their values increases the
quality of the algorithm. B has also an influence on
the number of clusters that are created (i.e., the more
often the user is asked, the more hints for new clusters
are given).

The advantage of our algorithm compared to the
others is the transferred knowledge from one batch to
the next creating a continuous view on the arriving
data. The already known prototypes act as memory
(i.e., forgetting is based on α and learning is based on
the new creation of clusters, see Algorithm 1).

In terms of performance, Tab. 5 shows the best
results of AOMPC for different budget values using
the CQM measure. For GD, the variable learning rate
α and the fixed α rate in the case of SSMD show good
performance. For CF, the variable learning rate seems
to be more suitable considering the number of queries.
AOMPC produces good results on AB using a fixed
learning rate. The reason is that the data items are
very similar and that changes within the textual data
happen slowly and near the boundary. Finally, com-
paring the active learning strategies (“DCN” options),
we can notice that very good performance is achieved
especially for SSMD and CF. The quality of clustering
increases even for low values of B.

Overall, AOMPC shows a quite good performance
(see Tables 4, 3 and 5), despite the fact that it operates
online and handles labeling just-in-time. Moreover,
AOMPC was run on batches just for the sake of
feature selection (see Sec. 3.3). AOMPC can run in
purely point-based online mode (i.e., item-by-item) as
well. In the future, we plan to extend this algorithm
by deleting clusters when they lose their importance.
This could also be done for features in order to obtain
an evolving feature space. We also plan to implement
a variable budget strategy so that, for instance, the
number of queries (i.e., budget) is bigger for cold-
start and gets reduced afterward, depending on the
uncertainty and the performance of the algorithm. Fi-
nally, it would be interesting to identify drift, without
defining a threshold, but by considering the general
case, where classes are non-contiguous.

5 CONCLUSION

This paper presents a streaming analysis framework
for distinguishing between relevant and irrelevant
data items. It integrates the user into the learning
process by considering the active learning mechanism.
We evaluated the framework for different datasets,
with different parameters and active learning strate-
gies. We considered synthetic datasets to understand
the behavior of the algorithm and real-world social
media datasets related to crises. We compared the
proposed algorithm, AOMPC, against many existing
algorithms to illustrate the good performance under
different parameter settings. As explained in Sec. 4.6,
the algorithm can be extended to overcome many
issues, for instance by considering: dynamic budget,
dynamic deletion of stale clusters, and generalization
to handle non-contiguous class distribution.
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APPENDIX A
DETAILS ON EVALUATION MEASURES

For the evaluation, the purity (P) and entropy (E)
measures have been computed. P and E are defined
as follows [48]:

Pi =
1

ni
Maxj(ni,j) (13)

Ei = −
1

log(H)

H∑
j=1

ni,j
ni

log
ni,j
ni

(14)

where ni is the total number of data items in cluster
i and ni,j is the number of items of class j in cluster
i. High purity values indicate good clustering quality
(i.e., correct assignment of classes to clusters). In
contrast, small entropy values indicate high quality in
clustering. We used the average P and E value for all
identified clusters m as follows:

P =
1

m

m∑
i=1

Pi (15)

E =
1

m

m∑
i=1

Ei (16)

The validity-measure (VM) [54] is the harmonic mean
of two quantities: homogeneity and completeness. VM is
defined as follows:

VM =
(1 + κ) ∗ homogeneity ∗ completeness
(κ ∗ homogeneity) + completeness

(17)

where κ is a weighting parameter. The homogeneity
is given by:

homogeneity =

{
1 if H(C|K) = 0

1− H(C|K)
H(C) otherwise

(18)
such that:

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

ac,k
N

log
ac,k∑|C|
c=1 ac,k

H(C) =

|C|∑
c=1

∑|K|
k=1 ac,k
N

log

∑|K|
k=1 ac,k
N

where N is the size of the dataset, C = {c1, . . . , cn}
is the set of n classes, K = {k1, . . . , km} is the set of
m clusters. A = ai,j is the corresponding contingency
table, where ai,j is the number of data points related
to class ci and cluster kj . The perfect homogeneity
(i.e., each cluster contains items of one single class)
is reached when the conditional entropy H(C|K) = 0
[54]. H(C|K) is maximum when the clustering does
not give any new information (= H(C) entropy). If
there is only one class, H(C) = 0 and the homogeneity
is 1.

Completeness is defined as follows:

completeness =

{
1 if H(K|C) = 0

1− H(K|C)
H(K) otherwise

(19)
where

H(K|C) = −
|C|∑
c=1

|K|∑
k=1

ac,k
N

log
ac,k∑|K|
k=1 ac,k

H(K) =

|K|∑
k=1

∑|C|
c=1 ac,k
N

log

∑|C|
c=1 ac,k
N

Completeness is expressed by the cluster assignments
of the items in a class [54]. Based on the conditional
entropy H(K|C), a perfect completeness (i.e., a class
is represented only by one cluster) is reached when
the conditional entropy is 0. In contrast, when each
class is split into all clusters then H(K|C) = H(K),
i.e., completeness is 0. In the special case of one cluster
(H(K) = 0), the completeness is 1.

We are interested more in the homogeneity of the
validity measure and therefore we set κ in Eq. 17 to
0.001 [54].

On the other hand, Normalized Mutual Information
(NMI) quantifies the consistency between two clus-
terings A = {a1, a2, . . . } and C = {c1, c2, . . . }. It is
given as follows [48], [16]:

NMI(A;C) =
MI(A;C)√
[H(A)H(C)]

(20)

where:

MI(A;C) =
∑
i

∑
j

|ai ∩ cj |
N

log
N |ai ∩ cj |
|ai||cj |

(21)

MI(A;C) = H(A) +H(C)−H(A;C)

H(A) = −
∑
i

|ai|
N
log
|ai|
N

The higher the NMI is, the more similar are the
clusterings.

The error-rate (ER) described by Eq. 22 is the pro-
portion (in percent) of incorrectly classified data items.
If L = {l1, l2, . . . , lN} is the list of labels predicted by
the classifier and G = {g1, g2, . . . , gN} is the list of true
labels for N items, then:

ER(L;G) =
|L 6= G|
N

∗ 100 (22)

The initial experiments (see Appendix B) showed
that VM and ER are the most indicative measures that
summarize - to a large extent - the other metrics. They
are good indicators for the classification quality (e.g.,
see Fig. 8 for GD and Fig. 11 for SSMD).

APPENDIX B
ADDITIONAL RESULTS
Gaussian Dataset (GD). Fig. 8 shows the effect of
various combinations of the parameters UT and B on
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Fig. 8. Effect of UT and B on the accuracy using the Gaussian data (GD)
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Fig. 9. CQM for various parameters using the Gaussian data (GD)
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(d) SSMD: B vs. β

Fig. 10. Effect of parameters on the number of relevant clusters using the Gaussian data (GD) and the synthetic
social media dataset (SSMD)

the clustering quality expressed by entropy (E), error-
rate (ER), purity (P), Normalized Mutual Information
(NMI) and validity-measure (VM).

It can be seen from Figs. 8(a) and 8(b) that E and ER
decrease as B grows (i.e., more labeled data improves
the classification). B > 0.3 does not significantly
improve the results further. Hence, querying effort can
be saved. Considering the NMI and VM measures in
Figs. 8(d), and 8(e) for B ≥ 0.3,

In Fig. 9(a), we compare β (for variable α) with
the the budget B. Increasing β does not affect the
quality of the classification much; hence, low values
for β (i.e., 1-2) are more suitable for this dataset, but
also β = 4 shows rather good performance. Fig. 13(a)
shows β in relation to variable learning rates α. β = 1

to 2 performs better for most variable α rates, but
β = 4 also yields good results when using smaller α.
This behavior can be explained by the fact that only
4 batches/periods exist and an explicit drift happens
in last batch of GD (see Fig. 2 in Section 4.1).

As shown in Fig. 10, the number of relevant clusters
generated depends also on B and UT , while β seems
to have less effect. In particular for B > 0.3, the
number of relevant clusters tends to be stable and
higher values of UT tend to generate more clusters.
Moreover, Fig. 9(b) which is related to the combined
quality measure (CQM) also indicates that B > 0.3
does not improve the results significantly.

We also compared different settings for the learning
rate α (see Tab. 2) in relation to B and UT . Figs. 9(c)
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and 9(d) show that the fixed learning rates (0.01 and
0.03) yield slightly better results compared to the vari-
able α-setting when the budget B is low. In addition,
the higher UT , the better are the results. Following
this set of experiments, we can state that the budget
B and α are the most important parameters.

Synthetic Social Media Dataset (SSMD). Fig. 11
shows the clustering quality measures for different
parameters UT and B. In Fig. 11, it can be seen
that the higher the budget B and the threshold UT ,
the better are the results. Especially, ER is reduced
(see Fig. 11(b)) and NMI and VM are increased as
Figs. 11(d) and 11(e) show. This is also valid for CQM
in Fig. 12(b).

Comparing β with B in Fig. 12(a), the same is true:
the higher B, the better the results. Increasing β and
B shows a slight positive effect on the quality of the
overall results. Fig. 13(b) shows a slight increase of
CQM values for higher values of β. Also, B and UT
influence the number of relevant clusters produced
(see Fig. 10). Relevant clusters indicate those clusters
that consist of relevant tweets. As in the case of GD,
the amount of relevant clusters depends mainly on
the budget B (see Fig. 10).

More interesting is the tradeoff between α and B
given in Fig. 12(c) and between α and UT given in
Fig. 12(d). For this synthetic dataset, when α is set
to 1 and to 2, a more positive effect on the results
is obtained. This can also be observed for different
active learning strategies.

APPENDIX C
COMPARATIVE STUDY: DOGMA DETAILS

Tables 6, 7, 8, and 9 show the results related to
the DOGMA algorithms, obtained on the different
datasets: GD, SSMD, CF, and AB.

TABLE 6
DOGMA Algorithms (GD): Avg. results marking the

best and worst CQM

P E NMI VM ER CQM
DOGMA (B = 0.1)

PA-I 0.9457 0.2530 0.7230 0.7269 6.1500 0.8673
Perceptron 0.9213 0.2798 0.6427 0.6577 11.4625 0.8200
Projectron 0.9153 0.2974 0.6198 0.6358 12.2375 0.8096
Projectron++ 0.9370 0.2743 0.6915 0.6973 7.4000 0.8522
RBP 0.7920 0.5012 0.3517 0.3800 28.0250 0.6539
Forgetron 0.7453 0.5813 0.2745 0.3029 32.5500 0.6081
OISVM 0.9682 0.1886 0.8079 0.8084 3.2625 0.9062

DOGMA (B = 0.2)
PA-I 0.9615 0.2133 0.7802 0.7811 4.0125 0.8743
Perceptron 0.9527 0.2356 0.7482 0.7509 5.2250 0.8591
Projectron 0.9536 0.2348 0.7505 0.7529 5.0750 0.8605
Projectron++ 0.9598 0.2186 0.7736 0.7748 4.2125 0.8714
RBP 0.7443 0.5764 0.2935 0.3188 31.9500 0.5959
Forgetron 0.7516 0.5814 0.3372 0.3529 28.6375 0.6227
OISVM 0.9711 0.1778 0.8216 0.8217 2.9000 0.8920

DOGMA (B = 0.3)
PA-I 0.9614 0.2106 0.7816 0.7829 4.0750 0.8545
Perceptron 0.9206 0.2901 0.6373 0.6514 11.2375 0.7792
Projectron 0.9216 0.2867 0.6409 0.6550 11.1375 0.7808
Projectron++ 0.9594 0.2152 0.7745 0.7761 4.3625 0.8510
RBP 0.8280 0.4432 0.5009 0.5115 19.7500 0.6947
Forgetron 0.7642 0.5571 0.4021 0.4100 25.3625 0.6362
OISVM 0.9699 0.1840 0.8152 0.8153 3.0250 0.8695

DOGMA (B = 0.4)
PA-I 0.9599 0.2157 0.7754 0.7767 4.2375 0.8318
Perceptron 0.9482 0.2390 0.7355 0.7399 6.0375 0.8118
Projectron 0.9529 0.2310 0.7511 0.7540 5.2375 0.8200
Projectron++ 0.9585 0.2217 0.7690 0.7704 4.3875 0.8292
RBP 0.6829 0.6790 0.1826 0.2099 38.6750 0.4896
Forgetron 0.7745 0.5217 0.3403 0.3676 29.3375 0.5836
OISVM 0.9704 0.1815 0.8180 0.8180 2.9750 0.8505

DOGMA (B = 0.5)
PA-I 0.9561 0.2251 0.7619 0.7639 4.7375 0.8055
Perceptron 0.9494 0.2306 0.7413 0.7466 6.1875 0.7930
Projectron 0.9492 0.2306 0.7410 0.7463 6.2375 0.7927
Projectron++ 0.9541 0.2306 0.7544 0.7568 5.0000 0.8020
RBP 0.8408 0.4331 0.4603 0.4811 20.9000 0.6398
Forgetron 0.8730 0.3850 0.5502 0.5622 15.4250 0.6915
OISVM 0.9699 0.1838 0.8157 0.8157 3.0250 0.8296

TABLE 7
DOGMA Algorithms (SSMD): Avg. results marking the

best and worst CQM

P E NMI VM ER CQM
DOGMA (B = 0.1)

PA-I 0.9668 0.1210 0.4349 0.7228 5.4406 0.8696
Perceptron 0.9550 0.1502 0.2763 0.4234 10.6493 0.7538
Projectron 0.9550 0.1502 0.2763 0.4234 10.6554 0.7537
Projectron++ 0.9538 0.1524 0.2735 0.4202 11.5303 0.7484
RBP 0.9535 0.1534 0.2843 0.4518 11.2847 0.7591
Forgetron 0.9550 0.1504 0.2762 0.4233 10.7072 0.7534
OISVM 0.9550 0.1444 0.4213 0.7639 13.8373 0.8400

DOGMA (B = 0.2)
PA-I 0.9813 0.0812 0.4680 0.7076 3.1330 0.8566
Perceptron 0.9641 0.1257 0.3023 0.4261 9.8340 0.7387
Projectron 0.9642 0.1254 0.3026 0.4264 9.7662 0.7391
Projectron++ 0.9626 0.1289 0.2928 0.4105 10.5367 0.7305
RBP 0.9602 0.1346 0.2900 0.4169 11.2844 0.7287
Forgetron 0.9596 0.1353 0.2998 0.4413 12.7755 0.7285
OISVM 0.9718 0.1120 0.5014 0.8427 10.1921 0.8619

DOGMA (B = 0.3)
PA-I 0.9852 0.0686 0.5010 0.7636 2.2302 0.8579
Perceptron 0.9698 0.1114 0.3653 0.5447 6.0903 0.7729
Projectron 0.9706 0.1091 0.3492 0.5081 6.1235 0.7618
Projectron++ 0.9737 0.1006 0.3575 0.5057 6.1688 0.7609
RBP 0.9641 0.1245 0.3662 0.5724 7.0734 0.7763
Forgetron 0.9666 0.1197 0.3648 0.5593 9.7172 0.7592
OISVM 0.9812 0.0840 0.5331 0.8627 9.3398 0.8521

DOGMA (B = 0.4)
PA-I 0.9911 0.0443 0.5415 0.8124 1.5328 0.8561
Perceptron 0.9790 0.0830 0.3972 0.5680 4.8458 0.7662
Projectron 0.9792 0.0817 0.3971 0.5657 4.8282 0.7656
Projectron++ 0.9773 0.0884 0.3896 0.5633 7.0541 0.7537
RBP 0.9723 0.0989 0.3535 0.5025 9.0046 0.7257
Forgetron 0.9748 0.0913 0.3624 0.5063 6.1586 0.7411
OISVM 0.9889 0.0593 0.5632 0.8834 5.0767 0.8596

DOGMA (B = 0.5)
PA-I 0.9917 0.0444 0.5638 0.8647 1.2505 0.8532
Perceptron 0.9806 0.0849 0.4488 0.6805 3.6420 0.7859
Projectron 0.9793 0.0874 0.4442 0.6735 4.4825 0.7796
Projectron++ 0.9830 0.0774 0.4274 0.6266 3.3437 0.7713
RBP 0.9702 0.1122 0.3998 0.6244 5.3916 0.7604
Forgetron 0.9688 0.1177 0.4062 0.6462 4.7573 0.7701
OISVM 0.9925 0.0429 0.5848 0.9059 6.2508 0.8405
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Fig. 11. Effect of UT and B on the accuracy using the synthetic social media dataset (SSMD)
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Fig. 12. CQM for various parameters using the synthetic social media dataset (SSMD)
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Fig. 13. AOMPC (GD, SSMD, CF, AB): CQM for β and variable α
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TABLE 8
DOGMA Algorithms (CF): Avg. results marking the

best and worst CQM

P E NMI VM ER CQM
DOGMA (B = 0.1)

PA-I 0.9276 0.1825 0.4159 0.7631 17.5100 0.8214
Perceptron 0.9273 0.1798 0.3930 0.7209 27.4159 0.7592
Projectron 0.9273 0.1798 0.3930 0.7209 27.4159 0.7592
Projectron++ 0.9279 0.1780 0.3911 0.7137 28.4213 0.7520
RBP 0.9250 0.1868 0.3932 0.7277 26.0768 0.7679
Forgetron 0.9253 0.1843 0.3909 0.7206 27.3199 0.7596
OISVM 0.9154 0.2140 0.3844 0.7379 17.3795 0.8145

DOGMA (B = 0.2)
PA-I 0.9346 0.1631 0.4316 0.7728 15.9354 0.8122
Perceptron 0.9384 0.1485 0.4117 0.7226 22.6292 0.7636
Projectron 0.9384 0.1485 0.4117 0.7226 22.6292 0.7636
Projectron++ 0.9366 0.1537 0.4135 0.7304 21.5040 0.7716
RBP 0.9367 0.1517 0.4061 0.7141 23.7132 0.7557
Forgetron 0.9339 0.1610 0.4035 0.7198 23.6235 0.7578
OISVM 0.9250 0.1901 0.4079 0.7589 15.7008 0.8092

DOGMA (B = 0.3)
PA-I 0.9443 0.1401 0.4595 0.8039 13.8672 0.8118
Perceptron 0.9416 0.1433 0.4161 0.7260 28.3164 0.7162
Projectron 0.9416 0.1433 0.4161 0.7260 28.3164 0.7162
Projectron++ 0.9393 0.1476 0.4110 0.7198 26.6515 0.7227
RBP 0.9378 0.1533 0.4030 0.7128 33.5286 0.6862
Forgetron 0.9367 0.1560 0.4052 0.7180 29.8722 0.7060
OISVM 0.9335 0.1692 0.4321 0.7838 13.9892 0.8052

DOGMA (B = 0.4)
PA-I 0.9499 0.1249 0.4790 0.8222 12.7396 0.8030
Perceptron 0.9449 0.1337 0.4376 0.7541 19.6706 0.7479
Projectron 0.9449 0.1337 0.4376 0.7541 19.6706 0.7479
Projectron++ 0.9439 0.1367 0.4349 0.7518 19.4514 0.7483
RBP 0.9415 0.1431 0.4323 0.7546 21.3471 0.7396
Forgetron 0.9406 0.1445 0.4071 0.7117 28.5864 0.6906
OISVM 0.9424 0.1478 0.4592 0.8126 12.7191 0.8002

DOGMA (B = 0.5)
PA-I 0.9544 0.1154 0.4927 0.8405 11.3371 0.7955
Perceptron 0.9511 0.1189 0.4500 0.7604 20.2214 0.7270
Projectron 0.9511 0.1189 0.4500 0.7604 20.2214 0.7270
Projectron++ 0.9505 0.1211 0.4552 0.7728 18.2706 0.7405
RBP 0.9440 0.1377 0.4370 0.7559 20.7404 0.7231
Forgetron 0.9442 0.1347 0.4274 0.7353 24.1613 0.6998
OISVM 0.9482 0.1329 0.4777 0.8310 10.9356 0.7946

TABLE 9
DOGMA Algorithms (AB): Avg. results marking the

best and worst CQM

P E NMI VM ER CQM
DOGMA (B = 0.1)

PA-I 0.9070 0.2299 0.4041 0.6791 22.9801 0.7688
Perceptron 0.9058 0.2266 0.3899 0.6478 31.4818 0.7169
Projectron 0.9058 0.2266 0.3899 0.6478 31.4818 0.7169
Projectron++ 0.9040 0.2302 0.3859 0.6440 32.6142 0.7101
RBP 0.9058 0.2266 0.3899 0.6478 31.4818 0.7169
Forgetron 0.9058 0.2266 0.3899 0.6478 31.4818 0.7169
OISVM 0.8955 0.2556 0.3833 0.6638 27.8570 0.7398

DOGMA (B = 0.2)
PA-I 0.9231 0.1891 0.4420 0.7094 20.9924 0.7678
Perceptron 0.9112 0.2136 0.4050 0.6633 28.7431 0.7153
Projectron 0.9112 0.2136 0.4050 0.6633 28.7431 0.7153
Projectron++ 0.9110 0.2135 0.4040 0.6617 29.3315 0.7119
RBP 0.9116 0.2134 0.4062 0.6652 28.3204 0.7180
Forgetron 0.9108 0.2150 0.4048 0.6643 29.6821 0.7109
OISVM 0.9133 0.2143 0.4242 0.7047 23.6358 0.7532

DOGMA (B = 0.3)
PA-I 0.9317 0.1701 0.4692 0.7428 17.6217 0.7747
Perceptron 0.9150 0.2059 0.4146 0.6731 25.7420 0.7132
Projectron 0.9150 0.2059 0.4146 0.6731 25.7420 0.7132
Projectron++ 0.9158 0.2050 0.4148 0.6739 25.6693 0.7138
RBP 0.9119 0.2134 0.4091 0.6707 27.3168 0.7046
Forgetron 0.9155 0.2050 0.4145 0.6739 25.9384 0.7125
OISVM 0.9248 0.1874 0.4552 0.7356 19.2589 0.7644

DOGMA (B = 0.4)
PA-I 0.9419 0.1444 0.5016 0.7751 16.0927 0.7721
Perceptron 0.9248 0.1813 0.4431 0.7020 23.2030 0.7146
Projectron 0.9248 0.1813 0.4431 0.7020 23.2030 0.7146
Projectron++ 0.9226 0.1870 0.4378 0.6990 24.3519 0.7079
RBP 0.9208 0.1890 0.4396 0.7010 24.6207 0.7072
Forgetron 0.9182 0.1979 0.4264 0.6870 24.4803 0.7037
OISVM 0.9386 0.1547 0.4945 0.7758 17.0144 0.7677

DOGMA (B = 0.5)
PA-I 0.9500 0.1252 0.5272 0.8027 13.4840 0.7734
Perceptron 0.9293 0.1705 0.4584 0.7200 21.0540 0.7107
Projectron 0.9293 0.1705 0.4584 0.7200 21.0540 0.7107
Projectron++ 0.9270 0.1776 0.4516 0.7147 21.7105 0.7059
RBP 0.9288 0.1714 0.4533 0.7111 22.2291 0.7022
Forgetron 0.9266 0.1772 0.4479 0.7086 22.5930 0.6996
OISVM 0.9492 0.1296 0.5259 0.8087 13.6702 0.7743


