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ABSTRACT

While life expectancy is on the rise all over the world, more people face health

related problems such as cognitive decline. Cognitive impairment is a collective name

for progressive brain syndromes which a↵ect memory, cognition, behaviour and emo-

tion. People su↵ering from cognitive impairment may lose their abilities to perform

daily life activities and they get dependent on their caregivers. Although some med-

ications can slow the progress of the disease, currently there is no way to stop its

development. Su↵erers may require special needs which increase the cost of care.

Thus, detecting the indicators of cognitive decline before it gets worse would be very

crucial. Current assessment methods mostly rely on queries from questionnaires or

in-person examinations, which depend on recall of events that may poorly represent

a person’s typical state.

The aim in this thesis is to adapt deep learning techniques for analysing daily

activities of elderly people and detecting abnormalities in the activity patterns. Re-

cent studies suggest that indicators of cognitive decline can be observed in daily life

activity patterns. The spatio-temporal and hierarchical relationship of activities and

their intrinsic structures are important in the context of cognitive decline analysis.

Existing studies treat each activity as an atomic unit and fail to capture the rela-

tionship among sub-activities. Also, existing studies rely on fixed length features to

model activities, ignoring the granular level information coming from raw sensor ac-

tivations. Moreover, there exists no daily activity dataset representing the behaviour

of dementia su↵erers because producing such datasets requires time and adequate

experimental environment. Given these challenges, the present thesis addresses the

following research questions: How can we cope with the scarcity of dataset reflecting

on cognitive status of elderly people? How can activities be modelled taking into

xi



account their spatio-temporal neighbourhood and hierarchical information? How can

we represent raw data to encode the granular level details? These research questions

are addressed in the following way. Firstly, two methods are proposed to cope with

the scarcity of data: (i) synthetic data generation and (ii) transfer learning adoption.

Secondly, the activity recognition problem is emulated (i) as a sequence labelling

problem to model spatio-temporal patterns. (ii) as a hierarchical learning problem

to model sub-activities. (iii) as a graph labelling problem to encode granular level

details. Thirdly, raw sensor measurements stemming from sequential data are used

to model sensor activation relationships. The proposed methods are also compared

against the state-of-art methods. The preliminary results obtained indicate that pro-

posed data simulation and transfer learning approaches are useful to cope with the

scarcity of data reflecting cognitive status of elderly people. Moreover, experiments

show that the proposed deep learning methods are promising to detect abnormalities

in the context of cognitive decline. Proposed methods are not only promising to detect

abnormal behaviour at a fine-grained level, but some of them can also model activi-

ties hierarchically by taking sub-activities into account and then can detect abnormal

behaviour occurring at granular levels.

xii



CHAPTER I

Introduction

1.1 Introduction

In this chapter, we present the challenges and the motivation of this research.

For this purpose, we provide the definition and the types of cognitive decline and its

prevalence across the world. Also, we describe the indicators of dementia that can be

observed in daily life activities of elderly people. We describe research questions and

objectives as well as the outcomes of this research as publications. The organisation

of this chapter is as follows. In Section 1.2, the definition and prevalence of dementia

across the world is presented. Moreover, some statistics and facts about the prevalence

of dementia are provided. Then the indicators of dementia that can be seen in daily

life activity patterns are summarised in Section 1.3. Research objectives and questions

are listed in Section 1.4. Research methodology is described in Section 1.5. Research

contributions are presented in Section 1.6. Structure of the thesis is described in

Section 1.7, while research outcomes are listed in Section 1.8.

1.2 Dementia and its Prevalence

In recent years, cognitive decline and mental diseases in ageing persons have be-

come a major public health concern all over the world. Alzheimer’s Disease Inter-
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national estimated that the number of people su↵ering from dementia worldwide in

2018 to be 50 million and this number will increase to 82 million by 2030 and to 150

million by 2050 [62]. These numbers underline a situation that presents a certain

level of criticality.

Elderly people may su↵er from the consequences of cognitive decline, which causes

problems with mobility, physical and mental abilities such as memory and cogni-

tion [3]. It may also a↵ect the ability of speaking, writing, distinguishing objects,

and performing complex functional tasks (paying bills, preparing a meal, shopping,

etc.) [79]. Elderly people need special care and help from their caregivers leading

to a social, psychological, physical and economic challenge to family members, care-

givers and the society as a whole. Dementia comes with one or more of the following

symptoms:

• di�culties in performing motor activities

• di�culties for reasoning abstractly, making valid judgements and planning for

complicated tasks

• decrease in the ability of speaking or comprehending spoken or written language

• di�culties to distinguish or identify objects

Dementia is more likely to occur in old age and the number of people with dementia

is increasing rapidly as depicted in Figure 1.1 [56]. Although some medications can

slow the progress of the disease, currently there is no way to stop its development

altogether or reverse its impacts on the brain cells. The pace of the dementia progress

is specific to the individuals and even the symptoms may not be the same for all

individuals. However, cognitive impairment is categorised into 7 stages [4]:

• absence of cognitive decline

2



Figure 1.1: Dementia progress in the UK.

• very mild cognitive decline

• mild cognitive decline (Mild Cognitive Impairment (MCI))

• moderate cognitive decline (Mild Dementia)

• moderately severe cognitive decline

• severe cognitive decline

• very severe cognitive decline

Dementia may progress from early to late stages in typically 5 to 10 years.

Alzheimer’s disease is the most common type of severe cognitive decline. In many

cases, elderly people with Mild Cognitive Impairment (MCI) will never progress to

Alzheimer’s disease and can live with an acceptable degree of independence [5]. How-

ever, su↵erers from each level may require special needs and the cost of social care

may di↵er. As depicted in Table 1.1 (£, in millions, 2012/2013 prices), the cost to the

society increases as the situation gets worse [56]. The total cost of dementia in the

UK is £26.3 billion, with an average cost of £32.250 per person, while £4.3 billion is

3



spent on health-care costs. £10.3 billion is spent on social care (publicly and privately

funded) and £11.6 billion is contributed by the work of unpaid carers.

Table 1.1: Total annual cost (£, in millions) for dementia care, by severity and setting.

Health Social Unpaid Other Total
Mild 1,332 2,436 8,079 62 11,910
Moderate 2,055 5,626 2,587 36 10,303
Severe 926 2,209 954 14 4,102
All levels 4,314 10,271 11,620 111 26,316
Cost (% of total) 16.4% 39.0% 44.2% 0.4% 100.0%

Most elderly people prefer to stay in their own homes and to be in contact with

their families. Studies show that it is better for the health of these people to stay

in a self-determined private home environment while ageing. It has been observed

that age-in-place can reduce the speed of dementia progress, thus improving people’s

quality of life [18]. However, informal care at home can be excessively expensive,

and in some cases, is not possible at all [9]. On the other hand, the use of assisted

living technologies such as smart homes can substantially help people with dementia

to live independently. A smart home is a house which is equipped with sensors

to enable monitoring the occupants capturing their behaviour and understanding

their activities. In this way, the system can inform about risky situations and take

actions on behalf of the occupant. Moreover, this system may be helpful to detect

the early indicators of dementia and then warn the caregivers and medical doctors

for further diagnosis. Unfortunately, currently there are no dementia friendly smart

homes addressing these people’s special needs.

1.3 Indicators of Dementia

Cognitive diseases like dementia need to be detected at an early stage so that

early treatment will be possible. However, research shows that 75% of dementia and

early dementia cases go unnoticed [38] and many such cases are only diagnosed when

4



the impairment reaches moderate or advanced stage. Recent studies [89] suggest

that changes in complex daily life tasks can be indicators of early decline. The best

markers of cognitive decline may not necessarily be detected based on a person’s

performance at any single point in time, but rather by monitoring the trend over

time and the variability of change in a duration. Most common types of dementia can

be identified by behavioural changes like sleep disturbances, di�culty of walking and

inability to complete tasks [6]. Thus, such changes can provide key information about

memory, mobility and cognition of a person. For instance, an inhabitant su↵ering

from Alzheimer may forget to have his lunch, take multiple lunches instead, wake

up in the middle of the night or go to the toilet frequently. Moreover there can be

abnormality in eating habits (for example having snacks in the middle of the night)

or in dehydration because of forgetting to drink daily amount of water. Su↵erers may

also have problems which involve risky situations such as forgetting to turn o↵ the

heater, the oven, or the stove [6].

Moreover, elderly people with cognitive decline may su↵er from the consequences

of confusion (for example not being able to run the dishwasher or confusing names on a

phone book). Some other symptoms of dementia include sleep disorders, restlessness,

wandering around in the night, misunderstanding of time, vocalisation and shouting,

higher rate of falls, propensity to other accidents. Sleep disturbances are common

for people with dementia, and often lead also to carers experiencing problems with

their sleep. A person with dementia may get up repeatedly during the night and

may become disorientated when she/he wakes up. She/he may get dressed and try

to leave the house in the middle of the night. This may make the person tired during

the day and they may sleep for long periods.

In particular, changes in daily life activity (preparing food, showering, walk-

ing, sleeping, watching television, going to the toilet, having dinner/lunch/breakfast,

cleaning the house, etc.) patterns, their occurrence time and frequency are key indi-

5



cators in determining the cognitive status of elderly people. Thus, a smart system is

needed to track an elderly person’s daily life by recording the basic activities at home.

Tracking an elderly person’s activities over time in a specially designed smart home,

doing in-home health assessment and detecting the indicators of dementia at an early

step would be beneficial for further diagnosis. Detecting early signs of motion and

cognitive impairment (MCI) via activity recognition will be useful to evaluate motion

and cognitive capabilities of the elderly, in order to take action towards improving

their life quality and financial saving. Early detection of cognitive decline indica-

tors would be helpful to warn caregivers, medical doctors and clinicians so that early

treatment would be possible.

In this research, we aim to do in-home assessment of cognitive health status for the

elderly people with dementia in a daily life scenario by exploiting machine learning

techniques. We will be focusing on indicators of cognitive impairment which can

be observed in daily life activities. The development of ambient home assessment

environments has begun to provide the opportunity to assess change continuously,

unobtrusively and in real-time [21, 20, 38, 89, 20, 69, 48, 46, 25]. Prevention or delay

of cognitive decline onset is contingent upon the ability to detect early, meaningful,

cognitive change during the life course. The translation of the current knowledge into

smart homes still requires more dedication and work. Current assessment methods

mostly rely on queries from questionnaires or in-person examinations, that depend

on recall of events or brief snap-shots of the function that may poorly represent a

person’s typical state. Moreover, these studies include some pre-defined tasks given

to the patients to do automatic assessment of cognitive decline by trained experts.

1.4 Research Questions and Objectives

The main motivation behind this work is that indicators of cognitive decline can

be observed in daily activities and routines. Real-time monitoring of activities in a

6



smart home would be beneficial for the early detection of such decline. The aim in this

thesis is to develop adapted techniques for analysing daily activities of elderly people,

detecting and tracking changes of activities over time, categorising and presenting

any changes and abnormalities in the activity and cognitive patterns. In the context

of early detection of dementia, the family members and caregivers will be warned

about the status of patient and medical doctors can take action for further diagnosis

and treatment before the condition of the person worsens.

This research addresses the following research questions:

1. Can any of the early signs of Mild Cognitive Impairment (MCI) be observed

through abnormalities in daily life routines of an elderly person, such as sleeping,

cooking, grooming, eating and working? How can we analyse and categorise

these indicators?

2. Given the di�culty of obtaining a real-world dataset, how can we simulate

abnormal behaviour of dementia su↵erers in daily life? How can we modify

publicly available daily life activity recognition datasets to obtain data related

to cognitive decline?

3. How do we assess behaviour and cognitive status of an elderly person remotely

using sensors placed carefully in a dementia smart home through observations

of the person’s activities? How can daily life activities be modelled taking their

temporal and spatial neighbourhood into account? Is the temporal ordering

and the spatial information of sensor activations important in terms of flagging

abnormal behaviour related to dementia?

4. Which machine learning methods are the best for the activity recognition of

dementia friendly houses, generative or discriminative?

5. How can daily life activities be modelled taking their sub-activities and their
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inter-relationships into account? Is the order and the frequency of these sub-

activities important in terms of detecting abnormal behaviour related to de-

mentia?

6. In the absence of training data, can we learn the normal behaviour and daily life

patterns of a (cognitively) healthy person and use them as a basis for tracking

other patients? Can we adapt Recursive Auto-Encoders (RAE)-based transfer

learning to cope with the problem of scarcity of data in the context of abnormal

behaviour detection?

7. Can we model individual sensor activations and their relationship with each

other in a graph? How can we exploit properties of graphs to model activities

and detect outlier behaviour in a graph of sensor activations?

This research will be about merging the tasks of activity recognition and abnormal

behaviour detection to detect early signs of cognitive decline. The process consists

of 1) modelling activities by deep learning methods to model the daily behaviour

routines of a person and 2) detecting any abnormality deviating from these regular

behaviour whenever a new sequence is introduced to the classifier. The objectives of

this research will be to address the aforementioned research questions.

1.5 Research Methodology

Unfortunately, there exists no data reflecting on cognitive status of elderly people.

Thus, in this study, we cope with the scarcity of the data reflecting on abnormal be-

haviour of elderly people in two ways: (i) data generation and (ii) transfer learning.

When there is lack of dataset, simulation of abnormal behaviour [28, 53] or exploiting

transfer learning can be solution [63, 13, 43]. Moreover, we aim to recognise daily

life activities by taking their temporal, spatial, hierarchical and granular level infor-

mation into account. The spatio-temporal information of activities, their ordering
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and frequency are important in the context of cognitive decline. Thus, we emulate

activity recognition and abnormal behaviour detection problems as a (i) sequence

labelling problem, (ii) hierarchical learning problem and (iii) a graph labelling prob-

lem. The main idea is to build high-level activities hierarchically from their low-level

activity patterns, which are called sub-activities. Then, abnormal behaviour related

to dementia will be detected by considering the sub-activities, their relationship with

each other such as their occurrence order, their frequency, etc. In images, there are

pixels, then these pixels form edges and edges construct shapes. Similar to image

recognition, there are granular-level patterns in daily life activities. For example;

the activity wash clothes implies the following actions: get clothes from basket, fill

up washing machine, turn on washing machine. Some daily life activities such as

sleeping or wash dishes may not have explicit sub-activities involved in. But, we can

exploit motion sensors replaced at home and their relative location with each other

as sub-activities. For example; an occupant in a house may mainly move around

the kitchen sink in the wash dishes activity and stay around the bedroom area dur-

ing sleeping activity. In wash dishes activity, the movement between kitchen range

and the sink is observed and this leads to triggering of sensors next to the sink and

kitchen in some order. As depicted in Figure 1.2, the activity wash dishes consists of

sub-activities move to the kitchen area, move to the kitchen sink and use water. The

ordered sequence of motion sensors M3,M4,M6 form these sub-activities hierarchi-

cally and then they result in wash dishes activity. In the present study, we first model

sub-activities and their relationship with the help of deep learning techniques. Then

we use these sub-activities, their frequency, their hierarchical and spatio-temporal

relationship and relative order to detect abnormal behaviour related to dementia.

Recognising these sub-activities and constructing upper level activities based on a

hierarchical relationship of these granular level structures would be helpful to bet-

ter understand and model abnormal behaviour related to dementia. Moreover, since
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there is no publicly available dataset, we propose a method to artificially produce

data related to abnormal behaviour activities of dementia su↵erers.

Figure 1.2: Activity washing dishes and its sub-activities.

In terms of investigation methodology, the thesis adopts an explorative approach

which consists of formulating hypotheses, designing algorithms, evaluating these al-

gorithms on data synthesised and validating the hypotheses. These methodologies

are used in the following way.

1. In the first phase (exploratory) a comprehensive literature survey is conducted

where the dementia symptoms were collected from the existing literature.

2. In the second phase (hypothesis), deep learning methods are proposed to recog-

nise daily life activities and detect abnormal behaviour related to dementia.

3. In the third phase (experimental), the experiment set-up is designed, the deep

learning methods are implemented.

4. In the fourth phase (evaluation), the proposed methods are evaluated for both

recognising activities and detecting abnormal behaviour.
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1.6 Contributions

The contributions of this research are listed as below.

1. In Chapter III, a method is proposed to generate synthetic data that simulates

the abnormal behaviour of people with dementia since there is no daily activity

dataset reflecting behaviour of dementia su↵erers in the literature. These ab-

normalities are generated to present both activities and sub-activities within the

activity sequences. These kinds of abnormal behaviour more specifically reflect

on repetition, confusion and sleep disorder anomalies stemming from cognitive

decline indicators.

2. In Chapter IV, daily activity recognition problem is emulated as a sequence

labelling problem to fit deep learning techniques. Convolutional Neural Net-

works and Recurrent Neural Networks are exploited to model spatio-temporal

patterns for daily life activity recognition and detect abnormal behaviour re-

flecting cognitive status of elderly people.

3. In Chapters V and VI, instead of extracting traditional features from each

time slice, raw sensor measurements coming from sequential data are processed

to represent temporal data. In this way, we don’t lose the frequency of each

sensor activation and their order, which is important in the context of detecting

cognitive decline indicators.

4. In Chapter V, activities are modelled in a hierarchical model exploiting sub-

activities and their relations. After activities are modelled by Recursive Auto-

Encoders (RAE), abnormal behaviour reflecting cognitive status of elderly peo-

ple is detected.

5. In Chapter V, Recursive Auto-Encoders (RAE)-based transfer learning is ex-

ploited to cope with the problem of scarcity of data in the context of abnormal
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behaviour detection. In the absence of training data, learning the normal be-

haviour and daily life patterns of a (cognitively) healthy person in a house

and transferring this knowledge to another house for the detection of abnormal

behaviour is helpful.

6. In Chapter VI, we emulate activity recognition as a graph labelling problem

and exploit Graph Convolutional Networks (GCNs) to model activities based

on their fine-grained sensor activations and sub-activities. Then abnormal be-

haviour related to dementia is detected exploiting the relationship between

nodes of the graph.

1.7 Structure of the Thesis

The rest of this thesis is organised as follows.

• Chapter II (Literature Overview and Background) provides an overview of the

smart home settings focused in this study. Moreover, literature work on data

simulation and sensor representation, cognitive assessment, activity recogni-

tion and abnormal behaviour detection is presented. Also, the literature work

summarising data simulation, sensor data representation, cognitive status as-

sessment and machine learning methods as well as deep learning methods is

presented along with transfer learning methods. Also, generative and discrim-

inative methods that are used for comparison with the proposed methods are

summarised in this chapter.

• Chapter III (Data Generation) describes the datasets used and then provides in-

formation about data simulation with a specific focus on two types indicators of

cognitive decline, namely activity and sub-activity related abnormal behaviour.
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• Chapter IV (Spatio-temporal Activity Recognition and Abnormal Behaviour

Detection) describes how Recurrent Neural Networks and Convolutional Neural

Networks are adapted to detect abnormal behaviour related to the indicators

of cognitive decline along with the experiments and discussion.

• Chapter V (Abnormal Behaviour Detection using Recursive Auto-encoders and

Transfer Learning) describes how sub-activities in an activity are merged hi-

erarchically via Recursive Auto-Encoders (RAEs) and presents experimental

results followed by a discussion. Moreover, this chapter describes how transfer

learning with RAEs is adapted to transfer knowledge from a source household

to a target household to detect abnormal behaviour related to dementia.

• Chapter VI (Fine-grained Activity Recognition and Abnormal Behaviour De-

tection) describes Graph Convolutional Networks (GCNs) and presents how it

is adapted to recognise daily life activities and then detect abnormal behaviour

in the context of cognitive decline in a smart home.

• Chapter VII (Conclusions and Future Work) concludes the thesis, summarise

the key findings and drawbacks and then outlines future work.

1.8 List of Publications

The contributions of this thesis are presented in the following publications (with

some of them still under review or preparation):

1. D. Arifoglu and H. Bouachachia, Literature Review on Detection of Abnormal

behaviour for Dementia Su↵erers, Expert Systems with Applications, to be

submitted

2. D. Arifoglu and H. Bouachachia, Abnormal Behaviour Detection for Dementia

Su↵erers using Recursive Auto-Encoders, Expert Systems with Applications,
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submitted on September 28, 2019.

3. D. Arifoglu and H. Bouachachia, Activity Recognition and Abnormal Behaviour

Detection with Graph Convolutional Networks for Dementia Su↵erers, Engi-

neering Applications of Artificial Intelligence, submitted on February 26, 2019.

4. D. Arifoglu and H. Bouachachia, Detection of Abnormal Behaviour for De-

mentia Su↵erers using Convolutional Neural Networks, Artificial Intelligence in

Medicine, Volume 94, Pages 88-95, 2019.

URL: www.sciencedirect.com/science/article/pii/S0933365718300617

5. D. Arifoglu and H. Bouachachia, Abnormal Behaviour Detection for Dementia

Su↵erers via Transfer Learning and Recursive Auto-encoders, 2019 IEEE Inter-

national Conference on Pervasive Computing and Communications Workshops

(PerCom Workshops), pages 529-534, Kyoto, March 11-15, 2019.

URL: h� suwa.github.io/percomworkshops2019/papers/p529� arifoglu.pdf

6. D. Arifoglu and H. Bouachachia, Activity Recognition and Abnormal Behaviour

Detection with Recurrent Neural Networks, 14th International Conference on

Mobile Systems and Pervasive Computing (MobiSPC 2017), pages 86-93, Leu-

ven, Belgium, July 24-26, 2017.

URL: https : //www.sciencedirect.com/science/article/pii/S1877050917313005
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CHAPTER II

Literature Overview and Background

2.1 Introduction

In this research, we aim to detect the early indicators of cognitive decline at a

smart home scenario where a resident is observed and his/her activities are tracked

with the help of sensors. Thus, in this chapter, we firstly describe the smart home

setting including sensor and activity types in Section 2.2 and then summarise litera-

ture work in Section 2.3. Moreover, in Section 2.4, we describe the machine learning

methods used to compare our proposed methods.

2.2 Smart Home Setting

2.2.1 Sensors

Sensors at a smart home are used to collect various types of data related to activ-

ities of the residents, states of the objects and states of the environment. Sensors can

capture pressure, position, direction and motion, light, radiation, sound, image and

video and state of the object (present, not present) and physiological measurements

(e.g. blood sugar, blood pressure) [6].

These sensors can be categorised into two classes based on their state:
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• Discrete state sensors where the output is either 0 or 1, where 0 indicates sensor

is not triggered and 1 otherwise. Door sensors (closed/open), light sensors

(ON/OFF) are examples in this class.

• Continuous state sensors where the output is a real value. Examples of con-

tinuous sensors are water sensors and temperature sensors (sensors attached to

household appliances like microwave, kettle, toaster, heater and oven).

Sensors are designed to detect changes in the environment. These sensors can be

wearable sensors or pervasive sensors attached on objects and in the environment.

Wearable sensors are impractical for situations in which individuals are opposed to

wearing the sensors. They may forget to wear these sensors which is the case for

elderly people with cognitive diseases (e.g. Alzheimer). In contrast, pervasive infras-

tructure sensors o↵er the advantage of being non-obtrusive to the users as they are

placed in the environment. Moreover, using the latter ones allows the residents to live

as normally as possible and not to get distracted by the technology that surrounds

them while performing their activities in the natural flow of daily living at home.

Therefore, this study will be focusing on pervasive sensors. These sensors will be

item, motion and door sensors, which only have ON/OFF status. These sensors are

helpful to track the changes in the activity trends of elderly people su↵ering from

cognitive decline.

2.2.2 Activities

Many people with dementia may need help with tasks that are called Instrumental

Activities of Daily Living (IADLs) such as:

• Managing money (writing cheques, handling cash, keeping a budget, etc.)

• Managing medication (taking the appropriate dose of medication at the right

time, etc.)
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• Cooking (preparing meals, microwave/stove usage, etc.)

• Housekeeping (performing light and heavy chores such as dusting or mowing

the lawn, etc.)

• Using appliances (the telephone, television, vacuum, etc.)

• Shopping (purchasing, discerning between items, etc.)

• Extra-curricular (maintaining a hobby or some leisure activities, etc.)

Instrumental activities of daily living are not necessary for fundamental living,

but they let an individual live independently in a community. In this research, we

focus on sequential daily life activities, where each activity is performed after another

one in a sequential fashion without any interweaving (e.g. cooking, make a phone call

and then cooking again). We also assume that there is only one occupant living in

a smart house. Cooking, sleeping, going to toilet, working, cleaning, washing dishes,

etc. are examples for daily life activities. We focus on these type of activities since

they are promising to reflect on cognitive status of elderly people in a scenario of

daily living in a smart home.

2.3 Literature Review

In this section, we cover the literature work on data generation (Section 2.3.1), sen-

sor representation (Section 2.3.2) and assessment of cognitive status (Section 2.3.3).

Moreover, we summarise deep learning (Section 2.3.4) and transfer learning literature

related to our proposed methods (Section 2.3.5).

2.3.1 Data Simulation

In the literature, there is some work dedicated to the synthesis of activity re-

lated data [86, 28, 53]. In [28], the authors modified a real-world dataset in order
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to synthesise health related abnormal behaviour for their experiments. Eight daily

activities such as sleeping, waking up, walking, eating are chosen and health related

abnormal behaviour like frequent toilet visit, no exercise, slept without dinner are

synthesised. In [53], more data is synthesised using Hidden Markov Models (HMMs)

based on a small set of real data collected. To increase the realism of data simulation,

the sensor events were modelled by a combination of Markov chains and the Poisson

distribution. However, in both [28, 53], it is not mentioned in detail how the data

synthesis was done. In [86], the authors modified a real-life data set of an older adult

converting basically the rooms into activities. The authors focused on walking and

eating in conjunction with the sleeping activity and samples of these activities are

manually inserted in the XML data set. In [60], abnormal sensor readings are man-

ually identified by a trained expert. A real dataset is taken as a base and synthetic

errors were generated.

2.3.2 Sensor Data Representation

The studies in the literature exploit raw, change and last-fired features [83]. The

raw sensor representation gives a 1 when a sensor is triggered and gives 0 when

that sensor is OFF. Change representation is assigned 1 when a sensor changes its

state (from ON to OFF or OFF to ON) and a 0 otherwise. The last-fired sensor

representation gives information about which sensor is fired last. The sensor that

changed state last continues to give 1 and updated to 0 when another sensor’s state is

updated. However, these features are extracted from time-slice chunks within a given

time and neglect the interaction between sensors, their triggering order and frequency.

In [82], the authors try to capture the relationship between the sensor activations by

learning an adjacency matrix reflecting the sensor topology in the house. In [19], the

authors extract sensor based features such as the duration of the activity and the

number of sensors triggered.
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In [2], motion sensors in a smart home are represented as nodes in a graph and

resident’s movements are encoded as edges. If sensor A is activated after sensor

B, then there is an edge between the corresponding nodes. Each triggered edge is

considered in the data as a feature. If an edge exists in this graph for the current

activity, then corresponding edge attributes are assigned as the value in the feature

vector. If an edge does not exist in the graph, default value for that feature is zero.

Lundstrom et al. [52] exploited spatio-temporal features where binary events dur-

ing a period of time are represented in a matrix. In this representation, a certain

time interval Ij = (tj, tj + k) of a day, where k is the length of the interval and tj is a

time stamp, is considered. A matrix Mj contains all the events for the time interval

Ij, where the number of rows is equal to the number of sensors n and the number of

columns is given by the number of sampling times during Ij. To reduce the dissim-

ilarity of patterns occurring due to the time shift, data matrices are convolved with

a linear function. The convolution operation is applied separately to each row of the

matrix Mj.

2.3.3 Cognitive Status Assessment

In-home automatic assessment of cognitive decline has been the subject of many

studies [54, 76, 20, 69, 40, 34, 30, 39] and many machine learning approaches such

as Support Vector Machines (SVMs) and Näıve Bayes classifier [60, 17], Restricted

Boltzmann Machines (RBMs) [34, 15], Markov Logic Networks [69, 40, 30], Hidden

Markov Models (HMMs) [28, 41], Random Forest methods [53], Hidden Conditional

Random Fields [81] and Recurrent Neural Networks [51].

Current cognitive assessment methods mostly rely on queries from questionnaires

or in-person examinations, which depend on recall of events or brief snap-shots of

function that may poorly represent a person’s typical state of function. Also the

clinical methods have some limitations such as their episodic nature, and possible
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biased reporting. For example, in [54], the assessment scoring is done by asking elderly

people to complete a sequence of scripted actions. The participants are monitored

via Web camera while they perform tasks. In [57], authors focus on kettle and fridge

usage and sleep patterns. The cognitive status of a person is assessed based on

the kettle’s and fridge’s usage time, duration and frequency as well as the duration of

sleep. In [87], authors design games in order to assess the cognitive status of an elderly

person. In [19], the authors first extract sensor based features (the duration of the

activity and the number of sensors triggered) and then assess the activity quality and

cognitive status of elderly people. Note that, participants, in this study, are provided

with a brief description of each task that they should refer to during the simulated

activities. These studies fail to provide an unobtrusive way of assessment since they

are not done in the natural flow of daily living and in real life scenarios. Moreover,

using rule-based systems, an expert is needed to manually integrate specific rules

to the system since every person has own daily life routines. For example, waking

up and drinking water in the middle of the night might be normal for a person,

while abnormal for some other person. However, our approach does not require any

expert knowledge, since it learns what is normal and abnormal from the training data

automatically. Specifically, we aim in this study to detect anomalies in the natural

flow of daily living without giving any instruction and considering not only some time

interval, but everyday living scenario.

In [21], machine learning approaches such as Support Vector Machines (SVMs)

and Näıve Bayes are used to assess the cognitive status of elderly. In [34], Parkinson’s

Disease state assessment in home is explored by means of RBMs using data from body

worn sensors. In [70], the authors use Markov Logic Network, which is a probabilistic

logic that unifies statistical and symbolic reasoning to detect anomalies. In [21], some

instructions to perform some tasks (e.g., sweeping the kitchen and dusting the living

room, etc.) are given to the patients who then receive scores after completing those
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tasks. These scores are calculated based on the time spent, the frequency of the

sensor triggered, etc.

In [22], the authors introduce activity curves which model daily activity routines

of individuals. Abnormal behaviour is detected by comparing these activity curves

against the actual behaviour. In [7], the authors first introduce an abstraction layer

to create a common ground for home sensor configurations. Then, they build a

probabilistic spatio-temporal model to summarise daily behaviour. The probabilistic

model takes into account the location of the subject at each hour of the day and

defines a likelihood of the subject’s behaviour based on her location and outings.

This model, computed over a long period of sensor data, indicates where the subject

spends her time as part of a daily routine. Anomalies, such as staying in bed for a

long time or not using the bedroom for sleeping during the night, are then defined as

significant changes from the learned behavioural model and detected using a cross-

entropy measure. In some studies, the assessment is done by attaching motion sensors

on kitchen utilities and observing their usage frequency and time [86, 76]. In [28], the

authors exploit Hidden Markov Model (HMM) and fuzzy rules to detect duration,

time and frequency related anomalies. In [60], behavioural patterns of the residents

are extracted using Bayesian statistics. These patterns are used to detect abnormal

behaviour that potentially indicate changes in health status of the user. In [24], a

Markov chain model is employed to model the daily routines based on historical data.

An entropy rate is calculated to detect the unusual patterns of people with dementia

in their day-to-day life.

In [60], behavioural patterns of the residents are extracted using Bayesian statistics

and these patterns are used to detect anomalous behaviour signs which reflect changes

in health status of the user. Aztiria et al. [10] developed an algorithm that compares

the behaviour of a user with a set of previously discovered frequent behaviour to

identify possible shifts. Employing a set of atomic actions, the authors defined a
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likelihood value for the current behaviour of the user. The number of modifications

required to turn the current behaviour into a frequent behaviour is used as a metric

to classify a sequence of actions as an anomaly.

In [17], the authors propose a method to recognise activities in a smart home

and to identify errors and inconsistencies in the performed activity. First, normal

activities are modelled by NB and Markov model classifiers and then the closeness of

each performance to each activity is measured. The algorithm calculates the model

likelihood for the observed sequence of sensor events. If the generated probability falls

outside two standard deviations of the mean then the activity is flagged as anomalous,

otherwise it is labelled as consistent with normal execution of the activity.

In [81], the authors exploit Hidden State Conditional Random Field (HCRF)

method to detect abnormal activities that often occur in homes of elderly by consid-

ering sub-activity relations. First HCRF is used to recognise activities by producing

a recognition confidence value for each activity. Then a threshold based method is

used to decide the activities as normal and abnormal. In [69], the authors propose to

detect anomalies by exploiting the Markov Logic network. They use a hybrid tech-

nique including supervised learning, rule-based reasoning and probabilistic reasoning.

However, steps of each action are defined prior to the construction of the model. The

inference engine evaluates the rules (e.g. the patient has taken a medicine that was

not prescribed) which are extracted from a medical knowledge base of Mild Cognitive

Impairment (MCI) models and indicators. On the other hand, those rules strongly

depend on the specific home environment, on the used sensors, and on the particu-

lar habits of the elderly; hence, their definition is time-expensive, and rules are not

portable to di↵erent environments. In order to address this issue, the same authors

propose a method to automatically learn the rule-based definitions of behavioural

anomalies [40]. They exploit formal rule induction methods and a training set of

normal and abnormal behaviour. However, the authors claim that their proposed
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rule learning method infers deterministic rules, which are prone to generate anomaly

mispredictions in the presence of noise from the sensor infrastructure. In our study,

we learn normal daily life patterns for each individual from training data automat-

ically and without the integration of any rules. Similar to [81, 69], in our proposed

work, we define anomaly not activities alone but in the context of sequences, with

other activities happened before and after.

2.3.4 Deep Learning

Recently, there has been growing interest in Convolutional Neural Networks (CNNs)

[90, 92, 59, 35, 33, 71, 91, 12, 67, 88], Deep Belief Networks (DBN) [15], Restricked

Boltzman Machines (RBMs) [65, 34, 15, 26] and Recurrent Neural Networks (RNNs)

[59, 35, 27]. In [65], RBMs are used for feature extraction and selection from sequen-

tial data. In [26], results with RBM on CASAS dataset outperformed HMMs and

NB in most of the cases. In [59], the authors used a combination of CNNs and Long

Short Term Memory (LSTM) Recurrent Neural Networks to do multi-modal wearable

activity recognition. In [35], the authors explore deep, convolutional and recurrent

approaches on movement data captured with wearable sensors. In [12], the authors

utilised convolutional networks to classify activities using time-series data collected

from smart phone sensors. In [67], in a real world setting, an automatic stereotypical

motor movement in Autism detection systems is developed exploiting CNNs. The

discriminating features from multi-sensor accelerometer signals are learnt via CNNs

and this knowledge is transferred to a new dataset. In [88], CNNs are exploited

to learn features from raw physiological signals in an unsupervised manner analysis

and then using multivariate Gaussian distribution, anomalies are detected to identify

latent risks.

CNNs have been exploited for activity recognition using movement datasets that

are generated by wearable sensors [65, 90, 92, 59, 33, 12, 15]. Except the work by
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Fang et al. [26], none of these studies focus on daily activity datasets collected by

sensors placed at home. Previous work on activity recognition based on wearable

sensor datasets shows that CNNs and RNNs are useful to recognise activities, but

leaves a lot of room for improvement.

Interesting results are obtained with recursive models in hierarchical learning prob-

lems such as parsing, sentence-level sentiment analysis and paraphrase detection as

well as scene parsing [74, 64, 75]. Auto-encoders are being used for anomaly detec-

tion on time-series data [94, 72]. In [75], the authors use Recursive Auto-Encoders

for predicting sentiment distributions. Instead of using a bag-of-words model, this

model exploits a hierarchical structure and uses compositional semantics to under-

stand sentiment.

One evidence that there are granular-level information in daily life activities is

provided by Zhang et. al on the the the Aruba dataset [93]. They extract movement

patterns for representing the occupant’s moving segments during the performance of

an activity. It is shown that the movement vector can distinguish di↵erent high-level

activities. The occupant tends to have the same routine of performing the same ac-

tivities, but has di↵erent movement patterns in di↵erent activities. For example, the

occupant may mainly move around the kitchen sink in wash dishes activity, and stay

around the bedroom area during sleeping activity. A combination of some motion

sensors are mostly seen in the instances of relax activity while some other motion sen-

sors indicates the movement between kitchen range and the sink and this movement

pattern can be seen in the instances of wash dishes.

Graph-structured data appears frequently in domains such as chemistry, natu-

ral language semantics, social networks, and knowledge bases [23, 73, 85]. Graph

convolutions have been widely used to learn high-level features by considering spatio-

temporal relationships among nodes of a graph. In [58], graph kernels are used to

embed meaningful local neighbourhoods of the graphs in a continuous vector space.
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In [80], the authors represent graphs as multi-channel image-like structures that al-

lows them to be handled by 2D Convolutional Neural Networks (CNNs). In [50],

molecules are represented as an undirected Graph Convolution Networks (GCNs) to

predicate molecular properties. Moreover, in anomaly detection literature, graph-

based methods are preferred when there is inter-dependent data since graphs can

o↵er powerful representation abilities [1, 93, 2]. The most similar approach to ours

is [2], where motion sensors in a smart home are represented in a graph and resi-

dent’s movements are encoded as edges in the graph. Then graph-based features are

extracted and used as input for a SVM. In this study, each sensor is represented as a

node which appears only once. If sensor A is activated after sensor B, then there is

an edge between their nodes. However, in our case instead of taking sensors as nodes,

we encode each activation as a node, which allows us to capture the further ordering

of sensor activations.

2.3.5 Transfer Learning

In transfer learning literature, most of the activity recognition models are super-

vised models that require labelled data to learn the model parameters [63, 13, 43].

Good results are obtained using generative models such as HMM [63, 43] and dis-

criminative models such as CRF [13, 43]. In [84], a method is proposed to learn the

parameters of a HMM using labelled data from the source domain, and unlabelled

data from the target domain. The study ignores the activities’ important features

such as the activity structure and related temporal features. They also assume that

the structure of HMMs is given and pre-defined. Later they extend this work to learn

hyper-parameter priors for HMM instead of learning the parameters directly [42].

In transfer learning, sensors and activities in di↵erent households are needed to

be mapped. In [84], a comparison of feature mappings was done. The mapping that

combined sensor readings in a single feature based on their function (e.g. sensors used
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during cooking) gave the best results. In some cases, meta-features are first manually

introduced into the feature space and then the feature space is automatically mapped

from the source domain to the target domain [42].

In [68], the authors first assign a location label to each sensor indicating in which

room or functional area the sensor is located. Then activity templates are constructed

from the data for both the source and target data, finally a mapping is learnt between

the source and target datasets based upon the similarity of activities and sensors.

2.4 Background

In this section, we will give a brief summary of the state-of-the-art generative

(Näıve Bayes, Hidden Markov Model, Hidden Semi-Markov Model) and discrimina-

tive (Conditional Random Field, Support Vector Machines) methods that we use for

comparison in later chapters.

2.4.1 Generative Methods

2.4.1.1 Näıve Bayes

Näıve Bayes classifier does not consider the temporal dependency between input

instances. In this method, all instances are assumed to be independent and identically

distributed. The joint probability over instances are calculated as follows.

p(y1:T , X1:T ) =
TY

t=1

p(�!x |yt)p(yt) (2.1)

where p(yt) is the prior probability over an activity instance. It indicates the

probability of that activity without any observation taken into account. p(�!x |yt) is

the observation distribution that represents the probability that the activity yt would

generate observation vector �!x . According to Näıve Bayes assumption, each sensor

reading is considered separately, which results in N parameters for each activity,
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where N is the number of sensors. Then, each sensor observation is modelled as an

independent Bernoulli distribution and observation distribution for activity i becomes

p(�!x |yt = i) =
NY

n=1

p(xn

t
|yt = i) (2.2)

2.4.1.2 Hidden Markov Model

In this model, Markov assumption is used to model the temporal relation between

consecutive time slices. In the first order Markov assumption, the hidden variable yt,

at time t, depends on the previous hidden variable yt�1 at time t� 1. In the second

order Markov assumption, the observable variable �!x at time t depends only on the

hidden variable yt at that time slice. Then the joint probability becomes

p(y1:T , X1:T ) =
TY

t=1

p(�!x t|yt)p(yt|yt�1) (2.3)

In the observation model p(�!x t|yt), the same assumptions with the Näıve Bayes

are used. The transition probability p(yt|yt�1) represents the probability of going

from one state to another.

HMMs are more suitable for datasets that require temporal information encoding

since it can relate each input with previous one.

2.4.1.3 Hidden Semi-Markov Model

Semi-Markov models relax the Markov assumption by explicitly modelling the

duration of an activity. The HMMmodels the duration of activity implicitly by means

of self-transitions of states, but this introduces some limitations. Hidden Semi-Markov

Model (HSMMs) use an additional variable dt to model the duration. This variable

represents the remaining duration of state yt. The value of this variable decreases by

one at each time-step and the model stays at that state until this variable becomes

zero. When it becomes zero, a transition to a new state is made and the duration of
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the new state is obtained from the duration distribution. Then the joint probability

of the HSMM is

p(y1:T , X1:T , d1:T ) =
TY

t=1

p(�!x t|yt)p(yt|yt�1, dt�1)p(dt|dt�1, yt) (2.4)

2.4.2 Discriminative Methods

2.4.2.1 Conditional Random Field

NB, HMM and HSMM models learn the parameters by maximising the joint prob-

ability. Conditional random fields do not model the full joint probability, but model

the conditional probability. A CRF which uses the first order Markov assumption

is called a linear-chain CRF and resembles to HMM in terms of structure. In this

research, linear-chain CRF is used, in which the conditional distribution is

p(y1:T |X1:T ) = 1/(Z(X1:T ))
TY

t=1

exp
KX

k=1

�kfk(yt, yt�1,
�!x t) (2.5)

where K is the number of feature functions used to parameterise the distribution,

� is a weight parameter and fk(yt, yt�1,
�!x t) is a feature function. The product of the

parameters and the feature function is called energy function and the exponential of

that term is called a potential function. Z(X1:T ) is called the partition function and

used as a normalisation term. It ensures that the distribution sums up to one and

obtains a probabilistic interpretation. It is calculated by summing over all possible

state sequences.

2.4.2.2 Support Vector Machines

A Support Vector Machine (SVM) is a supervised machine learning algorithm

which is based on the idea of finding a hyperplane that best divides a dataset into

two classes, as shown in Figure 2.1. The data points nearest to the hyperplane are
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called support vectors. if these support vectors are removed, the position of this

hyperplane changes, which a↵ects the classification results.

SVMs maximise the margin around the separating hyperplane to classify the in-

stances in a dataset. The margin is the distance from the hyperplane to support

vectors. Di↵erent optimisation methods can be used to find the optimal hyperplane

by maximising the margin. For this purpose, SVMs use kernel functions such as ra-

dial basis kernel, polynomial kernel to map the non-linearly separable data from the

input space into a higher space where data become linearly separable.

Figure 2.1: Hyperplane and support vectors in SVM algorithm.
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CHAPTER III

Data Generation

3.1 Introduction

In this chapter, we describe the datasets used to evaluate our proposed methods.

These datasets are namely Van Kasteren and CASAS datasets, which include daily

life activities collected from pervasive sensors in smart homes. These datasets are

chosen because they consist of activities that can be observed in an elderly person’s

daily life. However, these datasets don’t include any abnormal behaviour reflecting on

cognitive status of elderly people. Moreover, in this chapter, we describe our method

to simulate abnormal behaviour of elderly people su↵ering from dementia.

This chapter is organised as follows. The datasets used are described in Section 3.2

before the details about generation of artificial activities are introduced in Section 3.3.

3.2 Datasets

3.2.1 Van Kasteren Datasets

The first dataset used in this research is the popular dataset collected by Van

Kasteren [83]. The data captures daily-life activities such as sleeping, cooking, leaving

home, etc. using sensors placed at the homes in less than a month. In this dataset,

there are 3 households which are denoted as dataset A, B and C (see Figure 3.1).
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These households are equipped with motion and door sensors. These sensors are

placed on toilet, next to stove, kitchen sink, bathroom sink, bathroom tube, bed,

working desk and on doors in the rooms. A more detailed overview of these households

are provided in Table 3.1. For example, 14 sensors are used in household A and there

are 10 di↵erent daily life activities involved.

Figure 3.1: Van Kasteren dataset.

An excerpt from raw sensor measurements is depicted in Table 3.2. Here, each
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Table 3.1: Some statistics of Van Kasteren dataset.

House A House B House C
Age 26 28 57
Gender Male Male Male
Setting Apartment Apartment Apartment
Rooms 3 2 6
Duration 25 days 14 days 19 days
Sensors 14 days 23 days 21 days
Activities 10 13 16
Annotation Bluetooth Diary Bluetooth

measurement is associated with date and time, sensors ID and sensor status (ON/OFF )

respectively.

Table 3.2: Raw sensor reading data.

Date Time Sensor ID Sensor Status
2011-04-01 01:16:10.814699 M004 ON
2011-04-01 01:16:11.429192 M007 ON
2011-04-01 01:16:16.462383 M004 OFF
2011-04-01 01:16:16.599859 M005 ON
2011-04-01 01:16:19.899843 M003 ON
2011-04-01 01:16:22.102316 M005 OFF

3.2.2 CASAS Datasets

We used two testbeds of CASAS smart home project [17], namely Aruba [16] and

WSU testbeds.

In Aruba testbed, motion, door and temperature sensors are used. However, we

exclude temperature sensors in our study since they do not bring any additional

information about the cognitive status of elderly. Thus, in total we used 34 sensors

(3 door and 31 motion sensors). The data is provided as a list of (sensor, time-

stamp) sensor measurements. There are 11 daily activities performed by a single

user spanning 224 days. These activities are Meal Preparation (1606 instances),

Relax (2910 instances), Eating (257 instances), Work (171 instances), Sleeping (401

instances), Wash dishes (65 instances), Bed to toilet (157 instances), Enter home (431
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instances), Leave home (431 instances), Housekeeping (33 instances) and Respirate

(6 instances).

In WSU testbed, there are 5 activities, which are Make a phone call, Hand wash-

ing, Meal Preparation, Eating, Cleaning. There are 20 instances of each activity

performed by 20 students in both adlerror and adlnormal versions. adlnormal ver-

sion consists of totally normal behaviours while in adlerror, there are specific errors

in the task completion of these activities. Errors were selected to reflect common

di�culties that can compromise everyday functional independence. The participants

are told to include these errors during their performance. These errors can be seen

in daily life activities and activity patterns of elderly people who are su↵ering from

the consequences of cognitive decline.

3.3 Data Generation

We focus on two kinds of anomalies that can be seen in daily life routines of

elderly people with dementia: 1) activity related anomalies and 2) sub-activity related

anomalies. In activity related anomalies, an activity itself is totally normal while there

is an anomaly related to its frequency or its timing in a day. On the other hand, sub-

activity related anomaly is related to the context and the quality of activity performed

such as frequency of sensor activations involved as well as their order and correlation.

In the first one, activities as a whole are repeated or forgotten (e.g. having dinner);

while in the second one, some steps (sensor activations) of activities are forgotten or

repeated (e.g. adding salt to the dish).

3.3.1 Activity Related Abnormal Behaviour

Frequency sensitive activities such as having a snack or drink, brushing teeth,

taking medicine multiple times, etc. are the ones where only the number of occurrences

matters in terms of medical assessment. To simulate these type of indicators, we insert
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a specific set of activities within the whole day sequence of activities (see Algorithm 1).

This will result in multiple occurrences of the same activity. Moreover, insertion in

some inadequate time of the day will generate time-related abnormality such as having

dinner in the middle of the night. We insert the instances of the following activities:

preparing meal, eating, working, washing dishes, leaving home, entering home into

the normal activity sequences of the Aruba dataset.

We simulate sleep disorders and night time wandering anomalies by inserting

some synthetic activities in the normal night-time activity sequences of a person.

More specifically, we insert eating, bed to toilet, respirate into the sleeping activity of

normal activity sequences. This will emulate the activities of getting drink and going

to the toilet frequently in the middle of the night.

Input: A sequence S of sensor activations in a day such as

S = < s1, s2, . . . , sn > where each si is a sensor activation.

An activity A = < a1, a2, . . . , am > where each aj is a sensor

activation. /* A is chosen specially (e.g. eating) to reflect a

dementia related abnormal behaviour. */

Output: S = < s1, s2, . . . , sl, a1, a2, . . . , am, sl+1, . . . , sn >

while true do

Choose a random position l in S;

Insert A into S at position l;

end

Algorithm 1: Simulation of activity related abnormal behaviour

As described in Algorithm 1, all insertions are done randomly. Firstly a random

instance of a given activity type (for example meal preparation) from whole dataset is

chosen, and then it is injected in a random location. Please note that these activities
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Table 3.3: Examples of abnormal behaviour.

Type Original Modified Abnormality

A
ct
iv
it
y

S - M - E S - B - S - M - E Sleep disorder
S - M - E S - R- S - M - E Sleep disorder
S - M - E S - R - S - M - E Sleep disorder
S - M - E S - M - S - M - E Repetition
S - M - E - H S - M - E - H - E - E Repetition

S
u
b
-a
ct
iv
it
y W: M26, M28, M27 M26, M28, M26,M26, M27 Confusion

B: M4, M5, M7 M4, M5, M5, M7, M5 Confusion
W: M18, M20, M15 M18, M15, M15, M20, M15 Confusion
E: M14, M19, M18 M14, M14, M14, M19, M18, M14 Confusion
M : M18, M19, M15 M18, M18, M18, M19, M15, M18 Confusion

are totally normal on their own but become abnormal when they occur at a wrong time

of the day and after or before a specific activity. Hence, capturing these abnormalities

within the context is important. In all, we manually generate 77 abnormal activity

instances on the the Aruba dataset. A set of modified abnormal behaviours is depicted

in Table 3.3. The following abbreviations are used for the activities. S: Sleeping,

M: Meal preparation, E: Eating, R: Respirate, W: Working, B: Bed to toilet. The

inserted activities are shown in bold. For sub-activity related abnormal behaviour,

because of space problem, only a subset of sensor activations are shown, where each

M corresponds to a motion sensor.

Moreover, we generate these abnormal activity instances on dataset A of Van

Kasteren dataset which has the following 9 activitiesLeave house, use toilet, take

shower, brush teeth, go to bed, prepare breakfast, prepare dinner, get snack, get drink.

In all, we manually synthesised 135 abnormal activity slices in this dataset.

3.3.2 Sub-activity Related Abnormal Behaviour

This kind of abnormal behaviour is generated by repeating specific sensor activa-

tions in a given activity. For this purpose, given random instances of working, eating,

meal preparation, bed to toilet, we randomly insert specific sensors (M26,M14,M18,M4
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respectively) involved in these activities (see Algorithm 2). For example, for working

activity, the sensor M26 is repeated more than usual which can be used to emulate

the usage of a computer. A snapshot for sub-activity related abnormal behaviour syn-

thesis is depicted in Figure 3.2, where ONabn shows the inserted sensor activations.

Figure 3.2: Sensor data after sub-activity related abnormal behaviour is generated.

Moreover, we use adlerror set of WSU dataset since confusion and forgetting

anomalies are reflected in this set. Some examples are leaving the water running

after washing hands, leaving the burner on after cooking the oatmeal, forgetting to

take medication with the meal, wiping o↵ the dishes without using running water to

clean them.

Please note that there is a di↵erence between the first type and the second type

of abnormal behaviour. The first one represents anomalies related to forgetting and

repetition of activities while the second one represents anomalies related to confusion.

The repetition in the first one occurs at activity level, the activities itself as a whole

are repeated or forgotten. On the other hand, in the second abnormal behaviour,

some sub-activities of individual activities are forgotten or repeated. For example;

having dinner twice or forgetting to have dinner reflects the first type of abnormal

behaviour, whereas forgetting to add salt to dinner or taking a medicine more than

once after dinner is in the second type of abnormal behaviour category.
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Input: A sequence of S of sensor activations of an activity A such as

S = < a1, a2, . . . , an > where each ai is a sensor activation

A sensor type M that occurs in activity A.

/* A and M are chosen specially (e.g. sensor M6 in

working activity) to reflect a dementia related abnormal

behaviour. */

Output: S = a1,M, a2,M, a3, . . . ,M, an

while true do
Choose a random location l in S

Insert M into S at l

end

Algorithm 2: Simulation of sub-activity related abnormal behaviour.

3.4 Conclusion

In this chapter, we presented two di↵erent types of indicators reflecting the cogni-

tive status of elderly people. These indicators are named as activity (repetition and

forgetting of activities) and sub-activity (confusion and repetition of steps withing

activities) related anomalies. Moreover, we presented a data simulation method to

generate these kind of indicators given the scarcity of data reflecting these anomalies.

However, this simulation method generalises the abnormal behaviour reflecting cog-

nitive status of elderly people since some of the abnormal behaviour might be user

specific and may not be reflected in the abnormal behaviour generated. This kind of

abnormal behaviour can be taken into account by collecting real-world dataset.
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CHAPTER IV

Spatio-Temporal Activity Recognition and

Abnormal Behaviour Detection

4.1 Introduction

Sequence modelling has been a challenging problem in machine learning that re-

quires models which are able to capture temporal dependencies. Recurrent Neural

networks have shown promising results in some sequence modelling problems such

as speech recognition [31], machine translation [77, 11], handwriting recognition and

generation or translation, language modelling and protein secondary structure predic-

tion [32]. Daily life activities can be modelled as sequences where sensor activations

form a time-series data. Thus, modelling activity recognition as a sequence labelling

problem makes RNNs an appealing approach. In the present study, we exploit RNNs

to model activities based on their temporal information and then detect abnormal

behaviour deviating from normal patterns.

Moreover, Convolutional Neural Networks (CNNs) are popular due to their ability

to learn fruitful representations and capture local dependency and spatial information

of granular-level patterns. For example, in image recognition, CNNs firstly detect

pixels, then edges and shapes, then parts of objects as the layer level increases. Similar

to images, there are granular-level patterns in daily life activities as described in
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Chapter I. CNNs are good at modelling these granular-level patterns and defining

their relationship with each other by using spatial information. Thus, in this research,

CNNs are exploited to model sensors and their relationship with each other in daily

life activity recognition.

In this chapter, we will first summarise Recurrent Neural Networks (RNNs) and

their variants in Section 4.2 and Convolutional Neural Networks (CNNs) in Sec-

tion 4.3. Moreover, Section 4.4 describes how these methods are adapted for activity

recognition and abnormal behaviour detection. Experiments are presented in 4.5

along with discussion of the results.

4.2 Recurrent Neural Networks

RNNs can be considered as a deep neural network (DNN) with indefinitely many

layers when they are folded out in time. For RNNs, the primary function of the

layers is to introduce memory, not hierarchical processing. New information is added

in every layer and the network can pass this information on for an indefinite number of

network updates, essentially providing RNN with unlimited memory depth. Whereas

in DNNs, input is presented only at the bottom layer, and output is produced only

at the highest layer. RNNs generally receive input and produce output at each time

step. RNNs can learn during the training phase to select what information they need

to pass onwards, and what they need to discard [36].

In traditional feed-forward neural networks, it is assumed that all inputs and

outputs are independent of each other, but RNNs have a recurrent hidden state whose

activation at each time is dependent on that of the previous time. This architecture

is recurrent as some of the connections within the network form a directed cycle,

where the current time-step t depends on the previous time-step t � 1. RNNs share

parameters for di↵erent time-steps which enables them to be used in sequential data

with a variable-length. Another way to think about RNNs is that they have a memory
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(recurrent hidden state) which captures information about what has been calculated

so far.

In the following, we will give a brief summary of the three variants of RNNs, which

are namely Vanilla RNNs, Long Short Term (LSTM) RNNs and Gated Recurrent Unit

(GRU) RNNs.

4.2.1 Vanilla Recurrent Neural Networks

Vanilla RNNs are the traditional RNNs which don’t have any gates like in LSTM

RNNs or GRU RNNs. In traditional RNNs, given a sequence x = (x1, x2, x3, ..., xn),

the recurrent hidden state ht is updated by

ht = F✓(ht�1, xt) (4.1)

where F✓ is a linear regression function, ht�1 is the previous hidden state. From

Equation 4.1, it can be inferred that each hidden state ht is a function which sum-

marises all previous inputs. As depicted in Figure 4.1, xt is the input at time step t,

st is the hidden state at time step t which is the memory of the network since it is

calculated based on the previous hidden state and the input at the current step, o is

output at time step t. RNN shares the same parameters (U, V,W ) across all steps,

which reduces the total number of parameters we need to learn.

Unfortunately, it has been observed by [49] that it is di�cult to train RNNs to

capture long-term dependencies because the gradients tend to either vanish (most of

the time) or explode (rarely, but with severe e↵ects). This makes gradient-based op-

timisation method struggle, not just because of the variations in gradient magnitudes

but because of the e↵ect of long-term dependencies is hidden (being exponentially

smaller with respect to sequence length) by the e↵ect of short-term dependencies.

One of the methods to solve this problem was presented by a recurrent unit (LSTM

unit) in [37]. More recently, another type of recurrent unit (GRU) was proposed by
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Figure 4.1: Unfolded RNN.

Bengio et al. [14]. RNNs employing either of these recurrent units have been shown

to perform well in tasks that require capturing long-term dependencies.

4.2.2 Long Short Term Memory Unit

Each LSTM unit keeps track of an internal state that represents its memory. Over

time the cells learn to output, overwrite, or null their internal memory based on their

current input and the history of past internal states, leading to a system capable of

retaining information across hundreds of time-steps [37]. LSTM blocks have 3 gates

to control the flow of information into or out of their memory. An input gate controls

the extent to which a new value flows into the memory. A forget gate controls the

extent to which a value remains in memory. An output gate is used to compute the

output activation of the block. As depicted in Figure 4.2, LSTM can be described as

the input signals xt at time t, the output signals yt, the forget gate ft, the input gate

it and the output gate ot.

Unlike a recurrent unit which simply computes a weighted sum of the input signal

and applies a nonlinear function, each jth LSTM unit maintains a memory cjt at time

t. The output hj

t or the activation of the LSTM unit becomes

hj

t = �j

t tanh(c
j

t) (4.2)
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Figure 4.2: A Long Short Term Memory unit

where �j

t is an output gate that modulates the amount of memory content expo-

sure. The output gate is computed by

�j

t = �(W0xt + U0ht�1 + Voct) (4.3)

where � is a logistic sigmoid function. U , W , V are weights where U maps input

unit to hidden unit, W maps hidden unit to another hidden unit and V maps hidden

unit to output unit.

The memory cell cjt is updated by partially forgetting the existing memory and

adding a new memory content c̃t
j̃

cjt = f j

t c
j

t�1 + it
j c̃t

j (4.4)

where the new memory content is

c̃t
j̃ = tanh(Wcxt + Ucht�1)

j (4.5)

The extent to which the existing memory is forgotten is modulated by a forget

gate f j

t , and the degree to which the new memory content is added to the memory

42



cell is modulated by an input gate ijt . Gates are computed by

f j

t = �(Wfxt + Uoht�1 + Vict�1)
j (4.6)

ijt = �(Wixt + Uiht�1 + Vfct�1)
j (4.7)

Unlike traditional recurrent unit which overwrites its content at each time-step, an

LSTM unit is able to decide whether to keep the existing memory via the introduced

gates. Intuitively, if the LSTM unit detects an important feature from an input

sequence at early stage, it easily carries this information over a long distance, hence,

capturing potential long-term dependencies.

4.2.3 Gated Recurrent Unit

Bengio et al. [14] recently proposed Gated Recurrent Unit (GRU), which is like

LSTM but it has fewer parameters than LSTM, as GRUs lack an output gate. In GRU,

each hidden unit has two gates, which are called update and reset gates. GRU also

controls the flow of information to prevent vanishing gradient problem, but without

having to use a memory unit. As depicted in Figure 4.3, GRU can be described in

terms of two internal variables z and r, where z is an update gate and r is a reset

gate, x is input and y is output.

Figure 4.3: A Gated Recurrent unit.
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Each hidden state ht at time-step t is computed as follows:

ht = (1� zt) � ht�1 + zt � h̃t (4.8)

where � is an element wise product, zt is update gate and h̃t is the candidate

activation which given as follows:

h̃t = tanh(Wxt + U(rt � ht�1)) (4.9)

where rt is the reset gate. Both update and reset gates are computed using a

Sigmoid function. Thus, zt and rt become

zt = �(Wzxt + Uzht�1) (4.10a)

rt = �(Wrxt + Urht�1) (4.10b)

4.3 Convolutional Neural Networks

Convolutional neural network (CNN) is a feed-forward deep neural network which

involves convolution operation in some layers. CNN typically consists of a com-

bination of three di↵erent layers; convolutional layer, subsampling layer and fully-

connected layer.

In a convolutional layer, convolution is applied which reduces parameters by fol-

lowing a weight sharing technique. This also reduces the training time and avoids

an overfitting issue. In subsampling, we apply non-linear function and pooling op-

eration to obtain high-level distortion-invariant features. After alternately applying

convolutional and subsampling layers multiple times, shallow fully connected-layer is

applied at the end. For classification task, softmax function is usually used here, and
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the output layer as one neuron per each class. One benefit of using CNN is that it

automatically learns features without any prior knowledge about the data.

Figure 4.4: An example of convolution layers in a CNN network.

CNN network takes inputs of dimensions h⇥ w ⇥ d, where h is the height of the

input matrix, w is the width of the input matrix and d is the depth or the number

of di↵erent channels of the input matrix. In our study, d is 1 since time-slice input

matrices has only one channel.

In a convolutional layer, a local filter (kernel) is used as a feature detector in order

to extract the fruitful feature patterns on the given input (see Figure 4.4). These filters

capture the local dependencies in the input. Di↵erent filters generate di↵erent feature

maps from the same original input. The more filters, the more features get extracted,

the better the network becomes at recognising patterns in unseen instances. The

value of these filters are initialised randomly in the beginning and then CNN learns

these values on its own during the training process by optimising the values. In this

research, random uniform initialisation is used to initialise the filters and Stochastic

gradient descent is used to optimise the values during the training.

In this research, time-series data is convolved with both 1-D convolution and

2-D convolution. To obtain distinguishable features from multiple sensors, spatial

45



dependency over sensors and local dependency over time are both important. How-

ever, CNNs using 1D convolution kernel and 1D pooling kernel simply capture local

dependency over time of each signals. To capture both kinds of dependencies, 2D con-

volution kernel and 2D pooling kernel will be used. In the following, we will describe

these convolutions.

4.3.1 1-D Convolution

1D convolution on position (i, j) of kth feature map in lth layer (convolutional

layer), zl,k
i,j

is computed as

zl,k
i,j

=
KX

k=1

YX

y=1

wl�1,k
y,k

zl�1,k
i,j+u�1 (4.11)

where Y is a convolution kernel size over time, K is the number of feature maps

at (l�1)th layer and wl�1,k 2IRY xK is a weight matrix that form a convolution kernel.

1D pooling of kth feature map in lth layer (subsampling layer) is

zl,k
i,j

= �( max
(j�1)Q+1j0jQ

z
i,j0l�1,k) (4.12)

where Q is the size of the pooling kernel, and �(.) is an activation function.

However, 1-D convolution along temporal dimension can only capture the dependency

between activity slices in time. To capture the relationship between the sensors, 2-D

convolution is applied on both temporal dimension and feature dimension.

4.3.2 2-D Convolution

2-D convolution on position (i, j) of kth feature map in lth layer is

zl,k
i,j

=
K

0X

k0=1

XX

x=1

YX

y=1

wl�1,k
x,y,k0 , z

l�1,k0

i+x�1,j+y�1 (4.13)

whereX and Y are a convolution kernel size over signals and over time respectively,
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K 0 is the number of feature maps at (l�1)th layer, and wl�1,k0 2 IRXxY xK
0
is a weight

tensor that form a convolution kernel.

Using these filters are not only good for extracting meaningful patterns in the

input but also good at reducing the computational complexity since it reduces the

dimensionality of the input space. The output of such a set of local filters constitute

a feature map (activation map). An additional operation called activation function

has been used after every convolution operation. While other functions such as tanh

or sigmoid can be used, generally Rectified Linear Unit (ReLU) which is a non-linear

operation is preferred. The resultant map is called Rectified feature map or activation

(feature) map.

Once a feature is detected in the convolutional layer, its exact location becomes less

important as long as its position related to other features is preserved and additional

layer which performs max-pooling is stacked over convolutional layer to reduce the

sensitivity of the output. Max-pooling layer achieves scale-invariant feature preser-

vation. A spatial neighbourhood is defined in the rectified feature map within that

window. Instead of taking the largest element we could also take the average or sum

of all elements in that window, but generally max pooling is preferred.

A window of n⇥ t is slided over the feature map by shifting by s cells (which are

called stride) and the maximum value in each region is taken. This process reduces the

spatial size of the input representation. Moreover, it reduces the number of parameters

and computations in the network, therefore, controlling overfitting. It also makes the

network invariant to small transformations, distortions and translations in the input

image (a small distortion in input will not change the output of pooling since we take

the maximum or average value in a local neighbourhood).

The fully connected layer used in our network is a traditional Multi Layer Per-

ceptron that uses a softmax activation function in the output layer. The output from

the convolutional and pooling layers represent high-level features of the input image.
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The purpose of the fully connected layer is to use these features for classifying the

input image into various classes based on the training dataset.

CNN can contain one or more pairs of convolutional and max-pooling layers,

where higher layers use broader filters to process more complex parts of the input.

The top layers in CNN are stacked by one or more fully connected normal neural net-

works. These fully connected neural networks are expected to combine di↵erent local

structures in lower layers for final classification purpose. In the training stage, CNN

parameters are estimated by standard forward and backward propagation algorithms

to minimise the objective function.

4.4 Activity Recognition and Abnormal Behaviour Detec-

tion

To assess our models in activity recognition and abnormal activity detection, we

propose the following steps:

1. The activity data is segmented into temporal slices by using a sliding window

approach as described in [83].

2. Sensor-based features are extracted from the slices. These features are binary,

change-point and last-fired representations as in [83].

3. RNNs (Vanilla, GRU and LSTM variants) and CNNs are trained to recognise

daily activities.

4. The trained models are used to detect anomalies deviating from the normal

sequences.

The order of sensor readings is important to take the spatial information into

account. We use a sliding window approach to segment data into activity instances.
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We applied the same sliding window approach as in [83] to extract the sensor reading

chunks which are used as input to RNNs and CNNs. The window size is based on

time rather than the number of sensor events (one sensor reading tuple is named as

sensor event). Di↵erent time windows can be used such as 1-minute slices, 60-second

slices, etc. If 1-minute windows are used, all sensor readings which are in that minute

are extracted in a window. These windows are mapped into specific representations

as described in the following.

4.4.1 Sensor Data Representation

Raw sensor reading are mapped into raw (binary), change-point and last-fired rep-

resentations using a sliding window. These representations are depicted in Figure 4.5.

Figure is retrieved from [83].

• Binary : This representation gives 1 when the sensor is triggered and 0 when

that sensor is not triggered.

• Change-point : This representation gives information when a sensor changes

value. More specifically, it gives 1 when a sensor changes its current state

(either from state 1 to state 0 or vice versa) and 0 when its value remains the

same.

• Last-fired : This representation indicates which sensor is fired last. The sensor

that changed state last continues to give 1 and changes to 0 when another sensor

changes state.

4.4.2 Abnormal Behaviour Detection

In order to recognise daily activities, training instances of the datasets and their

corresponding labels are fed into the RNNs and CNNs and these models are trained.

The models assign a class label to each instance with a confidence value. Firstly, the
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Figure 4.5: Sensor representations

mean of confidence values of training instances for each class is calculated as follows.

mj = 1/N
NX

t=1

pt (4.14)

where mj is the mean confidence value of class j and pt is the confidence value for

training instance t of that class and N is the total number of instances in that class.

Then when a new test instance is introduced, if the model assigns it to a class with

a confidence value which is bigger than the mean of that class (mj), that instance is

considered as a normal activity, otherwise it is flagged as an abnormal activity.

Now, we will continue with the experimental settings, evaluation metrics and

results with RNNs and CNNs, followed by discussion.

4.5 Experiments

We used Keras deep learning library’s [29] and Theano’s [78] implementations of

the RNNs (GRU, LSTM, Vanilla RNN) and CNNs in this study. Adam optimiser

is used and the instances are fed into the system with a batch size of 20 samples.

Moreover for the sake of comparison, we also used the One-class SVM from WEKA

with default parameters, Näıve Bayes (NB), Hidden Markov Models (HMM), Hidden

Semi-Markov Models (HSMM) and Conditional Random Fields (CRF) which are

based on the implementation provided in [83].
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4.5.1 Evaluation Metrics

In order to assess the recognition success, we use the following metrics: Precision,

Recall, F-measure and Accuracy, where TP is true positive, TT is total true labels,

TI is total of inferred labels, N is the number of instances in a specific class of the

dataset and Total is the total number of instances of all classes in the dataset. As

seen in Formulas 4.15 and 4.16, final precision and recall values are calculated by

taking average over classes. Note that precision and recall measures are used since

these metrics give some idea on the models’ performance on imbalanced datasets like

the ones in this study. On the other hand, the accuracy represents the percentage

of correctly classified time slices, therefore more frequently occurring classes have a

larger weight in this measure.

Precision =
1

N

NX

i=1

TPi

TIi
(4.15)

Recall =
1

N

NX

i=1

TPi

TTi

(4.16)

F-measure =
2⇥ Precision⇥ Recall

Precision + Recall
(4.17)

Accuracy =

P
N

i=1 TPi

Total
(4.18)

Abnormal behaviour detection success rate is evaluated by sensitivity and speci-

ficity metrics. Sensitivity or True Positive Rate (TPR) refers to the method’s ability

to correctly detect instances which are abnormal. Specificity or True Negative Rate

(TNR) gives the percentage of correctly recognized normal instances, thus reflects the
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method’s ability to di↵erentiate between normal and abnormal.

Sensitivity =
TP

(TP + FN)
(4.19)

Specificity =
TN

(TN + FP )
(4.20)

4.5.2 Results with Recurrent Neural Networks

We split Kasteren datasets into a test and training set using the leave-one-day-

out cross-validation approach. One full day of sensor readings is used for testing and

the remaining days are used for training. Then we cycle over all days and report

the average performance. We left out 10% of the training data for validation. We

also set the batch size to 10 instances and the epoch to 500 iterations. The internal

architecture of RNNs (2 layers consisting of 30 and 50 nodes respectively) and time

step of the sequences (25 activity slices) were empirically set.

Note that the results obtained by the models HMM, HSMM, CRF and NB (see

Tables 4.1 - 4.3) are taken from the study by [83].

Table 4.1 refers to the results obtained on dataset A and shows that there is

no clear winner among the three di↵erent feature representations. Considering the

accuracy, the results indicate that LSTM is the best method (with the accuracy of

96.7%) when last-fired feature is used, while HMM performs the worst. Using change-

point feature, HMM outperforms all other methods. Using binary feature on the other

hand shows that CRF (accuracy of 89.8%) is the best. Also all RNNs, NB and SVM

do not perform well when adopting change-point feature. HMM and HSMM are not

good when using binary feature representation. In a nutshell, for the majority of the

methods, except HMM and HSMM, last-fired representation is the best one. In terms

of recall which reflects better on performance in the presence of imbalanced data, the

highest value is obtained by GRU (80.6%). This potentially indicate that RNNs are

good to detect relevant class instances. CRF, for instance, score higher on precision,
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Table 4.1: Activity recognition results for household A of Van Kasteren dataset.

Model Feature Precision Recall F-Measure Accuracy

NB
Binary 48.3± 17.7 42.6± 16.6 45.1± 16.9 77.1± 20.8

Change-point 52.7± 17.5 43.2± 18.0 47.1± 17.2 55.9± 18.8
Last-fired 67.3± 17.2 64.8± 14.6 65.8± 15.5 95.3± 2.8

HMM
Binary 37.9± 19.8 45.5± 19.5 41.0± 19.5 59.1± 28.7

Change-point 70.3± 16.0 74.3± 13.3 72.0± 14.2 92.3± 5.8
Last-fired 54.6± 17.0 69.5± 12.7 60.8± 14.9 89.5± 8.4

HSMM
Binary 39.5± 18.9 48.5± 19.5 43.2± 19.1 59.5± 29.0

Change-point 70.5± 16.0 75.0± 12.1 72.4± 13.7 91.8± 5.9
Last-fired 60.2± 15.4 73.8± 12.5 66.0± 13.7 91.0± 7.2

CRF
Binary 59.2± 18.3 56.1± 17.3 57.2± 17.3 89.8± 8.5

Change-point 73.5± 16.6 68.0± 16.0 70.4± 15.9 91.4± 5.6
Last-fired 66.2± 15.8 65.8± 14.0 65.9± 14.6 96.4± 2.4

Vanilla
Binary 46.5± 17.7 64.8± 16.2 53.5± 16.3 86.8± 10.6

Change-point 46.3± 19.5 63.8± 16.4 53.2± 17.9 61.4± 16.4
Last-fired 61.9± 19.1 74.3± 12.8 67.2± 16.4 95.5± 3.4

LSTM
Binary 50.8± 18.4 63.9± 16.5 56.2± 17.1 86.7± 10.5

Change-point 46.8± 18.7 63.6± 14 53.5± 16.7 61.4± 16.4
Last-fired 63.7± 19.9 73.9± 16.8 68.1± 18.2 96.7± 2.6

GRU
Binary 47.3± 18.7 69.1± 14.9 55.4± 16.5 86.6± 10.7

Change-point 42.9± 19 65.0± 15.3 51.0± 17.1 61.4± 16.4
Last-fired 61.8± 16.3 80.6± 11.5 69.5± 14.0 96.1± 2.5

SVM
Binary 45.6± 17.9 69.1± 15.9 54.2± 15.9 85.4± 10.4

Change-point 40.3± 19.1 63.4± 14.6 48.6± 17.0 55.9± 18.7
Last-fired 58.6± 16.2 77.2± 14.0 66.3± 14.9 96.1± 2.4
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because the most frequent-class instances are favoured, but then it is not so good

at when it comes to the infrequent classes. Overall, there is a clear hint that that

recurrent architectures perform better than HMM, NB and HSMM for most of the

cases, while CRF is slightly better than these recurrent architectures on dataset A.

Table 4.2: Activity recognition results for household B of Van Kasteren dataset.

Model Feature Precision Recall F-Measure Accuracy

NB
Binary 33.6± 10.9 32.5± 8.4 32.4± 8.9 80.4± 18.9

Change-point 40.9± 7.2 38.9± 5.7 39.5± 5.9 67.8± 18.6
Last-fired 43.7± 8.7 44.6± 7.2 43.3± 4.8 86.2± 13.8

HMM
Binary 38.8± 14.7 44.7± 13.4 40.7± 12.4 63.2± 24.7

Change-point 48.2± 17.2 63.1± 14.1 53.6± 16.5 81.0± 14.2
Last-fired 38.5± 15.8 46.6± 19.5 41.8± 17.1 48.4± 26.9

HSMM
Binary 37.4± 16.9 44.6± 14.3 39.9± 14.3 63.8± 24.2

Change-point 49.8± 15.8 65.2± 13.4 55.7± 14.6 82.3± 13.5
Last-fired 40.8± 11.6 53.3± 10.9 45.8± 11.2 67.1± 24.8

CRF
Binary 35.7± 15.2 40.6± 12.0 37.5± 13.7 78.0± 25.9

Change-point 48.3± 8.3 51.5± 8.5 49.7± 7.9 92.9± 6.2
Last-fired 46.9± 12.5 47.8± 12.1 46.6± 12.9 89.2± 13.9

Vanilla
Binary 26.7± 13.5 46.9± 24.8 32.5± 17.9 65.2± 34.7

Change-point 39.6± 8 62.4± 15.3 48.3± 10.2 76.9± 13.9
Last-fired 41.2± 12.3 64.4± 17.8 49.7± 13.6 87.9± 13.1

LSTM
Binary 29.1± 12.0 44.0± 22.0 33.9± 16.2 63.5± 32.7

Change-point 40.0± 11.2 59.0± 16.4 47.5± 12.9 76.8± 14.2
Last-fired 40.8± 10.7 60.1± 16.3 48.2± 12.3 87.2± 13.2

GRU
Binary 28.5± 15.9 36.3± 17.2 31.4± 16.2 64.5± 32.1

Change-point 37.7± 7.6 53.5± 9.2 44.9± 7.1 76.4± 14.5
Last-fired 41.7± 13.2 56.9± 17.9 47.5± 14.6 87.0± 12.9

SVM
Binary 39.6± 10.9 58.5± 17.4 46.7± 12.9 81.6± 18.5

Change-point 32.3± 6.5 53.6± 7.5 40.0± 6.2 67.9± 28.5
Last-fired 36.4± 5.4 54.6± 10.4 43.5± 6.6 86.2± 14.9

Table 4.2 refers to the results obtained on dataset B and shows that SVM is the

best method when adopting binary representation achieving the accuracy of 81.6%.

On the other hand, CRF is the best when using the change-point feature and last-fired

representations with accuracy 92.9% and 89.2% respectively. It can be noted that

HMM is not as good as the other methods achieving the best case 81.0% with the

change-point representation. The closest successful model to CRF is Vanilla RNN
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and again overall RNNs deliver high recall rates compared to the other methods.

Change-point and last-fired representations give the highest recall results except for

CRF.

Table 4.3: Activity recognition results for household C of Van Kasteren dataset.

Model Feature Precision Recall F-Measure Accuracy

NB
Binary 19.6± 11.4 16.8± 7.5 17.8± 9.1 46.5± 22.6

Change-point 39.9± 6.9 30.8± 4.8 34.5± 4.6 57.6± 15.4
Last-fired 40.5± 7.4 46.4± 14.8 42.3± 6.8 87.0± 12.2

HMM
Binary 15.2± 9.2 17.2± 9.3 15.7± 8.8 26.5± 22.7

Change-point 41.4± 8.8 50.0± 11.4 44.9± 8.8 77.2± 14.6
Last-fired 40.7± 9.7 53.7± 16.2 45.9± 11.2 83.9± 13.9

HSMM
Binary 15.6± 9.2 20.4± 10.9 17.3± 9.6 31.2± 24.6

Change-point 43.8± 10.0 52.3± 12.8 47.4± 10.5 77.5± 15.3
Last-fired 42.5± 10.8 56.0± 15.4 47.9± 11.3 84.5± 13.2

CRF
Binary 17.8± 22.1 21.8± 20.9 19.0± 21.8 46.3± 25.5 ‘

Change-point 36.7± 18.0 39.6± 17.4 38.0± 17.6 82.2± 13.9
Last-fired 37.7± 17.1 40.4± 16.0 38.9± 16.5 89.7± 8.4

Vanilla
Binary 15.4± 5.3 43.1± 18.1 22.2± 7.3 50.2± 22.4

Change-point 31.3± 7.1 54.9± 11.3 39.5± 8.3 72.2± 13.0
Last-fired 38.3± 16.3 59.6± 15.1 45.8± 14.8 86.7± 12.5

LSTM
Binary 16.8± 6.2 34.8± 12.5 22.1± 7.4 45.3± 21.2

Change-point 31.0± 5.1 53.3± 6.5 38.9± 5.0 72.0± 13.0
Last-fired 41.3± 17.2 57.3± 15.9 47.5± 16.1 87.4± 12.4

GRU
Binary 18.7± 8.3 33.2± 12.7 23.9± 9.6 46.7± 23.4

Change-point 31.2± 8.3 47.± 10.9 31.2± 8.5 71.6± 12.6
Last-fired 40.4± 16.5 52.7± 16.4 45.4± 16.9 86.6± 12.3

SVM
Binary 19.4± 9.0 35.2± 12.7 24.0± 9.2 37.4± 19.0

Change-point 25.6± 6.2 51.4± 9.5 34.0± 7.2 57.8± 15.5
Last-fired 37.0± 7.9 55.5± 11.6 44.1± 8.5 87.5± 12.1

Table 4.3 reports the results on dataset C showing that CRF performs best for

change-point and binary representations obtaining 82.2% and 89.7% respectively.

Overall, none of the methods performs well when adopting binary representation.

The results are slightly better with change-point but clearly better when applying

the last-fired representation. RNNs again give the highest recall values for all repre-

sentations. Overall, the results show that RNNs perform better than HMM, NB and

HSMM in all cases, while CRF is slightly better than RNNs. But in terms of recall,
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RNNs outperform all methods for all feature representations. The reason behind this

is that RNNs perform better for imbalanced data compared to CRF. RNNs variants

generally perform equally well.

Table 4.4: Abnormal activity detection results for the synthetic dataset.

Model Sensitivity (TPR) Specificity (TNR)
NB 40.40% 56.50%

HMM 58.36% 3.80%
HSMM 68.85% 67.8%
CRF 66.22% 59.45%

One-class SVM 72.11% 66%
LSTM 91.43% 59.04%

For abnormal activity detection, we considered LSTM only and compared against

NB, HSMM, HMM, SVM and CRF as shown in Table 3.3. We used only last-fired

feature in this experiment. The results indicate that LSTM is the best to prune false

negatives compared to the other methods. Methods like NB, One-class SVM which

do not capture the data order performs the worst. The models ignore the frequency of

the activity, but apply the temporal and contextual information to make a decision.

Results show that LSTM is capable of encoding the order of activities. Hence, when

an activity is introduced in a di↵erent context or in a di↵erent order, LSTM can

detect such anomalies.

4.5.3 Results with Convolutional Neural Networks

In order to test the e↵ect of convolutions on di↵erent dimensions and di↵erent

architectures, we tested the following networks (see Figure 4.6) on the Aruba dataset.

Here, the input matrix is N ⇥M , where the rows are sensor readings for each time

slice and columns are the values of each sensor as time passes.

1D Convolution: In this model, convolution is done on temporal dimension.

As depicted in Figure 4.6-a, in the convolutional layer, 100 filters with a length of

10 is used. 1D convolution is followed by a max-pooling layer, which has a stride of
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Max-pooling (2)
1D Convolution
(100x10x1)

Max-pooling (2)
1D Convolution
(50x5x1)

Flatten

Dense
(512x128x50)

Softmax (12)

Max-pooling (2x2)
2D Convolution
(50x10x34)

Max-pooling (2x2)
2D Convolution
(20x5x17)

Flatten

Dense
(512x128x50)

Softmax (12)

Max-pooling (2x2)
2D Convolution
(50x10x34)

Max-pooling (2x2)
2D Convolution
(20x5x17)

Flatten

Dense
(512x128x50)

Softmax (12)

LSTM
(30x50)

Figure 4.6: Convolutional Neural Network Architectures used.

2. Then another convolutional layer (with 50 filters and a length of 5 ) and a max-

pooling layer are added. After the extracted features are flattened, these features are

fed into dense layers (3 hidden layers having 512, 128 and 50 units respectively) and

then the final decision is given by a softmax layer producing the confidence values of

assigned class labels.

2D Convolution: In this model, convolution is done on both of the dimensions,

specifically on feature and temporal dimension. 100 filters with a size of 10⇥ 34 are

used in the first convolutional layer which is followed by a 2⇥ 2 max-pooling. Then

another 2D convolution operator is added this time with 20 filters with the size of

5⇥34. The flattened features are fed into the same dense layer and the softmax layer

described above.

CNN and LSTM (2D CNN + LSTM): CNNs can learn spatial relationships

on a given N ⇥ M input but they cannot relate a current input to the next one in
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the occurrence order of the input sequence. To overcome such limitation, we use

LSTMs at the end of the CNN network. In this combination, firstly, the 2-layer 2D-

CNN described above is used to learn the fruitful feature representation. And then

the extracted feature maps are fed into LSTM layers which will be taking further

temporal information of the slices into account. LSTM has hidden layers of size

30 ⇥ 50 respectively. The LSTM layer is followed by a dense layer with 128 hidden

units and then another dense layer with 50 units. Eventually, softmax layer classifies

the input into one of the activity classes with a probability value.

In order to evaluate our methods, we first split the Aruba dataset into train and

test sets. However, the split is not done with a traditional split method since dividing

daily activity datasets based on a fixed time period such as day is more meaningful

[76]. Aruba test bed was collected in 224 days, thus 70 days are used as test, 15

days for validation and the remaining days are used for training. The first WSU set

adlnormal, representing normal behaviour, are used to train the classifiers, while the

second set, adlerror, containing the abnormal activity, is used for test set.

Table 4.5: Activity recognition results for Aruba with LSTM

Feature Precision Recall F-measure Accuracy
Binary 34.21% 28.26% 30.95% 49.69%

Change-point 29.28% 26.41% 27.77% 48.79%
Last-fired 43.18% 43.37% 43.27% 87.72%

Change-point + Last-fired 37.33% 42.42% 39.71% 87.78%

The first experiment was performed on Aruba to choose the best input represen-

tation that gives the highest recognition results. This experiment is performed with

the LSTM classifier on 1 minute time slices of sensor readings. Extracted slices are

mapped into binary, change-point and last-fired representations. As seen in Table

4.5, last-fired representation gives the highest precision and recall rates as well as a

good accuracy rate (accuracy rates of 87.72%, 49.69%, 48.79% for last-fired, binary

and change-point respectively). A combination of the best two features: change-point
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and last-fired, gives a slightly better accuracy rate (87.78%) than last-fired alone but

results in lower precision and recall values. Thus, we continue our following experi-

ments with last-fired feature.

Table 4.6: Activity recognition results on the Aruba dataset.

Model Precision Recall F-measure Accuracy
NB 42.87% 61.04% 50.36% 84.37%

HMM 43.66% 72.03% 54.36% 77.90%
HSMM 43.97% 71.56% 54.47% 77.98%
CRF 50.24% 52.83% 51.50% 88.58%
LSTM 38.65% 41.29% 39.92% 89.00%
CNN-1D 31.42% 36.78% 33.89% 87.50%
CNN-2D 46.84% 41.68% 44.11% 89.67%

CNN-2D + LSTM 51.20% 50.55% 50.87% 89.72%

In Table 4.6, we provide an analysis of the second experiment which is activ-

ity recognition. The success rates by both generative and discriminative methods

on Aruba set are depicted in Table 4.6. The results indicate that CNNs with 2D

convolution (accuracy of 89.67%) and also CNN-2D followed by an LSTM classifier

outperforms CRF (accuracy of 89.72%). The reason is CNNs extract their own fruit-

ful features while CRF only relies on the given input. HMM and HSMM give the

worst accuracy results (77.90% and 77.98% respectively). NB gives better accuracy

result (84.37%) than HMM and HSMM but it results in lower precision (42.87%)

and recall (61.04%) rates. Although HMM and HSMM give the best recall rates

(72.03% and 71.56% ), they fail in giving good precision rates (43.66% and 43.97%

respectively). We see that CNN-1D network has an accuracy of 87.50% while it fails

in high precision (31.42%) and recall (36.78%) values. CNN-1D extracts features

on temporal dimension, it takes temporal information within a time-slice chunk into

account but on the other hand it ignores the relationship between sensors since it

doesn’t do convolution on the feature dimension. Thus, it doesn’t learn class spe-

cific feature maps to di↵erentiate between di↵erent classes resulting in high accuracy

(87.50%) but low precision and recall. When 2D convolution is used, both temporal
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and spatial information are taken into account and the networks learn more informa-

tive features. Thus, it gains the ability to learn class specific features, which results

in higher precision and recall values (46.84% and 41.68%) and high accuracy results

(89.67%). CNNs cannot remember the previous and the next inputs, but feeding the

feature maps into an LSTM layer helps us process the temporal dimension further.

In result, CNN-2D + LSTM networks achieves a precision rate of 51.20% and a recall

rate of 50.55% and an accuracy of 89.72%.

In Figure 4.7, extracted feature maps from first and second layer and the flatten

layer are visualised for CNN-2D network as described in Figure 4.6. We see that noise

is reduced and more informative features are learnt as the layer level increases. The

x-axis represents features while y-axis is time axis and the white pixels are activations.

Results on the Aruba dataset show that classifiers mostly successful detect the

instances of leave home and enter home activities since they are the only activities

involving door sensors, thus they are not confused with any other activities. Moreover,

meal preparation activity is confused with wash dishes activity most of the time since

they involve same kind of sensors and they both take place in the kitchen. Also house

keeping activity is generally confused with work activity since they may take place in

the same room and may involve same sensors.

Table 4.7: Abnormal behaviour detection results on modified the Aruba dataset

Aruba Modified WSU
Model Sensitivity Specificity Sensitivity Specificity
NB 99.33% 33.89% 46.17% 98.42%

HMM 45.54% 27.71% 100% 50.55%
HSMM 100% 35.61% 100% 42.89%
CRF 100% 66.03% 47.87% 72.17%
LSTM 98.67% 75.48% 86.50% 77.89%

CNN -2D 85.33% 33.89% 88.70% 67.46%

The third experiment, abnormal activity detection is performed firstly on modi-
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(a) First layer activations.

(b) Second layer activations.

(c) Flatten layer activations.

Figure 4.7: Learned features from 2D CNN.
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fied Aruba set. As a representative of CNN networks, we present the result only with

the CNN-2D network in order to see the a↵ect of CNNs individually. After training

the models with normal behaviour, test set which included abnormal behaviour is

introduced to the classifier and activity instances which are assigned a label with low

confidence values are flagged as abnormal. In Table 4.7, we see that the highest speci-

ficity is achieved by LSTM networks giving an accuracy of 75.48% (and sensitivity

rate of 98.67%). Although NB, HMM and HSMM models gives higher sensitivity

rates (99.33%, 100%, 100% respectively), the specificity rates are smaller (33.89%,

27.71% and 35.61% respectively). HMM gives the worst results (a sensitivity rate of

45.54% and a specificity rate of 27.72%). CNN-2D gives a sensitivity rate of 85.33%

and a specificity of 33.89%. This shows that LSTMs are more suitable to detect

repetition and order related abnormal activities since it can relate current input with

the upcoming ones what CNN cannot do.

The second part of anomaly detection experiments are performed onWSU testbed.

We extracted 30 second time-slice chunks from sensor readings from WSU. This

dataset is not collected in a daily life scenario, thus sensor readings are not in a

sequential order. Thus the sensor readings are available only for activities labelled

in the dataset. adlnormal set is used as training set and adlerror set is used as test

dataset. The aim here is to measure how successful the classifiers are to detect the

anomalies given normal dataset. The results on Table 4.7 indicate that the high-

est sensitivity rate is given by HMM and HSMM (both 100%), while HMM gives

a specificity rate of 50.55% and HSMM achieves specificity of 42.89%. The highest

sensitivity rate is achieved by CNN-2D classifier (86.70%), but LSTM gives a very

close sensitivity rate (86.50%) and a higher specificity rate (77.89%) where CNN-2D

achieves a specificity rate of 67.47% only. In [17], the authors present their results

as follows. The number of correctly detected activities are 95 for adlnormal and 76

for adlerror, both out of 100 activity instances. We perform experiments on activity
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slices, on the other hand they take whole activity and extract features from that

activity and then try to decide if it is normal or abnormal. The problem here that is

in real life scenario, we cannot know, where an activity starts and ends. Thus using

slice-based detection is more meaningful.

LSTM is better to capture repetition related activities, while CNN is better to

detect confusion related sub-activities. CNN can detect changes in feature patterns.

Even though it is not explicitly defined in daily activity datasets each activity is

formed by steps. The steps in this dataset are based on the motion sensors triggered.

For example, when we consider the sleeping activity, we see that the resident first

goes out of bed, then goes to the middle of the room and then goes to the bathroom

in the bed to toilet activity. CNN doesn’t need to extract them, but it exploits them

hierarchically automatically. In the end, model can not identify steps but it detects

the anomaly. Thus, whenever the orders of sensors or these steps change, input matrix

changes which leads di↵erent feature maps extracted by CNNs.

4.6 Conclusion

This chapter introduces a method of recognising sensor based activities and detect-

ing abnormal behaviour related to cognitive decline in smart homes. CNNs and RNNs

are exploited as well as their combination in order to achieve these tasks. Our results

on activity recognition show that these methods are better than their competitors

such as NB, SVMs, HMMs, HSMMs and CRFs. The experiments with RNNs showed

that the temporal order of activities is an important cue to model daily life activity

patterns of an elderly. Once temporal order is modelled, detecting any abnormal

behaviour deviating from these patterns will be easier. Furthermore, the empirical

experiments showed that the three variants of RNNs generally perform equally well,

but LSTM seems to be slightly better across all datasets used in this study. More-

over, in terms of representation, there is no clear preference, but last-fired feature
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seems to be better, at least on the datasets A and C, compared to the change-point

and binary representations. CNN experiments showed that fruitful features extracted

from these sensor representations are useful to encode the relationship between sin-

gle sensor features. The combination of RNNs and CNNs perform the best results

since they encode both temporal and spatial information coming from the sensors.

However, they fail to understand the intrinsic structure of activities. Thus, we need

hierarchical models to understand the sub-activities and their relationships in a given

activity and relate them to cognitive decline related abnormal behaviour.

64



CHAPTER V

Recursive Deep Learning for Abnormal Behaviour

Detection

5.1 Introduction

Daily life activities are often composed of several steps [55]. For example; the

activity wash clothes implies the following actions: get clothes from basket, fill up

washing machine, turn on washing machine, take clothes out. The anomalies related

to dementia may be reflected in the repetition frequency of these steps and their

relation with each other. The elderly people with dementia tend to confuse things and

repeat or skip some steps during the completion of a specific activity. For example,

when an elderly person wants to make a phone call, he/she may check the phonebook

many times and perform this step more than once. Building activities from their

granular units hierarchically would be helpful to understand the internal dynamics

of the activities. Hence, the problem of activity recognition can be viewed as a

hierarchical and recursive learning problem which resembles scene parsing or phrase

detection [75, 74]. Thus in this chapter, activity recognition problem is emulated as

a hierarchical learning problem which resembles to scene parsing or phrase detection.

Inspired by solutions to these problems [74, 75], we explore Recursive Auto-Encoders

to model upper-level activities from their low-level sub-activity structures recursively.
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In this chapter, we firstly describe sensor representations in Section 5.2 and then

auto-encoder models are summarised for abnormal behaviour detection in Section 5.3.

In Section 5.4, we summarise how Recursive Auto-encoders are used to detect abnor-

mal behaviour related to dementia. In Section 5.5, we describe how transfer learning

is applied with Recursive Auto-Encoders to model activities and then detect abnormal

behaviour. Lastly, in Section 5.6, we present the experimental settings and results

along with a discussion.

5.2 Feature Engineering

In this chapter, raw sensor readings are mapped onto two representations; namely

bag-of-sensors (BOS) and raw-sensor-measurement (RSM) representations.

5.2.1 Bag-of-sensors Representation

This representation is the same as binary feature described in [83]. But we name

it as Bag-Of-Sensors (BOS) since it resembles a bag-of-words model in document

classification literature. Similar to bag-of-words model, this representation ignores the

context of sensor events in a given duration. Firstly, time-slice chunks are extracted

from raw sensor data via a sliding window approach [83]. A time-slice chunk can be

considered as a bag that collects the sensors which are triggered in a given time. A

vector of length N , where N is the total number of sensors in the dataset, is initialised

to zeros and the sensors triggered at a given time, are set to 1. This representation

ignores the frequency and the order of activations.

For example, sensor readings within 1 minute time are shown in Figure 5.1. There

are 34 sensors in Aruba test-bed. Thus BOS representation for this chunk will be

0011101000000000000000000000000000, where only the positions at 3, 4, 5, 7 are set

to 1. Although, M3 is triggered 2 times and M5 is triggered only once, they have the

same e↵ect on the representation. Moreover, first M7 is activated and then M3 and
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so on, but this order is lost.

5.2.2 Raw-sensor-measurement Representation

In this version, the frequency and the correlation between the activations is pre-

served. For example, given the one minute data in Figure 5.1, RSM representation

will be M7,M3,M7,M3,M5,M4. This representation is then mapped onto one-hot

encoded representation for each sensor activation. The extracted feature will be vari-

able length (6 ⇥ 34), whereas BOS has a fixed length (1 ⇥ 34). BOS representation

ignores the relative order and the frequency of sensor activations. However, the or-

der of sensor activations, their correlation with other sensors and their frequency are

granular level important details to detect anomalies related to dementia.

Figure 5.1: Raw sensor data and its RSM representation.

5.3 Auto-encoder Models for Abnormal Behaviour Detection

An auto-encoder network is an architecture that takes an input and is trained to

reproduce that input in its prediction layer. Auto-encoders are unsupervised since

they don’t need explicit labels in the training phase. On the other hand, they are

self-supervised because they use the input instances as labels and use training data

to learn the parameters for the model. An auto-encoder has 3 parts: an encoding

function, a decoding function, and a loss function. The encoder compresses the input,
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the decoder then reconstructs the input. Loss function calculates the error between

the real input and the reconstructed input.

In a Recursive Auto-Encoder (RAE), which is originated from [66], given two

children, the parent is constructed by an encoding function. Then the children are

reconstructed by decoding function to calculate the loss. At each level of the tree,

the same encoding and decoding function is used recursively. We will be focusing on

two types of RAEs; traditional RAEs and greedy RAEs.

5.3.1 Traditional Linear Recursive Auto-Encoders

In a traditional RAE, each instance is merged with its next neighbour to construct

the parent. In Figure 5.2 (figure retrieved from [75]), a list of inputs x = (x1, x2, x3, x4)

is given. The first parent vector y1 is computed from the children (c1, c2) = (x3, x4),

so that p = f(W (1)[c1; c2] + b(1)) where a matrix of weights W is multiplied with the

children vector. After adding a bias term, an element-wise activation function such

as tanh is applied to the resulting vector. Then the parent y1 is merged with the

child x2 and this goes on in the upper layers. In order to see how well this function

is doing, the model reconstructs the children in a reconstruction layer: [c1; c2] =

g(W (2)p + b(2)). During training, the goal is to minimise the reconstruction errors

of the input pairs. For each pair, the distance between the original input and its

reconstruction is calculated: E = Porig([c1; c2]) � Prec([c1; c2]). The process repeats

until the full tree is constructed and a reconstruction error is obtained at each non-

terminal node. The encoding and decoding weight parameters are learnt by using the

train set and applying back-propagation algorithm.

5.3.2 Greedy Recursive Auto-Encoder

In greedy RAE, two children which give the least reconstruction error are merged

at each tree level. This greedy approach is described as follows. Assume that a
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Figure 5.2: Recursive Auto-encoder structure.

sequence of instances x1, x2, x3, x4, x5 is given (see Figure 5.3). First, the parent

p = x1, x2 of children [x1,x2] is encoded, then the children are reconstructed. The

reconstruction error e1 is calculated and kept in memory. Then, the merging is shifted

to right child where the parent of children [x2, x3] is encoded and the reconstruction

error is calculated as e2. This shifting is done until the last child is used. The

minimum error among the errors e1, e2, e3, e4 is chosen and the corresponding children

are merged at that level. Let’s assume e4 is the minimum which is a result of merging

of children [x4, x5]. The first merging for the first level of the tree is done as y1 = x4, x5

and these children are represented by y1. Then the merging for the second level is

done with x1, x2, x3, y1 and it continues in the same greedy manner until only one

parent (y4) remains in the last layer.

69



Figure 5.3: Greedy Recursive Auto-Encoder structure

5.4 Abnormal Behaviour Detection using Recursive Auto-

Encoders

First, the dataset is split into training and testing sets and the training set is

used to learn the parameters (W (1) and b(1) for encoding function, W (2) and b(2) for

decoding function) for a RAE model. Then this RAE model is used to evaluate

the test instances. Here, the idea is that given a set of training samples containing

no anomalies, the goal of RAE is to design and learn a feature representation that

captures normal instances. Anomalies are defined as samples that deviate from the

expected behaviour. When a new activity is introduced as a test instance, if it is a

normal activity, the reconstruction error will be similar to the reconstruction errors

of training instances. On the other hand anomalies that represent any deviation

will be poorly reconstructed and the error will be high. Reconstruction error will

be exploited to decide normal and abnormal instances based on a threshold. Two

di↵erent methods are used to construct RAE trees as follows.
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5.4.1 BOS Representation Merging Method

A sliding window of one minute is applied on the raw data (in both training

and testing dataset) and sensor readings in each one window is mapped onto BOS

representation (Section 5.2). Then a window size of w is used to extract chunks from

these BOS representations. Thus, these chunks have a size w ⇥ n, where n is the

number of features (= 34). Then each row of a chunk is merged with its next row

using traditional RAE until only one parent is constructed in the end.

In Formula 5.1, the error between the original children x1, x2 and their recon-

structed versions x
0
1, x

0
2 is calculated using the mean squared error (MSE). N is the

total number of features that each xi has. Then the error of each parent is used to

decide if there is an abnormality in children or not. Here, in a constructed RAE

tree for an input, time-slices in a 25 minute chunks are spanned and the relationship

between each one minute slice is taken into account during the mergings in RAE.

Erec(x1) = 1/N
NX

i=1

(x
0

1i � x1i)
2 (5.1)

5.4.2 RSM Representation Merging Method

First, each one minute time-slice is mapped onto RSM representation. Inspired by

[75], where words in a sentence are merged by a RAE, we treat each sensor activation

as a word and each extracted RSM as a sentence. For example, in the extracted

RSM feature M7,M3,M7,M3,M5,M4, each sensor activation such as M7 is treated

as a word. Resembling to a sentence, in a RSM representation the order of the

words, their neighbours are important to decide the context of a sentence. The

sensor activations in RSM representations are merged hierarchically by greedy RAE.

Each sensor activation is represented as a one-hot encoding representation during the

merging. Here, the error for each RSM tree is used to decide if that time-slice is

abnormal or not. This error is decided in two ways. First, the average error of all
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parents in the tree is used. Second, the error of last parent is used. The experiments

with this feature is performed in two modes, unsupervised RAE and semi-supervised

RAE following the same procedure in [75].

5.4.3 Unsupervised RAE

In unsupervised RAE, activity labels are not used and RAE is trained as described

in Section 5.3.1. Each sensor reading is represented by one-hot encoding and parents

are constructed from the children. The error is calculated using MSE in Equation 5.1.

5.4.4 Semi-Supervised RAE

In semi-supervised RAE, the error at each parent node is a combination of un-

supervised RAE error (see Section 5.3.1) and supervised error. Supervised error is

calculated in the following way. Assume that we have the RSM input x1, x2, x3, x4, x5,

which is extracted within one minute duration from raw data (Figure 5.3). The ac-

tivity occurred at that one minute, label l is used as the label for whole parents in

the tree while the parents are used as the features. Each parent p can be seen as a

feature describing the sub-tree under it. Then a softmax layer is added to each parent

as follows.

d(p; ✓) = softmax(W labelp) (5.2)

where ✓ = (W (1), b(1),W (2), b(2),W (label)). Assume that there are K labels, dk 2

IRK is a K � dimensional multinomial distribution and
P

k=1 dk. Then softmax

layer’s outputs are interpreted as conditional probabilities for a parent p as dk(p; ✓) =

p(k|[c1; c2]). Then, cross-entropy (supervised) error is:

Esup(p, t; ✓) = �
KX

k=1

tk log dk(p; ✓) (5.3)
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where tk is the kth element of the multinomial target label distribution t for parent.

Then a weighted average of supervised error Esup(x1, x2) and unsupervised error

Eunsup(x1, x2) (Equation 5.1) is used to calculate the final error (Equation 5.4), where

↵ is decided experimentally as a value between 0 and 1.

Erec(x1, x2) = ↵Eunsup(x1, x2) + (1� ↵)Esup(x1, x2) (5.4)

5.5 Abnormal Behaviour Detection using Transfer Learning

Machine learning based cognitive status assessment studies rely on activity recog-

nition techniques. These methods first learn what is normal from training data and

then flag the abnormal activity based on classification confidence values [60, 34, 40,

28, 53, 81, 8]. They require training data to be manually annotated, which is ex-

tremely hard and time-consuming to do. Moreover, these techniques assume that the

training data is available prior to the training phase. However, we cannot expect

elderly people to annotate the necessary training data. Thus, tackling the activity

recognition and abnormal behaviour detection as an unsupervised process would be

helpful. This monitoring may need to be done over long periods of time, maybe

months, and sometimes even years. But collecting sequential data of months or years

with time dependency is highly time-consuming and di�cult. Thus, in this research,

we use existing data from a source household to learn what is normal, and then

transfer this knowledge to a target house.

The hierarchical representation of RAE provides an abstraction of activities in a

house and then mapping these abstract levels to another house via transfer learning

will be more useful. The activities are characterised by their hierarchical organisation,

conditioned on global and local structural context. Thus we need a more abstract

encoding of the granular level details of each activity. Also, abstraction provides a

generalisation of the hierarchical level of information between the houses and it re-
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duces the di↵erences between them, making transfer learning an appealing approach.

We use unlabelled data collected for normal activities from a source house to train

the RAE model. Then, we transfer this model to a target house to detect abnormal

behaviours related to dementia.

The proposed work consists of the following steps: 1) Time-slice chunks are ex-

tracted from sequential sensor reading data using a sliding window. 2) Last-fired

features are extracted from time-slices as in [83]. 3) RAE is trained on a source

household dataset to learn the parameters for normal behaviours. 4) These parame-

ters are then transferred into a target household to detect abnormal behaviours.

We chose households A and C of Kasteren datasets [42] since they span more

days (25 days and 18 days respectively). The activities performed in household A

and C are used to reflect normal behaviours. However, some of the data in household

C is modified (Section III) to generate samples representing abnormal behaviour of

dementia su↵erers. Here, household A will be used as the target house while household

C will be used as the source house.

5.5.1 Feature Extraction

After the synthesis, the datasets are processed in the following way. Firstly, 1

minute slices are extracted from datasets using a sliding window [83]. This time-slice

length is long enough to provide a discriminative sensor pattern and short enough to

provide high resolution labelling results. After discretization we have a total of 35486

time-slices for dataset A and 26236 time-slices for dataset C.

Then time-slices are mapped into last-fired feature representation [83]. Last-fired

feature [42] indicates which sensor fired last. The sensor that changed state last

continues to give 1 and changes to 0 when another sensor changes state.

The last representation gives an indication of the location of an inhabitant. The

sensors replaced in the house will not be triggered as long as people do not move.
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As they start moving, the sensors are triggered based on the location of the move-

ment, which will provide an update of their current location [83]. The updates, in

the form of a time-series data, provide fine-grained information about the activity

performed. For example, when the person performs meal preparation activity, sen-

sors are triggered one after another based on their location. The steps taken between

sensor activations form granular level details of the activity performed. We make the

key observation that such patterns are hierarchical and they follow grouping rules at

multiple levels of abstraction. Findings in [93] support our approach. The authors

extract location-based patterns that occurs during daily-life routines. Hence, we em-

ploy RAE as a hierarchical model to organise the steps in an activity and record

their relative ordering. We exploit last-fired feature to model location based granular

level information in the activities performed, since such feature allows for capturing

execution details of the activities.

Since Kasteren dataset does not include any fine-grained level activities labelled,

we treat each time-slice of a sequence as a fine-grained unit that forms the activities.

Assume that the person performs having dinner activity D in n time-slices such as

D = t1, . . . , tn, where each time-slice ti represents a step. Relating these time-slices

with each other in a hierarchical way and taking their spatial information into account

is important to capture dementia related abnormal behaviours.

5.5.2 Sensor Mapping

There are 14 sensors in dataset A and 21 sensors in dataset C. We map these

sensors to each other by using meta features (see Figure 5.4) as described in [42] . For

example, a sensor on the microwave might have one meta feature describing the sensor

is located in the kitchen, and another that the sensor is attached to a heating device.

We use the mapping that combined sensor readings in a single feature based on their

function (e.g. sensors used during cooking). In [84], di↵erent mapping strategies, such
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as union, intersection and duplicate are investigated. We use union mapping since it

gave the best results. Using union mapping for each function group, the union of all

the sensors in the group is taken, resulting in one sensor output per group per house.

For example, the front and back door in the target house are combined into a single

sensor and matched with the front door sensor in the source house. This results in

7 sensor groups, which will be treated as features. Moreover, the activities in two

datasets are mapped and 9 similar activities are used [42].

Figure 5.4: Sensor mapping on Van Kasteren dataset.

5.5.3 Abnormal Behaviour Detection

First, house A normal dataset is used to learn the parameters (W (1), b(1)) for

encoding function and (W (2), b(2)) for decoding function) of RAE. These parameters

are then used to construct RAE trees to test instances of house C. In each level

of the tree, two children are merged to form a feature vector as their parent, which

encodes the information coming from the children. Thus, the feature vector at the

root node summarises all the information coming from the children in the tree and

their hierarchical orderings are learnt by RAE. The feature vectors at parent nodes

can be decomposed into their granular level, hierarchical pieces by using the decoding

weights. Anomalies are defined as samples that are deviations from the expected
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behaviour. Any deviations from this normal can be identified by measuring the

reconstruction error E described above. When a new activity is introduced as a

test instance, if it is a normal activity, the reconstruction error will be smaller since

anomalies that represent any deviations will be poorly reconstructed. If it is an

abnormal behaviour, which is not seen in the training data (source household), it will

reconstruct that instance with a higher error. As mentioned earlier, at each layer of

RAE, a reconstruction error is calculated. We exploit these errors to decide if that

activity is normal or abnormal based on a threshold.

The comparison is done with the same supervised methods described in Chapter II.

These models first perform activity recognition and then detect anomalies. First,

using the training instances and their corresponding labels in dataset A, these models

are trained. Then the instances in dataset C are given to the trained classifiers. The

models assign a class label to each instance with a confidence value. When a new test

instance in house C is introduced, if the model assigns it to a class with a confidence

value which is bigger than a threshold, that instance is considered as a normal activity,

otherwise it is flagged as an abnormal activity.

5.6 Experiments

5.6.1 Evaluation Metrics

In order to assess the abnormal behaviour detection success, True Positive Rate

(TPR) and False Positive Rate (FPR) is used. These values for di↵erent thresholds are

depicted on a receiver operating characteristic (ROC) curve. Moreover, Area Under

Curve (AUC) is calculated for each model to interpret the results in a better way. True

Positive Rate (TPR) refers to the method’s ability to correctly detect instances which

are abnormal. FPR gives the percentage of mislabelled normal instances, thus reflects

the method’s ability to di↵erentiate between normal and abnormal. Precision, recall,
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accuracy and F-measures are used to evaluate classifier performance as described in

Chapter IV.

5.6.2 Experiments with Recursive Auto-encoders

In this section, we will present the experimental settings and results obtained with

Recursive Auto-Encoders.

5.6.2.1 Experimental Setting

In order to evaluate the proposed RAE based method, the dataset is split into

training and testing sets, where 70 days are used as test, 15 days for validation and

the remaining 139 days are used for training. The test set is modified to include

sub-activity and activity related anomalies. The modifications (Section III) are done

separately, which result in two di↵erent testing sets. We analyse sub-activity and

activity related anomalies separately to see the a↵ect of RAEs on both types of

anomalies individually.

RAEs are compared with the following state-of-the-art supervised methods; RNNs

(Long Short Term variants), CNNs, NB, HMM and CRF. For comparison experi-

ments, BOS representation is used since we need a fixed-length feature representation

for these experiments. These models are supervised and they assign a class label to

each instance with a confidence value. When a new test instance is introduced, if the

model assigns it to a class with a confidence value which is larger than a threshold,

that instance is considered as a normal activity. Otherwise it is flagged up as an

abnormal activity. Keras Deep Learning library’s [29] and Theano’s [78] implementa-

tions of the CNNs and LSTM are used in this study. Results with NB, HMM, HSMM

and CRF are based on the implementation provided in [83]. In the CNN and RNN

experiments, Adam optimiser [44] is used and the instances are fed into the system

with a batch size of 20. In CNN experiments, time-series window of length 10 seconds
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is extracted from the raw sensor reading data based on a sliding window approach.

The CNN model has the following layers: A 2D convolutional layer (with 20 kernels

of size 5⇥ 10), a Max Pooling layer (with a pooling size of 2⇥ 2), a 2D convolutional

layer (with 10 kernels of size 10 ⇥ 15), a Max Pooling layer (with a pooling size of

2⇥ 2) a flatten layer, and two dense layers of size 128 and 50, followed by a softmax

layer to do the classification. In LSTM two hidden layers of 50 and 100 nodes are

used. Then, dense layers of size 100, 128 and 50 are added to the network, followed

by a softmax layer. There are drop-out layers with a probability of 0.5 between each

two layers in both CNN and LSTM models.

RAE experiments are performed in two ways. First experiment is conducted with

BOS representation and it is implemented on Theano and Python, while the second

experiment is based on Socher et. al.’s Matlab implementation [75] and performed

with RSM representation.

5.6.2.2 Evaluation of Features and Models

The results for anomaly detection are shown in Figures 5.5 and Figure 5.6. The

abbreviations in Table 5.1 are used for the results.

Table 5.1: Abbreviations used on ROC curves.

LSTM Long Short Term Memory variants of RNNs
HMM Hidden Markov Model
CRF Conditional Random Field
CNN Convolutional Neural Network
BOS-L Unsupervised (U) traditional linear (L) RAE with BOS representation

RSM-GUA
Unsupervised (U) RAE with RSM and greedy (G) merging
when the average (A) of all parent errors is used

RSM-GSA
Supervised (S) RAE with RSM feature and greedy merging
when the average (A) of all parent errors is used

RSM-GUE
Unsupervised (U) RAE with RSM and greedy (G) merging
when the error of root node (E) is used

RSM-GSE
Supervised (S) RAE with RSM and greedy (G) merging when
the error of root (E) node is used
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Figures 5.5 and 5.6 show the results on activity related anomaly detection. The

results show that LSTM is the best method giving the highest AUC (58, 48%), while

NB is the worst one (with AUC 41.48%). Activity related anomalies occur at the

order of the activities involved and LSTM is good at capturing temporal dependency

between inputs, so it detects changes in the order of the activities. CNN comes as

the second method (with AUC 57.79%). Instead of relying on given features, CNN

extracts its own features taking spatial context into account. After CNN, RSM-GSE

produces AUC of 55.83%, which is followed by RSM-GSA (with AUC 54.59%) and

RSM-GUE (with AUC 54.10%). Then CRF achieves AUC of 53.80%. The next

methods are RSM-GUA (with AUC 52.10%), BOS-L (46.45%) and HMM (AUC of

43.55%).

We see that RSM-GUE performs better than supervised methods NB, CRF and

HMM. The reasons for this as follows. HMMs are constrained to binary transition and

emission feature functions, which force each instance to depend only on the current

label and each label to depend only on the previous label. NB does not rely on any

temporal dependency and it uses BOS representation, neglecting both temporal con-

text and granular-level details of each feature. Linear-chain CRF has limited memory

since it captures linear dependency between the current input and the previous one.

RAEs learn hierarchical structures and the learned structures can capture more of

the semantic relationships of sensor activations in RSM representation.

Moreover, supervised models, especially deep learning methods such as CNNs and

RNNs, require too much training data. Collecting and labelling that much training

data is time consuming and a laborious task. Moreover, providing labelled data just

once wouldn’t be enough since observation of dementia su↵erers in a smart home is

a task which can be up to years. Thus, a continuous labelling of the data would be

necessary. Also, these models need activity classes to be fixed. On the other hand,

in a time lapse of years, users may change their behavioural patterns and they may
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introduce new activity labels. This would require the train set to be updated and

labelled again.

In Figures 5.5 and 5.6, LSTM is the best method to detect anomalies related

to sub-activities with an AUC of 69.91%. The second best achieving method is

HMM and then CRF with AUC of 56.76% and 55.43%, which is followed by BOS-L

achieves AUC of 54.36%. Please remember that BOS-L merges 25 instances of 1

minute time-slices at each tree. Thus it can detect changes within 25 minutes and

relate the changes between these time-slice instances. Sub-activity related anomaly

causes changes in the feature vector itself and in the neighbour feature vectors. NB

gives AUC of 51.20% but it cannot capture temporal context. Greedy RAE with RSM

model only takes 1 minute time-slice into account and constructs RAE trees, but it

unfortunately cannot relate each RAE tree of 1 minute time-slice to next time-slice

since it cannot take temporal information into account.

We see that RAE models don’t give the best results when AUC values are com-

pared. However, when an optimum threshold is chosen on the ROC curve, RAE

models can perform as well as supervised methods. For example, in Figure 5.5-a,

RSM-GSE gives the same TPR (65%) and FPR (55%) with CNN and LSTM at

intersection point of their ROC curves. In Figure 5.5-b, we see that RSM-GUA in-

tersects with LSTM at TPR of 95% and FPR of 55%. AUC weights TRP and FPR

equally. However, in some scenarios like ours, detection of true positives is more im-

portant. For abnormality detection problem in skewed datasets, where the number

of anomalies is much less than normal ones, true positives are more important.

Moreover, although supervised methods give better AUC results than RAE mod-

els, they require labelling information which is tedious and time consuming task to

obtain. In a case where getting a training set is di�cult, RAE models can be an

alternative to supervised methods. Moreover, detection of dementia indicators is a

process spanning months and maybe years. In this time, the habits of residents may
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(a) ROC curve for activity related abnormal behaviour test set.

(b) ROC curve for sub-activity related abnormal behaviour test
set.

Figure 5.5: ROC curves for abnormal behaviour detection using RAE.
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Figure 5.6: AUC histogram for ROC curves using RAE.

change and new activities may emerge. Thus, obtaining training data and labelling it

wouldn’t be su�cient since this labelling process would be needed to repeated again

when the activity labels change. But with unsupervised methods such as RAE, no

activity label data is used and the model can be updated at any time. Some of the

supervised methods such as CRF, take frequency information of each class instances

into account and favours those classes in terms of classification. This would be a

problem with imbalanced datasets like daily life activity datasets, where abnormal

detection of infrequent classes are important as well. However, RAE models don’t

learn class based parameters since they don’t use class labels. We see that super-

vised methods used in the experiments tend to detect abnormal instances of frequent

classes better than the others.

However, RAE models cannot relate one instance to another and neglect temporal

information. Another problem with BOS is that it doesn’t reflect the real status of

an activity being performed. For example, people don’t tend to close the room doors

after they enter or leave. Once the door is open, the door sensor continues to emit

1. But, RMS representation only takes the activation of the sensor into account
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and then neglects the information that the door is left open. For scenarios, where the

door sensor is not important, it is good that the ON status is not carried forward, but

for abnormality detection scenarios like leaving the door open, RMS representation

wouldn’t be able to catch this information.

5.6.2.3 Classification Performance

The next set of experiments are conducted to evaluate the modelling ability of

RAE and the representation ability of the reconstructed features. Even though RSM

representation has a variable length for each input, RAE model outputs a fixed feature

vector at the root node. The reconstructed feature of the root (size of 1 ⇥ 34) can

be used as a final feature representation for the variable length input and supervised

classification methods can be trained with these features for further applications. We

choose J48 decision tree (the Weka implementation of the standard C4.5 algorithm) as

our classifier due to its simplicity. The classification results are depicted in Table 5.2.

Firstly, classifier accuracy rates with BOS representation are presented to provide a

baseline for comparison. The classifier accuracy with BOS representation for activity

related test set is 81.37%, while it is 81.49% for sub-activity related test set. The

recognition accuracy rates with RSM representation are as follows: 78.78% for activity

related anomaly test set, and accuracy of 78.49% for sub-activity related anomaly

test set when supervised RAE is used, and accuracy of 71.81% for activity related

anomaly test set, accuracy of 72.64% for sub-activity related anomaly test set when

unsupervised RAE is used.

Although RSM representation gives less classification accuracy compared to BOS

representation, it gives better precision and recall rates, which means experiments

with RSM is good at providing class specific detailed information and it results in

higher precision and recall rates. For example, BOS-Original experiment achieves pre-

cision of 42.92%, recall of 42.31% and F-Measure of 41.84% on activity anomaly set,
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Table 5.2: Classification performance using reconstructed features.

Model Activity Anomaly Test Set
Precision Recall F-Measure Accuracy

BOS - Original 42.92% 42.31% 41.84% 81.37%
RSM - Semi-supervised 46.92% 47.23% 46.06% 78.78%
RSM - Unsupervised 47.33% 38.72% 37.89% 71.81%
Model Sub-activity Anomaly Test Set

Precision Recall F-Measure Accuracy
BOS - Original 40.93% 42.08% 38.93% 81.49%
RSM - Semi-supervised 43.77% 42.77% 41.65% 78.49%
RSM - Unsupervised 42.84% 39.27% 37.89% 72.64%

while RSM semi-supervised experiment achieves precision of 46.92%, recall of 47.23%

and F-Measure of 46.06%. For imbalanced datasets, RSM representation can be used

where not only total accuracy is important, but also precision and recall on the least

frequent classes are important. We see that supervised RAE calculates better repre-

sentation than unsupervised RAE and it gives very close classification accuracy rate

with BOS representation, which shows that RSM has a high representation ability.

5.6.2.4 Pattern Extraction

We also provide a quantitative analysis to show that how greedy RAE merges

sub-activities in a hierarchical way to model activities. Sub-activities come together

and form meaningful structures, which we call patterns. A sample set of constructed

trees are shown in Figure 5.7. For example, we see that the sensors M19 and M15

are grouped in the constructed trees for meal preparation activity. In Aruba testbed,

these sensors are replaced close to each other and when the resident performs meal

preparation activity, these sensors are triggered one after another. Thus, they form a

sub-activity pattern during the performance of this activity. The pattern constructed

by these two sensors are identified as near the kitchen range and sink in [93], which

supports our finding. Also we see that the sensor M16 is added to this sub-activity

(M15, M19) which probably represent the cupboard usage during meal preparation
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: Constructed RAE trees for the training set.
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activity. Another grouping of sensors, namely M17, M15, M19 shows another sub-

pattern in this activity, which is again (M17 and M19) found as a movement pattern

in [93]. We see that RAE hierarchically models these relations in the trees. In

eating activity, we see that M13 and M15 represent a sub-activity and M14, M13, M15

represent another sub-activity which is constructed by the sub-activity M13, M15 and

the sensor M14.

Table 5.3: N-gram patterns extracted from the training set.

Activity 2-gram 3-gram

Bed to Toilet
M4, M7

M5, M7

M4, M5, M7

M4, M4, M7

Meal Preparation
M15, M19

M18, M19

M17, M19

M15, M19, M19

M15, M18, M19

M15, M16, M19

Relax
M6, M9

M8, M9

M9, M13

M9, M9, M13

M9, M9, M10

M9, M13, M20

Eating
M8, M14

M6, M14

M9, M14, M14

M10, M14, M14

Work
M26, M27

M8, M26

M26, M26, M27

M26, M27, M27

Sleeping
M2, M3

M3, M3

M3, M7

M2, M3, M7

M2, M3, M3

M3, M3, M7

Wash Dishes
M15, M19

M18, M19

M17, M19

M15, M16, M19

M15, M19, M19

M15, M18, M19

Housekeeping
M14, M20

M13, M20

M15, M18, M19

M14, M18, M20

Leave Home
M31, D3

M18, M21

M29, M30, D4

M10, M22, m29

Enter Home
M31, D3

M21, M14

M29, M30, D4

M22, M30, D4

Respirate M27, M25 M25, M25, M25

Moreover, we extract the most common and important patterns for each activity

class in the following way. The idea is that the sensor readings which are triggered

one after each other frequently, represent a sub-activity (pattern). If they are seen
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together frequently in the train set, RAE learns to reconstruct them better and then in

the test set, it gives less reconstruction error compared to the ones not seen frequently.

We firstly sort all reconstruction errors of each node in train set, and take top-500

nodes with the least error. Then n-gram patterns are calculated with these top

patterns. We calculate n-grams with only n = 2 and n = 3, which is already enough

to see the patterns in the dataset. The n-grams are extracted from constructed RAE

trees by supervised greedy method on the train set. The most frequent 2-grams and

3-grams are shown for each activity class in Table 5.3. For example, for the activity

sleeping, the most frequent pattern is M2, M3, this makes sense because when we

look at the sensor locations on Aruba testbed, we see that these sensors are on the

bed and they will be triggered one after another during sleeping activity, thus they

have a correlation. After extracting these frequent patterns (sub-activities), we can

look for their errors in the RAE trees. If there is high error at those patterns, we

can easily detect specific anomalies related to these patterns. For example, to check

if the person is washing the dishes after cooking activity, we can check sub-activity

between the sink and the kitchen table and check the error of this sub-activity.

5.6.3 Experiments with Transfer Learning

In this section, we will present the experimental settings and results obtained with

Recursive Auto-Encoders when transfer learning is used.

5.6.3.1 Experimental Setting

In RAE trees, each child represents 1 minute time-slice. Thus, each child is a fea-

ture vector of size 1⇥7, where 7 is the number of features. RAE trees are constructed

with a time-step of 5, where 5 (time-slice) instances are merged in a RAE tree. This

time-step parameter is chosen experimentally.

To run experiments on LSTM, we used drop-out with a value of 0.5. We also
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set the batch size to 10 instances and the epoch to 500 iterations. The internal

architecture of LSTM (2 hidden layers consisting of 30 and 50 nodes respectively)

and time-step of the sequences (25 activity slices) were empirically set.

In supervised models, the parameters are learnt by using the instances of dataset

A, which is treated as a train set. And then the parameters are transferred into

dataset C, whereas the instances of this dataset is treated as a test set. The activities

in house C are evaluated based on the model learnt from the house A.

5.6.3.2 Classification Performance

The first experiment is conducted to evaluate the classification performance of

the supervised methods when transfer learning is used. These methods are trained

on house A and then tested on house C. Activity recognition accuracy rates are

depicted in Table 5.4. These results are very close to activity recognition rates with

leave-one-out cross validation presented on the same datasets in [83], where one day

of the dataset C is used as testing set, while the remaining days are used training

set. However, our results are obtained via transfer learning, where the training is

done on dataset A and the testing is done dataset C. In [83], the leave-one-out

classification accuracy with NB, HMM and CRF are given as 87.0%, 83.9% and 89.7%

as respectively. In our case, the classification accuracy rates are 87.47%, 47.88% and

84.55% with NB, HMM and CRF respectively, while it is 87.02% with LSTM. The

similar results show that applying transfer learning is successful to recognise activities

in dataset C. Unfortunately, we cannot test the classification accuracy of RAE model

since it is an unsupervised method.

Moreover, the results in Table 5.4 show that the highest accuracy is achieved by

NB, the reason is that NB favours the most frequent class. Analysing precision, recall

and F-measures (36.71%, 33.37% and 34.96% respectively), we see that class-based

success is not high since these measures are averaged over di↵erent classes. Accuracy
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is calculated for all testing instances. However, for the methods which take temporal

information into consideration, such as LSTM, HMM and CRF, precision, recall and

F-measure are relatively better. The highest precision is achieved by LSTM (48.58%)

while the highest recall is achieved by HMM (44.18%). The highest F-measure is

achieved by LSTM with a success rate of 42.95%. HMM and CRF takes temporal

information into account but their capability to encode temporal information is not as

good as LSTM. Now, the aim is to use these well-trained classifiers to detect abnormal

behaviours in dataset C.

Table 5.4: Activity recognition results with transfer learning.

Model Precision Recall F-Measure Accuracy
NB 36.71% 33.37% 34.96% 87.47%

HMM 37.32% 44.18% 40.46% 84.88%
CRF 42.80% 37.81% 40.15% 84.55%
LSTM 48.58% 38.49% 42.95% 87.02%

The ability of RAE to reconstruct the features is evaluated by k-means cluster-

ing. After clustering the reconstructed features into 9 clusters, the dimensions of the

features are reduced to 2D by Principal Component Analysis (PCA). As depicted

in Figure 5.8, RAE is successful to reconstruct and di↵erentiate the features from

di↵erent classes. In this figure, each colour indicates a di↵erent class, while X and Y

coordinates are 2D features (2 principal components).

5.6.3.3 Abnormal Behaviour Detection

The purpose of second experiment is to compare the methods in terms of abnormal

behaviour detection. The results are depicted as ROC in Figure 5.9 and AUC calcu-

lations in Figure 5.10. The results show that the proposed unsupervised RAE based

abnormal behaviour detection is competitive with the supervised methods. There

is not a significant di↵erence in the success of the supervised methods. The pro-

posed RAE based method produces slightly worse TPR and FPR results. However
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Figure 5.8: Clustering of RAE re-constructed features.

Figure 5.9: ROC curve for abnormal behaviour detection using transfer learning.

its superiority comes from the fact that it doesn’t use any labels during the param-

eter learning process. All methods are good at detecting the abnormal behaviour

instances and pruning the false alarms.

Moreover, some of the data of target household is used to train the learnt RAE

model in the source household. In this way, we can tailor the RAE model for the

resident by re-tuning the parameters of previously trained RAE using user-specific

training examples. This strategy is similar to inductive transfer learning or self-taught

learning [61] when none or few data labels are available in the target domain. However,

in our case, which is unsupervised, we use only some of the unlabelled data coming
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Figure 5.10: AUC bar for abnormal behaviour detection using transfer learning.

from the target dataset. This domain adaptation will be helpful to consider house-

specific behaviour in the target household. Although we need some data from the

target house, this still allows us to reduce several weeks or months of data collection

and annotation in the target space to only a few days. For this purpose, RAE learnt

on instances of source household dataset is re-trained over 10-days data from house

C. The results are shown in the ROC curve (Figure 5.9 with the abbreviation RAE-

T). These results indicate that re-tuning the parameters and considering the house

specific behaviour improve the results.

Moreover, we calculate Cohen’s Kappa statistics to show the robustness of RAE

to detect abnormal behaviours in the target household. Kappa statistics is a measure

that handles both multi-class and imbalanced class problems. It tells how good the

classifier is performing over the performance of a classifier that simply guesses at

random according to the frequency of each class. It is thought to be a more robust

measure than simple percent agreement calculation, since Kappa takes into account

the possibility of the agreement occurring by chance [47]. However, we prefer to use

weighted Kappa statistics, since detecting abnormal behaviour is more important than

pruning normal ones in our case. In health-care problems, missing a true positive may
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cause more serious problems than retrieving a high number of false positives. Thus,

we assign a higher weight to true positive than false positive in the weight matrix

of Kappa. The calculated Kappa statistics for RAE is 0.531, which is a moderate

agreement according to [47].

Supervised models, especially deep learning methods such as LSTMs, require too

much training data. Collecting and labelling that much training data is time con-

suming and a laborious task. Moreover, providing labelled data just once would not

be enough since observation of dementia su↵erers in a smart home is a task which

can be up to years. Also, these models need activity classes to be fixed. On the

other hand, in a time lapse of years, users may change their behavioural patterns and

they may introduce new activity labels. Thus, labels of the train set would needed

to be updated. On the other hand, when transfer learning is used, just changing the

mapping of sensors and activities would be enough to adapt the model to the new

data.

Moreover, supervised methods such as NB, HMM, CRF, LSTM don’t encode

time-slices in a hierarchical representation. RAE takes hierarchical representation of

time-slices into account where it merges them in a bottom-up tree structure. The use

of hierarchical models might be a better fit for transfer learning because the di↵erent

levels of the hierarchy allow a better abstraction between houses.

Although we re-train the learnt RAE model on partial data steming from the

source house, when there is no source data available prior, domain adaptation would

not be possible. Then, there will be a problem to detect resident specific abnormal

behaviours. Even though for each house, the same activity labels are used, there

may still be di↵erences in how activities are performed. Transfer learning generalises

the behaviours of inhabitants between di↵erent houses and does not take resident

specific behaviours into account. For example, going to toilet during sleep might

be normal for a person, while it is abnormal for another person. If the person in
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a source house does not go to toilet during sleeping activity, then going to toilet

during sleep will be detected as abnormal in the target household. Such di↵erences

in behaviour might not be transferable across di↵erent houses. A prior distribution is

learnt from the source house and used to provide a sensible initial value for the model

parameters of the target house. The activities in a target house can be used to detect

the abnormal behaviours of a resident in a source house under the condition that

the resident profiles such as age, gender and lifestyle are similar in both households.

Moreover, the behaviour across di↵erent houses is transferable if the di↵erent sensors

and activities in these houses can be mapped into each other. If this mapping cannot

be done, then the knowledge will not be transferable. However, please note that

our aim in this study is not to replace medical doctors or caregivers in the process

of cognitive status assessment. The proposed method can be used as a decision

supporting system rather than a decision making system.

The proposed system would improve life experience of dementia su↵erers in the

following way. The system detects possible candidates for abnormal behaviour to

inform the caregiver or the medical doctor. The decision maker will analyse the

abnormal behaviours detected by the proposed system to decide by considering the

person’s profile and personal life style. Detecting high amount of false positives will

not introduce any risk related to the health of the person. Detecting true positives

in an early stage would trigger further analysis and would be helpful for an early

treatment. The important advantage of the proposed system would be to provide

a cognitive status assessment in the natural flow of daily living without annoying

elderly people.

5.7 Conclusion

This chapter introduces a RAE based method to detect early indicators of demen-

tia before it gets worse. The abnormal behaviour of dementia su↵erers are detected
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by exploiting the granular level sub-activities in activity instances. The proposed

method builds activities based on their sub-activities in a recursive and hierarchical

tree structure. The results show that this method is promising to model activities

from their sub-activities and detect anomalies. However, this method cannot relate

one instance to another and neglects temporal information.

Moreover, this chapter proposes a transfer learning and RAE-based method to

detect abnormal behaviour of elderly people with dementia. Transfer learning can

be an interesting option to cope with scarcity of data. The empirical results show

that the proposed method is promising when supervised methods cannot be exploited

because of the lack of (labelled) training data. However, the proposed method fails

to detect the person’s specific abnormal behaviour such as sleep patterns.
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CHAPTER VI

Hierarchical Activity Recognition and Abnormal

Behaviour Detection

6.1 Introduction

Convolutional Neural Networks (CNNs) have the capability to learn their own

features directly from the raw data. CNNs are currently the state-of-the-art method

for many problems in the literature. However, irregular data such as graphs cannot be

handled by CNNs since CNNs require a fixed dimension of input. Recently, there has

been a growing interest in Graph Convolutional Networks (GCNs) to apply the same

convolution idea on graph-structured data. The convolution is done on the spatial

neighbourhood of a graph network. Inspired by the solutions o↵ered by GCNs, in

this research, we use the GCN model to recognise activities and detect abnormal

behaviour related to dementia.

In this chapter, we firstly describe Graph Convolutional Networks (GCNs) in

Section 6.2, then we describe how we adapt GCNs to detect abnormal behaviour in

Section 6.4 along with experiments in Section 6.5.
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6.2 Graph Convolutional Networks

In this research, we use the GCN model proposed by [45], which makes use of a

convolutional architecture via a localised first-order approximation in Fourier-domain

to obtain an e�cient linear-time graph-CNNs of spectral graph convolutions. In

GCNs, the hidden layers serve as a kernel. They encode graph structure and features

coming from nodes and their neighbours to extract fruitful features. In a graph-based

neural network model f(X,A), f(.) is a neural network-like di↵erentiable function,

X is a matrix of feature vectors and A is an adjacency matrix and L is one-hot

encoding labels of instances and A 2 RNxN where N is the number of nodes in the

graph, while X 2 RNxF where F is the number of features. Then, the following layer-

wise propagation rule is applied where a degree matrix Dii =
P
j

Aij is calculated

beforehand.

Figure 6.1: Convolutions are applied on graph network.

Let Ã = A + IN be the adjacency matrix of the undirected graph G with added

self-connections, IN is the identity matrix, D̃ii =
P
j

Ãij and W (l) is a layer-specific

trainable weight matrix. �(.) denotes an activation function, e.g., Rectified Liner

Unit (ReLu), where ReLU(x) = max(0, x). Hidden layer H(l) 2 RN⇥D is the matrix
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Figure 6.2: Feature maps are extracted to encode node neighbourhood.

of activations of the lth layer. H(0) = X, since the first layer is the input layer. Then

H(l+1) is given as in Equation 6.1 (see Figures 6.1 and 6.2 retrieved from [45]).

H(l+1) = �(D̃�1/2ÃD̃�1/2H(l)W (l)) (6.1)

In Equation 6.2, the forward model for a two-layer GCN is considered. Here,

W (0) 2 RC⇥H is an input-to-hidden weight matrix for a hidden layer with H feature

maps (hidden neurons) and C input channels. W (1) 2 RHxF is a hidden-to-output

weight matrix. After calculating Â = D̃�1/2ÃD̃�1/2, then a forward propagation is

calculated as in Equation 6.2. The softmax activation function, defined in Equa-

tion 6.3, is applied row-wise.

Z = f(X,A) = softmax(Â ReLu(ÂXW (0))W (1)) (6.2)

softmax(xi) = 1/Z exp(xi) (6.3a)

Z =
X

i

exp(xi) (6.3b)

The cross-entropy error is calculated over all labelled examples as in Equation 6.4,
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where YL is the set of node indices that have labels.

E = �
X

l2YL

FX

f=1

Ylf lnZ lf (6.4)

The neural network weights W (0) and W (1) are trained using the gradient descent

method. In this work, batch gradient descent using full training set for every training

iteration is applied.

6.3 Sensor Representation

In this chapter, each sensor activation coming from raw data will be represented

as a node in the graph. Firstly, a graph is constructed as in Figure 6.3. There are two

node types in our graph, namely inner nodes and outer nodes. Each inner node in

the graph represents a sensor activation from input data. These nodes have one-hot

encoding of their sensor activations. For example, let’s consider the one-minute piece

of raw sensor data in Table 3.2. It is mapped into raw sensor data of M4,M7,M5,M3,

if we only consider ON status of each activation. Then there will be 4 inner nodes

in this graph, where each inner node represents a sensor activation. For example, the

first inner node M4 will have one-hot encoding feature of 1⇥ 34, where the index at

4 is 1 while others are 0. These inner nodes will have dummy labels as they don’t

have any activity labels on their own. Considering that there are 11 activities in

our dataset and 1 activity for nil activity, labels are represented by a vector of size

1⇥ 12. For example, the nodes having label 2 will have label vector 0100000000000.

For inner nodes, all values of label vector will be zero, meaning they don’t have any

labels. Inner nodes are connected to their subsequent ones as shown in Figure 6.3.

Outer nodes are the nodes to represent time-slice activity labels of sensor activi-

ties. Inner nodes which fall within a certain t-minutes time-slice (e.g. 1 minute) are

merged to their outer node. Thus, there is only one outer node for each t-minutes sen-
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Figure 6.3: Graph structure constructed from sensor activations.

sor activations. Here, please note that the number of sensor activations (the number

of inner nodes) is arbitrary. An outer node will have its corresponding time-slice’s

activity label. However, an outer node has an empty feature vector of the same size

1⇥N . Outer nodes are connected to their subsequent ones and to their corresponding

inner nodes. If whole data is split into n time-slices, then there are n outer nodes

in the constructed graph. The data (outer nodes) is split into 3 subsets: training,

testing and validation. We group inner nodes within one-minute chunks which is

chosen experimentally.

6.4 Activity Recognition and Abnormal Behaviour Detec-

tion

To recognise activities for outer nodes, firstly, a graph is constructed as shown in

Figure 6.3. The sensor activations are represented as inner nodes, while the labels

are represented as outer nodes (Section 6.3). The adjacency matrix A and feature

matrix F are constructed based on the graph structure to be used to train the GCN

on normal activities. To detect abnormal activities, we use the confidence probability
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values of assigned labels and then by using a threshold value, we decide if they are

abnormal or not (see Algorithm 3).

Input: Outer nodes in test set < n1, n2, . . . , nj >

GCN Classifier G

Threshold th

foreach node ni do

Classifiy ni with G ;

Obtain classifier confidence probability pi;

if pi � th then
ni is normal;

else
ni is abnormal;

end

end

Algorithm 3: Abnormal behaviour detection

6.5 Experiments

6.5.1 Experimental Set-up

In order to evaluate the proposed GCN model, the Aruba dataset (Section 3.2)

is split into training and testing sets. The training dataset consists of first 139 days.

Next 15 days are used for validation and remaining 70 days are used as testing set.

Moreover, GCNs are compared with the following state-of-the-art supervised meth-

ods: LSTMs (Long Short Term variants of RNNs), Näıve Bayes (NB) classifier, Hid-

den Markov Models (HMMs) and Conditional Random Fields (CRFs). In these clas-

sifiers, BOS representation is adopted since these methods require fixed-length input

vectors (1 ⇥ N), for N being the number of sensors in the dataset. Each sensor
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activated in 1 minute is represented as 1, while others are given 0.

In the LSTM and CNN related experiments, Adam optimiser [44] is used. The

models and the parameters are decided experimentally as follows. In the LSTM

related experiments, the instances are fed into the system with a batch size of 20. In

LSTM, two hidden layers of 50 and 100 nodes are used. Then, dense layers of size

100, 128 and 50 are added to the network, followed by a softmax layer. There are

drop-out layers with a probability of 0.5 between each two layers in LSTM models.

As for CNN, time-series window of length 10 seconds is extracted from the raw sensor

readings. The CNN model has the following layers: A 2D convolutional layer (with

20 kernels of size 5 ⇥ 10), a Max Pooling layer (with a pooling size of 2 ⇥ 2), a 2D

convolutional layer (with 10 kernels of size 10 ⇥ 15), a Max Pooling layer (with a

pooling size of 2⇥2), a flatten layer, and two dense layers of size 128 and 50, followed

by a softmax layer to do the classification.

In activity recognition experiment, nodes are represented by two di↵erent repre-

sentations. In the first one, we only consider the ON status of activations, while in

the second one we also consider the OFF status. The feature vector for ON repre-

sentation is size of 1 ⇥ 34, where 34 is the total number of sensors in the dataset.

The OFF status is represented by adding another 34 values to the feature vector,

which results in a feature vector of size 1 ⇥ 68. For example, if the sensor M3 has

status ON , the one-hot encoding feature vector of 1 ⇥ 34 will have 1 at position 3,

while if the same sensor has status OFF , then feature vector of 1 ⇥ 68 will have 1

at position 37 (= 34 + 3). Moreover, activations of GCN hidden neurons are fed into

an LSTM network to carry temporal information further with the ability of LSTMs.

Here, the same LSTM network is used as described above. Thus activity recognition

experiments with GCN have 3 variants: 1) when only ON status of sensor activations

are used, 2) when both ON and OFF are used and 3) when activations of kernels

(hidden layers) of GCN are fed into an LSTM network.
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GCN experiments are performed based on Kipf et. al.’s Python implementa-

tion [45] with raw data. Learning rate of 0.01, drop-out value of 0.5, weight decay of

0.00005 and 64 hidden neurons are used. The training is done in 100 epochs with an

early stopping of 10. The experiments are conducted in two main parts: 1) Activity

recognition and 2) Abnormal behaviour detection.

6.5.2 Activity Recognition Results

In these experiments, we only used test set with activity related abnormal be-

haviours since our focus is abnormal behaviour detection rather than activity recog-

nition. Moreover, activity recognition results are very similar for both test sets.

Table 6.1 shows the activity recognition results. In particular, the best accuracy is

retrieved by LSTM (85.95%), while GCN-LSTM comes after with a slight di↵erence

(85.67%) when ON and OFF activations are used. However, GCN model using ON

and OFF without LSTM gives higher precision (52.25%) and recall values (50.86%).

In terms of F-measure, LSTM-BOS achieves 43.29%, while GCN-LSTM achieves

43.11% and GCN with ON and OFF achieves 51.55%. This shows that GCN with

ON and OFF status is good at di↵erentiating classes. This comes from the ability of

GCN to model activity slices by taking sensor activation relationships into account.

Moreover, LSTM experiment is performed with BOS representation which ignores

the relationship between sensor activations. Thus, BOS representation might a↵ect

the performance of LSTM as well. On the other hand, feeding GCN activations to

LSTM cause a decrease in precision and recall (42.61% and 43.62%). The reason for

this might be LSTM learns the temporal information of the most frequent classes and

gives more importance to them.

Although GCN with ON and OFF achieves slightly better accuracy (84.06%)

than its ON version (84.01%), it ends up with better F-measure (51.55% compared

to 48.16%). Since F-measure is averaged on each class, this means that adding OFF
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Table 6.1: Activity recognition results (%) for activity related abnormal behaviour.

Model Precision Recall F-Measure Accuracy
GCN (ON) 46.65 49.77 48.16 84.01
GCN (ON+OFF) 52.25 50.86 51.55 84.06
GCN-LSTM (ON+OFF) 42.61 43.62 43.11 85.67
NB-BOS 44.45 69.09 54.10 74.59
HMM-BOS 40.21 77.47 52.94 72.97
CRF-BOS 44.46 47.42 45.90 80.39
CNN-BOS 38.81 43.18 40.88 80.68
LSTM-BOS 41.93 44.73 43.29 85.95

status helps to di↵erentiate the classes better. When OFF status is used, the model

can understand the ordering of the sensor activations better. This ordering provides

an update for the location of the person since sensors are activated one after another

based on the location of sensors replaced. This gives more insight to the activity

being performed. For example, results with only ON status show that leave home

activity is confused with enter home activity, while eating activity is confused with

meal preparation since same sensor types are involved in these activities. However,

adding OFF status improves the accuracy for these activities since it reduces the

confusion. No method can identify Wash dishes well and most of the test instances

are recognised as the Meal preparation activity. This due to the fact that the two

activities run in the same place (kitchen) and use very similar objects.

Despite the high ability of CNNs to capture spatial context, CNN model achieves

relatively less accuracy (80.68%) because of the BOS representation. Moreover, CRF

model outperforms NB and HMM in terms of accuracy (80.39%, 74.59% and 72.97%

respectively) but NB and HMM perform better in terms of recall (69.09% and 77.47%

respectively). The reason behind is that CRF favours the most frequent class in the

dataset.
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6.5.2.1 Sensor Pattern Extraction

A quantitative analysis is provided for each activity class to show which sensors

are involved the most during the classification decision of GCN. For this purpose, the

average of all GCN hidden layer activations are calculated for each feature of every

activity. The normalised sensor activations are visualised in Figure 6.4. The lighter

cell means that that activity nodes get more excited by that sensor. The following

abbreviations are used for the activities. N: Nil, S: Sleeping, M: Meal preparation, E:

Eating, R: Respirate, W: Working, B: Bed to toilet. For example the outer nodes of

meal preparation activity correlate more with sensor M19, while nodes of eat activity

are a↵ected by M14, and respirate nodes are a↵ected by M25. Wash dishes nodes are

a↵ected by M15,M18,M19, bed to toilet nodes by sensors M3,M4,M5,M6 and leave

home and enter home by M30 and D4 while work nodes gets excited by M26 and M27.

These are the sensors which are involved at most in these activities when we look at

the sensor lay-out and raw sensor measurements.

Figure 6.4: Sensor activation map for each activity.

We also present a set of example sub-graphs from each activity category in Fig-
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Figure 6.5: Sub-graph from each class showing the level of sensor activations.

ure 6.5. The darker colour means more excitement. The numbers on outer nodes

show the class label of that time-slice (outer node). The classes are numbered in the

following order: Meal Preparation, Relax, Eat, Work, Sleep, Wash Dishes, Bed to

toilet, Enter Home, Leave Home, Housekeeping, Respirate. For example, meal prepa-

ration outer node is a↵ected by sensorsM15,M17,M18. Moreover, we extract the most

common and important patterns for each activity class in the graph. This is similar to

frequent sub-graph mining, which is about discovering interesting patterns in graphs.

In our case, sensor readings which are triggered frequently in an activity represent a

pattern. If activation scores of a group of sensors are high, then it means an outer

node gets excited by that combination of sensors. For this purpose, all n-grams are

calculated for inner nodes and their average sensor activation scores are calculated.

Then all activations are sorted, and top�500 nodes, which is decided empirically, are

taken for each activity class to calculate n-gram patterns. We calculate n-grams with

only n = 2 and n = 3, which is enough to see the patterns in the dataset. A sample

set of extracted patterns are shown in Table 6.2. For example, the sensors M19 and

M15 are grouped in meal preparation activity. In the sensor layout, these sensors are
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Table 6.2: N-gram patterns learned by GCN.

Activity 2-gram 3-gram

Bed to Toilet
M3, M3

M4, M7

M7, M5

M4, M7, M5

M7, M5, M3

Meal Preparation
M19, M15

M18, M19

M19, M17

M15, M19, M19

M18, M19, M15

M17, M19, M15

Relax
M9, M20

M9, M9

M9, M13

M9, M9, M13

M10, M10, M10

M9, M13, M20

Eating
M14, M18

M14, M14

M14, M20

M14, M14, M20

M24, M14, M14

M14, M14, M18

Work
M26, M26

M26, M27

M22, M28

M26, M27, M26

M27, M27, M26

Sleeping
M3, M2

M3, M3

M2, M3

M3, M2, M3

M7, M3, M7

Wash Dishes
M19, M15

M18, M19

M19, M17

M19, M15, M19

M15, M15, M15

M18, M19, M15

Housekeeping
M20, M20

M7, M5

M20, M8

M24, M24, M24

M7, M7, M7

Leave Home
D24, M30

M30, M30

M22, M30

D4, M30, M30

M21, M22, M30

Enter Home
D4, M30

M22, M21

M30, M22

D4, M30, M29

M30, M22, M21

Respirate
M27, M25

M25, M26

M25, M25, M26

M25, M25, M25

placed close to each other and when the resident performs meal preparation activity,

these sensors are triggered one after another. The pattern constructed by these two

sensors are identified in [93] as near the kitchen range and sink. Another grouping

of sensors, namely M18, M19, M15 shows another pattern in this activity, which is

again (M18 and M19) found as a movement pattern in [93]. In eating activity, we see

107



that M14 and M18 represent a pattern and M14, M13, M15 represent another pattern

which is constructed by the sub-pattern M13, M15 and the sensor M14. For the ac-

tivity sleeping, the most frequent pattern is M2, M3. This makes sense because these

sensors are on the bed and they will be triggered one after another during sleeping

activity.

6.5.3 Abnormal Behaviour Detection Results

The abnormal behaviour detection results are visualised for activity related and

sub-activity related modified test sets separately on ROC curves in Figure 6.6a. More-

over, AUC histograms of ROC curves are shown in Figure 6.7a. For activity related

abnormal behaviours, the results show that GCN with only ON and with ON and

OFF achieves the best with AUC of 66% and 67% respectively. Adding LSTM layer

to the activations of GCN (with ON and OFF ) reduces the AUC rate slightly to

63%. The reason for this might be that LSTM encodes temporal information further

and tolerates small variations in the sequence. Adding OFF status to GCN model

doesn’t improve the result too much (around 1%), since activity related abnormality

doesn’t occur at sensor activation level.

Although CNN and LSTM are powerful models, they perform slightly worse than

GCN models (with AUC of 57% and 59% respectively), since they rely on BOS

representation. However, CNN catches GCN models at TPR (82%) and FPR (56%)

on ROC curve. NB performs the worst because of its simple modelling capabilities.

HMM and CRF, with AUC of 42% and 54%, doesn’t perform well because of BOS

representation.

Results for anomaly detection with sub-activity related test set are shown in Fig-

ures 6.6b and 6.7b. LSTM performs the best AUC (63%), since inserting additional

sensor activations (see Chapter III), changes BOS representations. Thus, the activa-

tions mistakenly appear and LSTM can relate these changes by encoding temporal
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(a) ROC for anomaly detection when activity related test is used.

(b) ROC for anomaly detection when sub-activity related test is
used.

Figure 6.6: ROC curves for abnormal behaviour detection using GCN.

information. GCN-LSTM with ON and OFF produce AUC rate of 57% while GCN

with only ON and GCN with both ON and OFF have similar AUC rate 56%. Thus,

adding LSTM to GCN with ON and OFF improves the results reaching an FPR of
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73% and TPR of 58% on ROC. Although, adding OFF helps di↵erentiating between

classes in activity recognition, it also increases the noise to detect abnormal activi-

ties. NB, with AUC of 52%, doesn’t perform well since it is a simple model and can

relate neither temporal nor spatial information. Although HMM can relate previous

input to the current one, it achieves an AUC of 54%. As a discriminate model CRF

performs only an AUC of 54%.

(a) AUC for abnormal behaviour detection when activity related
test is used.

(b) AUC for abnormal behaviour detection when sub-activity
related test is used.

Figure 6.7: AUC histogram for abnormal behaviour detection using GCN.
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6.6 Conclusion

This chapter introduces a method to detect abnormal behaviours reflecting cogni-

tive status of elderly people, in the natural flow of daily life in a smart home. Instead

of relying on fixed length feature vectors, we work on raw sensor measurements to

encode information coming from sensor activations such as frequency and order of

the activations. We represent raw sensor activations in a graph and use Graph Con-

volutional Networks (GCN) to learn activity labels of nodes and the detect abnormal

activities. The results show that the proposed GCN based method can encode the

low-level information coming from activations and flag abnormal behaviours in the

context of dementia. However, this method cannot relate one instance to another and

neglects temporal information between time-slices.
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CHAPTER VII

Conclusions and Future Work

This chapter summarises the contributions and key findings of this dissertation

and discusses the future directions.

7.1 Conclusion

This research aimed to detect abnormal behaviour of dementia su↵erers in the

daily flow of life in a specially designed smart home. Elderly people su↵ering from

dementia tend to confuse things, or repeat and skip certain activities in their daily life

patterns. Firstly, a method was proposed to generate abnormal activities related to

dementia. For this purpose, two types of abnormal behaviour were generated, which

are activity and sub-activity related anomalies. Secondly, deep learning methods such

as Recurrent Neural Networks, Convolutional Networks, Recursive Auto-encoders and

Graph Convolutional Networks were exploited to detect abnormal behaviour. Thirdly,

we compared these methods with the traditional machine learning methods such

as Hidden Markov Models, Conditional Random Fields, Support Vector Machines

and Näıve Bayes methods. Our results showed that the proposed methods were

competitive with the machine learning methods.

First of all, given the scarcity of real-world data available, we proposed a method

to manually synthesise abnormal activities to mimic the daily life patterns of elderly
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people su↵ering from dementia (Chapter III). We modified some instances of datasets

already available in the literature. The modification was done through injection of

abnormal activities in normal daily life activity sequences. We specifically aimed to

simulate repetition, sleep disorder and confusion types of abnormal behaviour. Rep-

etition and sleep disorder related abnormal behaviour occur at activity level while

confusion related abnormal behaviour occur at sub-activity level of activities. How-

ever, generating abnormal behaviour in this method may fail to reflect user specific

abnormal behaviour since people show di↵erent habits in di↵erent times.

Firstly, activity recognition problem was emulated as a sequence labelling prob-

lem where time-series data of sensor measurements was treated as a sequence (Chap-

ter IV). Then, daily life patterns were modelled exploiting Recurrent Neural Net-

works (RNNs) and its variants, namely Long Short Term Memory, Gated Recurrent

Units and Vanilla versions, and Convolutional Neural Networks (CNNs). Results

with RNNs and CNNs showed that capturing the activity instances and their tem-

poral and spatial relationship was helpful to understand the daily life patterns and

their relationships with other activities. With RNNs, we were able to encode the

temporal information in daily life in order to model personal environments for de-

mentia support. With CNNs, we tried to extract meaningful and fruitful patterns

in the activities and with the help of these patterns, activities were recognized and

anomalies were detected. These models were good at detecting anomalies related to

repetition of activities and sleep disturbances. However, they are not capable enough

to detect anomalies related to confusion since they cannot model sub-activities in an

activity. RNNs and CNNs cannot model daily activities at granular-level, so they

cannot understand which sub-activities in these activities are forgotten, repeated and

confused. Modelling these sub-activities would give a better understanding of activity

recognition.

Moreover, a new representation, namely Raw Sensor Measurement (RSM) that
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captures the intrinsic structures of activities such as the frequency and the order

of sensor activations was proposed (Chapter V). Then, the abnormal behaviour of

dementia su↵erers was detected by exploiting the granular level sub-activities in ac-

tivity instances. For this purpose, Recursive Auto-encoders (RAE) and their linear

and greedy variants were adopted to model activities from their sub-activities hier-

archically. Abnormal activities were then detected using RAE’s reconstruction error.

The results showed that this method was promising to model activities from their sub-

activities and detect anomalies. However, this method couldn’t relate one instance to

another and neglected temporal information. Combining RAEs with a RNN-based

model would include temporal information and detect abnormal behaviour occurring

not only at hierarchical level but also at temporal level.

Also, we proposed to investigate Recursive Auto-Encoders (RAE)-based transfer

learning to cope with the problem of scarcity of data in the context of abnormal

behaviour detection (Chapter V). In the absence of training data, it would be helpful

to learn the normal behaviour and daily life patterns of a (cognitively) healthy person

and use them as a basis for tracking other patients. The empirical results showed

that the proposed method is promising when supervised methods cannot be exploited

because of the lack of (labelled) training data. The proposed method failed to detect

the person’s specific abnormal behaviour. Moreover, the behaviour across di↵erent

houses is transferable under the condition that the resident profiles such as age,

gender and lifestyle are similar in both households. Also the di↵erent sensors and

activities in these houses should be mapped into each other. When there is no source

data available prior, domain adaptation would not be possible. Transfer learning

generalises the behaviour of inhabitants between di↵erent houses and doesn’t take

resident specific behaviour into account. For example, going to toilet during sleep

might be normal for a person, while it is abnormal for another person. Then, there

would be a problem to detect resident specific abnormal behaviour.
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Lastly, instead of relying on fixed length features as considered in the literature, we

exploited raw sensor activations to encode sub-activity related granular level informa-

tion since it allows us to investigate more into the activation frequency and ordering

of sensors (Chapter VI). This representation is helpful to understand the intrinsic

sub-structures of activities. Then, we considered the problem of activity recognition

as a graph labelling problem and exploit Graph Convolutional Networks (GCNs) to

model activities based on their fine-grained sensor activations. Modelling activities

in a graph gives the opportunity to encode the intrinsic sub-structures of activities.

Then abnormal behaviour related to dementia was detected exploiting the nodes and

their relationships in the graph. The results showed that the proposed GCN based

method can encode the low-level information coming from activations and flag abnor-

mal behaviour in the context of dementia. However, this method cannot relate one

instance to another and neglects temporal information between time-slices.

7.2 Future Work

One possible extension of this research would be to take OFF status of the sensors

into account and investigate their impact to detect anomalies. Also specific features

or rules can be considered to understand if a sensor (e.g. item sensors representing

medicine, or a fridge door sensor to check if it closed or not) is left OFF or not. New

features to represent sensor events could be proposed to cover more di↵erent types

of abnormal behaviour reflecting cognitive status of elderly. For example, incorrectly

measuring the oatmeal, not using soap when cleaning, washing hands multiple times,

confusing the location of items, and using too much soap or leaving kitchen utilities

on, could be important in the context of dementia.

Also, our current approach may fail to detect abnormalities when there is gradual

deterioration regarding the health of an elderly. Thus, a real-world data can be

collected in which gradual deterioration is observed. Moreover, di↵erent types of
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abnormal behaviour reflecting dementia specific habits can be considered. If no real-

world data can be collected, simulation methods to artificially generate these kinds of

behaviour can be proposed. Moreover, in terms of transfer learning, personal habits

can be taken into account by learning a prior distribution from the source houses to

adapt the model to the target house.

One drawback of this thesis is that GCNs and RAEs cannot relate one instance to

another and neglects temporal information between time-slices. Thus, in future, these

models can be merged with Recurrent Neural Networks to add temporal information

into account.
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1 Introduction

Studies indicate that by year 2030, the number of people aged 65 to 74 will
be about 3% of the total population [1]. Elderly people may su↵er from the
consequences of dementia, which is a condition that causes problems with mo-
bility, physical and mental abilities such as memory and thinking [2]. It may
also cause decrease in the ability of speaking, writing, distinguishing objects,
performing motor activities and performing complex functional tasks (pay-
ing bills, preparing a meal, etc.) [3]. An elderly person having such cognitive
decline loses independence in daily life and requires care and support from
caregivers. On the other hand, the use of assisted living technologies such as
smart homes can substantially help a person with dementia to live indepen-
dently. Unfortunately, currently there are no dementia friendly smart homes
addressing elderly people’s special needs.

Cognitive diseases, like dementia, need to be detected at an early stage so
that early treatment will be possible. However, research shows that 75% of
dementia cases go unnoticed [4] and many cases are diagnosed only when the
impairment reaches moderate or advanced stage. The best markers of cogni-
tive decline may not necessarily be detected based on a person’s performance
at any single point in time, but rather by monitoring the trend over time and
the variability of change in a duration [5]. Most common types of dementia
(Alzheimer, Parkinsons disease) can be identified by behavioural changes like
sleep disturbances, di�culty of walking and inability to complete tasks. Thus,
such changes can provide key information about memory, mobility and cog-
nition of a person. For instance, an old person su↵ering from Alzheimer may
forget to have his lunch, take multiple lunches instead, wake up in the middle of
the night, go to the toilet frequently, or have dehydration problems because of
forgetting to drink daily amount of water. In particular, the daily home activ-
ity involving basic functions like preparing food, showering, walking, sleeping,
etc. can be used to assess the well-being of elderly people.

The development of ambient home assessment environments has begun to
provide the opportunity to assess behaviour change unobtrusively in real-time
[6,4,5]. Prevention or delay of dementia onset is contingent upon the ability
to detect early, meaningful, cognitive change during the life course [6,4]. The
identification of early onsets of dementia using non-medical diagnosis methods
requires the development of new diagnostic tools. Although a few promising
methods have been experimentally validated [6,7,8,9,10], the translation of
the current knowledge into smart homes still requires more dedication and
work. Current assessment methods mostly rely on queries from questionnaires
or in-person examinations, which depend on recall of events or brief snap-shots
of function that may poorly represent a person’s typical state of function. Also
the clinical methods have some limitations such as their episodic nature, and
possible biased reporting. The main motivation for our work is that cognitive
decline can be observed in daily activities and routines of an elderly person.
Real-time monitoring of activities performed by an elderly person in a smart
home would be beneficial for early detection of such decline.



Activity Recognition and Abnormal Behaviour Detection with CNNs 3

In machine learning, a convolutional neural network (CNN) is a class of
deep, feed-forward artificial neural networks. Recently, CNNs are popular due
to their ability to learn fruitful representations and capture local dependency
and spatial information of granular-level patterns. For example, in image recog-
nition, CNNs firstly detect pixels, then edges and shapes, then parts of objects
as the layer level increases. Similar to images, there are granular-level patterns
in daily life activities. For example, when the activity preparing co↵ee is con-
sidered, it is seen that this activity is constructed by many steps such as getting
closer to the sink, turning the water on, filling the co↵ee machine with water
and turning the machine on, etc. In [11], granular-level activity patterns, which
they call as movement vectors, are extracted by using a decomposition based
unsupervised approach. It is shown that the movement vector can distinguish
di↵erent high-level activities. The occupant tends to have the same routine of
performing the same activities, but has di↵erent movement patterns in di↵er-
ent activities. For example, the occupant may mainly move around the kitchen
sink in Wash Dishes activity, and stay around the bedroom area during Sleep-
ing activity. A combination of some motion sensors are mostly seen in the
instances of relax activity while usage of some other motion sensors indicates
the movement between kitchen range and the sink and this movement pattern
is seen in the instances of wash dishes activity. CNNs are good at modelling
these granular-level patterns and defining their relationship with each other
by using spatial information. Thus, in the present study, CNNs are exploited
to model sensors and their relationship with each other in daily life activity
recognition.

Unfortunately, there exists no publicly available dataset on abnormal be-
haviour of people with dementia. Producing such a dataset requires time and
adequate experimental environment. When there is no real-world dataset avail-
able, data simulation can be a solution [12,13,14,15]. Given the scarcity of such
data, simulating daily life abnormal behaviours of elderly people su↵ering from
dementia would be helpful for providing automatic assessment methods. Thus,
in this paper, a method is proposed to artificially produce abnormal activities
reflecting on typical behaviour of elderly people with dementia.

In a nutshell, the present paper introduces the following contributions.

1. A method is proposed to generate synthetic data that simulates the abnor-
mal behaviours of people with dementia.

2. To the best of our knowledge, our study is the first to apply CNNs, thanks
to their ability to model granular-level patterns, for daily life activity recog-
nition and dementia related anomaly detection task.

The rest of the paper is organised as follows. Section 2 provides an overview
of literature work. Section 3 presents the details of the proposed methodology
together with the datasets and models used. Section 4 describes the experi-
mental set-up and results of the experiments followed by a discussion. Finally,
Section 5 concludes the paper.
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2 Literature Review

In-home automatic assessment of cognitive decline has been the subject of
many studies [16,17,6,7,18,19,20]. Many machine learning approaches such
as SVMs and Näıve Bayes methods [21,22], Restricted Boltzmann Machines
(RBMs) [19] and Markov Logic Networks [7,18,20], Hidden Markov Models
(HMMs) [14], Random Forest methods [15], and Hidden Conditional Random
Fields [23] have been exploited.

In some studies [16,24], assessment of cognitive status is done by providing
patients some instructions during the completion of pre-defined tasks (e.g.,
sweeping the kitchen). In the end, the patients receive scores which are cal-
culated based on the time spent, the frequency of the sensor triggered, etc.
These scores are used to assess the cognitive status of elderly people. In [16],
cognitive decline assessment is done by asking elderly people to complete a
sequence of scripted instrumental activities of daily living (IADLs). The par-
ticipants are monitored via a camera while they perform tasks such as cooking
oatmeal on the stove and in the end, they receive scores by trained experts.
In [24], the authors first extract sensor based features (the duration the activ-
ity and the number of sensors triggered) and then use SVMs, NB and neural
networks to assess the activity quality and cognitive status of elderly people
in smart homes. However, participants are provided with a brief description
of each sub-task that they should refer to during the simulated activities such
as planning a bus route, finding a recipe in the recipe book. These studies
fail to provide an unobtrusive way of assessment since they are not done in
the natural flow of daily living and in real life scenarios. Moreover, using rule-
based systems, an expert is needed to manually integrate specific rules to the
system since every person has own daily life routines. For example, waking up
and drinking water in the middle of the night might be normal for a person,
while abnormal for some other person. However, our approach does not re-
quire any expert knowledge, since it learns what is normal and abnormal from
the training data automatically. Specifically, we aim in this study to detect
anomalies in the natural flow of daily living without giving any instruction
and considering not only some time interval, but everyday living scenario.

Some studies [25,26] focus on anomalies related to the duration and the
timing of performed activities and other type of anomalies related to demen-
tia such as repetition of activities are not taken into account. In [25], the au-
thors introduce activity curves which models an individual’s generalised daily
activity routines based on automatically recognized activities. Deviations in
behavioural routines are detected by comparing activity curves in order to do
health assessment. In [26], the authors use a probabilistic model based on the
location and outing interference of each activity. Then cross-entropy measure
is used to detect anomalies such as staying in bed for a long time or not using
the bedroom for sleeping during the night. In [14], the authors exploit HMM
and fuzzy rules to detect duration, time and frequency related anomalies.

In the literature, there is some work dedicated to the synthesis of activity
related data [12,14,15]. In [14], the authors modified real-world dataset in
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order to synthesise health related abnormal behaviours for their experiments.
8 daily activities such as sleeping, waking up, walking, eating are chosen and
health related abnormal behaviours like frequent toilet visit, no exercise, slept
without dinner are synthesised. In [15], more data is synthesised using HMMs
based on a small set of real data collected. To increase the realism of data
simulation, the sensor events were modelled by a combination of Markov chains
and the Poisson distribution. However, in both [14,15], it is not mentioned in
detail how the data synthesis was done. In [12], the authors modified a real-
life dataset of an older adult converting basically the rooms into activities.
The authors focused on walking and eating in conjunction with the sleeping
activity and samples of these activities are manually inserted in the XML data
set.

In [23], the authors exploit Hidden State Conditional Random Field (HCRF)
method to detect abnormal activities that often occur in homes of elderly peo-
ple by considering sub-activity relations. First, HCRF is used to recognise
activities by producing a recognition confidence value for each activity. Then,
a threshold based method is used to decide the activities as normal and ab-
normal. In [7], the authors detect anomalies of mild cognitive impairment by
exploiting Markov Logic network. They use a hybrid technique including super-
vised learning, rule-based reasoning and probabilistic reasoning. However, they
construct their model prior by defining each steps of each action. Those rules
strongly depend on the specific home environment, on the used sensors, and
on the particular habits of the elderly people; hence, their definition is time-
expensive, and rules are not portable to di↵erent environments. In order to
address this issue, the same authors propose a method to automatically learn
the rule-based definitions of behavioural anomalies [18]. They exploit formal
rule induction methods and a training set of normal and abnormal behaviours.
However, the authors claim that their proposed rule learning method infers
deterministic rules, which are prone to generate anomaly mispredictions in the
presence of noise from the sensor infrastructure. In our study, normal daily life
patterns are learnt for each individual from training data automatically and
without the integration of any rules. Similar to [23,7], in our proposed work,
anomaly is defined not activities alone but defined in the context of sequences,
with other activities happened before and after.

Recently, there has been growing interest in CNNs [27,28,29,30,31,32,33,
34,35,36], Deep Belief Networks (DBN) [37], Restricked Boltzman Machines
(RBMs) [38,19,37,39] and Recurrent Neural Networks (RNNs) [29,30,40,41].
In [38], RBMs are used for feature extraction and selection from sequential
data. In [39], results with RBM on CASAS dataset outperformed HMMs and
NB in most of the cases. In [29], the authors use a combination of CNNs and
Long Short Term (LSTM) RNNs to do multi-modal wearable activity recogni-
tion. In [30], the authors explore deep, convolutional and recurrent approaches
on movement data captured with wearable sensors. Moreover, they describe
how to train recurrent models in this setting and introduce a novel regularisa-
tion. In [34], the authors utilised convolutional networks to classify activities
using time-series data collected from smart phone sensors. In [35], in a real
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world setting, an automatic stereotypical motor movement in Autism detec-
tion systems is developed exploiting CNNs. The discriminating features from
multi-sensor accelerometer signals are learnt via CNNs and this knowledge is
transferred to a new dataset. In [36], CNNs are exploited to learn features
from raw physiological signals in an unsupervised manner analysis and then
using multivariate Gaussian distribution, anomalies are detected to identify la-
tent risks. In our previous work [41], RNNs are exploited to detect anomalies
related to dementia in a daily living scenario.

CNNs have been exploited for activity recognition using movement datasets
that are generated by wearable sensors [38,27,28,29,31,34,37]. Except the
work by Fang et al. [39,41], none of these studies focus on daily activity
datasets collected by sensors placed at home. Previous work on activity recog-
nition based on wearable sensor datasets shows that CNNs and RNNs are
useful to recognise activities, but leaves a lot of room for improvement. In
this work, CNNs and their combination with LSTMs are investigated on daily
activities datasets, namely Aruba [42] and WSU testbeds of CASAS smart
home datasets [22] since the activities in these datasets are good examples to
reflect daily life patterns of elderly person and to synthesise anomalies related
to dementia.

3 Methodology

To assess CNNs in daily life activity recognition and abnormal behaviour de-
tection tasks, the following steps are proposed: Firstly, a real-world dataset is
modified in order to simulate abnormal behaviours related to dementia. Sec-
ondly, this dataset is segmented into time-slices by using a sliding window
approach as described in [43]. Thirdly, sensor-based raw data is mapped into
last-fired representations as described in [43]. Fourthly, CNNs are trained to
recognise daily activities and encode daily-life behaviour routines. Lastly, the
trained model is used to detect anomalies deviating from the normal daily-life
sequences. In the following, the datasets are described as well as the method-
ology used to generate artificial dataset that reflects on the typical behaviour
of a person with dementia.

3.1 Dataset

In this study, two datasets are used to evaluate activity recognition and ab-
normal behaviour detection. These datasets are namely Aruba [42] and WSU
testbeds of CASAS smart home project [22].

In Aruba testbed, motion, door and temperature sensors are used. How-
ever, temperature sensors are excluded in this study and other 34 sensors (3
door and 31 motion sensors) are used. The data is provided as a list of (sensor,
time-stamp) sensor measurements. In this dataset, there are 11 daily activities
performed by a single user and it spans 224 days. These activities are Meal
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Preparation (1606 instances), Relax (2910 instances), Eating (257 instances),
Work (171 instances), Sleeping (401 instances), Wash dishes (65 instances),
Bed to toilet (157 instances), Enter home (431 instances), Leave home (431
instances), Housekeeping (33 instances) and Respirate (6 instances). The ac-
tivities performed in this dataset are totally normal and some of these normal
activities will be modified for anomaly detection.

In WSU testbed [22], there are 5 activities, which are Make a phone call,
Hand washing, Meal Preparation, Eating, Cleaning. There are 20 instances
of each activity performed by 20 students in both adlerror and adlnormal
versions. The adlnormal version consists of totally normal behaviours while
in the adlerror version, there are specific errors in the task completion of
these activities. Errors were selected to reflect common di�culties that can
compromise everyday functional independence. The participants are told to
include these errors during their performance. These errors can be seen in
daily life activities and activity patterns of elderly people who are su↵ering
from the consequences of cognitive decline.

3.2 Synthesis of Abnormal Activities Related to Dementia

This study aims to detect the following 3 di↵erent kinds of anomalies that can
be seen in daily-life routines of elderly people with dementia: 1) Repeating
activities, 2) Disruption in sleep, and 3) Confusion (getting confused during
the activities).

1) Repeating activities: Elderly people su↵ering from dementia may
forget whether they performed a particular daily activity or not, so they may
repeat that activity. Frequency sensitive activities such as having a snack or
drink, brushing teeth, taking medicine multiple times, etc. are the ones only the
number of occurrences matters in terms of medical assessment. For instance,
an elderly person su↵ering from Alzheimer may forget to have lunch, take
multiple lunches instead [44], may forget to have dinner and start to prepare
it in the middle of the night.

To reflect on this cognitive problem, we generate this kind of abnormal
activities by manually inserting a specific set of actions within a random area
of the normal activity sequence. This will result in multiple occurrences of
that activity, which will occur in some inadequate time of the day such as
having dinner in the middle of the night. We inject the instances of the fol-
lowing activities: brushing teeth, preparing dinner, eating, getting snack into
the normal activity sequences to generate abnormal activities related to the
frequency. For example; let’s assume that S is a sequence of activities occur-
ring in a day such as S = d1, d2, d3, ..., dx, b1, b2, ..., bt, dx+1, ..., dn where each
di is a time-slice of some activities and each bj is a time-slice of brushing teeth
activity. Here, there are t time-slices of brushing teeth activity which consec-
utively results in only one instance of brushing teeth activity in the whole
day sequence. Then, time-slice instances of brushing teeth activity are injected
into the sequence S to have the abnormal version. Then modified S becomes
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S = d1, d2, d3, ..., dm, b1, b2, ..., bt, dm+1, ..., da, b1, b2, b3, ..., bk, da+1, ..., dn. As a
result, we have two occurrences of brushing teeth activity in the sequence.

2) Disruption in sleep: Degeneration of the sleep-waking cycle and night
time wandering are among the most severe behavioural symptoms of dementia.
For example, elderly people may wake up many times in the night to use the
toilet and go back to sleep or may forget to take daily amount of water [44,
45].

We simulate these anomalies by inserting some specific synthetic activ-
ities in the normal night-time activity sequences of a person. More specif-
ically, we inject Eating, Bed to Toilet into a random area of sleeping ac-
tivity in the normal daily activity sequence. This will emulate the activ-
ities of getting drink and going to the toilet frequently in the middle of
the night. For example; given a sequence of sleeping activity such as S =
s1, s2, s3, ..., sn where each si is a time-slice; time-slice instances of getting
drink are injected into a random area of S. Then modified S becomes S =
s1, s2, s3, ...., sm, d1, d2, d3...dk, sm+1, ..., sn where each time-slice dj is from get-
ting drink activity. As a result, we simulate disruption in sleep anomaly where
the person wakes up in the middle of the night and gets drink.

3) Confusion: Older adults su↵ering from cognitive decline tend to con-
fuse things and perform some steps of activities more than once during the
completion of activities. For example, they may fail to remember how to turn
a CD player on, or may forget to turn o↵ the television, air conditioning or
house utilities such as kettle, oven, or they may leave the refrigerator door,
the main door open. In order to test our methods on these kind of anomalies,
the adlerror set of WSU dataset is used since confusion and forgetting anoma-
lies are reflected in this dataset. For example, leaving the water running after
washing hands, leaving the burner on after cooking the oatmeal, forgetting to
take medication with the meal, wiping o↵ the dishes without using running
water to clean them are some examples to these kind of anomalies in the WSU
adlerror set.

The first two types of anomalies are simulated by modifying Aruba testbed.
Here, there is only one subject in the dataset. The lifestyle in the training
data is taken as a norm and then we synthesise the abnormalities deviating
from this norm and introduce these abnormalities in the test data. These
activities are totally normal on their own but they become abnormal when
they occur at a wrong time of the day and after or before a specific activity.
Hence, capturing these abnormalities within the context is important. In all,
150 abnormal activity slices are generated manually. The third anomaly type
is already reflected in WSU dataset; thus it is used directly without modifying
any sensor reading.

3.3 Sensor Reading Representation

Firstly, time-slice chunks are extracted from raw sensor readings via a sliding
window approach [43]. Data is discretised using the time-slice length of 60
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seconds. A time-series chunk is a matrix of t⇥ f size, where t is the length of
time-slices and f is the number of sensor features. Then raw sensor readings
are mapped into last-fired representation. Last-fired representation indicates
which sensor is fired last. The sensor that changed state last continues to give
1 and changes to 0 when another sensor changes state. Previous work [41]
shows that this representation gives better activity recognition accuracy rates
than other representations as proposed in [43].

In the following, a description of CNNs used in this work is given.

3.4 Convolutional Neural Networks (CNNs)

CNN takes inputs of dimensions h⇥w⇥ d, where h is the height of the input
matrix, w is the width of the input matrix and d is the number of di↵erent
channels of the input matrix. In our study, d is 1 since time-slice input matrices
has only one channel.

A local filter (kernel) with a size of n ⇥ m ⇥ q is used to extract fruit-
ful feature patterns and capture local dependencies on the given input. Here,
n is the number height of the filter, m is the width of the filter, while q is
the number of filters used. These values are given as a parameter during the
network construction process. The weight of these filters are initialised ran-
domly in the beginning and then CNN learns these weights on its own during
the training process by optimising the values. In this study, random uniform
initialisation is used to initialise the filters and Stochastic gradient descent is
used to optimise the values during the training. An additional operation called
activation function has been used after every convolution operation. In this
study, Rectified Linear Unit (ReLU) is used as the activation function. Then
a max-pooling layer, which is followed by a fully connected layer is added to
the network. The fully connected layer used in our network is a traditional
Multi Layer Perceptron that uses a softmax activation function in the output
layer. The purpose of this layer is to use these features for classifying the input
image into various classes based on the training dataset.

CNNs can contain one or more pairs of convolutional and max-pooling
layers, where higher layers use broader filters to process more complex parts
of the input. The top layers in CNNs are stacked by one or more fully connected
normal neural networks. These fully connected neural network are expected to
combine di↵erent local structures in lower layers for final classification purpose.
In the training stage, CNN parameters are estimated by standard forward and
backward propagation algorithms to minimise objective function.

3.4.1 Activity Recognition and Abnormal Behaviour Detection

In order to recognise daily activities, training instances of the datasets and
their corresponding labels are fed into CNNs to be trained. The models assign
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a class label to each instance with a confidence value. Firstly, the mean of
confidence values of training instances for each class is calculated as follows.

mj = 1/N
NX

t=1

pt (1)

where mj is the mean confidence value of class j and pt is the confidence
value for training instance t of that class and N is the total number of instances
in that class.

Then when a new test instance is introduced, if the model assigns it to a
class with a confidence value which is bigger than the mean of that class (mj),
that instance is considered as a normal activity, otherwise it is flagged as an
abnormal activity.

In order to test the a↵ect of convolutions on di↵erent dimensions and dif-
ferent architectures, the following networks are tested on Aruba dataset (see
Figure 1). Here, the input matrix is N⇥M , where the rows are sensor readings
for each time-slice and columns are the values of each sensor as time passes.

1D Convolution: In this model, convolution is done on temporal dimen-
sion. As depicted in Figure 1a, in the convolutional layer, 100 filters with a
length of 10 is used. 1D convolution is followed by a max-pooling layer, which
has a stride of 2. Then another convolutional layer (with 50 filters and a length
of 5) and a max-pooling layer are added. After the extracted features are flat-
tened, these features are fed into dense layers (3 hidden layers having 512, 128
and 50 units respectively) and then the final decision is given by a softmax
layer producing the confidence values of assigned class labels.

2D Convolution: In this model, convolution is done on both of the di-
mensions, specifically on feature and temporal dimension. 100 filters with a
size of 10⇥ 34 are used in the first convolutional layer which is followed by a
2⇥ 2 max-pooling. Then another 2D convolution operator is added this time
with 20 filters with the size of 5 ⇥ 34. The flattened features are fed into the
same dense layer and the softmax layer described above.

CNN and LSTM (2D CNN + LSTM): CNNs can learn spatial rela-
tionships on a given N⇥M input but they cannot relate a current input to the
next one in the occurrence order of the input sequence. To overcome such lim-
itation, LSTMs are used at the end of the CNN network. In this combination,
firstly, the 2-layer 2D-CNN described above is used to learn the fruitful feature
representation. And then the extracted feature maps are fed into LSTM layers
which will be taking further temporal information of the slices into account.
LSTM has hidden layers of size 30 ⇥ 50 respectively. LSTM layer is followed
by a dense layer with 128 hidden units and then another dense layer with 50
units. Eventually, softmax layer classifies the input into one of the activity
classes with a probability value.
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Max-pooling (2)
1D Convolution
(100x10x1)

Max-pooling (2)
1D Convolution
(50x5x1)

Flatten

Dense
(512x128x50)

Softmax (12)

(a)

Max-pooling (2x2)
2D Convolution
(50x10x34)

Max-pooling (2x2)
2D Convolution
(20x5x17)

Flatten

Dense
(512x128x50)

Softmax (12)

(b)

Max-pooling (2x2)
2D Convolution
(50x10x34)

Max-pooling (2x2)
2D Convolution
(20x5x17)

Flatten

Dense
(512x128x50)

Softmax (12)

LSTM
(30x50)

(c)

Fig. 1: Convolutional neural network architectures used. (a) 1D convolutional
along temporal dimension (b) 2D convolutional both along temporal dimension
and feature dimension (c) 2D convolution followed by an LSTM layer.

4 Experiments

In order to evaluate our methods, first the datasets are splitted (see Sec. 3.1)
into train and test sets. However, the split is not done with a traditional split
method since dividing daily activity datasets based on a fixed time period such
as day is more meaningful [17]. Aruba testbed was collected in 224 days, thus 70
days are used as test, 15 days for validation and the remaining days are used
for training. The first WSU set adlnormal, representing normal behaviours,
are used to train the classifiers, while the second set, adlerror, containing the
abnormal activity, is used for test set.
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Keras Deep Learning library’s [46] and Theano’s [47] implementations of
the CNNs and LSTM are used in this study. Moreover for the sake of compar-
ison, results with NB, HMM, HSMM and CRF are provided which are based
on the implementation provided in [43]. In the CNN experiments below, Adam
optimiser [48] is used and the instances are fed into the system with a batch
size of 20. In the following, the evaluation metrics are explained further.

4.1 Evaluation Metrics

In order to assess the activity recognition success, the following metrics are
used: Precision, Recall, F-measure and Accuracy. As seen in Formula 2 and 3,
final precision and recall values are calculated by taking average over classes.
Precision and recall measures are used in order to show how well the models
perform on imbalanced datasets like the one in this study. On the other hand,
the accuracy represents the percentage of correctly classified time slices, there-
fore more frequently occurring classes have a larger weight in this measure.
Here, TP is true positive, TT is total number of instances, TP is total true
labels, TI is total of inferred labels, N is the number of classes in a specific
class of the dataset and Total is the total number of instances of all classes in
the dataset

Precision =
1

N

NX

i=1

TPi

TIi
(2)

Recall =
1

N

NX

i=1

TPi

TTi
(3)

F-measure =
2⇥ Precision⇥ Recall

Precision + Recall
(4)

Accuracy =

PN
i=1 TPi

Total
(5)

Abnormal behaviour detection success rate is evaluated by sensitivity and
specificity metrics. Sensitivity or True Positive Rate (TPR) refers to the method’s
ability to correctly detect instances which are abnormal. Specificity or True
Negative Rate (TNR) gives the percentage of correctly recognized normal in-
stances, thus reflects the method’s ability to di↵erentiate between normal and
abnormal.

Sensitivity (TPR) = TP/(TP + FN) (6)

Specificity (TNR) = TN/(TN + FP ) (7)
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4.2 Results

Two types of experiments are performed: 1) Activity recognition, and 2) Ab-
normal activity detection. Activity recognition success rates by both genera-
tive and discriminative methods on Aruba set are depicted in Table 1. The
results indicate that CNNs with 2D convolution (accuracy of 89.67%) and also
CNN-2D followed by an LSTM classifier (accuracy of 89.72%) outperforms
CRF (accuracy of 88.58%). The reason is CNNs extract their own fruitful
features while CRF only relies on the given input. HMM and HSMM give
the worst accuracy results (77.90% and 77.98% respectively). NB gives better
accuracy result (84.37%) than HMM and HSMM but it results in lower preci-
sion (42.87%) and recall (61.04%) rates. Although HMM and HSMM give the
best recall rates (72.03% and 71.56% ), they fail in giving good precision rates
(43.66% and 43.97% respectively). It is seen that CNN-1D network has an ac-
curacy of 87.50% while it fails in high precision (31.42%) and recall (36.78%)
values. CNN-1D extracts features on temporal dimension, so it takes temporal
information within a time-slice chunk into account but on the other hand, it
ignores the relationship between sensors since it doesn’t do convolution on the
feature dimension. Thus, it doesn’t learn class specific feature maps to di↵er-
entiate between di↵erent classes resulting in low precision and recall. When
2D convolution is used, both temporal and spatial information are taken into
account and the networks learn more informative features. Thus, it gains the
ability to learn class specific features, which results in higher precision and
recall values (46.84% and 41.68%) and high accuracy results (89.67%). CNNs
cannot remember the previous and the next inputs, but feeding the feature
maps into an LSTM layer helps us process the temporal dimension further.
In result, CNN with 2D convolution followed by LSTM (CNN-2D + LSTM)
achieves a precision rate of 51.20% and a recall rate of 50.55% and an accuracy
of 89.72%.

Table 1: Activity recognition results with last-fired representation on Aruba
dataset

Model Precision Recall F-measure Accuracy
NB 42.87% 61.04% 50.36% 84.37%
HMM 43.66% 72.03% 54.36% 77.90%
HSMM 43.97% 71.56% 54.47% 77.98%
CRF 50.24% 52.83% 51.50% 88.58%
LSTM 38.65% 41.29% 39.92% 89.00%
CNN-1D 31.42% 36.78% 33.89% 87.50%
CNN-2D 46.84% 41.68% 44.11% 89.67%
CNN-2D + LSTM 51.20% 50.55% 50.87% 89.72%

In Figure 2, extracted feature maps from first and second layer and the
flatten layer are visualised for CNN-2D network as described in Figure 1. It
is seen that noise is reduced and more informative features are learnt as the
layer level increases. The x-axis represents features while y-axis is time axis
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(a)

(b)

(c)

Fig. 2: a) Extracted features from the first layer. b) Extracted features from the
second layer. c) Extracted features from the flatten layer. The x-axis shows
time while y-axis represents features. Successive model layers learn deeper
intermediate representations. The features get more discriminative and visible
in the last layer.
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and the white pixels are activations of neurons. It is seen that as the times
passes, di↵erent activities give di↵erent features.

Moreover, we calculate Cohen’s Kappa statistics in order to show the ro-
bustness of the proposed method, CNN-2D classifier. Kappa statistics is mea-
sure that can handle well on both multi-class and imbalanced class problems.
It tells how much better the classifier is performing over the performance of
a classifier that simply guesses at random according to the frequency of each
class. It is thought to be a more robust measure than simple percent agreement
calculation, since Kappa takes into account the possibility of the agreement oc-
curring by chance [49]. The calculated Kappa statistics for CNN-2D classifier
is 0.64431, which is a substantial agreement according to [49].

Results on Aruba dataset show that classifiers are mostly successful in
detecting the instances of leave home and enter home activities since they
are the only activities involving door sensors, thus they are not confused with
any other activities. Moreover, meal preparation activity is confused with wash
dishes activity most of the time since they involve same kind of sensors and
they both take place in the kitchen. Also house keeping activity is generally
confused with work activity since they may take place in the same room and
may involve same sensors.

Table 2: Abnormal behaviour detection results on Aruba Modified dataset

Aruba Modified WSU
Model Sensitivity Specificity Sensitivity Specificity
NB 99.33% 33.89% 46.17% 98.42%
HMM 45.54% 27.71% 100% 50.55%
HSMM 100% 35.61% 100% 42.89%
CRF 100% 66.03% 47.87% 72.17%
LSTM 98.67% 75.48% 86.50% 77.89%
CNN -2D 85.33% 33.89% 88.70% 67.46%

The second experiment, abnormal activity detection is performed firstly
on modified Aruba set. As a representative of CNN networks, the results are
presented with the CNN-2D network. After training the models with normal
behaviours, test set which includes the abnormal behaviours is introduced
to the classifier and activity instances which are assigned a label with low
confidence values are flagged as abnormal. In Table 2, it is seen that the
highest specificity is achieved by LSTM networks giving an accuracy of 75.48%
(and sensitivity rate of 98.67%). Although NB, HMM and HSMM models gives
higher sensitivity rates (99.33%, 100%, 100% respectively), the specificity rates
are smaller (33.89%, 27.71% and 35.61% respectively). HMM gives the worst
results (a sensitivity rate of 45.54% and a specificity rate of 27.71%). CNN-
2D gives a sensitivity rate of 85.33% and a specificity of 33.89%. This shows
that LSTMs are more suitable to detect repetition and order related abnormal
activities since it can relate current input with the upcoming ones what CNN
cannot do.
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The second part of anomaly detection experiments are performed on WSU
testbed. 30 second time-slice chunks are extracted from sensor readings from
WSU. This dataset is not collected in a daily life scenario, thus sensor readings
are not in a sequential order. Thus the sensor readings are available only for
activities labelled in the dataset. The adlnormal set is used as training set and
the adlerror set is used as test dataset. The aim here is to see how successful the
classifiers are to detect the anomalies, given normal behaviours. The results
in Table 2 indicate that the highest sensitivity rate is given by HMM and
HSMM (both 100%), while HMM gives a specificity rate of 50.55% and HSMM
achieves specificity of 42.89%. The highest sensitivity rate is achieved by CNN-
2D classifier (86.70%), but LSTM gives a very close sensitivity rate (86.50%)
and a higher specificity rate (77.89%) where CNN-2D achieves a specificity
rate of 67.47% only.

As a comparison, in [22], the authors present their results as follows. The
number of correctly detected activities are 95 for adlnormal and 76 for adler-
ror, both out of 100. Experiments in our study are performed on activity slices,
on the other hand. in [22] they take whole activity and extract features from
that activity and then try to decide if it is normal or abnormal. The problem
here that is in real-life scenario, it cannot be known, where an activity starts
and ends. Thus using slice-based detection is more meaningful.

LSTM is better to capture repetition related activities, while CNN is better
to detect “confusion related activities”. CNN can detect changes in feature
patterns. Even though it is not explicitly defined in daily activity datasets each
activity is formed by steps. The steps in this dataset are based on the motion
sensors triggered. For example, when the sleeping activity is considered, it is
seen that the resident first goes out of bed, then goes to the middle of the
room and then goes to the bathroom in the bed to toilet activity. CNN doesn’t
need to extract them, but it exploits them hierarchically in each layer. In the
end, model cannot identify the steps involved, but it detects the anomaly in
the higher level. Thus, whenever the orders of sensors or these steps change,
input matrix changes which leads di↵erent feature maps extracted by CNNs.

Our method cannot detect anomalies such as incorrectly measuring the
oatmeal, not using soap when cleaning, washing hands multiple times, confus-
ing the location of items, and using too much soap or leaving kitchen utilities
on. Because there were no specialised sensors for the items involved in these
steps, the algorithm could not detect these errors and future research will
be needed to deal with these errors. Moreover, our current approach may
fail to detect abnormalities, when there is gradual deterioration regarding the
health of an elderly person. This issue will be taken into consideration in fu-
ture while collecting real-world data in which gradual deterioration can be
observed. Moreover, it is planned to extract sub-activities involved in daily
life activities and model their relations hierarchically. Then, this information
can be used in order to provide more robust and accurate cognitive assessment
tools.
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5 Conclusion

This paper introduces a method of recognising sensor based activities and
detecting anomalies related to dementia in smart homes. CNNs are exploited
as well as their combination with LSTM in order to achieve these tasks. Our
results on activity recognition shows that these methods are better than their
competitors such as NB, HMMs, HSMMs and CRFs. Moreover, results on
anomaly detection gives promising results to detect most of the abnormal
behaviours simulating the daily life behaviour of elderly people su↵ering from
dementia.
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Abstract—Cognitive impairment is one of the crucial problems
elderly people face. Tracking their daily life activities and
detecting early indicators of cognitive decline would be necessary
for further diagnosis. Depending on the decline magnitude,
monitoring may need to be done over long periods of time
to detect abnormal behaviour. In the absence of training data,
it would be helpful to learn the normal behaviour and daily
life patterns of a (cognitively) healthy person and use them as
a basis for tracking other patients. In this paper, we propose
to investigate Recursive Auto-Encoders (RAE)-based transfer
learning to cope with the problem of scarcity of data in the
context of abnormal behaviour detection. We present a method
for generating synthetic data to reflect on some behavior of people
with dementia. An RAE model is trained on data of a healthy
person in a source household. Then, the resulting RAE is used
to detect abnormal behavior in a target house. To evaluate the
proposed approach, we compare the results with the-state-of-
the-art supervised methods. The results indicate that transfer
learning is promising when there is lack of training data.

Index Terms—Dementia, Transfer Learning, Recursive Auto-
encoders, Abnormal Behaviour Detection

I. INTRODUCTION

Studies indicate that by year 2030, the number of people
aged 65 to 74 will be about 3% of the total population [1].
Elderly people may suffer from the consequences of cognitive
decline, which is a condition that causes problems with
physical and mental abilities such as memory and thinking [2].
An elderly person having such cognitive decline requires care
and support from caregivers. A continuous monitoring of the
daily routine of the elderly can be helpful for clinicians to
diagnose the early onset of cognitive decline. The best markers
of cognitive decline may not necessarily be detected based on
a person’s performance at any single point in time, but rather
by monitoring the trends over time [3]. Most common types of
dementia (Alzheimer) can be identified by behavioural changes
like sleep disturbances and inability to complete tasks. For
instance, an old person suffering from Alzheimer may forget
to have his lunch, take multiple lunches instead, wake up in the
middle of the night, go to the toilet frequently. In particular,
the daily home activity involving basic functions like preparing
food, showering, sleeping, etc. can be used to assess the well-

being of elderly people. Thus, it is beneficial to track elderly
people’s life over time in a smart home to detect the indicators
of dementia at an early stage.

The development of ambient home assessment environments
has begun to provide the opportunity to assess behaviour
change unobtrusively in real-time. Although a few promising
methods have been experimentally validated [3]–[5], the trans-
lation of the current knowledge into smart homes still requires
more dedication and work. Current assessment methods mostly
rely on queries from questionnaires or in-person examinations
that may poorly represent a person’s cognitive status. Also the
clinical methods have some limitations such as their episodic
nature, and possible biased reporting. The main motivation
for our work is that cognitive decline can be observed in
daily activities of an elderly person. Real-time monitoring of
activities performed by an elderly person in a smart home
would be beneficial for early detection of such decline.

Machine learning based cognitive status assessment studies
rely on activity recognition techniques. These methods first
learn what is normal from training data and then flag the ab-
normal activity based on classification confidence values [6]–
[10]. They require training data to be manually annotated,
which is extremely hard and a time-consuming task. Moreover,
these techniques assume that the training data is available
prior to the training phase. However, we cannot expect elderly
people to annotate the necessary training data. Thus, tackling
the activity recognition and abnormal behaviour detection as
an unsupervised process would be helpful. Moreover, this
monitoring may need to be done over long periods of time.
But collecting sequential data of months or years with time
dependency is highly time-consuming. Thus, using an existing
data from a source household to learn what is normal, and
then transferring this knowledge to a target house would be
beneficial.

Daily life activities are often composed of several steps [11].
For example; the activity wash clothes implies the following
actions: get clothes from basket, fill up washing machine,
turn on washing machine. The anomalies related to dementia
may be reflected in the repetition frequency of these steps



and their relation with each other. The elderly people with
dementia tend to confuse things and repeat or skip some
steps during the completion of a specific activity. Building
activities from their granular units hierarchically would be
helpful to understand the internal dynamics of the activities.
Hence, the problem of activity recognition can be viewed as a
hierarchical learning problem which resembles scene parsing
or phrase detection [12]. In this paper, we aim to construct
activity instances hierarchically from their low-level units to
detect abnormal ones reflecting on indicators of dementia. The
hierarchical representation of RAE provides an abstraction of
activities in a house and then mapping these abstract levels to
another house via transfer learning will be useful. Abstraction
provides a generalisation of the hierarchical level of informa-
tion between the houses and it reduces the differences between
them, making transfer learning an appealing approach. In this
paper, we use unlabelled data collected for normal activities
from a source house to train the RAE model. Then, we
transfer this model to a target house to detect abnormal
behavior related to dementia. In a nutshell, the present paper
introduces two contributions. Firstly, a method is proposed to
generate synthetic data that simulates the abnormal behavior
of people with dementia. Secondly, RAEs are exploited to
model activities based on their low-level structures and detect
abnormal behavior related to dementia. The rest of the paper
is organised as follows. Section II provides an overview
of the related literature. Section III presents the details of
the proposed methodology together. Section IV describes the
experimental set-up and results of the experiments followed
by a discussion. Finally, Section V concludes the paper.

II. RELATED WORK

In-home automatic assessment of cognitive decline has been
the subject of many machine learning approaches such as
Support Vector Machines (SVMs) and Naı̈ve Bayes (NB) [6],
Restricted Boltzmann Machines (RBMs) [7], Hidden Markov
Models (HMMs) [8], Random Forests [9] and Recurrent Neu-
ral Networks (RNNs) [10]. In [10], the authors exploit RNNs
to detect abnormal behavior of dementia sufferers in a daily
living scenario. The abnormal behavior are flagged based on
their classification confidence values. Unsupervised methods
such as auto-encoders are also being used for anomaly detec-
tion in time-series literature [13], [14]. Many studies [4], [7]
have relied on rule-based systems to assess the cognitive status
of elderly people. In [15], the assessment is done by asking
elderly people to complete a sequence of scripted actions. The
participants are monitored via Web camera while they perform
tasks and they receive scores by trained experts. In [4], the
authors detect anomalies by exploiting Markov Logic network.
They use a hybrid technique including supervised learning,
rule-based reasoning and probabilistic reasoning. These studies
fail to provide an unobtrusive way of assessment since they
are not done in the natural flow of daily living and in real life
scenarios. Specifically, we aim in this study to detect anoma-
lies without giving any instruction and considering not only
some time interval, but everyday living scenario. Moreover, in

rule-based systems, an expert is needed to manually integrate
specific rules to the system. The proposed approach does not
require any expert knowledge.

In transfer learning literature, most of the activity recogni-
tion models are supervised models that require labelled data
to learn the model parameters [16]–[18]. Good results are
obtained using generative models such as HMM [16], [18]
and discriminative models such as CRF [17], [18]. In [19],
a method is proposed to learn the parameters of a HMM
using labelled data from the source domain, and unlabelled
data from the target domain. The study ignores the activities’
important features such as the activity structure and related
temporal features. They also assume that the structure of
HMMs is given and pre-defined. Later they extend this work
to learn hyperparameter priors for HMM instead of learning
the parameters directly [20].

In transfer learning, sensors and activities in different
households are needed to be mapped. In [19], a comparison
of feature mappings was done. The mapping that combined
sensor readings in a single feature based on their function
(e.g. sensors used during cooking) gave the best results. In
some cases, meta-features are first manually introduced into
the feature space and then the feature space is automatically
mapped from the source domain to the target domain [20].
In [21], the authors first assign a location label to each sensor
indicating in which room or functional area the sensor is
located. Then activity templates are constructed from the data
for both the source and target data, finally a mapping is
learnt between the source and target datasets based upon the
similarity of activities and sensors.

III. PROPOSED WORK

The proposed work consists of the following steps: 1) Time-
slice chunks are extracted from sequential sensor reading data
using a sliding window. 2) Last-fired features are extracted
from time-slices as in [22]. 3) RAE is trained on a source
household dataset to learn the parameters for normal behavior.
4) These parameters are then transferred into a target house-
hold to detect abnormal behavior.

A. Dataset

The evaluation of the proposed method is done on house-
holds A and C of Kasteren datasets [20]. We chose these two
households since they span more days (25 days and 18 days
respectively). The activities performed in household A and C
are used to reflect normal behavior. However, some of the data
in household C is modified (Section III-B) to generate samples
representing abnormal behaviour of dementia sufferers. Here,
household A will be used as the source house while household
C will be used as the target house.

B. Synthesis of Abnormal Behaviour

Given the scarcity of data reflecting abnormal behavior
of dementia sufferers, we need to synthesise some activities
that can be observed in daily-life routines of elderly people



with dementia. We focus on the generation of two kinds of
anomalies: 1) Repeating activities and 2) Disruption in sleep

1) Repeating activities: Elderly people with dementia may
forget whether they performed a particular activity or not,
so they may repeat that activity (having multiple lunches,
e.g.) [23]. To reflect on this scenario, we generate synthetic
abnormal activities by manually inserting a specific set of
actions within the normal activity sequence. This will result
in multiple occurrences of that activity, which will occur in
some inadequate time of the day such as having dinner in the
middle of the night.

2) Disruption in sleep: Degeneration of the sleep-waking
cycle and night time wandering are among the most severe
behavioural symptoms of dementia. For example, elderly peo-
ple may wake up many times in the night to use the toilet
and go back to sleep [23], [24]. We simulate these anomalies
by inserting some synthetic activities in the normal night-time
activity sequences.

For example; assume that S is a sequence of activities occur-
ring in a day such as S = d1, . . . , dx, e1, . . . , et, dx+1, . . . , dn
where each di is a time-slice of some activity and
each ej is a time-slice of eating activity. Then,
time-slices of e are injected into the sequence S
to have the abnormal version. Then S becomes
d1, . . . , dm, e1, . . . , et, dm+1, . . . , da, e1, . . . , ek, da+1, . . . , dn.
Many instances of getting drink, taking shower, use toilet
activities are injected. In result, 162 abnormal time-slices are
synthesised in dataset C.

C. Feature Extraction and Sensor Mapping
After the synthesis, the datasets are processed in the follow-

ing way. Firstly, 1 minute slices are extracted from datasets
using a sliding window [22]. Then time-slices are mapped
into last-fired feature representation [20]. Last-fired feature
[20] indicates which sensor is fired last. The sensor that
changed state last continues to give 1 and changes to 0 when
another sensor changes state. The last representation gives an
indication of the location of an inhabitant. As people start
moving, the sensors are triggered based on the location of
the movement, which provides an update of their current
location [22]. The updates, in the form of a time-series data,
provide fine-grained patterns about the activity performed.
Such patterns are hierarchical and they follow grouping rules
at multiple levels of abstraction. Findings in [25] support our
approach. The authors extract location-based patterns in daily-
life routines. Hence, we employ RAE as a hierarchical model
to organise the steps in an activity and record their rela-
tive ordering. We exploit last-fired feature to model location
based granular level information, since such feature allows
for capturing execution details of the activities. Next, RAEs
will be exploited to model all this low-level information in a
hierarchical representation.

There are 14 sensors in dataset A and 21 sensors in
dataset C. We map these sensors to each other by using
meta features as described in [20]. We use the mapping that
combined sensor readings in a single feature based on their

function (e.g. sensors used during cooking). In [19], different
mapping strategies, such as union, intersection and duplicate
are investigated. We use union mapping since it gave the best
results. Using union mapping for each function group, the
union of all the sensors in the group is taken, resulting in
one sensor output per group per house. For example, the front
and back door in the target house are combined into a single
sensor and matched with the front door sensor in the source
house. This results in 7 sensor groups, which will be treated as
features. Moreover, the activities in two datasets are mapped
and 9 similar activities are used [20].

D. Recursive Auto-Encoders
Auto-encoders are unsupervised artificial neural networks

that compress the input into a representation and then recon-
structs the output from it. They are self-supervised because
they use the input instances as labels and use training data
to learn the parameters for the model. An auto-encoder has 3
parts: an encoding function, a decoding function, and a loss
function. The encoder compresses the input and produces a
representation, the decoder then reconstructs the input from
this representation. Loss function calculates the error between
the actual input and the reconstructed input.

Fig. 1. A recursive auto-encoder

As depicted in Figure 1 (retrieved from [26]), RAEs merge
each instance with its next neighbour to construct the parent
node [27]. For example, the children x3 and x4 are merged and
the parent y1 is constructed by an encoding function f . Then
the parent y1 is merged with another child x2 and this goes
on in the upper layers in a bottom-up fashion. The process
yields a hierarchical organisational structure for children. The
final code representing the entire tree is decoded to recover
the children and the entire hierarchy by the following inverse
process. The first parent vector y1 is computed from the
children x3, x4, so that y1 = f(W (1)[x3;x4] + b(1)) where a
matrix of parameters weights W is multiplied with the children
vectors. After adding a bias term, an element wise activation
function such as tanh is applied to the resulting vector. To
see how well this function is doing, the model reconstructs the
children in a reconstruction layer: [x3;x4] = g(W (2)y1+b(2)).
At each level of the tree, the same encoding and decoding
function is used recursively. During training, the goal is to
minimise the reconstruction errors of the input pairs. For each
pair, the Euclidean distance between the original input and its



reconstruction is calculated: E = Prec([x3;x4]). The process
repeats until the full tree is constructed and a reconstruction
error is obtained at each non-terminal node. The encoding and
decoding weight parameters are learnt by using the training
set and applying back-propagation through structure [28] to
update the network weights.

E. Abnormal Behaviour Detection
First, house A is used to learn the parameters (W (1), b(1))

for encoding function and (W (2), b(2)) for decoding function
of RAE. These parameters are then used to construct RAE
trees to test instances of house C. In each level of the tree, two
children are merged to form a feature vector as their parent,
which encodes the information coming from the children.
Thus, the feature vector at the root node summarises all the
information coming from the children in the tree and their
hierarchical orderings are learnt by RAE. The feature vectors
at parent nodes can be decomposed into their granular level,
hierarchical pieces by using the decoding weights. Anomalies
are defined as samples that are deviations from the expected
behaviour. Any deviations from this normal can be identified
by measuring the reconstruction error E described above.
When a new activity is introduced as a test instance, if it
is a normal activity, the reconstruction error will be smaller
since anomalies that represent any deviations will be poorly
reconstructed. If it is an abnormal behaviour, which is not seen
in the source household, RAE will reconstruct that instance
with a higher error. We exploit these errors to decide if that
activity is normal or abnormal based on a threshold.

The proposed method is compared with the following state-
of-the-art supervised methods; Long Short Term (LSTM)
RNNs, NB, HMM and CRF. First, using the training instances
and their corresponding labels in dataset A, these models are
trained. Then the instances in dataset C are given to the trained
classifiers. The models assign a class label to each instance
with a confidence value. When a new test instance in house
C is introduced, if the model assigns it to a class with a
confidence value which is bigger than a threshold, that instance
is considered as a normal activity, otherwise it is flagged as
an abnormal activity.

IV. EXPERIMENTS

The experiments with NB, HMM and CRF are performed
based on the implementation [19], while LSTM and RAE
experiments are performed on Python and Keras. In RAE
trees, each child represents 1 minute time-slice of a feature
vector (size of 1⇥ 7). RAE trees are constructed with a time-
step of 5 (chosen experimentally), where 5 time-slices are
merged in a RAE tree. To run experiments on LSTM, we
used drop-out with a value of 0.5. We also set the batch size
to 10 and the epoch to 500 iterations. The internal architecture
of LSTM (2 hidden layers consisting of 30 and 50 nodes
respectively) and time-step of the sequences (25 activity slices)
were empirically set. In supervised models, the activities in
house C are evaluated based on the model learnt from the
house A.

To assess the abnormal behaviour detection success, True
Positive Rate (TPR) and False Positive Rate (FPR) are used.
These values for different thresholds are showed on a Receiver
Operating Characteristic (ROC) curve. Moreover, Area Under
Curve (AUC) is calculated for each model to interpret the
results in a better way. TPR refers to the method’s ability to
correctly detect instances which are abnormal. FPR gives the
percentage of mislabelled normal instances, thus reflects the
method’s ability to differentiate between normal and abnormal.

The performance of the supervised methods to classify the
activity instances is measured by precision, recall, F-measure
and accuracy. Final precision and recall values are calculated
by taking average over classes. Precision and recall give better
idea about the performance on imbalanced datasets like the
ones in this study. On the other hand, the accuracy represents
the percentage of correctly classified time-slices, therefore
more frequently occurring classes have a larger weight in this
measure.

A. Results

The first experiment is conducted to evaluate the classi-
fication performance of the supervised methods when using
transfer learning. These methods are trained on house A
and then tested on house C. Activity recognition accuracy
rates are depicted in Table I. These results are very close to
activity recognition rates with leave-one-out cross validation
presented on the same datasets in [22], where one day of the
dataset C is used as testing set, while the remaining days
are used training set. However, our results are obtained via
transfer learning, where the training is done on dataset A
and the testing is done dataset C. In [22], the leave-one-out
classification accuracy with NB, HMM and CRF are given
as 87.0%, 83.9% and 89.7% as respectively. In our case,
the classification accuracy rates are 87.47%, 84.88%, 84.55%
and 87.02% with NB, HMM, CRF and LSTM respectively.
The similar results show that applying transfer learning is
successful to recognise activities. Unfortunately, we cannot
test the classification accuracy of RAE model since it is
unsupervised.

Moreover, the results in Table I show that the highest
accuracy is achieved by NB since NB favours the most
frequent class. Analysing precision, recall and F-measures
(36.71%, 33.37% and 34.96% respectively), we see that class-
based success is not high. However, for the methods which
take temporal information into consideration, such as LSTM,
HMM and CRF, these metrics are better. The highest precision
is achieved by LSTM (48.58%) while the highest recall
is achieved by HMM (44.18%). The highest F-measure is
achieved by LSTM (42.95%).

The ability of RAE to reconstruct the features is evaluated
by k-means clustering. After clustering the reconstructed fea-
tures into 9 clusters, the dimensions of the features are reduced
to 2D by Principal Component Analysis (PCA). As depicted
in Figure 2, RAE is successful to reconstruct the features from
different classes.



TABLE I
ACTIVITY RECOGNITION RESULTS

Model Precision Recall F-Measure Accuracy
NB 36.71% 33.37% 34.96% 87.47%

HMM 37.32% 44.18% 40.46% 84.88%
CRF 42.80% 37.81% 40.15% 84.55%

LSTM 48.58% 38.49% 42.95% 87.02%

Fig. 2. Clustering of RAE re-constructed features. Each colour indicates
a different class, while X and Y coordinates are 2D features (2 principal
components).

Fig. 3. ROC curves for abnormal behaviour detection.

In the second experiment, the methods are compared in
terms of abnormal behaviour detection. The results are de-
picted as ROC in Figure 3. AUC values for methods CRF,
HMM, LSTM, NB, RAE and RAE-T are 94.72%, 92.25%,
91.21%, 92.70%, 89.74%, 92.50% respectively. The results
show that RAE based abnormal behaviour detection is com-
petitive with the supervised methods. All methods are good
at detecting the abnormal behaviour instances and pruning
the false alarms. The proposed RAE based method produces
slightly worse TPR and FPR. However its superiority comes
from the fact that it doesn’t use any labels during the parameter
learning process.

Moreover, some of the data of target household is used to
re-train the learnt RAE model. In this way, we can tailor the
RAE model for the resident by re-tuning the parameters of
previously trained RAE using user-specific training examples.
This strategy is similar to inductive transfer learning or self-
taught learning [29] when none or few data labels are available
in the target domain. However, in our case, which is unsuper-

vised, we use only some of the unlabelled data coming from
the target dataset. Although we need some data from the target
house, this still allows us to reduce several weeks or months
of data collection and annotation in the target space to only a
few days. For this purpose, RAE learnt on instances of source
household dataset is re-trained over 10-days data from house
C. The results are shown in the ROC curve (Figure 3 with
the abbreviation RAE-T). These results indicate that re-tuning
the parameters and considering the house specific behaviour
improve the results.

Moreover, we calculate Cohen’s Kappa statistics to show
the robustness of RAE to detect abnormal behavior. Kappa
statistics is a measure that handles both multi-class and
imbalanced class problems. It tells how good the classifier
is performing over the performance of a classifier that sim-
ply guesses at random according to the frequency of each
class [30]. However, we use weighted Kappa statistics, since
detecting abnormal behaviour is more important than pruning
normal ones in our case. In health-care problems, missing a
true positive may cause more serious problems than retrieving
a high number of false positives. Thus, we assign a higher
weight to true positive than false positive in the weight matrix
of Kappa. The calculated Kappa for RAE is 0.53, which is a
moderate agreement according to [30].

Supervised models, especially deep learning methods such
as LSTMs, require too much training data. Moreover, provid-
ing labelled data just once would not be enough since observa-
tion of dementia sufferers is a task which can be up to years.
Also, these models need activity classes to be fixed.However,
in a time lapse of years, users may change their behavioural
patterns and they may introduce new activity labels. On the
other hand, when transfer learning is used, just changing the
mapping of sensors and activities would be enough to adapt
the model to the new data. Moreover, supervised methods
such as NB, HMM, CRF, LSTM doesn’t encode time-slices
in a hierarchical representation. RAE encodes hierarchy via
merging in a bottom-up tree structure. The use of hierarchical
models might be a better fit for transfer learning because
the different levels of the hierarchy allow a better abstraction
between houses.

Although we re-train the learnt RAE model on partial data
steming from the source house, when there is no source data
available prior, domain adaptation would not be possible.
Then, there will be a problem to detect resident specific
abnormal behavior. Transfer learning generalises the behavior
of inhabitants between different houses and does not take
resident specific behavior into account. For example, going
to toilet during sleep might be normal for a person, while it
is abnormal for another person. A prior distribution can be
learnt from the source house and used to provide a sensible
initial value for the model parameters of the target house. The
behaviour across different houses are transferable under the
condition that the resident profiles such as age, gender and
lifestyle are similar in both households. Also the different
sensors and activities in these houses should be mapped into
each other.



The proposed system would improve life experience of
dementia sufferers in the following way. The system detects
possible candidates for abnormal behaviour to inform the
caregiver or the medical doctor. The decision maker will
analyse the detected abnormal behavior by considering the
person’s personal life style. Thus, the proposed method can
be used as a decision supporting system rather than a decision
making system. Detecting high amount of false positives will
not introduce any risk related to the health of the person.
Detecting true positives in an early stage would trigger further
analysis and would be helpful for an early treatment. The
important advantage of the proposed system would be to
provide a cognitive status assessment in the natural flow of
daily living without annoying elderly people.

V. CONCLUSION

In this paper, we proposed an RAE-based method to detect
abnormal behavior of elderly people with dementia. Transfer
learning can be an interesting option to cope with scarcity of
data. The empirical results showed that the proposed method
is promising when supervised methods cannot be exploited
because of the lack of (labelled) training data. However,
the proposed method failed to detect the person’s specific
abnormal behaviour. In future, we will consider personal habits
by learning a prior distribution from the source house to adapt
the model to the target house.
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Abstract

In this paper, we study the problem of activity recognition and abnor-

mal behaviour detection for elderly people with dementia. Very few stud-

ies have attempted to address this problem presumably because of the lack

of experimental data in the context of dementia care. In particular, the

paper investigates three variants of Recurrent Neural Networks (RNNs):

Vanilla RNNs (VRNN), Long Short Term RNNs (LSTM) and Gated Re-

current Unit RNNs (GRU). Here activity recognition is considered as a

sequence labelling problem, while abnormal behaviour is flagged based on

the deviation from normal patterns. To provide an adequate discussion

of the performance of RNNs in this context, we compare them against

the state-of-art methods such as Support Vector Machines (SVMs), Näıve

Bayes (NB), Hidden Markov Models (HMMs), Hidden Semi-Markov Mod-

els (HSMM) and Conditional Random Fields (CRFs). The results ob-

tained indicate that RNNs are competitive with those state-of-art meth-

ods. Moreover, the paper presents a methodology for generating synthetic

data reflecting on some behaviours of people with dementia given the dif-

ficulty of obtaining real-world data.

1 Introduction

Studies indicate that by year 2030, 19% of people will be aged 74 to 84 and
nearly half of people who are older than 84 will have dementia [27]. Elderly
people may su↵er from the consequences of dementia, which is a condition that
causes problems with mobility, physical and mental abilities such as memory and
thinking [8]. It also may cause decrease in the ability of speaking, writing, dis-
tinguishing objects, performing motor activities and performing complex func-
tional tasks (paying bills, preparing a meal, shopping, managing medication,
etc.) [26]. An elderly person having such cognitive decline loses independence
in daily life and requires care and support from caregivers.

Cognitive diseases like dementia need to be detected at an early stage so
that early treatment will be possible. However, research shows that 75% of
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dementia and early dementia cases go unnoticed [15] and many such cases are
only diagnosed when such impairment reaches moderate or advanced stage. The
detection of early signs of motion and cognitive impairment (MCI) via activity
recognition will be useful to track motion and cognitive capabilities of the elderly,
thus improving their life quality and financial saving. Unfortunately, currently
there are no dementia friendly smart homes addressing these people’s special
needs.

Most common types of dementia (Alzheimer, Parkinsons disease) can be
identified by behavioural changes like sleep disturbances, di�culty of walking
and inability to complete tasks. Such changes can provide key information about
memory, mobility and cognition of a person. For instance, an inhabitant su↵er-
ing from Alzheimer may forget his lunch, take multiple lunches instead, wake
up in the middle of the night, go to the toilet frequently, or have dehydration
problems because of forgetting to drink daily amount of water.

Recent studies suggest that changes in complex daily life tasks can be in-
dicators of early decline [29]. The best markers of cognitive decline may not
necessarily be detected based on a person’s performance at any single point in
time, but rather by monitoring the trend over time and the variability of change
in a duration [29]. Thus, tracking an elderly person’s life over time in a spe-
cially designed smart home, doing in-home health assessment and detecting the
indicators of dementia at an early step would be beneficial.

The identification of early onsets of dementia using non-medical diagnosis
methods requires the development of new diagnostic tools. Although a few
promising methods have been experimentally validated [6, 23, 17, 16, 7], the
translation of the current knowledge into smart homes still requires more ded-
ication and work. Current assessment methods mostly rely on queries from
questionnaires or in-person examinations, which depend on recall of events or
brief snap-shots of function that may poorly represent a person’s typical state
of function. Moreover, these studies include some pre-defined tasks given to
the patients in order to do automatic assessment of cognitive decline by trained
experts.

The main motivation for our work is that cognitive decline can be observed
in daily activities and routines of an elderly. Real-time monitoring of activities
performed by elderly in a smart home would be beneficial for the early detection
of such decline. In this study, we firstly recognise activities by variants of RNNs,
namely VRNNs, LSTMs and GRUs and model the daily behaviour routines of a
person. Whenever a new sequence is introduced, any abnormality deviating from
these regular behaviours are detected and could be used for further investigation
by formal or informal carer.

Unfortunately, there exists no publicly available dataset on abnormal be-
haviour of people with dementia. Producing such a dataset require time and
adequate experimental environment. Thus we propose in this paper, a way to
artificially produce data on abnormal activities reflecting on typical behaviour
of elderly people with dementia. We believe that this an important contribution.

The rest of the paper is organised as follows. Section 2 provides a brief
overview of the related research to both activity recognition and abnormal be-
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haviour detection. Section 3 presents the details of the proposed methodology
together with the datasets and models used. Section 4 describes the experi-
mental set-up and results of the experiments followed by a discussion. Finally,
Section 5 concludes the paper.

2 Literature Review

Activity recognition has been addressed using methods such as decision trees,
Bayesian methods (Näıve Bayes and Bayesian Networks), k-Nearest Neighbours,
Neural Networks (Multilayer perceptron), SVMs, Fuzzy logic, Regression mod-
els, Markov models (Hidden Markov Models, Conditional Random Fields) and
classifier ensembles (Boosting and bagging) [18]. Recently, there has been grow-
ing interest in deep convolutional neural networks [30, 31, 20, 13], Deep Belief
Networks [4], Restricked Boltzman Machines (RBMs) [21, 12, 4, 9] and RNNs
[20, 13, 10]. Previous work shows that RNNs are useful, but leaves a lot of room
for improvement. It is worthwhile to stress that to the best of our knowledge,
this study is the first applying RNNs to detect abnormalities related to dementia
in the daily life routines of an elderly person.

In [21], RBMs are used for feature extraction and selection from sequential
data. In [20], the authors use a combination of deep convolutional networks and
LSTM to do multi-modal wearable activity recognition by showing that their
approach outperforms some of the previously reported results by up to 9% on
OPPORTUNITY dataset. In [1], the authors utilised convolutional networks
to classify activities using time-series data collected from smart phone sensors.
Experiments show that increasing the number of convolutional layers increases
the performance, but the complexity of the derived features decreases with every
additional layer. In [13], the authors explore deep, convolutional and recurrent
approaches across three representative datasets that contain movement data
captured with wearable sensors. Moreover, they describe how to train recurrent
approaches in this setting and introduce a novel regularisation approach, show-
ing better results over OPPORTUNITY, PAMAP2 and Daphnet Gait datasets.
In [9], results with RBM on CASAS dataset outperformed HMM and Näıve
Bayes Classifier (NBC) in most of the cases. In [19], the authors use RNNs to
predict the future values (start time, duration) of the activities.

Most of the aforementioned studies use movement data such as OPPORTU-
NITY, SKODA [21, 30, 31, 20] or UCI HAR smart phone dataset, MIT home
dataset [1, 4], which are obtained through body worn sensors. Except the work
by Fang et al. [9, 10], none of these studies focus on daily activity datasets col-
lected by sensors placed at home. In this work, we investigate RNNs on daily
activities data obtained by van Kasteren [28] using various environment sensors
(see Sec. 3.1 for more details).

In-home automatic assessment of cognitive decline has been the subject of
some studies dedicated [5, 6, 22, 12]. For instance, in [5], machine learning ap-
proaches such as SVMs and Näıve Bayes are used. In [12], Parkinson’s Disease
state assessment in home is explored by means of RBMs using data from body
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worn sensors. In [22], the authors use Markov Logic Network, which is a proba-
bilistic logic that unifies statistical and symbolic reasoning to detect anomalies.
In [5], some instructions to perform some tasks (e.g., sweeping the kitchen,
dusting the floor, etc.) are given to the patients who then receive scores after
completing those tasks. These scores are calculated based on the time spent,
the frequency of the sensor triggered, etc. One disadvantage of this scenario is
that some pre-selected activities are performed and instructions are given to the
elderly who might not be able to cope with such tasks at all. Moreover, using
rule-based systems, an expert is needed to manually integrate resident-specific
rules to the system since every person has her/his own daily life routines. For
example waking up and drinking water in the middle of the night might be
normal for a person, while abnormal for some other person. However, our ap-
proach does not require any expert knowledge, since it learns what is normal
and abnormal from the training data automatically. Specifically, we aim in this
study to detect anomalies in the natural flow of daily living without giving any
instruction and considering not only some time interval, but everyday living
scenario. Continuous assessment of the person is more valid, since activities are
performed in the person’s own home setting.

3 Proposed Method

To assess RNNs in activity recognition and abnormal activity detection, we pro-
pose the following steps: Firstly, raw dataset is segmented into slices by using
a sliding window approach. The window size is 60 seconds time of sensor read-
ings as described in [28]. Secondly, sensor-based features are extracted from
these slices. These features are binary, change-point and last-fired representa-
tions which are used also in [28]. Thirdly, RNNs (Vanilla, GRU and LSTM)
are trained to recognise daily activities and encode daily-life behaviour routines.
Lastly, the trained model is used to detect anomalies deviating from the normal
daily-life sequences.

In the following we describe the dataset as well as the methodology used to
generate artificial dataset that reflects on the typical behaviour of a person with
dementia.

3.1 Dataset and Features

We used the popular dataset collected by Van Kasteren [28] from 3 households
which are denoted as dataset A, B and C. The data captures daily-life activities
such as sleeping, cooking, leaving home, etc. using sensors placed at the homes
in less than a month. Please see [28] for more details. We applied the same
sliding window approach as in [28] to extract the sensor reading chunks. We
also considered three feature representations: binary, change-point and last-fired
which are described as follows:

• Binary : This representation gives 1 when the sensor is triggered and 0
when that sensor is not triggered.
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• Change-point : This representation gives information when a sensor changes
value. More specifically, it gives 1 when a sensor changes its current state
(either from state 1 to state 0 or vice versa) and a 0 when its value remains
the same.

• Last-fired : This representation indicates which sensor is fired last. The
sensor that changed state last continues to give 1 and changes to 0 when
another sensor changes state.

3.2 Generation of Abnormal Activities Related to Demen-
tia

Since we do not have any available dataset related to abnormal behaviour of
people with dementia, we artificially create some anomalies in the dataset. In
order to show the applicability of the proposed work to detect these anomalies,
we focus on two di↵erent kinds of anomalies that can be seen in daily-life rou-
tines of elderly people with dementia: 1) Forgetting or repeating activities 2)
Dehydration and disruption in sleep.

1. Forgetting and repeating activities: Elderly people su↵ering from de-
mentia may forget whether they performed a particular daily activity or
not, so they may repeat that activity multiple times or they may skip that
activity. For instance, an elderly person su↵ering from Alzheimer may for-
get to have lunch, take multiple lunches instead [24], to have dinner and
start to prepare it in the middle of the night. To reflect on this, we gener-
ate this kind of abnormal activities by manually inserting a specific set of
actions within the normal activity sequence. This will result in multiple
occurrences of that activity, which will occur in some inadequate time of
the day such as having dinner in the middle of the night. We inject the
instances of the following activities: brushing teeth, preparing dinner, eat-
ing, getting snack into the normal activity sequences to generate abnormal
activities related to the frequency.

2. Dehydration and disruption in sleep: Degeneration of the sleep-
waking cycle, sleep disorders and night time wandering are among the
most severe behavioural symptoms of dementia. For example, elderly
people may wake up many times in the night to use the toilet and go back
to sleep and may forget to take daily amount of water [24, 2]. We simulate
these anomalies by inserting some synthetic activities in the normal night-
time activity sequences of a person. More specifically, we inject getting
drink, going to toilet into the sleeping activity of normal daily activity
sequences. This will emulate the activities of getting drink and going to
the toilet frequently in the middle of the night.

We generate these abnormal activity instances on dataset A which has the
following 9 activities: Leave house, use toilet, take shower, brush teeth, go to
bed, prepare breakfast, prepare dinner, get snack, get drink. As a result, we have
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multiple instances of those injected instances in order to simulate the anomalies
related to dementia. Here, please note that there is only one subject in the
dataset. We take the lifestyle in the training data as a norm and then synthesise
the abnormalities deviating from this norm and introduce these abnormalities in
the test data. These activities are totally normal on their own but they become
abnormal when they occur at a wrong time of the day and after or before a
specific activity. Hence, capturing these abnormalities within the context is
important. In all, we manually synthesise 135 abnormal activity slices.

3.3 Activity Recognition and Abnormal Behaviour Detec-
tion

We believe that the order of activities and their temporal and spatial information
is important to encode an elderly person’s daily life routines. This kind of
information can provide important cues to understand the daily patterns and
thus to detect any anomalies in those patterns. Sequence labelling methods such
as HMMs and RNNs can capture temporal and spatial relationship between
activities, which some generative methods like SVMs can not do. In this work,
we investigate the adequacy of RNNs to this task.

In order to recognise daily activities, training instances of the datasets and
their corresponding labels are fed into the RNNs. Then when a new test se-
quence is introduced, the trained model assigns labels to each activity instances
of that sequence. Each model gives a confidence value about the assigned la-
bel for the new sequence. Firstly, we calculate the mean of confidence values
of training instances that are assigned by the model. Then, when a new test
sequence is introduced if the model assigns it to a class label with a confidence
value which is bigger than the mean, the sequence is considered as a normal
activity, otherwise it is abnormal activity.

3.4 RNN Architectures

In the following we give a summary of the RNN architectures used in this work,
more specifically Vanilla RNNs, Long Short Term Memory RNNs, and Gated
Recurrent Unit RNNs. Then, we describe how they are used in the context of
daily activity recognition and abnormal activity detection tasks.

1. Vanilla Recurrent Neural Networks: In feed-forward neural network,
it is assumed that all inputs and outputs are independent of each other,
but RNNs have a recurrent hidden state whose activation at each time is
dependent on that of the previous time. This architecture is recurrent as
some of the connections within the network form a directed cycle, where
the current time-step t considers the states of the network in the previ-
ous time-step t� 1. They share parameters for di↵erent time-steps which
enables them to be used in sequential data. RNNs are called recurrent
because they perform the same task for every element of a sequence, with
the output being dependent on the previous computations. Another way
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to think about RNNs is that they have a memory which captures informa-
tion about what has been calculated so far. However, there is a drawback
of Vanilla RNNs, as shown by Bengio et al. [3], Vanilla RNNs are not
capable of capturing long term dependencies on sequences because of the
vanishing gradient problem. In theory, RNNs can make use of information
in arbitrarily long sequences, but in practice they are limited to looking
back only a few steps. Thus, the following two RNN architectures are
exploited to solve this problem.

2. Long Short Term Memory (LSTM) Recurrent Neural Networks:
LSTM cells are designed to counter the e↵ect of diminishing gradients
when error derivatives are backpropagated through many layers through
time in recurrent networks [14]. Each LSTM unit keeps track of an internal
state that represents its memory. Over time the cells learn to output,
overwrite, or null their internal memory based on their current input and
the history of past internal states, leading to a system capable of retaining
information across hundreds of time-steps [14]. LSTM blocks have 3 gates
to control the flow of information into or out of their memory. For example,
an input gate controls the extent to which a new value flows into the
memory. A forget gate controls the extent to which a value remains in
memory while an output gate is used to compute the output activation of
the block (see Figure 1).

Figure 1: Left: LSTM, Right: GRU. While LSTM can be described as the input
signals xt at time t, the output signals yt, the forget gate ft, and the input gate
it, the output gate ot,; GRU, on the other hand, can be described in terms of
two internal variables, which retain the previous h and current h inner states
respectively.

3. Gated Recurrent Unit: Cho et al. [3] recently proposed GRU, which
is like LSTM but it has fewer parameters than LSTM, as GRUs lack an
output gate. In GRU, each hidden unit has two gates, which are called
update and reset gates (see Figure 1). GRU also controls the flow of
information to prevent vanishing gradient problem, but without having to
use a memory unit.
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4 Experiments and Results

We used Keras Deep Learning library’s [11] and Theano’s [25] implementations
of the RNNs (GRU, LSTM, Vanilla RNN) in this study. Moreover for the
sake of comparison, we also used the One-class SVM from WEKA with default
parameters, Näıve Bayes (NB), Hidden Markov Models (HMM), Hidden Semi-
Markov Models (HSMM) and Conditional Random Fields (CRF) which are
based on the implementation provided in [28].

We split the data (see Sec. 3.1) into a test and training set using the leave-
one-day-out cross-validation approach. One full day of sensor readings is used
for testing and the remaining days are used for training. Then we cycle over all
days and report the average performance.

We evaluate metrics proposed in [28]: precision, recall, F-measure and ac-
curacy. We calculate precision and recall for each class separately and then
take the average over all classes. Note that precision and recall measures are
used since these metrics give some idea about how well the models perform on
imbalanced datasets like the one in this study. On the other hand, the accu-
racy represents the percentage of correctly classified time slices, therefore more
frequently occurring classes have a larger weight in this measure.

To evaluate the performance of abnormal behaviour detection, we use the
following evaluation metrics: True Positive Rate (TPR) and False Positive Rate
(FPR). TPR is the percentage of correctly detected abnormal activities out of
total abnormal activities, FPR is the percentage of normal activities that are
detected falsely as abnormal activities by the algorithm (out of total number of
normal activities).

To run experiments on RNNs, we left out 10% of the training data for
validation and we used drop-out with a value of 0.2. We also set the batch size
to 10 instances and the epoch to 500 iterations. The internal architecture of
RNNs (2 layers consisting of 30 and 50 nodes respectively) and time step of the
sequences (25 activity slices) were empirically set.

Note that the results obtained by the models HMM, HSMM, CRF and NB
(see Tab. 1 - 3) are taken from the study by Kasteren et al. [28].

Table 1 refers to the results obtained on dataset A and shows that there
is no clear winner among the three di↵erent feature representations. Consid-
ering the accuracy, the results indicate that LSTM is the best method (with
the accuracy of 96.7%) when last-fired feature is used, while HMM performs
the worst. Using change-point feature, HMM outperforms all other methods.
Using binary feature on the other hand shows that CRF (accuracy of 89.8%)
is the best. Also all RNNs, NB and SVM do not perform well when adopt-
ing change-point feature. HMM and HSMM are not good when using binary
feature representation. In a nutshell, for the majority of the methods, except
HMM and HSMM, last-fired representation is the best one. In terms of recall
which reflects better on performance in the presence of imbalanced data, the
highest value is obtained by GRU (80.6%). This potentially indicate that RNNs
are good to detect relevant class instances. CRF, for instance, score higher on
precision, because the most frequent-class instances are favoured, but then it
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Table 1: Activity recognition results on dataset A
Model Feature Precision Recall F-Measure Accuracy
NB Binary 48.3± 17.7 42.6± 16.6 45.1± 16.9 77.1± 20.8

Change-point 52.7± 17.5 43.2± 18.0 47.1± 17.2 55.9± 18.8
Last-fired 67.3± 17.2 64.8± 14.6 65.8± 15.5 95.3± 2.8

HMM Binary 37.9± 19.8 45.5± 19.5 41.0± 19.5 59.1± 28.7
Change-point 70.3± 16.0 74.3± 13.3 72.0± 14.2 92.3± 5.8
Last-fired 54.6± 17.0 69.5± 12.7 60.8± 14.9 89.5± 8.4

HSMM Binary 39.5± 18.9 48.5± 19.5 43.2± 19.1 59.5± 29.0
Change-point 70.5± 16.0 75.0± 12.1 72.4± 13.7 91.8± 5.9
Last-fired 60.2± 15.4 73.8± 12.5 66.0± 13.7 91.0± 7.2

CRF Binary 59.2± 18.3 56.1± 17.3 57.2± 17.3 89.8± 8.5
Change-point 73.5± 16.6 68.0± 16.0 70.4± 15.9 91.4± 5.6
Last-fired 66.2± 15.8 65.8± 14.0 65.9± 14.6 96.4± 2.4

Vanilla Binary 46.5± 17.7 64.8± 16.2 53.5± 16.3 86.8± 10.6
Change-point 46.3± 19.5 63.8± 16.4 53.2± 17.9 61.4± 16.4
Last-fired 61.9± 19.1 74.3± 12.8 67.2± 16.4 95.5± 3.4

LSTM Binary 50.8± 18.4 63.9± 16.5 56.2± 17.1 86.7± 10.5
Change-point 46.8± 18.7 63.6± 14 53.5± 16.7 61.4± 16.4
Last-fired 63.7± 19.9 73.9± 16.8 68.1± 18.2 96.7± 2.6

GRU Binary 47.3± 18.7 69.1± 14.9 55.4± 16.5 86.6± 10.7
Change-point 42.9± 19 65.0± 15.3 51.0± 17.1 61.4± 16.4
Last-fired 61.8± 16.3 80.6± 11.5 69.5± 14.0 96.1± 2.5

SVM Binary 45.6± 17.9 69.1± 15.9 54.2± 15.9 85.4± 10.4
Change-point 40.3± 19.1 63.4± 14.6 48.6± 17.0 55.9± 18.7
Last-fired 58.6± 16.2 77.2± 14.0 66.3± 14.9 96.1± 2.4

Table 2: Activity recognition results on dataset B.
Model Feature Precision Recall F-Measure Accuracy
NB Binary 33.6± 10.9 32.5± 8.4 32.4± 8.9 80.4± 18.9

Change-point 40.9± 7.2 38.9± 5.7 39.5± 5.9 67.8± 18.6
Last-fired 43.7± 8.7 44.6± 7.2 43.3± 4.8 86.2± 13.8

HMM Binary 38.8± 14.7 44.7± 13.4 40.7± 12.4 63.2± 24.7
Change-point 48.2± 17.2 63.1± 14.1 53.6± 16.5 81.0± 14.2
Last-fired 38.5± 15.8 46.6± 19.5 41.8± 17.1 48.4± 26.9

HSMM Binary 37.4± 16.9 44.6± 14.3 39.9± 14.3 63.8± 24.2
Change-point 49.8± 15.8 65.2± 13.4 55.7± 14.6 82.3± 13.5
Last-fired 40.8± 11.6 53.3± 10.9 45.8± 11.2 67.1± 24.8

CRF Binary 35.7± 15.2 40.6± 12.0 37.5± 13.7 78.0± 25.9
Change-point 48.3± 8.3 51.5± 8.5 49.7± 7.9 92.9± 6.2
Last-fired 46.9± 12.5 47.8± 12.1 46.6± 12.9 89.2± 13.9

Vanilla Binary 26.7± 13.5 46.9± 24.8 32.5± 17.9 65.2± 34.7
Change-point 39.6± 8 62.4± 15.3 48.3± 10.2 76.9± 13.9
Last-fired 41.2± 12.3 64.4± 17.8 49.7± 13.6 87.9± 13.1

LSTM Binary 29.1± 12.0 44.0± 22.0 33.9± 16.2 63.5± 32.7
Change-point 40.0± 11.2 59.0± 16.4 47.5± 12.9 76.8± 14.2
Last-fired 40.8± 10.7 60.1± 16.3 48.2± 12.3 87.2± 13.2

GRU Binary 28.5± 15.9 36.3± 17.2 31.4± 16.2 64.5± 32.1
Change-point 37.7± 7.6 53.5± 9.2 44.9± 7.1 76.4± 14.5
Last-fired 41.7± 13.2 56.9± 17.9 47.5± 14.6 87.0± 12.9

SVM Binary 39.6± 10.9 58.5± 17.4 46.7± 12.9 81.6± 18.5
Change-point 32.3± 6.5 53.6± 7.5 40.0± 6.2 67.9± 28.5
Last-fired 36.4± 5.4 54.6± 10.4 43.5± 6.6 86.2± 14.9
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Table 3: Activity recognition results on dataset C

Model Feature Precision Recall F-Measure Accuracy
NB Binary 19.6± 11.4 16.8± 7.5 17.8± 9.1 46.5± 22.6

Change-point 39.9± 6.9 30.8± 4.8 34.5± 4.6 57.6± 15.4
Last-fired 40.5± 7.4 46.4± 14.8 42.3± 6.8 87.0± 12.2

HMM Binary 15.2± 9.2 17.2± 9.3 15.7± 8.8 26.5± 22.7
Change-point 41.4± 8.8 50.0± 11.4 44.9± 8.8 77.2± 14.6
Last-fired 40.7± 9.7 53.7± 16.2 45.9± 11.2 83.9± 13.9

HSMM Binary 15.6± 9.2 20.4± 10.9 17.3± 9.6 31.2± 24.6
Change-point 43.8± 10.0 52.3± 12.8 47.4± 10.5 77.5± 15.3
Last-fired 42.5± 10.8 56.0± 15.4 47.9± 11.3 84.5± 13.2

CRF Binary 17.8± 22.1 21.8± 20.9 19.0± 21.8 46.3± 25.5 ‘
Change-point 36.7± 18.0 39.6± 17.4 38.0± 17.6 82.2± 13.9
Last-fired 37.7± 17.1 40.4± 16.0 38.9± 16.5 89.7± 8.4

Vanilla Binary 15.4± 5.3 43.1± 18.1 22.2± 7.3 50.2± 22.4
Change-point 31.3± 7.1 54.9± 11.3 39.5± 8.3 72.2± 13.0
Last-fired 38.3± 16.3 59.6± 15.1 45.8± 14.8 86.7± 12.5

LSTM Binary 16.8± 6.2 34.8± 12.5 22.1± 7.4 45.3± 21.2
Change-point 31.0± 5.1 53.3± 6.5 38.9± 5.0 72.0± 13.0
Last-fired 41.3± 17.2 57.3± 15.9 47.5± 16.1 87.4± 12.4

GRU Binary 18.7± 8.3 33.2± 12.7 23.9± 9.6 46.7± 23.4
Change-point 31.2± 8.3 47.± 10.9 31.2± 8.5 71.6± 12.6
Last-fired 40.4± 16.5 52.7± 16.4 45.4± 16.9 86.6± 12.3

SVM Binary 19.4± 9.0 35.2± 12.7 24.0± 9.2 37.4± 19.0
Change-point 25.6± 6.2 51.4± 9.5 34.0± 7.2 57.8± 15.5
Last-fired 37.0± 7.9 55.5± 11.6 44.1± 8.5 87.5± 12.1

is not so good at when it comes to the infrequent classes. Overall, there is a
clear hint that that recurrent architectures perform better than HM, NB and
HSMM for most of the cases, while CRF is slightly better than these recurrent
architectures on dataset A.

Table 2 refers to the results obtained on dataset B and shows that SVM is
the best method when adopting binary representation achieving the accuracy of
81.6%. On the other hand, CRF is the best when using the change-point feature
and last-fired representations with accuracy 92.9% and 89.2% respectively. It
can be noted that HMM is not as good as the other methods achieving in the best
case only 81.0% with the change-point representation. The closest successful
model to CRF is Vanilla RNN and again overall RNNs deliver high recall rates
compared to the other methods. Change-point and last-fired representations
give the highest recall results except for CRF.

Table 3 reports the results on dataset C showing that CRF performs best
for change-point and binary representations obtaining 82.2% and 89.7% respec-
tively. Overall, none of the methods performs well when adopting binary rep-
resentation. The results are slightly better with change-point but clearly better
when applying the last-fired representation. RNNs again give the highest recall
values for all representations. Overall, the results show that RNNs perform
better than HMM, NB and HSMM in all cases, while CRF is slightly better
than RNNs. But in terms of recall, these later outperform all methods for all

10



feature representations. The reason behind this is that RNNs perform better for
imbalanced data compared to CRF. RNNs variants generally perform equally
well.

For abnormal activity detection, we considered LSTM only and compared
against NB, HSMM, HMM, SVM and CRF. TPR and FPR accuracy percentages
are correspondingly; 40.40% and 43.50% for NB, 58.36% and 96.20% for HMM,
68.85% and 32.2% for HSMM, 66.22% and 40.50% for CRF, 72.11% and 44.0%
for One-class SVM and 91.43% and 40.96% for LSTM. We used only last-fired
feature in this experiment. The results indicate that LSTM is the best to prune
false negatives compared to the other methods. Methods like NB, One-class
SVM which do not capture the data order performs the worst. The models
ignore the frequency of the activity, but apply the temporal and contextual
information to make a decision. Results show that LSTM is capable of encoding
the order of activities. Hence, when an activity is introduced in a di↵erent
context or in a di↵erent order, LSTM can detect such anomalies.

Our current approach may fail to detect abnormalities, when there is grad-
ual deterioration regarding the health of an elderly. We are planning to deal
with this issue in the future while collecting real-world data in which gradual
deterioration can be observed.

5 Conclusion

In this paper, we showed that RNNs perform well on the problem of activity
recognition. They are also able to cope quite well with imbalanced data as
well as anomaly detection which is very important in the context of dementia.
Compared to a number of traditional and popular techniques used for activity
recognition such as SVM, NB, HMM and HSMM, they perform much better,
while remained very competitive with CRF. Furthermore, the empirical exper-
iments showed that the three variants of RNNs generally perform equally well,
but LSTM seems to be slightly better across all datasets used in this study.
Moreover, in terms of representation, there is no clear preference, but last-fired
feature seems to be better, at least on the datasets A and C, compared to the
change-point and binary representations. Overall the study allowed to confirm
that RNNs are very appropriate for activity recognition and abnormal activity
detection. In our future investigations, we will extend RNNs to deep neural
networks. We will also aim at collecting a dataset from a smart home dedicated
to elderly people with dementia to further study behaviour anomalies related
to dementia.
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nition from Wireless Sensor Network Data: Benchmark and Software”. In: Ac-
tivity Recognition in Pervasive Intelligent Environments (2011), pp. 165–186.
doi: https://doi.org/10.2991/978-94-91216-05-3_8.

[84] Tim Van Kasteren, G Englebienne, and B Krose. “Recognizing activities in
multiple contexts using transfer learning”. In: Proceedings of the AAAI Fall
Symposium on AI in Eldercare: New Solutions to Old Problems. (2008).

[85] Shikhar Vashishth et al. “Dating Documents using Graph Convolution Net-
works”. In: Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 2018, pp. 1605–1615.

[86] Gilles Virone. “Assessing Everyday Life Behavioural Rhythms for the Older
Generation”. In: Pervasive Mob. Comput. 5.5 (2009), pp. 606–622. doi: https:
//doi.org/10.1016/j.pmcj.2009.06.008.

[87] B. Wallace et al. “Design of games for measurement of cognitive impairment”.
In: International Conference on Biomedical and Health Informatics (BHI). 2014,
pp. 117–120. doi: 10.1109/BHI.2014.6864318.

[88] Kai Wang et al. “Research on Healthy Anomaly Detection Model Based on
Deep Learning from Multiple Time-Series Physiological Signals”. In: Scientific
Programming (2016). doi: http://dx.doi.org/10.1155/2016/5642856.

[89] K. Wild. “Aging changes”. In: Geraotechnology, Vol. 9 No 2. 2010, pp. 121–125.

[90] J. Yang et al. “Deep Convolutional Neural Networks on Multichannel Time
Series for Human Activity Recognition”. In: 2015, pp. 3995–4001.

[91] Rui Yao et al. “E�cient Dense Labeling of Human Activity Sequences from
Wearables using Fully Convolutional Networks”. In: CoRR abs/1702.06212 (2017).
doi: https://doi.org/10.1016/j.patcog.2017.12.024. url: http:
//www.sciencedirect.com/science/article/pii/S0031320317305204.

168



[92] M. Zeng et al. “Convolutional Neural Networks for human activity recognition
using mobile sensors”. In: 6th International Conference on Mobile Computing,
Applications and Services. 2014, pp. 197–205. doi: 10.4108/icst.mobicase.
2014.257786.

[93] Tongda Zhang et al. “Learning movement patterns of the occupant in smart
home environments: an unsupervised learning approach”. In: Journal of Am-
bient Intelligence and Humanized Computing 8.1 (2017), pp. 133–146. doi:
https://doi.org/10.1007/s12652-016-0367-2.

[94] Chong Zhou and Randy C. Pa↵enroth. “Anomaly Detection with Robust Deep
Autoencoders”. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. KDD ’17. 2017, pp. 665–
674. doi: 10.1145/3097983.3098052. url: http://doi.acm.org/10.1145/
3097983.3098052.

169


