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Abstract

As an artistic form, relief is described as a hybrid between 2D painting and 3D
sculpture. A novel approach for generating a texture-mapped high relief model
from a single brush painting is presented in this work. The aim of this work is to
extract the brush strokes from a painting and generate the individual corresponding
relief proxies rather than recovering the exact depth map from the painting, which
is a tricky computer vision problem, requiring assumptions that are rarely satisfied.
The relief proxies of brush strokes are then combined together to form a 2.5D
high-relief model. To extract brush strokes from 2D paintings, this work applies
layer decomposition and stroke segmentation by imposing boundary constraints.
The segmented brush strokes preserve the style of the input painting. By inflation
and a displacement map of each brush stroke, the features of brush strokes are
preserved by the resultant high relief model of the painting. As the adjacent brush
strokes may share similar colours in some brush paintings, the layer decomposition
method does not work well. To amend this issue, this work also proposed a deep
learning based method for brush stroke extraction. This work demonstrates that
it is able to produce convincing high-reliefs from a variety of paintings (with
humans, animals, flowers, etc.). As a secondary application, this work shows how
the proposed brush stroke extraction algorithm could be used for image editing.
As a result, the proposed brush stroke extraction algorithm is specifically geared
towards paintings with each brush stroke drawn very purposefully, such as Chinese
paintings, Rosemailing paintings, etc.
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LIST OF BASIC TERMINOLOGY

There are other terms to consider, but many of the important ones are ex-
plained in the report where relevant. These are terms not explicitly explained
elsewhere.

Height/Depth map: In this research, a depth map is a image that represents
the height of a surface.

Opaque: Not able to be seen through; not transparent.

Opacity: The quality of lacking transparency or translucence.

Alpha map: The alpha channel of an RGBA image. Alpha indicates how opaque
each pixel is(from fully transparent to fully opaque).

Intensity: Intensity represents brightness of the greyscale images. In most appli-
cations, measured between 0 (dark) and 255 (bright). For colour images, intensity
is calculated after convert the colour images to greyscale.

Stroke: A mark made by drawing a pen, pencil, or paintbrush across paper
or canvas.

Brush stroke/Brushstroke: A mark made by drawing paintbrush across paper or
canvas.
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Chapter 1

Introduction

(a) High relief (British Museum
2009a).

(b) Bas relief (British Museum
2009a).

Fig. 1.1 High relief and Bas relief

As an artistic form, relief is described as a hybrid between 2D painting and
3D sculpture, as claimed by many previous works [7][74][33][34][83]. In
essence, it creates a bridge between a full 3D sculpture and a 2D painting.
Relief is a kind of engraving art, carved on a plane or surface, unlike ordinary
independent sculptures. In most cases, reliefs can be divided into two more specific
categories: high relief and bas relief (Fig. 1.1). High relief shows much more
depth information compared to bas relief. Relief refers to sculptural elements on
flat surfaces, such as the trim on the Parthenon. Bas relief refers to the reliefs
with shallow backgrounds that are a few inches deep at most. On the other hand,
high relief forms more than half of the object, which can be up to a few meters
from the background plane. For high relief, some parts of the relief could be
completely separated from the background, while the bas relief is not separated
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from the background. On this spectrum, high relief is closest to full 3D, whereas
flatter artworks are described as bas-relief. Relief sculpting has been practiced
for thousands of years. Since antiquity, reliefs have been created by artisans from
many ancient cultures.

Nowadays, relief is useful for supporting an enormous number of applications
such as making objects like commemorative medals, souvenirs, packaging and
artistic sculptures. With the commonly and cheaply available 3D printing facilities,
there is a growing trend for the need of relief art products. Traditionally, relief
creation by hand is a time-consuming and laborious work, which also requires
significant planning, professional skills, and a lot of effort in understanding human
visual perception. More recently, attention has been given to computer-aided relief
generation, which has been a significant topic in many research areas. Computer-
aided relief generation also has a wide variety of purposes, including animation,
stereoscopy, cartoon figures and rotating lenticular posters.

1.1 Relief Generation

Relief generation has been under research over the past two decades, it aims
to generate relief model from a 3D or 2D input, either directly or with user
indications. It is considered to be a more artist-friendly than natural approaches of
relief sculpture.

As mentioned above, relief is described as an art form part way between 2D
painting and full 3D sculpture [7][74][33][34][83]. Correspondingly, the existing
relief generation researches can also be classified in two different categories with
respect to their input [7]:

• 3D model based : using a 3D model (sculpture) as input

• 2D image based : using a 2D image as input

How to generate a relief from a 3D sculpture? The 3D model based relief gen-
eration methods focus on such a problem, in which a 3D sculpture is considered as
a 3D digital model. These approaches almost follow the “bas-relief ambiguity”[6],
that is, roughly speaking, the relief looks like a full 3D object from a frontal
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view, and its disproportional depth would be revealed from a side view. The relief
generation from 3D model was firstly studied in [14], then various existing 3D
model based methods have demonstrated how to compress 3D model into relief
[74][33][65][67]. However, these approaches require a 3D model as a starting
point.

On the other hand, how to generate a relief from a 2D painting? Unfortunately,
such a problem remains unsolved. There have been some relief generation methods
available from a single image [83][76][5][77]. Reconstructing a surface from a
single 2D image is an ill-posed problem in general. As described in most of
the researches on 2D image based reconstruction algorithms, the problem that
manifests itself immediately is that there is no complete knowledge of the depth
within a single image. When watching a painting, although the audience simply
knows that its content is not 3D, it can give some level of impression of the three-
dimensional scene. The relief can go a step further by using the varying depth
on the surface of the sculpture to convey the perception of the three-dimensional
scene. A 2D painting can be considered as an image, however, the image based
methods [83][76][5][77] are generally focusing on general photograph from real
scene, which are based on the assumption that input image is formed from lighting
and shading, which is especially unsuited for a brush painting, which does not
obey the rules of lighting and shading, or emphasizes realism [41]. On the other
hand, concerning the artistic intent of a painting, it is crucial that the style of
the originals is preserved. In the case of reliefs, although there is no 3D model
available, pseudo-3D effect reflecting the style and subtlety is crucial in preserving
the artistic essence, which is not taken into account in image based methods.

Some research focus on relief generation from a line drawing [35][72][47][68].
However, maintaining the styles of paintings proves much trickier than simply
manipulating the height of the contour lines, since line drawing based methods
generate reliefs without consideration for surface details. They are limited to using
the information contained in a line drawing, which is not effective for paintings
containing information such as colour, texture and stroke shape.
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1.2 Motivation

The research is motivated by both the theoretical studies and the practical applica-
tions:

• Theoretically, as mentioned above, relief is regarded as an art form part
way between 2D painting and a full 3D sculpture, as claimed by many
previous works [7][74][33][34][83]. Research so far has been primarily
done based on a 3D model, and some other methods based on a sin-
gle photograph[83][76][5][77] or a line drawing [35][72][47][68] as input.
However, how to generate a relief from a 2D painting remains a problem.

On the other hand, due to the various styles of painting, it is difficult to come
up with a general relief generation method suitable for all 2D paintings.
Some paintings may be too abstract for relief generation. Meanwhile,
traditional classic western paintings developed in the Renaissance emphasize
realism[13], so they could be handled by 2D image based methods. On
the other hand, a brush painting usually does not emphasize realism, and
the style and philosophies of brush painting have influenced other painting
styles [13]. Study of relief generation from brush painting will naturally
push forward the research frontier of relief generation from other paintings.

• In practice, relief generation also can be widely used in minting, decorations
of furniture, walls, and artistic sculptures for blinds. With the commonly
and cheaply available 3D printing facilities, there is a growing trend in the
need of relief art products. On the other hand, as the input of the relief
generation method in this work, the digital image of a brush painting is
easily accessible on the Internet.

Therefore, designing an efficient method for relief generation from brush painting
is important both theoretically and practically. In particular, this thesis focus
on relief geometric reconstruction from a brush painting, which is useful for
supporting applications such as 2D character design, animation, stereoscopy and
rotating lenticular posters.

As mentioned above, surface reconstruction based on a single image is considered
as an ill-posed problem since there is no complete knowledge of the depth within
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a single image [83][76][5][77]. However, with the purpose of generating relief
with acceptable quality, there are several factors to be considered specifically for
the framing of the problem. Benzaid et al.[7] describe some core important factors
in the relief generation process: depth information, silhouettes and edges, fine
details.

Depth information: There is no complete knowledge of the depth within a single
image. A reasonable interpretation must be determined in some manners.

Outlines: Typically, outlines are used to separate objects from the background.
The outlines produce a reasonable contrast between the foreground object and the
background, and they are also established as the starting point for the interpretation
of the height.

Fine Details: The image contains many small features and details. Small features
and details are preferred for maintenance during the generation of relief from the
2D input.

On the other hand, a brush painting can be regarded as an union of brush strokes
[79]. In a brush painting, all of the painter’s aesthetic understandings are achieved
through brush strokes. Without brush strokes, there would be no brush painting
[41]. As shown in Fig. 1.2, a brush stroke has its own features(colour, shape and
opacity).
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(a) Brush strokes with the same opacity and shape but different colours.

(b) Brush strokes with the same colour and shape but different opacities.

(c) Brush strokes with different colours, shapes and opacities.

Fig. 1.2 Features of brush strokes.

A brush stroke is a mark made by drawing paintbrush across paper or can-
vas. A brush stroke serves the purpose of outlining contours of objects, separating
space and preserving details [41] [18]. Generally, one brush stroke is employed
to represent some specific real objects, such as a flower petal, a bud, or a feather
[37][63][41]. In brush painting, it is observed that most brush strokes are rendered
in a continuous, rhythmic motion, and the colour and opacity vary little along the
direction of the brush strokes [37][79][41]. As mentioned above, it is impotent
to maintain the depth information, outlines, fine details of the image in relief
generation [7]. On the other hand, brush strokes serve the purpose of outlining ob-
jects, separating space and keeping the fine details in brush paintings[41][79][37].
Therefore, to produce reliefs with acceptable quality, it is essential to preserve
these features (colour, shape and opacity) of brush strokes on relief.
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In digital painting software, such as MyPaint and Photoshop, brush strokes are
painted on one or more layers. In digital painting, it is often useful to paint different
elements on separate layers, and then combine the resulting multiple layers into
a single, final image called the composite. A layer is an RGBA image, in
which each pixel has an RGBA colour value (red, green, blue, alpha). Alpha
indicates the degree of opacity of each pixel (from fully transparent to fully
opaque) and allows the use of layer composition.

The resulting questions are how to extract brush strokes from a painting and
how to preserve the features of brush strokes on a relief. However, no consid-
eration has been made for these problems in the previous 2D photograph based
methods[83][76][5][77] or line drawing based methods [35][72][47][68]. Even
though there are similarities between relief generation and brush painting, how to
generate reliefs from brush paintings remains a problem.

1.3 Aim and Objectives

The aim of this research is to generate the geometry of relief from a brush painting.
This work also argues that, because most brush paintings are produced with
individual brush strokes, generating relief surface from each brush stroke would
preserve the original features of the painting. Most brush paintings typically
contain lots of brush strokes which exists as individual pieces of art [63][16].
Differing from the other relief generation methods, this work will preserve this very
important feature by generating relief surfaces from the brush strokes individually.
This approach nonetheless demands to conquer several challenges:

1. Unlike photographs, the opacity of brush strokes is an important feature of
a brush painting. Artists are used to varying in colour, shape and opacity
of the brush strokes to achieve certain painterly effects [46]. It is desired to
preserve the features of a brush stroke on the relief.

2. Unlike the previous 2D image based methods focusing on photographs,
painting does not obey the rules of lighting and shading exactly, which
increases the level of difficulty to mimic the details on a relief surface.
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3. Each brush stroke covers a region on the canvas and may overlap each other,
some quite heavily in a painting. To make sure the information is retained,
every brush stroke has to be faithfully extracted.

These questions served as an important rationale behind this research. To ad-
dress these challenges, the following aims and objectives of this work are pro-
posed.

The objectives of this thesis are to:

1. Design a technique to extract brush strokes regions accurately.

2. Design a method to detect the colour and opacity of brush strokes efficiently.

3. Develop an approach to preserve the features of brush stroke on relief
surface.

4. Produce a method to generate a relief model based on a 2D brush painting.

1.4 Contribution

As mentioned above, the previous relief generation methods have demonstrated
how to generate reliefs from 3D models, photographs and line drawings. In
contrast, this research aims to generate a relief from a brush painting, aiming to
preserve the original artistic features of the painting. To the best of the author’s
knowledge, this is the first work of relief model creation from a single brush
painting input. The pop-up relief model is easily imported into the most popular
industrial software including Houdini and Maya for realistic rendering.

This work particularly considers the overlapped brush strokes with complex shape
profiles and their opacities. In contrast to the previous 2D image based methods,
the proposed algorithm is also the first attempt to generate reliefs using opacity,
and this research also demonstrates that opacity can preserve more details than
intensity. Accompanying this method, a layer decomposition based brush stroke
extraction algorithm—LStroke has been proposed. The major difference between
LStroke and the previous works is that LStroke is based on a reformulated layer
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decomposition algorithm, which makes it capable of extracting overlapped brush
strokes without the prior knowledge of brush strokes.

The detailed contributions of this system are listed below:

1. Comparing with the previous brush stroke extraction method [42], this work
is capable of extracting overlapped brush strokes and has higher accuracy.

2. Comparing with the previous 2D image based method [81], this work is
more efficient for relief generation from brush painting. And this work uses
opacity instead of intensity to generate reliefs, which can better preserve the
feature of the input painting.

3. Comparing with the previous relief generation method using the raw image
as texture [81], this work can preserve the opacities of brush strokes on
relief surface, which better shows the feature and inter-relations of brush
strokes on relief.

4. The proposed brush stroke extraction technique has other potential uses.
This work demonstrates the utility of the decomposed brush strokes for
image editing.

To better extract brush strokes with similar colours in a painting, this work also
proposed DStroke, in which deep learning techniques are leveraged to facilitate
the soft segmentation of brush strokes. Its contributions are:

1. To the best of the author’s knowledge, this is the first work of brush stroke
extraction based on deep learning. Comparing to previous semantic soft
segmentation method [3] which can only segment semantic regions, the
DStroke generates instance-level soft segmentation results, namely, brush
strokes.

2. There is no available brush painting sample training dataset for the deep
neural network at the moment. Manually marking brush strokes is a tedious
task and time consuming, and it is unrealistic to manually create a large
training dataset with segmented brush strokes on paintings. This work
proposes an automatic algorithm to create brush paintings, and based on
such an algorithm, this work creates a large training dataset containing
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5000 samples. Each sample in the dataset contains a brush painting and the
corresponding segmented brush strokes.

3. The higher efficiency. The proposed DStroke runs more than 100 times
faster than the previous soft segmentation method [3], which is ideal for a
large amount of brush strokes extraction.

4. The higher accuracy. In contrast to LStroke and soft segmentation method
[3], the DStroke shows noticeable higher accuracy.

1.5 Thesis Outline

The organization of the document is as follows:

Chapter 1: Introduction. This chapter provides the background, the motiva-
tion, aim and challenges made in relief generation from painting, and lists the
contributions of this work.

Chapter 2: Related Work. This chapter classifies and reviews related previous
works in a systematic way. It reviews the development of relief generation over
recent years. Relief generation methods are generally classified into types: 2D
image based methods and 3D model based methods. The relative researches of
brush stroke extraction are also discussed.

Chapter 3: Overview of Proposed Approach. This chapter explains the overview
of this work and defines some basic concepts used in the research.

Chapter 4: Layer Decomposition Based Brush Stroke Extraction—LStroke.
In this chapter, the layer decomposition based brush stroke extraction method —
LStroke is introduced. The LStroke consists of two steps: layer decomposition
and brush stroke extraction. This chapter introduces the concept "Layer Decompo-
sition" in this research, which is the basis of the proposed LStroke method. This
chapter also describes the proposed algorithm of brush stroke extraction. Finally,
the results are evaluated and compared with related methods.
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Chapter 5: Deep Network Based Brush Stroke Soft Segmentation—DStroke.
This chapter presents a brush stroke soft segmentation method based on a deep
neural network—DStroke. A data generation method is also proposed for training
purpose. The results are evaluated and compared with related methods.

Chapter 6: High Relief Generation. This chapter shows how to generate high
relief from extracted strokes. The results based on proposed method are discussed
and compared related work.

Chapter 7: Other applications. Once the brush strokes are extracted, they can be
used in a number of image editing operations. This chapter shows how to use the
extracted brush strokes to enable interesting paint-aware applications.

Chapter 8: Conclusions and Future Work. This chapter concludes the progress
up-to-date and discusses possible future work.

1.6 Publication

During the period of the research, a part of this work has been accepted or
published at IEEE Transactions on Visualization and Computer Graphics:

Fu, Y., Yu, H., Yeh, C. K., Zhang, J. J., Lee, T. Y. (2018). High Relief from Brush
Painting. IEEE transactions on visualization and computer graphics.



Chapter 2

Related Work

This chapter reviews notable relief generation methods. They are classified into
two categories: methods based on the 2D image and methods based on 3D model,
which are reviewed in section 2.1 and section 2.2 respectively. Following with
section 2.3 which reviews notable brush stroke extraction methods and relative
works. The structure of the related works is shown in Fig. 2.1.

Fig. 2.1 The structure of related works.
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2.1 2D Image Based Relief Generation

Inferring a 3D shape from an image is a highly under-constrained problem, which
requires as much prior knowledge of the 3D shape of an object class as possible, so
as to yield reasonable results. When the input is a man-made painting, it becomes
more challenging. This is because (1) the man-made paintings may violate the
rules of lighting and shading; (2) the input may consist of a lot of strokes that
need to be specified by the users; and (3) these strokes are usually inter-related for
artistic composition purposes. The closest approach to the topic of brush painting
based relief production is the image based method. Since there is a huge volume
of previous works in this area, this section reviews the important related works by
classifying them according to their inputs.

2.1.1 Photograph Based Methods

Automatic methods:

A number of studies have been conducted on automatically reconstructing a 3D
scene from a single image. [25] [26] [27] extracted the 3D structure of outdoor
scenes by segmenting input image and classifying the image into different labels,
such as ground, sky, and vertical objects. [60] created the a 3D scene using
supervised machine learning to model both image depth cues as well as the
relationships between different parts of the image. Similarly, [45] estimates the
depth of each pixel by semantic segmentation.

Shape from shading (SFS) is another related area. It has been observed that it
can be challenging to reconstruct original 3D shape from a single image using
the Shape from Shading (SFS) method. Initially, the solution of a non-linear first
order Partial Differential Equation (PDE) was used to formulate the SFS problem
[28], and later a generalized equation was derived to reconstruct a surface based
on a given non-integrable gradient field [1]. Many methods have been developed
with different assumptions, such as orthographic SFS with a far light source [44],
perspective SFS with a far light source [55], and perspective SFS with a point light
source at the optical center [56]. These SFS methods assume the image is formed
from lighting and shading, which may work well for realistic photographs with
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relatively simple texture rather than paintings. Simply applying the SFS method is
not enough to generate relief with acceptable quality for painting images.

[73] demonstrated a method by constructing reliefs from 2D images based on
gradient operations. In their research, image gradients were calculated, then by
smoothing gradients to smooth shape changes. Finally, they boost fine features
with user input masks. The height of the image pixels is reconstructed based on
the modified gradient field. Then, the pixel heights are compressed. [73] uses a
triangle mesh to represent the relief, in which every vertex is assigned with a pixel
position. Most features can be preserved by the proposed method. However, the
depth relationship between segmented regions is not considered. [43] reconstructs
depth map from the rubbing images of restoring brick and stone relief. The relief is
separated into low and high frequency components. The low frequency component
of relief is generated with mesh deformation, and the mesh deformation scheme
is based partial differential equation. The high frequency can be generated from
input images automatically or by user interaction. This method focuses on relief
generation from stone rubbing images, which is unsuited for paintings.

In general, fully automatic methods are insufficient to support the reconstruc-
tion of complex objects due to insufficient 3D information available in a single
image.

User-driven methods:

One cannot use the traditional SFS method for relief generation because of bas
relief ambiguity unless there is human intervention. This is so because these
ambiguities are not unique for a certain image, within the reconstructed surface
shape when different lighting conditions are used [6]. As such, human intervention
is needed to generate an appropriate surface. In order to by-pass this problem,
additional information and some assumptions are needed to provide visual cues
[82].

Zeng et al. [82] introduced a method that needs the users to first set a reasonable
surface normal, and then the SFS method is applied locally to the reconstruction
of each surface patch. These local solutions are combined to form a smooth global
surface. Wu et al. [77] proposed another interactive system for the same purpose.
Firstly, they improve existing SFS algorithms to reconstruct a correct normal for
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local image regions. After which, they use a simple mark-up procedure to correct
low frequency errors. They were able to increase the quality of surfaces, but their
methods required considerable user interactions.

User interactions can be applied to relief generation. When the SFS method is
used in high relief, even more user interactions are needed. Additionally, the
method presents more problems when colour images inputs or those containing
complex textures are used as input. Alexa et al. [5] came up with reliefs whose
appearance is different when illumination from different directional light sources
are used instead of ensuring that an image looks reliable under one constant
lighting condition. They placed small pyramids at the centre of each image
pixel and deformed them according to the desired reflectance properties. Their
algorithm can produce reliefs that contain information about a pair of input images
in one single piece of art. Moreover, colour information of a given image can be
transferred to the relief representation if directional colour light sources are used.
This is the first method to make full use of the nature of reliefs and their ambiguity
and use them as a type of display. Nonetheless, it cannot prevent the large depth
gradients on relief because of the considerate difference in regions when working
with colour images. And the large depth gradients on the relief would make it hard
to fabricate. However, SFS methods formed from lighting and shading, and even
with user intervention, the details of painting such as the shape and transparency
of brush strokes are not considered.

Oh et al.[53] represent a scene as a layered collection of depth images. Two
user-assisted tools are employed, based on a painting metaphor, to assign depths
and extract layers, and manually inpainted the hidden parts. [84] uses sparse user
constraints on input images to generate a smooth shape. Yeh et al.[81] present an
interactive user-driven method to reconstruct high-relief 2.5D geometry from a
single photo by using user-specified depth cues. The method enables the creation
of a double-sided organic shape. However, these user-driven methods cannot
handle complex shapes and transparency of brush strokes, and the reconstructed
mesh is smooth and so it cannot preserve the brush stroke details.
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2.1.2 2D Sketch Based Methods

Fig. 2.2 Sketch based modeling in [51].

Sketch based modeling is another research topic relevant to this work, which
provides a powerful paradigm for 3D modeling based on sketches. Sketches is a
drawing made exclusively in lines. Rather than generating relief from a photograph
of a real scene, some researches focus on relief generation methods from sketches.
Igarashi et al. [29] firstly presents the Teddy system, a sketching interface for
designing freeform models by interactive drawing 2D contours. Similarly, a
range of methods use line contours from sketches to infer the shape of model.
Karpenko et al. [32] generate smooth shapes by retrieving suggestive contours
from visible-contour sketches. [51] enables users to add, remove, and deform
control curves to construct a smooth surface, while the user-drawn strokes stay on
the model surface and serve as handles for controlling the geometry. A common
drawback of these approaches is that they require tedious specification of control
curves to produce the desired shape, and since these methods are generally used
for authoring 3D contents, they are not designed for 3D modeling with a fixed
reference image.

Kolomenkin et al.[35] aims to reconstruct a model from a complex line drawing
that consists of many inter-related lines. At first, they extract the curves from line
drawing. Then, junctions between lines are detected and margins are generated.
By analysing the connectivity between boundaries and curves, they reduce the
problem to a constrained topological ordering of a graph. From these boundaries
and curves with given depths, they use smooth interpolation across regions to
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(a) (b) (c)

Fig. 2.3 Bas relief generation from line drawing by Sykora et al. [68]. (a) Input
drawing including user annotations. (b) Layering the segmented regions. (c)
Resulting bas-relief-type mesh.

generate the relief surface. Similarly, line labeling methods have been applied for
shape construction from line drawings [72][68]. A labeling process would classify
segmented lines into different labels, such as concave, convex and occluding, and
these labels can give clues for the shape generation of relief. [68] proposed a
relief generation method consisting of six main steps: segmentation, completion,
layering, inflation, stitching, and grafting. The segmented regions are layered with
each other (Fig. 2.3b) based on the user indications (Fig. 2.3a). This method
combines user indications and shape inflation to model smooth relief shapes from
line drawings, as shown in Fig. 2.3. However, this research aims at paintings with
brush strokes, which are different from 2D line drawings. Line drawing based
approaches are limited to using information contained in a line drawing, while
a brush stroke does not only contain contour lines but also delineates a region,
which contains information such as colour, texture, opacity. It is crucial to identify
and extract brush strokes from a painting.

2.2 3D Model Based Relief Generation

A sizeable amount of methods has been considered relief generation from 3D
model [14][74][33][65][67]. [14] firstly proposed a method creates relief models
based on the input 3D models, in which the input model is compressed by a linear
function. This method fails to handle the depth gap between in 3D models and
the output reliefs can not successfully preserve the details on 3D models. [65]
considered depth map of the 3D model as the high dynamic range (HDR) image.
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(a) Original 3D model (b) Generated relief

Fig. 2.4 Relief generation from 3D model by Weyrich et al. [74].

The differential coordinates of the input models are calculated. Then, HDR image
process method is applied to compress the 3D models. The output relief can
preserve salient feature and de-emphasize the others, but sometimes the relief
can be distorted and exaggerated. The methods proposed in [74][33] work on the
gradient domain of depth map of 3D models, and apply the techniques of feature
enhancement and saliency measure. However, these methods produce generally
satisfactory relief output, and preserve the features of 3D models, although again
some areas can be over-emphasized, as shown in Fig. 2.4. [67] generate the relief
with an optimized contrast-limited adaptive histogram equalization (CLAHE)
method, in which the depth map of the 3D model is compressed. Local contrast
of depth map can be enhanced in this method,however, the detail preservation
requires high resolution depth map from the 3D model.

These 3D model based methods can often generate relief with acceptable quality,
but they require 3D models as input. 3D models are often unavailable or difficult
to prepare, and obviously unsuited for relief generation from 2D paintings.

2.3 Brush Stroke Extraction

To the best of my knowledge, there is a lack of study on extracting brush strokes
from paintings. Here, a brief overview of the relevant topics is given, i.e. decom-
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posing images into layers and stroke segmentation, which are employed in this
work.

2.3.1 Painting Layer Decomposition

In digital image editing, artists deposit colours throughout the image via a set of
strokes, which can be regarded as individual layers with opacity values. However,
scanned paintings and photographs have no such layers. Even for digital paintings,
there is commonly no layer information in the output files. Without layers, simple
edits may become very challenging. [57] presents an interactive approach for
decomposing bitmap drawings and photographs into opaque and semi-transparent
vector layers. [79] aims at decomposing Chinese paintings into a collection of
layered brush strokes with an assumption that at most two strokes are overlapping
and there is minimally varying transparency. However, it only focus on Chinese
painting with limited brush strokes. [48], [49] present two generalized layer
decomposition methods, in which pixels have individual layers and partially
overlap to each other, and the layer orderings may be manipulated. [2] proposes a
recolouring painting method for watercolour paintings based on the colour palette
estimation and layer decomposition. [70] presents a layer decomposition method
based on RGB-space geometry. They assume that all possible image colours are
convex combinations of the palette colours. In [70], computing the convex hull of
image colours and per-pixel layer opacities is converted into a convex optimization
problem. Thus, their method can work well without prior knowledge of shape and
overlap of strokes.
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2.3.2 Soft Segmentation

(a) (b) (c)

Fig. 2.5 Image matting by Levin et al. [39]. (a) Input image. (b) Trimap. (c) Alpha
map of foreground.

Segmentation is one of foci in image process all the time. The challenging issue is
that the boundaries of some objects are usually vague. Manual segmentation is
tedious and time consuming very much. For the objects with opacity, e.g. water,
hair, brushstrokes in application, it is becoming infeasible. Soft segmentation
of images is proposed to cope with such challenge since it can capture the soft
transitions between image regions. Soft segmentation is decomposing an image
into two or more segments where each pixel may belong partially to more than
one segment [3]. On the other hand, for hard segmentation, each pixel can only
belongs to at most one segment.

Soft segmentation is closely related to image matting, but there are distinct differ-
ences between them. Matting aims to estimate the per-pixel opacity of foreground
region based on the foreground region indications that users provide [39][12][4].
The indications are typically represented as Trimap. A Trimap is a pre-segmented
image consisting of foreground(white region), background(black region), and
unknown opacity region(grey region), as shown in Fig. 2.5b. The extracted fore-
ground is represented by a alpha map. An alpha map is a 2D image which
indicates how opaque each pixel is (from fully transparent to fully opaque), as
shown in Fig. 2.5c. The alpha value of each pixel on the alpha map is between
0(fully transparent) and 1(fully opaque).

Instead of selecting the foreground objects from image, soft segmentation decom-
poses an image into multiple layers. As a result, each pixel is likely to be classified
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into multiple layers [3][40]. [62] presented an approach of segmenting an image
into multiple layers by the estimation of alpha maps, which needs to be optimized
iteratively. Levin et al. [40] proposed spectral matting adopting matting Laplacian
[39] and spectral decomposition to estimate a set of connected soft regions with
fuzzy boundaries.

However, these soft segmentation works cannot generate semantically meaningful
regions without user indications in the image. Most recently, Aksoy et al. [3] firstly
leverage deep network for semantic soft segmentation focusing on this problem,
see Fig. 2.6. i.e. using the high-level information (semantic information) from
a deep network to define affinities between different regions in order to generate
soft segmentation corresponding to semantic regions. On the other hand, low-level
information such as colour affinity and matting affinity, are also calculated to
construct the matting Laplacian matrix to handle fuzzy boundaries. Like spectral
matting, regions with local soft transitions are generated using matting Laplacian
and spectral decomposition. However, for brushstroke extraction, their methods
suffer at least two limitations: (1) A brush painting normally contains hundreds
or even thousands of brushstrokes. Unfortunately [3] and [40] only support a
limited number of segmented regions. (2) Although using high-level information
from a deep network, [3] cannot still separate different instance of the same class,
e.g. two people are classified into the same layer due to the same semantic label.
This will bring about serious errors for brush paintings since hundreds, or even
thousands of instances (brushstrokes) in one painting may share the same semantic
label.

2.3.3 Stroke Segmentation

Additionally, for oil paintings such as van Gogh’s artefacts, [42] presented the
seed growing based brushstroke extraction scheme for painting authentication and
artist identification purposes. Firstly, some pixels are selected as seeds. Then,
neighbouring pixels are exploited through region growing. Region growing can
be controlled through a shape validation method. In their implementation, the
metric of shape validation is defined based on 10 examples of brushstroke regions
that are manually extracted from van Gogh’s paintings. In section 4.3.1, this work
is compared with their method. Usually, most of brushstrokes of oil paintings
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(a) Input image (b) Generated semantic features

(c) Soft segmentation of input. (d) Image editing

Fig. 2.6 Soft segmented image by Aksoy et al.[3]. The soft segmented regions are
represented in different colours.

tend to be opaque. Thus, the boundaries of brushstrokes can be detected. But the
overlapped parts will be missed. [79] aims to decompose Chinese paintings into a
collection of layered brush strokes with an assumption that at most two strokes
overlap each other. However, their approach requires the order of strokes and a
brushstroke library for support, which is built by professional artists.

On the other hand, some researches focus on the stroke segmentation of hand-
written characters, such as pen strokes [22]. Pen stroke edges are distinct and
can be extracted entirely in handwritten characters. As a result, a stroke is de-
scribed by a set of geometric primitives. The hand-drawn primitives are further
replaced by mathematically precise shapes to produce a neat final result. However,
brushstrokes on a painting often contain individual colours and overlap each other.
Moreover, the strokes may show a low contrast to the others or the background.
The edges of strokes are blurred.

2.4 Deep Learning Based Segmentation

Krizhevsky et al. [36] introduced a deep convolution network called Alexnet
which consisted of 8 layers and millions of parameters and trained on the ImageNet
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dataset with 1 million images. Since then, even larger convolutional networks
were designed and competed with the state of the art in image segmentation. A
detailed review about deep learning based segmentation is beyond the scope of
this research.

The state of art deep learning methods for segmentation includes [86], [11], [30],
[19]. In [58], U-Net was proposed for biomedical image segmentation, which
provides a pixel-wise accuracy for dense cells segmentation. Deep convolution
neural networks are used to learn through minimizing a loss function. It is crucial
to design an appropriate loss function. For instance, if simply using the Euclidean
distance between the predicted and ground truth pixels as loss, the results may
tend to be blurry. Unceasingly involving expert knowledge into loss functions can
improve the performance of deep convolution neural networks. The discriminator
network is combined with U-Net [58] in the Pix2Pix network [30], which can
automatically learn a loss function appropriate for satisfying this goal. It improves
the accuracy of segmentation. This work make use of this network [30].

However, the main challenge is that there is no available training dataset for
brushstrokes extraction at the moment. The deep learning networks always prefer
to a large dataset for training. Manually extracting brushstrokes is time consuming
since a painting usually contains thousands of brushstrokes. To deal with this
challenge, an automatic method is proposed to build up a large training dataset, in
which brush paintings are created by a set of brushstrokes and the resulting edge
maps of brushstrokes on paintings are available as well.

2.5 Summary

In this chapter, the related research works on current relief generation techniques
has been discussed. To the best knowledge of the author, there is a lack of study
on extracting brush strokes from paintings. A brief overview of the related topics
is given. Inspired by these works mentioned above, a relief generating framework
from brush paintings is proposed in this thesis with the combination of brush
stroke extraction.



Chapter 3

Overview of Proposed Approach

Fig. 3.1 Overview of proposed approach

As shown in Fig. 3.1, this work consists of two stages, the brush stroke extraction
stage and a relief generation stage. For brush extraction, this work proposes two
methods: a layer decomposition based brush stroke extraction method — LStroke
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(Chapter 4); a deep learning based brush stroke extraction method — DStroke
(Chapter 5). Then, the relief surfaces from each brush stroke are generated in the
relief generation stage (Chapter 6).

LStroke:

In the LStroke (blue rectangle in Fig. 3.1), a given painting is firstly decomposed
into a set of layers in terms of several specified palette colour values (see the “de-
composed layers” in Fig. 3.1). Secondly, a new palette colour value is determined
based on the unclassified regions, and the layers are recomputed accordingly in an
iterative way (see the “refined layers” in Fig. 3.1). Thirdly, the brush strokes are
extracted from each layer.

The key point is to extract the overlapped brush strokes. Overlapped strokes
make colours blend. To tackle it, layer decomposition is employed here, which
decomposes the painting into a set of translucent layers. In brush paintings, mostly
a brush stroke only utilizes a single palette colour. Layer decomposition helps
classify brush strokes separately into different layers based on the palette colour,
so that every layer contains the strokes which are well separated.

However, wrong layer decomposition may cut one stroke into two or more layers.
It is observed on multiple layers, brush strokes of such paintings typically follow
same patterns. For instance, a scan of Rosemaling painting employs many C and
S brush strokes, and the colour and transparency change very little in the direction
of the stroke. However, if assigned the wrong palette colour, brush strokes may
appear on multiple layers. The edge tangent flow (ETF) field and the coherent
lines [31] are introduced to enhance such features in paintings, which are in favor
of preserving the completeness of the strokes in every layer and effectively correct
the errors due to wrong layer decomposition.

Moreover, for the paintings whose strokes cannot be clearly decomposed into a
limited number of layers, an iterative scheme has been developed to refine the
layers. The overlapping regions of multiple strokes with high opacity usually
result in the gaps that break the strokes into one or more layers. To tackle this
challenge, an inpainting technique is employed here. The coherent line is further
involved in the MSERs algorithm [15] again for extracting strokes, which both
preserves stroke continuity and removes spurious edges within one layer.
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DStroke:

The layer decomposition benefits the brush strokes with different colours, however,
the main challenge is that when the adjacent strokes share the similar colour in a
brush painting, they would appear on the same layer and might be accidentally
regarded as one brush stroke.

To tackle such a challenge, DStroke is proposed (red rectangle in Fig. 3.1), in
which deep learning techniques are leveraged to facilitate extracting brush strokes
from painting. To train the deep neural network, this work introduces how the
generate the training data for brush stroke segmentation (Section 5.1). Firstly,
the edge of brush strokes are detected by a trained network. The structure of the
deep neural network and its implementation are explained (Section 5.2). Here,
the deep neural network is trained and applied for brush stroke edge detection.
Secondly, with the edges of brush strokes, each stroke region are easily extracted.
Then, based on the extracted brush stroke regions, the opacity values of each brush
stroke are further extracted (Section 5.3).

High Relief Generation:

With the brush strokes extracted by LStroke or DStroke, this work generates
the texture-mapped high relief (green rectangle in Fig. 3.1). To generate the
displacement maps of the strokes individually, this work performs shape from
shading(SFS) on the opacity of the paintings instead of the intensity, since it better
preserves the features of the strokes. It is desirable to transfer the features of the
paintings, e.g. the transparency of brush strokes, to the surface of the brush stroke
models. Using the inflation method proposed in [81], the surfaces for each brush
strokes are inflated and combine it with the displacement maps. The shapes of
all the strokes are then arranged to form the desired high-relief. In general, the
background plane should be unchanged. Thus, generating strokes individually not
only benefit the composition of reliefs, but also avoids this technique issue.

Other Applications:

Once the brush strokes are extracted, they can be used in a number of image
editing operations to enable interesting paint-aware applications, as shown in Fig.
3.1. In section 7.1, the recolouring of specific brush strokes is demonstrated while
keeping their opacity values. Similarly, another image synthesis application is
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shown by inserting new objects into brush strokes, see section 7.2. By moving and
rotating the texture mapped relief model, this work can also create simple 2.5D
animations, see section 7.3.



Chapter 4

Layer Decomposition Based Brush
Stroke Extraction—LStroke

Digital painting with different layers is an integral feature of digital image editing
software, such as Photoshop and Sketchbook. Layers offer an intuitive way to
edit the colour and geometry of components and localize changes to the desired
portion of the final image. Without layers, brush stroke segmentation becomes
extremely challenging, since they can overlap and blend with each other. To tackle
these challenges, this work proposes a layer decomposition based brush stroke
segmentation method—LStroke.

One layer can have different colours in image editing software such as Photoshop,
but paintings are commonly generated from limited palette colours, so previous
painting layer decomposition methods [70] [2][69] assumes single-colour layers,
which means each layer has a single palette colour applied with varying opacity.
This assumption also greatly reduces the amount of calculations. Since the brush
stroke are normally contains only one palette colour, to separate the brush strokes
in to different layers, the LStroke also assumes single-colour layers.

Wrong layer decomposition may cut one stroke into different layers. It is crucial
to preserve the completeness and smoothness of the brush strokes in layer decom-
position. To this end, the layer decomposition algorithm is modified in [70] by
involving the coherent lines [31] in the implementation.
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4.1 Layer Decomposition

The LStroke consists of two steps: Layer decomposition and brush stroke extrac-
tion. In the following sections, the layer decomposition algorithm in [70] is briefly
addressed and then the modifications are discussed.

4.1.1 Palette colours Extraction

Fig. 4.1 Layer decomposition in [70]. The geometry of pixels in original im-
age(left) is analysed in RGB-space to extract its palette colours(middle), resulting
in a translucent layer decomposition(right).

As shown in Fig. 4.1, a input painting is firstly analysed in rgb-space to extract its
palette colours , and then decomposed into translucent layers with different palette
colours. Each layer represents a single-colored coat of input painting with varying
opacity, and the Porter-Duff “A over B” operation is used for compositing these
layers.

The “A over B” compositing and blend mode in [54] described that when the pixel
A with colour ARGB and opacity αA is placed over the pixel B with colour BRGB

and opacity αB, the observed colour (A
B)RGB is,

(
A
B
)RGB =

αAARGB − (1−αA)αBBRGB

(A
B)α

(4.1)

where
(
A
B
)α = αA +(1−αA)αB
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As show in Fig. 4.1, the convex hull of image pixels in RGB-space are computed,
and vertices of the convex hull are regarded as the palette(layer) colours of the
input painting. And each pixel’s colour is viewed as the convex combination of all
layers’ colours. The palette size and layer order are user-defined.

In practice, tightly wrapping pixels in rgb space by convex hull normally produces
a complex shape(many vertices). Too many vertices would result in unmanageable
number of layers, so the silhouette clipping method [59] is applied in [70] to
progressively simplify the convex hull to a user-specified palette size n, as shown
in Fig. 4.2.

(a) Input painting (b) Convex hull (c) 9 vertices (d) 5 vertices

Fig. 4.2 Simplification of convex hull in RGB space.

4.1.2 Determining Layer Opacity

For each pixel in the input image, the observed colour p on input painting can
be approximated by the recursive application of the Porter-Duff compositing
operation (Eq. 4.1):

p =Cn +
n

∑
i=1

(
(Ci−1 −Ci)

n

∏
j=i

(1−α j)

)
(4.2)

where Ci denotes the i-th layer’s colour, αi is the opacity of Ci , the background
colour C0 is opaque. n is the user-specified palette size.

Since the input painting should be recomposed by the layers (see Equation 4.2),
the following ‘polynomial’ regularization term Epolynomial penalizes the difference
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between the observed colour p and the polynomial approximation,

Epolynomial =
1
K

∥∥∥∥∥Cn +
n

∑
i=1

(
(Ci−1 −Ci)

n

∏
j=i

(1−α j)

)
− p

∥∥∥∥∥
2

and K = 3 or 4 depending on the number of channels (RGB or RGB-α). Since the
sparse solution for opacity is preferred in [70], namely, it is preferred to move αi

close to 0 or increase some other α j to 1. The second opacity penalty term Eopaque

is expressed as,

Eopaque =
1
n

n

∑
i=1

−(1−αi)
2

The smoothness penalty term Espatial is expressed as,

Espatial =
1
n

n

∑
i=1

(▽αi)
2

where ▽αi is the spatial gradient of opacity in the i-th layer. This term penalizes
solutions which are not spatially smooth. However, the gradient of opacity is not
always aligned with that of intensity, which may result in discontinuity at the
edges.

The colour palette Cn is calculated based on the simplified RGB-space convex
hull of input image, which can be further selected to represent the colour of
decomposed layers. The layer order as well as the number of layers n are user-
specified. The opacity for every layer may be solved by minimizing the following
combined cost function,

E = ωpolynomialEpolynomial +ωopaqueEopaque +ωspatialEspatial (4.3)

where ωpolynomial = 375,ωopaque = 1,ωspatial = 10.

4.1.3 Modified Layer Decomposition

To enhance the smoothness and completeness of edges, the coherent line drawing
technique in [31] is introduced to Eq. 4.3 , which is a flow-guided anisotropic
filtering framework.
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(a) Input painting (b) Edge Tangent Flow (c) Coherent lines

Fig. 4.3 Edge Tangent Flow field and coherent lines of a Rosemaling painting. It
contains lots of C and S strokes.

(a) (b) (c) (d)

Fig. 4.4 Comparison of layer decomposition by Eq. 4.3 and Eq. 4.9 at the 2nd
layers. (a) and (b) show the results by using Espatial and E f low in Eq. 4.3; (c) and
(d) show the results before and after using Eedge in Eq. 4.9.

Fig. 4.3b shows the edge tangent flow (ETF) field of a Rosemaling painting. First,
the ETF field is involved into Espatial . The ETF field t is defined as,

tnew(x) =
1
k ∑

y∈Ω(x)
ϕ(x,y)tcurrent(y)ωs(x,y)ωm(x,y)ωd(x,y) (4.4)

where t(x) denotes the normalized tangent vector at pixel x, and it is updated
iteratively: t i(x) → t i+1(x). tcurrent(x) donates the current tangent vector, and
tnew(x) represents the update one. The initial t0(x) is the normalized perpendicular
vectors(counter-clockwise) of the image spatial gradient in greyscale, and by



4.1 Layer Decomposition 33

default, t(x) is updated 3 times. The gradient of an image is a vector of its partial
derivatives, here the image gradient is calculated by sobel filter[64]. Ω(x) denotes
the neighbourhood of the pixel x with radius r, where r = 5. k represents the
vector normalization. The spatial weight function ωs(x,y) employs the radially-
symmetric box filter:

ωs(x,y) =

{
1 i f ∥x− y∥< r

0 otherwise.

The magnitude weight function ωm indicates that the bigger weights are given to y

whose gradient magnitudes are higher than that of the central pixel x.

ωm(x,y) =
1
2
(1+ tanh(g(y)−g(x)))

g(∗) donates the normalized gradient magnitude. ωm is a monotonically increas-
ing function, and it ensures the preservation of the dominant edge directions.
The direction weight function, ωd , increases when the two vectors are closely
aligned.

ωd(x,y) =
∣∣tcurrent(x) · tcurrent(y)

∣∣
It enhances the alignment of vectors, while suppressing swirling flows. In addition,
the sign function ϕ(x,y) is employed to enhance the alignment of vectors as
well.

ϕ(x,y) =

{
1 i f tcurrent(x) · t(x)current(y)> 0,
−1 otherwise.

(4.5)

As shown in the Eq. 4.4, the ETF of each pixel is influenced by its neighbourhood
and it is updated iteratively (3 times by default), so the ETF of each pixel are af-
fected by a large area. As shown in the Fig. 4.3b, even the ETF on the background
pixels are influenced by the brush strokes. It is also noteworthy that the ETF are
updated from normalized image gradient, so even for the background in the input
painting (Fig. 4.3a), some edge tangent flow are not zero.

Involving ETF filed of Eq. 4.3 in Espatial , the smoothness penalty is rewritten
as,

E f low =
1
n

n

∑
i=1

∥tnew
i ∥(▽θiαi)

2 (4.6)
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Here, tnew
i represents the ETF on pixel i. θi denotes the direction of tnew

i , and ▽θiαi

is the gradient of opacity in the direction of tnew
i . Moreover, this penalty is weighted

by the norm of tnew
i . Applying the updated E f low to the layer decomposition of Eq.

4.3 instead of Espatial , the brush strokes become complete and smooth, which can
be noted in Fig. 4.4.

Moreover, the coherent lines are involved in layer decomposition of Eq. 4.3. The
coherent lines are binary edges computed based on the ETF field [31]. Comparing
with other techniques such as canny edge [10], the generated edges significantly
enhance the coherence of the lines in the input image [31]. So, the generated edges
are named coherent lines. Since the brush paintings are made by brush strokes,
here, the coherent lines are used to detect the edge of brush strokes.

Herein, the coherent lines lc are defined as follows,

lc(x) = FDoG(x, t, I) (4.7)

Given a ETF field t and input greyscale image I, the Flow-based Difference-of-
Gaussians(FDoG) filter is employed here [31]. lc(x) represents the binary result at
pixel x as shown in Fig. 4.3c . Unlike Difference-of-Gaussians(DoG) filter [75],
the kernel shape of FDoG is defined by the local flow encoded in ETF field t. In a
image, it is most likely to make the highest contrast in the gradient direction. In
FDoG filter, when moving along the edge tangent flow, the DoG filter is applied
in the gradient direction. As a result, the FDoG filter significantly enhances the
coherence of the generated edges, and suppresses noises. For details, please refer
to [31].

Here, the coherent lines is regarded as the edges of brush strokes. To preserve
the brush stroke edges, it is observed that the opacity along the coherent lines is
consistent, i.e. min

∫
l ∥▽α∥2dx, where l denotes the pixel collection of coherent

lines lc. Hence, the constraint term is defined by applying Laplacian operator to
the opacity along the coherent lines,

Eedge = ∥LY∥2 (4.8)

where all the opacity αi are stacked in the vector Y , and L denotes the Laplacian
connection matrix. The eight-connected neighbouring rule is utilized to construct
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the connection matrix L, that is, if two adjacent pixels, i and j, stay on the same
coherent line, the item of L(i, j) is set to -1 ; otherwise 0. Fig. 4.4d shows that
the brush strokes become visible and complete after involving Eedge into Eq. 4.3.
Accordingly, the layer decomposition of Eq. 4.3 is rewritten as,

E = ωpolynomialEpolynomial +ωopaqueEopaque +ω f lowE f low +ωedgeEedge (4.9)

where ω f low = 10,ωedge = 1 for all the examples. For comparison, the schemes of
Eq. 4.3 and Eq. 4.9 are performed separately on the same set of brush paintings and
compare the root-mean-square-error (RMSE) of the opacity of the coherent lines on
each layer shown in Table 4.1. It has to be noted that there is no brush stroke on the
background layer, so the results are not compared on the background layer. In other
words, the evaluation starts from layer 1 (the index of the background layer is 0), as
shown Table 4.1. The RMSE is defined as, RMSE = ∑

N
i=1

√
∑

ni
j=1(αi, j − ᾱi)2/ni.

N donates the number of coherent lines, where the ᾱi is the average opacity of ni

pixels on the ith coherent line, and αi, j is the opacity value of jth pixel on the ith

coherent line. The RMSE by Eq. 4.9 is noticeably less than that by Eq. 4.3. This
means that the coherent lines have been embedded into the opacity of each layer.
The weights are empirically determined in terms of the opacity RMSE of coherent
lines. Moreover, the resulting layer by Eq. 4.9 is shown in the upper row of Fig.
4.5.

4.1.4 Iterative Scheme

The decomposed layers can be separated into the background and foreground
(brush stroke regions) by threshold opacity. It can be noted in the first row of Fig.
4.5, there are some regions shared in multiple layers since such shared regions have
visible opacity at the multiple layers. As there is a lack of layers, the colours of the
shared regions have to be yielded by blending the colours of the current multiple
layers. Moreover, it can be noted that the shared regions may be categorized into
two kinds, one is the region overlapped by multiple brush strokes with palette
colour, and the others are the isolated ones, as shown in Fig. 4.6. The former
are always merged into the other regions within some layers, while the latter
are always isolated in all the layers. It is natural to view the isolated regions as
potential strokes. Therefore, average colour of the largest isolated region is set
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Table 4.1 Opacity RMSE of Coherent Lines on Layers

Painting ID
Number

of Layers
Layer

Opacity RMSE
of coherent lines

By Eq. 4.3 By Eq. 4.9

Rooster
(Fig. 6.9, row 1)

4
1 25.12 15.39
2 8.89 5.92
3 15.74 9.63

Man
(Fig. 6.9, row 2)

4
1 38.41 26.33
2 21.28 16.37
3 5.26 4.19

Bird
(Fig. 6.9, row 3)

4
1 8.24 6.12
2 7.15 4.25
3 9.24 6.71

Lotus
(Fig. 6.9, row 4)

4
1 16.44 10.25
2 20.54 15.04
3 10.56 5.87

Lotus2
(Fig. 7.1, row 3)

4
1 17.58 13.87
2 19.78 8.72
3 22.47 17.24

Rosemaling1
(Fig. 6.6, row 1)

5

1 27.11 21.42
2 17.52 14.58
3 16.2 17.99
4 19.24 11.51

Rosemaling2
(Fig. 6.6, row 2)

5

1 15.44 12.84
2 21.22 24.71
3 25.72 19.95
4 24.98 21.36

Rosemaling3
(Fig. 6.6, row 3)

7

1 16.53 11.94
2 15.71 12.15
3 21.21 16.19
4 19.48 15.61
5 15.21 9.21
6 11.01 4.85

Van gogh1
(Fig. 4.11 , row 1)

5

1 10.18 28.11
2 12.27 14.11
3 22.34 13.41
4 11.85 8.65

Van gogh2
(Fig. 7.1, row 2)

4
1 15.89 14.25
2 19.54 15.49
3 17.21 12.98
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Fig. 4.5 Comparison of before and after adding a new layer. The upper row shows
the decomposed layers, while the below row shows those layers after adding a new
layer. Each column shows the decomposed layers with a corresponding palette
colour. The last column of the below row shows the new layer.

as a new palette colour, and then recompute the opacity of each layer by solving
Eq. 4.9. Fig. 4.5 shows the comparison of before and after adding a new layer.
Furthermore, to remove the isolated regions, it can be achieved by adding the
new layers in an iterative way. When no isolation region is detected, namely, no
potential stroke is found, the iteration is stopped. Usually, after 1 or 2 iterations,
there is no isolated region to appear in the new layer. This can be noted in Fig. 4.6,
that is, after 1 iteration the isolated regions have a distinct change.

Algorithm 1: Iterative Scheme
Input: N decomposed layers
Output: N +1 decomposed layers

1 Binarize each decomposed layers;
2 Detect the isolated regions from the binarized layers;
3 Select average colour of the largest isolated region as new palette color Cn+1;
4 Re-compute the decomposition by solving Eq. 4.9 with Cn+1;
5 Stop the iteration when no isolation region is detected;
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(a) (b) (c) (d)

Fig. 4.6 The masks of the shared and isolated regions when there are 4 and 5
layers respectively. (a) Shared regions (4 layers). (b) Shared regions (5 layers).
(c)Isolated regions (4 layers). (d)Isolated regions (5 layers).

4.1.5 Brush Stroke Completion

(a) (b)

Fig. 4.7 Illustration of in-painting on a layer. (a) User annotated mask (blue region)
on the in-painting area. (b) In-painted layer.

As shown in Fig. 4.5, some brush strokes may have other opaque brush strokes
overlapped above, which bring about the gaps to break the brush strokes within a
layer. Obviously, to make brush strokes complete and smooth, these gaps need
to be filled. It is natural to involve user interventions, such as manual masks or
sketches, which specify the gaps to be filled.

Once the overlapped regions are determined, the patch-based inpainting techniques
[80] is employed here, that is, within one layer, the gap is specified by a mask,
while the patches are extracted from the outside of the gap in all layers and are
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utilized to create the patch dictionary. Then, the gap is filled through iteratively
projecting each patch of the layer to its nearest neighbour in the dictionary. Fig.
4.7 shows that such patch-based inpainting methods can effectively deal with the
scenario of a big gap. Since the inpainting method [80] requires user annotations,
while the brush strokes extraction in [42] is automatic, for fair demonstration and
comparison, other than the inpainting shown in Fig. 4.7, the inpainting technique
is not involved for the other examples.

4.2 Extraction of Brush Strokes

Brush strokes normally follow certain rules in a brush painting and they vary
depending on the style of the painting. Here, how to make use of such rules is
discussed. Brush paintings, such as Rosmailing paintings, usually use subtle and
vibrant colours to enhance colour contrast between overlapped strokes. As a result,
the overlapped strokes tend to be classified into different layers. Extracting brush
strokes within one layer is easier than directly from the input painting. The MSERs
is employed which is proposed in [15] and [52] to extract brush strokes since
it is invariant to affine intensity changes. MSERs algorithm requires a distinct
difference between background and foreground while allowing a small variation of
intensity within the selected stroke region. Usually, the strokes on the decomposed
layers satisfy this requirement.

However, it is likely that MSERs may fail in segmentation with the following
scenarios,

1. the brush stroke with the intensity very close to the background;

2. two adjacent brush stroke painted by different colours with the similar
intensity;

3. overlapped brush strokes;

4. moreover, like the other existing segmentation approaches, the MSERs
algorithm encounters over-segmentation issues as well.
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To tackle these challenges, the coherent lines [31] are introduced into MSERs,
which both enhances the edges of strokes and preserves the completeness of
strokes. For completeness sake, the MSERs algorithm is briefly addressed and
then address the modifications.

(a) Opacity (b) Intensity

(c) Histogram of alpha (d) Histogram of intensity

Fig. 4.8 Comparison of the intensity (a) and opacity (b) of a layer with histograms
(c)(d).

Intensity and opacity of one layer associated with the individual histograms are
shown in Fig. 4.8. It can be noted that the opacity of the layer contains richer
layered details than the intensity. Here, the layer intensity (represented as LI) is
based on the composition of its colour LRGB, its opacity αL , and the background
colour BRGB. Since the opacity of background is 1, based on Eq. 4.1, LI equals to
G(αLLRGB − (1−αL)BRGB), in which G(∗) is the greyscale function.
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(a) (b) (c)

Fig. 4.9 (a) Original image. (b) Intensity of image. (c) Original MSERs on the
intensity of image.

4.2.1 MSERs Algorithm

MSERs can denote a set of distinguished regions that are detected in an intensity
image. All of these regions are defined by an extremal property of the intensity
function in the region and on its outer boundary, i.e. for a given extremal region S,
the internal intensity is more than the intensity of boundary of S,

∀p ∈ S,∀q ∈ ∂S,−→ I(p)≥ I(q)

where ∂S denotes the boundary of S. The extremal regions can be detected by
changing threshold. With given intensity threshold g, all pixel with intensity larger
than g is black, otherwise is set to white. By changing threshold g, these black
and white regions may further split or merge indicates the set of all extremal
regions. The resulting extremal regions may be represented by the component
tree. Accordingly, the change rate of the area of the extremal region is computed
by

γ(Sg
i ) =

(∣∣∣Sg−∆

j

∣∣∣− ∣∣∣Sg+∆

k

∣∣∣)
|Sg

i |

where |.| denotes the cardinality, Sg
i is the i-th region which is obtained by thresh-

olding at an intensity value g and ∆ is a stability range parameter. g−∆ and g+∆

are obtained by moving upward and downward respectively in the component
tree from the region Si until a region with intensity value g−∆ or g+∆ is found.
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{i, j,k} are the indices of nodes of the component tree. MSERs correspond to
those nodes of the component tree that have a stability value γ , which is a local
minimum along the path to the root of the tree.

4.2.2 Modified MSERs Algorithm

(a)

(b)

(c)

Fig. 4.10 Comparison of segmentation results by the original MSERs and modified
version. (a) The decomposed layers. (b) The original MSERs on the intensity of
layers. (c) Opacity of layers, and MSER regions on four layers by the modified
MSERs.
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As shown in Fig. 4.9, in terms of the definition of the area change rate γ , MSERs
may fail in segmentation with the following scenarios, (1) the region with the
intensity most close to the background; (2) two adjacent regions in different colour
but similar intensity; (3) the overlapped brush strokes.

Comparing with default MSERs algorithm use intensity of input, extraction in
this work is performed on the opacity of generated layers. With successful layer
decomposition, in each layer, the opacity of the background is close zero, which
can be easily filtered out, see Fig. 4.10 . The opacity of the brush strokes is always
independent of the colour, with successful layer decomposition, two adjacent
or overlapped brush stroke painted by different colours would be separated into
different layers, so, naturally, the proposed extraction is suitable for the second
and third scenario, see Fig. 4.10. Moreover, the layer decomposition of Eq. 4.9 on
a brush painting is performed, and the intensity and opacity of one layer associated
with the individual histograms are shown in Fig. 4.8. It can be noted that the
opacity of the layer contains richer layered details than the intensity. So, the first
modification is to perform MSERs on the opacity of every layer.

Secondly, this work aim at the scenarios of two adjacent regions with the similar
opacity. When the extremal region is growing up through changing threshold, it is
feasible to restrict the region by introducing the coherent lines. According to the
definition of the extremal region, the boundary of region S should satisfy,

∀p ∈ S,∀z ∈ S̄,∀q ∈ ∂S −→ I(p)≥ I(q) and I(q)≤ I(z) (4.10)

where S̄ denotes the complement of S. The second modification is to simply
modify the opacity of layers, that is, overlapping the coherent lines with the layer
and then changing the opacity of coherent lines to the smallest value in the layer.
To deal with the over-segmentation issue, the coherent lines play an important role.
Given a region S, the area change rate γ is modified as,

γ(Sg
i ) =

∣∣∣∣∣S
g−∆

j −Sg+∆

k

Sg
i

∣∣∣∣∣+
∣∣∣∣∣Q

g−∆

j −Qg+∆

k

Qg
i

∣∣∣∣∣−
∣∣∣∣1− Qg

i
Sg

i

∣∣∣∣ (4.11)

where Q denotes the set of pixels which stay on the coherent lines and Q ⊂ ∂S.
The third modification is to take into account the change of coherent lines to the
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boundary of S, i.e. the third term penalizes that a small portion of the boundary
∂S is occupied by coherent lines.

Fig. 4.10 shows the segmentation results by the modified MSERs, which corre-
spond to brush strokes. It can be noted that performing MSERs on the intensity
inevitable yields over-segmentation, as shown in Fig. 4.9 . Performing the modi-
fied MSERs on the opacity of layers, the strokes tend to be complete and smooth
within one layer. Moreover, some small regions with the distinct opacity values
against neighboring areas have been filtered out, and no region is selected from
the background.

4.3 Result and Analysis

(a) (b) (c)

Fig. 4.11 (a) Input images (Painting ID from top to down: F374, F607, F411). (b)
Brush strokes extracted by [42]. (c) Brush strokes extracted by LStroke.
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To the best of the author’s knowledge, there is lack of study on automatic brush
strokes extraction. [42] presented a automatic brush stroke extraction method for
van Gogh’s paintings. The brush strokes extracted for some paintings are shown
in Fig. 4.11. In this thesis, the van Gogh’s painting ID (F-numbers) are given by
the catalogue numbers in [71]. As shown in Fig. 4.11, the extracted brush strokes
from the input paintings are indicated by different colours, and each brush stroke
region is a set of pixel coordinates. To numerically evaluate their brush stroke
extraction algorithm, they manually marked brush strokes on 10 selected regions
of van Gogh’s paintings, see Fig. 4.12.

For the each input example region (Fig. 4.12a), they manually marked the brush
strokes (Fig. 4.12b). Based on the manually marked examples, they define
two parameters in order to evaluate the accuracy of extracted brush strokes and,
therefore, can be used to compare between their method and this work: valid rate
and detection rate.

For input painting regions, suppose there are m manually marked brush strokes
defined as B∗

j , i = 1, ...,m, and n brush strokes are detected by extraction algorithm
represented by Bi, i = 1, ...,n. Bi,B∗

j are the set of pixel coordinates of brush
strokes, and Bi ∩B∗

j donates the overlapped pixels between the j− th manually
marked brush stroke and the i− th detected brush stroke. Bi is defined as valid
covered once

∣∣∣Bi ∩B∗
j

∣∣∣/ |Bi| > 80%, which means more than 80% pixels of Bi

are in the overlapped region, and Ci, j is set to 1 to indicate Bi is valid covered
by B∗

j , otherwise Ci, j = 0. Ci,· = ∑
m
j=1Ci, j which shows if the Bi is valid covered

by any manual brush stroke. If Ci,· = 1, Bi is defined as valid. On the other
hand, C·, j = ∑

n
i=1Ci, j which indicates how many extracted brush strokes are valid

covered by manual brush stroke B∗
j . B∗

j is defined as detected when C·, j ≥ 1.
If C·, j ≥ 1, D·, j = 1, otherwise, D·, j = 0. Based on Ci,· and C·, j, valid rate and
detection rate are used to assess the accuracy of extracted brush strokes.

Valid rate: ∑
n
i=1Ci,·/n, the valid ratio of extracted brush strokes.

Detection rate: ∑
m
j=1 D·, j/m, the ratio of detected manual brush strokes.
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4.3.1 Compare LStroke with [42]’s method

Fig. 4.12 Brush strokes extraction in [42] (Painting ID: F518)

Fig. 4.13 Brush strokes extraction by LStroke (Painting ID: F518); the upper row
shows the opacity maps of each layer

Even though LStroke is not specifically designed for van Gogh’s paintings, for
a fair comparison, brush strokes in 10 sample regions from the same collection
of [42] are also manually marked by a professional artist from China Academy
of Art. The manual marked brush strokes regarded as ground truth for evaluation,
and they are marked individually on Mypaint[50]. Same as extracted brush strokes
in [42], it is noteworthy that the extracted brush strokes by LStroke can also
be represented as a set of pixel coordinates (see Fig. 4.13). And based on the
manually marked brush, the valid rate and detection rate of brush strokes extracted
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by LStroke are calculated. As shown in Fig. 4.14, in [42] the brush strokes are
manually marked as ground truth for valid rate and detection rate.

Fig. 4.14 Manually marked brush strokes by [42].

The average valid rate and average detection rate of LStroke are higher than the
method in [42] and default MSERs algorithm, see Table 5.1 (in this thesis, the van
Gogh’s painting ID are given by the catalogue numbers in [71]).

As shown in Table 5.1, on average, LStroke extracts brush strokes with higher
valid rate and detection rate. Additionally, compared to Li et al.’s method [42],
LStroke is based on the alpha values from layer decomposition, it has better
performance for the segmentation of overlapped brush strokes.

4.4 Summary

To generated relief model from brush strokes, brush strokes need to be firstly
extracted. In this chapter, the layer decomposition based brush stroke extraction
method — LStroke is introduced. The LStroke consists of two steps: layer
decomposition and brush stroke extraction. In this chapter, how to extract brush
strokes from decomposed layers by using modified Maximally Stable Extremal
Regions (MSERs) algorithm is demonstrated. The default MSERs algorithm
[15] and the modified algorithm are explained and their main characteristics
compared.
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With numerically evaluation, LStroke is compared with the most closely-related
work [42]. As a result, the LStroke outperforms [42]’s in terms of valid rate and
detection rate of brush stroke extraction. By successfully extract brush strokes,
the proposed algorithm can also be used in image editing, see chapter 7.



Chapter 5

Deep Network Based Brush Stroke
Soft Segmentation—DStroke

Fig. 5.1 Paintings with highly mixed brush strokes in similar colours (upper row);
Extracted brush strokes by LStroke(Chapter 4) (second row). Extracted brush
strokes by DStroke (bottom row).
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In the previous method LStroke (Chapter 4), layer decomposition is used to split
the brush strokes into different layers, so that each stroke can be easily segmented
within one layer. However, the main challenge is that when the overlapped strokes
share similar colours in some brush paintings, they would appear on the same layer
and might be accidentally regarded as one brush stroke. Some brush paintings use
subtle and vibrant colours to enhance the colour contrast between adjacent brush
strokes. Applying palette colours to layer decomposition benefits the overlapped
brush stroke segmentation in this scenario. However, some brush paintings do
not emphasize the use of vibrant colours, or even the adjacent strokes may share
the similar (or even the same) colours, the boundary of the brush strokes may
be blurred, which results in the failure of stroke segmentation as shown in Fig.
5.1.

Fig. 5.2 Overview of the Semantic Soft Segmentation[3].

There have been many successful applications of deep neural networks in semantic
segmentation. The recent work [3] firstly proposed the Semantic Soft Segmenta-
tion, which claims to successfully extract opacity of different semantic regions
and determine the overlapped regions, as shown in Fig. 5.2.

The Semantic Soft Segmentation [3] was designed for accurate region selection
(soft segmentation), in which a deep neural network is used for supplying semantic
information. Moreover, it builds upon the matting Laplacian proposed in [39].
The matting Laplacian L is matrix aiming to capture the affinity between each
pair of neighbouring pixels in a small patch, normally, a 5 by 5 window. a is the
vector of the layer alphas representing a soft segment, and calculated by solving
the quadratic function aT La with user constrains. As shown in the formulation, L
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represents the Laplacian matrix, and how to construct the matting Laplacian plays
an important role here. In [3], semantic information of image is generated by a
deep neural network, and the matting Laplacian matrix is constructed according
to the colour information and the semantic information, namely, the affinity of
semantic information between pixels is also considered. After this, the spectral
decomposition method [40] is applied for generating soft regions. The eigenvectors
of matting Laplacian reveal semantic regions and soft transitions between them.
The eigenvectors are regarded as a set of preliminary soft segments, and then
grouped into 5 layers (a number set via empirical observations) get semantically
meaningful soft segments.

Nevertheless, as mentioned in [3], the method suffers from least three limitations
which fails in soft segmentation for strokes:

1. It only generates limited regions, and the number of resulting segmentation
is fixed(5 by default), while a brush painting normally contains hundreds
even thousands brush stroke, as shown in 5.11.

2. Even with high-level information from the deep network, [3] cannot separate
different instance of the same class, since it cannot provide instance-aware
semantic information. It is impossible to separate brush strokes since they
belong to the same class.

3. The algorithm is not optimized for speed, the spectral decomposition of
matting Laplacian is time-consuming. As mention in [3], their method takes
3 to 4 minutes for a 640x480 image.

Although deep learning techniques are leveraged to facilitate extracting soft regions
from a image in [3], extracting brush stroke with deep neural networks is not
straightforward and progression is limited due to the following issues:

1. There is no available brush stroke sample training dataset for the deep neural
network at the moment. Labeling strokes by manual is a tedious task and
time consuming very much. Usually, it cannot satisfy the big training dataset
need for deep learning purpose.

2. Similar to [3], in the scenario of brush stroke segmentation, how to deal
with soft edges is a problem, which usually overlap with other regions in
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terms of transparency. It is desired for segmentation to identify different
brush stroke regions of the painting while also accurately representing the
soft transition between them.

To tackle these challenges, a deep neural network based soft segmentation method—
DStroke is proposed. The contributions include:

1. A big brush stroke training dataset can be automatically produced.

2. Instead of setting segmentation number via empirical observations, DStroke
soft segments a painting into unlimited number of soft segments.

3. The DStroke generates instance-level soft segmentation results, namely,
brush strokes.

5.1 Training Dataset Generation

(a) (b) (c)

Fig. 5.3 (a) Scene image. (b) Iterative stroke painting on canvas (upper row);
height map of canvas (bottom row). (c) Illumination of canvas.
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Algorithm 2: Dataset generation
Input: S: Sample image, SA: Stroke alpha map, ST: Stroke thickness
Output: C: Canvas, E: Edge map, H: Height map

1 dis1 = ∞,H = 0
2 R = coveredregion

canvas // The ratio of painted region on canvas;
3 threshold = rand(0.7,1) // Random number between 0.7 and 1;
4 while R < threshold do
5 dis1 = (S−C)2 ;
6 ROI = Positionmax(dis1) // Choose the region of interest;
7 Colorstroke = avg(S[neighbor(ROI)]) // Choose the average colour of the

ROI neighbourhood on S as stroke colour, which is a 3x3 window contains
the ROI and its surrounding pixels;

8 C′ =Compose(C,Stroke) // Paint the stroke on Canvas. The stroke image is
firstly rotated to the vertical angle of the ROI gradient and then centre the
stroke image is aligned to the ROI;

9 dis2 = (S−C′)2 ;
10 if dis2 < dis1 then
11 keep the stroke ;
12 save the stroke edge on E ;
13 remove the overlapped edge on E ;
14 ST = SA // Thickness of stroke ST is set equal to SA ;
15 H[S] = Avg(H[S]),H = H +ST // update of Height map. S is the stroke

region. H[S] represents the heights in stroke region, and Avg(H[S]) is the
average height of region S. ;

16 R= Size of painted region/ Size of canvas;

17 else
18 remove the stroke ;
19 end
20 end
21 Rendering and Data augmentation.

To produce a brush stroke sample training dataset for deep learning purpose, every
input painting must contains the information of brush strokes. Moreover, the real
painting usually have the individual height maps since pigment associated with
each brush stroke on a canvas may has its own thickness. For reality purpose, the
produced brush stroke samples should maintain illumination effect of the painting.
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To this end, the following algorithm is proposed to generate paintings from images
through mimicking brush strokes, see Fig. 5.3.

In the implementation of DStroke, firstly, the canvas C is initialized as a blank
white image, then the region of interest (ROI) represents the single pixel with the
largest difference between scene image and the canvas ( as shown in Algorithm
2, ROI = Positionmax(dis1), in which Positionmax(∗) returns the position with
maximum value). The gradient of a pixel is a vector of its partials. Here, the Sobel
operator [64] performs the gradient measurement on the greyscaled input image,
and the Sobel operator consists of a pair of 3×3 convolution kernels. Secondly,
based on the stroke library in kylebrush [38], a stroke is randomly picked up to put
on canvas. It is worth noting that each brush stroke is represented as a rectangle
image (Fig. 5.6) in the stroke library. The stroke image is firstly rotated to the
vertical angle of the ROI gradient and then center the stroke image is aligned to the
ROI. After that, the new ROI is detected over the updated image and is overlapped
by a new stroke from the stroke library until the original image is mostly covered
by strokes. This method does not aim to minimum the difference between scene
image and canvas, which is time-consuming. Instead, paintings are generated once
a certain percentage of the canvas is covered with strokes. For details, refer to
Algorithm 2.

To simulate the physical appearance of a brush painting under different lighting
circumstances, the thickness of the generated paintings are calculated. Here, the
height map H represents the per-pixel thickness of the painting, as shown in Fig.
5.3. Initially, the height map H is set as zero. The thickness of a stroke is set
equal to its alpha map ( ST = SA ), and the height map is cumulative and updated
each time a stroke is placed on the canvas. Firstly, the height of new stroke
region is set to the its average height ( H[S] = Avg(H[S]), and Avg(∗) returns the
average value) and then the height map is added with the new stroke thickness (
H = H +ST ). When the painting and its thickness are completed, this method
renders the final image. The normal of pixels on the canvas is calculated by the
directional derivative of H. The illumination of each pixel is then calculated under
the different illumination models.

The edge map E is also updated as shown in Fig. 5.4. The edge map shows the
stroke edges. Once a stroke is painted on the canvas C, the edge of the stroke
is kept on E. Since the new strokes will cover the old strokes which makes the
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(a) (b)

Fig. 5.4 (a) Scene image. (b) Iterative stroke painting on canvas (upper row); edges
of brush strokes (bottom row).

edges of the old strokes very difficult to see, the overlapped edges are removed on
E. Eventually, each painting corresponds to an edge map that together forms the
training data.

The kylebrush [38] contains brush strokes with various size and they are made by
professional artists. On the other hand, based on the experiments, over-adjusting
the stroke size will lead to a reduction in stroke extraction accuracy, so the strokes
are not resized in the Algorithm 2.

(a) (b) (c) (d) (e)

Fig. 5.5 Input image and its augmentations. (a) Input image. (b) Adding noises.
(c) Distortion. (d) Changing hue. (e) Flipping.

In some cases, the target application for a deep neural network exists in various
conditions. However, the training data usually cannot sufficiently represent these
various conditions. Data augmentation is a technique commonly used for such a
scenario. It usually involves creating additional synthetically modified images by
transforming (rotating, panning, scaling, adding some noise).
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To further increase the variety of training dataset, as shown Fig. 5.5, data augmen-
tation is applied: the paintings are randomly flipped, rotated, and slightly distorted;
noises (Gaussian noise, salt and pepper noise) are added to the paintings; the hue
is also changed randomly to shift the colour of paintings.

The input sample image for Algorithm 2 contains 1000 images downloaded from
open source image library stocksnap [66] which contains various scene images
created by artists and photographer (e.g. still life, animals, architecture, natural
scenery). 1000 corresponding paintings are created based on the downloaded
images, and then 4000 more augmented images are generated from the 1000
paintings.

Fig. 5.6 Different alpha maps of brush strokes from kylebrush [38].

Compared to painterly rendering methods such as [78] [17] [24] [21] [23], there
are three distinct differences in DStroke:

1. DStroke can better avoid over-fitting issue in training. This is because
many stroke types are utilized for training instead of only one or a few of
types, e.g. 520 (number of brush strokes types in the kylebrush library [38])
stroke types in the implementation. And data augmentation is also applied
to increase the variety of data.

2. A weak similarity measurement is applied to simplify the computation,
which drastically decreases computational complexity.
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3. Based on the height maps, the output paintings are rendered under the
different light circumstance to further avoid overfitting.

5.2 Network Structure

The DStroke is based on deep neural network. This section begins with a brief
introduction to the network structure and then discusses its implementation.

The network of brush stroke extraction is based on the work of Pix2Pix [30].
The network consists of two parts: the generator G that generates edges of brush
strokes from input painting, and discriminator D that classifies the ground truth
with the generator’s output, see Fig. 5.7.

The Generator is a U-Net architecture derived from the Fully Convolutional
Network but is modified to ensure that it produces faster and more accurate
segmentation. In general, the concatenation part of the U-Net encodes the input
image into feature representations at multiple different levels while the expansion
part propagates the contextual information to higher resolution layer which is
necessary to predict a good segmentation map.
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(a) The generator and discriminator

(b) Generator structure

Fig. 5.7 The Pix2Pix network

As shown in Fig. 5.7, the input of the generator G are the painting images, output
are the brush strokes edges. Let and CDk denote a Convolution-BatchNormDropout-
ReLU layers with k filters, Ck represent a Convolution-BatchNorm-ReLU layer.
The generator G adopts 8 Convolution-BatchNorm-ReLU layers in the encoder,
and all convolutions are 4x4 Convolution Layers with stride 2. The feature
map numbers double at first 4 layers, starting with 64 feature maps for the first
layer, 128 for the second, and so on. The architecture of encoder of G can
be represented as C64−C128−C256−C512−C512−C512−C512−C512.
Similarly, the decoder of G is composed of 8 Convolution-BatchNorm-Dropout-
ReLU layers. Each layer is concatenated with the corresponding downsampling
feature map. Convolutions in the encoder of G downsample by a factor of 2,
whereas they upsample by 2 in the decoder. The decoder of G consists of :
CD512−CD1024−CD1024−C1024−C1024−C512−C256−C128.

The discriminator D adopts 4 Convolution-BatchNorm-ReLU layers, and the
feature map number doubles starting with 64 maps for the first layer, 128 for the
second, and so on. To map the last layer to a 1-dimensional output, a convolution
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is applied here with a Sigmoid function. The architecture of discriminator D is
C64−C128−C256−C512.

The generator G is trained to produce edges of strokes, while the discriminator, D,
is trained to do distinguish the generator’s outputs and the groundtruth [30]. In
other words, objective of Pix2Pix network can be expressed as follows:

LcGAN(G,D) = Ex,y[logD(x,y)]+Ex,z[(1− logD(x,G(x,z)))] (5.1)

As shown in Fig. 5.7, the network should be trained to map painting → edge.
Therefore, dataset x,y consists of painting image x and edges y which is considered
as ground truth, and as an another input to the generator, z is Gaussian noise. Given
the image x, the generator, G tries to output the edge of painting x, G(x) in order
to fool the discriminator. The L1 loss function of Generator is defined as:

L L1(G) = Ex,y,z ∥y−G(x,z)∥1 (5.2)

On the other hand, the discriminator, D, learns to distinguish between fake edge
image, G(x) , generated by the generator and the real image x:

D(x,G(x)) = 0( f ake), D(x,y) = 1(real) (5.3)

The idea here is that the generator needs to fool the discriminator in classifying
fake edges as real but also it has to ensure that the output produced is near the
ground truth output. The job of the discriminator does not change, that is, it just
has to distinguish between real and fake edges. Where the generator G tries to
minimize this objective while the discriminator D that tries to maximize it. As
such, the final objective of the network is:

G∗ = argminGmaxDLcGAN(G,D)+λLL1(G) (5.4)

In the implementation of DStroke, the 5000 training images generated from
Section 5.1 are trained for 200 epochs, batch size 1, with random mirroring.
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5.3 Soft Segmentation

(a) Input image (b) Edge detected (c) A small gap (d) Segmentation

Fig. 5.8 An example of blurred edges and gaps within stroke

In some cases, the edges obtained may have few small gaps due to complexity of
brush stroke, as shown in Fig. 5.8. Therefore, trapped-ball segmentation [85] is
applied here for stable extraction of brush strokes, as shown in Fig. 5.8d.

The guided filter has proved to be a good approximation of solution for matting
Laplacian matrix [20]. To extracted the fuzzy transition between strokes and their
transparency, the guided filter is employed here. The guided filter is very suitable
for this task, i.e. brush stroke extraction, since the trimap is available. The hard
segmentation regions can be regarded as the trimaps p and assigned to every stroke
accordingly, as shown in Fig 5.9. The other advantage is that guided filter is
implemented in linear time.

More specifically, the cost function to be minimized to find the unknown alpha
map of each stroke as follows:

E(q) = (q− p)T
Λ(q− p)+qT Lp

where, N is the pixel number of input image I (see 5.9a), q is the N ×1 unknown
alpha map vector, p is the constraint (e.g., a binary mask) as shown in 5.9c, L is
an N ×N matting Laplacian matrix, and Λ is a diagonal matrix encoded with the
weights of the constraints.

To optimize the above-mentioned cost function, the linear system has to be
solved:

(L+Λ)q = Λp
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(a) (b) (c)

(d) (e)

Fig. 5.9 An example of soft segmentation. (a) Input image. (b) Hard segmentation.
(c) A segmented brush stroke mask. (d) Opacity of the brush stroke. (e) Soft
segmentation.

The elements of the matting Laplacian matrix are given in [39]:

Li, j = ∑
k:(i, j)∈ωk

(δi j −
1
ω
(1+

(Ii −µk)(I j −µk)

σ2
k + ε

))

where the mean and variance of all pixel i in a local window wk of image I are
represents as µk and σ , and ε is a regularization parameter, which can be directly
obtained by the guided filter kernel:

Li j = |ω|(δi j −Wi j)

where
Wi j(I) =

1

|ω|2 ∑
k:(i, j)∈ωk

(1+
(Ii −µk)(I j −µk)

σ2
k + ε

)

It has been proven [20] that qi can be re-written as a weighted sum as shown
below:
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qi ≈Wi j(I)p j (5.5)

As such, the guided filter can be used to perform soft segmentation which is
beneficial for this study as the guided filter is very suitable for this task, i.e. brush
stroke extraction, since the trimap is available. The hard segmentation from deep
network is regarded as the trimap p and assigned to every stroke accordingly. The
other advantage is that guided filter is implemented in linear time. This approach is
more appropriate for this work because it would have been complicated to assign
a trimap for each brush stroke to be extracted if the traditional matting method is
used. Instead, when using the guided filter, binary masks of each stroke are used
as trimaps p (Fig. 5.9b) for guided filter to solve the fuzzy boundaries (Fig. 5.9d),
namely, q in Eq. 5.5. Here, to visualize the soft segmentation result, just like the
[3], different colours are assigned to the alpha map of different strokes.

5.4 Result and Analysis

In this work, 5000 paintings are created associated with the individual set of whole
strokes as the training dataset. To avoid over-fitting, several training strategies
are applied here. First, the painting and edge are randomly flipped. Second,
the pairs(painting, edge) are randomly cropped into different size and resized
into 512*512. It takes less than two hours of training on a single GTX 1080
GPU.

In this section, DStroke is compared against several existing alternatives, and
their implementations are obtained or reproduced. Specially, the stroke automatic
extraction of stroke extraction of LStroke in Section 5.4.1 , and the Semantic Soft
Segmentation[3] in Section 5.4.2 are experimented.



5.4 Result and Analysis 63

5.4.1 Compare DStroke with LStroke

(a) (b) (c)

Fig. 5.10 Highly mixed brush strokes in similar colours. (a) Input image. (b)
Brush stroke extraction based on LStroke (Chapter 4). (c) Brush stroke extraction
based on DStroke.

At first, to compare the DStroke method with the LStroke, the same 10 regions
from van Gogh’s paintings (see section 4.3) are also evaluated by DStroke, as
shown in Table 5.1. As shown in Table 5.1, on average, DStroke extracts brush
strokes with higher valid rate and detection rate than LStroke.

However,the DStroke is not specifically design for van Gogh’s paintings. To better
evaluate the proposed DStroke method, 11 more brush paintings are selected,
including acrylic paintings, watercolor paintings, oil paintings. More specifically,
to highlight the robustness of Dstroke, paintings are carefully picked, in which
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Table 5.1 Evaluation and Comparison based on van Gogh’s paintings

Painting ID
Valid Rate (%) Detection Rate (%)

Li et al.’s method Default MSERs LStroke DStroke Li et al.’s method Default MSERs LStroke DStroke
F218

(Glass with yellow roses) 42.7 79.8 88.1 90.5 21.6 33.7 48.5 60.2

F248a
(Vase with Gladioli) 75.4 79.4 90.2 93.4 78.8 82.1 88.1 92.2

F297
(Skull) 57.9 67.2 75.3 78.6 52.0 61.0 75.1 84.5

F374
(Red Cabbages and Onions) 58.2 67.9 75.9 81.2 63.2 60.8 82.4 84.8

F386 (Still live with
potatoes in yellow bowl) 73.7 64.1 82.4 85.7 68.4 59.2 90.2 92.4

F415 (Seascape near Les
Saintes-Maries-de-la-Mer) 46.9 50.3 58.1 65.2 60.0 80.1 92.1 92.8

F518
(The little Arlesienne) 60.7 55.7 71.2 78.2 75.2 86.1 78.9 85.2

F538
(Portrait of Camile Roulin) 49.0 58.4 84.2 88.7 44.9 61.4 81.3 83.6

F572
(Willous at Sunset) 83.9 68.9 82.4 89.5 65.6 71.2 87.0 89.7

F652 (Pine with female
figure in Sunset) 50.0 60.1 75.8 76.5 72.5 60.1 67.3 81.1

Average 59.8 65.2 78.4 82.8 60.2 65.6 77.1 84.7

brush strokes in similar colours are heavily employed, as shown in Fig. 5.10.
The proposed method is preformed on these complex paintings: due to the brush
strokes in similar colours and the complexity of the paintings, some brush strokes
are undetected in LStroke (the undetected regions are labelled in black). On the
other hand, the segmentation of DStroke can extract the adjacent brush strokes in
similar colours.

To numerically evaluate DStroke, same as LStroke and [42], the ground truth are
also created through manually marking brush strokes by the professional artist.
As shown in Table 5.2, the valid rate and detection rate of DStroke is noticeably
higher than LStroke.

To better exam DStroke, the Intersection over Union(IoU) and pixel accuracy
metrics are also used for evaluation. The IOU indicates the percent overlap ratio
between the target mask(manual masked stroke) and the prediction mask(detected
strokes). The mean of Intersection over Unions(meanIoU) are evaluated and
compared here.

IoU =
Target

⋂
Prediction

Target
⋃

Prediction
(5.6)

As shown in Table 5.2, the DStroke also outperforms in meanIoU.
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Table 5.2 Evaluation and Comparison of DStroke

Painting ID
LStroke DStroke Method

meanIoU(%) Valid Rate(%) Detection Rate(%) meanIoU(%) Valid Rate(%) Detection Rate(%)

Mixed strokes1
(Fig. 5.14, row 1, oil painting)

35.01 36.15 11.11 80.42 77.00 82.17

Beach
(Fig. 5.14, row 2, acrylic painting)

33.25 40.91 8.37 82.11 80.92 87.07

Mixed strokes2
(Fig. 5.14, row 3, oil painting)

28.30 46.88 17.36 78.16 74.52 80.99

Mixed strokes3
(Fig. 5.14, row 4, oil painting)

32.88 39.06 14.08 81.99 79.27 82.99

Cloud
(Fig. 5.14, row 5, acrylic painting)

31.86 38.64 12.86 86.66 88.43 90.95

Dusk1
(Fig. 5.14, row 6, watercolor painting)

35.39 40.54 12.84 76.13 74.81 89.91

Dusk2
(Fig. 5.14, row 7, watercolor painting)

22.56 38.71 12.12 65.68 58.97 69.70

Trees
(Fig. 5.14, row 8, acrylic painting)

33.19 48.72 21.09 76.72 74.47 82.03

Mixed strokes4
(Fig. 5.14, row 9, oil painting)

35.23 34.13 11.37 76.04 70.26 77.84

Road
(Fig. 5.14, row 10, oil painting)

26.79 46.15 19.59 76.69 74.44 85.57

Landscape
(Fig. 5.14, row 11, watercolor painting)

27.53 35.00 11.79 79.22 78.00 88.97

5.4.2 Compare DStroke with [3]’s method

(a) (b) (c)

Fig. 5.11 (a) Input image. (b) The result of [3]’s method. (c) The result of
DStroke.
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The DStroke is also compared with the most closely-related work: Semantic Soft
Matting by Aksoy et al. [3].

DStroke also apply deep learning for pre-segmentation, but DStroke does not
require the pre-set segment number. Moreover, DStroke focus on instance-level
segmentation instead of semantic segmentation. On the other hand, the linear
complexity filter is applied, i.e. guided filter[20], to deal with the transparency of
segments.

(a) (b) (c) (d)

Fig. 5.12 Compare the alpha map of a segmented stroke with groundtruth. (a) Input
image. (b) Alpha map of a segmented stroke. (c) Alpha map of the groundtruth.
(d) Difference map between prediction and the groundtruth.

To numerically evaluate DStroke, the generated brush paintings in dataset are
used as groundtruth information. Here, the accuracy and running time of each
method are tested. More specifically, 500 images with different image size (from
100 pixels to 1 million pixels) are examined. For accuracy, each soft segmentation
are examined with the dataset by MSE(mean square loss), which is given as
follows:

MSE =
1
M

M

∑
i= j

(
1
N

N

∑
i=1

(αi j − α̂i j)
2) (5.7)

where, αi j is the opacity value of i-th pixel on j-th segmented stroke, α̂i j is the
corresponding groundtruth of αi j, N is the stroke size, and M is the number of all
segmented strokes. Similarly, running time are also evaluated on the same 500
images. It can be seen that the proposed DStroke outperforms [3]’s method in
both running time and accuracy, as shown in Fig. 5.14 and Fig. 5.13.

The main reasons why DStroke outperforms [3]’s method on accuracy is that [3]’s
method is based on spectral matting [40] which only supports a limited number
of segmented regions. By default, [3]’s method only output 5 regions, while a
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brush painting normally contains hundreds of brushstrokes. On the other hand,
the DStroke enables segmentation of thousands of strokes which makes it more
accurate.

DStroke also outperforms [3]’s method on running time. [3]’s method uses the
sparse eigendecomposition of the constructed Laplacian matrix to generate the
soft segmentations. The sparse eigendecomposition is time-consuming [40], and
it grows linearly with the number of pixels. On the other hand, DStroke is based
on guided filter [20], which is much faster and implemented in linear time.

Fig. 5.13 Comparison of Running time in different image sizes

Fig. 5.14 Comparison of MSE in different image sizes
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In summary, comparing to [3]’s method, the DStroke method has better perfor-
mance in the following scenarios:

1. Comparing to [3]’s method, DStroke is able to generate instance-level soft
segmentation results, as shown Fig. 5.11.

2. [3]’s method requires a pre-set fixed number of regions, while DStroke does
not require that.

3. [3]’s method can only segment small number of regions, while DStroke
enables soft segmentation for thousands of strokes, as shown Fig. 5.11.

4. As shown in Fig. 5.14, the accuracy of DStroke is noticeably higher than
[3]’s method.

5. The run-time of DStroke method is much less time-consuming comparing
to [3]’s method. This step takes around 3 minutes for a 640 × 480 image
while DStroke takes less than 1 second, as shown in Fig. 5.13.
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(a) (b) (c) (d) (e)

Fig. 5.14 (a) Input image. (b) Detected brush stroke edges. (c) Hard segmentation
from DStroke. (d) The results of soft segmentation from DStroke. (e) Manual
segmentation.

5.5 Summary

In this chapter, the deep learning based brush stroke extraction method — DStroke
is addressed. The DStroke consists of two steps: edge detection (hard segmenta-
tion in Section 5.2 ) and brush stroke extraction (soft segmentation in Section 5.3).
In this chapter, how to detect the edge of brush strokes with a deep neural network
and extract the soft boundary of brush strokes are demonstrated.
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With numerically evaluation, DStroke is compared with the most closely-related
work LStroke and [3]. As a result, the DStroke outperforms LStroke in terms of
valid rate, detection rate and MeanIOU of brush stroke extraction. And comparing
with the state-of-art soft segmentation method [3], the DStroke also shows higher
efficiency and accuracy.



Chapter 6

High Relief Generation

In brush paintings, each brush stroke is often introduced to depict something
specific in the real world [79].

Thus, the output of brush stroke extraction is a set of graphical objects that are
meaningful with regard to the set of real objects the paintings depict. It is natural
to generate depth information from brush strokes, here, how to generate relief from
brush strokes is demonstrated. It is noteworthy that the formats of brush strokes
extracted by LStroke and DStroke are the same. They are all brush stroke regions
with colour and opacity values, and they all support the high relief generation
method described in this chapter.
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6.1 Displacement Map

(a) (b) (c)

Fig. 6.1 Displacement map generation from brush strokes. (a) Opacity of one
layer. (b) Extracted three brush strokes. (c) Generated displacement map from
three brush strokes.

To preserve the feature of brush stroke on the relief surface, the displacement
maps for each brush stroke are generated . In this implementation, the orthogonal
SFS [55] algorithm is employed on the segmented brush strokes. The brightness
equation used in the SFS algorithm is expressed as,

I(x) =
1√

1+ |▽h(x)|2
(6.1)

I(x) is the intensity at pixel x, h(x) is the depth at pixel x. It can be noted that for
higher intensity I, change of depth h is smaller. Some brush strokes are painted
by colours with high intensity or painted on a background with high intensity.
As a result, if the shape from shading algorithm is performed on intensity, the
resulting stroke models will become flat and lack of hierarchy. The opacity of
brush strokes is independent of the colour (see Fig. 4.8). Each stroke has an
appropriate distribution of opacity, which is in favor of a layered look. On the
other hand, the intensity of stroke is determined by several facts: the colour and
opacity of brush stroke, background colour and the overlapped strokes if there is
any. Since colours of each layer are determined, based on Eq. 4.1, the intensity
of brush stroke is a linear function of opacity. Displacement map generated from
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intensity would be unavoidably influenced by the background colour, and the
feature of the overlapped strokes, which is unwanted in each brush stroke mesh.
Generating displacement map from opacity would better preserve the feature of
brush strokes, so the equation is reformulated:

α(x) =
1√

1+ |▽h|2
(6.2)

α(x) is the opacity value of pixel x on a brush stroke. To make the relief more
inflated, it is rewritten as,

|▽h|=
√

1

|α(x)|2
−1+∆ (6.3)

where ∆ is a positive displacement which set to 0.2 by default. This modification
may make the surface inflated. By using fast marching algorithm [61] to solve
this equation, the displacement maps for each brush stroke are generated. Fig.
6.1 shows the opacity map of a decomposed layer and the extracted three brush
strokes from it, which are depicted in different colour. Then, applying Eq. 6.3 to
these three brush strokes generates the individual displacement maps. By merging
them together, the displacement map of the entire input painting is generated
accordingly.
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6.2 Model Generation

(a) (b)

(c) (d)

Fig. 6.2 (a) Inflation with markup cues (b) Smooth high relief surface. (c) High
relief with the displacement map. (d) Texture-mapped high relief (rotated 30
degree from the original viewing direction).

To further arrange and inflate the brush strokes, the user indication method pro-
posed in [81] is applied, i.e. controlling the markup cues on extracted brush stroke
regions to generate the inflated smooth surface for each brush stroke. As shown
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in Fig. 6.2a, two very simple user-markup cues are used to guide the inflation of
brush stroke regions.

The slope cues (the green icon) enable brush stroke regions to pop up from the
image plane, and by dragging the arrow of the cues, users can control the slope
s⃗ of the regions. Given brush stroke region φ(x,y) and slope cue (xi,yi, s⃗i), the
z-coordinate boundary are firstly computed. In [81]’s method, the gradient of
region Ω is assumed to be smooth and curl-free, so the gradient Φ⃗, Φ⃗ = ▽φ(x,y),
is reconstructed by minimizing:

min
Φ⃗

∫ ∫
Ω

∣∣∣▽Φ⃗

∣∣∣+ ∣∣∣▽× Φ⃗

∣∣∣dxdy

subjected to Φ⃗(xi,yi) = s⃗i. The first is smoothness term, and the second term
minimize the curl. By setting one of the boundary vertices to 0, φ(x,y) can be
simply computed through integration of Φ⃗.

On the other hand, the curvature cue (red icon) constrains the local mean curvature
of an extracted brush stroke, which allows users to further manipulate the inflation
of the local shape. Similarly, the curvature k̂ amount is corresponding to the
length of the curvature cues. The target curvature filed can be solve by following
equation:

∆
2 f (x,y) = 0

where ∆ is the Laplace-Beltrami operator, and f represents the z-coordinates of
the interior vertices, and it subjects to user-specified curvature cues (xi,yi, k̂i), and
Dirichlet boundary condition:

∆ f (xi,yi) = k̂i ∀(xi,yi) ∈C

f (xi,yi) = φ(xi,yi) ∀(xi,yi) ∈ BD

Where C represents the vertices on curvature cues, and BD represents the region
boundary. For details, please refer to [81].

Then, as shown in Fig. 6.2c, by assigning the displacement map on each inflated
surface, the features of the brush stroke are highlighted.

And instead of simply using the raw painting as the texture for the high relief
model. To better show the features and inter-relations of brush strokes on high
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relief, especially for the overlapped brush stroke regions, in this work, the extracted
brush strokes are mapped on the corresponding reliefs. Fig. 6.2d shows that
the extracted brush strokes with colour and opacity values are mapped to relief
surfaces respectively. Up to now, the desired texture-mapped high relief model is
generated.

6.3 Results and Analysis

The proposed approach is performed on various brush paintings, including Rose-
maling, van Gogh oil painting and Chinese brush paintings. All the tests were
performed on a 6-core of 3.33 GHz Intel Core Xeon CPU with memory of 32
GB(RAM) and a single GTX 1080 GPU. Additionally, the current code of LStroke
is developed with python and MATLAB, and DStroke is based on Keras and Ten-
sorflow, the original code of Layer Decomposition, Pix2Pix and guided filter can
be found on Github (at: https://github.com/CraGL/DecomposeSingle-Image-Into-
Layers; https://github.com/affinelayer/pix2pix-tensorflow, https://github.com/clarkzjw/
GuidedFilter). In the implementation, the parameters in Layer decomposition,
ETF field, and Pix2Pix are set the default values as in the original codes.

Table 6.1 further shows the running time of the proposed approach. For fair
demonstration and comparison, here LStroke is used for stroke segmentation here.
To demonstrate the high relief effect, a further application is created: animating
strokes in section 7.3. The implementation in this work is not multithreaded.

In LStroke, the number of layers (colour palette size) is chosen based on users’
observation. Each layer aims to represent one coat of a painting with a single
palette colour and it is desired to have a manageable number of layers. Too small
palette size cannot generate all colour in the input image, and could result in wrong
brush stroke segmentation. Too large palette size would result in an unwieldy
number of layers. To make the proposed method more accessible, same as [70], the
proposed decomposition (Eq. 4.9) is computed in a multi-resolution manner: the
initial solution is computed based on recursively downsampled input images and
the solution is upsampled as initial guess for larger image (finally, the input image
size). By such manner, user can quickly preview the low resolution decomposed
results (seconds for a 100x100 pixels image), which helps users to experiment
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different layer numbers more efficiently. In other words, users can quickly choose
a layer number based on the preview. From the same input image (2nd row of Fig.
6.6a), the effect of changing the layer number is shown in Fig. 6.3.

(a) (b) (c)

Fig. 6.3 The effect of changing the layer number. (a) High relief generated from 4
layers. (b) High relief generated from 6 layers. (c) High relief generated from 9
layers.

6.3.1 High relief generation by DStroke and LStroke

As mention in section 1.2, brush strokes are employed to represent the objects on
brush paintings, and they serve the purpose of outlining the contours of objects.
On the other hand, it is important to maintain the outlines of objects on the image
in relief generation. In this work, reliefs are generated by inflating brush strokes
individually, so undetected strokes would result in missing parts on the relief. It is
preferred to extract brush stroke as accurate as possible.
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(a) (b) (c)

(d) (e)

Fig. 6.4 (a) Input painting. (b) Segmentation by DStroke. (c) Segmentation by
LStroke. (d) Relief generation by DStroke. (e) Relief generation by LStroke.

Based on the evaluation, Dstroke shows higher accuracy in brush stroke extraction
(see section 5.4.1). So, relief generation by DStroke can better preserve the objects
in the painting and shows less empty regions than LStroke.

As shown in Fig. 6.4a and 6.4c, there are undetected regions in LStroke’s segmen-
tation, which results in corresponding empty regions on the relief (e.g. undetected
regions on sky in the painting, see Fig. 6.4e). On the other hand, relief generation
by DStroke shows less empty regions and preserve more objects (Fig. 6.4d), due
to the fact that DStroke extract brush strokes more accurately.

6.3.2 Compare high relief generation with [81]’s method

The proposed method is compared with the most closely-related work by Yeh
et al. [81], mainly on four aspects: segmentation, local layering, inflation, and



6.3 Results and Analysis 80

texture-map. The method proposed in [81] was designed for high-relief 3D models
from a single input image of organic objects with nontrivial shape profile. The
proposed high relief generation process is similar to [81]’s method. The distinct
difference is that the interactive user-driven region segmentation is replaced with
the brush stroke extraction of each layer. After that, combining the SFS with the
inflation, the high-relief is re-rendered based on the individual extracted brush
strokes instead of the raw image.

Segmentation:

(a) (b) (c)

Fig. 6.5 (a) Input images. (b) Brush strokes segmented by method in [81]. (c) The
last three columns show brush strokes extracted by LStroke on each decomposed
layers.

Yeh et al.[81] extended the standard pixel-based graph-cut method [9] to be
(2D) mesh-based to produce sharper segmentation boundary, in which the user
scribbles foreground and background labels on the input image to subdivide it into
different regions. However one painting may contains hundreds of brush stroke.
To successfully segment the brush strokes, the users must specify a tedious amount
of scribbles. It is likely to fail to segment thin and fine structures commonly seen
in brush strokes. As a comparison, this work is automatic and able to preserve the
thin and complex shapes of brush strokes, as shown in Fig. 6.5.

Inflation:
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(a) (b) (c) (d) (e)

Fig. 6.6 (a) Input images. (b) High reliefs from [81]’s method. (c) High reliefs
generated by the this work. (d,e) Texture-mapped high reliefs generated by this
work.

[81]’s method is designed for reconstructing smooth and organic shapes, assuming
the inflation model to be smooth. To preserve the fine details of the brush strokes,
opacity is applied to generate the surface, and the displacement map to the high
relief, which better maintains the details of brush strokes. Fig. 6.6 demonstrates
the difference of the relief surfaces by this work and [81]’s.
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The overall impression of [81]’s results is fine, but as a comparison, this work can
better preserve the thin strokes and the fine details of brush strokes.

Local layering:

(a) (b) (c)

Fig. 6.7 Extraction of overlapped brush strokes. (a) Input image. (b) The brush
stroke segmentation by Yeh et al.[81]’s method ( blue rectangles indicate the
overlapped regions of brush strokes). (c) The extracted brush strokes on one
decomposed layer by LStroke, in which the overlapped regions are extracted.

Each brush stroke covers a region on the canvas and they may overlap with each
other, some quite heavily in a painting. In order to achieve faithfully complete
brush strokes, [81] requires clear edge of region to form the T-junctions. For
brush strokes with a complex shape, users have to manually divide the edge and
label the layers. In this work, the overlapped brush strokes with different colours
can be extracted by layer decomposition, in which the information of each brush
strokes is retained. Fig. 6.7 clearly shows that the overlapped brush strokes can be
extracted by this work.

Texture-mapping:

Compared to [81], this work exploits the opacity of brush strokes to transfer
the details to high relief, which effectively preserves the artistic feelings of the
paintings. Fig. 6.8 shows the texture-mapped high-relief results that are generated
from a painting. Herein, Fig. 6.8a shows the input (single) image, while Fig. 6.8b
and 6.8c show views of the models with large rotation from the original view. As
shown in Fig. 6.8b, [81] simply uses the raw image as texture for each inflated
brush stroke region, which is inappropriate, especially for the overlapped brush
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(a) (b) (c)

Fig. 6.8 (a) Input image. (b) Texture-mapped high relief by method in [81]. (c)
Texture-mapped high relief by this work.

stroke region. Instead of using the raw image as texture, the extracted brush strokes
with opacity values are mapped to the relief surface in the proposed method, which
can better show the features and inter-relations of brush strokes on high relief.
More results are shown in Fig. 6.9.

Running time:

Table 6.1 Running Time Performance

Painting ID
[81]’s method This work

Segmentation Relief
generation

Total
time

Segmentation Relief Generation Total
timeStroke

number Time
Stroke
number

Runtime
of Layer

Runtime
of MSERs

Runtime
of SFS

User annota-
tion& Inflation

Rooster (Fig. 6.9, row 1) 112 35m31s 9m44s 45m15s 292 311.25s 0.64s 8.68s 11m37s 16m57s
Man (Fig. 6.9, row 2) 53 18m12s 8m12s 26m24s 110 162.21s 0.85s 7.58s 10m43s 13m34s
Bird (Fig. 6.9, row 3) 28 08m21s 4m25s 12m46s 38 70.54s 0.32s 6.54s 5m12s 6m39s

Lotus (Fig. 6.9, row 4) 34 15m01s 7m21s 22m22s 45 112.21s 0.34s 8.25s 8m31s 10m32s
Lotus2 (Fig. 7.1, row 3) 120 39m08s 10m36s 49m44s 258 387.11s 0.85s 17.21s 8m21s 15m1s

Rosemaling1 (Fig. 6.6, row 1) 42 20m22s 8m09s 28m31s 114 164.87s 0.75s 7.26s 9m19s 12m12s
Rosemaling2 (Fig. 6.6, row 2) 62 25m27s 17m54s 43m21s 220 157.32s 0.45s 5.85s 15m5s 17m49s
Rosemaling3 (Fig. 6.6, row 3) 35 19m45s 6m15s 26m0s 105 60.23s 0.55s 5.92s 7m04s 8m11s

Bird2 (Fig. 6.6, row 4) 42 18m35s 5m31s 24m06s 85 110.48s 0.82s 7.11s 12m13s 14m11s
Butterfly (Fig. 6.6, row 5) 6 5m54s 3m15s 9m09s 30 50.10s 0.44s 5.86s 6m24s 7m21s

More specifically, the running time in segmentation and relief generation are
compared between this work and [81]’s method. For segmentation, the proposed
method is less time-consuming, especially for a input painting containing many
brush strokes. Relief generation in [81]’s method includes several steps: layering,
completion, user annotation and stitching, which requires more time for inflation
on a single region than the proposed method. As shown in Table 6.1, the proposed
method is less time-consuming, even though more regions are inflated than [81].
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(a) (b) (c)

Fig. 6.9 (a) Input paintings. (b) Textured mapped high relief results (rotated 45
degree to the left from the viewing direction). (c) Textured mapped high relief
results (rotated 45 degree to the right from the viewing direction).
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6.3.3 Limitations

(a) (b) (c)

Fig. 6.10 (a) A region from a van Gogh’s painting (F779, Wheatfield with Crows).
(b) High relief model. (c) Texture-mapped high relief.

The proposed segmentation does not involve semantic information, while a van
Gogh’s painting may employ hundreds of strokes to represent a semantic region,
such as a wheat field (Fig. 7.1b), a onion (first row in Fig. 4.11a). In both
LStroke and DStroke, these semantic regions would be segmented into many
brush strokes, and it’s hard to maintain the original artistic feeling by inflating
those brush strokes (see Fig. 6.10b). Meanwhile, it would be very time-consuming
to adjust the makeup cues for every brush stroke in such semantic regions. Here
a small region is selected from a van Gogh’s painting (F779, Wheatfield with
Crows) for high relief generation (see Fig. 6.10).

6.4 Summary

To generated relief model from brush strokes, these brush strokes need to be in-
flated and arranged. In this chapter, the high relief generation method is introduced.
The high relief generation consists of three steps: displacement map generation,
inflation and texture mapping. At first, displacement maps are generated based on
opacity of each extracted stroke. By user indications, the extracted brush stroke
regions are inflated to smooth surface. Then, the displacement maps are assigned
to each surface. Moreover, the extracted brush strokes with colour and opacity
values are mapped on the relief model. By such method, how to preserve the
feature of brush strokes on the model surface is demonstrated.
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The generated high reliefs are compared with the most closely-related work [81].
As a result, the proposed method outperforms [81]’s method in terms of inflation,
local layering, segmentation, texture-map and running time.

By successfully extract brush strokes, this work can also be used in 2.5D animation,
see chapter 7.



Chapter 7

Other Applications

Once the brush strokes are extracted, they can be used in a number of image
editing operations to enable interesting paint-aware applications.

7.1 Recoloring Paintings

It is natural to recolor specified strokes for recomposition. Once the brush strokes
are available, recoloring strokes with a new palette colour is becoming as simple
as combining RGBA images. Fig. 7.1 shows recoloring strokes on three paintings
respectively, Rosemaling, van Gogh oil painting, and Chinese brush painting. As
the strokes are extracted, it is easy to separately recolor one or more strokes with
different colours. Once the brush strokes are extracted, this work can simply
recolor strokes by assigning RGB value to the brush stroke while keeping its
opacity value. For example, suppose there are n decomposed layers in LStroke
and m brush strokes extracted on the decomposed i-th layer Li, and it is desired to
change colour of j-th brush stroke on Li. Li can be considered as a RGBA image
with colour and opacity value at each pixel. Since the pixel coordinates in j-th
brush stroke is known, for each pixel coordinates in the selected brush stroke,
the RGB value of Li is changed while keeping the opacity value unchanged. By
changing the RGB value to the desired colour, the j-th brush stroke is recolored
on Li. Then, the recolored i-th layer is composed with the other layers to generate
the new image based on Eq. 4.1.
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As shown in Fig. 7.1c, the selected brush strokes are assigned with some random
colours. It is noteworthy that the pixels positions of extracted brush strokes are
known, so they can be easily selected by users.

(a) (b) (c) (d)

Fig. 7.1 Column (a) shows 3 kinds of brush paintings, Rosemailing (Europe), van
Gogh oil painting, and Chinese painting (East Asia). Column (b) shows recoloring
one stroke and Column (c) shows recoloring multiple strokes. Column (d) shows
inserting objects into these 3 paintings, in which the objects are opaque and are
inserted in between brush strokes.

7.2 Inserting Objects

Fig. 7.2 and Fig. 7.1d show stroke manipulation by inserting objects. One task
of image editing is to change a specified region with a new object in a seamless
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and effortless manner. Here this work is interested in inserting new objects into
painting while keeping the transparency of the painting. The inserted object is
contained in an RGBA image with foreground opaque and background completely
transparent. Note that the objects are opaque and are inserted between brush
strokes. The occluded regions of the objects are visible due to the transparency of
the brush strokes. Unlike simply pasting the object on the image (Fig 7.2c), this
implementation works on the strokes, which can insert objects while keeping the
opacity of brush strokes on the painting.

(a) Image of insert object (b) Image of painting

(c) Paste object on painting

(d) Insert object between strokes

Fig. 7.2 Insert object between brush strokes (Painting ID:F779)
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7.3 Animating Strokes

(a) Select the strokes to
be rotated (the red circles
show the selected strokes).

(b) First frame of the ani-
mation (before rotation of
the strokes).

(c) 30th frame of the an-
imation (after rotation of
the strokes).

Fig. 7.3 Animation by rotating strokes.

Since the relief model of each stroke is generated separately in this work (Fig.
6.2), they can be used to generate some simple animations.

Here, a simple animation is created by moving and rotating the high relief. As
shown in Fig. 7.3, the brush stroke on the head and tail of the rooster are firstly
selected manually, and then their rotation angles and directions are manually set.
Here, the head and tail are rotated by 30 degrees in 2 seconds.
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Two frames of a created 2.5D animation are showed in Fig. 7.3. The direction and
speed of stroke rotation are manually set in Blender [8]. The complete animation
could be found in the following link: https://youtu.be/UOHXUwGbzgo.



Chapter 8

Conclusions and Future Work

8.1 Conclusion

Relief is an art form partway between a 3D sculpture and 2D painting. However,
how to generate a relief from a 2D painting remains unsolved.

The traditional relief sculpturing techniques cost lots of time to achieve the desired
visual effect. It impairs devising the personalized relief model for a wider range
of uses. The image based relief modeling techniques have attracted increasing
attention from the computer graphics community. It constructs relief models
without traditional demands of tedious and time-consuming artistic work. However,
the existing image based relief generation researches are based on real photos or
sketches, which is not suitable for brush paintings.

The relief generation from brush painting is a challenging task. The diversity of
the brush strokes and their artistic features make the relief generation even more
difficult to accomplish.

This thesis addresses this challenge by introducing a brush strokes based relief
modelling framework. This work presents a new approach for generating a relief
from a single brush painting, aiming to preserve the original artistic features of the
painting. The basic concept of this framework is to extract the strokes from a single
painting and generate the high relief model. The proposed brush stroke extraction
to encode the features of brush paintings is the foundation of this framework.
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This work particularly consider the overlapped brush strokes with complex shape
profiles and their opacities.

To extract the brush strokes from a painting, this work introduces LStroke which
applies layer decomposition and stroke segmentation by imposing boundary con-
straints. By layer decomposition, brush strokes with different palette colours are
separated into different layers. To further extract the brush strokes, the revised
MSERs algorithm is applied here, which both preserves stroke continuity and
removes spurious edges within one layer.

To better deal with the brush strokes mixed with similar colours, this thesis intro-
duces DStroke, in which deep learning techniques are firstly leveraged to facilitate
extracting brush strokes from paintings. Meanwhile, for training purpose, this
work also proposes an automatic algorithm to create paintings and the associated
brush stroke edge maps as training dataset. The DStroke enables soft segmen-
tation for thousands of strokes. Comparing with the alternative works, DStroke
shows higher accuracy and efficiency.

Based on the extracted brush strokes, the displacement maps of the strokes are
generated individually, this work performs shape from shading(SFS) on the opacity
of the paintings instead of the intensity, which transfers the features of brush
paintings to the surface of the brush stroke models. With user indications, this
work inflates the surface for each brush stroke and combine it with the displacement
maps. The shapes of all the strokes are then arranged to form the desired high-
relief. After that, instead of using the raw image as texture, the extracted brush
strokes with opacity values are mapped to the relief surface in this work, which
can better show the features and inter-relations of brush strokes on high relief. As
a result, this work bridges the gap between painting and relief.

The findings of this work also support several promising applications. One is
recoloring of the specified strokes for recomposition. Once the brush strokes are
extracted, this work can simply recolour strokes by assign RGB values to the
brush strokes while keep their opacity value. Similarly, this work showed another
image synthesis application by inserting new objects into painting while keeping
the transparency of the brush strokes. Another application is animating stroke.
By moving and rotating the texture mapped relief of certain brush stroke, some
simple animations can be created.
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8.2 Future Work

The work in this thesis leads to the following directions for future work:

Wider Range of Paintings:

In the future, I will attempt a wider range of paintings and investigate the issues of
their individual layer decomposition and stroke segmentation. Different paintings
have different stroke patterns. Understanding the individual rules will improve
the success rate for a wider range of paintings. Rational and automatic colour
separation in the overlap regions is not trivial and will also be studied in the
future.

Automatic Palette Selection:

I plan to investigate methods for better palette colour selection from the image
contents, such as local brush stroke analysis. Secondly, I would study how colour
composition equation would influence the brush stroke extraction, and refine this
work based on it.

Smart Cues:

The brush stroke extraction methods proposed in this thesis does not involve
semantic information, while some paintings may employ hundreds of strokes to
represent a single semantic region. It is inefficient to adjust the make-up cues for
such regions. It can be dramatically improved by region clustering or semantic
labelling, once the brush strokes in one semantic region are clustered, the user
mark-up cues can be assigned uniformly.

End-to-End Training:

In the proposed DStroke method, the deep neural network is trained to extract the
contour of brush strokes, then the opacity of brush strokes are extracted based on
the hard segmentation. In DStroke, the opacitiy of brush strokes in dataset is used
for evaluation.
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Thus, it is expected that designing an end-to-end deep neural network to utilize
the opacity values of brush strokes and improve the accuracy of brush stroke
extraction.
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