
Droplets, Splashes and Sprays:
Highly Detailed Liquids in
Visual Effects Production

Richard Jones
Doctor of Engineering in Digital Media

Bournemouth University
Centre for Digital Entertainment

Faculty of Media and Communication
September 2018

This copy of the thesis has been supplied on the condition that anyone who consults it is
understood to recognise that its copyright rests with its author and due acknowledgement must
always be made of the use of any material contained in, or derived from, this thesis.

Supervisors
Dr Richard Southern
Ian Masters

i

Abstract

An often misunderstood or under-appreciated feature of the visual effects pipeline is the sheer
quantity of components and layers that go into a single shot, or even, single effect. Liquids,
often combining waves, splashes, droplets and sprays, are a particular example of this. Whilst
there has been a huge amount of research on liquid simulation in the last decade or so, little has
been successful in reducing the number of layers or elements required to create a plausible final
liquid effect. Furthermore, the finer-scale phenomena of droplets and sprays, often introduced
in this layered approach and crucial for plausibility, are some of the least well catered-for in
the existing toolkit. In lieu of adequate tooling, creation of these elements relies heavily on
non-physical methods, bespoke setups and artistic ingenuity.

This project explores physically-based methods for creating these phenomena, demonstrat-
ing improved levels of detail and plausibility over existing non-physical approaches. These
provide an alternative to existing workflows that are heavily reliant on artistic input, allowing
artists to focus efforts on creative direction rather than trying to recreate physical plausibility.

We explore various approaches to increasing the level of detail captured in physically-based
liquid simulations, developing a collection of tools that improve existing workflows. First,
we investigate the potential of a re-simulation approach to increasing artist iteration on fluid
simulations using previous simulation data. Following this, a novel droplet interaction model
for ballistic particle simulations is developed to introduce higher levels of detail in simulations
of liquid droplets and sprays. This allows physically-plausible interactions between droplet
particles to be modelled efficiently and helps to create realistic droplet and spray behaviours.
Then, to maximise the quality of the results of these and other particle-based simulations,
we develop a high quality particle surfacing algorithm to handle the varied nature of inputs
common in production. Finally, we discuss the development of an expression language to
manipulate point and volume data commonly used in creating these simulations, as well as
elsewhere throughout visual effects.

This research was driven directly by production requirements in partnership with a world-
leading visual effects studio, DNEG. Projects have been developed to immediately integrate into
production, using efficient, industry-standard, open technologies such as OpenVDB. It is shown
that the toolkit for splashing liquids, even at fine-scales, can be improved by incorporating
greater physical motivation further demonstrating the importance of physical simulation in
visual effects and suggesting effects similarly reliant on artistic input (e.g. character/skin
deformation) may benefit from increased physical correctness.

ii

Contents

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Academic Context . 3
1.3 Industrial Context . 3

1.3.1 Visual Effects (VFX) . 4
1.3.2 Industrial Partner: DNEG . 4
1.3.3 Considerations for Industry-Focused Research 7

1.4 Key Challenges of VFX Production . 7
1.5 Project Objectives . 9
1.6 Contributions . 9

1.6.1 Publications . 10
1.6.2 Software . 10

1.7 Thesis Outline . 10

2 Liquid Simulation for VFX 12
2.1 Fundamentals of Fluid Motion . 12
2.2 Fluid Simulation for Computer Graphics . 14

2.2.1 Eulerian Methods . 14
2.2.2 Lagrangian Methods . 16
2.2.3 Hybrid Methods . 16
2.2.4 Summary . 17

2.3 Fluid Implicit Particle (FLIP)/Particle-In-Cell (PIC) Simulation 17
2.3.1 Algorithm Overview . 19

2.4 Realistic Splashing Liquid Effects . 23
2.4.1 Anatomy of a Splash . 23
2.4.2 Previous Approaches . 25

2.5 How to Create a Production Quality Liquid Effect 28
2.6 Areas for Improvement . 31

3 Increasing Iteration: Fluid Re-Simulation using Model Reduction 33

iii

CONTENTS iv

3.1 Overview . 33
3.2 Model Reduction . 34

3.2.1 Projection . 34
3.2.2 Related Work . 35
3.2.3 Proper Orthogonal Decomposition via Method of Snapshots 36

3.3 Subspace Pressure Projection using Previous Simulation Data 38
3.3.1 Method . 39
3.3.2 Results . 41
3.3.3 Analysis . 46

3.4 Improvements to Model Reduction for Re-Simulation 47
3.4.1 Full Dimension Pressure Projection with a Reduced Preconditioner . . . 47
3.4.2 Divergent Basis . 48
3.4.3 Basis Interpolation Methods . 50
3.4.4 Fluid Re-Simulation using Subspace Condensation 50

3.5 Summary . 52

4 Increasing Detail: Physically-Based Droplet Interaction 53
4.1 Overview . 53
4.2 Motivation . 53
4.3 Related Work . 54

4.3.1 Issues with Existing Droplet Methods . 56
4.4 Real Droplet Interactions . 58

4.4.1 Binary Droplet Collisions . 59
4.5 Droplet Collision Modelling . 60

4.5.1 Parametrising Droplet Collisions . 62
4.5.2 Collision Outcome Classification . 64
4.5.3 Post-Collision Characteristics . 66
4.5.4 Application to Graphics . 68

4.6 Our Approach . 69
4.6.1 Robust-to-Input Outcome Classification 70
4.6.2 Visually Plausible Post-Collision Characteristics 71
4.6.3 Binary Collision Detection . 73

4.7 Implementation . 76
4.8 Results . 80

4.8.1 Limitations . 81
4.9 Summary . 82

5 Preserving Detail: Surfacing of Splashes with Droplets 88
5.1 Overview . 88
5.2 Motivation . 88
5.3 Related Work . 89
5.4 Our Approach . 91

5.4.1 Robust Anisotropic Kernels for Particle Fluid Surfacing 92
5.5 Implementation . 94

CONTENTS v

5.6 Results . 94
5.7 Analysis . 96
5.8 Summary . 98

6 Increasing Control: Particle and Volume Manipulation with AX 101
6.1 Overview . 101
6.2 Motivation . 102
6.3 Portable and Domain-Specific Languages . 103
6.4 Our Approach . 104

6.4.1 Task-Specific and Parallel by Design . 104
6.5 Implementation . 105

6.5.1 LLVM Function Generation . 105
6.5.2 OpenVDB Integration . 105
6.5.3 Available Operations . 106

6.6 Examples and Use in Production . 106
6.6.1 Example 1: Simulation . 106
6.6.2 Example 2: FX to Lighting . 106
6.6.3 Case Study: Dropping Pills on Loro . 108
6.6.4 Production Statistics . 109

6.7 Summary . 110

7 Conclusion & Future Work 112
7.1 Discussion . 112
7.2 Future Work . 114

7.2.1 Extending This Work . 114
7.2.2 Other Open Problems in High Quality Liquid Recreation 115

7.3 Conclusion . 115

References 118

Appendix: Collision Threshold Derivation 131
Stretching Separation . 131
Reflexive Separation . 132

List of Acronyms 134

List of Figures

1.1 Time spent on different stages of production (hands-on artist time) at DNEG on 6
productions from 2014-2016. Effects development takes around 14% of the time,
second only to compositing (which is required for every shot of every film). It is
our understanding that this remains representative of the work undertaken in 2018.
Figure taken from Barber et al. [2016]. 5

1.2 R&D at DNEG develops tools to solve a large range of issues in VFX production.
These include the development of solvers capable to handling massive data-sets such
as the distributed Dynamo Liquid solver (left - image taken from Bailey et al. [2015])
and highly efficient ways of storing and using geometry data such as OpenVDB
Points (right - image taken from Museth et al. [2015]). 6

2.1 The three main discretisations used in liquid simulation for computer graphics. Left
to right - Eulerian, Lagrangian and Hybrid. 14

2.2 Standard particle and grid setup in FLIP/PIC/APIC simulations. 18
2.3 A 2-dimensional staggered MAC grid cell. 19
2.4 A wave breaking on the rocks (left) and a waterfall (right). Phenomena such as

these are extremely complex, containing interactions between many different states
of the liquid and air mixtures including droplets, sprays, foam, and bubbles, as well
as larger scale liquid behaviours such as the wave breaking and the ocean wave
dynamics. 24

2.5 Dissecting the breaking wave from Figure 2.4 into its visible fluid components.
Highlighting areas of predominantly splashes, foam, droplets and sprays. Note how
the shape of the wave breaking and other similar larger-scale fluid behaviours are
obscured by the smaller-scale fluid components. 25

2.6 A shot from the recent film American Assassin [Cuesta 2017] demonstrating a liquid
splash as a ship’s mast crashes into the water. Effects by DNEG’s Ole Eidsheim.
c©2017 CBS FILMS INC. and LIONSGATE ENTERTAINMENT INC. 28

2.7 Work-in-progress renders and contact sheets of some of the rendered elements
created to create the splash effect in Figure 2.6. These elements include extra
simulation passes for whitewater (spray, foam, bubbles), mist and vapour, as well
as both point and surface renderings of the initial FLIP fluid simulation. In total 78
unique elements were passed on to the next stage of the pipeline for this effect. . 29

3.1 Single frame of 128× 128 smoke plume style simulation 37

vi

List of Figures vii

3.2 The first 4 elements x1, ...,x4 of our pressure basis X for the 1282 sim in Figure 3.1. 38
3.3 The first 4 elements v1, ...,v4 of our velocity basis V for the 1282 sim in Figure 3.1. 38
3.4 Simulation of 1282 smoke plume using reduced pressure solution (Equation 3.12)

only. Demonstrating visible accumulation of divergence (left), with addition of 5
Jacobi iterations (right). 40

3.5 Comparisons of errors in simulations using subspace pressure solves against those
using full pressure solves for the simulation in Figure 3.1. Using relative L2-error. 43

3.6 Log-log plot of divergence in the velocity POM vs singular value of that POM for
1282 smoke plume simulation. 44

3.7 Error and max divergence when varying the buoyancy parameter in the 1282

Reduced Simulation using only Direct Projection. Buoyancy for the input simulation
b = 9.81. 44

3.8 Final state of a simulation with buoyancy parameter b = 20. Full solve (left) and
Direct Projection solve with b = 20 (right) where input basis simulation has value
for b = 9.81. Note the large variation in the final state between these two simulations. 45

4.1 Standard particle-based droplet simulation techniques and their interaction mecha-
nisms. In no existing method does a single particle meaningfully represent a mass
of liquid such as a droplet. 57

4.2 Droplet collision from experiment: initial coalescence of interacting droplets fol-
lowed by subsequent separation and fragmentation. Reproduced with permission
from Brazier-Smith et al. [1972]. 59

4.3 Main droplet collision types (start - top, end - bottom); Left to right - Coalescence,
Stretching Separation and Reflexive Separation (prolate phase). 61

4.4 Geometric collision parameters for colliding droplets i and j. 63
4.5 Interaction volumes of droplets i and j. φi ,φ j are the fractions of the droplet

volumes that are overlapped as droplet j is swept along the velocity ui j 65
4.6 Our collision thresholds (for δ = 1) based on those of Ashgriz and Poo [1990], with

reflexive separation taking precedence for low impact number collisions. 71
4.7 φ j (Equation 4.11) against X for δ = 0.4, note that as X → 0, the volume fraction

φ j in fact reduces as the entire droplet should be overlapped i.e. φ j = 1. 72
4.8 Shattering reflexive separation (left to right), greatly increased kinetic energy

version of reflexive separation seen in Figure 4.3, creating many satellites with
perturbed satellite velocities (§4.6.2). 73

4.9 Simulated results of different droplet collision outcomes, using our method. 80
4.10 Stretching separation between droplets displayed by a FLIP simulation. Requires

18k particles to replicate behaviour that we simulate with a single pair of particles
(Figure 4.9b). 80

4.11 Small-scale system of droplet interactions: close-up using our droplet collision model
(top); zoomed out view using our model (middle left), using FLIP solver (middle
right), Smoothed Particle Hydrodynamics (SPH) solver (bottom left) and Rigid
Body (RBD) solver (bottom right). While FLIP does create larger-scale motions,
other systems are unable to create realistic small-scale droplet characteristics, e.g.
size variation, ligament formation and fragmentation, at low particle density. . . . 84

List of Figures viii

4.12 Geyser simulation (left to right): purely ballistic particle system - top, our model
with reduced surface tension (×0.1) - second from top, our model - second from
bottom, our model with increased surface tension (×10) - bottom. Low surface
tension interactions cause many satellites to be emitted and create a finer spray
effect, whilst high surface tension tends to coalescence and causes system to tend
to fewer, larger droplets. 85

4.13 Fountain-like jet (1.3m particles): Top - Droplet interactions create a varied droplet
size distribution and therefore drag strength, which causes larger-scale break-up
of the flow. Bottom - No interaction exposes artefacts in emitter and timestepping,
these would usually require artist intervention and re-simulation to fix. 86

4.14 Times of collision detection and collision resolution (incl. outcome determination
and satellite emission) operations for simulation in Figure 4.13. 480 frames with 2
substeps per frame, ∆t = 1/96. 87

5.1 Results of a FLIP liquid simulation. a) Final surfaced result using our method. b)
Particles coloured by their calculated value for ks using Equation 5.7, values vary
from 114−553 (droplets removed, color map: 144 - yellow to 553 - blue). Variation
in this parameter occurs at the surface and at areas of interest where droplets break
off from the main liquid body. 95

5.2 Comparison of surfaces with different ellipsoid normalisation values. The ‘local’
method (a) better preserves sheets at the edges whereas ‘global’ (b) can shrink the
particle imprints at the edges to produce thinner sheets more prone to holes. As
the values for this are dependent on the input particle set and other parameters
of the model, i.e. search radius R, using the wrong value can lead to undesirable
results as we see in c). 97

5.3 Alternative methods for particle surfacing. Both the bumpy surface of the isotropic
distance function and the artefacts on the method of Solenthaler and Pajarola
[2008] would require post-processing to create a suitable liquid surface. Even then
these would fail to capture fine details such as thin sheets and droplets as well as
the method we describe. 98

5.4 A whale splash simulation taken from DNEG’s training material, surfaced using
the method described in this chapter. Note the small droplet details and smooth
surfaces, especially in the splash. 99

5.5 Statistics for uses of the described Point Surfacer node in Houdini at DNEG, for 30
days prior to September 21st 2018. Graphs taken directly from Kibana. 100

6.1 The structure of this tool and how it integrates with a chosen application, broken
down into the two main components, the compiler and the executable. 104

6.2 A particle simulation step using gravity and drag against a constant wind force. . . 107
6.3 Decimating points in a set using a percentage threshold. 107
6.5 Statistics for uses of the OpenVDB AX node in Clarisse at DNEG, for 30 days prior

to September 21st 2018. 110

List of Tables

3.1 Table of Pressure Solve times with different pressure projection operators for 1282

smoke plume simulation in Figure 3.1. 41
3.2 Table of times of a Preconditioned Conjugate Gradient Pressure solve using Proper

Orthogonal Decomposition (POD) and combination preconditioners for initial pass
and Incomplete Cholesky in CG loop. 49

4.1 Suggested values for the parameters considering material properties of water/droplets.
The relative nature of the collision parameters makes these somewhat flexible and
allows artistic control through their modification e.g. modelling the approximate
behaviour of larger ‘droplets’ than those in reality (Figure 4.12) 77

4.2 Simulation times for results shown. The complexity of the operations, including
the emission and deletion of particles, and widely varying particle count arising
from interactions means results can differ considerably. All simulations performed
with two 8-core 3.10Ghz Intel Xeon CPUs and 64GB RAM. 79

6.1 Performance of C++ implementations vs our JIT-compiled expression examples
running on 32 core Intel Xeon 3.10Ghz CPU with 64GB RAM. 108

ix

Acknowledgements

I would first like to thank my supervisor Richard Southern for his guidance, knowledge and
experience, all of which have been key to helping me understand what it means to be a successful
researcher. A huge thank you to everyone else at the Centre for Digital Entertainment past
and present, especially Dan Cox, Zoe Leonard and Mike Board for their constant support and
encouragement. I must also thank the EPSRC for the funding through grant EP/G037736/1,
without which this research would not have been possible.

Alongside those above, my CDE colleagues deserve thanks for sharing their experiences
and their struggles, helping me to find the sometimes difficult balance between research and
industrial interests. A particular thank you to Alexandros Gouvatsos and Rahul Dey for their
continued comradery and friendship over countless cups of coffee, plates of currywurst and
bowls of ramen.

I would also like to thank those at DNEG that I have worked with and learned from over
the years. Particular thanks to Nick Avramoussis, Matt Warner and the wider FX R&D team
for their support with all things code and fluid based, and for their important contributions to
my development and the successes of this project. Thanks to Ian Masters and Jeff Clifford for
seeing the benefit of driving research via industrial experience and giving me the opportunity
to come and work with a world-class VFX studio such as DNEG.

Thank you to my friends for their continued excitement and interest in my research,
particularly Chris Brown who has allowed many an evening to descend into listening to me
talk about water droplets and why they so are important.

My sincere thanks to my family for their unwavering support, forever encouraging me to
‘find a job I love so I never have to work again’.

Finally, the biggest thanks to my best friend and partner Claire. Thanks for the walks
through the park to the office on weekends; for the holidays booked as deadlines - and the
motivation to reach them; for reading my thesis cover-to-cover and for the million other ways
you continue to show your love and belief in me, always.

x

Author’s Declaration

This thesis contains work from 2 publications:

• Physically-Based Droplet Interaction, 2017, R. Jones & R. Southern, Proceedings of the
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2017.

• A JIT Expression Language for Fast Manipulation of VDB Points and Volumes, 2018, N.
Avramoussis, R. Jones. F. Gochez, T. Keeler & M. Warner, Proceedings of DigiPro 2018.

The former being the sole work of the author of this thesis and the latter being a collaboration
between the author and the FX R&D team at DNEG. The contribution of the author of this
thesis to the latter consists of work towards the use of this language as a point simulation tool,
for example the ability to move points in space.

xi

Chapter 1

Introduction

1.1 Motivation

Liquid effects are a huge part of the modern visual effects (VFX) toolkit. With physical phenom-
ena such as liquids difficult to both create and control in reality on a production set (especially
beyond the scale of a wave-pool or splash), it is often up to visual effects artists to create natural
and plausible looking CG versions of these phenomena for feature films, TV and animation.
These recreations range from huge-scale tsunamis flooding city streets, to small-scale ‘crown
splashes’ in glasses of milk, and everything in-between. Complex behaviours such as those
of liquids would be extremely difficult and time-consuming for even the most skilled artist to
hand animate, so the common approach (as with many other similar physical phenomena) is to
create these effects using simulations. Liquid simulations in VFX track the shapes and dynamics
of liquid using 3D CG geometry1 which is then rendered through a virtual camera to create a
final 2D effect that can be composited into a film. In order to recreate realistic liquid motion,
these simulations are physically-based, that is, driven by the same physical processes that govern
real-world liquid behaviours. However, compared to applications such as engineering, where
physical accuracy is paramount, the only thing that ultimately matters from liquid simulations
for VFX is that the results look plausible and achieve the desired visual impact. In this way, the
methods used take advantage of a collection of simplifications to allow practical simulation
times and control of many behaviours in the results. Even with these simplifications, liquid
simulations (especially large-scale ones) commonly take hours, if not days, to simulate. The
amount of data created from them can also be huge (an extreme, albeit not unprecedented,
example: a single simulation on Disney’s sea-based adventure Moana required over 20 TB to
store [Palmer et al. 2017]).

As the use of visual effects in feature film and TV grows in search of more dramatic and
awe-inspiring visuals, requirements on both scale and quality are similarly ever-increasing
[Visual Effects Society 2013]. For simulated effects like liquids, this generally means increasing
resolutions (i.e. number of discrete elements the simulation is composed of) or the consideration
of more complex behaviours, both of which generally lead to more time being spent on setting
up and running these simulations. This places demands on VFX studios to use more costly

1These can also be done in 2D, but most techniques in VFX use full 3D recreations.

1

CHAPTER 1. INTRODUCTION 2

resources such as computing power and artist time which are in huge demand from all other
areas of production.

Workflows in VFX for creating simulated phenomena are largely-based around the same
systems as those used by the wider computer graphics community. However, the requirement
for effects in feature film to be as photoreal as possible can often expose shortcomings in
the methods used elsewhere. Whilst liquid simulation and the creation of liquid effects are
recognised as a key component of the effects tool-set by both industry and academia, some of
the most important aspects of the creation of realistic (or at least, plausible) effects have been
largely overlooked. In particular those of droplets, sprays and other visibly complex liquid
phenomena. Most research focuses on simple free-surface liquids but it is often these other
elements that are crucial in grounding liquid effects in reality. In lieu of adequate tooling for
these components, their creation relies heavily on alternative approaches such as non-physical
methods and appropriating other physical simulations, or through purely bespoke setups,
manual labour and artistic ingenuity.

In theory, all of these components could be the by-product of having sufficiently high
resolution and modelling all phases and interactions in a single simulation of liquid and
air phenomena. However, in practice, sufficient resolution to capture all of these scales of
motion (large: oceans, waves; to small: droplets, sprays) would be orders of magnitude higher
than those used currently in production and the physical models would need to incorporate
complex multi-phase dynamics. Such requirements would lead to unfeasible computational
complexity/simulation times, much reduced artistic control and would be extremely difficult
to implement and incorporate into the visual effects pipeline. As such, in the standard visual
effects workflow, liquid effects are comprised of many layers of simulations composited together,
often incorporating a collection of procedural or simplified reproductions of the elements that
are not captured when using a practical resolution, single-phase, free-surface liquid simulation
(e.g. particle simulations for droplets, sprays etc.).

The layered pipeline used does however have its benefits, it offers a lot of control to the
artist in the creation of each separate element and allows elements to be created an approved
by the director/visual effects supervisor independently. For example, the main body of a wave
splash may be approved whilst the artist is able to make successive attempts at finer spray
motion without requiring changes to the initial splash. This avoids expensive re-simulation
and the trouble of having to make sure inter-dependent elements are perfect simultaneously.

However, this workflow still requires high quality methods for the actual creation of these
other elements themselves. Within the graphics community, there has been a wealth of research
on liquid simulation over the last decade or two, yet the tools used in production remain largely
unchanged from a decade ago and in particular the methods for elements such as droplets and
sprays have seen almost no development. As most research into fluid simulation looks at either
smoke-like gas simulation or free-surface liquid flow, there do not exist many methods capable
of creating these finer-scale liquid (often multi-phase) phenomena out-of-the-box. Instead
artists are required to use procedural and simplified elements to create these effects - such as
ballistic particle systems for droplets, sprays and foam or ill-suited physical simulations such as
smoke simulations for mist and finer sprays.

Even once the simulations have been run, there remains the non-trivial task of creating
final renderables from the simulated data. Given the variety in methods for creating these

CHAPTER 1. INTRODUCTION 3

simulations, these post-processing tasks require similar amounts of care and attention. It
is particularly difficult to find methods that are robust to the variations between different
simulations and so, many of the workflows for these stages in the pipeline are also based on
large amounts of artistic input.

To facilitate such artistically driven workflows, especially for simulated phenomena, is
a technical challenge. Tools given to artists should be easy-to-use for as many scenarios as
possible, but with the capability to allow the complex bespoke functionality that often ends up
being required. Many applications used throughout VFX expose very high levels of control to
allow these workflows, but knowledge of these tools varies between artists and so this practice
can place high demands on more technical artists to perform lower-level modifications.

Considering all of these issues, the hypothesis behind this project is that an increased level-
of-detail captured by the physically-based components of liquid simulations would improve
these workflows. As many of these are heavily reliant on artistic input (and so, time) to
reproduce all elements required for physical plausibility, improvements to these workflows
would allow artists in VFX production to focus efforts on creative direction instead.

This thesis explores a few different approaches to achieve increased levels of detail in these
simulations. The main approaches taken look to make these improvements through performance
gains (via model reduction, Chapter 3) and direct simulation of finer-scale elements through
droplet/spray modelling (Chapter 4). Also included in this thesis are developments that
improve surface details coming out of existing simulations and tools for improved artistic
control of simulations and their data (Chapters 5 & 6).

1.2 Academic Context

The creation of liquid phenomena in computer graphics has been studied for decades. The
methods developed by graphics researchers and practitioners have been very successful at
creating a variety of liquid effects such as the waves on oceans and splashes in water. From
this, it has become commonplace for these methods (FLIP/PIC in particular, §2.3) to be used
in the creation of liquid phenomena for visual effects. However, there are few methods that
have been developed to handle the wide range of elements that occur in more energetic liquid
phenomena such as splashes with sprays and droplets, and even fewer still that create photoreal
results without large amounts of artistic intervention. In this thesis we look to build on the
successes of previous researchers and develop new methods to help to ease the creation of
photoreal liquid phenomena. We will further discuss the theory behind liquid simulation, the
methods used in graphics, and the issues surrounding recreating splashing liquids in particular
in Chapter 2.

1.3 Industrial Context

This project has been undertaken in partnership with a world-leading visual effects studio,
DNEG. This has offered unique insight into the realities of production, which has helped to drive
projects and focus our work to tackle real problems. Given DNEG’s technological background

CHAPTER 1. INTRODUCTION 4

(§1.3.2), this has also given a great platform for work to build upon and has allowed seamless
integration of the approaches developed into a real-world production pipeline.

1.3.1 VFX

VFX are a huge part of the modern creative process involved in the creation of feature films,
and more recently, television. They act as as way of capturing visual imagery that would be
impossible, dangerous or too expensive to capture in-camera [Visual Effects Society 2013].
Modern techniques make heavy use of computational tools for all elements of the pipeline from
the initial tracking of the motion of actors captured on film, the creation of fully computer-
generated effects like explosions or collapsing buildings, to the composition of the final frames
that are seen on screen.

Effects in VFX

The VFX pipeline consists of many different departments and creative specialties. The stage
in the pipeline that considers the creation of dynamic, non-character, often physically-based,
phenomena such as fire, water, smoke and destruction is known as Effects (FX), with work
performed by FX artists. These phenomena are generally created using simulations, often
based-on or at least motivated-by the physical processes that occur in reality. Due to the
ubiquity and the quantity of FX work required for feature films, alongside the difficulty of
creating effects that are both physically-plausible and creatively suitable, this is a huge part of
the work done by VFX studios. From a 2016 study by Barber et al. [2016] (Figure 1.1), we can
see that FX work takes around 14% of the hands-on artist time of all the work done by a typical
VFX studio (in this case, DNEG §1.3.2). Further still, we estimate that due to the comparatively
computationally expensive nature of simulation, the cost of computational resources used by
FX would likely be a higher proportion than this (both in hardware requirements and actual
CPU time).

Liquids are one such natural phenomenon that are often required to be created by FX artists,
the scale of which can range all the way from massive oceans to single droplets. Whilst it is not
uncommon for any large summer blockbuster to require some form of liquid effects, there have
also been plenty of films that would likely be impossible to make without them, such as Life of
Pi [Lee 2012], In the Heart of the Sea [Howard 2015] or any of the Pirates of the Caribbean
series (e.g. Ronning and Sandberg [2017]). Due to the complex nature of liquid motion and
the range of phenomena this incorporates, these FX can require significant engineering by
artists to create plausible recreations - this is the motivation for our work in this project.

1.3.2 Industrial Partner: DNEG

A VFX studio that has a great history of creating liquid FX is DNEG, the industrial partner of
this research. DNEG (formally Double Negative) is a 4-time Oscar winning VFX studio. Formed
in 1998 in London, DNEG now also has a collection of facilities in Vancouver, Montreal, Los
Angeles, Mumbai and Chennai, employing over 5000 people worldwide. Recent achievements
include Oscars and BAFTAs for their work on Blade Runner 2049 [Villeneuve 2017], Ex Machina
[Garland 2014], Interstellar [Nolan 2014] and Inception [Nolan 2010]. Other notable recent

CHAPTER 1. INTRODUCTION 5

Figure 1.1: Time spent on different stages of production (hands-on artist time) at DNEG on 6
productions from 2014-2016. Effects development takes around 14% of the time, second only
to compositing (which is required for every shot of every film). It is our understanding that
this remains representative of the work undertaken in 2018. Figure taken from Barber et al.
[2016].

works include Venom [Fleischer 2018], Pacific Rim: Uprising [DeKnight 2018] and Dunkirk
[Nolan 2017]. DNEG also has a division working on VFX for TV and has recently branched out
into feature animation in partnership with the UK’s first high-end feature animation studio,
Locksmith Animation.

Effects R&D at DNEG

As an industry that has often been the driving force for pushing development of the technology
it uses, it is not uncommon for VFX studios to have in-house software development teams. In
London alone, DNEG has a Research and Development (R&D) department of around 70 people
working on a collection of both proprietary and open-source tools. The work undertaken by this
department includes everything from developing tools to aid the transfer of data between sites
and different applications, to development of proprietary simulation software. Of particular
relevance to FX work at DNEG, is a state-of-the-art liquid solver, Dynamo, as well as ongoing
contributions to OpenVDB, an efficient, industry-standard tool-set for sparse volumetric data.

Dynamo is a simulation framework developed at DNEG which allows FX simulations
to be authored inside of Houdini [Side Effects 2018] (a popular Digital Content Creation
program (DCC) for FX development) and run standalone on the render farm. These simulations
can also be distributed amongst a collection of machines to increase simulation performance and
avoid memory limits of a single machine. This incorporates a highly-efficient implementation
of a hybrid particle-grid (FLIP/PIC) liquid simulator, the industry standard for liquid simulation

CHAPTER 1. INTRODUCTION 6

(more on this in Chapter 2). In fact, this simulator is based on DNEG’s original Squirt liquid
solver, which is to our knowledge the first FLIP/PIC liquid solver to be developed for VFX
production. Following recent developments this is able to handle huge-scale simulations, e.g.
billions of particles and as such facilitates the extremely high resolution simulations that are in
demand for high quality feature film VFX [Bailey et al. 2015].

OpenVDB [Museth et al. 2015] is an open-source C++ library for the representation and
manipulation of volumetric data in sparse grids called VDBs. These are used for the storage
of discrete, grid-based 3D data such as scalar and vector fields as well as Signed Distance
Functions (SDFs). VDBs are a tree-based data structure, used to store spatially sparse data
whilst supporting fast access, as well as insertion and deletion of values. Originally developed at
Dreamworks Animation, this library and the VDB data structure has since been integrated into
many of the widely used DCCs in VFX and animation and is the industry standard for volumetric
data. When this project began, DNEG had just released an open-source extension for this library
(originally developed for use in Dynamo) to handle point data. This project has since coincided
with a large amount of the development of this extension library, known as OpenVDB Points,
which is now included in the core OpenVDB distribution. The work undertaken in this project,
when dealing with volumetric or point data been developed primarily with this format and has
helped drive its development into a more comprehensive tool-set. In this way this project has
both indirectly and directly (Chapter 6) contributed to the tools now widely available in this
open-source library.

Dynamic Attribute Arrays

Leaf Nodes can store different attributes (from each other)

However, not typically supported by tools

Figure 1.2: R&D at DNEG develops tools to solve a large range of issues in VFX production.
These include the development of solvers capable to handling massive data-sets such as the
distributed Dynamo Liquid solver (left - image taken from Bailey et al. [2015]) and highly
efficient ways of storing and using geometry data such as OpenVDB Points (right - image taken
from Museth et al. [2015]).

Original Industrial Partner: Prime Focus World

At the beginning of the research project the industrial partner was a different VFX studio, Prime
Focus World. The project described in Chapter 3 was started during this time. Following the
downsizing of their London office during the first year of this project, the partnership was
severed and a new industrial partner was found in DNEG. Due to the different technology
available at DNEG, and their greater experience in production VFX, the direction of the project

CHAPTER 1. INTRODUCTION 7

changed to better focus on problems relevant to high-end production VFX. The remaining
projects, and majority of work described in this thesis, are the product of the partnership with
DNEG.

1.3.3 Considerations for Industry-Focused Research

An important characteristic of this project was the influence of the industrial context on its
design and direction of decisions. All work has been developed using industry standard tools,
techniques, and data structures, often open-source (i.e. OpenVDB, §1.3.2) to maximise the
reproducibility elsewhere in production. Similarly the experiments and products of this project
have been integrated into production workflows through use of software such as Houdini [Side
Effects 2018]. As we will see later, this has also led to the development of more generally
applicable production-focused tools, in particular the OpenVDB AX Compiler (Chapter 6).

Given the industrial focus and motivation, some key considerations have been made for
applying novel graphics research within this context. Most importantly it should be recognised
that the use of technologies and the systems in place in production can be quite different from
the idealised scenarios often considered by works from outside of this environment. From this,
an important requirement for our work was that it would be able to be both integrated into
existing pipelines (and/or simulation systems) and robust to artistic inputs and manipulation.

The tools used in production are far more mature than compared to say 20 years ago and
as such methods for working have been well established. Tools such as Houdini provide a huge
amount of artistic freedom, and shortcomings in quality of results are largely understood to
arise from the problem of how quickly an effect can be created rather than if it is possible.
In theory any shot or effect could be completed with current tools due to the flexibility that
is given to artists, even if it requires an almost hand-animated approach. In reality however,
there are still practical considerations with the FX tool-set, but it is important to recognise that
robustness to artistic intervention is a requirement and these practices should be expected
with any approach developed for use in production. In this way, research in this area should
look to improve upon these methods of working, encouraging artistic freedom whilst allowing
the creation of final quality results faster than previously possible. In our case, this meant
developing tools that create more realistic behaviours out-of-the-box; allowing increased levels
of control over the behaviours exhibited by our simulations; and exposing new ways to interact
with these simulations and their resulting data.

1.4 Key Challenges of VFX Production

Before we introduce the methods used to create liquid FX, and the specific problems that they
demonstrate, we should first note some of the key challenges that persist throughout all areas
of VFX. These help to explain some of the general themes of tool development in production.
The realities of production place specific demands on the tools to be used by artists including
photorealism, efficiency and art-directability:

• Photorealism: the entire VFX pipeline is based around making effects that are seamless
and indistinguishable from reality (or for fantastical effects, at least believable). Every

CHAPTER 1. INTRODUCTION 8

effect that gets composited into a shot must capture all of the behaviours and visible
details that the audience would expect. With regards to physical phenomena such as
liquids, this means recreating all of the behaviours and visual components that occur in
reality. To achieve this, effects are often built up of many layers, of simulated and non-
simulated components, to create a final result. Whilst many of these layers are created
using well-defined systems, such as larger-scale liquid surfaces being created using free-
surface simulations, others will be composed of more artistically driven components,
particularly for finer-scale phenomena that occur such as droplets or sprays - commonly
simulated using basic particle systems. It is often these other components, rather than
the primary simulations (i.e. free-surface liquid), that require the largest artistic efforts
(§2.5).

• Efficiency: resolutions used in production often dwarf the examples used in academic
research as artists aim for higher fidelity and larger-scales. A typical FLIP/PIC liquid
simulation may consider tens or hundreds of millions of particles, a figure which is always
rising [Bailey et al. 2015]. This has prompted a range of developments from within the
production context to allow existing systems to be able to facilitate these demands. These
include use of efficient data storage and simulation formats such as OpenVDB [Museth
2013; Bailey et al. 2014], as well as other considerations such as distributed computing
[Bailey et al. 2015; Lait 2016]. As simulations of such high resolutions become possible
using these technologies, this places burden elsewhere in the pipeline to have to deal with
the storage, transfer and handling of these huge amounts of data. As such, careful design
of workflows and pipelines must also be considered when dealing with the resolutions
required by high-end VFX productions [Palmer et al. 2017].

• Art-directability: the main difference between the use of simulation in engineering
compared to VFX, aside from the physical accuracy of the methodologies used, is artistic
motivation. Whilst a simulation in engineering may give results that inform some future
decisions or test some theory, in VFX the simulation only exists as a creative tool and is
authored to fit to an artist’s vision. In this way, artistic control over the results is possibly
the most important aspect of simulation. Some works from the graphics community
have tried to offer animation-like controls, such as guiding simulations to keyframes of
smoke [Fattal and Lischinski 2004; Hong and Kim 2004; Treuille et al. 2003] and liquids
[McNamara et al. 2004; Shi and Yu 2005; Shin and Kim 2007]. However in practice,
artistic control often instead deals with either less well-defined notions of control such
as the visual style of the effect or the size of the features it displays, or the possibility
of much more specific requirements such as manual control of simulated elements. To
that end, the FX tool-set has matured over the last decade or two to the point where it is
now possible to exhibit almost all of these kinds of control through applications such
as Houdini. Artists are able to create and compose a huge variety of operations using
all types of geometry to achieve almost whatever effect they are looking for. Effectively
defining visual programming languages, specialised for geometric and simulated effects,
these types of applications have been widely adopted throughout the industry and are
hugely favoured by artists over previous, more black-box tools. Outside of Houdini, this

CHAPTER 1. INTRODUCTION 9

also includes other DCCs such as Maya, Blender and 3DS MAX. In fact, other similarly
flexible toolkits have also been developed by VFX studios themselves such as Rapid
[Penney and Zafar 2015], Dataflow [Hankins et al. 2015] and Dynamo (§1.3.2) to offer
even more control.

Even well-established simulation systems see a huge variety of modifications in production.
Variations on these methods are created either by the tools developers themselves, e.g
Houdini’s native liquid solver offering the ability to allow particles in low density regions
to break off from the main body, or by artists as needs arise e.g. deleting fast moving
particles or adding arbitrary forces (§2.5). The tool-set allows artists a huge amount of
freedom to access the data within the simulation and fix almost any issues in their results,
or even develop entirely novel behaviours. However, that is not to say that all problems
are solved by simply exposing control to an artist, instead it is that for any given situation
or shot, an artist would have the ability to hand-tune the results, if required. Whilst this
opens the door for a huge variety of effects and the ability to deal with plenty of issues,
such a workflow is not feasible on a grand scale and should be reserved for only very
specific artistic challenges.

We will look further at these challenges in the context of the production of high quality
liquid FX in Chapter 2.

1.5 Project Objectives

The goal of this project is to improve the ability of artists to make high-quality liquid effects
created in VFX production. To do this we will explore novel and improved methods for creating
liquid simulations, as well as better ways of working with the resulting data. A key focus of
this work, crucial for production impact, is the art-directability and efficiency of the methods
used, as well as making sure that developments fit into the production pipeline and are able to
compliment existing workflows.

1.6 Contributions

In this thesis we focus on increasing the levels-of-detail in recreations of liquid phenomena
and improving workflows for artists in VFX to achieve production quality results. To reach this
goal we have developed new and improved methods that incorporate more realistic behaviours
and fine details within existing simulation frameworks as well as providing new tools for
working with these systems, all of which have been designed such that they can be readily
integrated into production workflows across the industry. To demonstrate this, some of these
have already been deployed in the DNEG production pipeline and seen use on a collection of
films such as Blade Runner 2049 [Villeneuve 2017], Pacific Rim: Uprising [DeKnight 2018],
Venom [Fleischer 2018], The Kid Who Would Be King [Cornish 2019] and Godzilla: King of the
Monsters [Dougherty 2019].

The main contributions of this project can be summarised by the following:

CHAPTER 1. INTRODUCTION 10

• A review of the practical approaches used for creating highly-detailed effects of splashing
liquids in VFX production (Chapter 2).

• An investigation into the use of model reduction for re-simulation and its suitability for
application to hybrid simulation methods (Chapter 3).

• The development of a novel approach to handling realistic droplet interaction within
particle systems for spray simulation, incorporating small-scale droplet dynamics to allow
use for microscopic simulations as well as driving larger spray phenomena (Chapter 4).

• Improvements to a state-of-the-art particle surfacing algorithm to make it suitable for
production use (Chapter 5).

• The development of an efficient and portable geometry manipulation expression language
built on top of the industry standard for volumetric data, OpenVDB, allowing greater
artistic control through user-defined operations on points and volumes (Chapter 6).

1.6.1 Publications

From these contributions, the following publications have been produced:

• Physically-Based Droplet Interaction, 2017, R. Jones & R. Southern, Proceedings of the
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2017.

• A JIT Expression Language for Fast Manipulation of VDB Points and Volumes, 2018, N.
Avramoussis, R. Jones. F. Gochez, T. Keeler & M. Warner, Proceedings of DigiPro 2018.

1.6.2 Software

• OpenVDB AX - Released by DNEG - N. Avramoussis, R. Jones. F. Gochez & M. Warner.

1.7 Thesis Outline

At the beginning of this thesis we shall set out the research context. Chapter 2 gives the
mathematical and theoretical background to liquid simulation methods used in graphics before
describing the workflow for creation of liquid effects in VFX and in particular, the efforts
required to reach production quality results.

This is followed by chapters describing the research projects undertaken to improve this
workflow in Chapters 3 - 6. To take advantage of the iterative nature of authoring liquid FX
in Chapter 3 we discuss work towards improving efficiency using previous simulation data.
Chapter 4 then documents a project on introducing plausible fine-scale droplet behaviours into
widely used ballistic particle systems, increasing the levels of detail able to be captured by
these systems. Following this, Chapter 5 describes the integration of a state-of-the-art particle
surfacing method into the production pipeline and the required extensions for this model to
make it robust to the inputs that may arise during use in production. The last project, discussed
in Chapter 6, focuses on the work undertaken towards development of a new programming

CHAPTER 1. INTRODUCTION 11

interface for artistic control of particle and volume data, used in both FX simulation and
elsewhere throughout the pipeline.

Finally, Chapter 7 will include discussion of this project as a whole, areas for future work
and conclusions that can be drawn from this research.

Chapter 2

Liquid Simulation for VFX

In this chapter we examine the theoretical background behind fluid motion and the approaches
used to simulate this for computer graphics. We then explore how this translates into production
techniques used in VFX.

2.1 Fundamentals of Fluid Motion

No thesis on liquid simulation would be complete without an introduction to the processes
behind fluid motion, and in particular the way we are able to formulate these mathematically,
through the Navier-Stokes equations.

The Navier-Stokes Equations describe the motion of fluids as the following set of partial
differential equations:

Du
Dt
= −

1
ρ
∇p+µ∇2u+ g Navier-Stokes Equations (2.1)

for u ∈ Ω, where Ω is the fluid domain, u the fluid velocity, Du
Dt is the material derivative of

velocity1, ρ the density, p is the pressure, µ the coefficient of kinematic viscosity and g is the
external force, usually simply gravity. These describe the processes behind liquid motion in
terms of the acceleration of the fluid at every point in the domain, and can be derived from
mass and momentum conservation. They are composed of a convective term, Du

Dt ; a pressure
term, − 1

ρ∇p; a viscous dissipation term, µ∇2u and an external force term i.e. gravity g.
If we further assume that fluid is incompressible i.e. cannot change material density, then

we have the following additional constraint:

∇ · u= 0 (2.2)

Whilst viscosity can be an important behaviour to incorporate for certain fluids such as
honey or treacle, for largely inviscid fluids (such as smoke and water) we can simplify these

1This is the full derivative of the velocity u(x, t) w.r.t. time, by the chain rule we have Du
Dt =

∂ u
∂ t +u ·∇u for u in

the Eulerian frame.

12

CHAPTER 2. LIQUID SIMULATION FOR VFX 13

(taking µ= 0) into the incompressible Euler equations:

Du
Dt
= −

1
ρ
∇p+ g Incompressible Euler Equations (2.3a)

∇ · u= 0 (2.3b)

Solutions to the Incompressible Euler Equations

A common practice used in computer graphics to solve this complex system of PDEs is to use
the concept of operator splitting [Chorin 1968] (introduced to this context by [Stam 1999]).
That is, splitting the above equation(s) into a collection of smaller, simpler systems which
can then be solved separately in sequence. Using this methodology, Equation 2.3 becomes a
collection of force, pressure projection and advection steps:

∂ u
∂ t
= g Force (2.4)

∂ u
∂ t
+

1
ρ
∇p = 0 Pressure Projection (2.5a)

∇ · u= 0 (2.5b)

Du
Dt
= 0 Advection (2.6)

Splitting the Euler equations in this way allows the use of efficient methods to solve each
separate component of the system, allowing flexibility and variety in the development of
simulation frameworks which we will see later.

Solving these three components in sequence, using the solution to the previous stage as the
input for the next, gives the required solution to Equation 2.3. However, it should be noted
that the order of these operations is important - to preserve the incompressibility constraint,
advection should be performed on a divergence-free velocity field. Therefore, a normal timestep
(from t to t +∆t) in a fluid simulation can be described as follows:

ut forces
→ ũt project

→ ût advect
→ ut+∆t (2.7)

Given the solution to the velocity problem Equation 2.3, it is then possible to update the
fluid state using this velocity, i.e. move the position of the surface of a liquid or track the
evolution of smoke concentrations through time. This sequence of operations will evolve a fluid
system through a single timestep, and so by repeating this process, create a fluid simulation.

We will now look at the various ways that these equations have been solved in applications
to computer graphics, and the particular methods favoured in VFX. For more information on
approaches to fluid simulation used in other fields such as engineering see Anderson and Wendt
[1995].

CHAPTER 2. LIQUID SIMULATION FOR VFX 14

2.2 Fluid Simulation for Computer Graphics

Fluid phenomena required in computer graphics come in a huge variety of forms including
smoke, fire, oceans, waves, splashes and droplets, all of whose motion are driven by some
forms of Equations 2.1 or 2.3. Such a wide variety of phenomena leads further still to an even
wider range of approaches taken. We will focus on the theoretical contributions that act as
the basis for the methods widely used in high-end VFX production specifically for creating
highly-detailed, splashing liquid effects.

In general, there are three main types of methods used in liquid simulation for computer
graphics, characterised by their different discretisations of the fluid volume2. These are: grid-
based Eulerian simulations (Figure 2.1 - left), particle-based Lagrangian simulations (Figure
2.1 - middle) and hybrid simulations that use a combination of grids and particles (Figure 2.1 -
right).

Figure 2.1: The three main discretisations used in liquid simulation for computer graphics.
Left to right - Eulerian, Lagrangian and Hybrid.

Following the operator splitting approach, it has been found that some discretisations are
more suited to solving particular stages of Equation 2.3 than others. For example, Eulerian
methods, especially those using regular grids, can be very successful at solving the pressure
projection step, Equation 2.5, as the problem can be formulated into a sparse linear system.
Similarly, Lagrangian methods are very good at tracking motion and solving the advection
problem, Equation 2.6, as they introduce very little numerical dissipation.

We will now discuss some of the seminal works using these methods and then consider the
state-of-the-art before moving on to production-favoured approaches.

2.2.1 Eulerian Methods

Eulerian methods discretise the space of the domain in which we are interested, and track the fluid
quantities at these discrete points over time. In this way each cell (discrete element in the domain)

2Other approaches not on this list include mesh-based and Lattice-Boltzmann methods, as well as other more
bespoke and unique approaches.

CHAPTER 2. LIQUID SIMULATION FOR VFX 15

will have values for velocity and/or density, temperature, fill volume etc. which describe the state
of the fluid at any point in time.

Foster and Metaxas [1996] was the first work in graphics to consider full 3D liquid simula-
tion, with prior methods only modelling reduced approximations to fluid motion such as the
wave equation [Kass and Miller 1990]. Using a finite-difference approximation to the entirety
of Equation 2.1 they are able to create liquid simulations by tracing marker particles through a
regular grid on which the solutions are calculated. The Successive-Over-Relaxation solver used
for the pressure update and finite-difference advection equation required many iterations and
very small timesteps for stability. Following this, the now prolific operator splitting technique
was introduced into graphics by Stam [1999]. In combination with their novel Semi-Lagrangian
advection scheme - a method for tracing grid values backwards in time to solve the advection
problem, Equation 2.6, this allowed much larger timesteps to be used. The solution to Equation
2.5 is formulated as a Poisson problem and through discretising with finite-differences, becomes
that of solving a large sparse linear system. Foster and Fedkiw [2001] extend this approach
to liquids tracking both marker particles and a implicit surface for the liquid interface. Also,
recognising the discrete Poisson problem as a symmetric positive definite linear system, they
introduce the use of Incomplete Cholesky Preconditioned Conjugate Gradient (ICPCG) solvers
to solve this problem more quickly and efficiently.

Whilst liquid surface level-sets such as those used by Foster and Fedkiw [2001] allow
partially full cells in the visual representation, the Poisson problem for Equation 2.5 (as in Stam
[1999]) assumes either full or empty cells for the actual liquid itself, creating grid artefacts at
boundaries. This was improved by Batty et al. [2007] who, by taking a variational approach to
the pressure projection problem and considering the volume of fluid across the boundaries,
allow handling of partially full and curved boundaries at solid-liquid interfaces. Ng et al. [2009]
further extend this approach to second-order accuracy, instead considering the obstructed area
across the cell face to determine fluid flow around solids. Similarly, for increased accuracy at
the air-liquid interface, Gibou et al. [2002] developed the Ghost Fluid Method (GFM), using
the liquid surface level-set values to set correct pressures at a sub-cell liquid interface rather
than at the grid resolution as done previously.

As scales of simulations have increased, there have been a collection of works that look to
use Multigrid (MG) methods to speed up the solution to the Poisson problem (or its variants) as
it is often the most computationally expensive stage. McAdams et al. [2010] developed a MG
preconditioner for the Preconditioned Conjugate Gradient (PCG) solve of a liquid simulation
(albeit using using the original voxelised linear system [Stam 1999]) but they were unable to
create a fully MG method that did not diverge or stagnate. Chentanez and Müller [2011] found
that with the addition of variational solid boundaries [Batty et al. 2007] and GFM [Gibou et al.
2002], it was possible to use a fully MG solve for the pressure projection without these issues in
the case of collocated pressure and velocity samples (rather than the usual staggered method,
which we will see later §2.3). Weber et al. [2015] extend this work to use the usual staggered
grid, in turn increasing convergence of the MG solver.

Even with the use of MG solvers, the pressure projection remains a large component of the
cost of a fluid simulation. This has prompted the use of adaptive methods to further reduce
the scale of the linear system to be solved. Adaptivity allows simulation of areas of interest at

CHAPTER 2. LIQUID SIMULATION FOR VFX 16

higher resolution and fidelity than those of low interest, such as deep under the fluid surface.
This reduces the size of the linear system to be solved and so speeds up solution. Methods of
introducing adaptivity include: use of an octree data structure in Losasso et al. [2004]; uniform
grid coarsening in Lentine et al. [2010]; using tall cells deep under the surface in Chentanez
and Müller [2011]; and a tetrahedral mesh in Ando et al. [2013]. However, adaptive methods
require irregular data structures and can have some issues at the boundaries of different scales,
inhibiting their use in practice.

2.2.2 Lagrangian Methods

Lagrangian methods discretise the fluid itself into particles and track the positions and velocities of
these over time. In this way each particle represents some part of the fluid and the positions and
attributes of the particles describe the state of the fluid at any time.

Müller et al. [2003] introduced the SPH framework of Monaghan [1994] to graphics
applications as a liquid simulation framework that allowed interactive performance. This
method uses radial kernels around each particle - looking into its neighbouring particles to
approximate quantities of the fluid at particle positions. Often quantities such as density
are used to enforce the fluid behaviours, in particular the pressure projection defined by the
Equation 2.5. This has since become a very popular method and used for many applications as
well as incorporating many different behaviors such as viscosity [Peer et al. 2015], improved
turbulence [Bender et al. 2017], and multiple-fluid interactions [Yang et al. 2015]. For standard
liquid simulation, there have been a wide variety of variations to this system, say those enforcing
constant density explicitly [Müller et al. 2003], or instead non-divergence of velocity [Ihmsen
et al. 2014a], or both [Bender and Koschier 2017]; as well as adaptive methods to speed up
calculation [Adams et al. 2007; Solenthaler and Gross 2011; Winchenbach et al. 2017] for
larger-scale scenarios. Other similar methods have also been developed such as Position-Based
Fluids (PBF) by Macklin and Müller [2013].

Whilst the particles are able to intuitively carry some fluid quantities such as mass and
velocity, the arbitrary nature of their positions (and so the samples for neighbouring particles)
can make it difficult to calculate some quantities (especially derivatives). Similarly in areas of
low particle density and at boundaries, issues with unbalanced calculations such as density can
create artefacts such as the tensile instability. However, these methods are extremely popular
with researchers and many works over recent years have been successful in tackling some of
these issues. For a more detailed look at SPH methods we refer the reader to the review by
Ihmsen [2014].

2.2.3 Hybrid Methods

Hybrid methods combine both Eulerian and Lagrangian approaches, using the most successful
components of each.

In §2.2.1 we mentioned a method using both particles and grids [Foster and Fedkiw 2001].
Whilst the simulation was on the grid, particles were used to carry quantities and define

CHAPTER 2. LIQUID SIMULATION FOR VFX 17

the surface avoiding the issues of grid-based advection schemes. This is the first instance of
hybrid methods used for liquid simulation in graphics, and has since become an extremely
popular approach. Enright et al. [2002] extend this approach to the Particle Level Set (PLS)
method, seeding particles around both sides of the liquid-air interface to track the surface more
accurately. Zhu and Bridson [2005] introduced the FLIP/PIC method, a particle-grid method
combining two different transfer methods between the discretisations, FLIP from Brackbill et al.
[1988] with PIC from Harlow and Welch [1965]. This method uses particles throughout the
liquid to perform the advection of fluid quantities, whilst using a background Eulerian grid (that
gets populated by the values carried by the particles) to calculate the pressure projection and
forces. The Langragian component avoids the numerical dissipation of Eulerian advection and
the Eulerian component similarly avoids troublesome Lagrangian pressure calculations on the
particles. Purely FLIP and PIC methods were previously too noisy and dissipative respectively
for practical use, but their combination made for stable, yet energetic results.

Whilst a large amount of numerical dissipation is avoided in this approach (e.g. compared
to that of Semi-Lagrangian advection), the transfer of quantities between particles and grids
has been found to still introduce its own numerical issues, notably the dampening of angular
momentum. The use of the combined FLIP and PIC transfer schemes somewhat alleviates the
dampening of this transfer (their combination being what made this method feasible [Zhu
and Bridson 2005]) but is equivalent to introducing high-frequency noise to the system. Jiang
et al. [2015] recently introduced the Affine Particle-in-Cell (APIC) method to solve this issue,
preserving angular momentum throughout transfer between particles and grids.

Further extensions to these approaches have looked to recapture some of the efficiency of
approaches like PLS, such as that of Sato et al. [2018b]; or consider adaptivity such as Ando
et al. [2012].

2.2.4 Summary

This review covers a relatively small collection of the work done in this field but most of the
large developments that have been of adopted in VFX and other practical uses of computer
graphics in the last 20 years. For the creation of smoke, gas and fire simulations, typically
Eulerian methods are favoured. Whilst for liquids, particle-based (or hybrid) methods are
instead used as they are able to better maintain and represent the liquid-air interface. Purely
Lagrangian methods have seen a huge amount of research over recent years but for the scales
of simulation used in VFX, demonstrating a good balance of efficiency and quality [Um et al.
2017], and perhaps most importantly due to the maturity of the workflows built around them,
hybrid methods are the most commonly used in production VFX.

As these methods and their related workflows are the basis for the creation of the majority
of liquid effects in production (and an important factor in decisions made later in this thesis),
we will now give a detailed description of a hybrid liquid simulation framework.

2.3 FLIP/PIC Simulation

Possibly the most widely used method for liquid simulation in large-scale production VFX,
is that of the particle-grid simulation FLIP/PIC [Zhu and Bridson 2005] (as well as its more

CHAPTER 2. LIQUID SIMULATION FOR VFX 18

Figure 2.2: Standard particle and grid setup in FLIP/PIC/APIC simulations.

recent variant APIC [Jiang et al. 2015]). Both the implementation and artistic use of these
methods are widely documented and they are available in many DCCs [Autodesk 2018; Side
Effects 2018; Next Limit 2018; Blender 2018], as well as many VFX studios having proprietary
implementations, e.g. DNEG’s Dynamo.

As well as the computational benefits of this method (discussed in the previous section),
there are workflow implications that have made it so successful. Firstly, particle systems are a
very familiar concept to FX artists [Visual Effects Society 2013; Penney and Zafar 2015] and so
having particles as the input and output of the simulation makes it very easy to work with in a
VFX environment. Building on this, FLIP/PIC in particular facilitates particle workflows that
are much more forgiving than purely Lagrangian methods such as SPH. This method allows
the user to arbitrarily reseed the particle set under the fluid surface and introduce additional
particles without destabilising the simulation whilst retaining benefits of particles such as fine
details at the surface (at sub-grid resolution) and handling of splashes that would be difficult
to resolve on a grid representation. From this it is not difficult to see why it has become a
favourite of VFX artists.

As this is the standard used in production, to properly understand the how to work with
and build upon this method (which we will do in future chapters), we will now describe the
stages of a FLIP/PIC liquid simulation in detail.

A note on the background grid

For the grid representation of our fluid volume a staggered Marker-and-Cell (MAC) grid (Figure
2.3) is used, introduced by Harlow and Welch [1965]. This spatial discretisation allows the
calculation of second-order accurate central differences at the exact positions that we require
each quantity to be sampled [Bridson 2008]. By storing the velocity components on their
corresponding cell faces and pressure values at the centre of the cells, we can intuitively

CHAPTER 2. LIQUID SIMULATION FOR VFX 19

ui+ 1
2 ,j

ui� 1
2 ,j

vi,j+ 1
2

vi,j� 1
2

pi,j pi+1,jpi�1,j

pi,j+1

pi,j�1

Figure 2.3: A 2-dimensional staggered MAC grid cell.

measure the divergence of velocity at the positions of the pressure samples, and the pressure
gradients at the positions of the velocity samples. At the centre of grid cell (i,j,k) of width ∆x
we have:

∂ u
∂ x
≈

ui+1/2, j,k − ui−1/2, j,k

∆x
(2.8)

and thus the divergence calculation becomes

∇ · u=
∂ u
∂ x
+
∂ v
∂ y
+
∂ w
∂ z
≈

ui+1/2, j,k − ui−1/2, j,k

∆x
+

vi, j+1/2,k − vi, j−1/2,k

∆x
+

wi, j,k+1/2 −wi, j,k−1/2

∆x
(2.9)

Furthermore, at the centre of the face (i−1/2,j,k) we have:

∂ p
∂ x
≈

pi, j,k − pi−1, j,k

∆x
(2.10)

These avoids the need to interpolate values later, i.e. in the pressure projection.

2.3.1 Algorithm Overview

A typical FLIP/PIC fluid simulation will follow an algorithm such as that given in Algorithm 1.
A user will typically supply an initial point set or geometry within which liquid particles will be
emitted. The particles in the simulation will then undergo various operations and be moved

CHAPTER 2. LIQUID SIMULATION FOR VFX 20

around in 3D space following Algorithm 1. 3 The result of a simulation will most likely be the
simulation particle set itself or a surface that has been created (or tracked) using it. This will
then be post-processed and rendered to create a final free-surface liquid effect (more on this in
Chapter 2.4).

Algorithm 1

1: procedure FLIP/PIC FLUID SIMULATION

2: input initial points P0 with positions x0
p and velocities u0

p
3: for each timestep t do
4: for all grid cells (i, j, k) do . transfer to grid
5: ut

i jk =
∑

p∈Pt
w(i jk)put

p (Equation 2.11)
6: end for
7: for all grid cells (i, j, k) do . add forces
8: ũt

i jk = ut
i jk +∆tgi jk (Equation 2.12)

9: end for
10: for all grid cells (i, j, k) do . perform pressure projection
11: bi jk =∇ · ũt

i jk (Equation 2.9)
12: end for
13: solve Ap= b (Equation 2.18)
14: for all grid cells (i, j, k) do
15: ût

i jk = ũt
i jk −∇pi jk (Equation 2.10)

16: end for
17: for all particles p ∈ Pt do . transfer from grid
18: ut+1

p = sample(ût ,xt
p) (Equation 2.20)

19: end for
20: for all particles p ∈ Pt do . advect particles
21: xt+1

p = xt
p +∆t

∑

i wipût
i (Equation 2.21)

22: end for
23: output points Pt
24: end for
25: end procedure

Particle-to-grid transfer

The first step is to transfer the particle velocities onto the background grid. This is usually done
with a weighted interpolation (e.g. trilinear) of surrounding particle values onto the velocity
sample positions at the centre of each voxel face. For each component of velocity, say u, at its

3As well as main stages outlined here, there may also be stages where a liquid surface is calculated from the
particles and/or particles may be re-seeded within the liquid volume, as well as stages where particles may break
off from the main body and are dealt with separately from the main fluid, but we will stick to the description of the
core algorithm for brevity.

CHAPTER 2. LIQUID SIMULATION FOR VFX 21

corresponding position on the voxel face, xi (as in Figure 2.3), we calculate:

ut
i =

∑

p wiput
p

∑

p wip
(2.11)

where ut
i is the component grid velocity at xi , ut

p is the component of particle velocity, and wip
is the interpolant between the centre of face i at xi and the particle at xp.

Applying forces

Now we have the velocity grid representing the fluid, say ut = (ut , v t , wt), we can update this
with the acceleration due to gravity and other force inputs (Equation 2.4). As the external
forces applied are usually considered constant for each timestep of length ∆t, we can simply
integrate this step with Forward Euler as follows:

ũt = ut +∆tg (2.12)

Pressure projection

This updated velocity grid may now contain non-zero divergence values, causing the fluid to
lose volume during advection. Therefore we perform the pressure projection step (Equation 2.5)
to make the velocity field divergence-free and enforce boundary conditions such as collisions
with solid geometry or the air-liquid interface.

The most common formulation of this system for computer graphics follows Chorin [1968].
That is, using the Helmholtz Hodge decomposition, any vector field ũ can be decomposed such
that

ũ= û+∇p (2.13)

where û is a divergence-free vector field s.t. û ·n = 0 on the boundary of the domain and p is a
scalar field. Therefore if we have p, we can define the orthogonal projection operator P that
maps our velocity onto its divergence-free component by

û= Pũ= ũ−∇p (2.14)

To find p, Chorin [1968] show that, using Equation 2.13 and taking the divergence of both
sides, we arrive at the Poisson problem:

−
∆t
ρ
∇2p = −∇ · ũt (2.15)

which will either have boundary condition:

ût · n= ut
sol id · n (2.16)

where ut
sol id is the solid boundary velocity and n the outward facing normal of the solid

boundary, or:
p = 0 (2.17)

CHAPTER 2. LIQUID SIMULATION FOR VFX 22

at the air-liquid boundary.
With our chosen discretisation of a staggered MAC grid, if we substitute the centred finite

differences above into Equation 2.15, our system for p becomes a large sparse linear system
(see [Bridson 2008] for details):

Ap= b (2.18)

where A is a 7-point Laplacian matrix, p is our solution vector of pressures and −b is the vector
of divergence values at each cell. In fluid simulations, this system is generally extremely large,
with A ∈ RN×N for N grid cells in our fluid domain. This is solved this using either a PCG or
MG method as described in §2.2.14.

Given the solution pressure grid from this linear solve, we use the projection operator P on
our velocity field by taking the gradient at each component velocity sample using Equation
2.10 and subtracting this from the velocity, making it divergence-free:

ût = ũt −∇p (2.19)

Grid-to-particle transfer

This divergence-free velocity ût is then transferred back onto the particles. The FLIP/PIC
method updates velocities on the particles with contributions from both a FLIP [Brackbill et al.
1988] and a PIC [Harlow and Welch 1965] sample of the fluid velocity grid at the particle
position.

The FLIP sample consists of an update to the existing velocity value, adding the previous
particle velocity and the interpolated difference between the previous grid velocity and updated
grid velocity.

ut+1
FLIP = ut

p +
∑

i

wip(û
t
i − ut

i)

where ut+1
FLIP is our FLIP particle velocity, ût

i is the post-projection grid velocity, ut
p is the previous

particle velocity, ut
i is the previous grid velocity, i are the surrounding grid values and wip is

the trilinear interpolant between the face at xi and the particle at xp.
The PIC sample is a simple interpolation of the updated grid velocity.

ut+1
PIC =

∑

i

wip(û
t
i)

where ut+1
PIC is our PIC particle velocity, ût

i is the post-projection grid velocity, i are the surround-
ing grid values and wip is the trilinear interpolant between the face at xi and the particle at
xp.

Our updated particle velocity then becomes:

ut+1
p = (1−α)ut+1

FLIP +αut+1
PIC (2.20)

where 0≤ α≤ 1 is a chosen weight between FLIP and PIC samples.

4Even using state-of-the-art methods, this stage in the simulation quickly becomes a bottleneck as simulation
size increases. This is a key motivation for our re-simulation work described in Chapter 3.

CHAPTER 2. LIQUID SIMULATION FOR VFX 23

Advection

Hybrid fluid simulations use particle advection through the divergence-free velocity grid ût .
We take an interpolation of the grid velocity at the particle position (as in the PIC sample)
and using this update our particle positions using our chosen integration scheme e.g. Forward
Euler, RK2 or RK3. For example for a simple Forward Euler advection step we update each
particle position xt

p by:

xt+1
p = xt

p +∆t(
∑

i

wip(û
t
i)) (2.21)

The advection is the final stage of the simulation loop, after this the points are cached and
the loop restarts for the next simulation step.

Key Characteristics of FLIP/PIC

As this is the standard method used in VFX production, there are some important characteristics
to note that will affect later decisions made in this thesis:

• Whilst simulations are comparatively fast, they are dominated by the time to perform
the pressure projection (Chapter 3).

• Interaction and fluid behaviour happens on the scale of the background grid, so whilst
particles are present in the model they do not represent any particular liquid mass
(Chapter 4).

• As the particles do not interact with each other directly, they are not guaranteed to be
well-distributed which can create problems in later post-processes (Chapter 5).

• The simulations require manipulation of both point and volumetric data, and so artists
may require ways to interact with both of these discretisations (Chapter 6).

2.4 Realistic Splashing Liquid Effects

Given the requirement for photorealism in feature film VFX, some particularly troublesome
effects to create are those of liquid splashes and sprays, arguably some of the most visually
exciting and dynamic physical phenomena. These occur in a variety of situations such as rapids,
waterfalls and breaking waves - all scenarios which could be required for visual effects artists
to recreate. As we have discussed in the previous chapter, the problem of making photoreal
recreations of these kind of phenomena comes from the levels of detail required, and the
variation in behaviours between each visual component.

2.4.1 Anatomy of a Splash

Consider the example of a splash shown in Figure 2.4 (left) and the annotated version Figure
2.5. Within this image of a breaking wave there are a large number of visible fluid components,

CHAPTER 2. LIQUID SIMULATION FOR VFX 24

Figure 2.4: A wave breaking on the rocks (left) and a waterfall (right). Phenomena such as
these are extremely complex, containing interactions between many different states of the
liquid and air mixtures including droplets, sprays, foam, and bubbles, as well as larger scale
liquid behaviours such as the wave breaking and the ocean wave dynamics.

all interacting in various ways to make up an extremely complex liquid phenomenon. These
include:

• Ocean waves in the background;

• The main wave in the foreground, breaking over on itself;

• Fine sea spray tearing away from the peak of the wave;

• Droplets and splashes on the peak of the wave and against the rocks;

• Foam and churn in front of the wave near the shore;

• Bubbles entrained in the liquid creating lighter areas beneath the surface.

Also notice how most of the visibly dominant and arguably interesting components of this
image are the droplets, foam and sprays. The larger ocean behaviour and wave breaking simply
give a platform upon which these other components inform the viewer that they are looking at
a violent, energetic liquid phenomenon.

Beyond Free-Surface Flow

Hypothetically, we could endeavour to simulate systems with high enough resolution and
enough model complexity that we capture these small-scale features as well as larger motions
in a single simulation, but such a mammoth task would be unfeasible in reality. In order to
recreate all of these scales of motion at once with a single system would require impossibly high
resolutions and a model incorporating a huge range of influences and interactions, incurring
massive computational cost and even then, such a model would likely be extremely unwieldy

CHAPTER 2. LIQUID SIMULATION FOR VFX 25

Figure 2.5: Dissecting the breaking wave from Figure 2.4 into its visible fluid components.
Highlighting areas of predominantly splashes, foam, droplets and sprays. Note how the shape
of the wave breaking and other similar larger-scale fluid behaviours are obscured by the
smaller-scale fluid components.

as an artistic tool. Whilst work continues to progress on adaptive techniques (able to capture
multiple scales of motion, spatially increasing resolution where required [Ando et al. 2013])
these remain quite experimental and often restricted to being a mechanism to reduce the
existing cost of simulation through model simplifications and/or reduced dimensionality. We
instead would be aiming to push effective resolutions and model complexity past their current
limitations, striving to capture novel scales of plausible motion, which is unlikely to be properly
represented with simplified adaptive methods regardless of resolution. Furthermore, even if we
were able to use the use the required high resolutions, the driving forces behind interactions
at smaller scales (and with multiple phases) are not always the same as those on larger
scales and so models would have to be developed to account for this variation as well. These
issues in increasing resolution of standard techniques have instead inspired a collection of
alternative methods for splashes and sprays that decouple smaller scale behaviours from
the bulk fluid motion such that they may be simulated separately and/or using different
models/discretisations (secondary particle simulations, gas simulations etc).

2.4.2 Previous Approaches

Some methods have coupled free-surface models with different discretisations to model splashes
with droplets and volumetric sprays. Takahashi et al. [2003] introduced the notion of coupling
free-surface liquid simulations with secondary particle systems for their splashes with droplets,
sprays and foam using additional components following very simple behaviours. Building on

CHAPTER 2. LIQUID SIMULATION FOR VFX 26

this idea, Song et al. [2005] then coupled ballistic particles for bubbles and droplets and to
their Eulerian grid-based solver, preserving mass throughout the transition between states and
considering different numbers of ejected droplets and bubbles dependent on the velocity of the
fluid. Kim et al. [2006] similarly consider secondary particles ejected from their Marker Level-
Set approach, using varying radii droplets and creating background mist/sprays dependent on
the velocity such that more turbulent areas create denser volumetric effects.

Other approaches have looked to increase or improve free-surface liquid simulations to
better capture splashing behaviours, particularly the breaking off of droplets, without also
trying to couple volumetric components. Losasso et al. [2008] couple their PLS solver with a
secondary SPH/FLIP/PIC hybrid system. In this method, they modify their pressure projection
to allow varying particle density in their hybrid simulation component and use a blend of the
incompressible grid velocity with the (divergent) particle velocity based on particle density
to create finer droplet-like details in more sparsely sampled regions. Droplets are similarly
captured by the method of Mihalef et al. [2009] who also use bubble particles to increase the
visual plausibility of their Marker Level-Set free-surface liquid simulations. The break off of
these is motivated by the Weber number (which we will discuss more in Chapter 4) and the
marker particles used to track the surface. Gerszewski and Bargteil [2013] modify a standard
FLIP/PIC simulation to allow unilateral incompressibility i.e. positive divergent velocity, which
allows expansion/breaking-off of particles from the main liquid body, creating more splashy
results. However the approach taken requires costly solution of two linear complementarity
problems. More recently, Um et al. [2018] have looked to improve the splashing behaviour and
fine-scale details of FLIP/PIC simulations using a machine-learning driven droplet break-off
mechanism.

Combining elements from much of the previous work, Yang et al. [2014] develop a unified
model for free-surface liquid, droplets and sprays using coupled FLIP/PIC, blended FLIP/PIC
(from Losasso et al. [2008]) and volumetric spray components. This also considers interesting
spray phenomena such as primary liquid break-up into droplets, drag (from Mihalef et al.
[2009]) and secondary atomisation. However this method ignores interactions within the
droplets and requires multiple solves for each component in the coupled system. Most impor-
tantly, the method is designed to target real-time applications and the results they demonstrate,
whilst impressive, are not photorealistic.

Chentanez et al. [2015a] create a unified system for fast simulation of larger-scale liquid
phenomena, coupling heightfield shallow water simulations, with grid-based and particle-based
free-surface simulations for higher-quality interactive simulations but do not consider the other
components such as droplets, sprays and foam.

Perhaps the most successful of all works from the computer graphics community in practice
is that of Ihmsen et al. [2012] who describe a method for creating secondary ballistic particle
simulations from initial particle-based free-surface liquid simulations. As they separate the
simulation of initial free-surface liquids from these secondary elements, this allows the method
to be used in a layering-style workflow, creating elements separately to reduce cost if changes
are needed. This uses 3 metrics based on the liquid simulation such as curvature of the free-
surface, acceleration and local velocity variation to determine sources for ballistic particles.
These particles then gain different behaviours based on their position relative to the liquid
surface such that they are able represent spray, bubbles and foam elements, and transitions

CHAPTER 2. LIQUID SIMULATION FOR VFX 27

between them. This is similar to many of the other methods before it but focuses on allowing
use as a post-process rather than coupled into the simulation. However these components are
purely driven by the input simulation and do not interact with one-another, restricting the
level-of-detail in the motion captured.

In summary, a collection of approaches have looked to solve the issue of splashing liquids,
often looking at coupled models with various discretisations [Takahashi et al. 2003; Yang
et al. 2014; Chentanez et al. 2015a]. However, none of the model attempting to create these
behaviours has targeted photorealism, instead these methods have all been developed for
interactive purposes. In this way, the quality of the results that they demonstrate is not to the
quality that would be required by feature-film VFX. Approaches that can be used in the layered
workflow used by effects artists have been most effective and widely adopted, although not
often without modification as we will see in the next sections.

As well as references from the academic community, there are examples from within industry
as well that describe alternative approaches to these behaviours.

Examples from VFX

Splashing liquid simulations are a large part of most FX-heavy productions and are not solved
out-of-the-box by available simulation frameworks. As such, there are a number of documented
approaches from within the VFX and animation communities for their approaches to these
effects. These describe some of the main ways that people have tackled these problems,
and most importantly highlight the necessity that artists have found for bespoke and non-
physical elements or compositing tricks in order to create production-quality results. From our
experience, working alongside the artists at DNEG, it is clear that similar practices are still
required to make the full range of details that are required in a liquid effect for feature film
(and we will discuss this in the next section).

Documented examples from production include: combining volumetric fluid simulation
with animated spray and foam clouds, compositing of live action elements and hand placed
particle systems for ‘Lord of the Rings’ [Kurtz and Duda 2002]; secondary particle systems and
pre-simulated 2D/3D splashes for ‘The Day After Tomorrow’; hand-sculpted splash effects for
‘Ice Age: The Meltdown’ [Thornton 2006] spray, bubble and foam particle simulations and
artistically-placed particle emitters for ‘Ratatouille’ [Froemling et al. 2007] (not photoreal but
still highly detailed); huge character-driven fluid-simulations on ‘The Chronicles of Narnia:
Prince Caspian’ [Trojansky 2008] and clustered simulations using particles and volumes for
droplets, foam and froth on ‘The Good Dinosaur’ [Reisch et al. 2016]. Recently for ‘Pirates of
the Caribbean: Dead Men Tell No Tales’, Hopper and Wolter [2017] also recognise that most of
the time spent in making production simulations is in ‘secondary’ elements, noting that these
are important for giving relative scale to the results.

Many recent production practices come from a combination of the works of Ihmsen et al.
[2012] and Zhu and Bridson [2005] alongside the notion of blending liquid motions from
Losasso et al. [2008]. Standard tools in Houdini [Side Effects 2018] for ‘whitewater’ implement
a version of Ihmsen et al. [2012], creating simple particle systems from areas of high velocity,
vorticity and curvature of the motivating liquid surface. These particles by default fall simply
under gravity but due to the inherent flexibility of a tool-set such as Houdini, artists can couple

CHAPTER 2. LIQUID SIMULATION FOR VFX 28

Figure 2.6: A shot from the recent film American Assassin [Cuesta 2017] demonstrating a liquid
splash as a ship’s mast crashes into the water. Effects by DNEG’s Ole Eidsheim. c©2017 CBS
FILMS INC. and LIONSGATE ENTERTAINMENT INC.

with air fields, noise and other influences to increase the variety captured in the result. Other
less well-defined workflows we have seen use secondary FLIP/PIC simulations with a variety
of external and user defined influences such as drag, noise fields and particle age. Ultimately,
arising from the flexibility of the tools available to them, artists are able to combine many of
the usual approaches together to create things like splashes with sprays and mists (coupled
FLIP/PIC and volumetric fluid simulations) but to do so requires artistic time and effort as no
single approach is defined that solves all the required elements.

In the next section we will look at an example workflow taken to create a plausible liquid
effect, and the way in which current artistic tools are used to recreate such complex phenomena.

2.5 How to Create a Production Quality Liquid Effect

To demonstrate the efforts required by artists in the creation of production quality liquid effects
we use an example from a recent film worked on by DNEG, American Assassin. This effect
looked to model a ship’s mast breaking off of a battleship and crashing into the water. The
final image we can see in Figure 2.6.

The workflow taken by the artist to create the liquid splash in this example was as follows:

1. First, taking a pre-authored ocean simulation (a 2D heightfield), a FLIP free-surface liquid
simulation was created to follow the movements of the ocean, but most importantly
contain the falling mast and create the main splash element. The initial setup of the
splash was relatively straightforward as the tools for purely free-surface liquid simulations
are well-established and even things such as coupling to the movements of the ocean is
handled out-of-the-box (by an approach similar to Nielsen and Bridson [2011]).

CHAPTER 2. LIQUID SIMULATION FOR VFX 29

Figure 2.7: Work-in-progress renders and contact sheets of some of the rendered elements
created to create the splash effect in Figure 2.6. These elements include extra simulation passes
for whitewater (spray, foam, bubbles), mist and vapour, as well as both point and surface
renderings of the initial FLIP fluid simulation. In total 78 unique elements were passed on to
the next stage of the pipeline for this effect.

CHAPTER 2. LIQUID SIMULATION FOR VFX 30

2. Having assessed the initial simulation, the artist found the need to modify this simulation.
After some iteration, the modifications chosen included adding a density-based wind
force, quoting the artist on the shot: "for breaking up airborne fluid and add directionality
to turbulent fluid" and a "custom solver for air drag based on air density, the cross-section
of the particle and a numerical drag coefficient for a smooth sphere" triggered by the
distance to the FLIP liquid surface and speed.

3. Once the primary splash simulation was complete, a multitude of steps for processing this
simulation were taken. These involved removing points based on their lifetime, speed,
density and creating masks based on various metrics such as the distance a particle has
travelled since its initialisation or its speed and height. These masks were then used to
modify the resulting liquid surface.

4. Given the post-processed primary splash, secondary simulation passes were also required
for finer-scale and multi-phase elements "as the initial splash was very energetic and
created unwanted features like strings and blobs especially close to the ship on mast
impact, most of the work involved with the whitewater was manual shaping and clean-up
after sim". Similar to the ocean-splash setup, methods such as Ihmsen et al. [2012] are
implemented in Houdini and configured to easily work with the initial liquid simulation
output (even when it has been post-processed).

5. However, similar to the required intervention in the primary splash simulation, the
artist was required to further make a collection of manual changes and additions to
this secondary particle setup to achieve their desired result. These included: removing
low density particles from the secondary simulation sources to avoid droplets from the
primary simulation creating further droplets in the secondary simulation; removing fast
particles and manually removing particles using bounding geometries and volumes;
detecting clumps and applying noise based on height in the domain; and finally, applying
drag and enforcing a soft speed limit on secondary particle movement.

6. Following this, multiple volumetric simulations were then created using grid-based fluid
simulations sourced from these secondary particles for various mist elements.

7. Finally, all of the elements were rendered in various forms, with FLIP liquid simulations
rendered both as a surface (after application of the masks described earlier) and as
particles, and secondary particle simulations rendered in various passes breaking up
different states (spray, foam, bubbles) as both points and volumes as well.

In total, with all of the various components, and the different versions of these components
required to get "enough density and detail", it meant that the artist delivered 78 different
rendered elements downstream to create the final shot. Whilst it is likely that not all of these
were used in the final image seen in the film, that does not reduce the amount of work required
by the FX artist to create them, especially considering the unspecified number of iterations
that the artist would have had to create to find correct parameter values/additional forces or
modifications to add.

CHAPTER 2. LIQUID SIMULATION FOR VFX 31

This example demonstrates an extreme, albeit not unprecedented, amount of work required
by an FX artist to a create production quality splashing liquid effect. Commonalities with this
example and the many other documented workflows from the previous section can be seen in
things like the use of different layers of secondary elements, of differing or similar behaviours;
the requirement for artists to modify and tweak even the physically-based components of
their effects such as the primary liquid simulation; and the importance of artistic iteration and
control in defining the required modifications to reach their desired result.

2.6 Areas for Improvement

Whilst many good examples of plausible liquid phenomena have been created using these
existing workflows, it is clear that approaches that are so reliant on artistic input for the
creation of high levels-of-detail and plausibility are extremely costly in terms of both artist time
and computational resources i.e. CPU time for iterative simulations, storage and rendering
of separate elements and their different versions etc. Following our investigation into these
workflows above, we believe there are a few main areas of improvement that stand out as ways
to mitigate some of the issues with this approach. These are:

• Efficiency and performance - as resolutions and demands on detail increase, so do
computational costs. Coupled with the iterative workflow of these kinds of effects, this
can become even more expensive. Are there ways to reduce the computational cost of
simulations to facilitate these increasing demands?

• Level of detail - whilst increasing resolution of simulation is a generally accepted way
to improve detail, we have seen that it is not only resolution that provides the required
details in practice. In production quality liquid effects, many important details are
provided by secondary simulations. Are there ways of improving these to include higher
levels of detail such that the required number of these simulations could be reduced?
Similarly, we have seen that the use of secondary simulations often makes up for many
of the issues with the primary simulations not demonstrating required behaviours such
as droplet break-off. This is particularly true for splashes in liquid simulations where fine
details can be lost through post-processes such as creation of a liquid surface. Are there
improvements to be made to allow the best possible use of these initial physically-based
simulation results?

• Range of phenomena - the current tools have been shown to be very good at simulating
certain things such as larger scale liquid motions and liquids with well-defined liquid/air
interfaces, yet their handling of splashing liquid and ‘whitewater’ phenomena is less
well-established, placing requirements on artists to create these elements. Can the range
of phenomena in physically-based simulations be expanded to include more of these
scenarios?

• Artistic control - the most important aspect of all simulation frameworks for visual effects
production is how an artist can interact with it. Are there ways in which we can improve

CHAPTER 2. LIQUID SIMULATION FOR VFX 32

the usability and control over simulations, and their resulting data, to better facilitate
the inevitable artistic intervention in these workflows?

The next chapters of this thesis aim to tackle problems in these areas, looking to increase
the quality and turnover of difficult liquid effects in VFX production. Building upon existing
techniques, we look to introduce new developments into existing workflows, improving artistic
interaction with their tools, and helping with the simulation and post-processing of liquid
effects.

Chapter 3

Increasing Iteration: Fluid
Re-Simulation using Model Reduction

This project documents an initial investigation into increasing iteration on fluid simulations, shown
to be an issue in Chapter 2 and represents a useful review and grounding for future work in this
area. However on changing industrial partners, a greater issue and possible area for contribution
was identified in the detail and control of high-end effects, taking priority in this research project.
That being said, due to the academic and potential future production contribution here it is included
in this thesis.

3.1 Overview

As discussed in the last chapter, the art of authoring a simulation is an extremely iterative
process. Scenes and setups are often laid out by senior artists for other artists to iterate upon.
Initial simulations can then be run with a multitude of parameters and input sets before an
artist decides on the general setup and runs subsequent iterations with minor tweaks and
additions upon this, until their results exhibit desired behaviour and are approved. Usually,
each iteration will require a new simulation to be run and cached to disk but, as these changes
are often quite minor, there is a lot of time spent running very similar calculations to those of
a previous iteration. In this way, each simulation creates a massive amount of data, only for
this to be ignored when running the next iteration. Our work here focuses on re-simulation,
looking to utilise the work done and data created in performing previous iterations of a fluid
simulation to reduce that required for subsequent iterations1.

The problem of speeding up the simulation process in the general case remains an important
challenge for researchers. We take the following approach in the hope to be largely orthogonal
to these methods and to allow it to be used in tandem with these other developments, aiming
to enable even faster fluid simulations for the special case of re-simulation. In this chapter,

1This part of the research project was originally undertaken with the hope to allow an extension of any data-
driven re-simulation methodology to the case of liquid simulations. However the methods used have not displayed
the flexibility required for this purpose. As such, we document this work in the context of general grid-based fluid
simulations and do not consider the added difficulties required in liquid free-surface simulations.

33

CHAPTER 3. FLUID RE-SIMULATION 34

we describe our investigation into using data-driven model reduction as a fast re-simulation
system for fluid simulations.

The most expensive part of a fluid simulation is often the pressure projection (Equation
2.5), as such we focus the model reduction approach to this stage in the simulation. This will
also allow integration into any simulation frameworks that use a grid-based pressure projection
and avoid unnecessary impact (i.e. reduced fidelity/range of behaviour) on less expensive
parts of the simulation.

We will first show how to use data-driven model reduction to speed up calculations in an
Eulerian pressure projection and then go on to explain the problems that we face when applying
this to fluid simulations for VFX production, with discussion of some possible extensions and
solutions detailed at the end of the chapter.

3.2 Model Reduction

Model reduction is used to reduce the dimensionality of a problem with many degrees of
freedom so that it can be more easily solved, whilst preserving behaviour from the original high
dimensional model. Reduced systems generally require far less computation than their higher
dimensional counterparts, greatly increasing the speed of solutions to problems in the reduced
space. Here we describe a projection-based model reduction approach to our fluid simulation.

3.2.1 Projection

The general concept of projection is that of an injective mapping P between the space X and a
subspace Y ⊂ X such that

P : X → Y (3.1)

and P ◦ P = P2 = P.
In Chapter 2 we demonstrate the use of a projection operator to enforce incompressibility,

mapping our velocity vector field u ∈ RN onto the subspace of divergence-free vector fields,
say DN ⊂ RN .

Here, we instead consider the case of projection P of some state vector s ∈ RN onto a
subspace that has lower dimensionality, say F ⊂ Rr (for r < R), such that

P: RN → F (3.2)

s→ P(s) = s̃ ∈ Rr (3.3)

For our purpose we also require the back-projection operator Q such that

Q: F → RN (3.4)

s̃→Q(s̃) = ŝ ∈ RN (3.5)

As we will see in §3.2.2, if we have ways of performing our simulation steps in the reduced
state, which has lower dimensionality than our full state, we can greatly speed up simulation
time. In this way it is possible to either choose to reduce our entire fluid system to work in

CHAPTER 3. FLUID RE-SIMULATION 35

the reduced space [De Witt et al. 2012; Treuille et al. 2006] or allow specific operations to
be performed in the reduced space and back-project the result into the full space for other
operations [Ando et al. 2015; Kim and Delaney 2013].

Current work in model reduction for fluid simulation has focused on using simple linear
projection operators (see below) for the reduction of dimensions. Due to the huge scale of
systems that are being handled in fluid simulations it is considered unfeasible to use more
advanced, nonlinear projection formulations. This is because the precomputation stage used to
extract linear bases for large-scale systems is already a very costly step, even before considering
more expensive nonlinear methods, especially for data-driven models. Similarly, to effectively
use this technique to increase efficiency, the projection and back-projection must be relatively
low cost operations, which is not the case for nonlinear methods. Therefore we continue to
focus on the case of linear projection in this work.

Linear Projection

For the case of a linear projection operator, this is equivalent to approximation of s ∈ RN as a
linear combination of basis vectors x1, x2, x3,...xr ∈ RN such that:

s= Xs̃ (3.6)

where X ∈ RN×r is a linear projection matrix containing the r basis vectors x1, x2, x3,...xr ∈ RN

as columns and s̃ ∈ Rr is the reduced space analogue of s ∈ RN containing coefficients for each
basis vector.

Now if these basis vectors are orthonormal (i.e. XT X = Id , the n× n identity) then we can
easily calculate

s̃= XT s (3.7)

the projection of a full dimensional vector s ∈ RN into its reduced state s̃ ∈ Rr where r << N .
Similarly we can back-project this reduced vector to a full dimensional vector using Equation
3.6.2

We will now describe how this system has been previously used in application to fluid
simulation.

3.2.2 Related Work

The original application of model reduction to fluid simulation was for the study of turbulent
flows by Lumley [2007] and since then has been used for fluid dynamics in various engineering
and mathematics applications [Berkooz et al. 1993; Krysl et al. 2001].

Model reduction was introduced to the computer graphics community by Pentland and
Williams [1989]. Following initial use in solid simulation [Barbič and James 2005], Treuille
et al. [2006] used model reduction to interactively simulate Eulerian fluids. By using a lower
dimensional simulation on a space defined by divergence-free vector fields they remove the
pressure projection stage from their simulations entirely. The basis for this space is extracted

2The vector ŝ = XXT s may not be the original state vector as the projection to the reduced state is only optimal
in a least squares sense.

CHAPTER 3. FLUID RE-SIMULATION 36

from a set of high resolution fluid ‘snapshots’ using the method we describe in detail in §3.2.3.
Their model allows simulation of relatively simple fluid effects in real-time with interactivity
through moving collision objects. Wicke et al. [2009] build on this work, adding the ability
to tile simulation domains in order to create larger-scale reduced simulations. However, the
system used for changing boundary conditions and collision objects in this work requires lengthy
precomputations and the simple finite difference advection scheme used in the reduced space
causes dissipation of energy throughout their simulations. Replacing the dissipative advection
operators from Treuille et al. [2006], Kim and Delaney [2013] use cubature to approximate
Semi-Lagrangian advection in the reduced space and create a reduced model able to closely
recreate more complex full dimension simulation results for smoke simulations. Their work
introduces the use of model reduction as a technique for re-simulation and begins to describe
the effect of parameter change in subsequent iterations which we explore further in this work.

As we will discuss further later, the reduced basis used is very important to the quality
of results and flexibility of the reduced model. This was the main subject of the work by
Gerszewski et al. [2013] who develop a method to add arbitrary new basis elements, such as
those designed by an artist or created by curl-noise [Bridson et al. 2007].

Rather than extracting a reduced space from prior fluid states, De Witt et al. [2012]
calculate a reduced basis through eigenvectors of a Discrete Exterior Calculus formulation of
the Laplacian for their fixed fluid domain. Through the constraints imposed on their Laplacian
they ensure that the velocity fields are divergence-free and satisfy the boundary conditions
required. A similar approach has recently been taken by Liu et al. [2015]. However, as our
motivation for the use of model reduction is to utilise existing data from previous simulations,
we focus on improving the data-driven methods above.

Ando et al. [2015] describe an alternative method of reducing the dimensionality of a
pressure projection for liquid simulations. They use a ‘surface-aware’ trilinear interpolation
kernel for reducing their system that allows application to an evolving liquid free-surface, but,
causes smoothing of pressure values leading to volume loss and energy dissipation. We use
a similar approach, focusing on the pressure projection, but instead use data-driven model
reduction, aiming to retain the fidelity of the higher order method and small scale details as
in Kim and Delaney [2013], at the cost of some precomputation. This decision was made
so that we may offer a means to increasing turnover of simulations without causing obvious
differences between our full resolution simulation and our reduced simulations. We do not
wish to use a method that always causes a significant difference or decrease in quality, such as
the seams and energy loss/smoothing present in Ando et al. [2015]. The data-driven methods
are designed to retain the level of detail of the input simulations, to allow greater fidelity than
using an interpolation method.

3.2.3 Proper Orthogonal Decomposition via Method of Snapshots

The key component of all of the above reduced order methods [Ando et al. 2015; De Witt
et al. 2012; Kim and Delaney 2013; Treuille et al. 2006; Wicke et al. 2009] is the projection
operator defined by the matrix X, that projects the system onto a low order subspace that aims
to encapsulate the behaviour of our original high order model.

CHAPTER 3. FLUID RE-SIMULATION 37

As shown in Treuille et al. [2006] (and used in Wicke et al. [2009] and Kim and Delaney
[2013]), it is possible to extract a suitable basis, defining X, from a collection of previously
calculated fluid states using Proper Orthogonal Decomposition (POD) via the Method of
Snapshots. This method is effectively equivalent to performing Principal Component Analysis
(PCA) on the entire simulation, but here we use terminology consistent with the engineering
literature and Kim & Delaney’s work on re-simulation [Kim and Delaney 2013]. We will now
describe how to use this method to extract the projection matrix X.

First concatenate the state vectors, say the pressure states3 out of the pressure projection
(Equation 2.18) pi, into a state matrix of snapshots P = [p1|...|pt] ∈ RN×t where pi ∈ RN is
the full dimensional state vector describing our system at timestep i and t is the final timestep
of the input simulation.

Now perform Singular Value Decomposition (SVD) on this matrix to get:

P= XΣYT (3.8)

where X ∈ RN×t ,Σ ∈ Rt×t and Y ∈ Rt×t , X and Y are matrices with orthonormal columns and
Σ is the diagonal matrix of singular values that represent the relative contribution of each
column in X to the simulation state matrix.

From this we can take the columns of X as our orthonormal basis that spans a lower
dimensional subspace. These basis vectors x1,x2, ...xt , known as Proper Orthogonal Modes
(POMs), describe the key common components of the simulation data contained in the state
matrix. For pressure field snapshots we find the most common components used to correct
the divergent velocity fields to be divergence-free (Figure 3.2). In the case of velocity field
snapshots, the POMs describe the key common components of velocity field over the entire
input simulation (Figure 3.3). Furthermore, if we use an input of the post pressure-projection
velocity fields, our velocity POMs will be divergence-free and enforce the boundary conditions
of our simulation [Treuille et al. 2006].

Figure 3.1: Single frame of 128× 128 smoke plume style simulation

3This method can be used for others state in our simulation, e.g. the velocity u.

CHAPTER 3. FLUID RE-SIMULATION 38

Figure 3.2: The first 4 elements x1, ...,x4 of our pressure basis X for the 1282 sim in Figure 3.1.

Figure 3.3: The first 4 elements v1, ...,v4 of our velocity basis V for the 1282 sim in Figure 3.1.

This SVD is such that the basis defined by the columns of X is the best (in the least squares
sense) fit for representation of the original snapshots in a reduced space. That is, any subspace
spanned by any k POMs x1, ...,xk for 1 ≤ k ≤ r is the best fit k-dimensional subspace of our
state matrix P. Using this result, the number of POMs can be reduced to increase speed and
reduced memory footprint at the cost of range of motion available in the subsequent reduced
simulation, whilst remaining the best possible fit to the input simulation for that number
of basis elements. The most popular method for deciding which POMs to remove uses the
corresponding singular value from Σ (using Equation 3.8), if this is lower than some threshold
e.g. 1e−9, we can say that the POM has very little influence in the simulation and can be
discarded.

3.3 Subspace Pressure Projection using Previous Simulation Data

The use of data-driven model reduction for re-simulation by Kim and Delaney [2013] and
restriction of dimensionality reduction to the pressure projection by Ando et al. [2015] were
the main inspirations for our work. As we mentioned in Chapter 2, there is a bottleneck in
the FLIP/PIC simulation framework at the grid-based pressure projection that greatly impacts
on overall simulation time. Here, we combine these ideas to show that we can increase
the efficiency of our simulation using data-driven model reduction confined to the pressure
projection.

Kim and Delaney [2013] originally used repeated projection and back-projection to and
from their reduced state to allow application of forces at full resolution, Ando et al. [2015] then
developed a system using this idea to restrict use of model reduction to only the grid-based

CHAPTER 3. FLUID RE-SIMULATION 39

pressure projection. However, Ando et al. [2015] suffer from volume loss and smoothing of
resulting fluid velocities as they use trilinear interpolation for their model reduction. Our work
aims to retain the fidelity of the re-simulated results originally in Kim and Delaney [2013] in
the same self-contained framework as Ando et al. [2015].

By projecting the simulation into a reduced state before the pressure projection and then
back-projecting into a full state afterwards we can perform the rest of our simulation timestep at
full resolution. Doing this, our reduced model is fully self-contained to the pressure projection
step and allows use of full accuracy at the other, less computationally expensive stages of our
simulation. Therefore, our reduced pressure solve should be applicable to fully Eulerian solves
and also, importantly for VFX, hybrid simulations such as FLIP/PIC. Another benefit of using
only a reduced pressure projection stage in our simulations is that we reduce the huge amount
of precomputation required by Kim and Delaney [2013] (4 SVDs and a cubature calculation)
to a single (or two, see Equations 3.13 and 3.14) SVD(s).

3.3.1 Method

The pressure projection step is solved through the solution to a large linear system (Equation
2.18) of size N × N :

Ap= b

If we suppose that p = Xp̃ and XT = X−1 we can reduce this system into that of solving a much
smaller r × r linear problem through Galerkin projection [Stanton et al. 2013]:

(XT AX)XT p= XT b (3.9)

So our reduced pressure solution can be calculated by

p̃= XT p= (XT AX)−1XT b (3.10)

This was the technique used by Kim and Delaney [2013] and Ando et al. [2015] in their reduced
fluid simulation systems. We now back-project this into a full resolution solution as in Ando
et al. [2015]:

p̂= X(XT AX)−1XT b≈ p (3.11)

and the pressure gradient update to remove divergence is given by

û= uprepro jec t −
∆t
ρ
∇p̂ (3.12)

Unfortunately, when solving in this way, we found that approximation errors accumulated
causing divergence to grow as the simulation progresses (Figure 3.4), even when using a
few subsequent Jacobi iterations on our approximate full resolution solution as in Ando et al.
[2015]. We believe this to be the cause of the volume loss that they experience, which they
later correct with the volume loss correction scheme from Kim et al. [2007]. This is possibly be
due to the fact that by having an overdetermined system (as usually N >> t) and discarding

CHAPTER 3. FLUID RE-SIMULATION 40

Figure 3.4: Simulation of 1282 smoke plume using reduced pressure solution (Equation 3.12)
only. Demonstrating visible accumulation of divergence (left), with addition of 5 Jacobi
iterations (right).

bases with low singular values, our projection matrix is only optimal in a least squares sense,
meaning our projections are not exact, allowing some small divergences to persist.

We have found that using a subsequent projection of the velocities onto a divergence-free
velocity basis V greatly decreases this accumulation of divergence. This V is extracted in the
same way as the pressure basis (with POD), instead using the post-projection divergence-free
velocity state vectors (Equation 2.19) from our original simulation. We call this method Reduced
Pressure Solve with Projection:

û= VVT (uprepro jec t −
∆t
ρ
∇p̂) (3.13)

where we have the projection matrix VVT 6= I . This inequality arises as we again have an
over-determined system on which we apply our SVD and so the matrix V is only optimal in the
least squares sense and is not row orthogonal. This projection is such that, for each divergence-
free velocity mode of the basis vi , we find the component of the current velocity field u in the
direction of this mode and add that to our subspace representation ũ, i.e. ũ =

∑r
i=1 < u,vi > vi

or simply ũ = VT u. Then project back into the full space by û = Vũ, giving us a resulting
divergence-free velocity field close to the original velocity field, where the divergent components
of u have been removed as they are not spanned by V.

Referring back to Equation 2.19, we see that the subtraction of the pressure gradient from
our velocity field comes from the application of our orthogonal projection operator P which
maps our velocity onto its divergence-free component, or its closest point on the subspace of
all divergence-free velocity fields. In Equation 3.13, we instead use our subspace projection
operatorQ s.t. û =Qũ = VVT ũ mapping our velocity field onto its closest point on the subspace
of all divergence-free velocity fields that is spanned by our POMs. Following this, we propose
if our velocity POMs span the entire subspace of divergence-free velocities that arise in our
simulation, then this projection Q should be equivalent to the original orthogonal projection P,

CHAPTER 3. FLUID RE-SIMULATION 41

as they both send the input velocity field to its closest point on the subspace of divergence-free
velocities. Thus removing the need to do a linear solve at all. This idea is similar to Treuille et al.
[2006]’s removal of divergence through restriction to simulating on divergence-free velocities,
but here we remove the need to formulate all of the other operations in the subspace as well.
We call this method Direct Projection:

û= VVT uprepro jec t (3.14)

In the following we demonstrate that this does in fact lead to results that are very close to
those that also use a reduced pressure solve, therefore offering a new, far simpler method for
performing an approximate data-driven pressure projection.

3.3.2 Results

In this section we will look at the results of tests run with these subspace pressure projection
operators, the Reduced Pressure Solve with Projection (Equation 3.13) and the Direct Projection
(Equation 3.14). For simplicity these have been run as part of a 2D fully Eulerian smoke
simulator with Semi-Lagrangian advection as in Stam [1999] using a Incomplete Cholesky
PCG linear solver, in MATLAB. This simple test is chosen to restrict the focus of the tests to our
changes in the pressure projection stage.

The main example simulation used for Figures 3.5 - 3.8 is the smoke plume shown in Figure
3.1, this uses a 128× 128 grid with Conjugate Gradient tolerance 1e− 5. Similar to Kim and
Delaney [2013], we consider the relative L2-error as the metric for the difference between a
full resolution simulation and our reduced methods.

In Figures 3.5a and 3.5b we consider the error in the density field and velocity field, and
also show the total divergence of reduced simulations compared to full resolution simulation.
These figures show results with a complete POM basis extracted by the SVD and Figures 3.5c
and 3.5d show those using a reduced number of POMs. Table 3.1 shows the difference in times
between our full solve, reduced pressure solve with projection and direct projection.

Method Total Time Step Time Speed up
Full Pressure Solve via ICPCG 64.221s 0.128442s
Reduced Pressure Solve & Project, complete basis. 9.157s 0.018314s 7x
Reduced Pressure Solve & Project, truncated basis. 6.1348s 0.012269s 10x
Direct Projection, truncated basis. 2.789s 0.005578s 23x
Velocity SVD 26.9837s
Pressure SVD 8.8368s

Table 3.1: Table of Pressure Solve times with different pressure projection operators for 1282

smoke plume simulation in Figure 3.1.

As our reduced simulations are designed to be performed as part of a re-simulation frame-
work, we require these methods to allow the use of parameter change so that updated simu-
lations can be created. We show the error caused by the reduced simulation when varying a
simulation parameter away from the input parameter in Figure 3.7, here we have used buoy-
ancy as our example, this could be some other global force like gravity or another parameter

CHAPTER 3. FLUID RE-SIMULATION 42

such as vorticity. An example of the differences created using a reduced simulation based off of
a different input parameter are shown by the final states of a full and reduced simulation in
Figure 3.8.

CHAPTER 3. FLUID RE-SIMULATION 43

(a) Reduced Pressure Solve with Projection, complete POD basis.

(b) Direct Projection, complete POD basis.

(c) Reduced Pressure Solve with Projection, truncated POD basis.

(d) Direct Projection, truncated POD basis.

Figure 3.5: Comparisons of errors in simulations using subspace pressure solves against those
using full pressure solves for the simulation in Figure 3.1. Using relative L2-error.

CHAPTER 3. FLUID RE-SIMULATION 44

Figure 3.6: Log-log plot of divergence in the velocity POM vs singular value of that POM for
1282 smoke plume simulation.

Figure 3.7: Error and max divergence when varying the buoyancy parameter in the 1282

Reduced Simulation using only Direct Projection. Buoyancy for the input simulation b = 9.81.

CHAPTER 3. FLUID RE-SIMULATION 45

Figure 3.8: Final state of a simulation with buoyancy parameter b = 20. Full solve (left) and
Direct Projection solve with b = 20 (right) where input basis simulation has value for b = 9.81.
Note the large variation in the final state between these two simulations.

CHAPTER 3. FLUID RE-SIMULATION 46

3.3.3 Analysis

From the figures above, we can see that it is possible to reconstruct the input behaviour to a
close approximation when using the model reduced pressure projections and in doing so can
offer a substantial speed increase for re-simulation (Table 3.1) due to the reduced complexity
of the calculations in subsequent simulations. The results of Figure 3.5b show that using a full
basis with the Direct Projection method can generate high divergences and Figure 3.6 suggests
that this is due to accumulation of divergent noise in the later POMs. However it should be
noted there is still only relatively small error in the velocities and densities in this case. By
instead reducing the number of POMs to those with higher singular values (and so, by Figure
3.6, lower divergences), Figures 3.5c and 3.5d show that we can reduce the error in the Direct
Projection method such that it is comparable to the more complex Reduced Pressure Solve
with Projection. The average times for the solve in Table 3.1 suggest that the speed increase
and lower pre-computation time of the Direct Projection method make it much more lucrative,
making up for the slightly lower accuracy of this method. The results suggest that, as both
of these methods give similar results, if we require the additional velocity projection onto
the subspace anyway, the added work of projecting and separating the pressure solve in the
reduced space would not be worthwhile.

Concerning the above-tolerance divergences in Figure 3.5a, even for unchanged input
parameters, the results in Figure 3.6 suggest that they arise from the formulation of the
updated velocity as linear combinations of the basis vectors which may have some non-zero
divergences. In our examples, they generally have the same tolerance for divergence as the
full scale velocities from the input simulation. As each basis element has divergence of at least
the order 1× 10−5, large numbers of these (our coefficients of each POM in û) in combination
could lead to the divergences that are seen in Figure 3.5b. However the results of the density
and velocity field suggest this may not have a distinct impact on the rest of the simulation as
each timestep is independent in its direct velocity projection and so the error in the resultant
velocities and densities does not accumulate.

Unfortunately, as we can see from Figure 3.7, parameter variation away from the input
simulation can lead to large differences between the reduced and full simulations. After 500
frames the density and velocity fields from the reduced simulation are both 70% different to the
motion of a full resolution simulation with the same parameters. However it should be noted,
similar to Kim and Delaney [2013], the resulting simulations generally remain stable and still
offer predominantly fluid-like results, shown in Figure 3.8, although with different behaviours.
This is the case for the majority of the simulation but this method is not always entirely robust,
as seen in Figure 3.7 at the later stages of the simulations, we see very large divergence values.
This is found to arise when the smoke plume drops and intersects the density source, motion
not found in the original input simulation.

In summary, these results show that generally this method is only closely accurate for re-
creating an input simulation from its the set of POMs. This could be useful for some applications
that we had not previously considered such as storing POM caches of simulations rather than
full results (this would give a reduced time required to recreate the results of a full resolution
simulation but remove the need to store full simulation caches long term). However, ultimately
this method, in its current form, does not give the flexibility required to use these POMs for

CHAPTER 3. FLUID RE-SIMULATION 47

re-simulation in VFX with varying inputs. This will be the focus of the next section, describing
a few tested and as-yet untested approaches to increase the flexibility of this model reduction
method.

3.4 Improvements to Model Reduction for Re-Simulation

As we have seen from the previous section, although model reduction is able to create a
good increase in speed for simulations similar to that of the input simulation, there is a
fundamental lack of flexibility towards parameter change in these data-driven approaches.
This is unfortunately an inherent problem to many model reduction systems that use the
POD Method of Snapshots. As such, there has been a lot of work in developing models to
increase the flexibility of the model and the range of motion available in the POD basis [Farhat
and Amsallem 2008; Vetrano et al. 2012]. We will now explore some of these previously
documented approaches for parameter variation and look at other improvements we can make
to this model for extension towards to a useful re-simulation system.

3.4.1 Full Dimension Pressure Projection with a Reduced Preconditioner

Preconditioning using Subspace Pressure Solve

One method that we have explored, originally developed by Jiang [2014], was to consider the
above subspace pressure solve as a preconditioner for a normal PCG solve pressure projection,
hoping to reduce the number of iterations required. Thus using the POMs to guide the solver
in the right ‘direction’ but let the solution differ if our POMs do not solve the problem closely.
Unfortunately, as shown in Jiang [2014], we cannot simply use a preconditioner comprised of
only our subspace pressure solve operator matrix:

X(XT AX)−1XT =: MPOD (3.15)

Doing this, does not lead to convergence as it immediately solves for all the included POMs
but cannot account for those that are not included in the basis. It is suggested to instead use a
combined preconditioner:

Mcombo =MIC(Id −AMPOD) +MPOD (3.16)

where MIC is the Incomplete Cholesky preconditioner and Id the N × N identity matrix. Using
this method the solution does then converge as the components that are not handled by the
POD preconditioner are handled by the standard IC preconditioner. For a more detailed analysis
see Jiang [2014].

Multiple Preconditioners

The above combined preconditioner is much more costly than a simple IC preconditioner as
it requires full N × N matrix multiplies each time it is used or requires the storage of this
large (not necessarily sparse) matrix. Therefore, we instead considered applying the POD
preconditioner only once at the start of each linear pressure solve and then revert to a standard

CHAPTER 3. FLUID RE-SIMULATION 48

Incomplete Cholesky preconditioner inside the CG loop. This was motivated by the fact that
POD preconditioner instantly solves for the POMs [Jiang 2014], and so we proposed this
rendered the later inclusion of the POD term in the preconditioner unnecessary. To that end, we
also considered the similar case of using the previously unsuccessful POD-only preconditioner
(Equation 3.15), and then switching to an IC preconditioner, as it is requires far less computation
than Equation 3.16.

Results

Table 3.2 is a breakdown of some tests for the use of a multiple preconditioner scheme for
both the POD-only and the combined preconditioner compared to use of a normal Incomplete
Cholesky preconditioner. The test simulations were used to reconstruct our input simulation
(Figure 3.1) with these schemes, and then test the most successful of these with additional
changes to parameters. The results show that when using the same parameters as the input
simulation, the combination of POD-only preconditioner and IC does offer a reasonable speed
increase, suggesting that the POMs in the basis are quickly resolved. However, the extra
computation required for the combined preconditioner, even for a single step, is not worthwhile
as the change in iterations is far outweighed by the cost of building the more advanced
preconditioner. Then, when considering parameter change, the use of multiple preconditioners
has a negative effect on efficiency, causing the solution to require more iterations than using
only IC, suggesting the initial application of the POD preconditioner actually diverts the solution.
From these results we easily see that this approach does not offer the flexibility we desire.

We now describe some other approaches that may be able to improve the results of these
reduced pressure projection methods. As our reduced system is defined by the quality of the
POMs, we will first look at methods to improve our POMs for greater accuracy and flexibility.

3.4.2 Divergent Basis

From our early tests, we found that our method suffers from the accumulation of divergence.
Treuille et al. [2006] showed that our POMs would be divergence-free. Therefore when
projecting onto our POMs, as in the direct projection scheme (Equation 3.14), we should
always remain divergence-free as our state is simply a linear summation of a collection of
divergence-free POMs. However, our results show otherwise. This seems to arise from our
numerical tolerance on our pressure solve, in the PCG solve we do not find the exact solution,
simply a close approximation to some tolerance thus we have some small allowed divergence in
our solution. When applying the projection (Equation 3.14) we can have values in our reduced
coefficient vector û of the order of hundreds, therefore our numerical tolerance errors are then
largely inflated. If we look at the divergence values of our POMs against their singular value,
Figure 3.6, we can see that this error generally accumulates in our later POMs. Therefore we
could reduce our number of POMs being used but this then restricts the motions that we can
describe. We instead propose, if we need a motion described by a particular POM, that we
could simply perform a further pressure projection with the offending POM as if it were a
normal velocity state. This should then allow a greater degree of control on the divergence

CHAPTER 3. FLUID RE-SIMULATION 49

To
ta

lI
C

ca
lls

It
er

at
io

ns
To

ta
lP

re
co

n
Ea

ch
Pr

ec
on

To
ta

lS
ol

ve
Ti

m
e

Sp
ee

d
ch

an
ge

in
pu

t
si

m
,b
=

9.
81

IC
+

IC
(i

np
ut

)
61

35
8

12
3

67
.3

33
s

M
IC

33
00

0
66

46
.3

s
1.

45
x

PO
D
+

IC
12

63
4

26
9.

92
1s

0.
01

98
4s

25
.4

08
s

2.
65

x
co

m
bo
+

IC
12

13
8

25
26

5.
77

s
0.

53
15

4s
28

6.
31

4s
0.

24
x

b
=

12
PO

D
+

IC
50

57
2

10
1

10
.2

36
0.

02
04

7s
66

.7
75

s
1.

00
x

b
=

20
PO

D
+

IC
63

40
1

13
1

9.
82

1s
0.

01
96

4s
75

.2
66

s
0.

89
x

so
ur

ce
of

fs
et
=
+

5
PO

D
+

IC
65

71
3

13
1

10
.2

93
s

0.
02

05
9s

84
.3

65
s

0.
79

x
co

m
bo
+

IC
63

40
1

12
6

20
0.

17
6s

0.
40

03
5s

26
9.

61
9s

0.
25

x

Ta
bl

e
3.

2:
Ta

bl
e

of
ti

m
es

of
a

Pr
ec

on
di

ti
on

ed
C

on
ju

ga
te

G
ra

di
en

t
Pr

es
su

re
so

lv
e

us
in

g
PO

D
an

d
co

m
bi

na
ti

on
pr

ec
on

di
ti

on
er

s
fo

r
in

it
ia

lp
as

s
an

d
In

co
m

pl
et

e
C

ho
le

sk
y

in
C

G
lo

op
.

CHAPTER 3. FLUID RE-SIMULATION 50

that we see in our simulation. It should be noted that this will break the optimality of the
representation that we get from our SVD.

For re-simulation, from the differences in our final states in Figure 3.8, we can see that the
differences between the reduced and full methods are those that will not be solved by even
using an ideal divergence-free basis, if it can only display behaviours from a single simulation.
Therefore, we will also need to consider further methods to add to these bases to have POMs
with a wider range of motion.

3.4.3 Basis Interpolation Methods

As the quality of the POD basis effectively governs the quality of the reduced model and the
results have show a very limited range of motion, the basis must be improved to work with a
wider variety of simulation parameters. Gerszewski et al. [2013] describe a method for adding
new basis vectors defined by an artist into the POD basis to allow additional behaviour in the
simulation. To retain fluid motion, these extra basis vectors come in the form of divergence-free
velocity fields, which could be calculated with curl-noise [Bridson et al. 2007] or some other
model reduction technique [De Witt et al. 2012]. This is then incorporated into the basis by a
system of operations that remove any overlapping behaviours between the new entry and the
previous modes. However, it is not always intuitive to design every new basis vector that is
required to allow a wider range of motion in the simulation. An approach of continuing to use
previous simulations as inputs could instead try to use multiple bases from different simulations
in this manner. Furthermore, there are a few other ways that have been documented for
combining multiple simulations to create more flexible POD bases. These generally come from
engineering and use some form of interpolation. These include but are not limited to: global
Proper Orthogonal Decomposition (GPOD) [Schmit and Glauser 2004]; sensitivity analysis
[Hay et al. 2010]; Grassman interpolation [Farhat and Amsallem 2008].

3.4.4 Fluid Re-Simulation using Subspace Condensation

So far work has focused on extending the pressure projection stage of Kim and Delaney
[2013] to work with greater parameter variation. However even then some more fundamental
problems must be overcome in order to use this data-driven model reduction technique for fluid
re-simulation for VFX. Unlike our previous fixed domain fluid simulations, in reality simulations
may have the case of a changing domain, particularly for things like moving collision objects in
the flow. Kim and Delaney [2013] use Iterative-Orthogonal-Projection [Molemaker et al. 2008]
to solve this issue but they note that this method still does not enforce the boundaries exactly
and it can allow flow through the boundary. Other approaches from Treuille et al. [2006] use
a precomputed set of velocity fields to resolve the flow around boundaries, but these add to
the precomputation time. Gerszewski et al. [2013] use the Vortex Panel method to solve the
boundaries in a 2-dimensional simulation but do not extend their method to 3D.

In an attempt to solve these issues in a more general way it could be beneficial to look
to the exciting recent work by Teng et al. [2015] combining full and subspace simulation for
deformable solids that they call subspace condensation. This approach borrows from domain
decomposition and requires splitting our simulation domain into a subdomain that is well solved

CHAPTER 3. FLUID RE-SIMULATION 51

by the subspace and a subdomain that requires full dimensional solution as it is undergoing
novel motion. The subspace condensation method couples solutions in the subspace and full
dimensional subdomains into a single linear system. This approach may allow incorporation of
arbitrary collision objects in the flow by surrounding them with band of full resolution cells
and coupling this to the reduced method for the remainder of the domain.

Proposed Method

Consider our linear system for the pressure projection:

Ap= d (3.17)

As previously, suppose that we have a basis X such that p = Xp̂ where p̂ is a reduced
dimensional analogue of p.

Instead of solving Equation 3.9, return to Equation 3.17, now let us divide up the domain
into separate areas, the area to be simulated at full resolution defined by the subscript f ,
and the area that we have information about and can reduce to the subspace defined by the
subscript s. Therefore we now decompose the system (Equation 3.17) with the same method
as in Teng et al. [2015] into pressures p f and ps with corresponding divergence values d f and
ds, and our A matrix becomes:

�

A f f A f s
As f Ass

�

therefore our linear system is:
�

A f f A f s
As f Ass

��

p f
ps

�

=

�

d f
ds

�

Now if we project the subspace region into the reduced space with XT , and perform the
substitution of ps ≈ Xp̂s (as in Teng et al. [2015]), we arrive at:

�

A f f A f sX
XT As f Ass

��

p f
p̂s

�

=

�

d f

d̂s

�

(3.18)

This system gives a coupling between the full and reduced space representations and is called
the subspace condensation method.

The linear system is now reduced to dimension (N f + r)× (N f + r) where N f is the number
of full resolution cells and r the number of POMs in the basis. As in Teng et al. [2015], this
may be solved with PCG as suggested using a Jacobi preconditioner for the upper diagonal
block and preconditioning the lower diagonal block with its explicit inverse.

With the above method it could be possible to allow an arbitrary number of full dimensional
cells to be added in new areas when required, coupled with the reduced subdomain. However,
there is still the issue of the definition of an effective ‘oracle’ - used for dividing our domain into
full and subspace solved subdomains, such that the result solves the full resolution sufficiently.
This means that even areas that are included our reduced basis may need simulating at full
resolution for smooth coupling. Similar to both Teng et al. [2015] for new deformations and

CHAPTER 3. FLUID RE-SIMULATION 52

contacts and Ando et al. [2015] for their approach to solid boundaries, we could suppose
that areas undergoing new collisions with solid objects be padded with a boundary layer of
full resolution cells. However, unlike Ando et al. [2015] who for static collisions still require
padding with full resolution cells, if these static collisions have been previously included in
our input simulations, the resulting pressures in the POMs should correctly handle collisions at
full resolution and therefore we should be able to continue to use the subspace representation
where possible.

Furthermore, as we saw in our earlier tests (and found by Ando et al. [2015], shown
by their need for a volume correction scheme), using only a pressure basis with the above
Galerkin projection method at the pressure projection, without projecting the velocities as in
Equation 3.13, gives insufficient results for correcting the divergence and leads to accumulation
of error. It remains to be seen whether the coupling with full resolution cells described above,
post-requisite Jacobi iterations (as in Ando et al. [2015]) or similar use of a volume correction
method [Kim et al. 2007] can facilitate Equation 3.18 as a usable method in fluid simulation.

3.5 Summary

In this chapter we have described an investigation into model reduction for fluid re-simulation.
We have shown a novel use of a data-driven model reduction restricted to the pressure projection
stage of a fluid simulation and introduced a new simplified projection operator for this stage.
Whilst the current model shows some good results for simple simulations, there is a distinct
lack of flexibility towards parameter change that restricts this method’s practical use for re-
simulation, even in the fixed fully simulated domain case that we have tested here. However,
we have also described a collection of avenues of investigation if looking to extend this method
to allow a greater variety of parameters through subspace interpolation. We have also proposed
a method for coupling full and reduced space sub-domains, in an effort to allow better handling
of new collision interaction and domain extension. Unfortunately, although this work was
originally undertaken with the hope to extend to liquid simulations, this method does not
have the flexibility of Ando et al. [2015] to handle constantly changing domains of the liquid
free-surface and so is unlikely to be extendable to liquid simulation.

Whilst the iteration upon the liquid simulation components of the effects described in
Chapter 2 is known be an issue, there are a collection of other tools that have been developed
to work around this. Technologies like Dynamo allow artists to create simulations quickly, and
processes like wedging - running multiple simulations of different parameters simultaneously
alleviate some of these issues. However, the artistic iteration and development required to
generate the less well-defined secondary simulations (that are not necessarily free-surface
liquid simulations) is a particular issue that cannot be mitigated with these approaches. We
will look at solutions to this in the coming chapters.

Chapter 4

Increasing Detail: Physically-Based
Droplet Interaction

The majority of the content of this chapter was presented in the paper Physically-Based Droplet
Interaction at SCA 2017. The implementation described has been developed as a component of a
prospective updated version of Dynamo. However due to production constraints this framework
has not yet been exposed to artists at DNEG. There are plans for this to be released into production
in the future.

4.1 Overview

This chapter presents a system for the practical and efficient modelling of physically-plausible
droplet interactions on a mesoscopic scale, for use in medium to large scale energetic liquid
simulations. The approach taken - to directly model interactions between droplet particles
- avoids the requirement of very high resolution to resolve the small physical scale of these
droplet effects that would otherwise come with using standard Eulerian or Lagrangian methods.
This allows the creation of high quality results for sprays of millions of plausibly interacting
droplets that would be very difficult or impractical with existing systems, due to their required
increase in resolution, and so, computational complexity, or through the large amount of artistic
effort usually required (§2.5).

4.2 Motivation

Small-scale phenomena play an important part in maintaining a high level of visual detail and
plausibility in practically every simulated effect used in VFX production from fluids (droplets
and sprays); destruction (dust and particulate matter); to character simulation (muscles,
wrinkles and fur). These finer details ground large-scale effects in reality, often being more
important to believability than their larger scale counterparts, a characteristic that allows even
hand-animated approaches for some effects such as the massive waves from the water planet
in Interstellar [Nolan 2014]. Whilst these phenomena are recognised to be important and are
subsequently required for almost all liquid effects, their recreation is often subject to many

53

CHAPTER 4. DROPLET INTERACTION 54

different approaches in practice [Iversen and Sakaguchi 2004; Froemling et al. 2007]. One
common theme amongst most existing methods for these kind of phenomena is that they are
almost entirely artistically-driven, often requiring a lot of time and effort to create bespoke
setups on a shot-by-shot basis. Taking this approach, artists are required to control all visual
characteristics of the effects they wish to create, including the impression of the interactions
that occur within them and their resultant behaviours - which can be particularly troublesome
for very complex interactions such as those in liquid motion.

Droplets, the small-scale elements that make up liquid splashes and sprays, interact with one-
another primarily through direct collisions between their surfaces. These small (approximately
spherical) dispersed liquid masses undergo interactions that lead to the deformation of their
surfaces, merging with one-another and even fragmentation (break-up into smaller droplets).
Such interactions drive the evolution of the size, shape and velocity distributions of droplets and
so the sprays [Kim et al. 2009] as a whole. In this way, by recreating these behaviours we could
reproduce both localised fine-scale per-droplet interactions and the larger-scale influences and
motions of liquid sprays.

However, as we have seen in §2.4, due to the small-scale and multi-phase nature of droplet
interactions, these behaviours can be difficult to model, especially using the often simplified
simulation methods favoured in computer graphics [Froemling et al. 2007; Ihmsen et al. 2012].
As such, these behaviours (and often even visual representation of any such small-scale liquid
phenomena) have been largely ignored and neglected by computer graphics researchers and
artists alike. Instead artists are often left to attempt to recreate the resulting larger scale
behaviours of sprays directly using bespoke and non-physical methods, with great difficulty.
In this chapter, we consider how to efficiently recreate these interactions or more specifically,
their resulting phenomena and the processes behind them.

The decoupled droplet and spray methods currently used in production take the form of a
variety of techniques, capturing varying levels of quality and detail/interaction (Chapter 2).
A common approach is to use secondary particle simulations: either simple particle systems
[Ihmsen et al. 2012]; non-standard use of a particle-based liquid simulation frameworks, or
some bespoke system that lies somewhere in between [Losasso et al. 2008; Chentanez et al.
2015a]. We will now examine these existing approaches before describing our own later in the
chapter.

4.3 Related Work

The modelling of droplet and spray interactions in computer graphics has been the subject of a
few distinct approaches, many of which we introduced in the Chapter 2. In this section we
will briefly expand on our review of these works with particular focus on their approaches to
modelling the interaction between droplets within splashes/sprays.

Particle approaches: The most popular approaches for liquid simulation in computer graph-
ics, and as such the most widely used techniques to incorporate simulation of droplets, are
particle-based approaches. Apart from the workflow advantages of using particles (mentioned
in §2.3), they also offer geometric advantages in droplet simulation, most notably the visual

CHAPTER 4. DROPLET INTERACTION 55

similarity between a spherical particle and a droplet of liquid. In this way, by modelling droplets
and sprays with particles we are able to arrive at a renderable set of droplets, simply considering
the simulated particle set itself.

Use of particle-based methods for droplet simulation has been documented by many authors
in pursuit of high fidelity splash and spray recreation [Takahashi et al. 2003; Song et al. 2005;
Kim et al. 2006; Losasso et al. 2008; Mihalef et al. 2009; Ihmsen et al. 2012; Yang et al.
2014; Chentanez et al. 2015a]. The most well-known and widely used of these methods
(including those in DCCs such as Houdini [Side Effects 2018]) work by processing an initial
liquid simulation and from this creating secondary systems of particles to represent droplets
and fine-scale liquid elements that would otherwise be missing using standard liquid simulation
techniques. Many of these methods consider only ballistic particles, with interesting behaviour
driven by external influences [Takahashi et al. 2003; Song et al. 2005; Kim et al. 2006; Mihalef
et al. 2009; Ihmsen et al. 2012], and, as they lack internal interaction, are only in practice
suitable for scenarios with large scale differences i.e. large oceans and very small droplets/fine
spray or splashes of very high resolution free-surface simulations that require similarly fine
spray elements. Other methods consider a combination of liquid simulation techniques to
try to incorporate different scales of motion and overcome the issues that arise with this lack
of internal interaction. These include: the use of a modified SPH/FLIP/PIC hybrid allowing
the targeting of differing particle densities and blending to ballistic motion for low density
particles from Losasso et al. [2008]; Yang et al. [2014] and the use of single iterations of
Lagrangian particle methods such as PBD [Macklin and Müller 2013] or SPH [Ihmsen et al.
2014b] velocity updates alongside an otherwise FLIP/PIC-based scheme of Chentanez et al.
[2015a]. These methods look to create interaction between the particles such that they can be
used in simulations requiring visible interaction between droplets, whilst avoiding increased
resolution requirements of the base simulations. However the models they appropriate do not
capture realistic droplet-like behaviours (§4.3.1).

Further distinctions can be made between droplet particle models that are required to be
simulated at the time of the free-surface simulation, such as Takahashi et al. [2003]; Song
et al. [2005]; Kim et al. [2006]; Yang et al. [2014]; Chentanez et al. [2015a] or those that can
be run as a post-process [Mihalef et al. 2009; Ihmsen et al. 2012]. Whilst the latter do not
allow two-way coupling or mass-preservation in droplets, in our experience we have seen that
the decoupled approach is preferred in production, allowing an artist to break up the tasks of
finalising the free-surface liquid simulation and the finer elements that are required on top
such as those of spray, droplets, foams and mist.

Volumetric approaches: Taking a volumetric approach to spray simulation, Nielsen and
Østerby [2013] develop a physically-based model for using a two-continua (air/liquid) dis-
cretisation. Motivated as a more physically-accurate representation of spray than say, ballistic
particle methods, their method considers a macroscopic, volumetric approximation with a focus
on motion with respect to the surrounding simulated air and indirect interaction, recreating
larger multi-phase interactions rather than individual visible droplet details. In more simplified
volumetric approaches, Takahashi et al. [2003] and Yang et al. [2014] consider transitions of
droplets to finer scale mist by using accompanying density volumes that are advected through

CHAPTER 4. DROPLET INTERACTION 56

a rasterised droplet velocity field and a simple single-phase gas simulation respectively.
Other Eulerian approaches to droplets have instead considered recreation of more micro-

scopic phenomena such as the work on droplet and liquid flow along solid objects using signed
distance functions from Wang et al. [2005].

Mesh approaches: Finally, simulation of small-scale liquid phenomena including droplet
interactions have been exhibited using the model of Da et al. [2016], who similarly consider
surface-tension dominated liquid surface phenomena as we do in this chapter. However, their
work has a very different focus of high quality tracking of deforming liquid surfaces, at smaller
scales. We instead approximate this behaviour using a simple particle-based method that allows
application to systems of millions of droplets with relative ease, as well as integration into
existing production simulation workflows.

4.3.1 Issues with Existing Droplet Methods

When using particle-based methods for droplets and sprays, a common approach to rendering
the final result is to render the simulated particles directly, simply as spheres or disks. However,
to properly consider the suitability of the above interaction methods, it is important to look
at the physical properties of these methods and the phenomena they are able to recreate
on the particle-as-droplet scale. For example, in all standard particle-based approaches to
liquid simulation (FLIP/PIC/SPH/PBF), whilst able to carry physical quantities such as mass or
density, particles are ultimately used as ways of tracking the collective fluid mass and are not
explicitly representative of, or in fact act (in isolation) as, a real fluid mass such as a droplet. In
this way, considering these simulated particles as representative of real liquid droplets (implied
by rendering them directly) is inappropriate as the real life phenomena that they represent
are subject to very different interactions than those that they are able to describe, e.g. droplet
breakup and merging (§4.4) vs repulsion and bouncing. Thus, when isolated or sparsely
sampled, many of these are possibly more representative of say marbles than water droplets.

Consider first the hybrid grid-particle liquid simulation framework (PIC/FLIP/APIC) as
described in Chapter 2. In this method, introduced to graphics by Zhu and Bridson [2005],
particles are simply an advection mechanism, that is, a method to transport fluid quantities
throughout the simulation, transferring to and from a background grid each timestep in order
to calculate interaction. Here the actual liquid representation is grid-based, described by the
velocity field and often a level-set surface. Most notably, the actual internal interaction (through
pressure) is solved on the grid discretisation, not the particles. Interactions that are captured
by these methods are therefore driven by, and occur on the scale of, the grid resolution. This
separation of interaction and advection simulation elements results in particles of secondary
importance to the simulation, not typically required to be preserved and/or mass carrying.
One advantage of this means they are able to be trivially resampled under a representative
surface (if it exists) - to improve the accuracy of the motion tracking without largely effecting
the overall motion resolution. However, such a separation of simulation elements and their
different roles can be troublesome for less well-defined scenarios such as isolated particles and
areas that become sparsely sampled as they neither accurately capture larger scale motions nor
motions on a small enough scale to meaningfully represent droplets.

CHAPTER 4. DROPLET INTERACTION 57

(a) Ballistic:
Particles are completely void of interaction with
one-another relying entirely on (larger-scale) ex-
ternal interaction to cause visible changes to their
motion.

(b) Hybrid (e.g. FLIP/PIC):
Particles stamp properties to a background grid
to resolve interaction, reducing the fidelity of the
interaction and amount of detail captured to that
of the grid resolution.

(c) SPH/PBF:
Particles are effectively radial kernels, attracting
and repelling each other within their sphere of
influence dependent on a collection of forces.

(d) Rigid Body:
Particles move and interact more akin to marbles
than liquid droplets, bouncing off each other being
their only interaction.

Figure 4.1: Standard particle-based droplet simulation techniques and their interaction mecha-
nisms. In no existing method does a single particle meaningfully represent a mass of liquid
such as a droplet.

CHAPTER 4. DROPLET INTERACTION 58

Similarly, consider an SPH simulation. Whilst particles are mass carrying, they are a
mechanism to evaluate an approximation of the integral of the fluid equations throughout space.
In this way, areas of low particle density/reduced neighbourhood offer a poor approximation
for these equations (optimal neighbourhood being 50 particles [Winchenbach et al. 2016]). In
fact areas of low density are a known issue in SPH simulations (unless additional air particles
are also used), exhibiting what is known as the tensile instability [Macklin and Müller 2013] as
particles clump together due to artificial tension forces. Similarly it has been found that even
with multi-phase simulation setups isolated liquid particles do not act in a droplet-like manner
[Szewc et al. 2016].

Given these kind of issues, it is clear that if using FLIP, SPH or other similar standard liquid
simulation frameworks to drive the motion in droplets we fall foul of rendering simulation
elements rather than particles representative of droplets in reality. Whilst these particle methods
offer a flexible and relatively intuitive interface for artists and users of the systems for larger
scale liquid simulations, the final result of such approaches should always be a renderable
liquid surface (the free-surface), created (often as a post process) from the simulated particles
altogether (see Chapter 5). The collective motion of the particles give plausible behaviours
for larger bodies of liquid as they move and deform, but the particles themselves are not the
representation of water droplets that we seek.

Other approaches have seen non-liquid alternative interaction schemes for droplet particles
such as rigid body motion [Tomar et al. 2010] and even purely ballistic motions, forgoing
interaction altogether. These schemes can be readily seen as insufficient for creating droplet
interactions either immediately (ballistic, for obvious reasons) or as they do not consider
important liquid properties such as deformable and merging surfaces.

From these observations we can see why previous approaches, seemingly borne out of
familiarity more than suitability, do not fulfil the requirements for a system of high quality
droplet simulation and are unable to capture the behaviours that occur in reality on these small
scales (such as those shown in Figure 4.2). The approach we take going forward is to instead
consider a closer look at the interactions occurring between droplets in reality, the mechanisms
behind them and then consider how we may recreate them. Only then can we look to develop
a system able to use droplet particles to recreate plausible droplet and spray phenomena.

4.4 Real Droplet Interactions

Water droplets are (approximately) spherical masses of liquid submersed in air, with surface
tension forces creating their spherical shape, undergoing interactions with the surrounding air
through drag, and acting under the force of gravity. These droplets are often created as masses
of liquid break away from a main body either, as a collection of larger isolated droplets, a finer
spray or a combination of the two. On this scale, and with these kind of surface area-volume
ratios, surface tension forces dominate and are the deciding factor on how droplets interact
with one-another. Considering droplets in these collections/sprays as separate masses, we look
at the interactions that occur as droplet surfaces come into contact and the results thereof,
hereafter known as droplet collisions.

Within the engineering community, interactions between colliding droplets have been

CHAPTER 4. DROPLET INTERACTION 59

studied through observations of those that occur between binary pairs of droplets1. In our
work, we use these observations to inform our description of the range of internal interactions
that occur between droplets in sprays.

Figure 4.2: Droplet collision from experiment: initial coalescence of interacting droplets
followed by subsequent separation and fragmentation. Reproduced with permission from
Brazier-Smith et al. [1972].

4.4.1 Binary Droplet Collisions

There are a number of distinct outcomes that occur from binary collisions between liquid
droplets. These can be broken down into the following outcomes: bounce, coalescence,

1As the likelihood of multiple collisions occurring at the exact same time is unlikely, these observations are able
to offer meaningful insight into these systems. Therefore, from now on we discuss binary collisions with a view to
explaining larger-scale behaviours as a consequence.

CHAPTER 4. DROPLET INTERACTION 60

stretching separation, reflexive separation (and shattering) [Qian and Law 1997; Orme 1997;
Estrade et al. 1999; Pan et al. 2009].

These are defined as follows:

• Bounce - droplets that move towards each other with enough energy such that there is
insufficient time for ambient surrounding air to escape from in-between, but not enough
to displace it, seemingly bounce off of one another. As the air between them compresses,
it creates a pressure forcing the droplets away from one another, causing deformation of
their surfaces and the appearance of bouncing apart. As there is no direct interaction of
the surfaces due to the compressed air pocket, droplet masses are unchanged.

• Coalescence (Figure 4.3 - left): as droplets come into contact, the tension from their
resulting combined surface causes them to merge to form a single mass of liquid. The
free surface of the combined mass initially oscillates and contracts due to the tension
forces on their now deformed surface, working against any incident opposing kinetic
energy. These oscillations dissipate as the combined mass tends to a final (approximately)
spherical stable droplet state.

• Stretching Separation (Figure 4.3 - middle): grazing collisions, where droplets move past
each other with large relative velocity and low surface overlap, instead of fully coalescing,
form a temporary fluid ligament that connects them. The majority of the droplet masses
continue along their initial trajectories, causing the ligament to stretch and subsequently
break. As the tension on the broken ligament causes it to contract, its mass either rejoins
the initial droplets or creates a collection of smaller, satellite droplets.

• Reflexive Separation (Figure 4.3 - right): initially coalescing collisions with sufficient
kinetic energy to cause extreme initial deformation and oscillations that subsequently
break-up the combined mass and split into a collection of smaller satellite droplets.
The point in the oscillation at which break up occurs varies dependent on the incident
kinetic energy. For less extreme velocity differences, and so lesser initial deformation,
this stretching and fragmentation occurs along the relative trajectory of the colliding
droplets in the prolate phase of oscillation, but for increased initial kinetic energy, more
aggressive, shattering behaviour occurs instead [Pan et al. 2009] in the oblate phase
perpendicular to the incident droplet velocities.

4.5 Droplet Collision Modelling

Droplet collisions and their resulting behaviours are the main interactions that occur within
liquid sprays and yet such phenomena have until now been largely ignored by the graphics
community2. Introducing a mechanism to recreate these behaviours into a ballistic particle

2Nielsen and Østerby [2013] and Mihalef et al. [2009] recognise the existence of these phenomena, but instead
consider these interactions at a volumetric, more macroscopic scale which fails to capture them at high visual
fidelity.

CHAPTER 4. DROPLET INTERACTION 61

Figure 4.3: Main droplet collision types (start - top, end - bottom); Left to right - Coalescence,
Stretching Separation and Reflexive Separation (prolate phase).

CHAPTER 4. DROPLET INTERACTION 62

system allows the particles to more meaningfully represent droplets3 and so recreate small-
scale liquid details (as well as drive larger-scale evolution of particle distributions). Modelling
of droplet collision interactions in this way is well-studied and documented in the fields of
engineering and meteorology, where it is used to alleviate requirements for high resolution
multi-phase simulation to simulate interacting liquid sprays [O‘Rourke and Bracco 1980; Kim
et al. 2009]. Given the collection of common behaviours that have been observed in reality
(§4.4.1), an approach often used in these fields is to attempt to parametrise, predict and
directly recreate these observed outcomes (or a subset thereof), e.g. those of coalescence
and separation (Figure 4.3), with the use of discrete threshold methods [Brazier-Smith et al.
1972; Ashgriz and Poo 1990]. These methods have been shown to accurately and efficiently
model interactions between large numbers of droplet particles and as such open the door to
creating more meaningful recreations of spray phenomena at high fidelity. By considering
specific behaviours in this way, we can allow the incorporation of phenomena unique to droplet
interactions such as higher energy collisions causing fragmentation and breakup of droplets
[Munnannur and Reitz 2007]. This behaviour for example, acts as a mechanism for droplet
particle emission to occur naturally throughout our simulations and helps add finer-scale detail
into the system. For the remainder of this chapter, we look to introduce these methods and
their unique behaviours into the computer graphics tool-set.

Combining physically-validated models with novel extensions to accommodate their use in
graphics, we develop a method to simulate droplets and their interactions on a mesoscopic
scale whereby a single droplet particle is the smallest interacting element yet remains able to
reproduce realistic behaviours on this scale. This method is shown to be to able produce high
quality results for millions of small, yet visible, droplets in a spray and so can facilitate the
production of more plausible results than is possible with existing methods.

By the discrete nature of these droplet collision models, most existing contributions in the
field break these models down into two stages; determining the collision outcome that should
occur; and the way this outcome manifests in post-collision characteristics of the droplets. Our
work is no exception to this. To give context to the decisions we have made in development of
our model, we will briefly summarise the existing works that have led to the development of
this approach, then describe the choices and extensions we make for our own model. We begin
by looking at the way that these approaches quantify a droplet collision.

4.5.1 Parametrising Droplet Collisions

From now on consider the collision between droplets i and j with radii ri ≥ r j , velocities ui ,u j
and positions xi ,x j . Following the methodology outlined in the seminal work of Brazier-Smith
et al. [1972], a collision is described in terms of the intrinsic collision parameters We, X , δ
where:

• Weber Number, We: The ratio of inertial forces to surface tension forces for a given fluid

3In computer graphics, the scale of a ‘droplet’ is usually somewhat different to that in engineering references
(O(µm)) but in this paper, we use the realistic collision behaviours of droplets, and their motivating physical
interactions, as an approximation of the interactions that should occur between our often larger liquid ‘droplets’.
We consider droplets to be any visible isolated form of water that can be reasonably approximated by a sphere.

CHAPTER 4. DROPLET INTERACTION 63

element. It is given by:

We=
ρ∆U2 L
σ

(4.1)

for characteristic length L, fluid material density ρ, relative velocity ∆U and surface
tension coefficient σ. For our scenario of two droplets colliding, the characteristic
length L is diameter of the smaller droplet d j = 2r j and the relative velocity is given by
ui j = u j − ui s.t. we have:

Wei j =
2ρr j||ui j||2

σ
(4.2)

The Weber number is a quantity often used in engineering applications (and sometimes
considered in graphics applications e.g. Mihalef et al. [2009]) in analysis of the properties
of interface between two flows (e.g liquid and air).

• Impact, X : The shortest distance between the two droplet centres orthogonal to the
relative velocity (Figure 4.4), normalised by the droplet radii gives the impact parameter:

X =
x

ri + r j
=
||xi j − xT

i jûû||

ri + r j
(4.3)

where x is the perpendicular distance between droplet i and the line along ui j from x j ,

xi j = x j − xi and û=
ui j

||ui j ||
.

r
j

r
i

x

u
ij

u

u

i

j

Figure 4.4: Geometric collision parameters for colliding droplets i and j.

• Size Ratio, δ: The ratio of the smaller droplet radius to the larger droplet radius:

δ =
r j

ri
(4.4)

CHAPTER 4. DROPLET INTERACTION 64

These parameters define key geometric, physical and dynamic properties of the collision
between a pair droplets4 and can be used in both the prediction of an appropriate collision
outcome and the resulting post-collision characteristics.

4.5.2 Collision Outcome Classification

Given the well-defined set of outcomes that occur from binary droplet collisions, a collection of
models have been developed that attempt to explain these outcomes and, more importantly,
describe how to predict which should occur for a given droplet collision.

Brazier-Smith et al. [1972]’s work on rain droplets first introduced the notion of direct
droplet collision modelling. Their model described the phenomena behind coalescence and
stretching separation collisions by defining a threshold between them using the collision
intrinsics We, X and δ. The criterion proposed for separation was for the rotational energy
about the centre of mass to be greater than the surface energy required to reform the initial
two droplets from the nominal combined droplet with radius r0 = 3

Ç

r3
i + r3

j . Analysis of these
energies leads to the following threshold on the impact parameter X :

X > Xcoalescence→ stretching separation for Xcoalescence s.t.

Xcoalescence =
p

ecoalescence (4.5)

for

ecoalescence =
2.4
We

f
�

1
δ

�

(4.6)

and f (·) s.t.

f (γ) =
1+ γ2 − (1+ γ3)

2
3 (1+ γ3)

11
3

γ6(1+ γ)2
(4.7)

This threshold was then introduced into simulation by O’Rourke [1981] when the above
coalescence/separation threshold was applied to spray modelling, approximating the function
f (·) with the polynomial

fO′Rourke(γ) = γ
3 − 2.4γ2 + 2.7γ (4.8)

Following this, Ashgriz and Poo [1990] developed an alternative method defining two
thresholds, one as an improvement on the threshold between coalescence and stretching
separation and the other between coalescence and reflexive separation. These thresholds are
defined using a collection of kinetic and surface energy balance equations. This work instead
considers the kinetic energies of opposing components of droplet spheres (for both stretching
and reflexive separations) rather than the angular momenta of Brazier-Smith et al. [1972].
This alternative formulation, better matching their experimental results, is motivated by an
experimental observation that stretching separation occurs before the development of any
significant angular motion. The thresholds of this method are instead formulated in terms of
the Weber number We as:

4An important property of these parameters is their non-dimensionality, as such these models are generally
applicable to a wide range of droplet sizes as long as the other assumptions of any model using them are justified.

CHAPTER 4. DROPLET INTERACTION 65

We>Westretching→ stretching separation for Westretching s.t.

Westretching =
4(1+δ3)2[3(1+δ)(1− X)(δ3φ j +φi)]

1
2

δ2[(1+δ3)− (1− X 2)(φ j +δ3φi)]
(4.9)

where φi ,φ j (Figure 4.5) are the fractions of the droplet volumes Vi , Vj for i, j resp. that
interact with the other droplet during the collision, given by

φi =

¨

1− (2−τ)
2(1+τ)
4 , if h> ri .

τ2(3−τ)
4 , otherwise.

(4.10)

φ j =

¨

1− (2δ−τ)
2(δ+τ)

4δ3 , if h> r j .
τ2(3δ−τ)

4δ3 , otherwise.
(4.11)

and
We>Wereflexive→ reflexive separation for Wereflexive s.t.

Wereflex =
3[7(1+δ3)

2
3 − 4(1+δ2)]δ(1+δ3)2

(δ6η1 +η2)
(4.12)

where η1 = 2(1− ξ)2(1− ξ2)1/2 − 1,η2 = 2(δ − ξ)2(δ2 − ξ2)1/2 − δ3 for ξ = 0.5X (1+ δ).
Further description of the derivation of these thresholds can be found in the Appendix.

φ
i

φ
j

u
ij

Figure 4.5: Interaction volumes of droplets i and j. φi ,φ j are the fractions of the droplet
volumes that are overlapped as droplet j is swept along the velocity ui j .

Estrade et al. [1999] define a threshold for bouncing outcomes from collisions. The
condition for bouncing is that the kinetic energy in the collision should not surpass the energy
required to produce some limit deformation in the colliding droplets. Their result is given by a
threshold on We:

We<Webounce→ bounce for Webounce s.t.

Webounce =
δ(1+δ2)(4Θ− 12)
φi(cos(arcsin(X)))2

(4.13)

CHAPTER 4. DROPLET INTERACTION 66

where the shape factor Θ = 3.351.
These models have also been combined to capture a range of droplet behaviours in later

works [Munnannur and Reitz 2007]. However, to our knowledge no similar criterion has been
developed to account for the transition from reflexive separation to shattering apart from simple
constant We thresholds of 100 and 1000 in Georjon and Reitz [1999], although some analysis
of this behaviour has been undertaken [Pan et al. 2009].

4.5.3 Post-Collision Characteristics

Whilst determination of the outcome type is important, methods to calculate meaningful post-
collision characteristics are similarly required so that it is possible to then represent these
outcomes in a simulated system. The effects of these droplet collision interactions manifest
in three main ways: changes to the topology of the droplets (that is, merging and splitting),
redistribution of liquid mass between droplets, and, updates to the velocities and trajectories
of the droplets.

Coalescence

For coalescence, we can assume simple mass and momentum conservation, combining the
incident droplets i, j into a single droplet k s.t.

mk = mi +m j (4.14)

rk =
3
Ç

r3
i + r3

j (4.15)

uk =
mi

mk
ui +

m j

mk
u j (4.16)

and the position of the resulting droplet post collision is therefore given by

xk =
mi

mk
xi +

m j

mk
x j (4.17)

for mi , m j , mk the mass of the incident and combined droplets respectively.

Separation

For stretching separation, the work of O’Rourke [1981] suggests a method to calculate the
post-collision velocities as each droplet perturbs the other’s motion, this velocity update is
given by:

ũk =
r3

k uk + r3
l ul − r3

l (uk − ul)z

r3
k + r3

l

(4.18)

for k, l = i, j where

zstretching =
X − Xcoalescence

1− Xcoalescence
(4.19)

CHAPTER 4. DROPLET INTERACTION 67

Tennison et al. [1998] then proposed a similar formulation in their analysis of reflexive separa-
tion, replacing z with

zreflexive =

√

√

1−
Wereflex

We
(4.20)

This formulation for velocity update can also be used to calculate the post-collision velocity
of bouncing by decomposing the velocities down into relative and normal components [Kim
et al. 2009] i.e. ui,rel = ui · ûi, j and ui,norm = ui − ui,rel and applying the update (Equation
4.18) to only the relative velocity components, where −z is instead the coefficient of restitution
(i.e. z = −1, perfectly elastic collision). Reforming the velocities ũk = uk,rel + uk,norm gives
post-bounce velocities. Kim et al. [2009] further propose the use of a similar decomposition of
the velocity in the stretching separation update, such that only the relative velocity component
is updated by Equation (4.18).

Fragmentation

Whilst velocity updates are an important part of the separating phenomena, there is also the
possibility of fragmentation (i.e. splitting into satellite droplets) that can occur during these
outcomes. There have been two previous approaches that look to describe this phenomenon
for these threshold models, those of Ko and Ryou [2005] and Munnannur and Reitz [2007].

Ko and Ryou [2005] extend the model of Ashgriz and Poo [1990] to account for fragmenta-
tion. That is, they calculate the number of satellites from the energy difference between the
incident and predicted post-collision states of the droplets. In doing so, they describe a method
for calculating the volume of the incident droplets that is included in the temporary ligament
and so contributes to satellite droplets. For stretching separation, following observations
made by Ashgriz and Poo [1990] and Qian and Law [1997] this is given by some fraction
of the overlapping volumes based on the comparative energies present in the collision, and
for reflexive separation by the entire incident droplet volume. This calculation is also used
(with slight modification) by Munnannur and Reitz [2007] in their alternative approach to
fragmentation.

In their method, Munnannur and Reitz [2007] combine components from O’Rourke [1981],
Ashgriz and Poo [1990], Estrade et al. [1999], Georjon and Reitz [1999] and Ko and Ryou
[2005] to model a wide range of behaviour, including fragmentation. Unlike Ko and Ryou [2005]
however, they instead focus on explaining fragmentation by considering the physical mechanism
behind the ligament formation and its breakup into satellites. They consider fragmentation
during collision to be the result of the break-up of a temporarily-formed cylindrical liquid
ligament due to the Plateau-Rayleigh instability [Rayleigh 1878], modelling its stretching and
eventual collapse/retraction. Given the interaction volume (as in Ko and Ryou [2005]) and
the stretching velocity ui j, an equation for the cylindrical radius at breakup of the ligament
can be calculated, and in turn, the radius of any resulting satellite droplets [Georjon and Reitz
1999]. This can be calculated as follows.

Ligament volume: For stretching separation, the liquid ligament forms between the two
droplets as they graze past one-another. This volume, Vl i g , is assumed to be equal to some

CHAPTER 4. DROPLET INTERACTION 68

fraction of the total interaction volume of the droplets, dependent on the magnitude of the
opposing surface, stretching and viscous dissipation energies (as used by Ashgriz and Poo
[1990] to calculate the collision type thresholds) in the collision s.t.:

Vlig = Csep(Vinteract,i + Vinteract,j) (4.21)

where Vk =
4
3πr3

k and Vinteract,k = Vkφk for k = i, j and φk as in Figure (4.5) and Csep < 1,
known as the separation volume coefficient, is

Csep =
Estretch − Esurface − Edissip

Estretch + Esurface + Edissip
(4.22)

where

Estretch =
1
2
ρ||ui j||2Vi

�

δ3

(1+δ3)2

�

[(1+δ3)− (1− X 2)(φ j +δ
3φi)] (4.23)

Esurface = 2σ[πVi riτ(φi +δ
3φ j)]

1
2 (4.24)

for τ= (1− X)(1+δ) and Edissip is 30% of the initial kinetic energy of the colliding droplets.
For reflexive separations, this ligament is considered to be the entire temporarily merged

mass s.t. Vlig = Vi + Vj , which is instead stretching due to internally-driven deformations along
the relative velocity (known as prolate phase oscillation).

Ligament instability: The radius at breakup rbu of the cylindrical liquid ligament (assuming
initial length equal to its radius r0) extending with velocity ui j , is then given as the solution to:

βWe
1
2
0

�

rbu

r0

�
7
2

+
�

rbu

r0

�2

− 1= 0 (4.25)

where β = 3
4
p

2
(k1k2), k1 = 11.5, k2 = 0.45 (using updated constants from Kim et al. [2009])

and We0 = 2r0
ρ
σ ||ui j||2.

Finally, assuming that this breakup occurs due to the disturbance of the ligament that has
the maximum growth rate and that the volume of each satellite is equal to the cylinder of length
corresponding to the wavelength of this disturbance, Munnannur and Reitz [2007] (citing
Georjon and Reitz [1999]) give the radius of each satellite as rsat = 1.89rbu. Using rsat and the
ligament volume Vlig the number of satellites can be calculated using mass conservation:

nsat =
Vlig

4
3πr3

sat

(4.26)

4.5.4 Application to Graphics

So far we have looked at these models as they exist in their original contexts. The model of
Munnannur and Reitz [2007] (and the extensions of Kim et al. [2009]) describes the current
state-of-the-art for droplet modelling in this way (although products such as KIVA [Los Alamos
National Laboratory 2018] and ANSYS Fluent [ANSYS 2018] favour even older models such as

CHAPTER 4. DROPLET INTERACTION 69

those of O‘Rourke and Bracco [1980]). However, the composite nature of Munnannur and Reitz
[2007] results in a complex model (incorporating many components from previous approaches)
and certain model choices such as the combination of the threshold of Brazier-Smith et al.
[1972] with the interaction volume calculation of Ko and Ryou [2005] (that, in turn, is based
on the former’s competing model of Ashgriz and Poo [1990]) are not necessarily well justified
and/or re-engineered for compatibility. Whilst there have been documented applications of
this model (such as Kim et al. [2009]) that demonstrate its ability to create meaningful results
on a larger scale for spray engineering purposes, we look to develop a more unified model
that offers greater control and robustness to inputs than possible with this complex, composite
model.

We choose to develop a model based on a subset of the components that we have described
here, with a focus on those which will enable our plausible recreation of similar behaviour
without some of the model complexity of say Munnannur and Reitz [2007]. We look to
introduce these behaviours to enable increased realism to be created over current methods, but
as an artistic tool require it be controllable, robust and can integrate easily into our existing
systems. These considerations have led to our development of a collection of extensions to
these models and are a main theme for discussion for the remainder of the work in this chapter.

4.6 Our Approach

The approach we take is to develop a model to introduce these behaviours into a widely used
method for spray simulation in computer graphics (§2.5), the simple ballistic particle system.
In this way, we consider a system of droplet particles under the influence of gravity, drag
and inter-droplet interaction. By using these discrete droplet collision interaction models we
novelly allow each particle in our system to meaningfully represent a single droplet. The model
we now describe recreates the coalescence and separating phenomena that occur in reality
(§4.4) as well as novel handling of a visible representation of fragmentation and shattering.
This approach is the first to use explicit modelling of droplet collisions for computer graphics
applications, and to do so considers the combination of the following model components to
ensure deterministic, visually consistent and high fidelity results.

This model consists of three key stages: binary collision detection, outcome classification
and collision resolution.

• For collision detection, we use sphere-moving sphere intersection tests, approximate
neighbourhoods (§4.6.3) and efficient, spatially-organised particle data from OpenVDB
Points to deterministically detect collisions between pairs of droplets in reasonable time.

• The outcome of the collision is then determined using the experimentally-validated,
physically-based threshold model of Ashgriz and Poo [1990], which we extend to be
robust to a full range of input states.

• Finally, to resolve these collision outcomes, we use a combination of momentum/mass
conservation, the physically-based fragmentation model of Munnannur and Reitz [2007]
and non-uniform initial behaviours for satellite droplets.

CHAPTER 4. DROPLET INTERACTION 70

We choose to incorporate and extend some of the pre-existing droplet threshold model
components as they are physically meaningful, well-cited, and have been demonstrated to
show good accordance with real droplet behaviour. We first give an overview of our model
below in Algorithm 2. Following that, we will discuss our choice of threshold models from §4.5
and the required extensions for the outcome determination (§4.6.1) and collision resolution
(§4.6.2) stages, before describing the approach we take for binary collision detection(§4.6.3).

Algorithm 2 Ballistic Droplet Particle System
Text in blue indicates the additional stages required for our droplet model compared to standard,
purely ballistic systems.

1: for all timesteps t do
2: force update:
3: for all particles p do
4: gravity: up← up +∆tg

5: drag: up← up +∆t
Fdrag
mp

6: end for
7: binary collision detection (Algorithm 3)
8: for all particles p do
9: if collided then

10: find collision partner
11: droplet collision resolution (Algorithm 4)
12: end if
13: advect: xp← xp + up∆t
14: end for
15: end for

4.6.1 Robust-to-Input Outcome Classification

We choose to focus our model on the interactions missing in other computer graphics ap-
proaches to droplets, and in particular those that uniquely occur for liquid droplets and are the
contributing factors to most spray behaviour, i.e. those of coalescence, stretching separation
and reflexive separation. As others (in engineering) before us, we ignore the case of droplet
bounce as it can depend on atmospheric factors and deformation which we do not explicitly
model in our otherwise simple particle system. For the classification of the collision outcome we
extend the model of Ashgriz and Poo [1990], offering both stretching and reflexive separation
thresholds (Figure 4.6). Whilst this model has been shown to give good results for a variety of
inputs as the thresholds are defined in relative terms and are therefore scale independent (as
long as the spherical droplet assumption applies), the original work considers only a narrow
range of input collision parameters, 0.5≤ δ ≤ 1 and We≤ 100. We make some additions to
allow the full possible range of inputs that may arise during our simulation.

For high velocities or larger droplets (i.e. large We), we need to be able to handle collisions
that surpass both the reflexive and stretching separation thresholds. Similarly, for lower δ
and X , we may find collisions where the smaller droplet is fully interacting, which were not

CHAPTER 4. DROPLET INTERACTION 71

considered in the original work (as the experiments used as comparison did not cover these
cases). In the case of both thresholds being surpassed (only occurring for lower values of X) we
assume that reflexive separation takes precedence over stretching separation as this behaviour
better describes head-on collision. For fully interacting smaller droplets, we cap the original
formulation for φ j to assume full interaction (i.e. φ j = 1) and calculate the interacting region
φi using the geometric formulae for spherical segments and caps. Without this modification to
the interaction volume calculation, the formulae given by the original paper (Equations 4.10
- 4.11) give non-physical results (Figure 4.7) when the smaller droplet is overlapped by the
larger one.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stretching Separation Threshold
Reflexive Separation Threshold

reflexive separation

stretching separation

coalescence

X

We

Figure 4.6: Our collision thresholds (for δ = 1) based on those of Ashgriz and Poo [1990],
with reflexive separation taking precedence for low impact number collisions.

4.6.2 Visually Plausible Post-Collision Characteristics

To consider the visible outcome of these collisions requires methods to resolve these collisions
in plausible and temporally consistent ways. An important component of this is the time at
which to resolve the collision, the modifications made to the system should not introduce any
artefacts such as popping or flickering. We describe how to calculate this time using the same
approach as for detection of these collisions in the next section.

CHAPTER 4. DROPLET INTERACTION 72

X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

-1.5

-1

-0.5

0

0.5

1

ϕ
j

Figure 4.7: φ j (Equation 4.11) against X for δ = 0.4, note that as X → 0, the volume fraction
φ j in fact reduces as the entire droplet should be overlapped i.e. φ j = 1.

For coalescence collisions, mass and momentum conservation (Equations 4.14 - 4.17) are
used to combine the colliding droplets at the time of resolution.

For separation collision scenarios, elements from the works of O‘Rourke and Bracco [1980],
Tennison et al. [1998] and Munnannur and Reitz [2007] are combined to calculate the velocity
updates for the incident droplets and if required, the number of satellites to be created. Whilst
the method of Munnannur and Reitz [2007] covers the number of satellites created, their
modelling of the collisions in isolation rather than in a larger system like ours, requires no
consideration of satellite creation behaviours or post-collision characteristics. Even works
considering spray simulation using these models, such as Kim et al. [2009], separate satellites
from the rest of the system and so are able to consider simplifications such as uniform creation
criteria. To keep our particle system closed whilst minimising visual artefacts we require
non-uniform satellite creation criteria in fragmenting interactions.

Satellite creation

Using the assumption that the satellites created are of uniform radii (due to the cylindrical
nature of the ligament), we emit the satellites evenly along this nominal ligament with velocities
that replicate the stretching behaviour causing its break-up.

We then calculate velocities using momentum conservation with a weighted bias to their
closest parent droplet, such that for satellite n= 1, ...nsat , we have:

un =
Vlig,i

Vlig
ũi +

Vlig,j

Vlig
(ũ j + (1−

2n
nsat + 1

)ũi j) (4.27)

CHAPTER 4. DROPLET INTERACTION 73

Figure 4.8: Shattering reflexive separation (left to right), greatly increased kinetic energy
version of reflexive separation seen in Figure 4.3, creating many satellites with perturbed
satellite velocities (§4.6.2).

with ũk for k = i, j the post-collision velocity of the parents (Equation 4.18), Vlig,k for
k = i, j the contribution of droplet k to the ligament volume and satellite nsat is that closest to
droplet j. This is able to mimic the stretching and separation phenomena that occur in reality
(Figure 4.3).

Perturbation and shattering

When droplets collide at high energy, the interacting droplet mass undergoes large deformations
and oscillations, perturbing the velocities of the satellites that are created as a result. As the
fragmentation model from Munnannur and Reitz [2007] provides no information on torque, to
approximate this behaviour, we add a random rotation to the velocity of the satellites. We apply
a rotation Rn to each satellite (including updated colliding droplets in reflexive separations)
such that their final velocity is given by ũn = Rnun. The magnitude of this rotation is a uniformly
sampled value in α = [0,ηnsat] where η defines a user parameter to define the scale of the
rotational variation introduced by these deformations, and the perturbation increases with the
number of satellites being created. We further scale Rn by (1−α)2 such that larger perturbations
also dissipate more energy. In this way, for extreme cases, we are also able to approximate the
behaviour of reflexive separating collisions as they tend to shattering [Pan et al. 2009] (Figure
4.8).

4.6.3 Binary Collision Detection

Given our models for the prediction and resolution of the outcomes of a droplet collision we
must first find these collisions as they occur in our system. Early applications of these models

CHAPTER 4. DROPLET INTERACTION 74

such as O’Rourke [1981] track parcels - collections of droplets, rather than individual droplets
themselves and use stochastic methods to determine both the presence of collisions and their
parameters such as X . As we are considering visible phenomena of droplet interaction such
an approach could be troublesome. Given our spherical droplets we are able to instead use a
collection of standard collision detection methods to find collisions that occur between each
droplet individually. In this section we will describe these collision detection schemes between
spheres.

Discrete overlap detection

The simplest method of collision detection is to test for a collision between droplets at a single
time t. That is, testing whether the radii of the colliding droplets overlap. For this simply
compare the sum of the radii to the distance between the droplets i.e. for droplets i and j with
radii ri and r j and position xi(t) and x j(t) resp. Then, the spherical droplets are overlapping
i.e. colliding, if:

||xi(t)− x j(t)||< ri + r j (4.28)

Whilst this method is extremely simple and can be relatively efficient (using comparisons
of the squares of both sides to avoid costly square root operations), no further information is
given about the collision, simply that they are colliding at time t. If we require more details on
the collision, we can look to using a continuous collision detection scheme instead.

Continuous collision detection

Rather than considering the position of the particles at a single time t, consider the trajectories
of particles over the arbitrary interval [t, t +∆t]. Suppose the particles move through this
interval linearly from their initial positions, xi(t),x j(t), along their velocities ui(t),u j(t) at time
t. Now suppose there exists a hypothetical time where these two spheres are just overlapping
(equality in the above equation), say t + t̃. At this time, the positions of the particles are given
by xk(t + t̃) = xk(t) + uk(t) t̃ for k = i, j and they are separated by the sum of the radii of the
particles s.t. we have:

||(xi + ui t̃)− (x j + u j t̃)||= ri + r j (4.29)

Taking the square of both sides of the above equation we arrive at the quadratic equation for t̃:

x2
i j + 2ui jxi j t̃ + u2

i j t̃
2 = (ri + r j)

2 (4.30)

(where vector-vector multiplication is the dot product), this then can be rearranged into

ui j t̃
2 + 2ui jxi j t̃ + x2

i j − (ri + r j)
2 = 0 (4.31)

From this equation, the (real) solutions describe the times at which the spheres moving
along the lines through xi(t),x j(t) with linear trajectories defined by ui(t),u j(t) are just in
contact (separated by the sum of their radii), that is the initial collision time (smaller root)
and the separation time (greater root). If these roots do not exist, or are both larger than the
interval end t +∆t, then the particles are not found to collide.

CHAPTER 4. DROPLET INTERACTION 75

Similar to problems resolving contacts in rigid bodies [Vouga et al. 2017], by trying to
resolve all collisions in pairs we could end up requiring large iteration numbers and very small
substepping as each resolved collision alters the system, possibly causing subsequent collisions
etc. As such, because we are not explicitly enforcing incompressibility per particle in the usual
sense but instead focusing on resolving particular behaviours, we choose to limit each particle
to at most one resolvable collision per timestep. To ensure as much temporal consistency as
possible, we make sure to choose the initial collision that should occur for each particle. That
is, for each particle i, we test all of its neighbours in Nt ra jec tor y,i and store a reference to the
corresponding particle with which it has the lowest initial collision time, i.e. lower root t−.
We do this for each droplet in the system and follow with a subsequent pairing step, as in
the particle merging scheme of Ando et al. [2012], to check each particle and its preferred
collision pair. If both particles refer to the other and their collision time is within the substep
∆t, a binary collision is successfully found and the pair are marked and removed from the next
iteration of detection.

Algorithm 3 Binary Collision Detection
1: for all iterations do
2: detection:
3: for all particles p do
4: tp,coll =∆t + ε
5: for all particles q in Np do
6: calculate t− (Equation 4.31)
7: if t− < tp,coll then
8: set collIdp = q
9: end if

10: end for
11: end for
12: pairing:
13: for all particles p do
14: if collIdp = q and collIdq = p then
15: keep collision
16: else
17: return p and q to candidate points
18: end if
19: end for
20: end for

Neighbourhood restriction

Given the above detection methods, in practice a brute force implementation that considers
collisions between all particles in the system would be extremely costly (O(N2)), especially for
larger particle counts. As such, we can avoid this by restricting these collision tests to particles
within local neighbourhoods of each other.

CHAPTER 4. DROPLET INTERACTION 76

We consider the neighbourhoods around each particle and only test against particles within
this neighbourhood to reduce redundant calculation. Consider a neighbourhood around a
particle i. Suppose we know the radius, ri, but do not know the radii of the surrounding
particles r j . Then for the discrete collision detection scheme above we define the neighbourhood
around particle i as

Noverlap,i = {particles j s.t. ||xi − x j||< ri + rmax} (4.32)

where rmax is the maximum radii of any droplets in the system.
Similarly for the continuous collision detection scheme, we define

Nt ra jec tor y,i = {particles j s.t. ||xi − x j||< ri + rmax +∆t(||ui||+ umax)} (4.33)

where umax is the maximum speed of any droplets in the system.
Then we can also use two tests from Nordin [2001] to reduce this further. These tests

require that the two particles are travelling towards each other:

||ui j(t)||< 0 (4.34)

and that the relative displacement is greater than the distance separating the two particles:

||ui j(t)||∆t > ||xi j(t)|| − (ri + r j) (4.35)

Discrete detection with continuous ranking for binary collisions

The above continuous collision detection method is able to find all possible collisions that can
occur, even considering high velocity, large timesteps or very small particles. However, the
size of the neighbourhood Nt ra jec tor y,i can make these calculations very costly. We have found
that it is sufficient to use an approximation of this neighbourhood around the substep interval,
Noverlap,i given by

Noverlap,i = {particles j s.t. ||xi − x j||< ri + rmax} (4.36)

All of the methods discussed here can be combined when considering fast moving, sparse
particle sets to try and reduce excess computation. For example we could first consider using a
number of iterations of detection within Noverlap,i to reduce the number of candidate particles
before testing Nt ra jec tor y,i. However, in practice we found that even at low iteration counts
(< 5) we are able to find a significant number of collision pairs using only the narrower
neighbourhood, for most reasonable timestep sizes.

4.7 Implementation

This model has been implemented into the Dynamo simulation framework at DNEG, built upon
OpenVDB Points as a plugin for Houdini. Each stage of the algorithm is implemented as a
multi-threaded operation, parallelised over the leaves of the OpenVDB Points grid.

CHAPTER 4. DROPLET INTERACTION 77

Algorithm 4 Droplet Collision Resolution
1: for all colliding droplet pairs i, j, s.t. ri ≥ r j do
2: if We>Wereflex then
3: resolve reflexive separation:
4: Update ui ,u j (Equation 4.18)
5: Solve for rsat (Equation 4.25)
6: Calculate nsat (Equation 4.26)
7: if nsat > 2 then
8: Emit nsat satellites (Equation 4.27)
9: Update ri , r j ← rsat

10: end if
11: else if We>Westretch then
12: resolve stretching separation:
13: Update ui ,u j (Equation 4.18)
14: Calculate Vlig (Equation 4.21)
15: Solve for rsat (Equation 4.25)
16: Calculate nsat (Equation 4.26)
17: if nsat > 0 then
18: Emit nsat satellites (Equation 4.27)
19: Update ri , r j using mass conservation
20: end if
21: else
22: resolve coalescence:
23: merge droplets i and j, update u j and x j (Equations 4.14 - 4.17)
24: end if
25: end for

Table 4.1: Suggested values for the parameters considering material properties of wa-
ter/droplets. The relative nature of the collision parameters makes these somewhat flexible and
allows artistic control through their modification e.g. modelling the approximate behaviour of
larger ‘droplets’ than those in reality (Figure 4.12)

Name Description Default
σ surface tension coefficient (N/m) 0.072
ρ liquid density (kg/m3) 997.044
α drag coefficient 0.0001
∆t timestep size (s) 1/24
rmax maximum droplet radius (mm) 10− 100
rmin minimum droplet radius (mm) 0.05− 0.5
η satellite velocity perturbation 0.01
tdelay minimum time between collisions (s) 1/24
nmax maximum satellites created per collision 5
r0 initial droplet radius (mm) 1

CHAPTER 4. DROPLET INTERACTION 78

• Solving Equation (4.25): We use bracket_and_solve_root in the Boost library [Schäling
2011] with an initial guess of the solution to the 3rd order polynomial

βWe
1
2
0

�

rbu

r0

�3

+
�

rbu

r0

�2

− 1= 0 (4.37)

• Neighbourhood search: The inherent spatial organisation of the point data structure
allows a fast and easy implementation of the collision detection system that we describe
in this paper, without the requirement for any other acceleration structures.

• Time of resolution: Collisions are resolved at the impact time, i.e. tX = t− + t+−t−
2 , when

the droplets are most overlapping. We cap this to some max value, i.e. ∆t, for collisions
with very large tX . Droplets are advanced to this time, resolved and then back-advected
with their post-collision velocities through tX , such that all droplets are in the correct
positions accounting for their mid-timestep velocity change after they are advected as
normal through ∆t.

• Rest between collisions: Each droplet, once collided is deactivated from collisions for a
few timesteps. This allows ligament breakup to fully resolve and satellites to separate,
avoiding over detection of collisions and excessive merging in slower moving scenes.

• Droplet sizes: To avoid over-merging of droplets and/or the introduction of very small
droplets we clamp the droplet sizes to a user defined range. We skip any coales-
cence/fragmentation that would produce droplets outside this range but continue to
allow large droplets to fragment, small droplets to coalesce etc.

• Drag: To best represent the effects of the varying size distribution of droplets on their
motion, we use a simple size-dependent drag force. For application to our simple particle
system we make assumptions and modifications to the usual drag formulation. Here,
we assume that magnitude of the background air velocity is negligible compared to the
droplet velocity and replace the usual ∆u term with −u. Then for simplicity, combine all
other terms (including terms from the mass, m) into a single user parameter α > 0 (as
in Song et al. [2005]) and the choice of exponent σ such that the velocity update is as
follows:

du
d t
= −

α

rσ
u3−σ (4.38)

where σ ∈ 1, 2 such that the drag equation mimics either the Newton or Stokes drag for
larger and smaller scale simulations respectively. As in Mihalef et al. [2009], these could
also be combined with an interpolation scheme but we have not found the need to do so.

• Particle surfacing: For close-up examples, to better demonstrate ligament stretching and
breakup using our particles we rasterise particles into a VDB level-set, apply smoothing
operations (as described by Museth [2014]) and subsequently convert to a mesh for
rendering, all using the existing VDB operators in Houdini (more on this in Chapter 5).

CHAPTER 4. DROPLET INTERACTION 79

Ta
bl

e
4.

2:
Si

m
ul

at
io

n
ti

m
es

fo
r

re
su

lt
s

sh
ow

n.
T

he
co

m
pl

ex
it

y
of

th
e

op
er

at
io

ns
,i

nc
lu

di
ng

th
e

em
is

si
on

an
d

de
le

ti
on

of
pa

rt
ic

le
s,

an
d

w
id

el
y

va
ry

in
g

pa
rt

ic
le

co
un

t
ar

is
in

g
fr

om
in

te
ra

ct
io

ns
m

ea
ns

re
su

lt
s

ca
n

di
ff

er
co

ns
id

er
ab

ly
.

A
ll

si
m

ul
at

io
ns

pe
rf

or
m

ed
w

it
h

tw
o

8-
co

re
3.

10
G

hz
In

te
lX

eo
n

C
PU

s
an

d
64

G
B

R
A

M
.

Ex
am

pl
e

Fr
am

e
ti

m
e

w
/o

co
lli

si
on

w
it

h
co

lli
si

on
Fi

na
l#

pa
rt

ic
le

s
w
/o

co
lli

si
on

w
it

h
co

lli
si

on
Fi

gu
re

4.
11

(o
ur

m
od

el
)

0.
02

5s
0.

02
8s

20
0

13
9

Fi
gu

re
4.

11
(F

LI
P)

0.
05

5s
N
/A

20
0

N
/A

Fi
gu

re
4.

11
(S

PH
)

0.
00

6s
N
/A

20
0

N
/A

Fi
gu

re
4.

11
(R

B
D

)
0.

00
6s

N
/A

20
0

N
/A

Fi
gu

re
4.

12
(s

ec
on

d
fr

om
to

p)
0.

10
1s

0.
27

7s
11

1,
53

2
18

1,
76

6
Fi

gu
re

4.
12

(s
ec

on
d

fr
om

bo
tt

om
)

0.
10

1s
0.

13
6s

11
1,

53
2

57
,8

46
Fi

gu
re

4.
12

(b
ot

to
m

)
0.

10
1s

0.
09

9s
11

1,
53

2
22

,2
65

Fi
gu

re
4.

13
1.

35
s

1.
89

s
3,

23
5,

47
4

1,
33

2,
31

6

CHAPTER 4. DROPLET INTERACTION 80

(a) Coalescence: We= 16.

(b) Stretching Separation: We= 447.

(c) Reflexive Separation: We= 155.

Figure 4.9: Simulated results of different droplet collision outcomes, using our method.

Figure 4.10: Stretching separation between droplets displayed by a FLIP simulation. Requires
18k particles to replicate behaviour that we simulate with a single pair of particles (Figure
4.9b).

4.8 Results

The results in this section describe the stand-alone application of our droplet model into a
simple particle system. By introducing these interactions into these systems, we are able to
plausibly and efficiently model large systems of water droplets. We first demonstrate the
simplest, fundamental case of a single binary droplet collision in Figure 4.9, showing how our
model approximates ligament formation and handles the topology changes that occur during
the interactions described in §4.4. We compare our stretching separation result to a recreation
using Houdini’s FLIP liquid solver in Figure 4.10, which we found requires a system of at least
18k particles to demonstrate the same stretching/fragmenting phenomena (albeit with added
qualities eg. surface deformation).

CHAPTER 4. DROPLET INTERACTION 81

In Figure 4.11, we show a close-up of a small system of droplets to further demonstrate the
interactions that occur. Comparisons are given to the attempted use of FLIP, SPH and rigid
body solvers (native to Houdini) to create similar interactions for the same input particle set.
The coalescence and fragmentation that we model create levels of detail and realistic liquid
features (varying size droplets, stretching of ligaments) that are not created by other methods,
demonstrating their lack of a meaningful one-to-one mapping between droplet and particle.
This result also demonstrates the potential for this method to be used for fast simulation
of small-scale droplet interactions but further additions would be required to overcome the
spherical uniformity of the particles and merging behaviours at this scale, such as for bubbles
in Patkar et al. [2013].

Following this, we demonstrate the effect of our model on larger-scale spray effects that
are often simulated with ballistic particle systems. To best illuminate the specific effects of our
model we restrict these examples to an otherwise purely ballistic system. However, in practice,
our model can easily be combined with other available tools used with these systems such as
noise fields, droplet age and other external forces. In Figure 4.12 we simulate a geyser-like
vertical jet of liquid droplets. In this example, the introduction of these mechanisms for droplet
merging and splitting increases visual quality and reduces artefacts seen in the ballistic particle
equivalent, here from a poorly constructed emitter creating uniformity that persists due to
lack of any interaction. The other panels of this figure further demonstrate the influence of
parameter variation on our model, controlling the tendency to coalesce/fragment and varying
the resulting droplet distribution between an finer spray and fewer, larger droplets.

Finally, we use this model to approximate very fine-scale spray effects, considering millions
of particles in the fountain example of Figure 4.13. Here, uniform radius particles are initially
perturbed by a small amount of curl-noise [Bridson et al. 2007] to vary the flow and allow
interactions. Whilst largely dominated by coalescence, the other interactions in this example
allow the system to maintain a range of droplet sizes which, in combination with the size-
dependent drag force, break-up the uniformity of the flow and create a realistic fountain
effect.

These larger simulation examples demonstrate that even in scenarios where droplet size
and individual interactions are not as easy to directly recognise, their effect on the droplet
distribution continues to improve the quality of the results, adding an increased sense of
realistic motion and scale.

4.8.1 Limitations

Modelling interactions between particles increases simulation time over simple ballistic particle
tracking, in particular due to the collision detection calculations. In practice, we find that the
approximate neighbourhood method, the use of spatially organised particle data, and often
reduced particle count brings this cost down to a manageable level for the increase in quality
that is gained (Table 4.2), but other improvements could be made. It should be noted the
implementation used to generate the results in this section demonstrates a first attempt at using
OpenVDB Points for neighbourhood calculations and so there are likely further optimisations
to be had.

CHAPTER 4. DROPLET INTERACTION 82

The discrete threshold model and fragmentation calculation are relatively complex with a lot
of different components (albeit more so in model understanding than usability or computational
complexity). We choose these methods as they are physically meaningful and shown to
be accurate to real observations, but there may be simplifications possible in the future.
Furthermore, whilst there are a number of parameters that arise out of the model, liquid
density, surface tension, shattering perturbation and the limits on size and number of satellites,
they have quite intuitive relationships with the results and physical parameters like surface
tension offer control over the look/relative scale of the results.

The scale of interactions we capture allows high fidelity, detailed results for sprays composed
of visible droplets to be created and whilst the overall topology is also captured at a microscopic
scale (Figure 4.11 - top), the deformations of the droplet surfaces are not. This could impede
the model’s practicality for close-up results. To overcome this, it may be interesting to consider
the deformation and the oscillating dynamics of the droplet surfaces using an approach like
spherical harmonics [Ashgriz 2011].

Finally, as this model defines droplet-like interactions specifically, in areas where the droplet
approximation breaks down, i.e. very dense sprays or bodies of liquid, we are unable to capture
larger-scale gas-like or liquid-like motions. However this could be overcome by appropriate
coupling of this method to larger-scale fluid motion such as a free-surface solver like FLIP/PIC.

4.9 Summary

In this chapter, we have introduced a model for physically-based interaction to be incorporated
into particle systems of liquid droplets and sprays. Our model is the first of its kind to consider
the visible impact of the various separating droplet phenomena that occur in reality, and in
doing so presents a novel physically-based method to define a complete system of merging and
splitting phenomena between droplets. The results that we provide demonstrate an increased
sense of scale and physicality from the inclusion of these interactions, creating varied and
evolving droplet size distributions and increased small-scale details from fragmentation. Our
model recreates plausible behaviours of droplets and sprays on both small and large scales,
capturing localised interaction in scenarios where existing fluid techniques fail and helping the
creation of larger-scale effects when combined with our size-dependent drag force. Whilst this
has yet to be integrated into production, upon showing this model and its results to artists at
DNEG they responded with:

“Having ballistic particles is not enough for a believable whitewater solution and I have no
problem in seeing the potential in having this available” - Ole Eidsheim, FX Artist.

“I see more and more fluid sim methods becoming more accurate, as the CPU/GPU limita-
tions are removed. I am excited how this droplet method could be implemented in a future
production workflow.” - Andy Guest, FX Artist.

By instilling missing physical characteristics into our system, we have allowed more realistic
phenomena to be recreated and we expect that similar physically-motivated approaches would
also be useful for other secondary fluid phenomena. We forsee the logical extension of this
work to be the coupling of our small-scale interactions with larger-scale fluid behaviours in the
creation of a more comprehensive splash/spray system. Other work could also look to build on

CHAPTER 4. DROPLET INTERACTION 83

this model to incorporate missing physical behaviours (i.e. surface deformations, continuous
merging) to allow fast simulation of close-up droplet effects.

CHAPTER 4. DROPLET INTERACTION 84

Figure 4.11: Small-scale system of droplet interactions: close-up using our droplet collision
model (top); zoomed out view using our model (middle left), using FLIP solver (middle right),
SPH solver (bottom left) and RBD solver (bottom right). While FLIP does create larger-scale
motions, other systems are unable to create realistic small-scale droplet characteristics, e.g.
size variation, ligament formation and fragmentation, at low particle density.

CHAPTER 4. DROPLET INTERACTION 85

Figure 4.12: Geyser simulation (left to right): purely ballistic particle system - top, our model
with reduced surface tension (×0.1) - second from top, our model - second from bottom, our
model with increased surface tension (×10) - bottom. Low surface tension interactions cause
many satellites to be emitted and create a finer spray effect, whilst high surface tension tends
to coalescence and causes system to tend to fewer, larger droplets.

CHAPTER 4. DROPLET INTERACTION 86

Figure 4.13: Fountain-like jet (1.3m particles): Top - Droplet interactions create a varied
droplet size distribution and therefore drag strength, which causes larger-scale break-up of
the flow. Bottom - No interaction exposes artefacts in emitter and timestepping, these would
usually require artist intervention and re-simulation to fix.

CHAPTER 4. DROPLET INTERACTION 87

100 200 300 400
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Collision Detection
Collision Resolution

Frame

 Time /s

Figure 4.14: Times of collision detection and collision resolution (incl. outcome determination
and satellite emission) operations for simulation in Figure 4.13. 480 frames with 2 substeps
per frame, ∆t = 1/96.

Chapter 5

Preserving Detail: Surfacing of
Splashes with Droplets

The tool developed in this chapter has become a key component in the liquid (and general particle)
effects toolkit at DNEG, being used by artists on at least 15 different films in production including
Venom [Fleischer 2018], The Kid Who Would Be King [Cornish 2019], Godzilla: King of the
Monsters [Dougherty 2019]. The original implementation of the method of Yu and Turk [2013]was
the work of other developers at DNEG, but the extensions to handling uneven particle distributions
are my own.

5.1 Overview

Following the task of creating a particle-based simulation of a liquid, there remains the issue of
creating a renderable result out of these particles. As with many of the other processes in the
liquid effects pipeline, whilst a variety of methods exist, in practice, all require a large amount
of artistic input to create a high-quality result. In this chapter we will describe the development
of a production-tested, high-quality particle surfacing method; capturing smooth surfaces,
splashes and droplets in a single process and so reducing requirements on post-processing
to create final-quality results. The contribution of this work is the extension of a state-of-
the-art method for increased robustness to the varied nature of inputs and uses that occur in
production. This is achieved by introducing a new method to automatically and adaptively
calculate values for an otherwise unintuitive user scaling parameter using geometric properties
of matrix transformation for volume preservation. This parameter is found to be extremely
important to achieving high quality results and our extension makes this method easier to use
in the general case of data from different simulation methods.

5.2 Motivation

In the previous sections we have described various methods to create simulated liquid phe-
nomena using particles. By using highly efficient frameworks such as Dynamo and OpenVDB,
the creation of massive particle sets (O(1e9)) describing liquid motion has become feasible for

88

CHAPTER 5. SPLASHES WITH DROPLETS 89

production use. Furthermore particle-based simulation frameworks have been shown to be
applicable to a large range of liquid phenomena including droplets and sprays (Chapter 4).
However, once these simulations have been run, the non-trivial task of creating renderable
liquid effects from these particle sets remains.

Standard practice for particle-based simulations of free-surface liquids (both FLIP/PIC and
SPH) is to convert the final particles to either a SDF or a mesh to be rendered. Following this,
splash and spray simulations (either using methods such as in Chapter 4 or simple ballistic
particle systems) are often rendered in separate passes, with droplets being rendered as simple
spheres or disks and further elements like fine mists being rendered using volumetric techniques.
Finally these components will then be composited together to make a final liquid effect (§2.5).

The initial act of creating a high-quality liquid surface from a particle simulation is a
non-trivial one. To capture fine details (in splashes and more turbulent areas) whilst also
creating smooth surfaces in less dynamic areas is particularly challenging. Standard practice in
production is to use a collection of tools with a user-driven approach in the style of Museth
[2014]. In this way, an initial surface will be created using either simple sphere stamping
or some more complex method such as the position averaging method of Zhu and Bridson
[2005], this will then be followed by the application of a collection of other post-processing
steps to create the final renderable result. Combining SDF operations such as smoothing,
dilation and erosion in this way (and even sometimes further mesh-based operations such
as texture displacement) gives a huge amount of artistic control over the result. However,
whilst controllable, such an approach requires a large amount of artist input and tweaking, e.g.
requiring layering of these post-processes with user-defined masks etc. to avoid over smoothing
of interesting areas.

This is particularly troublesome when trying to retain detail in splashes from high resolution
simulations. Whilst able to capture more exciting and plausible behaviour, higher resolution
simulations require higher resolution surfaces to maintain the increase in quality. These can be
very unwieldy and computationally demanding to work with, even using relatively simple level-
set operations. Furthermore, post-processing workflows often lose fine details such as droplets
and thin sheets, even at high resolutions (possibly motivating further secondary simulations to
recover lost detail). Such demands suggest that any reduction in the amount of post-processing
required would be hugely beneficial.

5.3 Related Work

There exist many approaches to creating renderable surfaces from liquid simulations, including
mesh tracking [Wojtan et al. 2009; Chentanez et al. 2015b] and implicit surface tracking
[Enright et al. 2002, 2005]. We focus on the process of creating a high quality liquid surface
after the initial particle simulation.

Particle to surface: The most popular approaches are those that create implicit surfaces from
these particles. Various methods have been used to do this. Blinn [1982] describe the first
method for creating smooth, connected surfaces from point sets using the iso-surface of a scalar
field by combining per-point radial kernel functions. By evaluating an iso-surface i.e. φ = c

CHAPTER 5. SPLASHES WITH DROPLETS 90

for some constant c where φ(x) =
∑

p f (xp − x) is the scalar field at x for some continuous,
monotonically decreasing function f (), we arrive at a surface that wraps the particles and
creates smooth joining regions between them. This can create liquid-like smooth surfaces
from particle sets and is popular for simulations such as SPH [Müller et al. 2003]. However in
general, this method suffers from kernel dependence and can create thickening as particles
become too close together. Therefore unlike SPH simulations that enforce constraints on the
particle distribution, for particle sets coming out of FLIP/PIC simulations (or other arbitrary
particle simulations) this can create artefacts on the resulting surface.

A similar approach, that sacrifices the smoothness between particles but avoids issues with
thickening or bulging is given by a simple spherical distance function i.e. φ(x) =minp(||xp−x||−
rp) where rp is the radius of the sphere for particle p. This is considered as the starting point for
the artist-driven, post-processing approach described by Museth [2014]. This details a workflow
based around quickly and easily creating an initial surface and relying on post-processing (i.e
smoothing, eroding, dilating) to create a result of renderable quality. In production, this
post-processing workflow has become standard practice much of the time (§5.2), even when
using more complex initial surface methods like those discussed below.

Particle set to surface: Rather than simply using independent radial functions to define an
iso-surface, other works have looked to use information about the actual distribution of the
particles as well to improve the smoothness (and sharpness where required) of the resulting
surfaces. Zhu and Bridson [2005] propose a method that creates temporary particles with
locally-averaged positions and radii to create smoother surfaces for their FLIP/PIC simulations.
This uses a minimum distance metric rather than an accumulated density such that it can handle
the non-uniform particle distribution of these simulations, but the averaging and temporary
’particles’ used help to create smoother surfaces than simple sphere stamping. This approach is
known to create some artefacts in concave regions and edges that were later tackled by the
extension of Solenthaler and Pajarola [2008] by using further information about the particle
distribution. However this more advanced method requires use of unintuitive eigenvalue
thresholds to do so. A further extension of this method is shown by Adams et al. [2007]
who use re-distancing to re-sample the positions of the points and then create a surface using
the method of Zhu and Bridson [2005]. This method is shown to create smooth surfaces
even with varying radii particles but requires knowledge of previous timesteps to perform this
re-distancing and so is not as readily applicable purely as a post-process.

Yu and Turk [2013] consider an extension to per-particle methods like Blinn [1982] to use
anisotropic kernels, deforming the footprint of each particle dependent on its local particle
distribution. In this way, smooth surfaces and thin-sheets are better captured as kernels are
stretched to join neighbouring particles. Whilst the original work of Yu and Turk [2013] use
a density-style scalar field (retaining Blinn [1982]’s issues with thickening etc.), Ando et al.
[2012] simplify this to instead use a distance function, stamping fixed-radii ellipsoids into
a scalar field (analogous to the spherical method of Museth [2014]), noting that this only
requires very minor post-processing on the subsequent mesh to create a renderable result. Our
work extends this approach to be more robust to varying particle distributions and work in
the general case of using particle simulation data from different kinds of simulation e.g. SPH,

CHAPTER 5. SPLASHES WITH DROPLETS 91

FLIP/PIC etc.
Motivated by their adaptive particle simulation method, Ando et al. [2013] develop a

method that is robust to varying particle radii, which other methods often struggle with. This
works by finding sets of 3 particles (possibly of varying radii) and creating convex hulls that
encapsulate the spheres around them, unioning these convex hulls together to create the
complete liquid surface. However, as this method is closely tied to their adaptive simulation,
relies on their BCC mesh structure and is shown to be computationally expensive, it may not
be worthwhile for the case of more common, uniform radii simulations.

Whilst these methods attempt to capture as much detail as possible from the simulated
particle set, there are also works that focus on increasing the detail beyond the original particle
set or surface.

Surface up-resing: Instead of trying to maximise the surface detail directly out of the particle-
to-surface operation, there are have been works that instead look to take a surface and infer
further details beyond those that come from the initial simulation.

Methods such as Kim et al. [2013] and Mercier et al. [2015] define approaches to create
enhanced details on liquid surfaces, adding finer scale wave dynamics on top of existing
simulations. The method and results demonstrated in Kim et al. [2013] takes their input surface
from a level-set liquid solver but the possibility of extending their approach to use a surface
generated as a post-process from a particle set (via one of the above methods), is discussed.
Mercier et al. [2015] describe their method solely from an input particle simulation which
could allow the possible application to our target of working with general particle simulation
data. These methods are both shown to successfully increase surface details for wave and ripple
behaviours which could be very useful for large bodies of liquid, but do not allow improvement
to splashing and violent liquid motions as they can not ’up-res’ isolated droplet behaviours.
Other surface displacement approaches have also been used in production[Budsberg et al.
2013] to create similar finer-scale details.

These methods could be beneficial in the future (and some may be compatible with our
work) but the rest of this chapter will focus on initial surface creation, and in particular how
best to create details in violent and splashing liquid phenomena, a common FX production
problem.

5.4 Our Approach

The approach we take is based on the work of Yu and Turk [2013]. Applying their local-
neighbourhood dependent deformation of usual isotropic kernels we create smooth surfaces
at the interface between particles and air, as well as achieve good handling of thin sheets
and splashes. For droplets, as in Yu and Turk [2013], we find isolated particles during these
calculations to process differently, choosing to retain isotropic kernels for these under-resolved
particles, in turn recreating normal spherical droplet shapes. However, we make two modifica-
tions to this method:

CHAPTER 5. SPLASHES WITH DROPLETS 92

• Use of a distance function for the initial isotropic kernel (Equation 5.2, as in Ando
et al. [2012]) for robustness to uneven particle distributions and clumping (a common
occurrence in FLIP simulations - Chapter 2).

• Better use of geometric information in calculation of these deformations, removing an
unintuitive and potentially problematic user parameter involved in the scaling of the
anisotropic kernel (Equation 5.7).

5.4.1 Robust Anisotropic Kernels for Particle Fluid Surfacing

Consider our liquid surface to be defined by the iso-surface of the scalar field φ(x). Supposing
we define a simple spherical distance function per-particle, this final field would be given by:

φ(x) =min
p
(||xp − x|| − rp) (5.1)

where xp is the position, and rp the radius, of particle p.
Following the anisotropic kernel approaches of Yu and Turk [2013] and Ando et al. [2012]

we look to find a deformation matrix Gp s.t. we can define our scalar field as the ellipsoid
distance function:

φG(x) =min
p
(||Gp(xp − x)|| − rp) (5.2)

Calculating the anisotopy

The deformation matrix G is calculated using information of the neighbouring particles and
Weighted Principle Component Analysis (WPCA) as in Yu and Turk [2013]. That is, we calculate
the weighted mean x̄p and covariance matrix Cp for each particle as:

x̄p =

∑

i wipxi
∑

i wip
(5.3)

Cp =

∑

i wip(xi − x̄p)(xi − x̄p)T
∑

i wip
(5.4)

where the surrounding particles i have positions xi and weights wip are given by the isotropic
function:

wip =

(

1−
�

||xi−xp||
R

�3
if ||xi − xp||< R

0 otherwise
(5.5)

where R is the search radius defining the neighbourhood.
Now given the matrix Cp, we take the SVD (here equivalent to the eigenvalue decomposition

as Cp is symmetric, positive semi-definite) to get the eigenvalues and eigenvectors as:

Cp = RΣRT (5.6)

where R is a rotation matrix (∈ SO(3)) andΣ is a diagonal matrix of the eigenvalues (σ0,σ1,σ2)
descending in size.

CHAPTER 5. SPLASHES WITH DROPLETS 93

Ellipsoid eigenvalue manipulation

These eigenvalues represent the stretches of the deformation matrix Gp. To avoid deforming
our kernels too aggressively (i.e. a deforming a 3D sphere to a 2D ellipse), we clamp them
such that they do not differ by too great an amount, i.e. σ̂i = max(σi , krσ0) for i = 1,2.
Similarly, to prevent poorly defined (or rapidly changing) deformations due to incomplete
particle neighbourhoods (i.e. number of particles n within search radius R s.t. n ≤ ndroplet)
we can also change behaviour here and ignore the stretches, replacing Σ with the identity
matrix scaled by some parameter kn < 1 (to create smaller spherical ‘droplets’). Furthermore,
the stretches in Σ vary dependent on the local distribution but do not necessarily map to a
volume preserving transformation, so in Yu and Turk [2013] they incorporate a user parameter
ks here to ‘normalise’ these stretches i.e. try to set ||ksCp|| ≈ 1. However, whilst recognising
this issue and suggesting this solution they later state that they use a single value of ks = 1400
throughout their examples and offer no solution for handling the calculation of this value, as
such leaving the value as a parameter for the user. This value controls the eventual magnitude
of the ellipsoid (or kernel) radii so having the correct value is very important to creating the
final surface. We can see in the example in Figure 5.1 that the ideal value of this parameter
varies dependent on the input data and even per-particle within this data.

Our solution to this uses simple properties of the deformation matrix Cp, or in particular
the eigenvalues σi. As the volume change given by a deformation matrix (in our case Cp) is
equivalent to scaling by the determinant of that matrix (as R ∈ SO(3), det(R) = 1, therefore
det(Cp) is the product of the diagonal values of Σ) we can calculate a volume-preserving scale
to apply to all of the stretches to get ks as:

ks =

1

det(Cp)
1
3
= 1

(σ0σ1σ2)
1
3

, if σi 6= 0 for all i = 1, 2,3

1, otherwise
(5.7)

An alternative way of calculating this value that we also have considered (more akin to the user
choosing a single value as in Yu and Turk [2013]) is to calculate the average volume change

for all particles p = 1, ..., P say v̄ =
∑

p det(Cp)
P and let ks = v̄−1/3. These two approaches allow

volume preservation on either a local (per-particle) or global (all particles) level. In practice
we allow a user to blend between these two methods. It should be noted that of these methods,
Equation 5.7 is most robust as the calculation is per-particle and so guarantees reasonable
values (for all reasonable inputs) unlike the averaging or ‘global’ method can be sensitive
to large variations in det(Cp), i.e. variation in the distribution of the local neighbourhood
(although these large variations are mitigated by using the ‘droplet’ isolation).

To construct the final deformation the modified stretches are then inserted into the matrix
Cp by replacing the matrix Σ with Σ̂ where:

Σ̂=

¨

ksdiag(σ0, σ̂1, σ̂2) n> ndroplet

knI otherwise
(5.8)

Resulting in:
Ĉp = RΣ̂RT (5.9)

CHAPTER 5. SPLASHES WITH DROPLETS 94

Then this is inverted to get Gp = Ĉp
−1

(by replacing Σ̂ with its inverse) and applied to the
isotropic distance function as in Equation 5.2.

5.5 Implementation

This has been incorporated into a particle surfacing node for Houdini that also allows artists to
create surfaces using simple spherical distances (as in Equation 5.1) and using the method of
Solenthaler and Pajarola [2008]. The node uses VDB for the storage and iteration over both
volume and point data. As the deformation calculation requires comparatively expensive point
neighbourhood lookups, users are able to select subsets of their input point sets upon which to
calculate the ellipsoid deformations to avoid unnecessary computation in regions far beneath
the surface. Yu and Turk [2013] suggest a similar method for optimisation, but their approach
requires calculation of points to skip using the costly neighbourhood lookup that we wish to
avoid, instead we propose users consider other geometric approaches such as using the VDB
points grid topology to determine these areas.

The node takes a VDB points particle set and calculates the deformations dependent on
its surrounding neighbourhood (whose width is defined as a user parameter as a scale on
the isotropic particle radius). The output of this operation is a signed distance field VDB that
represents the distance to the surface created by the overlapping the ellipsoids. Users are then
able to post-process this as they like, using all of the available VDB tools e.g. level-set filtering
(or convert to a mesh and use mesh processing tools).

We also include the ability to perform the positional smoothing of the ellipsoid centres as
suggested by Yu and Turk [2013] which we similarly find to be very important to the overall
quality of using this method.

One element of liquid surfacing methods that is often overlooked outside of production is
the transferral of other information such as velocity (critical for motion blur). As we reconstruct
the surface on each frame there is no explicit temporal coherence, especially if we convert our
signed distance function to a mesh representation, so we are unable to calculate this from the
final surface representation. Thankfully, the information for velocity does exist on the particles
so we can use a similar method to transfer the velocity as we do for stamping the ellipsoid. In
this way, we stamp the velocity value of the ‘closest’ (in the ellipsoid deformed space) point
into the volume at each voxel as we do for the distance value.

5.6 Results

We demonstrate the use of this method on some of DNEG’s liquid simulation training data
in Figure 5.4. Here the splash details and droplets are retained whilst creating particularly
smooth surfaces in the splash itself and relatively smooth surfaces in the surrounding ocean.
The simulation data here comes from a FLIP simulation and so has no hard constraints on the
distribution of the particles. The texture of the ocean surface comes from the simulated data
where smoothing quality of the ellipsoid deformations is unable to smooth out the larger-scale
features in the particle set. This could easily be removed by a single masked smoothing pass,
whilst the highly detailed, yet smooth, splash requires no further processing.

CHAPTER 5. SPLASHES WITH DROPLETS 95

Figure 5.1: Results of a FLIP liquid simulation. a) Final surfaced result using our method. b)
Particles coloured by their calculated value for ks using Equation 5.7, values vary from 114−553
(droplets removed, color map: 144 - yellow to 553 - blue). Variation in this parameter occurs
at the surface and at areas of interest where droplets break off from the main liquid body.

CHAPTER 5. SPLASHES WITH DROPLETS 96

In Figure 5.2c, we show the difference between the use of ‘local’ or ‘global’ values for the
deformation normalisation. The boundary particles near the interface generally have a smaller
imprint in the ‘global’ case as the inner regions of the surface bring the average down to below
what would be required for boundary particle volume preservation. It should also be noted
that the automatically calculated value of the single ‘global’ normalisation constant is 152,
whereas the suggested analogous, user-defined value from Yu and Turk [2013] is 1400. If their
value were used the surface would be inflated, stamping particles of 9.2x the size of particle
we calculated, leading to undesirable results (Figure 5.2cc).

We also include statistics of use of the Houdini node in production at DNEG in Figure 5.5.
It should be noted that whilst these statistics cover all three modes of operation (i.e. spherical,
ellipsoid or Solenthaler and Pajarola [2008] methods) of the node, direct feedback from the
artists suggests that the method described in this chapter is the preferred approach and most
likely large proportion of these uses, especially as the other methods are currently without
velocity transfer implementations.

5.7 Analysis

Use of the distance function to define the surface from Ando et al. [2012] rather than an
iso-surface from the density field as in Yu and Turk [2013] also allows us to take advantage
of storing only a narrow band level-set [Museth 2013] rather than a dense field. This helps
to massively reduce the memory footprint of the resulting scalar field when using a sparse
volume structure like VDB as only a thin band of voxel values need to be stored. We also found
that the distance function was more robust than the density function to the varying particle
distributions (and in particular clumping) that occurs in simulation frameworks such as FLIP
that do not enforce the particles to be well distributed.

The key contribution of our work are the methods for determination of the deformation
normalisation parameter ks. In the work of Yu and Turk [2013] this is given by a seemingly
arbitrary number with very little intuition behind if it were exposed to a user. We have also
demonstrated that if left as a single user parameter this could be destructive in practice, as
values determine the scale of the resulting ellipsoid radii. In areas where this method has
most effect (where the ellipsoid deformations should occur), i.e. near the air-liquid interface,
the distribution of the particles can vary significantly (Figure 5.1) therefore if using a fixed
normalisation constant so too would the volume of each created ellipsoid. This could potentially
create massive or tiny ellipsoids which could cause issues ranging from crashes from running
out of memory to seemingly giving no result at all. In our updated approach the ellipsoids are
guaranteed to be of reasonable size and shape by the combination of both the user defined kr
enforcing ‘sphericity’ and the new automatically and adaptively calculated ks enforcing volume
preservation.

As this method requires neighbourhood lookups to calculate the deformation and an SVD
per-point, it is more expensive than simple spherical stamping (Equation 5.1). Methods such as
only calculating these only for a subset of input points help to alleviate the issue but currently
require artist input so would be good to automate in the future. Similarly the control of the
droplet shape and size is quite simple and it may be interesting to look to improve this with

CHAPTER 5. SPLASHES WITH DROPLETS 97

(a) ‘Local’ ellipsoid normalisation. Values for normalisation scale ks vary between 114− 553.

(b) ‘Global’ ellipsoid normalisation. Value for nor-
malisation scale ks calculated by averaging gives
ks = 152.

(c) User defined ellipsoid normalisation, using
default value suggested by Yu and Turk [2013],
ks = 1400.

Figure 5.2: Comparison of surfaces with different ellipsoid normalisation values. The ‘local’
method (a) better preserves sheets at the edges whereas ‘global’ (b) can shrink the particle
imprints at the edges to produce thinner sheets more prone to holes. As the values for this are
dependent on the input particle set and other parameters of the model, i.e. search radius R,
using the wrong value can lead to undesirable results as we see in c).

CHAPTER 5. SPLASHES WITH DROPLETS 98

(a) Surfacing using an isotropic distance function
(Equation 5.1). This is the starting point for the
workflow of from Museth [2014] but the immediate
result is not of renderable quality.

(b) Surfacing using the method of Solenthaler and
Pajarola [2008]. This displays known artefacts at
points where droplets break off from the main body,
which are possible to remove but require fine tuning
of unintuitive eigenvalue thresholds.

Figure 5.3: Alternative methods for particle surfacing. Both the bumpy surface of the isotropic
distance function and the artefacts on the method of Solenthaler and Pajarola [2008] would
require post-processing to create a suitable liquid surface. Even then these would fail to capture
fine details such as thin sheets and droplets as well as the method we describe.

say velocity trails [Museth et al. 2007] or a more sophisticated determination of size (e.g. a
blending method using the number of neighbouring particles).

Even with its performance trade-off, we have seen great adoption of this method at DNEG,
demonstrated in the usage statistics of Figure 5.5. It should be noted that many other methods
remain available to the artists, particularly those allowing creation of particle surfaces using
the other methods demonstrated in Figure 5.3b (quicker to create an initial surface) - this
suggests that the improved levels-of-detail and smooth surfaces captured immediately by our
method are preferred over the usual post-processing reliant workflow. From these statistics we
can also see that one show dominates the usage in the time-frame considered, this is the film
Venom. A large part of the FX work on this film involves an organic ‘symbiote’ and tentacle-like
effects, many of which have been modelled using bespoke particle systems. It has become clear
that this improved method for creating surfaces from particle systems has application in the FX
tool-set beyond only liquid simulation.

Working with this tool in production on "bubbling lava splashes" in The Kid Who Would Be
King, one artist commented on how it was able to avoid "flickering artefacts" that commonly
occur in previous approaches, stating:

“This worked amazingly well on the bubble areas that traditionally would see flickering
artefacts as the fluid separated from the main body.” - Andy Guest, FX Artist.

5.8 Summary

In this chapter we have introduced and improved upon a state-of-the-art method for creating
liquid surfaces from particles. By combining the use of a simple minimum distance implicit

CHAPTER 5. SPLASHES WITH DROPLETS 99

Figure 5.4: A whale splash simulation taken from DNEG’s training material, surfaced using the
method described in this chapter. Note the small droplet details and smooth surfaces, especially
in the splash.

CHAPTER 5. SPLASHES WITH DROPLETS 100

(a) Uses per day. Total uses: 1109.

(b) Uses broken down by show. Number of
shows this has been used on: 15. Size of outer
ring segment represents proportion of uses.

(c) Uses broken down by user. Number of
unique users: 80. Size of segment represents
proportion of uses.

Figure 5.5: Statistics for uses of the described Point Surfacer node in Houdini at DNEG, for 30
days prior to September 21st 2018. Graphs taken directly from Kibana.

function for our particles (thus allowing use of a narrow-band level set) with a deformation
driven by the local particle distribution and our improved normalising factor based on volume
preservation, we have been able to create a robust, production-ready method that creates
smooth surfaces whilst retaining fine details. This approach has become the standard for
particle surfacing at DNEG, seeing extremely heavy use since its introduction (Figure 5.5),
including use on at least 15 different films in production by 80 unique users.

Future work in this area could look to speed-up computation, or, increase user control
through better utilisation of other data such as number of neighbours or particle velocity.
Furthermore, better coupling and transitions between liquid surface simulations and other
secondary simulations such as droplets (Chapter 4) remains an area of possible improvement.

Chapter 6

Increasing Control: Particle and
Volume Manipulation with AX

More so than the previous projects, the following chapter describes a direct collaboration between
myself and the FX R&D team at DNEG. This is a project to which I am a key contributor, developing
throughout the course of the research project, up to and beyond its open-source release in August
2018. The initial development of an expression interface for changing point data was a combined
effort between all authors of the accompanying paper [Avramoussis et al. 2018] (myself included)
whilst the extension of this framework to volume data was that of other developers at DNEG.
My contribution has had particular focus on applications of this tool to particle simulations, for
example the ability to move points. The majority of the content of this chapter was presented in
the paper A JIT Expression Language for Fast Manipulation of VDB Points and Volumes at
DigiPro 2018. This tool was used heavily in the development of the models of Chapters 4-5 as
well as in production on the Academy-Award winning Blade Runner 2049 [Villeneuve 2017] and
other films including Pacific Rim: Uprising [DeKnight 2018] and Godzilla: King of the Monsters
[Dougherty 2019].

6.1 Overview

This chapter presents the development of an expression language, AX, to allow artistic control
of geometric data in a flexible and user-friendly way, specifically focused on promoting reusable
and transferrable interactions throughout the VFX pipeline. This is demonstrated through
application to point and volume data stored in VDBs. Whilst the other contributions of this
research project focus on improving on the underlying simulation systems being used in FX
production, this work instead looks to offer greater freedom to artists and tools developers
alike, such that they may implement changes to simulation systems themselves and further
facilitate other creative, experimental and bespoke workflows as well (which are critical to
practical VFX production, as we have seen in Chapter 2).

101

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 102

6.2 Motivation

Modern FX artist workflows are extremely varied and complex. Whilst many of the core
technologies used (such as simulation frameworks, i.e. FLIP/SPH) have not changed a great
deal in recent years, the other tools around them and in particular the level of control they
expose has steadily improved. DCCs such as Houdini now offer both pre-packaged workflows
for larger simulation setups, whereby an artist can press a button and generate a 3D FLIP
simulation guided by the motion of a 2D heightfield ocean whilst interacting with pre-generated
beach geometry, as well as the all of the fine-grained components that they are composed
of. Artists are able to dive in to every stage of these systems, adding new operations and/or
making other wholesale changes. With this kind of tooling available, such flexibility has rapidly
became an expectation/requirement of the modern artistic workflow.

Meanwhile, open-source technologies have become hugely popular and are often depended-
upon to provide both reliable and efficient representations of data, and facilitate its subsequent
transfer throughout the pipeline. The successes of Alembic [Sony Pictures Imageworks 2018a],
OpenVDB [Dreamworks Animation 2018], USD [Pixar Animation Studios 2018] and other
open-source geometry and scene representation formats are great examples of this. Their
open-source nature allows integration into almost any parent application (of which there are
many [Side Effects 2018; Autodesk 2018; Isotropix 2018; Foundry 2018]) to cater to the
ever-changing needs of a modern VFX studio.

Whilst these two characteristics of VFX pipeline are not diametrically opposed, their com-
bination can lead to some issues. Exposure of the expected level of functionality for these
open-source technologies in all of the applications that support them, requires a huge amount
of development. Further still, different applications may not accommodate the same workflows,
putting further strain on tool developers to implement extra application specific logic. An
obvious solution to these problems is to only expose certain functionality within certain appli-
cations, where it is deemed most appropriate, and rely on artists using different applications
as required. In reality however, artists are often only familiar with a select number of these
applications and to make required changes may mean sending work back to other artists in
different stages of the pipeline, which can be costly and disruptive.

Considering the benefits of using these open-source technologies and the familiarity of
data-representation that they provide, a similarly unified way to allow manipulation of this
data would be a great tool to take advantage of this portability, and could alleviate many of the
issues with duplicated and varying functionality. Taking OpenVDB as an example, interaction
with the data is currently provided only in the form of either the extensive C++ API, or the very
limited Python API. This means that much functionality is only available to tool developers
(likely knowing C++) who are required to expose this for artists (who are likely to have some
Python experience). The development overhead of creating C++ plugins means that it is
unlikely that one-off or bespoke tools are feasible in practice, even for artists with the required
development experience. Tools such as Houdini’s VEX (a shader language that allows geometry
manipulation) [Side Effects 2018] demonstrate a good alternative to this, offering a specialised
interface for working with FX data that is both fast to write and execute. However, as part
of Houdini, VEX is a proprietary language and whilst it offers a lot of ability to develop new
functionality within Houdini, is not hugely flexible outside of the application or its native

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 103

datatypes. Even supported open technologies like VDB volumes requires sacrificing efficiency
(relying on intermediate conversion between VDB and its own volume storage1), and there is
no way for external parties to add support for other data such as VDB points. Most importantly,
as a closed technology it is not truly portable and so is unable to be the unifying interface
that we require. Its successes do however demonstrate the usefulness of an efficient, intuitive
programming interface for FX data and how such a thing could be a hugely beneficial tool to
be used by FX artists and tool developers alike.

6.3 Portable and Domain-Specific Languages

The integration of general purpose languages, particularly scripting languages such as Python,
Lua etc., into DCCs offers users of different applications a familiar programming interface,
whilst also giving custom application and task specific functionality. However, these languages
are commonly unable to provide the performance requirements to operate on heavy data
structures such as representations of geometry used in FX. A custom operation on billions of
points, vertices or voxels will likely require careful algorithmic design and a good multi-threaded
framework to achieve practical results. Such tasks instead tend towards compiled methods such
as C++ plugins which can to have issues with portability and complexity (developer-facing)
and can only expose limited functionality (user-facing). Even though languages such as Python
can often be extended with C++, exposing the ability to perform custom operations on these
non-standard datasets (i.e. not simple arrays) would most likely require a significant amount
of engineering by the user.

One way to overcome these limitations is the use of domain-specific languages, whereby
the language is designed for application to specific problems, and so its architecture and design
can be more focused and succinct. Recent works in graphics include languages for simulation
[Bernstein et al. 2016; Kjolstad et al. 2016; DeVito et al. 2011] as well as a large number
of other works in applications for rendering and shading (often known as shader languages)
[Hanrahan and Lawson 1990; Segal and Akeley 1999; Blythe 2006; Mark et al. 2003; Parker
et al. 2010]. These shader languages are particularly successful when coupled with Just-In-
Time (JIT) compilation, which can allow them to be written inside of other applications e.g
OSL [Sony Pictures Imageworks 2018b], VEX. These are often exposed much like scripting
interfaces, but their targeted design and (usual) compilation results in far more efficient
execution, making them suitable for computationally demanding tasks such as ray-tracing
or even geometry manipulation. As they follow specific execution patterns or only consider
particular functionality, these languages are generally very simple to write and avoid a lot of
boilerplate code, making them a great candidate for a flexible user-facing tool. In developing
such a language, the heavy-lifting of development is done once on the developer side, to create
the framework for function generation and execution, and after that it becomes very quick and
easy (for users) to make bespoke operators.

LLVM [LLVM Developer Group 2018], used in developing the clang compiler, gives develop-
ers the ability to create their own JIT compiled languages, which are able to offer performance
comparable to ahead-of-time compiled languages (like C++). Developing a similar ‘shader’-like

1Personal communication with OpenVDB developer Ken Museth, 2018

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 104
DigiPro ’18, August 11, 2018, Vancouver, BC, Canada N. Avramoussis, R. Jones, F. Gochez, T. Keeler and M. Warner

APPLICATION

COMPILER

LEXER PARSER AST

EXECUTABLE

CODE GEN

LLVM IRint offset = 12345;
float threshold = 0.5;

if (rand(offset+i@id) > threshold){
 deletepoint();
}

CODE SNIPPET VDB

REGISTER VDB

EXECUTE

Figure 2: The structure of this tool and how it integrates with a chosen application, broken down into the two main components,
the compiler and the resulting executable.

• Fast - speed comparable to a compiled, multi-threaded plugin
• Portable - transferrable across DCCs and applications
• Easy-to-use - requires minimal programming experience

This has since been used to provide greater artistic control
throughout the pipeline at DNEG with exposure in Houdini [Side
E�ects Software Inc. 2018], Clarisse [Isotropix 2018] and from the
command line. The �exibility it provides has been particularly use-
ful on recent shows such as Blade Runner 2049 (Fig. 1) and Paci�c
Rim: Uprising as part of our in-house scattering and point toolset.

2 PORTABLE LANGUAGE DEVELOPMENT
The integration of generic scripting languages such as Python,
Lua etc. into DCCs o�ers users of di�erent applications a famil-
iar interface whilst exposing custom application and task-speci�c
functionality. However, they are commonly unable to provide the
performance requirements to operate on heavy data structures such
as representations of geometry. A custom operation on billions of
points, vertices or voxels requires lower level instruction mapping
and a good multi-threaded framework to achieve practical results.
Such tasks instead tend towards compiled methods such as C++ plu-
gins, but these bring with them the issues of portability, complexity
and extensibility - with limits on the amount of functionality that
can be practically exposed to the user.

To overcome these limitations we looked to the use of just-in-
time (JIT) compilation, an approach that has been particularly suc-
cessful when coupled with a custom and task-speci�c frontend.
Shader languages, such as OSL [Sony Pictures Imageworks 2018b]
and Houdini’s VEX language are good examples of this. These are
often exposed much like scripting interfaces, but their compilation
and targeted design results in far more e�cient execution, mak-
ing them suitable for geometry manipulation. Whilst extremely
powerful, we encountered limitations with these existing solutions
such as lacking �exibility for supporting new geometry types or

ill-suited frameworks for more generic geometric operations (e.g.
the creation and deletion of data). Therefore, following a similar
design we chose to develop a new language, combining JIT compila-
tion through LLVM [LLVM Developer Group 2018] with OpenVDB
geometry. The result provides a transferrable interface for fast ma-
nipulation of production assets that can be easily integrated into
many target applications.

2.1 Task-Speci�c and Parallel By Design
Shader languages o�er a nice solution to the boilerplate code re-
quired with other less task-speci�c languages, in our case allowing
an easy element-centric expression interface that can be e�ciently
parallelised. Our design focuses on the manipulation of the ‘low-
est’ element in a VDB tree, i.e. a point or voxel, executing the
user-supplied expression over each element independently. This
iteration process is ‘embarassingly parallel’ and when coupled with
our highly-optimised, JIT-compiled functions is extremely e�cient
and capable of handling very large datasets.

3 IMPLEMENTATION
The implementation can be broken down into two main components
(demonstrated in Fig 2): the LLVM function generation that takes
an input expression and JIT compiles it into a custom function to be
run on each geometric element; and the OpenVDB component that
registers access to the supplied VDBs and subsequently performs
execution over them.

3.1 LLVM function generation
The use of LLVM allows us to generate custom compiled functions
from our expression language, and comes with built-in support for
a number of optimisation and validation passes. As shown in Fig.
2, we begin by parsing an input code snippet to create an abstract
syntax tree (AST), a representation of the syntactic constructs that

Figure 6.1: The structure of this tool and how it integrates with a chosen application, broken
down into the two main components, the compiler and the executable.

language to manipulate widely supported FX data formats could provide great flexibility for
VFX artists, and using LLVM’s JIT compilation can allow this to be done without sacrificing
performance.

6.4 Our Approach

We have developed a new expression language for the manipulation of FX geometry data
(currently implemented for point and voxel data in VDBs), that is:

• Fast - speed comparable to a compiled, multi-threaded plugin

• Portable - transferrable across DCCs and applications

• Easy-to-use - requires minimal programming experience

This has been used to provide greater artistic control throughout the pipeline at DNEG with
exposure in Houdini, Clarisse [Isotropix 2018] and from the command line. The flexibility it
provides has been particularly useful on recent shows such as Blade Runner 2049 and Pacific
Rim: Uprising as part of the in-house scattering and point tool-set.

We will now consider how this expression interface is designed/implemented, some of
examples of how it can be used and the impact it has had on production.

6.4.1 Task-Specific and Parallel by Design

Shader languages offer a nice solution to the boilerplate code required with other less task-
specific languages, in our case allowing an easy element-centric expression interface that

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 105

can be efficiently parallelised. Our design focuses on the manipulation of the smallest or
lowest element in our geometry (VDB), i.e. a point or voxel, executing the user-supplied
expression over each element independently. Taking points for example, these elements often
have a variety of ‘attributes’ such as position, velocity, colour, radius, normal direction, or
other arbitrary quantities that they store and carry. Using our element-centric design users
can then write kernels that retrieve, use and update each elements values for these attributes
to perform a range of operations (§6.6) without requiring initialisation of looping over the
points or indexing into stored attribute data. The iteration process over these elements is
embarrassingly parallel and when coupled with our highly-optimised, JIT-compiled functions
is extremely efficient and capable of handling very large datasets at interactive rates.

6.5 Implementation

The implementation can be broken down into two main components (demonstrated in Figure
6.1): the LLVM function generation that takes an input expression and JIT compiles it into
a custom function to be run on each geometric element; and the OpenVDB component that
registers access to the supplied VDBs and subsequently performs execution over them. These
are implemented as a C++ library using a Flex and Bison lexer/parser for the handling of the
grammar. The plugins to Houdini and Clarisse, and our standalone executable are then built
separately, dependent on the core OpenVDB AX library.

6.5.1 LLVM Function Generation

The use of LLVM allows us to generate custom compiled functions from our expression language,
and comes with built-in support for a number of optimisation and validation passes. As shown
in Figure 6.1, we begin by parsing an input code snippet to create an abstract syntax tree
(AST), a representation of the syntactic constructs that occur in the supplied code. This is
traversed by our code generation framework which converts each node of the AST into LLVM’s
Intermediate Representation (IR). Finally, the resulting IR is JIT-compiled and handed to our
executable for later execution. The parsing, IR generation and JIT-compilation are very fast
operations and due to the intensive optimisation passes offered by LLVM, the resulting functions
are of comparable speed to ahead-of-time compiled C++ code (Table 6.1). We also make
sure to decouple this process from any particular input VDB, therefore only requiring a single
compilation pass for any number of inputs. Instead, each unique input simply undergoes a fast
registration step before execution to expose the correct data to the compiled function.

6.5.2 OpenVDB Integration

In our expression interface we allow read-and-write access to OpenVDB point attributes and
voxel values. Our OpenVDB bindings give our compiled functions direct access to the val-
ues within any supplied VDB trees. To do so, on execution we bind handles to point at-
tributes/volumes and store them on our executables. To ensure we only require a single code

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 106

generation pass for any number of VDBs we do not compile these directly into IR. Instead we
insert IR instructions to retrieve these handles at runtime2.

For multi-threaded execution we leverage OpenVDB’s node structure [Museth 2013]. In
this way, we parallelise over each node in the supplied VDB trees, executing our function on
each element (point/voxel) they contain. This execution pattern fits intuitively into OpenVDB’s
data structure, inherently load-balancing over its spatially-organised nodes.

6.5.3 Available Operations

Attribute expressions are written in a simple C-like language with many of the usual syntactic
constructs e.g. conditionals, function calls, binary operators etc. (Figures 6.2 & 6.3). We
incorporate element accesses through a specific identifier, @ (inspired by Houdini’s VEX
language), to easily differentiate from local variable usage. The function calls we provide can
cover a large amount of functionality, from basic mathematical operations, noise and random
number generation to element-specific (and geometry-specific) behaviour such as collecting
points into groups.

Whilst currently each element only has access to its own attributes/values, it should be
possible to extend to allow access to other elements in future. This could allow even more
complex operations like smoothing surfaces or accessing nearby points for neighbourhood
operations.

6.6 Examples and Use in Production

In the following, we discuss a couple of different use-cases for this tool and demonstrate the
simplicity of the code required to perform such tasks. First we consider an example for FX
simulation and then, further downstream in the pipeline, manipulation of FX data in Lighting.
We will also discuss some more specific production examples and its overall production use.

6.6.1 Example 1: Simulation

The flexibility given by this expression interface can be used to very quickly create operators
such as those required in simple particle or volumetric simulations. For example, consider a
particle system acting with respect to a collection of independent motions or driven by external
influences - we are able to very easily create this kind of operator using our expression interface
as in Figure 6.2. As these operators are often executed many times in sequence, performance is
extremely important. We show in Table. 6.1, the performance of our JIT-compiled expression
matches very closely to that of an equivalent operator written in C++.

6.6.2 Example 2: FX to Lighting

Having the ability to modify geometry in this way is important in areas beyond FX simulation.
However, making modifications or tweaks to geometry is not always easy outside of packages

2A similar method is used for other arbitrary external data e.g. time or frame number, allowing use of variable
data without requiring re-compilation.

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 107

1 // get timestep
2 float dt = 1.0f / (4.0f * 24.0f);
3 // gravity
4 vec3f gravity = {0.0f, -9.81f, 0.0f};
5 // drag
6 vec3f dV = {2.0f, 0.0f, 0.0f} - vec3f@v;
7 float lengthV = length(dV);
8

9 float Re = lengthV * float@rad / 1.225f;
10 float C = 0.0f;
11 if (Re > 1000.0f) C = 24.0f / Re;
12 else C = 0.424f;
13 // calculate drag force
14 vec3f drag = 0.5f * 1.2f *
15 C * lengthV * deltaV * 4.0f * 3.14f *
16 pow(@rad, 2.0f);
17 // update velocity
18 vec3f@v += (gravity -
19 drag / ((4.0f / 3.0f)
20 * 3.14f * pow(float@rad, 3.0f))) * dt;
21 // update position
22 vec3f@P += v@v * dt;

Figure 6.2: A particle simulation step using gravity and drag against a constant wind force.

1 int offset = 12345;
2 float threshold = 0.5;
3 // remove points
4 if (rand(offset+int@id) > threshold) {
5 deletepoint();
6 }

Figure 6.3: Decimating points in a set using a percentage threshold.

designed explicitly for it, for example in rendering applications such as Clarisse. Integrating our
expression interface into such applications facilitates on-the-fly modifications without requiring
costly back-and-forth between FX artists and lighters.

This level of control has seen great use in this context at DNEG, with lighters able to perform
many tasks without having to send data back up the pipeline. Some examples we have seen
being used include:

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 108

• Randomizing scattering ids for instancing.

• Modifying colours, orientation, scales and velocities of scattered point data.

• Decimating excessively large point sets.

Sample code for this latter example can be found in Figure 6.3.

Table 6.1: Performance of C++ implementations vs our JIT-compiled expression examples
running on 32 core Intel Xeon 3.10Ghz CPU with 64GB RAM.

Code Example # elements C++ JIT Performance

Figure 6.2 50m points 0.43s 0.58s 0.74x
Figure 6.3 50m points 2.69s 2.70s 0.99x

6.6.3 Case Study: Dropping Pills on Loro

The control offered by OpenVDB AX has been particularly useful as part of the geometry
scattering toolkit in Clarisse at DNEG. This uses point data to reference and represent geometry
such as trees, buildings or anything that requires large numbers of items to be placed around
3D space. This offers a lightweight mechanism for interacting with these items without
manipulating geometry (i.e. meshes) directly. The point data can then be later replaced by the
scattered geometry if required by the artist, else it will be deferred to only when it is needed, i.e.
render time. Attributes on these scattered points can reference different models and are used to
define the orientation, scale, colour or any other property that can vary amongst scattered items.
By allowing modification of these attributes, and even the position of the points themselves,
OpenVDB AX allows artists to author and tweak these representations extremely quickly. By
exposing the freedom and functionality of allowing artists to write custom logic i.e. math
functions etc. this can allow a huge amount of control that would be otherwise difficult to
make into a more conventional, fixed user interface.

An example of this was the use of OpenVDB AX on the film Loro[Sorrentino 2018]. The
shots in question required a collection of pills to rain from the sky (Figure 6.4a). Using
OpenVDB AX, the artists were able to modify the scattered geometry of the pills by updating
the attributes on the points representing them. In this example this meant randomising the
colour of the pills (represented by the vec3f@Cd attribute) using the rand() function with
int@id (for the random seed), as well as removing a subset of the original scattered points.
Other modifications using this setup also included altering the orientation and rotation of the
pills through the vec3f@orient attribute. These modifications happen in real-time in the
Clarisse viewport to allow instant visual feedback and the fast compilation allows artists to
modify their code snippets easily and experiment with different expressions.

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 109

(a) Scattered pills as they appear in the final shot in Loro[Sorrentino 2018].

(b) Using OpenVDB AX in Clarisse to modify the scattered pill geometry. Setting the colour and randomly
deleting a subset of the scattered pills. Red outline highlights the code editor used by artists to input
OpenVDB AX snippets.

6.6.4 Production Statistics

In Figure 6.5a we can see some internal production statistics from DNEG for use of OpenVDB
AX in Clarisse, where it has been most widely adopted. This was used 2570 times over a 30
day period prior to Sept 21th 2018. It has seen use on 13 shows, both for feature film and TV,
including Blade Runner 2049 and Pacific Rim: Uprising.

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 110

(a) Uses per day. Total uses: 2570.

(b) Uses broken down by show. Number of shows
this has been used on: 13. Size of outer ring seg-
ment represents proportional number of uses.

(c) Uses broken down by user. Number of unique
users: 39. Size of segment represents proportional
number of uses.

Figure 6.5: Statistics for uses of the OpenVDB AX node in Clarisse at DNEG, for 30 days prior
to September 21st 2018.

6.7 Summary

The motivation for this project arose during the development of OpenVDB Points at DNEG
[Museth et al. 2015]. Although originally designed as a particle framework for simulation, it
was primarily used for data interchange due to a lack of frontend tooling. The flexibility offered
by alternative point formats (e.g. in third-party DCCs) with more comprehensive tool-sets
raised further concerns over adoption on a wider scale. To succeed as a toolkit that users
could directly interact with, a fast way to expose a lot of custom and controllable functionality
became critical. Following previous successes with LLVM [Bailey et al. 2011] and recognising
the flexibility arising from geometry shader languages such as VEX, this tool was conceived as
a solution to this problem. Once this custom expression interface was exposed for OpenVDB
Points, we saw a huge increase in interest in the format as a whole. Then, due to the nature of

CHAPTER 6. PARTICLE AND VOLUME MANIPULATION 111

the integration into OpenVDB, and the similarities between its volume and point storage, it was
relatively straightforward to extend this framework to provide manipulation of volumetric data
as well. VDBs are now the standard for storage of volumetric and point data at DNEG, with
the ability to manipulate them directly and deterministically throughout the pipeline proving
to be a significant asset.

The functionality available in the current iteration of this tool is relatively limited (only
able to access attribute values for each element independently), but in the future this could be
extended to handle access to the rest of the geometry, i.e. neighbourhood lookups or sampling
a volume at an arbitrary position. As it is now an open-source project, and has sparked interest
from the wider OpenVDB community, we expect further work to build upon this basis in the
future.

It should be noted that this language offers functionality similar to VEX in Houdini, albeit
in its current form, only a subset thereof. However, there are no other such tools that offer the
freedom to manipulate point data in VDBs. Similarly, due to the native access to VDB data, it
outperforms Houdini’s VEX for volume operations on VDBs which whilst possible are understood
to require translation to-and-from its native volume storage format. Most importantly, as this
is built upon a transferrable technology in OpenVDB, it gains similar portability and provides a
unified way for artists throughout the pipeline to interact with this data.

This tool has shown to have production impact beyond original expectations. We have
found that by exposing this interface in multiple applications (e.g. Houdini, Clarisse, command-
line) we have been able to speed up both user and developer workflows, allowing on-the-fly
edits to assets and exposing access to the data in ways that can also be used in the creation
of more advanced tools. Whilst the language and the design itself follow other tools before
it, the portability arising from pairing to an open-source technology such as OpenVDB has
been invaluable to its success. This further demonstrates the importance of transferrable
technologies in a VFX pipeline built upon so many different applications. Interestingly, the
decoupled nature of the compiler and execution also suggests that such a tool could in the
future be extended to support other types of geometry beyond VDBs such as textures or meshes
(as long as we are able to iterate over ‘elements’ and access their ‘attributes’).

Chapter 7

Conclusion & Future Work

7.1 Discussion

The positive response of artists to the developments in this thesis suggest that whilst the existing
workflows for creating production quality liquid effects are heavily based on artistic input, this
is borne out of necessity more so than choice. Looking back to our description of a liquid effect
in §2.5 we can see that many of the decisions, such as those to modify the liquid surface coming
out of the FLIP simulation and to create multiple layers of secondary particle simulations, are
taken to reduce artefacts and shortcomings of the rest of the workflow. The sheer number
of layers required in creating these effects is largely due to the fact that each one can only
capture a restricted level of detail, either from lack of interaction or fidelity in the methods used.
Taking these two modifications as examples, we have demonstrated improvements in both of
these areas: increasing the range of detail in spray simulations using the droplet interaction
model of Chapter 4; and better handling of fine details as well as larger liquid behaviours in
the work described in Chapter 5. Whilst these advances allow significant improvements to
the artistic workflow by removing the need for artistic intervention, we also have looked at
the development of a tool to help cover remaining issues outside of those we cover explicitly
here. This involved the development of a method to make artistic intervention easier, such
that in other cases artists would be able to make required modifications quickly and without
disrupting their workflow.

The work described in Chapter 3 demonstrates findings that suggest that it is further from
a production tool than the other projects explored. However, it does provide a significant body
of work and in depth look at the use of model reduction in application to fluid simulation
and should offer a good basis for future work. This could arise from any of the suggested
avenues we describe in the chapter, or given the recent increase in interest in machine learning
and other data-based techniques [Sato et al. 2018a], some similar approach. Alternatively,
this work may be useful in other applications similar to the simulation compression work of
Jeruzalski et al. [2018].

Many previous works that have looked at improving the ability to create liquids for computer
graphics focus on real-time or interactive results, displaying very different quality than that we
require in VFX. These works commonly consider the coupling of a collection of methods for the

112

CHAPTER 7. CONCLUSION & FUTURE WORK 113

components that make up a liquid effect together, often defining specific blending mechanisms
or forces to be applied. Whilst this approach can be successful at defining black-box solutions,
the requirement for allowing artistic intervention and for developing robust and flexible tools
in VFX has instead driven this work to aim for more tightly defined improvements. In this way,
the workflow changes imposed upon artists are minimised, but offer explicit improvements
where they take effect. In fact, we have found that these kind of developments can also have
much wider scope of influence than is immediately obvious, as they are able to be incorporated
in a range of different workflows. Taking the particle surfacing tool developed in Chapter 5 for
example, whilst motivated by the requirement to create better results from water simulations,
this tool can be used to transform any point set into a smooth surface whilst retaining details
present in the distribution. Given the near endless scope of particle-based workflows in VFX,
this could be used for anything from reconstructing geometry from a point cloud to modelling
the procedural growth of the symbiote suit from Venom (the latter of which we have already
seen in practice).

The industrial context behind this project has been a key motivator to choices made and
working closely with the FX R&D team at DNEG has given a great insight into how to create tools
that will have positive impact in production VFX. Apart from the projects we have discussed
in detail in this last few chapters, there has been other work undertaken to help drive the
development of Dynamo and OpenVDB (Points mainly) during this time as well. The most
industrially-focused contribution of this work is that of the expression language OpenVDB
AX, documented in Chapter 6, which would have unlikely been possible (or recognised as
important) outside of this context. However, given the widening scope of tools such as OpenVDB
beyond the VFX and animation industries, the use of this tool may prove to be of similar utility
elsewhere as well.

Usage logging has allowed us to track the uptake of some of these developments in produc-
tion. For a large studio such as DNEG it can be difficult to be aware of when and who is using
tools available to them without it. Documentation was made available to the artists on the
release of these tools so that personal communication with myself (or others in the FX R&D
team) was not always necessary to be able to use the tool successfully. However, alongside
user testimony from some senior FX artists at DNEG, this usage logging allows us to see that
these developments have seen good adoption and preferred use over the alternative methods
they continue to have available.

Probably the largest novel contribution of this work to computer graphics is that of Chapter
4. This work demonstrates a novel algorithm for simulation of droplets using a more physically-
based approach than previously taken in graphics. The interactions in these phenomena have
often been considered of lesser important to larger spray motions but we show that they are
a key driving force in the generation of plausible size and velocity distributions. We are also
able to use the simulations results at closer scales than if using other methods as they visibly
interact with one another and create size variations in the resulting droplet system. These are
qualities that would otherwise have to be manually driven by artists using different layers of
simulations or other bespoke approaches. This work suggests that taking new physically-based
approaches can help to improve the ability to create realistic phenomena, even for historically
artistic-driven effects.

Whilst directed at improving workflows for VFX production specifically, many of the find-

CHAPTER 7. CONCLUSION & FUTURE WORK 114

ings of this project could be useful in other fields of computer graphics such as games and
virtual reality. For example, the theoretical liquid simulation developments in re-simulation,
droplet and particle surfacing remain applicable across these other fields and the technological
development of OpenVDB AX offers fast manipulation of VDB data wherever it is used (e.g.
general applications of volumetric data).

7.2 Future Work

Whilst the results of these projects demonstrate improvements to the workflows used in
production VFX, the approaches taken also open avenues of future research, both immediate
and slightly further-afield.

7.2.1 Extending This Work

Re-simulation: Chapter 3 describes a method for reducing simulation time based on the
iterative artistic workflow. The results show that whilst it can be effective at speeding up
subsequent iterations of a simulation, deviation from the earlier stages of simulation are poorly
handled. This method may be possible to extend with the help of basis enrichment methods or
similar, but it is unlikely to be applicable to high quality liquid simulation in the near future.
Instead it could be interesting to consider this approach as a non-standard mechanism of
storage of a simulation like the recent work of Jeruzalski et al. [2018].

Droplets and sprays: Chapter 4 introduces a novel droplet simulation model, efficiently
recreating real droplet behaviours of coalescence, separation and breakup. The approach
taken requires the introduction of a neighbourhood lookup step, whose cost, albeit somewhat
mitigated by a collection of simplifications and approximations that we introduce, significantly
outweighs the other stages of the simulation. Improvements to this calculation such as porting
the algorithm to the GPU could be beneficial in the future. Furthermore, the translation of
the physically-based model to a graphics context, retains a similar parametrisation based
on physical quantities such as surface tension and liquid density. Whilst these parameters
are able to offer artistic control, it may be interesting to explore whether this model could
be simplified to have a more artist-friendly interface without losing its physical plausibility.
This droplet simulation model is shown to demonstrate plausible behaviours on large scales,
creating emergent varying droplet distributions through its small-scale interactions. However,
whilst it captures topological changes on a small-scale, i.e. the creation and breakup of droplet
ligaments, it is not yet suitable for use in purely microscopic or close-up simulations due to a
lack of droplet deformation handling. This could be introduced using something like spherical
harmonics to track droplet surface deformation and oscillation [Ashgriz 2011].

Post-processing simulations: In Chapter 5 the integration of a state-of-the-art particle sur-
facing method into the VFX is discussed, alongside necessary improvements to better handle the
varied inputs and user-control required in visual effects production. In particular, this involves
the removal of a possibly destructive user parameter and focuses user-control into intuitive

CHAPTER 7. CONCLUSION & FUTURE WORK 115

and meaningful parameters. However, further improvements could be made to this model
e.g. improvements in robustness to outliers in the covariance matrix (and so deformation)
calculation; or better transitions between isolated ‘droplets’ and particles considered to be in
the liquid body, e.g. looking to use the number of neighbours to blend between these two
states rather than the discrete jump that occurs in the current method.

Efficient data manipulation: In Chapter 6 a new expression language for manipulating
point and volume data is introduced. Whilst existing technical requirements on artists have
led them to become familiar with scripting and programming languages, the success of visual
programming languages (e.g. many node-based systems such as Houdini/Nuke or even more
specifically Houdini VOPs) could suggest such an approach may be beneficial in the future. Also
further applications of this language, outside of VDB, would be interesting, such as manipulating
meshes or 2D textures.

7.2.2 Other Open Problems in High Quality Liquid Recreation

Apart from the areas tackled by projects in this thesis, there remain other areas of improvement
in the wider liquid FX pipeline. These include:

Coupling of simulations/discretisations: A common problem for workflows containing
different simulations (e.g. FLIP and SPH or our droplet model) or different discretisations is
coupling between them. Consider the coupling of 3D particle-based liquid simulations and 2D
procedural oceans (§2.5), whilst some works such as Nielsen and Bridson [2011] have looked
to tackle this problem, there are scenarios that are not as well provided for, such as very stormy
oceans.

Scalability and data manipulation: Whilst improvements to simulation algorithms and
hardware have been shown to allow scaling of simulation resolutions to extremely high levels,
there remains an issue of working with the resulting data elsewhere in the pipeline. In practice
this means that these increased resolutions are not always used and thus simulation resolutions
in production have plateaued to amounts that remain useable elsewhere such as in particle
surfacing or mesh creation.

Complex behaviours: Further to those addressed in this thesis, there remain issues in the
recreation of complex fluid phenomena such as multi-phase fluids and varying scales of inter-
action. For example, phenomena such as sea foam evolution and subsequent dynamics have
yet to be tackled in any meaningful way.

7.3 Conclusion

In this thesis we have described a collection of projects improving the liquid effects pipeline in
visual effects production. We proposed that improving the level of detail captured by physically-
based components of these effects would enable more efficient artist workflows than those

CHAPTER 7. CONCLUSION & FUTURE WORK 116

used currently in production. Previous works have have looked to tackle problems in this area
through computational advances, developing faster algorithms or increased accuracy but have
often lost sight of the key purpose of the creation of these simulations in the first place, to
recreate these physical phenomena for creative purposes. Either through lack of focus on the
importance of robustness and flexibility, or by tackling problems that are far removed from the
realities of day-to-day production, this has led to key problem areas, such as those of recreating
splashing liquids, being long overlooked. Whilst tooling may have been missing, the results
have been in demand, and so artists have been left to fend for themselves, relying on almost
wholly artistically-driven workflows for these complex physical processes. With an invaluable
insight into the production workflow through partnership with DNEG, and the freedom to
pursue new solutions, this project has been able to tackle these real problems in a working
production setting.

The problem of high quality splashing liquids has been shown to be particularly difficult
one throughout the VFX and animation industries. Through the partnership with DNEG we
have seen the effects of this in reality and gave a demonstration of this with a breakdown of
the work required on a single shot from a recent feature film production. In this, we saw that
the artist was required to modify and adapt almost every stage of their simulation, as well as
layering up to 78 simulated and non-simulated elements to create a plausible final splash effect.
This highlighted a collection of key areas in the workflow that could be improved, these were:
efficiency, level-of-detail, range of phenomena and art-directability. The subsequent projects
we discussed have each tackled issues in at least one of these areas.

First we looked at re-using computationally expensive simulation data to speed up iteration,
using model reduction. Focusing only on the most expensive part of a liquid simulation,
the pressure projection, we developed 2 methods to allow faster recreation of grid-based
fluid simulations, demonstrating significant speed increases in recreating simulations using a
reduced collection of fluid velocity fields. However, these were found to be unable to robustly
handle modification to the simulation conditions which meant they would be unsuitable as a
iteration tool. From this, we tested using these model reduction approaches as a pre-conditioner
before collating a collection of possible basis enrichment approaches to be explored in the
future. However, following the change of industrial partner and given a better understanding
of the issues facing high-end production VFX it became clear that the most important areas
of investigation lay in improving other stages in the liquid effects workflow. As data-driven
approaches are an increasingly large area of research interest, we believe this will help to
inform future work in this domain.

Then, by exploring methodologies beyond the usual approaches used in computer graphics,
a novel approach to the troublesome phenomena of liquid droplets was developed. These
phenomena have shown to be difficult for researchers in graphics and artists alike to decide
on a single reliable workflow. As such, in practical VFX a huge amount of artistic tweaking,
modification and experimentation is required to create high quality results. Further still,
these workflows can result in artists using layers of simulations to create required levels-of-
detail. By basing the behaviour of our model on physically-based and experimentally verified
models, we efficiently capture interactions on the scale of a single droplet whilst avoiding
requiring any increase in simulation resolution beyond the usual particle-per-droplet. This
method demonstrates increased levels-of-detail compared to existing approaches and, driven by

CHAPTER 7. CONCLUSION & FUTURE WORK 117

physical motivation rather than explicit definition of behaviour by an artist, exhibits large and
small scale phenomena of both individual droplets and sprays as a whole. A paper describing
this work was presented at SCA 2017.

Whilst choosing the correct method to define the behaviour of these particle simulations is
important, following any such simulation high-quality liquid surfaces are still required for final
rendering of these results. We then described the work required to implement and integrate
a state-of-the-art particle surfacing algorithm into the production pipeline. In particular this
required specific decisions and improvements to be made such that the resulting tool would be
robust to user inputs and give expected high-quality results at all times. In this case, introducing
better handling of geometric properties to remove a potentially troublesome and unintuitive
parameter that would vary dependent on the input data. In doing this, we have helped to
reduce the requirement on post-processing of liquid surfaces created from particles to create
high-quality results whilst fitting into pre-existing workflows. Through tracking the use of this
in production we have seen that even though the method has decreased performance compared
to some simpler alternatives, the gains in the results are compelling enough to have a positive
impact and have led to artists choosing to use this tool because it reduces the overall time
taken to reach production quality results. From this, the resulting tool has been heavily used on
many recent productions at DNEG such as Venom, The Kid Who Would Be King and Godzilla:
King of the Monsters.

Finally, to allow greater artistic control - currently the main driving force behind the creation
of production quality liquid effects, we document the development of a new expression language
for point and volume data. This gives artists fine control over these simulation elements and
facilitates the workflows used widely in production for these, and many other, effects. This
has been exposed in various stages of production throughout DNEG and has shown to be of
great benefit, even in areas beyond its original focus. It has been made open-source such that
it can benefit as many people as possible, and hopefully continue to develop and expand its
functionality. Many of the other elements of this project have made use of this tool, contributing
greatly towards its development. This has also been used elsewhere throughout the pipeline at
DNEG to help speed up developer and artist workflows in various applications, including use
on the Academy-Award winning production Blade Runner 2049. A paper describing this work
was presented at DigiPro 2018.

On a more general level, this work demonstrates that whilst it is important for industry to
be aware of the latest research such that it may benefit from any advances therein, it is equally
important that the research being undertaken is aware of how technology is used in practice,
to foster novel ideas, approaches and technologies that can be as effective as possible.

The successes of the projects undertaken suggest that our hypothesis was correct. In
particular, we have seen artists keen to use the method developed for increased physical
plausibility in their droplet and spray simulations, and widespread adoption of the method to
better capture fine details arising from their physically-based liquid simulations. Building on
this work, we hope to inspire future research to use physical motivations when exploring other
liquid (and similar) phenomena such that they may alleviate requirements on artists. In this
way, we look forward to seeing a future where no artist has to send off 78 elements for a single
effect ever again. This work enforces our belief that the use of physically-based methods will
continue to push the boundaries of quality in the effects that make it onto the big-screen.

References

B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adaptively sampled particle fluids. In ACM
Transactions on Graphics (TOG), volume 26, page 48. ACM, 2007. URL https://dl.acm.
org/citation.cfm?id=1276437.

J. D. Anderson and J. Wendt. Computational Fluid Dynamics. Springer, 1995.

R. Ando, N. Thurey, and R. Tsuruno. Preserving fluid sheets with adaptively sampled anisotropic
particles. IEEE Transactions on Visualization and Computer Graphics, 18(8):1202–1214, 2012.
URL https://ieeexplore.ieee.org/document/6171182.

R. Ando, N. Thürey, and C. Wojtan. Highly adaptive liquid simulations on tetrahedral meshes.
ACM Transactions on Graphics (TOG), 32(4):103, 2013. URL https://dl.acm.org/
citation.cfm?id=2461982.

R. Ando, N. Thürey, and C. Wojtan. A dimension-reduced pressure solver for liquid simulations.
volume 34. EUROGRAPHICS, 2015.

ANSYS. Fluent, 2018. URL https://www.ansys.com/.

N. Ashgriz. Handbook of atomization and sprays: theory and applications. Springer Science &
Business Media, 2011.

N. Ashgriz and J. Poo. Coalescence and separation in binary collisions of liquid drops.
Journal of Fluid Mechanics, 221:183–204, 1990. URL https://doi.org/10.1017/
S0022112090003536.

Autodesk. Maya, 2018. URL https://www.autodesk.co.uk/products/maya/.

N. Avramoussis, R. Jones, F. Gochez, T. Keeler, and M. Warner. A JIT expression language
for fast manipulation of VDB points and volumes. In Proceedings of the 8th Annual Digital
Production Symposium, page 1. ACM, 2018.

D. Bailey, I. Masters, and M. Warner. GPU fluids in production: A compiler approach to
parallelism. In ACM SIGGRAPH 2011 Talks, SIGGRAPH ’11, 2011.

D. Bailey, M. Warner, and H. Biddle. Packing the water pipe. In ACM SIGGRAPH 2014 Talks,
page 10. ACM, 2014.

118

https://dl.acm.org/citation.cfm?id=1276437
https://dl.acm.org/citation.cfm?id=1276437
https://ieeexplore.ieee.org/document/6171182
https://dl.acm.org/citation.cfm?id=2461982
https://dl.acm.org/citation.cfm?id=2461982
https://www.ansys.com/
https://doi.org/10.1017/S0022112090003536
https://doi.org/10.1017/S0022112090003536
https://www.autodesk.co.uk/products/maya/

REFERENCES 119

D. Bailey, H. Biddle, N. Avramoussis, and M. Warner. Distributing liquids using OpenVDB. In
ACM SIGGRAPH 2015 Talks, page 44. ACM, 2015.

A. Barber, D. Cosker, O. James, T. Waine, and R. Patel. Camera tracking in visual effects an
industry perspective of structure from motion. In Proceedings of the 2016 Symposium on
Digital Production, pages 45–54. ACM, 2016.

J. Barbič and D. L. James. Real-time subspace integration for St. Venant-Kirchhoff deformable
models. In ACM Transactions on Graphics (TOG), volume 24, pages 982–990. ACM, 2005.

C. Batty, F. Bertails, and R. Bridson. A fast variational framework for accurate solid-fluid
coupling. In ACM Transactions on Graphics (TOG), volume 26, page 100. ACM, 2007.

J. Bender and D. Koschier. Divergence-free SPH for incompressible and viscous fluids. IEEE
Transactions on Visualization and Computer Graphics, 23(3):1193–1206, 2017. URL https:
//ieeexplore.ieee.org/document/7487018.

J. Bender, D. Koschier, T. Kugelstadt, and M. Weiler. A micropolar material model for turbulent
SPH fluids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, page 4. ACM, 2017.

G. Berkooz, P. Holmes, and J. Lumley. The proper orthogonal decomposition in the analysis of
turbulent flows. Annual Rev. Fluid Mech, pages 539–575, 1993. URL https://doi.org/
10.1146/annurev.fl.25.010193.002543.

G. L. Bernstein, C. Shah, C. Lemire, Z. Devito, M. Fisher, P. Levis, and P. Hanrahan. Ebb: A DSL
for physical simulation on CPUs and GPUs. ACM Transactions on Graphics (TOG), 35(2):21,
2016. URL https://dl.acm.org/citation.cfm?id=2892632.

Blender. Blender, 2018. URL https://www.blender.org/.

J. F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics (TOG),
1(3):235–256, 1982. URL https://dl.acm.org/citation.cfm?id=357310.

D. Blythe. The direct3d 10 system. ACM Transactions on Graphics (TOG), 25(3):724–734, 2006.

J. U. Brackbill, D. B. Kothe, and H. M. Ruppel. FLIP: A low-dissipation, particle-in-cell method
for fluid flow. Computer Physics Communications, 48(1):25–38, 1988. URL http://www.
sciencedirect.com/science/article/pii/0010465588900203.

P. Brazier-Smith, S. Jennings, and J. Latham. The interaction of falling water drops: coalescence.
In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
volume 326, pages 393–408. The Royal Society, 1972.

R. Bridson. Fluid Simulation for Computer Graphics. A K Peters, 2008.

R. Bridson, J. Houriham, and M. Nordenstam. Curl-noise for procedural fluid flow. ACM
Transactions on Graphics (TOG), 26(3):46, 2007. URL https://dl.acm.org/citation.
cfm?id=1276435.

https://ieeexplore.ieee.org/document/7487018
https://ieeexplore.ieee.org/document/7487018
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://dl.acm.org/citation.cfm?id=2892632
https://www.blender.org/
https://dl.acm.org/citation.cfm?id=357310
http://www.sciencedirect.com/science/article/pii/0010465588900203
http://www.sciencedirect.com/science/article/pii/0010465588900203
https://dl.acm.org/citation.cfm?id=1276435
https://dl.acm.org/citation.cfm?id=1276435

REFERENCES 120

J. Budsberg, M. Losure, K. Museth, and M. Baer. Liquids in the croods. 2013.

N. Chentanez and M. Müller. Real-time Eulerian water simulation using a restricted tall cell
grid. ACM Transactions on Graphics (TOG), 30(4):82, 2011. URL https://dl.acm.org/
citation.cfm?id=1964977.

N. Chentanez, M. Müller, and T.-Y. Kim. Coupling 3d Eulerian, heightfield and particle methods
for interactive simulation of large scale liquid phenomena. IEEE Transactions on Visualization
and Computer Graphics, 21(10):1116–1128, 2015a. URL https://ieeexplore.ieee.
org/document/7132780.

N. Chentanez, M. Müller, M. Macklin, and T.-Y. Kim. Fast grid-free surface tracking. ACM
Transactions on Graphics (TOG), 34(4):148, 2015b. URL https://dl.acm.org/citation.
cfm?id=2766991.

A. J. Chorin. Numerical solution of the navier-stokes equations. Mathematics of
Computation, 22(104):745–762, 1968. ISSN 0025-5718, 1088-6842. doi: 10.
1090/S0025-5718-1968-0242392-2. URL http://www.ams.org/mcom/1968-22-104/
S0025-5718-1968-0242392-2/.

J. Cornish. The Kid Who Would Be King, 2019. URL https://www.imdb.com/title/
tt6811018/. Production by Working Title Films.

M. Cuesta. American Assassin, 2017. URL https://www.imdb.com/title/tt1961175/.
Production by Lionsgate.

F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. Surface-only liquids. ACM Transactions
on Graphics (TOG), 35(4):78, 2016. URL https://dl.acm.org/citation.cfm?id=
2925899.

T. De Witt, C. Lessig, and E. Fiume. Fluid simulation using laplacian eigenfunctions. ACM
Transactions on Graphics, 31(1):1–11, Jan. 2012. ISSN 07300301. doi: 10.1145/2077341.
2077351. URL http://dl.acm.org/citation.cfm?doid=2077341.2077351.

S. S. DeKnight. Pacific Rim: Uprising, 2018. URL https://www.imdb.com/title/
tt2557478/. Production by Clear Angle Studios.

Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen, F. Ham, A. Aiken,
K. Duraisamy, et al. Liszt: a domain specific language for building portable mesh-based pde
solvers. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, page 9. ACM, 2011.

M. Dougherty. Godzilla: King of the Monsters, 2019. URL https://www.imdb.com/title/
tt3741700/. Production by Legendary Entertainment.

Dreamworks Animation. OpenVDB, 2018. URL http://openvdb.org/.

https://dl.acm.org/citation.cfm?id=1964977
https://dl.acm.org/citation.cfm?id=1964977
https://ieeexplore.ieee.org/document/7132780
https://ieeexplore.ieee.org/document/7132780
https://dl.acm.org/citation.cfm?id=2766991
https://dl.acm.org/citation.cfm?id=2766991
http://www.ams.org/mcom/1968-22-104/S0025-5718-1968-0242392-2/
http://www.ams.org/mcom/1968-22-104/S0025-5718-1968-0242392-2/
https://www.imdb.com/title/tt6811018/
https://www.imdb.com/title/tt6811018/
https://www.imdb.com/title/tt1961175/
https://dl.acm.org/citation.cfm?id=2925899
https://dl.acm.org/citation.cfm?id=2925899
http://dl.acm.org/citation.cfm?doid=2077341.2077351
https://www.imdb.com/title/tt2557478/
https://www.imdb.com/title/tt2557478/
https://www.imdb.com/title/tt3741700/
https://www.imdb.com/title/tt3741700/
http://openvdb.org/

REFERENCES 121

D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces.
In ACM Transactions on Graphics (TOG), volume 21, pages 736–744. ACM, 2002. URL
https://dl.acm.org/citation.cfm?id=566645.

D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate semi-lagrangian particle level set
method. Computers & structures, 83(6-7):479–490, 2005. URL https://doi.org/10.
1016/j.compstruc.2004.04.024.

J.-P. Estrade, H. Carentz, G. Lavergne, and Y. Biscos. Experimental investigation of dy-
namic binary collision of ethanol droplets–a model for droplet coalescence and bounc-
ing. International Journal of Heat and Fluid Flow, 20(5):486–491, 1999. URL https:
//doi.org/10.1016/S0142-727X(99)00036-3.

C. Farhat and D. Amsallem. Recent advances in reduced-order modeling and application to
nonlinear computational aeroelasticity. In 46th AIAA Aerospace Sciences Meeting and Exhibit,
page 562, 2008.

R. Fattal and D. Lischinski. Target-driven smoke animation. In ACM Transactions on Graphics
(TOG), volume 23, pages 441–448. ACM, 2004. URL http://dl.acm.org/citation.
cfm?id=1015743.

R. Fleischer. Venom, 2018. URL https://www.imdb.com/title/tt1270797/. Production
by Columbia Pictures Corporation.

N. Foster and R. Fedkiw. Practical animation of liquids. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 23–30. ACM, 2001. URL
http://dl.acm.org/citation.cfm?id=383261.

N. Foster and D. Metaxas. Realistic animation of liquids. Graphical models and image process-
ing, 58(5):471–483, 1996. URL http://www.sciencedirect.com/science/article/
pii/S1077316996900398.

Foundry. Katana, 2018. URL https://www.foundry.com/products/katana.

E. Froemling, T. Goktekin, and D. Peachey. Simulating whitewater rapids in Ratatouille. In
ACM SIGGRAPH 2007 sketches, page 68. ACM, 2007.

A. Garland. Ex Machina, 2014. URL https://www.imdb.com/title/tt0470752/. Pro-
duction by Universal Pictures.

T. Georjon and R. Reitz. A drop-shattering collision model for multidimensional spray compu-
tations. Atomization and Sprays, 9(3), 1999. URL http://www.dl.begellhouse.com/
journals/6a7c7e10642258cc,406b807619bd91af,40525640123d40d2.html.

D. Gerszewski and A. W. Bargteil. Physics-based animation of large-scale splashing liquids. ACM
Transactions on Graphics (TOG), 32(6):185, 2013. URL https://dl.acm.org/citation.
cfm?id=2508430.

https://dl.acm.org/citation.cfm?id=566645
https://doi.org/10.1016/j.compstruc.2004.04.024
https://doi.org/10.1016/j.compstruc.2004.04.024
https://doi.org/10.1016/S0142-727X(99)00036-3
https://doi.org/10.1016/S0142-727X(99)00036-3
http://dl.acm.org/citation.cfm?id=1015743
http://dl.acm.org/citation.cfm?id=1015743
https://www.imdb.com/title/tt1270797/
http://dl.acm.org/citation.cfm?id=383261
http://www.sciencedirect.com/science/article/pii/S1077316996900398
http://www.sciencedirect.com/science/article/pii/S1077316996900398
https://www.foundry.com/products/katana
https://www.imdb.com/title/tt0470752/
http://www.dl.begellhouse.com/journals/6a7c7e10642258cc,406b807619bd91af,40525640123d40d2.html
http://www.dl.begellhouse.com/journals/6a7c7e10642258cc,406b807619bd91af,40525640123d40d2.html
https://dl.acm.org/citation.cfm?id=2508430
https://dl.acm.org/citation.cfm?id=2508430

REFERENCES 122

D. Gerszewski, L. Kavan, P.-P. Sloan, and A. W. Bargteil. Enhancements to model-reduced
fluid simulation. In Proceedings of the Motion on Games, pages 201–206. ACM, 2013. URL
http://dl.acm.org/citation.cfm?id=2522634.

F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang. A second-order-accurate symmetric discretiza-
tion of the poisson equation on irregular domains. Journal of Computational Physics, 176(1):
205–227, 2002. URL https://doi.org/10.1006/jcph.2001.6977.

R. Hankins, N. Rasmussen, A. Johnson, S. Bowline, and B. Criswell. Dataflow: ILM’s framework
for procedural geometry generation, simulation authoring, crowds, and more. In Proceedings
of the 2015 Symposium on Digital Production, pages 7–7. ACM, 2015.

P. Hanrahan and J. Lawson. A language for shading and lighting calculations. In ACM SIGGRAPH
Computer Graphics, volume 24, pages 289–298. ACM, 1990.

F. Harlow and E. Welch. Numerical calculation of time-dependent viscous incompressible flow
of fluid with free surface. The Physics of Fluids, 8(12), 1965. URL https://doi.org/10.
1063/1.1761178.

A. Hay, I. Akhtar, and J. Borggaard. On the sensitivity analysis of angle-of-attack in a model
reduction setting. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, page 1473, 2010.

J.-m. Hong and C.-h. Kim. Controlling fluid animation with geometric potential. Computer
Animation and Virtual Worlds, 15(3-4):147–157, 2004. URL https://doi.org/10.1002/
cav.17.

R. Hopper and K. Wolter. The water effects of Pirates of the Caribbean: Dead Men Tell no Tales.
In ACM SIGGRAPH 2017 Talks, page 31. ACM, 2017.

R. Howard. In the Heart of the Sea, 2015. URL https://www.imdb.com/title/
tt1390411/. Production by Dune Entertainment.

M. Ihmsen. SPH fluids in computer graphics. 2014.

M. Ihmsen, N. Akinci, G. Akinci, and M. Teschner. Unified spray, foam and air bubbles for
particle-based fluids. The Visual Computer, 28(6-8):669–677, 2012. URL http://link.
springer.com/article/10.1007/s00371-012-0697-9.

M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner. Implicit incompressible
SPH. IEEE Transactions on Visualization and Computer Graphics, 20(3):426–435, 2014a. URL
https://ieeexplore.ieee.org/document/6570475.

M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. SPH fluids in computer
graphics. 2014b. URL http://dx.doi.org/10.2312/egst.20141034.

Isotropix. Clarisse ifx, 2018. URL https://www.isotropix.com/.

http://dl.acm.org/citation.cfm?id=2522634
https://doi.org/10.1006/jcph.2001.6977
https://doi.org/10.1063/1.1761178
https://doi.org/10.1063/1.1761178
https://doi.org/10.1002/cav.17
https://doi.org/10.1002/cav.17
https://www.imdb.com/title/tt1390411/
https://www.imdb.com/title/tt1390411/
http://link.springer.com/article/10.1007/s00371-012-0697-9
http://link.springer.com/article/10.1007/s00371-012-0697-9
https://ieeexplore.ieee.org/document/6570475
http://dx.doi.org/10.2312/egst.20141034
https://www.isotropix.com/

REFERENCES 123

J. Iversen and R. Sakaguchi. Growing up with fluid simulation on The Day After Tomorrow. In
ACM SIGGRAPH 2004 Sketches, page 142, 2004.

T. Jeruzalski, J. Kanji, A. Jacobson, and D. I. Levin. Collision-aware and online compression
of rigid body simulations via integrated error minimization. In Computer Graphics Forum,
volume 37, pages 11–20. Wiley Online Library, 2018.

C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. The affine particle-in-cell
method. ACM Transactions on Graphics (TOG), 34(4):51, 2015. URL https://dl.acm.
org/citation.cfm?id=2766996.

R. Jiang. Pressure preconditioning using proper orthogonal decomposition. PhD thesis, Stanford
University, 2014.

M. Kass and G. Miller. Rapid, stable fluid dynamics for computer graphics. In ACM Siggraph
Computer Graphics, volume 24, pages 49–57. ACM, 1990.

B. Kim, Y. Liu, I. Llamas, X. Jiao, and J. Rossignac. Simulation of bubbles in foam with
the volume control method. ACM Transactions on Graphics (TOG), 26(3):98, 2007. URL
https://dl.acm.org/citation.cfm?id=1276500.

J. Kim, D. Cha, B. Chang, B. Koo, and I. Ihm. Practical animation of turbulent splashing water.
In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 335–344. Eurographics Association, 2006.

S. Kim, D. J. Lee, and C. S. Lee. Modeling of binary droplet collisions for application to
inter-impingement sprays. International Journal of Multiphase Flow, 35(6):533–549, 2009.
URL https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.010.

T. Kim and J. Delaney. Subspace fluid re-simulation. ACM Transactions on Graphics (TOG), 32
(4):62, 2013. URL http://dl.acm.org/citation.cfm?id=2461987.

T. Kim, J. Tessendorf, and N. Thürey. Closest point turbulence for liquid surfaces. ACM
Transactions on Graphics (TOG), 32(2):15, 2013. URL https://dl.acm.org/citation.
cfm?id=2451241.

F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. Levin, S. Sueda, D. Chen, E. Vouga, D. M. Kaufman,
G. Kanwar, W. Matusik, et al. Simit: A language for physical simulation. ACM Transactions
on Graphics (TOG), 35(2):20, 2016. URL https://dl.acm.org/citation.cfm?id=
2866569.

G. H. Ko and H. S. Ryou. Modeling of droplet collision-induced breakup process. International
Journal of Multiphase Flow, 31(6):723–738, 2005. URL https://www.sciencedirect.
com/science/article/pii/S0301932205000339.

P. Krysl, S. Lall, and J. E. Marsden. Dimensional model reduction in non-linear finite element
dynamics of solids and structures. International Journal for Numerical Methods in Engineering,
51(4):479–504, 2001. URL https://doi.org/10.1002/nme.167.

https://dl.acm.org/citation.cfm?id=2766996
https://dl.acm.org/citation.cfm?id=2766996
https://dl.acm.org/citation.cfm?id=1276500
https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.010
http://dl.acm.org/citation.cfm?id=2461987
https://dl.acm.org/citation.cfm?id=2451241
https://dl.acm.org/citation.cfm?id=2451241
https://dl.acm.org/citation.cfm?id=2866569
https://dl.acm.org/citation.cfm?id=2866569
https://www.sciencedirect.com/science/article/pii/S0301932205000339
https://www.sciencedirect.com/science/article/pii/S0301932205000339
https://doi.org/10.1002/nme.167

REFERENCES 124

M. Kurtz and G. Duda. Foamy creatures: Digital Domain wrangles whitewater for Lord of the
Rings. In ACM SIGGRAPH 2002 conference abstracts and applications, pages 186–186. ACM,
2002.

J. Lait. Inside Houdini’s distributed solver system. In ACM SIGGRAPH 2016 Talks, page 42.
ACM, 2016.

A. Lee. Life of Pi, 2012. URL https://www.imdb.com/title/tt0454876/. Production by
Dune Entertainment.

M. Lentine, W. Zheng, and R. Fedkiw. A novel algorithm for incompressible flow using only
a coarse grid projection. ACM Transactions on Graphics (TOG), 29(4):114, 2010. URL
https://dl.acm.org/citation.cfm?id=1778851.

B. Liu, G. Mason, J. Hodgson, Y. Tong, and M. Desbrun. Model-reduced variational fluid
simulation. ACM Transactions on Graphics (TOG), 34(6):244, 2015. URL https://dl.acm.
org/citation.cfm?id=2818130.

LLVM Developer Group. LLVM, 2018. URL https://llvm.org/.

Los Alamos National Laboratory. KIVA, 2018. URL https://www.lanl.gov/.

F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an octree data structure.
In ACM Transactions on Graphics (TOG), volume 23, pages 457–462. ACM, 2004.

F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. Two-way coupled SPH and particle level set
fluid simulation. IEEE Transactions on Visualization and Computer Graphics, 14(4):797–804,
2008. URL https://ieeexplore.ieee.org/document/4459322.

J. L. Lumley. Stochastic tools in turbulence. Courier Corporation, 2007.

M. Macklin and M. Müller. Position based fluids. ACM Transactions on Graphics (TOG), 32(4):
104, 2013. URL https://dl.acm.org/citation.cfm?id=2461984.

W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A system for programming graphics
hardware in a C-like language. ACM Transactions on Graphics (TOG), 22(3):896–907, 2003.
URL https://dl.acm.org/citation.cfm?id=882362.

A. McAdams, E. Sifakis, and J. Teran. A parallel multigrid Poisson solver for fluids simulation on
large grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 65–74. Eurographics Association, 2010.

A. McNamara, A. Treuille, Z. Popović, and J. Stam. Fluid control using the adjoint method.
In ACM Transactions On Graphics (TOG), volume 23, pages 449–456. ACM, 2004. URL
http://dl.acm.org/citation.cfm?id=1015744.

O. Mercier, C. Beauchemin, N. Thuerey, T. Kim, and D. Nowrouzezahrai. Surface turbulence for
particle-based liquid simulations. ACM Transactions on Graphics (TOG), 34(6):202, 2015.
URL https://dl.acm.org/citation.cfm?id=2818115.

https://www.imdb.com/title/tt0454876/
https://dl.acm.org/citation.cfm?id=1778851
https://dl.acm.org/citation.cfm?id=2818130
https://dl.acm.org/citation.cfm?id=2818130
https://llvm.org/
https://www.lanl.gov/
https://ieeexplore.ieee.org/document/4459322
https://dl.acm.org/citation.cfm?id=2461984
https://dl.acm.org/citation.cfm?id=882362
http://dl.acm.org/citation.cfm?id=1015744
https://dl.acm.org/citation.cfm?id=2818115

REFERENCES 125

V. Mihalef, D. Metaxas, and M. Sussman. Simulation of two-phase flow with sub-scale droplet
and bubble effects. In Computer Graphics Forum, volume 28, pages 229–238. Wiley On-
line Library, 2009. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1467-8659.2009.01362.x.

J. Molemaker, J. M. Cohen, S. Patel, and J. Noh. Low viscosity flow simulations for animation.
In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 9–18. Eurographics Association, 2008.

J. J. Monaghan. Simulating free surface flows with SPH. Journal of Computational Physics, 110
(2):399–406, 1994. URL https://doi.org/10.1006/jcph.1994.1034.

M. Müller, D. Charypar, and M. Gross. Particle-based fluid simulation for interactive applications.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 154–159. Eurographics Association, 2003.

A. Munnannur and R. D. Reitz. A new predictive model for fragmenting and non-fragmenting
binary droplet collisions. International Journal of Multiphase Flow, 33(8):873–896, 2007. URL
https://www.sciencedirect.com/science/article/pii/S0301932207000419.

K. Museth. VDB: High-resolution sparse volumes with dynamic topology. ACM Trans. Graph.,
32(3), July 2013. URL https://dl.acm.org/citation.cfm?id=2487235.

K. Museth. A flexible image processing approach to the surfacing of particle-based fluid
animation. In Mathematical Progress in Expressive Image Synthesis I, pages 81–84. Springer,
2014.

K. Museth, M. Clive, and N. B. Zafar. Blobtacular: surfacing particle system in Pirates of the
Caribbean 3. In SIGGRAPH sketches, page 20, 2007.

K. Museth, D. Bailey, J. Budsberg, J. Lynch, and A. Pearce. OpenVDB. In ACM SIGGRAPH 2015
Courses, SIGGRAPH ’15, 2015.

Next Limit. Realflow, 2018. URL http://www.nextlimit.com/realflow/.

Y. T. Ng, C. Min, and F. Gibou. An efficient fluid–solid coupling algorithm for single-phase flows.
Journal of Computational Physics, 228(23):8807–8829, 2009. URL https://doi.org/10.
1016/j.jcp.2009.08.032.

M. B. Nielsen and R. Bridson. Guide shapes for high resolution naturalistic liquid simulation.
In ACM Transactions on Graphics (TOG), volume 30, page 83. ACM, 2011. URL http:
//dl.acm.org/citation.cfm?id=1964978.

M. B. Nielsen and O. Østerby. A two-continua approach to Eulerian simulation of water
spray. ACM Transactions on Graphics (TOG), 32(4):67, 2013. URL https://dl.acm.org/
citation.cfm?id=2461918.

C. Nolan. Inception, 2010. URL https://www.imdb.com/title/tt1375666/. Production
by Warner Bros.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01362.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01362.x
https://doi.org/10.1006/jcph.1994.1034
https://www.sciencedirect.com/science/article/pii/S0301932207000419
https://dl.acm.org/citation.cfm?id=2487235
http://www.nextlimit.com/realflow/
https://doi.org/10.1016/j.jcp.2009.08.032
https://doi.org/10.1016/j.jcp.2009.08.032
http://dl.acm.org/citation.cfm?id=1964978
http://dl.acm.org/citation.cfm?id=1964978
https://dl.acm.org/citation.cfm?id=2461918
https://dl.acm.org/citation.cfm?id=2461918
https://www.imdb.com/title/tt1375666/

REFERENCES 126

C. Nolan. Interstellar, 2014. URL https://www.imdb.com/title/tt0816692/. Production
by Paramount Pictures.

C. Nolan. Dunkirk, 2017. URL https://www.imdb.com/title/tt5013056/. Production
by Warner Bros.

P. Nordin. Complex chemistry modeling of diesel spray combustion. Chalmers University of
Technology, 2001.

M. Orme. Experiments on droplet collisions, bounce, coalescence and disruption. Progress in
Energy and Combustion Science, 23(1):65–79, 1997. URL https://doi.org/10.1016/
S0360-1285(97)00005-1.

P. O’Rourke. Collective drop effects on vaporizing liquid sprays. Technical report, Los Alamos
National Lab., NM (USA), 1981.

P. O‘Rourke and F. Bracco. Modeling of drop interactions in thick sprays and a comparison with
experiments. Proceedings of the Institution of Mechanical Engineers, 9:101–106, 1980.

S. Palmer, J. Garcia, S. Drakeley, P. Kelly, and R. Habel. The ocean and water pipeline of Disney’s
Moana. In ACM SIGGRAPH 2017 Talks, page 29. ACM, 2017.

K. Pan, P. Chou, and Y. Tseng. Binary droplet collision at high Weber number. Physical Review E,
80(3):036301, 2009. URL https://doi.org/10.1103/PhysRevE.80.036301.

S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister,
M. McGuire, K. Morley, A. Robison, et al. OptiX: a general purpose ray tracing engine. ACM
Transactions on Graphics (TOG), 29(4):66, 2010. URL https://dl.acm.org/citation.
cfm?id=1778803.

S. Patkar, M. Aanjaneya, D. Karpman, and R. Fedkiw. A hybrid Lagrangian-Eulerian formulation
for bubble generation and dynamics. In Proceedings of the 2013 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 105–114, 2013.

A. Peer, M. Ihmsen, J. Cornelis, and M. Teschner. An implicit viscosity formulation for SPH
fluids. ACM Transactions on Graphics (TOG), 34(4):114, 2015.

D. Penney and N. B. Zafar. Rapid: an artist friendly particle system. In Proceedings of the 2015
Symposium on Digital Production, pages 15–19. ACM, 2015.

A. Pentland and J. Williams. Good vibrations: Modal dynamics for graphics and animation,
volume 23. ACM, 1989.

Pixar Animation Studios. Universal scene description, 2018. URL https://graphics.pixar.
com/.

J. Qian and C. Law. Regimes of coalescence and separation in droplet collision. Journal of Fluid
Mechanics, 331:59–80, 1997. URL https://doi.org/10.1017/S0022112096003722.

https://www.imdb.com/title/tt0816692/
https://www.imdb.com/title/tt5013056/
https://doi.org/10.1016/S0360-1285(97)00005-1
https://doi.org/10.1016/S0360-1285(97)00005-1
https://doi.org/10.1103/PhysRevE.80.036301
https://dl.acm.org/citation.cfm?id=1778803
https://dl.acm.org/citation.cfm?id=1778803
https://graphics.pixar.com/
https://graphics.pixar.com/
https://doi.org/10.1017/S0022112096003722

REFERENCES 127

L. Rayleigh. On the instability of jets. Proceedings of the London Mathematical Society, 1(1):
4–13, 1878. URL https://doi.org/10.1112/plms/s1-10.1.4.

J. Reisch, S. Marshall, M. Wrenninge, T. Göktekin, M. Hall, M. O’Brien, J. Johnston, J. Rempel,
and A. Lin. Simulating rivers in The Good Dinosaur. In ACM SIGGRAPH 2016 Talks, page 40.
ACM, 2016.

J. Ronning and E. Sandberg. Pirates of the Caribbean: Salazar’s Revenge, 2017. URL https:
//www.imdb.com/title/tt1790809/. Production by Walt Disney Pictures.

S. Sato, Y. Dobashi, and T. Nishita. Editing fluid animation using flow interpolation. ACM
Transactions on Graphics (TOG), 37(5):173, 2018a. URL https://dl.acm.org/citation.
cfm?id=3213771.

T. Sato, C. Wojtan, N. Thuerey, T. Igarashi, and R. Ando. Extended narrow band FLIP for liquid
simulations. In Computer Graphics Forum, volume 37, pages 169–177. Wiley Online Library,
2018b.

B. Schäling. The Boost C++ libraries. Boris Schäling, 2011.

R. Schmit and M. Glauser. Improvements in low dimensional tools for flow-structure interaction
problems: using global pod. In 42nd AIAA Aerospace Sciences Meeting and Exhibit, page 889,
2004.

M. Segal and K. Akeley. The OpenGL graphics system: A specification (version 1.1), 1999.

L. Shi and Y. Yu. Taming liquids for rapidly changing targets. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 229–236. ACM, 2005.
URL http://dl.acm.org/citation.cfm?id=1073401.

S.-H. Shin and C.-H. Kim. Target-driven liquids animation with interfacial discontinuities.
Computer Animation and Virtual Worlds, 18(4-5):447–453, 2007. URL https://doi.org/
10.1002/cav.202.

Side Effects. Houdini, 2018. URL https://sidefx.com.

B. Solenthaler and M. Gross. Two-scale particle simulation. In ACM Transactions on Graphics
(TOG), volume 30, page 81. ACM, 2011. URL http://dl.acm.org/citation.cfm?id=
1964976.

B. Solenthaler and R. Pajarola. Density contrast SPH interfaces. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 211–218. Eurographics
Association, 2008.

O.-Y. Song, H. Shin, and H.-S. Ko. Stable but nondissipative water. ACM Transactions on Graphics
(TOG), 24(1):81–97, 2005. URL https://dl.acm.org/citation.cfm?id=1037962.

Sony Pictures Imageworks. Alembic, 2018a. URL http://opensource.imageworks.com/.

https://doi.org/10.1112/plms/s1-10.1.4
https://www.imdb.com/title/tt1790809/
https://www.imdb.com/title/tt1790809/
https://dl.acm.org/citation.cfm?id=3213771
https://dl.acm.org/citation.cfm?id=3213771
http://dl.acm.org/citation.cfm?id=1073401
https://doi.org/10.1002/cav.202
https://doi.org/10.1002/cav.202
https://sidefx.com
http://dl.acm.org/citation.cfm?id=1964976
http://dl.acm.org/citation.cfm?id=1964976
https://dl.acm.org/citation.cfm?id=1037962
http://opensource.imageworks.com/

REFERENCES 128

Sony Pictures Imageworks. Open shading language, 2018b. URL http://opensource.
imageworks.com/.

P. Sorrentino. Loro, 2018. URL https://www.imdb.com/title/tt6748466/. Production
by Indigo Film.

J. Stam. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, pages 121–128. ACM Press/Addison-Wesley Publishing Co., 1999.
URL http://dl.acm.org/citation.cfm?id=311548.

M. Stanton, Y. Sheng, M. Wicke, F. Perazzi, A. Yuen, S. Narasimhan, and A. Treuille. Non-
polynomial galerkin projection on deforming meshes. ACM Transactions on Graphics (TOG),
32(4):86, 2013. URL https://dl.acm.org/citation.cfm?id=2462006.

K. Szewc, K. Walczewska-Szewc, and M. Olejnik. Is the motion of a single sph particle
droplet/solid physically correct? arXiv preprint arXiv:1602.07902, 2016. URL https:
//arxiv.org/abs/1602.07902.

T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito, K. Tanaka, and H. Ueki. Realistic ani-
mation of fluid with splash and foam. 22:391–400, 2003. URL https://onlinelibrary.
wiley.com/doi/abs/10.1111/1467-8659.00686.

Y. Teng, M. Meyer, T. DeRose, and T. Kim. Subspace condensation: full space adaptivity
for subspace deformations. ACM Transactions on Graphics (TOG), 34(4):76, 2015. URL
https://dl.acm.org/citation.cfm?id=2766904.

P. Tennison, T. Georjon, P. Farrell, and R. Reitz. An experimental and numerical study of sprays
from a common rail injection system for use in an hsdi diesel engine. Technical report, SAE
Technical Paper, 1998.

J. D. Thornton. Directable simulation of stylized water splash effects in 3d space. In ACM
SIGGRAPH 2006 Sketches, page 94. ACM, 2006.

G. Tomar, D. Fuster, S. Zaleski, and S. Popinet. Multiscale simulations of primary atomiza-
tion. Computers & Fluids, 39(10):1864–1874, 2010. URL https://doi.org/10.1016/j.
compfluid.2010.06.018.

A. Treuille, A. McNamara, Z. Popović, and J. Stam. Keyframe control of smoke simulations.
In ACM Transactions on Graphics (TOG), volume 22, pages 716–723. ACM, 2003. URL
http://dl.acm.org/citation.cfm?id=882337.

A. Treuille, A. Lewis, and Z. Popović. Model reduction for real-time fluids. ACM Transactions
on Graphics (TOG), 25(3):826–834, 2006. URL https://dl.acm.org/citation.cfm?
doid=1179352.1141962.

S. Trojansky. Raging waters: the rivergod of Narnia. In ACM SIGGRAPH 2008 talks, page 74.
ACM, 2008.

http://opensource.imageworks.com/
http://opensource.imageworks.com/
https://www.imdb.com/title/tt6748466/
http://dl.acm.org/citation.cfm?id=311548
https://dl.acm.org/citation.cfm?id=2462006
https://arxiv.org/abs/1602.07902
https://arxiv.org/abs/1602.07902
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00686
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00686
https://dl.acm.org/citation.cfm?id=2766904
https://doi.org/10.1016/j.compfluid.2010.06.018
https://doi.org/10.1016/j.compfluid.2010.06.018
http://dl.acm.org/citation.cfm?id=882337
https://dl.acm.org/citation.cfm?doid=1179352.1141962
https://dl.acm.org/citation.cfm?doid=1179352.1141962

REFERENCES 129

K. Um, X. Hu, and N. Thuerey. Perceptual evaluation of liquid simulation methods. ACM
Transactions on Graphics (TOG), 36(4):143, 2017. URL https://dl.acm.org/citation.
cfm?id=3073633.

K. Um, X. Hu, and N. Thuerey. Liquid splash modeling with neural networks. In Computer
Graphics Forum, volume 37, pages 171–182. Wiley Online Library, 2018.

F. Vetrano, C. Le Garrec, G. D. Mortchelewicz, and R. Ohayon. Assessment of strategies for
interpolating POD based reduced order models and application to aeroelasticity. Journal of
Aeroelasticity and Structural Dynamics, 2(2), 2012.

D. Villeneuve. Blade Runner 2049, 2017. URL https://www.imdb.com/title/
tt1856101/. Production by Columbia Pictures Corporation.

Visual Effects Society. The state of the global visual effects industry. 2013.

E. Vouga, B. Smith, D. M. Kaufman, R. Tamstorf, and E. Grinspun. All’s well that ends well:
guaranteed resolution of simultaneous rigid body impact. ACM Transactions on Graphics
(TOG), 36(4):151, 2017. URL https://dl.acm.org/citation.cfm?id=3073689.

H. Wang, P. Mucha, and G. Turk. Water drops on surfaces. In ACM Transactions on Graphics
(TOG), volume 24, pages 921–929, 2005.

D. Weber, J. Mueller-Roemer, A. Stork, and D. Fellner. A cut-cell geometric multigrid Poisson
solver for fluid simulation. In Computer Graphics Forum, volume 34, pages 481–491. Wiley
Online Library, 2015.

M. Wicke, M. Stanton, and A. Treuille. Modular bases for fluid dynamics. In ACM Transactions
on Graphics (TOG), volume 28, page 39. ACM, 2009.

R. Winchenbach, H. Hochstetter, and A. Kolb. Constrained neighbor lists for sph-based fluid
simulations. In Symposium on Computer Animation, pages 49–56, 2016.

R. Winchenbach, H. Hochstetter, and A. Kolb. Infinite continuous adaptivity for incompressible
SPH. ACM Transactions on Graphics (TOG), 36(4):102, 2017. URL https://dl.acm.org/
citation.cfm?doid=3072959.3073713.

C. Wojtan, N. Thürey, M. Gross, and G. Turk. Deforming meshes that split and merge. In ACM
Transactions on Graphics (TOG), volume 28, page 76. ACM, 2009.

L. Yang, S. Li, A. Hao, and H. Qin. Hybrid particle-grid modeling for multi-scale droplet/spray
simulation. In Computer Graphics Forum, volume 33, pages 199–208. Wiley Online Library,
2014. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12488.

T. Yang, J. Chang, B. Ren, M. C. Lin, J. J. Zhang, and S.-M. Hu. Fast multiple-fluid simulation
using helmholtz free energy. ACM Transactions on Graphics (TOG), 34(6):201, 2015. URL
https://dl.acm.org/citation.cfm?id=2818117.

https://dl.acm.org/citation.cfm?id=3073633
https://dl.acm.org/citation.cfm?id=3073633
https://www.imdb.com/title/tt1856101/
https://www.imdb.com/title/tt1856101/
https://dl.acm.org/citation.cfm?id=3073689
https://dl.acm.org/citation.cfm?doid=3072959.3073713
https://dl.acm.org/citation.cfm?doid=3072959.3073713
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12488
https://dl.acm.org/citation.cfm?id=2818117

REFERENCES 130

J. Yu and G. Turk. Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM
Transactions on Graphics (TOG), 32(1):5, 2013. URL https://dl.acm.org/citation.
cfm?id=2421641.

Y. Zhu and R. Bridson. Animating sand as a fluid. In ACM Transactions on Graphics (TOG),
volume 24, pages 965–972. ACM, 2005. URL http://dl.acm.org/citation.cfm?id=
1073298.

https://dl.acm.org/citation.cfm?id=2421641
https://dl.acm.org/citation.cfm?id=2421641
http://dl.acm.org/citation.cfm?id=1073298
http://dl.acm.org/citation.cfm?id=1073298

Appendix: Collision Threshold
Derivation

In Chapter 4, we use the collision thresholds originally derived and validated by Ashgriz and
Poo [1990]. These were developed to offer physically-accurate, energy-based prediction of
the outcome type of a droplet collision based on the colliding state of the pair of droplets. We
consider the collision between the pair of spherical droplets i, j with positions xi ,x j velocities
ui ,u j and radii ri > r j .

Stretching Separation

Stretching separation is considered to arise for collisions in which the stretching kinetic energy
in the collision is greater than the surface energy of the ligament that forms between the
colliding droplets.

Assuming that the collision is such that only a portion of the droplet masses come into
contact, we define the volume of interaction of droplet i as φiVi, for Vi the volume of the
sphere of radius ri, centre xi, cut by the planes parallel to ui j and tangential to edge of the
other droplet sphere, j (Figure 4.5), and similarly for droplet j.

In Ashgriz and Poo [1990], the following equations for φi ,φ j are given:

φi =

¨

1− (2−τ)
2(1+τ)
4 , if h> ri .

τ2(3−τ)
4 , otherwise.

(1)

φ j =

¨

1− (2δ−τ)
2(δ+τ)

4δ3 , if h> r j .
τ2(3δ−τ)

4δ3 , otherwise.
(2)

where h = (1− X)(r1 + r2) and τ = (1− X)(1+ δ). In the main paper, we note that these
equations are not valid for the case of a fully overlapped smaller droplet h > 2r j (where
we should have φ j = 1) and instead suggest calculating these with geometric equations for
segments and caps in these cases.

Now, assuming that the remaining non-interacting portions of the droplets continue along

131

APPENDIX: COLLISION THRESHOLD DERIVATION 132

their initial trajectory, we calculate the kinetic stretching energy in the entire collision as:

Estretch = non-interacting KE+ interacting KE

=
1
2
ρ[(Vi − Vi,I)||Ui||2 + (Vj − Vj,I)||U j||2] +

1
2
ρ[Vi,I(UiX)

2 + Vj,I(u jX)
2]

=
1
2
ρ[(1−φi)Vi||Ui||2 + (1−φ j)Vj||U j||2] +

1
2
ρX 2[Vi,I ||Ui||2 + Vj,I ||U j||2]

=
1
2
ρ||Ui j||2Vi

�

δ3

(1+δ3)2

�

[(1+δ3)− (1− X 2)(φ j +δ
3φi)]

(3)

Note that the above equation, as described in Ashgriz and Poo [1990], velocity is formulated
in mass-centre coordinates (corrected by Ko and Ryou [2005]), so uses:

Ui =
−δ3ui j

(1+δ3)
(4)

U j =
ui j

(1+δ3)
(5)

but that any use of the relative velocity Ui j remains equal to the usual form, Ui j =
(1+δ3)ui j

1+δ3 = ui j .
The surface energy that opposes this stretching is that of the nominal ligament created

from the interacting volume, given by the surface energy associated with a cylinder of height h
and volume Vinteract = Vinteract,i + Vinteract,j:

Esurface = 2σ[πhVinteract]
1
2

= 2σ[πh(Vinteract,i + Vinteract,j)]
1
2

= 2σ[πVi riτ(φi +δ
3φ j)]

1
2

(6)

Then if Estretch > Esurface the collision results in stretching separation.
Considering the equality of the above equation and then rearranging allows definition of a

threshold on We as Westretch:

Westretch =
4(1+δ3)2[3(1+δ)(1− X)(δ3φ j +φi)]

1
2

δ2[(1+δ3)− (1− X 2)(φ j +δ3φi)]
(7)

such that the stretching separation threshold is surpassed if We>Westretch.

Reflexive Separation

For head-on collisions, we check for reflexive separation in a similar way to that of stretching
separation. This outcome is said to arise due to a combination of the incident kinetic energies
working in opposing directions, and the internal flows induced due to the difference between
the colliding droplet surface energies and the nominal coalesced droplet surface energy.

APPENDIX: COLLISION THRESHOLD DERIVATION 133

The kinetic energy term is that of the portions of the droplets which directly oppose each
other, given by:

Ecounter =
1
2
ρ(Vi,P ||Ui||2 + Vj,P ||U j||2) (8)

where the volume Vk,P is the volume of the prolate regions of the incident droplets, defined in
terms of X by:

Vi,P =
4
3
πr3

i (1− ξ)
2(1− ξ2)

1
2 (9)

Vj,P =
4
3
πr3

i (δ− ξ)
2(δ2 − ξ2)

1
2 (10)

where ξ= 1
2 X (1+δ). Then the excess surface energy is given by:

Eexcess = 4σπr2
i [(1+δ

2)− (1+δ)
2
3] (11)

Finally, the remaining portions of droplets try to stretch the combined mass, which reduces
the reflexive energy above and so we also include the following stretching energy term:

Estretch =
1
2
ρ[(Vi − Vi,P)||Ui||2 + (Vj − Vj,P)||U j||2] (12)

The effective reflexive energy is therefore given by:

Ereflex = Ecounter + Eexcess − Estretch (13)

which can be rearranged to:

Ereflex = 4σπr2
i

�

(1+δ2)− (1+δ3)
2
3 +

We
12δ(1+δ3)2

(δ6ηi +η j)
�

(14)

where
ηi = 2(1− ξ)2(1− ξ)

1
2 − 1 (15)

η j = 2(δ− ξ)2(δ2 − ξ2)
1
2 −δ3 (16)

Reflexive separation is then said to occur when this energy exceeds 75% of the surface
energy of the nominal coalesced mass Esurface,k = 4σπ(r3

i +r3
j)

2
3 , i.e. when Ereflex > 0.75Esurface,k.

Using these formulations for Ereflex and Esurface,k taking the threshold of the above inequality
and rearranging for We gives:

Wereflex =
3[7(1+δ3)

2
3 − 4(1+δ2)]δ(1+δ3)2

(δ6ηi +η j)
(17)

and thus a collision with We >Wereflex will exhibit reflexive separation.

List of Acronyms

DCC Digital Content Creation program

CG Computer Generated

VFX Visual Effects

FX Effects

FLIP Fluid Implicit Particle

PIC Particle-In-Cell

MAC Marker-and-Cell

PLS Particle Level Set

APIC Affine Particle-in-Cell

SPH Smoothed Particle Hydrodynamics

PCG Preconditioned Conjugate Gradient

ICPCG Incomplete Cholesky Preconditioned Conjugate Gradient

GFM Ghost Fluid Method

MG Multigrid

PBF Position-Based Fluids

PBD Position-Based Dynamics

POD Proper Orthogonal Decomposition

POM Proper Orthogonal Mode

RBD Rigid Body

AX Attribute Expression

JIT Just-In-Time

134

LIST OF ACRONYMS 135

IR Intermediate Representation

AST Abstract Syntax Tree

SDF Signed Distance Function

WPCA Weighted Principle Component Analysis

SVD Singular Value Decomposition

	List of Figures
	List of Tables
	Introduction
	Motivation
	Academic Context
	Industrial Context
	VFX
	Industrial Partner: DNEG
	Considerations for Industry-Focused Research

	Key Challenges of VFX Production
	Project Objectives
	Contributions
	Publications
	Software

	Thesis Outline

	Liquid Simulation for VFX
	Fundamentals of Fluid Motion
	Fluid Simulation for Computer Graphics
	Eulerian Methods
	Lagrangian Methods
	Hybrid Methods
	Summary

	FLIP/PIC Simulation
	Algorithm Overview

	Realistic Splashing Liquid Effects
	Anatomy of a Splash
	Previous Approaches

	How to Create a Production Quality Liquid Effect
	Areas for Improvement

	Increasing Iteration: Fluid Re-Simulation using Model Reduction
	Overview
	Model Reduction
	Projection
	Related Work
	Proper Orthogonal Decomposition via Method of Snapshots

	Subspace Pressure Projection using Previous Simulation Data
	Method
	Results
	Analysis

	Improvements to Model Reduction for Re-Simulation
	Full Dimension Pressure Projection with a Reduced Preconditioner
	Divergent Basis
	Basis Interpolation Methods
	Fluid Re-Simulation using Subspace Condensation

	Summary

	Increasing Detail: Physically-Based Droplet Interaction
	Overview
	Motivation
	Related Work
	Issues with Existing Droplet Methods

	Real Droplet Interactions
	Binary Droplet Collisions

	Droplet Collision Modelling
	Parametrising Droplet Collisions
	Collision Outcome Classification
	Post-Collision Characteristics
	Application to Graphics

	Our Approach
	Robust-to-Input Outcome Classification
	Visually Plausible Post-Collision Characteristics
	Binary Collision Detection

	Implementation
	Results
	Limitations

	Summary

	Preserving Detail: Surfacing of Splashes with Droplets
	Overview
	Motivation
	Related Work
	Our Approach
	Robust Anisotropic Kernels for Particle Fluid Surfacing

	Implementation
	Results
	Analysis
	Summary

	Increasing Control: Particle and Volume Manipulation with AX
	Overview
	Motivation
	Portable and Domain-Specific Languages
	Our Approach
	Task-Specific and Parallel by Design

	Implementation
	LLVM Function Generation
	OpenVDB Integration
	Available Operations

	Examples and Use in Production
	Example 1: Simulation
	Example 2: FX to Lighting
	Case Study: Dropping Pills on Loro
	Production Statistics

	Summary

	Conclusion & Future Work
	Discussion
	Future Work
	Extending This Work
	Other Open Problems in High Quality Liquid Recreation

	Conclusion

	References
	Appendix: Collision Threshold Derivation
	Stretching Separation
	Reflexive Separation

	List of Acronyms

