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1. Introduction 

Identifying contemporaneous use of structures in the archaeological 
record is critical for reconstructing population size. Demographic ana
lyses that do not sufficiently account for structural contemporaneity 
may result in inflated population estimates and inaccurate theories 
regarding spatial and social dynamics. Unfortunately, contemporaneity 
adjustments are not commonly utilised in population reconstructions 
and are virtually absent in population estimates of central and southern 
Levantine Pre-Pottery Neolithic (PPN) settlements (c. 10,000–6,400 cal 
BC; Kuijt and Goring-Morris, 2002, 366). A rare example is provided by 
Rollefson and K€ohler-Rollefson (1989), who applied a conjectural value 
of 80% structural contemporaneity when estimating the population of 
late PPN ‘Ain Ghazal. 

The PPN was an important period in human history, in which there 
was extensive demographic transformation from mobile hunter-gatherer 
communities to sedentary, village-based, agro-pastoralist societies, with 
increasingly larger and diverse populations. This aggregation of people 
is directly associated with major developments in subsistence, technol
ogy, and ritual and symbolic practices, and the emergence of more 
complex social, economic, religious and political systems. To understand 
the link between population aggregation during this period and the 
developments that occurred, it is essential that more accurate and pre
cise demographic data is derived, using more scientifically robust 
methods, including those that attempt to quantify structural 
contemporaneity. 

The lack of consideration of structural contemporaneity in central 
and southern Levantine PPN population estimates is due partly to 
methodological difficulties with identifying contemporaneous struc
tures, as well as the commonly used method for estimating population 
sizes, whereby a density value (usually in the range of 90–294 people 
per ha) is multiplied by site extent (Rollefson and K€ohler-Rollefson, 
1989; Kuijt, 2000, 2008; Campbell, 2009). As density values are derived 
from ethnographic settlements (Jacobs, 1979; Watson, 1979; Kramer, 

1982b; Van Beek, 1982), which demonstrate some building disuse or 
abandonment, the method can be argued to inherently incorporate some 
consideration of structural contemporaneity, though not precisely 
quantified, nor directly transferrable to all PPN sites. Furthermore, 
recent research has revealed that the commonly utilised density co
efficients for reconstructing central and southern Levantine PPN settle
ments are not suitable due to lack of comparability in settlement and 
social structures, as well as considerable environmental differences 
(Birch-Chapman, 2017; Birch-Chapman et al., 2017). In order to pro
duce more accurate population reconstructions for this region and time 
period, empirically robust methods should be explored for quantifying 
structural contemporaneity. 

To identify contemporaneous structures within a settlement phase, 
archaeologists typically establish relative chronologies of structures, 
assigning them to distinct occupation phases based on assessment of 
bonded and abutting boundary walls and patterns of circulation within 
and between buildings (Wilcox, 1975; Kramer, 1982a; Hemsley, 2008). 
However, this is a difficult process, particularly for complex, 
multi-phase sites or where remains have been heavily degraded. 
Furthermore, archaeologically-defined phases may have in fact spanned 
hundreds of years and contain archaeological remains that reflect un
related human activities (Kuijt, 2008). For population estimates, more 
precise methods are required for quantifying momentary contempora
neity. Promising methodological advancements in this field have been 
made by those attempting to reconstruct population estimates of pueblo 
settlements in Southwest USA. Several studies have estimated momen
tary population: that is, the population size at any one point in time 
(Varien et al., 2007; Brown et al., 2013; Ortman, 2016). One method 
that deserves examination in the context of central and southern 
Levantine PPN settlements is that developed by Varien et al. (2007). To 
calculate the average number of momentary households in pueblo set
tlements in the Mesa Verde region (c. A.D. 600–1300) they applied the 
following equation: 
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Average ​ number ​ of ​ momentary ​ households ¼
building ​ use � life

period ​ length
� total ​ number ​ of ​ households 

Estimates of building use-life and period length were derived from 
assessments of cooking pot accumulations (Varien and Potter, 1997; 
Varien and Ortman, 2005; Varien et al., 2007, 280). Brown et al. (2013) 
later applied the same method to estimate the average number of 
momentary rooms in Chacoan and post-Chacoan settlements in the 
Middle San Juan region, New Mexico (c. A.D. 900–1300). The equation 
essentially produces a household contemporaneity value: that is, a 
proportion of households living contemporaneously. 

To apply this equation to central and southern Levantine PPN set
tlements, which are characterised by a lack of pottery, other methods are 
required for deriving building use-life and period length. In this paper, a 
method involving Bayesian chronological modelling of radiocarbon 
dates from structures is presented, with final building use-life and phase 
length estimates applied to the equation to calculate a structural 

contemporaneity value: that is, the percentage of structures in 
contemporaneous use. Calculation of structural contemporaneity values 
forms part of a much wider project reconstructing site-specific popula
tion estimates for all PPN settlements in the central and southern Levant 
(Birch-Chapman, 2017). A review of current methods for estimating PPN 
building use-life and period length (i.e. occupation span and phase 
length) is provided in this paper, followed by a discussion of the use of 
Bayesian chronological modelling for this purpose. The newly developed 
method is then applied to a case study and phase-specific structural 
contemporaneity values are proposed. This is followed by a discussion of 
implications of contemporaneity adjustments for population re
constructions of PPN settlements. 

The case study for initial exploration of this method is the PPNB (c. 
8800-6700 cal BC) settlement of Beidha (Fig. 1). Beidha is a small 
(�0.35 ha) settlement in southern Jordan that demonstrates the transi
tion from a semi-sedentary hunter-gatherer community to a well- 
established sedentary agro-pastoralist society. The extensive and well- 
documented PPN occupation evidence (Kirkbride, 1966, 1985; Byrd, 

Fig. 1. Location of PPN Beidha and site plans for Subphases A1, A2, B2 and C2 (plans adapted from Byrd, 2005).  
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2005; Birch-Chapman et al., 2017) and large dataset of radiocarbon 
dates compared to other PPN settlements present an excellent oppor
tunity for exploring the proposed methodology to calculate structural 
contemporaneity. The major building phases and radiocarbon dating for 
Beidha relate to Subphases A1, A2, B2 and C2, which are assessed in 
detail in this research. Four additional central and southern Levantine 
PPN settlements were similarly assessed: Netiv Hagdud, Ghwair I, ‘Ain 
Abu Nekheileh and Basta. Final structural contemporaneity values and 
population estimates for these sites are presented in this paper, with data 
and analyses available in the supplemental material. 

2. Theoretical and methodological background 

2.1. Previous methods for estimating PPN building use-life and period 
length 

Building use-life estimates for central and southern Levantine PPN 
settlements are rarely published and, where present, are predominantly 
based on ethnographic and experimental research on structures com
parable to those that existed during the PPN (Rollefson and 
K€ohler-Rollefson, 1989; Kuijt and Finlayson, 2009). Research suggests 
that construction type and material, and evidence for building mainte
nance are the best indicators of use-life. Common construction elements 
during the earlier PPN include semi-subterranean, curvilinear structures 
with stone, mud brick, pis�e (compacted earth) or wood and daub walls, 
and wood and daub roofing, as at Nahal Oren (Goring-Morris and 
Belfer-Cohen, 2013), Dhra’ (Kuijt, 2001), Wadi Faynan 16 (Mithen et al., 
2011), Netiv Hagdud (Bar-Yosef and Gopher, 1997), and Zahrat 
adh-Dhra’ 2 (Edwards et al., 2004). These construction elements per
sisted in later PPN periods in more marginal and arid regions, such as at 
Beidha (Kirkbride, 1966; Byrd, 2005) and Shk�arat Msaied (Kinzel, 
2013). As the PPN progressed, rectilinear architectural forms emerged 
(Khalaily et al., 2007; Balbo et al., 2012). In later periods, many of these 
comprised multiple storeys with durable, load-bearing stone walls and 
buttresses, and some even had sub-floor air or water channels, such as at 
Basta (Nissen, 2006), Wadi Hamarash I (Sampson, 2013), el-Hemmeh 
(White, 2013), and es-Sifiya (Makarewicz et al., 2006). These architec
tural developments are interpreted as reflecting longer term occupation 
(Kuijt and Goring-Morris, 2002). 

From the earliest PPN period, evidence for cleaning activities and 
building maintenance takes the form of reflooring and wall recoating. In 
later periods, building maintenance and remodelling was often consid
erable, including internal partitioning, blocking of openings, addition of 
annexes and supporting walls, and multiple reflooring and replastering 
episodes interpreted as deliberate attempts to extend the building’s use- 
life (Kuijt and Goring-Morris, 2002; Kinzel, 2013). 

Archaeological, experimental and ethnographic research into 
building use-life suggests that structures predominantly made with 
earthen and light organic materials (e.g. wood and daub) may have been 
utilised for around six to 15 years without maintenance, and up to 50 
years with maintenance (Cameron, 1990; Reynolds, 1995; Diehl, 2001; 
Ortman et al., 2007; Kuijt and Finlayson, 2009; Arnoldussen, 2008; 
Varien, 2012). Research into the use-life of predominantly stone and 
mud brick structures suggests these were probably occupied for at least 
50 years with maintenance, though possibly 100 years or more (Ahl
strom, 1985; Rollefson and K€ohler-Rollefson, 1989; Hodder and Cess
ford, 2004; Cessford, 2005; Matthews, 2005). 

Period length in this study refers to total occupation span or phase 
length, where multiple phases exist. For PPN sites, estimates of period 
length are usually broad and often comprise vague statements regarding 
relative longevity (e.g. “a relatively short-lived settlement”) or distri
bution across PPN periods (e.g. “the site spanned the PPNA and PPNB”). 
Most estimates are derived from uncalibrated radiocarbon date spans 
(Bar-Yosef et al., 1991; Henry and Albert, 2004; Byrd, 2005). More 
recently, refined (though still broad) estimates have been derived from 
stratigraphically informative calibrated radiocarbon dates (Edwards 

et al., 2004; Mazurowski et al., 2009; Manning, 2014). 

2.2. Bayesian chronological modelling of building use-life and period 
length 

Bayesian modelling is increasingly utilised for reconstructing chro
nological information (Buck et al., 1996; Bayliss, 2007; Bayliss et al., 
2011), and has significant potential for producing more accurate and 
precise estimates of PPN building use-life and period length. Bayesian 
chronological models, founded on Baye’s theorem (Bayes, 1763), pro
duce revised probability distributions (‘posterior density estimates’) 
from calibrated radiocarbon dates (‘standardised likelihoods’) and prior 
chronological information derived from archaeological, ethnographic or 
experimental interpretation (‘prior beliefs’) (Bronk Ramsey, 2009; 
Bayliss et al., 2011). 

Bayesian chronological analysis is usually conducted on large 
radiocarbon datasets to explore the timing of large-scale events and 
processes, such as human dispersals, the emergence and spread of 
agriculture, and typological or technological changes (Whittle et al., 
2011; Higham et al., 2012; Riede and Edinborough, 2012; Wicks and 
Mithen, 2014; Por�ci�c and Nikoli�c, 2016). However, models can be 
constructed with small radiocarbon datasets and can be used to assess 
short-term events, such as building use-life and phase length, depending 
on the availability and accuracy of prior information, and the quantity, 
precision and stratigraphic distribution of the dated material. Such 
methods have been employed to estimate boundary dates and spans of 
structures, burial chambers and settlements from the Neolithic, with 
radiocarbon date datasets ranging from as little as five determinations 
(Robb and Marino, 2010; Bayliss et al., 2014, 2016; Marciniak et al., 
2015; Tasi�c et al., 2015; B�anffy et al., 2016; Czerniak et al., 2016; Kerns, 
2016; Richards et al., 2016; Draşovean et al., 2017; Card et al., 2018). 

The limited number of radiocarbon dates for PPN settlements and the 
paucity of information regarding context, sample material and pre- 
treatment makes Bayesian chronological analyses of PPN settlements 
rare. These include one study by Edwards et al. (2004), who used 
Bayesian modelling to estimate start and end dates for PPNA Zahrat 
Adh-Dhra’ 2, Jordan, from nine accelerator mass spectrometry (AMS) 
dates acquired from wood charcoal fragments distributed across the full 
extent of the stratigraphic sequence. More recently, Wicks et al. (2016) 
employed Bayesian modelling using 46 AMS dates from PPNA WF16, 
Jordan, to establish site and structure (termed ‘object’) boundary dates, 
incorporating an offset command to account for the effect of old wood. 
This offset was calculated from the difference between ages derived 
from mature and juvenile wood charcoal samples (Wicks et al., 2016, 
13–14). The model produced a site span of approximately 1590 years (c. 
11840 to 10240 cal BP), and indicated intense activity for approximately 
350 years centred on c. 11250 cal BP. Despite the relatively large 
number of dates modelled for a PPN site, the chronological resolution of 
models for individual structures was not well constrained due to the 
limited number of AMS dates per structure, plateaus in the calibration 
curve, stratigraphic inversion of dates probably resulting from 
post-depositional processes and old wood effects. These rare examples 
demonstrate the potential for using Bayesian chronological modelling to 
estimate PPN phase length and building use-life. The relatively large 
number of radiocarbon dates (n ¼ 23) available for Beidha compared to 
other PPN sites enables exploration of this technique here (Benz, 2018). 

3. Methodology 

The number of contemporaneous structures per phase was calculated 
from building use-life, phase length and the total number of buildings 
identified in the phase (using information available from published site 
plans, Harris matrices and chronostratigraphic interpretations) 
following the equation utilised by Varien et al. (2007), detailed above. 
This equation was later simplified to produce a structural contempora
neity value calculated thus: 
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Site-specific estimates of building use-life and phase length were 
derived from a combination of the following:  

i. Assessment of chronological information relating to phases and 
the construction, use and abandonment of each structure from 
archaeological reports (i.e. prior beliefs);  

ii. Assessment of existing building use-life estimates for structures 
comparable to those from the PPN, as derived from archaeolog
ical, ethnographic and experimental research (i.e. prior beliefs); 
and, 

iii. Assessment of span estimates derived from Bayesian chronolog
ical modelling of radiocarbon dates (i.e. posterior density 
estimates). 

The first two assessment types form the prior beliefs that under
pinned the Bayesian chronological models. The final phase length and 
building use-life estimates employed in the structural contemporaneity 
equations were predominantly based on posterior density span esti
mates. Where these were inconclusive or unrealistic (i.e. too restrictive 
or excessive), more weight was given to the prior beliefs. 

The following sections outline the exact process taken for deter
mining prior beliefs regarding phasing, phase length and building use- 
life, using Beidha as a case study. This is followed by an outline of the 
process for Bayesian chronological modelling and the application of this 
method to Beidha. 

3.1. Establishing prior beliefs regarding phasing, phase length and building 
use-life at Beidha 

Chronological information relating to Beidha was predominantly 
sourced from Byrd’s (2005) detailed assessment of the archaeological 
features uncovered by Kirkbride (1966). The original phasing model for 
Beidha, proposed by Byrd (2005), was founded on assessment of the 
structural features, primarily the construction, occupation and aban
donment relationships. Three main phases were identified: A, B and C 
(Byrd, 2005, 15) (Fig. 2). Phases A and C were divided into two sub
phases each by Byrd (A1 and A2; C1 and C2), with detailed site plans 
provided for these (Byrd, 2005, 180–196). Based on evidence for earlier 
and later Phase B remains, in the current investigation, Phase B was split 
into Subphases B1 and B2, with a Subphase B2 site plan constructed 
following close scrutiny of published chronostratigraphic information. 
Based on the archaeological evidence and analysis of conventional 

Fig. 2. Beidha Neolithic building sequence across Phases A, B and C (Byrd, 2005, 178).  

Percentage ​ of ​ buildings ​ in ​ contemporaneous ​ use ¼
average ​ building ​ use � life

phase ​ length
� 100   
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radiocarbon dates derived from radiometric assays obtained during the 
1960s (Barker and Mackey, 1968, 4; Stuckenrath and Lawn, 1969, 152; 
Tauber, 1968, 323–324; Vogel and Waterbolk, 1972, 49–50), Byrd 
(2005, 27) proposed that Phase A began c. 7000 BC and probably ended 
c. 6700 BC. Unfortunately, several divergent dates, probably resulting 
from post-depositional disturbance, prevented establishment of Phase B 
or C boundary dates. Instead, proposing that the final subphase (C2) may 
have ended in the Late PPNB, Byrd suggested a span of 150–250 years 
each for Phases B and C. Byrd did not propose subphase spans. 

To establish building use-life estimates, results of previous studies 
that produced use-life estimates for structures comparable to those 
investigated in this research were assessed (Table 1). The two main 
structural indicators of building use-life are construction material and 
degree of maintenance. In this research, a building use-life range was 
suggested for nine building types categorised by material (i.e. earthen; 
earthen/stone; stone) and maintenance (i.e. none/minimal; moderate: 
some remodelling, replastering, etc.; considerable: multiple remodelling 
or reflooring episodes, annexes, blocked entrances, etc.). For each 
building assessed in this investigation, archaeological evidence for 
construction material and maintenance was examined in order to assign 
a suggested building use-life range. 

At Beidha, construction during Phases A and B included freestanding 
and interconnected, curvilinear structures with earthen roofing material 
and walls of earthen and stone material. Phase C construction included 
agglomerated, rectilinear and often two-storey, predominantly stone 
structures (Byrd, 2005, 28). Structures across all phases generally 
demonstrate a moderate to considerable amount of maintenance and 
remodelling, indicating deliberate attempts to extend the building 
use-life (Table 2). A summary of suggested subphase lengths and 
building use-life estimates based on Byrd’s analysis and prior archaeo
logical, ethnographic and experimental research is provided in Table 3. 

3.2. Bayesian chronological modelling of radiocarbon dates 

Bayesian chronological modelling of radiocarbon dates was con
ducted to determine precise start, transition and end dates, as well as 
span estimates for subphases and building use-life. Models were creating 
using OxCal v.4.2.4 (Bronk Ramsey, 1995, 2001; 2005, 2009; Bayliss 
et al., 2011) and calibrated using IntCal 13 (Reimer et al., 2013). Dates 
were statistically assessed to identify outliers for removal prior to 
analysis. Chi squared tests (χ2; Ward and Wilson, 1978) were conducted 
on sets of radiocarbon dates ordered by phase/subphase in descending 

chronological order of the earliest calibrated date ranges. Resulting ‘T’ 
values higher than the threshold based on the 5% confidence limit 
(given in brackets) indicated the presence of stratigraphically divergent 
dates. These dates were subsequently identified by Bayesian chrono
logical modelling of the lower and upper occupation boundaries (i.e. 
‘start’ and ‘end’ dates) based on the same ordering of dates. 

Modelled date ranges are given as posterior density estimates using 
the 2σ (95.4%) probability ranges and are indicated using italics (Mill
ard, 2014, 557). Convergence values (C) greater than 95% indicate 
model stability. Model index agreement values below the agreement 

Table 1 
Suggested building use-life estimates based on prior archaeological, ethnographic and experimental research.  

Prior archaeological, ethnographic and experimental research 

Predominant construction 
material 

Maintenance Building use-life 
(years) 

References 

Earthen/light organic Without maintenance 6–15 Cameron (1990); Reynolds (1995); Diehl (2001); Ortman et al. (2007);  
Arnoldussen (2008); Varien (2012) With maintenance 15–45 

<50 Kuijt and Finlayson (2009) 
Stone/mud brick With maintenance PPNB-PPNC ‘Ain 

Ghazal 
�100 Rollefson and K€ohler-Rollefson (1989) 

Ancient Southwest 
USA 

60 Ahlstrom (1985) 

With considerable 
maintenance 

Neolithic 
Çatalh€oyük 

50–100 Hodder and Cessford (2004); Cessford (2005); Matthews (2005)  

Suggested building use-life (years) 

Predominant construction 
material 

Degree of maintenance 

None/Minimal Moderate Considerable 

Earthen 6–15 15–35 35–50 
Earthen/stone 10-35a 35–55 55–75 
Stone 20–50 50–75 75–100  

a Based on the mid-point of estimates for earthen and stone structures, with an average span of 20 years added successively for earthen/stone structures with 
moderate and considerable maintenance based on the average length of spans otherwise suggested. 

Table 2 
Beidha PPN building information (Byrd, 2005) and building use-life suggested in 
this investigation.  

Subphase/ 
Building 

Predominant 
construction material* 

Degree of maintenance Suggested 
use-life 
(years) 

A1 18 Earthen/stone: 
Wooden posts and stone 
cobble/block walls; large 
central post supporting 
beam, clay, read and large 
stone slab superstructure 

Considerable: 
Plastered walls; two floor 
levels with intervening fill 
deposits; considerable 
remodelling: blocked 
entrances, addition of 
annexes 

55–75 

A1 48 Earthen/stone: 
Similar to Building 18 

Considerable: 
Plastered walls and floor; 
Building 50 added as 
annex (modified several 
times) 

55–75 

A2 54 Earthen/stone: 
Similar to Building 18 

Moderate-considerable: 
Plastered walls, floor and 
ceiling; multiple plastering 
episodes; possible earlier 
floor layer; remodelling: 
blocked entrance/s 

35–75 

A2 74 Earthen/stone: 
Similar to Building 18 

Moderate: 
Plastered floor 

35–55 

B2 26 Earthen/stone: 
Similar to Building 18 plus 
mudbrick upper walls 

Moderate: 
Plastered walls, floor and 
ceiling; remodelling 
episode 

35–55 

C2 8 Stone: 
Stone block/slab/rubble 
fill walls; wooden posts for 
additional support of 
heavy superstructure 

Considerable: 
Plastered floor; at least 
four major re-modelling 
and re-plastering episodes 

75–100  
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threshold (A � 60%) highlight statistical outliers, prompting assessment 
of the physical and spatial characteristics of the dated material to 
determine whether these represent residual or intrusive samples and 
should, thus, be removed from the datasets. The refined date datasets 
were assessed to determine appropriate model construction (Table 4). A 
combination of ‘phase’ and ‘sequence’ models were applied, with gap 
periods and building phases included where necessary. 

Of the 23 radiocarbon dates associated with the PPN occupation of 
Beidha (Benz, 2018), four have insufficient contextual information for 
inclusion in this analysis (Table 5). Chi-squared testing on the remaining 
19 dates indicated that at least one date does not conform to the strat
igraphic constraints (df ¼ 18 T ¼ 60.4 (5% 28.9) [fail]) (Supplemental 
material: Section A, Table 1). Divergent dates were identified via 
Bayesian chronological modelling of the lower and upper occupation 
boundaries (Supplemental material: Section A, Table 2). Convergence 

values indicated that all models were stable (C > 95%). Model index 
agreement values indicated five statistical outliers (A � 60%). Removal 
of these, following assessment of the dated material that suggested these 
were probably residual or intrusive samples, resulted in acceptable 
agreement index values (A > 60%) in a subsequent run of the model. 
Chi-squared testing confirmed the stratigraphic coherence of the refined 
dataset of 14 dates (df ¼ 13 T ¼ 6.7 (5% 22.4) [pass]). Date AA13036 
was later excluded as it was not sourced from a building. A refined 
dataset of 13 dates was used in the final chronological model (Fig. 3; 
Table 6). 

To determine the relationship between Subphases A1, A2, B2 and C2, 
and hence the type of model to construct, Byrd (2005) detailed analysis 
of the stratigraphic relationships between subphases at Beidha was 
assessed. A contiguous relationship was perceived between Subphases 
A1 and A2, while the relationship between Subphases A2, B2 and C2 was 
classed as sequential due to their separation by Subphases B1 and C1, 
which were not directly assessed due to an absence of radiocarbon dates. 
The model was thus constructed to produce a ‘transition’ date between 
Subphases A1 and A2, and estimated ‘end’ and ‘start’ dates between 
Subphases A2, B2 and C2, to allow for intermittent subphases (Supple
mentary material: Section A, Text file 1). Based on the archaeological 
evidence for Subphases B1 and C1, and the suggested building use-lives 
previously established for similar structures, a potential ‘gap’ period of 
at least 30 years was included in the model for Subphase B1 and at least 
70 years for Subphase C1 (Supplemental material: Section A, Table 3). 

‘Phase’ subsets were constructed for each building to estimate 
building use-life. Because more than one structure occurred within 
Subphases A1 (Buildings 18 and 48) and A2 (Buildings 54 and 74), in
dividual ‘building phases’ were grouped within overall ‘subphase 
building phases’ to allow for potential overlap between the dates of 
these structures. The span function was used to calculate the duration of 
the total occupation, and of each subphase and building. 

Results based on 1σ (68.3%) and 2σ (95.4%) probability ranges were 
initially assessed. Based on the prior chronostratigraphic information 
and the considerable developments that occurred throughout the PPN 
occupation at Beidha, the 1σ probability ranges were considered too 
restrictive and unrealistic. The broader span estimates based on the 
upper end of the 2σ range were considered most valid and are used here 
to reconstruct final span estimates for inclusion in the structural 
contemporaneity equation. 

4. Span estimates and contemporaneity values for PPN Beidha 

4.1. Modelled span estimates 

The results of this study have produced some interesting temporal 
parameters that can add to the important research conducted by Byrd 
(2005). The model indicates that the PPN occupation of Beidha began 
sometime between 8220 and 7810 cal BC, during the Middle PPNB 
(8600-7400 cal BC), terminating approximately 600 years later some
time between 7810 and 7460 cal BC, at the end of the Middle PPNB or 
perhaps at the beginning of the Late PPNB (7400-6700 cal BC) (Fig. 3; 
Table 6; Supplemental material: Section B, Figs. 1 and 2). The final 
occupation span produced in this study (~600 years) compares well 
with Byrd (2005) suggested span or 500–800 years and to the commonly 
published span estimate of 600 years for the PPN occupation of Beidha 
(Gebel, 1987, 346; Rollefson, 1989, 169). However, the majority of 
radiocarbon samples used for modelling were sourced from structural 
elements and it is highly probable that earlier start and end dates have 
resulted from old wood effects (Wicks et al., 2016). It is, therefore, likely 
that the Phase C settlement did indeed extend into the Late PPNB, as 
Byrd (2005) suggests. 

Modelled dates indicate that Subphase A1 spanned around 140 
years, terminating sometime between 8190 and 7770 cal BC, with 
Subphase A2 spanning around 80 years and terminating sometime be
tween 8160 and 7740 cal BC. The modelled span of 220 years for Phase 

Table 3 
Prior beliefs regarding phasing, phase length and building use-life at Beidha.  

Phase length Building use-life 

Phase Suggested 
length 
(years) ( 
Byrd, 
2005) 

Subphase: 
Building 

Longevity 
statement ( 
Byrd, 2005) 

Construction 
and 
maintenancea 

Suggested 
use-life 
(years)b 

A 300 A1: 18 Considerable E/S, C 55–75 
A1: 48 Considerable E/S, C 55–75 
A2: 54 Reasonable E/S, Mod-C 35–75 
A2: 74 Reasonable E/S, Mod 35–55 

B 150–250 B2: 26 – E/S, Mod 35–55 
C 150–250 C2: 8 Considerable S, C 75–100  

a Predominant construction material - E: Earthen, S: Stone; Maintenance - 
Mod: Moderate, C: Considerable. 

b Based on use-life estimates for comparable structures (see Table 1 for 
references). 

Table 4 
OxCal commands used in the Bayesian chronological models.  

OxCal 
command 

Operational definition (Bronk 
Ramsey, 2005) 

Use in model 

Boundary “To define which events in a 
model are from well-defined 
periods and to estimate the 
boundaries of these periods.” 

To delineate the beginning and end 
of a phase but is not directly dated 

Phases “To group events between 
which there are no known 
relationships but which may 
all share some relationship.” 

For datasets with:  
- unclear phasing or subphasing 

information  
- unknown internal ordering of 

dates  
- dates that are not in 

chronostratigraphic order 
Sequences “Allows the information that 

one event precedes another to 
be incorporated into the 
resultant probability 
distributions.” 

For datasets with:  
- clear phasing and subphasing 

information  
- dates that conform to the 

stratigraphic sequence 
Gaps “To ensure a gap between 

events in a sequence” 
Inserted where a phase or subphase 
has not been directly dated to allow 
for a temporal break between 
known and dated phases/subphases 

Building 
phases  

Where more than one structure 
occurs within a phase/subphase, 
individual ‘building phases’ can be 
grouped within overall ‘phase/ 
subphase building phases’ to allow 
for potential overlap between the 
dates of the structures within these 
phases 

Span “Group function or query 
which gives the span of 
events” 

To determine the duration of 
occupation, a phase, subphase or 
structure  
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A is somewhat lower than Byrd’s (2005, 27) estimate of 300 years. The 
model allowed for a ‘gap’ of at least 30 years between the end of Sub
phase A2 and start of Subphase B2 to account for Subphase B1. For 
Subphase B2, the model indicated a span of 50 years, beginning some
time between 8080 and 7680 cal BC and terminating between 7920 and 
7670 cal BC. This produces a modelled span of 80 years or more for 
Phase B, potentially far more restricted than the span proposed by Byrd 
(2005) (i.e. 150–250 years). The model allowed a further ‘gap’ of at least 
70 years between Subphases B2 and C2 to account for Subphase C1. 
Modelled dates indicate that Subphase C2 began sometime between 
7810 and 7580 cal BC and terminated sometime between 7810 and 
7460 cal BC, spanning up to 80 years. The modelled Phase C span of 150 

years or more compares well with the range proposed by Byrd (2005) (i. 
e. 150–250 years). 

The model produced building use-life estimates of 90 and 120 years 
for Subphase A1 Buildings 18 and 48, respectively; 60 years each for 
Subphase A2 Buildings 54 and 74; 50 years for Subphase B2 Building 26; 
and 80 years for Subphase C2 Building 8. Building use-life estimates for 
Subphases A2, B2 and C2 are comparable to values derived for structures 
of similar construction and degree of maintenance from previous 
archaeological, ethnographic and experimental research (see Table 1). 
However, building use-life values for Subphase A1 are rather high. This 
probably partly reflects earlier than expected start dates resulting from 
old wood effects (Wicks et al., 2016). If adjustments were made for old 

Table 5 
Information relating to the Beidha PPN radiocarbon dates (n dates ¼ 23) and justification for exclusion from analysis. Dates in descending chronological order of the 
earliest unmodelled 2σ calibrated range BC.  

Lab 
reference 

Context Materiala Radiocarbon date Justification for exclusion 

Subphase: Location Conventional14C 
age (BP)b 

Unmodelled 2σ 
cal range (BC) 

P1380 A2 Building 74: central 
post 

CH: Pistacia 9128 � 103 8640–7990 Poor agreement; considerably earlier than other PPN dates despite 
being from Subphase A2; one of three dates (including GrN5136 and 
K1083) derived from the same object - considerably earlier than the 
other two dates; potential old wood effect: potential timber re-use or 
tree potentially felled (or wood collected) years before use. 

K1086 A1 Building 18: possible 
roof beam 

CH: Quercus 8940 � 160 8470–7600  

beta 
235216  

3.35 m; Neolithic layer 
right above sterile sand 

CH 9110 � 50 8460–8240 Insufficient contextual information 

BM111 B2 Building 26: beam roof 
fall directly above floor 

CH: ? 8790 � 200 8430–7490  

AA1461  – CH 8390 � 390 8430–6470 Insufficient contextual information 
GrN5062 C2 Building 8: possible 

wooden lid of stone- 
lined pit 

CH: Juniper 9030 � 50 8320–7990 Poor agreement; one of the earlier PPN dates despite being from 
Subphase C2 (last PPN phase); unclear nature of material (possible 
lid); potential old wood effect due to long-living species, potential 
timber re-use or tree potentially felled (or wood collected) years 
before use. 

P1382 C2 Building 8: from near 
top of stone-lined pit 

CH: ? 8892 � 115 8290–7670 Below agreement threshold (A < 60%) in subphased sequence model 
(A ¼ 29.5%); date retained as one of only two potentially suitable 
dates for estimating span of Subphase C2 and Building 8 

K1410 A1 Building 48: roof beam CH: Juniper 8850 � 150 8290–7590  
K1411 A1 Building 48: wall post CH: Quercus 8770 � 150 8260–7580  
K1084 B2 Building 26: beam roof 

fall directly above floor 
CH: Juniper 8730 � 160 8250–7530  

K1412 A1 Building 48: central 
post 

CH: Pistacia 8720 � 150 8240–7540  

K1083 A2 Building 74: central 
post 

CH: Pistacia 8640 � 160 8240–7370  

AA13036 A1 Outdoor area: hearth 5 S: Pistacia 8830 � 70 8230–7680 Dated material not sourced from a building 
K1082 A2 Building 54: large 

basket of carbonised 
pistachios 

S: Pistacia 8710 � 130 8220–7560  

GrN5136 A2 Building 74: central 
post 

CH: Pistacia 8810 � 50 8210–7720  

P1381 A1 Building 18: burnt fill CH: ? 8765 � 102 8210–7590  
AA13038  Non-phased, Hearth A Legumes 8765 � 80 8200–7600 Insufficient contextual information 
P1378 A2 Building 54: central 

post 
CH: ? 8715 � 100 8200–7580  

K1085 C2 Building 8: from near 
top of stone-lined pit 

CH: Juniper 8550 � 160 8200–7180  

AA14109 A1 Building 49: upper 
floor 

B: Ovicaprid 
femur 

8646 � 69 7940–7550 Poor agreement; one of the later PPN dates despite being from 
Subphase A1; the only date sourced from bone; the only sample (of 7 
submitted) to retain sufficient amino acids for dating; carbon 
contamination often causes younger dates in bone; possibly intrusive 
disarticulated bone. 

P1379 A2 Building 54: large 
basket of carbonised 
pistachios 

S: Pistacia 8546 � 100 7940–7350 Poor agreement; two of the latest PPN dates despite being from 
Subphase A1; date considerably later than K1082 sourced from the 
same material. 

GrN5063 A2 Building 54: large 
basket of carbonised 
pistachios 

S: Pistacia 8640 � 50 7790–7570 

AA13037  Non-phased, Hearth B Legumes 7720 � 130 7040–6360 Insufficient contextual information  

a CH: Charcoal; S: Seed/nut; B: Bone. 
b Dates derived from radiometric assays (Barker and Mackey, 1968, 4; Stuckenrath and Lawn, 1969, 152; Tauber, 1968, 323–324; Vogel and Waterbolk, 1972, 

49–50). 
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wood effects, it is expected that the relative difference between the 
Subphase A1 span and the average Subphase A1 building use-life would 
remain relatively constant. Therefore, the current values are considered 
suitable for inclusion in the structural contemporaneity equation. 

4.2. Final span estimates and structural contemporaneity values 

The final subphase length and building use-life estimates employed 
in the structural contemporaneity equation are predominantly based on 
the maximum span values derived from chronological modelling 
(Tables 7–10). Modelled subphase length and average building use-life 
values for Subphases A1 (140 years/100 years) and A2 (80 years/60 

years) are considered suitable. However, Subphases B2 and C2 include 
dates from one structure only, producing identical modelled estimates 
for subphase length and building use-life. For these subphases, the 
modelled span estimates are adjusted based on the prior beliefs. 

For Subphase B2 and associated Building 26, the modelled spans 
were 50 years. Evidence exists for reuse of the western wall of Building 
26 in the construction of a later Subphase B2 structure (Byrd, 2005, 51). 
Therefore, if the span estimate is considered accurate for Building 26, as 
seems reasonable based on research of comparable structures (see 
Table 1), Subphase B2 must have spanned longer than 50 years. Byrd’s 
(2005, 84) assessment of relative contemporaneity suggests that in the 
north-eastern corner of the excavated area, only two or three of the six 

Fig. 3. Modelled boundary (start/transition/end) dates for PPN Beidha occupation and subphases based on posterior density estimates of calibrated dates (BC) (n 
dates ¼ 13). Date with poor agreement highlighted in grey. 
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structures may have been occupied at the same time (this equates to 
33.3–50% structural contemporaneity), whilst in the central cluster, all 
structures may have been occupied contemporaneously. This suggests 
that an average contemporaneity value of around 70% could be applied 
to this subphase. If the Building 26 use-life estimate remains at 50 years, 
this would produce a Subphase B2 span of around 70 years. A subphase 
length of 70 years and an average building use-life of 50 years are, 
therefore, suggested for Subphase B2. 

For Subphase C2 and associated Building 8, the modelled spans were 
80 years. The construction of Building 8 represents the beginning of 
Subphase C2, with abandonment of the structure probably occurring 
slightly prior to site abandonment (Byrd, 2005, 178). If this use-life 
estimate is considered reasonable for Building 8, as is suggested by 
research of comparable structures (see Tale 1), Subphase C2 must have 
spanned marginally longer than 80 years, possibly 90 years or more. 
However, the building use-life estimate for Subphase C2 Building 8 (80 

years), which was considerably maintained, is not representative of 
many Subphase C2 buildings that demonstrate lower degrees of main
tenance. Research into use-life of predominantly stone structures with 
moderate to considerable maintenance indicates a potential use-life of 
50–100 years (see Table 1). Building 8 demonstrates a longer duration of 
use compared to other Subphase C2 structures, which were gradually 
abandoned throughout the subphase (Byrd, 2005, 93–94). A high degree 
of structural contemporaneity appears to have occurred at least in the 
earlier stages of Subphase C2, with many Subphase C1 buildings 
continuing in use alongside Subphase C2 structures built early in the 
subphase in relatively rapid succession (Byrd, 2005, 93). To estimate 
population at the height of Subphase C2 occupation, the average 
building use-life must reflect this high degree of contemporaneity, 
whilst being less than the span estimate derived for Building 8 (i.e. 80 
years). Therefore, an average building use-life of 70 years is suggested 
for Subphase C2. 

The final subphase length and average building use-life estimates 
produced structural contemporaneity values of 70% for Subphases A1 
and B2, 75% for Subphase A2 and 78% for Subphase C2. The estimate 
for Subphase C2 is comparable to the conjectural 80% contemporaneity 
value applied by Rollefson and K€ohler-Rollefson (1989) to the late PPN 
settlement of ‘Ain Ghazal, which contained similar architectural features 
to Beidha Phase C. 

5. Implications of contemporaneity adjustments for 
demographic reconstructions 

Bayesian chronological models were similarly constructed for a 
further four central and southern Levantine PPN settlements: Netiv 
Hagdud, Ghwair I, ‘Ain Abu Nekheileh and Basta (see section in Sup
plementary material: Section C for data and analysis). Contemporaneity 
values based on a combination of prior beliefs and the results of 
modelling range from approximately 60% (Netiv Hagdud and Basta) to 
78% (Ghwair I and Beidha Subphase C2) (Table 11). The highest values 
were derived for sites that demonstrate similar characteristics to late 
PPN ‘Ain Ghazal and compare well with Rollefson and 
K€ohler-Rollefson’s (1989) proposed value of 80%. The reasonably 
limited range indicates that, in the absence of site-specific analysis, an 
average structural contemporaneity value of around 70% may be suit
able for central and southern Levantine PPN settlements. 

Calculating structural contemporaneity formed an important part of 

Table 6 
Modelled boundary (start/end) dates for Beidha PPN occupation and subphases, 
and span estimates based on posterior density estimates of calibrated dates (BC) 
by order of subphase and building in descending chronological order. Date with 
poor agreement highlighted in grey.  

Building Lab 
reference 

Unmodelled 2σ 
cal range (BC) 

Posterior density 
estimate 2σ cal 
range (BC) 

Indices 
Amodel ¼ 96.5 
Aoverall ¼ 95.6 

A C 

Start Subphase A1 8220–7810  96.5 
18 K1086 8470–7600 8200–7790 106.7 99.3 

P1381 8210–7590 8200–7790 104.7 99.3 
Span Building 18 0–90  99.9 

48 K1410 8290–7590 8200–7790 114.6 99.3 
K1411 8260–7580 8200–7790 110.1 99.3 
K1412 8240–7540 8200–7790 99.9 99.3 
Span Building 48 0–120  99.8 

Span Subphase A1 0–140  99.7 
Transition Subphase A1/A2 8190–7770  99.5 
54 K1082 8220–7560 8170–7750 102.3 99.7 

P1378 8200–7580 8170–7750 91.1 99.6 
Span Building 54 0–60  100 

74 K1083 8240–7370 8170–7750 92.4 99.6 
GrN5136 8210–7720 8170–7760 125.8 99.7 
Span Building 74 0–60  100 

Span Subphase A2 0–80  99.9 
End Subphase A2 8160–7740  99.7 
Start Subphase B2 8080–7680  99.7 
26 BM111 8430–7490 7950–7680 119 99.8 

K1084 8250–7530 7950–7680 120.4 99.8 
Span Building 26 0–50  100 

Span Subphase B2 0–50  100 
End Subphase B2 7920–7670  99.7 
Start Subphase C2 7810–7580  99.7 
8 P1382 8290–7670 7800–7580 29.5 99.6 

K1085 8200–7180 7810–7530 131.7 99.6 
Span Building 8 0–80  100 

Span Subphase C2 0–80  100 
End Subphase C2 7810–7460  97.4 
Span Beidha 150–600  97.4  

Table 7 
Occupation span of PPN Beidha.  

Occupation span 

Prior beliefs (Byrd, 2005) Bayesian chronological modellingb Final span 
(years) 

Span 
(years) 

Start datea Span 
(years) 

Start date End date 

500–800 8470–7600 600 8220–7810 7810–7460 ~600  

a The earliest radiocarbon date after 7,000 BCE as suggested by Byrd, (2005) 
(6,990 � 160 BCE), converted to cal BC in OxCal v.4.2.4 (Bronk Ramsey, 2005, 
2009). 

b Posterior density estimates (cal BC) (95.4% probability). 

Table 8 
Phase and subphase length at PPN Beidha.  

Phase/subphase length (Subphases under investigation highlighted in grey) 

Phase/ 
Subphase 

Prior 
beliefs ( 
Byrd, 
2005) 

Bayesian chronological modelling Final spans 
(years) 

Span 
(years) 

Span 
(years) 

Start date End date 

A  300 220    
A1 140 8220–7810 8190–7770 140 
A2 80 8190–7770 8160–7740 80 

B  150–250 �80    
B1 (�30)    
B2 50 8080–7680 7920–7670 70 (increased 

following 
consideration of 
B2 Building 26 
span estimate) 

C  150–250 �150    
C1 (�70)    
C2 80 7810–7580 7810–7460 90 (increased 

following 
consideration of 
C2 Building 8 
span estimate)  
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an overarching project aimed at reconstructing population estimates for 
all central and southern Levantine PPN settlements. Various methods 
were explored for estimating population size (Birch-Chapman, 2017). 
However, the most viable method was found to be the newly developed 
‘storage provisions formulae (SPF)’. These formulae were developed 
based on Hemsley’s (2008) research into the affordance of space within 
dwellings at PPN sites. The formulae correlate available residential floor 
area (A) to the mid-point of the maximum numbers of 1.65 m and 1.83 m 
tall occupants lying in an extended position, factoring in access routes, 

hearths and activity zones, and three potential amounts of storage: none, 
moderate and high (Table 12). The potential amount of storage (both 
permanent and ephemeral) within the residential floor area was derived 
from an assessment of the archaeological remains, predominant sub
sistence strategy and the common relationship between storage facilities 
and residential area per period. 

The formulae were used to calculate total (adult) population from 
the total contemporaneous residential floor area (Method 1), and the 
number of people (i.e. adults) per dwelling from the mean residential 
floor area of complete dwellings and a total contemporaneous dwelling 
number estimate (Method 2). The mean of Methods 1 and 2 were used to 
form the final population estimate range. 

Comparison of population estimates before and after adjustments for 
structural contemporaneity demonstrates the impact on final estimate 
ranges. It also highlights the potential impact on subsequent in
terpretations of individual sites and PPN periods more broadly, partic
ularly when assessing the links between demographic characteristics 
and changes in subsistence practices, strategies aimed at reducing scalar 
stress and promoting social cohesion, and developments in social 
complexity, such as increasing independence of dwelling units and 
development of social hierarchies (Birch-Chapman, 2017). 

Whilst contemporaneity adjustments have relatively minor impact 
on population estimates for smaller settlements (e.g. Beidha or ‘Ain Abu 
Nekheileh), they can have considerable impact on estimates for larger 
settlements. The largest settlement assessed here is the Late PPNB set
tlement at Basta (~13 ha). Excavations across multiple areas exposed 
interlocking, multi- and split-level structures on artificially constructed 
terraces supported by massive retaining walls (Gebel et al., 2006; Nis
sen, 2006). In this investigation the population of Basta is estimated at 
approximately 5700–7900 people, based on around 60% structural 
contemporaneity. This estimate exceeds the pre-existing estimate range 
for this site, which was based on site extents of 10–14 ha at 90 to 294 
people per hectare (P ¼ 900–4116; Kuijt, 2000, 2008), and 9.8 ha at 
35 m2–116.3 m2 site area per person (P ¼ 839–2789; Campbell, 2009). 
This is not unexpected given that the density values used in the 
pre-existing estimates have been demonstrated to be insufficient for 
estimating population size of central and southern Levantine PPN set
tlements (Birch-Chapman et al., 2017; Birch-Chapman, 2017). Without 
adjusting for structural contemporaneity in this investigation, the pop
ulation of Basta would have been estimated at approximately 
9400–13000 people, exceeding the current population size estimate for 
the largest known Neolithic settlement: Çatalh€oyük (P ¼ 5000–8000; c. 
14 ha) (Matthews, 1996; Cessford, 2005; Hodder, 2006; Düring, 2007). 
Failing to adjust for contemporaneity would, therefore, have consider
able impact on any subsequent interpretations of Basta and the LPPNB 
more broadly. 

Table 9 
Building use life at PPN Beidha.  

Building use-life 

Subphase/Building Prior beliefs Bayesian chronological modelling Final span (years) 

Byrd (2005) Archaeological, ethnographic, experimental 
research 

Longevity statement Construction, maintenancea Span (years) Span (years) 

A1 Considerable    100 
18   E/S, C 55–75 90 
48   E/S, C 55–75 120 

A2 Reasonable E/S, Mod-C 35–75  60 
54   E/S, Mod-C 35–75 60 
74   E/S, Mod 35–55 60 

B2 Short (NE)/Long (Centre) E/S, Mod 35–55  50 
26   E/S, Mod 35–55 50 

C2 Considerable S, Mod-C 50–100  70 
8 Abandoned shortly before site 

abandonment 
S, C 75–100 80  

a Construction - E: Earthen, S: Stone; Maintenance - Mod: Moderate, C: Considerable (see Table 1 for references). 

Table 10 
Structural contemporaneity values for Subphases A1, A2, B2 and C2 at PPN 
Beidha  

Structural contemporaneity values 

Subphase Subphase 
length (years) 

Average 
building use- 
life (years) 

Structural contemporaneity (%) 
(Building use-life � Subphase 
length � 100) 

A1 140 100 71.43 
A2 80 60 75 
B2 70 50 71.43 
C2 90 70 77.78  

Table 11 
Structural contemporaneity values and comparison of population estimates 
prior to and following contemporaneity adjustment.  

Site Structural contemporaneity 
(%) 

Population estimate before 
and after contemporaneity 
adjustment 

Before After 

Netiv Hagdud 60 360–445 215–270 
Beidha (A1) 71.43 80–120 55–85 
Beidha (A2) 75 105–155 80–115 
Beidha (B2) 71.43 105–155 75–110 
Ghwair I 77.78 515–785 400–610 
‘Ain Abu 

Nekheileh 
65 130–225 85–150 

Beidha (C2) 77.78 180–275 140–215 
Basta 60.47 9415–13000 5695–7855  

Table 12 
Storage provisions formulae (based on data from Hemsley 2008).  

Annual personal storage within the residential floor area Formulaa 

None P ¼ 0.3944A - 0.375 
Moderate (0.46 m3 per person) P ¼ 0.2477A þ 0.0339 
Maximum (2 � 0.46 m3 per person) P ¼ 0.1903A þ 0.3976  

a P: Population; A: Residential floor area. 
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6. Limitations of this research and future research opportunities 

Whilst this research highlights the potential for using Bayesian 
chronological modelling to estimate contemporaneity values, there are 
several issues that must be addressed prior to the regular adoption of this 
method. First, extrapolating data from the excavated areas of sites can 
be problematic as excavation often centres on areas of dense archaeo
logical material, usually structural remains that are poorly preserved 
and complex, and not necessarily representative of the entire settlement. 
In this research, the percentage of the estimated total site extent that 
contained areas with structural features that could be assessed ranged 
from 0.3% at Basta to 31.92% at Beidha Subphase C2 (Beidha A1: 
13.22%, A2: 14.68%, B2: 30%; Netiv Hagdud: 7.12%; Ghwair I: 4.41%; 
‘Ain Abu Nekheileh: 11.28%). Accounting for structural contempora
neity partly counteracts issues associated with deriving population es
timates from these assessable areas, though additional methods are 
required for addressing representativeness. 

Second, the quantity of radiocarbon dates for PPN settlements is 
often inadequate for Bayesian analysis. Only a handful of dates exist for 
most PPN central and southern Levantine sites, with the largest collec
tions sourced from PPNA WF16 (n dates ¼ 46) (Wicks et al., 2016) and 
PPNA/B Jericho (n dates ¼ 45) (Benz, 2013). For the PPN settlement at 
Beidha, only 13 of the 23 dates available were considered suitable for 
use in Bayesian chronological modelling, with only two to three dates 
available for each subphase and structure. Such limited samples may 
produce misleading or ineffectual results. In this case, the modelled 
dates are similar to the unmodelled calibrated dates. Ideally, the method 
should be applied to a larger dataset, with dates collected from targeted 
stratigraphic areas with the greatest potential to reveal start, end and 
transition dates for short-term episodes, such as phase length and 
building use-life. 

Third, the precision of dates can affect the resolution of chronolog
ical models. Precision refers to the error ranges attached to radiocarbon 
dates (Hoggarth et al., 2016). Greater precision allows events to be dated 
more accurately. Ideally, only radiocarbon dates with error ranges of 
below 100 years, and preferably 60 years should be used in models as 
larger errors “blur probability distributions” and lead to erroneous 
chronological interpretations (Kennett et al., 2008, E107). Unfortu
nately, the majority of the dates available for Beidha have error ranges 
that are close to or exceed 100. This is partly due to the use of radio
metric dating, which typically produces dates with lower precision than 
those derived from more recent and now commonly used Accelerator 
Mass Spectrometry dating. 

Fourth, the majority of radiocarbon samples are sourced from con
struction elements, including wooden posts often from tree species that 
live for several centuries. Old wood effects may result from both the age 
of the mature wood and from the use and re-use of wood from trees that 
may have been felled for a considerable period (Wicks et al., 2016). 
Unfortunately, limited samples per phase and structure prevented 
calculation of old wood effects in this analysis. To avoid these effects, 
samples should preferably derive from short-lived plant materials, such 
as seeds and nuts (although these are more susceptible to 
post-depositional admixture), or from wood charcoal from twigs and 
juvenile branches (Bayliss, 2007; Wicks et al., 2016). 

A final suggestion stems from the limited information available 
regarding context, sample material and pre-treatment within publica
tions and radiocarbon date databases. Context forms an essential part of 
the prior chronological information required for constructing models 
and for removing statistically divergent dates on archaeological grounds 
(i.e. residual or intrusive material) (Bayliss, 2007; Bayliss et al., 2016). 
In addition, context and sample material affect susceptibility to 
post-depositional factors prior to excavation and during collection, 
storage and processing (Brock et al., 2010). Elaboration of useful 
radiocarbon date databases, such as the Platform for Neolithic Radio
carbon Dates (PPND) (Benz, 2013) and the radiocarbon CONTEXT 
database (B€ohner and Schyle, 2008) will enable construction of more 

informative models. 

7. Conclusion 

This paper details a more empirically robust method than currently 
exists for establishing site-specific structural contemporaneity values (i. 
e. the percentage of structures in contemporaneous use). In this 
research, structural contemporaneity values were reconstructed specif
ically for the purposes of estimating population size of central and 
southern Levantine PPN settlements. These settlements were selected for 
exploratory analysis as these represent a period of major demographic 
transition in which population aggregation is directly linked to the 
development of more complex social, economic, religious and political 
systems. 

This research examined the potential to reconstruct structural 
contemporaneity values using precise estimates of building use-life and 
phase length. These were derived from a combination of (i) chro
nostratigraphic information; (ii) archaeological, ethnographic and 
experimental research; and (iii) Bayesian chronological modelling of 
spans of radiocarbon dates. To our knowledge, this is the first empirical 
assessment of structural contemporaneity values for PPN settlements 
and the first to successfully use Bayesian chronological modelling for 
this purpose. 

The methodology was first developed using data from the PPN site at 
Beidha, southern Jordan, and applied to a further four sites: Netiv 
Hagdud, Ghwair I, ‘Ain Abu Nekheileh and Basta. Structural contem
poraneity values ranged from around 60%–80%, and a standard value of 
70% is suggested for central and southern Levantine PPN settlements in 
the absence of site-specific analyses. 

This research highlights the potential for using Bayesian chrono
logical modelling to refine short term episodes, such as phase length and 
building use-life, even with small datasets of radiocarbon dates. Issues 
and opportunities for further development are discussed, including 
strategic sourcing of radiocarbon samples from specific contexts and 
short-lived material, and provision of more information regarding 
context, sample material and treatment. This will enable development of 
more accurate phase length and building use-life estimates, thereby 
increasing the precision of structural contemporaneity values. 

Population reconstructions must incorporate contemporaneity ad
justments in order to make more meaningful conclusions about the re
lationships between demographic parameters and human socio-cultural 
developments. It is anticipated that the relative simplicity of the method 
presented will encourage routine application to settlements during the 
PPN and in other periods and regions, and encourage further develop
ment by researchers in future. 
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