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 12 

Abstract 13 

 14 

1. Microclimates are the thermal and hydric environments organisms actually experience and 15 

estimates of them are increasingly needed in environmental research. The availability of 16 

global weather and terrain data sets, together with increasingly sophisticated microclimate 17 

modelling tools, makes the prospect of a global, web-based microclimate estimation 18 

procedure feasible.  19 

2. We have developed such an approach for the R programming environment which integrates 20 

existing R packages for obtaining terrain and sub-daily atmospheric forcing data (elevatr and 21 

RNCEP), and two complementary microclimate modelling packages (NicheMapR and 22 

microclima). The procedure can be used to generate NicheMapR’s hourly time series outputs 23 

of above and below ground conditions, including convective and radiative environments, soil 24 

temperature, soil moisture and snow cover, for a single point, using microclima to account 25 

for local topographic and vegetation effects. Alternatively, it can use microclima to produce 26 
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high-resolution grids of near-surface temperatures, using NicheMapR to derive calibration 27 

coefficients normally obtained from experimental data.  28 

3. We validate this integrated approach against a series of microclimate observations used 29 

previously in the tests of the respective models and show equivalent performance.  30 

4. It is thus now feasible to produce realistic estimates of microclimate at fine (<30 m) spatial 31 

and temporal scales anywhere on earth, from 1957 to present. 32 

 33 

Introduction 34 

 35 

The quantity and quality of gridded environmental data sets has been growing rapidly since the early 36 

1980s (Hutchinson & Bischof, 1983) and they are now available across the globe for terrestrial (e.g. 37 

Fick & Hijmans, 2017) and marine (Assis et al., 2018) environments. However, the environments 38 

experienced by organisms, i.e. microclimates (Kearney, 2018), are at a vastly smaller spatial and 39 

temporal scale than the environmental layers typically used in species distribution modelling (Potter, 40 

Woods, & Pincebourde, 2013). For many applications, it is preferable (Bennie, Wilson, Maclean, & 41 

Suggitt, 2014) or even necessary (Kearney & Porter, 2009) to model species’ responses to 42 

microclimatic variation at hourly temporal scales and centimetre (e.g. soil depth) spatial scales. For 43 

these reasons, there has been a concerted effort to develop efficient and accurate approaches to 44 

measuring and modelling microclimates, especially in the fields of agriculture and ecology (Bramer 45 

et al., 2018). 46 

 47 

One of the early microclimate models used in ecology (Porter, Mitchell, Beckman, & DeWitt, 1973) 48 

has now been generalised and incorporated into the R package NicheMapR for mechanistic niche 49 

modelling (Kearney & Porter, 2017). The NicheMapR system has been tested across a broad range of 50 

environments in the context of relatively simple terrain (Kearney, Isaac, & Porter, 2014; Kearney & 51 

Maino, 2018). However, it requires pre-adjustments of forcing data for important ‘mesoclimate’ 52 



effects such as elevation-associated lapse rates, wind sheltering, coastal influences and cold air 53 

drainage. It also requires estimates of terrain variables such as slope, aspect and hill shade. Maclean 54 

et al. (2017) developed a series of functions for such mesoclimate and terrain adjustments to extend 55 

the model of Bennie et al. (2008), released as an R package microclima (Maclean, Mosedale, & 56 

Bennie, 2018), which includes additional functionality to account for canopy shading effects. The 57 

NicheMapR and microclima models are therefore complementary in their approaches. 58 

 59 

In parallel to these developments, the required atmospheric forcing data and soil and terrain 60 

variables required to run the models has become readily available at a global scale. For example, the 61 

National Centers for Environmental Prediction (NCEP) reanalysis dataset of 6-hourly meteorological 62 

variables covers a period from 1957 to present on a ~2° grid, and an R package RNCEP has been 63 

developed to facilitate web-based queries of the data (Kemp, Emiel van Loon, Shamoun-Baranes, & 64 

Bouten, 2012). Crucially, digital terrain models are now available online at 30 m spatial resolution or 65 

finer for most of the planet and the R package elevatr (Hollister & Shah, 2018) provides a way to 66 

query them.  67 

 68 

These developments set the stage for an integrated approach to microclimate modelling for the 69 

rapid generation of microclimate estimates at any time and place on Earth in recent history. Here we 70 

develop such an integration of these models and data and compare the results with those based on 71 

more location-specific data sets. 72 

 73 

Integration of NicheMapR and microclima 74 

 75 

The microclima package includes functions for computing terrain-specific variables at meso- and 76 

micro-scales, that drive microclimatic variation, as described in detail in Maclean et al. (2018). To 77 

convert these calculations into anomalies from reference temperature, however, the model must be 78 



calibrated with local observations of temperature at the height of interest. Moreover, the package 79 

does not directly incorporate the buffering influence of the underlying substrate due to the heat 80 

storage capacity of the soil, which is affected by soil thermal properties and moisture content.  81 

 82 

In comparison, the NicheMapR microclimate model computes the full heat and water balance of the 83 

soil given depth-specific soil thermal and hydric properties (Kearney & Porter, 2017; Kearney & 84 

Maino, 2018). However, the treatment of direct and diffuse radiation, and of the effects of shade, is 85 

not as sophisticated as in microclima. We have therefore developed pipelines to allow these two 86 

models to provide each other with complementary information (Fig. 1). Specifically, we have 87 

modified the microclima algorithms to provide time series of hourly forcing data that have been 88 

adjusted for the effects of terrain, vegetation and mesoclimatic influences. We have additionally 89 

used NicheMapR to develop the microclima calibration functions normally obtained by empirical 90 

logger data. 91 

 92 

Figure 1. Conceptual flow diagram of methods used to generate time-series and gridded datasets of 93 
microclimate anywhere on earth. 94 
 95 



Integrating NCEP data 96 

Microclimate modelling requires data on longwave and shortwave radiation, air temperature, 97 

relative humidity, wind speed, air pressure and rainfall, all of which are available at six-hourly 98 

intervals from the NOAA-NCEP reanalyses program. We developed routines for interpolating these 99 

data to hourly, in the form of a new microclima function ‘hourlyNCEP’ (see Appendix S1). 100 

 101 

Terrain, coastal and shade adjustments 102 

The NCEP data is on a ~2° grid (~200 km x 200 km) but we downscale these data by applying lapse 103 

corrections and cold-air drainage effects with the use of digital elevation data. We therefore 104 

incorporated the elevatr package into our pipeline, which queries a global database of digital 105 

elevation data to obtain 30 m resolution at the coarsest scale, but down to 3 m in many areas. The 106 

wrapper function ‘get_dem’ that incorporates this work-stream is included in the microclima 107 

package.   108 

 109 

Coastal effects can be optionally applied using routines within microclima, which model land-sea 110 

temperature differences within each hour as a function of sea exposure upwind and an aggregate 111 

measure of sea exposure in all directions. Sea surface temperature data are obtained using the 112 

package rnoaa (Chamberlain et al., 2019), and the work-stream is embedded within function 113 

‘coastalNCEP’ associated with the microclima package. 114 

 115 

Canopy shading is determined by leaf area and the distribution character of the canopy: at low solar 116 

angles, vertical orientations result in more shading. We allow for two approaches: (1) the user can 117 

specify leaf area and distribution angles as inputs into the model; (2) a habitat type can be specified 118 

and seasonally-adjusted leaf areas and distribution angles are calculated automatically.  119 



 120 

The terrain, coastal and shade adjustments are made using the microclima function 121 

‘microclimaforNMR’ which returns topographically-adjusted air temperatures as well as daily 122 

precipitation. The list ‘microclima.out’ is returned from the NicheMapR ‘micro_ncep’ function and 123 

contains the interpolated NCEP data as well as the microclima outputs.  124 

 125 

Calibrating microclima using NicheMapR 126 

The microclima package uses a linear empirical model to compute the above-ground temperature 127 

anomaly from reference temperature as a function of net radiation and wind speed on the basis of 128 

locally measured calibration air temperatures (Maclean et al., 2018). Here we instead replace the 129 

real temperature data with a time-series of temperature estimates generated using NicheMapR for a 130 

point location at the centre of the grid for which microclimate data are required. This approach is 131 

limited because it does not incorporate the buffering influence of the underlying substrate. We 132 

therefore introduce a new parameterisation for estimating sub-surface soil temperatures, whereby 133 

the temperature at a given time step is modelled as a function of temperature in the previous time 134 

step and heat exchanges with the soil surface and underlying soil layer (see Appendix S1).   135 

 136 

Model tests and examples 137 

To assess the quality of the predictions of our modelling pipeline we tested the NCEP hourly 138 

interpolation procedure against weather station data in the UK and the performance of the model in 139 

predicting soil temperature and moisture compared with previous tests in Australia using local 140 

gridded data. We also tested the performance of the NicheMapR-based calibration of microclima. 141 

Further details are provided in Appendices S1 & S2 including code to generate Fig. 2 and Fig. 3b. 142 

Appendix S3 shows how to run the system to generate microclimate grids.  143 

 144 



Results 145 

Time-series  146 

NCEP-based NicheMapR predictions of soil temperature for the Australian OzNet soil moisture sites 147 

were as good, and sometimes superior, when compared to predictions driven by the Australia-148 

specific weather grids (AWAP) (Table S1, Fig. 2). The two approaches had similar correlation 149 

coefficients r overall, but with NCEP being significantly higher at 3-4 cm but slightly and significantly 150 

lower at 45 cm. The NCEP RMS error was slightly lower overall, and statistically different at 3-4 cm 151 

(error was lower by 1.65 °C at the latter depth and by 0.59 °C overall).  152 

  153 



 154 

a) AWAP 155 

 156 

b) NCEP 157 

 158 

Figure 2. Observed (red) and predicted (black) soil temperature for one of the Yanco OzNet sites for 159 
the years 2008-10 using a) the Australian Water Availability Project (AWAP) daily weather grids or b) 160 
down-scaled and disaggregated National Centers for Environmental Prediction (NCEP) daily weather 161 
as forcing data.  162 
  163 



Microclimate grids 164 

Spatial patterns in temperatures at 5 cm above the ground are well-reproduced by our automated 165 

procedure, in comparison to estimates generated using models calibrated with experimental data 166 

(Fig. 3). However, temperatures were typically more variable than those derived from models 167 

calibrated using experimental data. Coefficient estimates, particularly for radiation, were higher 168 

when estimated using NicheMapR than when estimated using temperature logger data (Tables S4), 169 

though the radiation estimates themselves were less variable than when locally sourced data are 170 

used. Nonetheless, our fully-automated method, in which canopy-cover is estimated from specified 171 

habitat type, and ground and canopy albedo are fixed at 0.15 and 0.23, results in substantially 172 

improved estimates of temperatures derived from loggers in comparison to reference air 173 

temperature (model output: mean error = 0.616, RMS error = 0.802, r2 = 0.891; reference 174 

temperature: mean error:  4.20; RMS error: 5.66, r2 = 0.212; Fig. S5). 175 

 (a) (b) 

 

Fig. 3. Side by side comparisons of a one m resolution dataset of temperatures at 5 cm height 176 
generated using methods described in Maclean et al. (2018) (a) compared to estimates at the same 177 
height using automated procedures for adjusting 250 km NCEP data (b) on 27th May 2010 13:00 at 178 
Caerthillian Valley on the Lizard Peninsula, UK. Here canopy cover and ground and canopy albedo 179 
are specified by the user in the automated procedure and taken from Maclean et al. (2018) such that 180 
they are identical in both datasets. 181 
 182 

 183 

Further test results, including of soil moisture, are provided in supporting information. 184 



 185 

Discussion 186 

The aim of this study was to develop a general procedure for deriving historical microclimate time 187 

series and grids for any location on Earth. The opportunity to do this is presented by the NCEP 188 

gridded weather data, which we were able to successfully downscale from ~200 km 6-hourly data to 189 

hourly, terrain-adjusted (~30 m) forcing data for the NicheMapR microclimate model, using the 190 

RNCEP, elevatr and microclima packages (Fig. S2). The NCEP data have been used previously to force 191 

biophysical models of intertidal organisms but without spatially-explicit mesoclimatic downscaling 192 

(Mislan & Wethey, 2011).  193 

 194 

Time-series of soil temperature for our Australian test sites produced using our approach showed 195 

very similar, and sometimes slightly better, predictive accuracy in comparison to those generated 196 

using higher-resolution (~ 5 km) AWAP weather data (Fig. 2, Table S1). Hourly historical soil 197 

temperatures could be predicted with an RMS error of ~3 °C, depending on the depth, and 198 

correlation coefficients were generally well above 0.9. The performance of the NCEP-based 199 

predictions was considerably lower for soil moisture, however (Fig. S3, Table S2), with a much lower 200 

correlation coefficient (NCEP 0.50, AWAP 0.65) but a similar overall RMS error (~7.5%). This is to be 201 

expected since we were not able to spatially correct the precipitation data from the original ~200 km 202 

resolution. Nonetheless, the NCEP-based soil moisture predictions captured the general seasonal 203 

patterns and overall variability of soil moisture well and should provide a good estimate of the 204 

expected seasonal dynamics of soil moisture for a given location (Fig. S3). 205 

 206 

The discrepancies between the microclimate model predictions and data obtained experimentally 207 

have several sources. Key among these is the error associated with the coarse-resolution climatic 208 

data used to drive the model. When tested against weather station data, estimates derived from 209 

NCEP do not always capture temperature extremes, particularly in highly coastal locations classed as 210 



‘sea’ as opposed to ‘land’ as is the case for the Cornwall study site (Fig. S1). In part this can be 211 

attributed to localised meso-climatic processes, but it is worth noting that the NCEP data are grid cell 212 

average estimates over a six-hour period rather than point estimates at a location at the centre of 213 

each grid cell at a given point in time (Kalnay et al., 1996). In consequence, the effects of cloud cover 214 

on temperatures are integrated over several hours and across an entire region of ~200 x 200 km. 215 

The prevalence of the clear-sky conditions that lead to temperature extremes will thus be 216 

underestimated, and the performance of our model at this location can thus be viewed as a worst-217 

case scenario.  218 

 219 

Although our workstream currently enables air and soil temperature, and soil moisture metrics, to 220 

be estimated for point locations via the NicheMapR microclimate model’s soil moisture and snow 221 

modules, we are yet to include the capacity to account for snow cover and soil moisture in our 222 

method for generating microclimate grids via microclima.  Snow cover exerts a major influence on 223 

soil temperature, by reflecting solar radiation and thermally insulating the underlying soil layer, 224 

which in turn plays a key role in the function of polar ecosystems (Aalto, Scherrer, Lenoir, Guisan, & 225 

Luoto, 2018). Similarly, soil moisture is a direct determinant of ecosystem function, but also 226 

influences heat exchange between the soil and near-ground air layer. This is consistent with the 227 

tendency of microclima to not fully capture temperature extremes produced by NicheMapR during 228 

dry conditions.  229 

 230 

The NCEP data is of course limited by the coarse spatial resolution, especially in respect to rainfall, 231 

but it can be supplemented by locally-collected data. High resolution terrain data beyond that 232 

provided by the elevatr can be provided to the pipeline for applications requiring very fine (e.g. cm) 233 

topographic effects. And, even if the system is not able to predict precise historical trajectories 234 

under some circumstances, e.g. because of inadequate rainfall data, it nonetheless provides realistic 235 



estimates of the nature of hourly extremes at different sites, with consequences that can be missed 236 

when e.g. using long-term average conditions (Kearney, Matzelle, & Helmuth, 2012). 237 

 238 

The integration of the NCEP data into the microclimate modelling pipeline we have developed 239 

complements existing microclimate resources (Kearney et al., 2014; Levy, Buckley, Keitt, & 240 

Angilletta, 2016; Kearney, 2018b, 2019) by extending the spatial and/or temporal capacity to 241 

compute microclimates. The integration of the NicheMapR and microclima packages more generally 242 

provides enhanced capacity for incorporating processes at meso- and micro-scales than previously 243 

available with any one microclimate modelling system. This should improve our capacity to make 244 

accurate predictions of the environments experienced by terrestrial organisms across the globe. 245 
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