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Abstract

Falls are a major health problem, especially in the elderly population.

Increasing fall events demands a high quality of service and dedicated

medical treatment which is an economic burden. Serious injuries due to

fall can cost lives in the absence of immediate care and support. There-

fore, a monitoring system that can accurately detect fall events and gen-

erate instant alerts for immediate care is extremely necessary. To address

this problem, this research aims to develop a computer vision-based fall

detection system. This study proposes fall detection in three stages: (A)

Detection of human silhouette and recognition of the pose, (B) Detection

of the human as three regions for different postures including fall and (C)

Recognise fall and non-fall using locations of human body regions as dis-

tinguishing features. The first stages of work comprise human silhouette

detection and identification of activities in the form of different poses.

Identifying a pose is important to understand a fall event where a change

of pose defines its characteristics. A fall event comprises of sequential

change of poses and ends up in a lying pose. Initial pose during a fall

can be standing, sitting or bending but the final pose is usually a lying

pose. It would, therefore, be beneficial if lying pose is recognised more

accurately than other normal activities such as standing, sitting, bend-

ing or crawling to address a fall. Hence in the first stage, Background

Subtraction (BS) is used to detect human silhouette. After background

subtraction, the foreground images were used in a Convolutional Neural

Network (CNN) to recognise different poses. The RGB and the Depth

images were captured from a Kinect Sensor. The fusion of RGB and

Depth images were explored for feeding to a convolutional neural net-

work. Depth together with RGB complimented each other to overcome

their weakness respectively and proved to be a significant strategy. The

classification was performed using CNN to recognise different activities
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with 81% accuracy on validation. The other challenge in fall detection

is the tracking of a person during a fall. Background Subtraction is not

sufficient to track a fallen person especially when there are lighting and

viewpoint variations in the environment and present of another object

like furniture, a pet or even another person. Furthermore, tracking be-

comes tougher during the fall in comparison to normal activities like

walking or sitting because the rate of change pose is higher during a

fall. To overcome this, the idea is to locate the regions in the body in

every frame and consider it as a stable tracking strategy. The location of

the body parts provides crucial information to distinguish falls from the

other normal activities as the person is detected all the time during these

activities. Hence the second stage of this research consists of posture de-

tection using the pose estimation technique. This research proposes to

use CNN based pose estimation using simplified human postures. The

available joints are grouped according to three regions: Head, Torso and

Leg and then finally fed to the CNN model with just three inputs instead

of several available joints. This strategy added stability in pose detection

and proved to be more effective against complex poses observed during

a fall. To train the CNN model, transfer learning technique was used.

The model was able to achieve 96.7% accuracy in detecting the three

regions on different human postures on the publicly available dataset. A

system which considers all the lying poses as falls can also generate a

higher false alarm. Lying on bed or sofa can easily generate a fall alarm

if they are recognised as falls. Hence, it is important to recognise actual

fall by considering a sequence of frames that defines a fall and not just

the lying pose. In the third and final stage, this study proposes Long

Short-Term Memory (LSTM) recurrent networks-based fall detection.

The proposed LSTM model uses the detected three region’s location as

input features. LSTM is capable of using contextual information from

the sequential input patterns. Therefore, the LSTM model was fed with
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location features of different postures in a sequence for training. The

model was able to learn fall patterns and distinguish them from other

activities with 88.33% accuracy. Furthermore, the precision of the fall

class was 1.0. This is highly desirable in the case of fall detection as

there is no false alarm and this means that the cost incurred in calling

medical support for a false alarm can be completely avoided.
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Chapter 1

Introduction

1.1 Research Aim

The aim of this research is to propose a computer vision based posture

estimation and fall detection. Posture estimation is able to detect human

and can be used as a detection based tracking strategy. It is necessary to

track a fallen person under all the challenging conditions such as lighting

variations, occlusions, scaling factors, multi-views and also the presence

of another moving object which may be a pet, a toy or another person.

Different activities are recognised in the initial stage with the aim that

it can represent a fall when observed in a consecutive sequence. The

detected postures have specific location information which can be then

used as unique features for distinguishing fall from other normal activities

like standing, sitting, lying, bending or crawling.

1.2 Research Objective

The main objective of this research is to develop an indoor camera-based

detection system which can:
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• Detect a human silhouette overcoming different challenges such as

lighting variations, partial occlusion in the presence of furniture

and the presence of other moving objects.

• Track a person in a real-life scenario during different activities.

• Recognise different poses and classify them into: Standing, Sitting,

Lying, Bending and Crawling.

• Distinguish fall from other normal activities.

1.3 Motivation

1.3.1 Background

Fall can be described as an unintentional or sudden change of position of

the body from an upright, sitting or lying position to a lower horizontal

position Noury et al. (2007). According to Hyndman et al. (2002), a

fall is an event that results in a person coming to rest on the ground or

any lower level unintentionally. They are uncertain and can occur even

at minimum risk. In a systematic review presented by (Heinrich et al.

(2010),p.895), the other definitions of fall were:

”Fall is an unintentional loss of balance causing unexpected contact

with the ground” and

”A fall is an unintended change in person’s position related to

standing or sitting or lying with or without any sign of injury”.

Actually, all the definitions of fall are derived from its character-

istics. During a fall, the rate of change of pose is higher than normal

activities like standing, sitting or walking. Acceleration of the body is

higher during fall and therefore the person can get severely injured if the
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fall takes place from a height and on the hard surface. Most of the fall

also ends up in lying. One can assume that a fall might have occurred if

a person is found simply lying on a floor. It is not normal for a person

lying on the floor while there is a bed or sofa available in a room. Besides

that, in many cases, a fall is confirmed when no motion is observed after

a lying pose for a certain period of time. All these characteristics indicate

that a fall is an abnormal activity and has distinguishing characteristics

from other normal activities. Fall can lead to a different level of injuries

and can be even more serious if immediate help is not available. This can

lead to even death ultimately in the absence of any support. Therefore,

it is very important to look into a fall detection system that can support

people by whistle-blowing immediately after a fall.

1.3.2 Fall as the biggest threat to elderly

People aged above 65 can be considered as elderly or old Sylliaas et al.

(2009). Elderly people have a high falling rate and this rate of fall is

increasing every year Bian et al. (2015). About 30% of people over the

age of 65 falls at least once and in half of the cases, falls are recurrent

Kangas et al. (2009); Dionyssiotis (2012). The major reason behind fall is

the ’ageing’ of the population which is also increasing every year. Ageing

of a population refers to the increase in the number of elderly people.

According to the report presented by Dunnell (2008), over the last 25

years, the number of people aged 65 and over in the UK has increased

by 16%. In addition, the number of population aged 85 and above has

shown the highest growth in population.
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Figure 1.1: Population age structure, 1982-2032,UK Dunnell (2008)

.

According to the statistics shown in figure 1.1, the number of the

oldest age group which is represented by the age of 85 and over have

risen by nearly 680,000 to reach 1.3 million in 2007. The oldest age

group represented 1.1 percent of the total population in 1982 which has

doubled in number by 2007. By 2032, the number in the oldest age group

is projected to increase by more than double reaching 3.1 million and

representing 4% of the total population. National population projections

indicate that population ageing will continue for the next few decades.

Hence, ageing produces a great threat leading to falling which has been

recorded very high among the oldest age CDC (2015).
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Figure 1.2: Unintentional fall death rates per 100,000 aged above 65
CDC (2015)

.

Here is another statistics presented in figure 1.2 on a number of

unintentional fall death recorded between 2004-2013 in the USA. The

deaths due to falls are exponentially rising which is a major worry. In

addition to that, annually $34 billion are spent on medical costs for fall

injuries in the USA. Globally, fall is one of the biggest threat to the

elderly and costly in medication WHO (2007). A systematic review on

the cost of falls in old age was presented by Heinrich et al. (2010) who

emphasised that falls are the biggest economic burden to the society and

that the fall-related costs ranged between 0.85% and 1.5% of the total

healthcare expenditures in the USA, Australia and the United Kingdom.

The paper also mentioned that considering the ageing societies, the total

burden is likely to be increasing and therefore efforts should be directed

towards developing a fall prevention programme aiming at reducing fall-

related injuries. According to the fact sheet presented by Age (2016)

updated February 2016, around 70,000-75,000 hip fractures occur in the

UK each year mainly due to falls. The annual cost for all hip fractures

in the UK including medical and social care is about £2 billion. There

are higher percentages of deaths in hospital after being admitted for a
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fall than for all admissions mainly between the age group of 15 to 80

and above Age (2016). Sharif et al. (2018) mentioned that about 40% of

traumatic injuries related patients in the hospital are admitted only due

to falls.

Many fall incidents have caused serious injuries and even death

in the past among elderly people as they are more prone to diseases

such as dementia and epilepsy. The society will have to face two major

threats due to ageing: firstly the increase of care to ageing people means

higher investments on elderly care service and secondly it will lead to

decrease in working population which will eventually bring a shortage in

skilled caregivers for elderly people Fu et al. (2008). This indicate that

the ageing society is one of the biggest challenging society especially

for those who chose to live alone because they would require dedicated

medical care. Therefore, fall detection is an essential monitoring system.

A monitoring system that could accurately detect a fall and provide an

alert instantaneously is extremely desirable. This approach could be

helpful to reduce the waiting time for medical treatment and save lives.

1.4 Fall Classification

Identifying fall is very challenging as some fall events are similar to nor-

mal activities of daily life. For example, abruptly sitting down or lying

on the sofa or going from standing position to lying down, have strong

similarities to falls. There are possibilities of normal activities being

miss-classified as fall by a fall detection system. It would be ideal if a

caregiver is always present at the time of fall and could provide an instant

alert. However, monitoring of such level is practically impossible and an

automatic monitoring system instead is more desirable. Although fall

detection may be generally considered as sub-section of general motion
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estimation, fall detection has distinguishable characteristics to that of

general motion detection. There is a sudden change in height and width

of the body after a fall incident and there is also an inactivity period on

the floor. It can be noticeable by the sleeping pose or displacement of the

head. Beside that inclination angle and velocity of the body before the

fall can provide a significant clue for fall detection Yu (2008); Rougier

et al. (2011); Vaidehi et al. (2011); Shoaib et al. (2010). Nait-Charif and

McKenna (2004) brings light to the problem of distinguishing falls and

daily activities by using a context-aware approach. They argued falls are

different from normal activities by labelling people lying on the sofa as

normal but people lying on the floor as abnormal. They demonstrated

the tracking of human activities outside the inactivity zones (e.g. sofas

and chairs) and suggested combining body pose and motion information

can provide a significant clue for fall detection. Another attempt to dis-

tinguish falls from normal activities was studied by Wu (2000) where

unique features of the velocity profile which are the magnitude change

and the timing of the change were analysed during normal and abnormal

activities. Different scenarios are considered to analyse fall as fall can

be observed in a different orientation, transitional postures and acceler-

ation of the body. Based on the orientation of the body, fall can also be

classified into three different categories as referred to Zhang et al. (2015):

• Forward fall: In this case, a person falls in the forward direction

with face impacting the floor.

• Backward fall: In this case, a person falls in the backward direction

with the back of the head impacting the floor.

• Side fall: In this case, a person falls towards the left or right side

in forwarding or backward direction.

Similarly, according to the transition of postures, fall can be classified as

Yu (2008):
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• Fall from standing: In this case, a fall occurs from standing still

pose or during walking. This kind of fall may have a higher impact

on the floor during the fall due to the higher position of head and

torso region and hence can cause greater injury than other types.

• Fall from sitting: In this case, a fall occurs from sitting position

and the impact on the floor during the fall is lower and so is the

level of injury in comparison to fall from standing case.

• Fall from lying: In this case, a fall occurs in lying position from bed

or sofa and the impact on the floor and the level of injury during

the fall is also lower in comparison to fall from standing case.

• Fall from other transition postures: In this case, a fall occurs from

bending or crawling position and the impact on the floor and the

level of injury during the fall is also lower in comparison to fall

from standing case.

Apart from these, based on the acceleration of the body, a fall

can be a fast or of short duration and slow or comparatively of longer

duration.
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1.5 Approaches to Fall Detection and its

Challenges

Figure 1.3: Approaches to Fall Detection and mainly the camera based
fall detection

.

There has been a significant research carried out on developing fall detec-

tion systems in the past and most widely accepted systems according to

(Noury et al. (2007); Nait-Charif and McKenna (2004); Mohamed et al.

(2014); Mubashir et al. (2013)) are based on: a. Wearable technology,

b. Ambient technology and c. Camera-based technology.

a. Wearable technology- Accelerometers, gyroscope and oscil-

loscopes are the examples of wearable technology used for the purpose

of fall detection. A major issue with the wearable technology is dis-

comfort as they are attached to the body. A patient who wants to move

freely will have an objection to any wearable devices for monitoring a fall

even if they are bulky Yu (2008). Wearable technology is highly prone

to a false alarm due to similarities in action between normal activities

and abnormal activities such as a case of abruptly sitting Rougier et al.

9



(2011). Moreover, wearing the device on the body all the time could be

annoying to the patient Shoaib et al. (2010). However, the devices are

more advanced these days and power or accuracy might have improved,

the dilemma of being the first choice to have it on the body almost all

the time still exist.

b. Ambient technology- Ambient technology uses installed sen-

sors to collect data from the related person when they are near. Majority

of this type of technology uses pressure sensors which sense high pres-

sure due to the weight of the occupant at that location Yu (2008). A

major drawback of such sensors is that we cannot be sure if the pres-

sure observed is from the weight of the occupant or some other object.

There are chances of false alarms due to lack of visual verification by the

caregiver Jiang et al. (2013).

c. Camera-based technology- Camera-based technology is able

to monitor activities continuously in the living environment applying

image processing techniques. The video-based approach is gaining more

popularity because it avoids any physical contact with the body. They

are installed on building and not worn by the occupant. This method is

also cost-efficient due to the recent development of inexpensive Kinect

depth camera which has the capability of providing RGB image as well

as depth image (Zhang et al. (2012); Gasparrini et al. (2014); Rougier

et al. (2011); Bian et al. (2015)). Although there are privacy issues which

have to be considered in monitoring, the use of depth can help preserve

the privacy of the occupant during monitoring Zhang et al. (2012).

Comparing the three types of approaches above, we can understand

that the computer vision based approach is more appropriate for devel-

oping a fall detection system. However, this approach also suffers from

some shortcomings such as accuracy, occlusion, privacy and body-part

similarity, variation in sizes, variation in viewpoint, variation in cloth-
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ing, variation due to lighting, and variation in the background. Using

appropriate image processing techniques, it is possible to overcome some

of these obstacles to some extent and track the occupant activities con-

tinuously. It would be even better if we could detect the occupant, rec-

ognize the activities and distinguish a fall event from normal activities.

This idea leads to the need for activity recognition and poses estimation.

(Durrant-Whyte et al. (2012); Nait-Charif and McKenna (2004)) have

also argued that activities such as lying on the floor is not a normal

activity and can be addressed as an abnormal activity.

Recently, machine learning has set higher milestones in the field

of activities recognition and human pose estimation Cao et al. (2017);

Buys et al. (2014); Shotton et al. (2013); Luštrek and Kaluža (2009).

Ma et al. (2014) proposed a depth-based human fall detection using

machine learning approach and were able to achieve 91% sensitivity and

86% accuracy. Cao et al. (2017) is currently the state of the art in pose

estimation. They have successfully performed pose estimation on real

time for multiple people. They are able to predict 18 joints position

in the human body. This can justify our choice of machine learning as

the best approach to recognize and localise a pose. Recognition and

estimation of the pose can help to distinguish a fall from other normal

activities such as walking and sitting. Location of the body can be

analysed in a series of frames from a video to identify different activities.

It can be seen from a perspective of detection based tracking strategy of

human during a fall. Therefore, the camera or vision-based fall detection

approach has been further explored in the past on the basis of mainly

these four techniques: Body shape analysis, Inactivity detection, Head

motion analysis and Activity recognition as shown in 1.3.

• Body shape analysis: In this kind of approach, the human body

is the prime object of interest and hence human silhouette detec-
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tion and its shape analysis are mainly performed. Human silhou-

ette or blob is acquired through image processing techniques such

as foreground segmentation or background subtraction. To avoid

confusion whether the foreground object in motion is human or a

pet, largest area or blob is considered. A non-moving object such

as furniture or wall is removed in the background. Once the human

blob is achieved, the bounding box is created around the blob and

height and width of the bounding box are obtained. The ratio of

height and width provides an important clue that a person may be

standing or lying during a fall.

• Inactivity detection:There can be an obvious confusion of state

between sleeping and falling. Sometimes it is difficult to distinguish

normal activity such as sleeping from abnormal activity such as fall.

A person could fall and end up in a lying state. But then one can

consider lying on a floor as a fall whereas lying on a bed or sofa as

non-fall. Usually, a fall is considered when they are found lying in

an uncommon region such as the floor in an active or inactive state.

Many researchers have made this as an initial assumption to define

a lying on a floor state as a falling state. Inactivity detection in

unusual regions with the help of certain tracking algorithms have

been proposed in the past for fall detection.

• Head motion analysis: As head being the top region of the body,

it undergoes through a higher motion and distance than another

part of the body, especially when analysing them during normal

activity and a fall. Hence, head motion analysis can provide an

important clue in fall detection. Researchers in the past have anal-

ysed head trajectory, the velocity of the head and attempted to

track the motion of the head using different algorithms to distin-

guish between normal and abnormal activities. Floor detection is
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also performed to analyse the distance travelled by the head up to

the floor during a fall.

• Activity recognition:Activity recognition has become the mod-

ern trend after setting a higher milestone and state-of-the-art with

the help of Convolutional Neural Network (CNN). Different activi-

ties such as walking, jogging, sitting etc. are successfully classified

with high accuracy using different machine learning algorithms.

This idea can be used to distinguish normal activities from ab-

normal activities. Images with different pose are used to train a

Neural Network (NN) and use the trained model to identify differ-

ent poses of a similar class in the image. At the beginning of the

development of NN, one to one image was feed to the NN. Single

object and activity class-based classification were more exposed.

Now with the increased computational power and different algo-

rithms, it is possible to feed a whole sequence of images to the NN

and classify a whole sequence. That means a sequence of images

with poses that represents a fall can be feed to train the NN and

can be used to recognise this abnormal activity. Researchers have

been proposing several ways to improvise the recognition work with

the help of NN.

Similarly, pose estimation with the help of NN can help acquire

location information of different body joints. Therefore, analysing

the location information of the body part in different poses and

actions, it is possible to use this information clues to differentiate

normal activities from abnormal activities.

Moreover, to develop better understanding regarding these techniques,

their capabilities and their weaknesses, a detail literature review is pre-

sented in the next chapter.
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1.5.1 Fall Detection Scheme

Figure 1.4: Fall detection schematic diagram.

A complete general scheme of a fall detection system can be illustrated

as in figure 1.4. The first block represents the sensor or the type of

device that is used to produce the appropriate data which will be used

later by the fall detection system. Sensors may include wearable devices,

accelerometers and cameras. Then the next two blocks are data acquisi-

tion and processing stages where the data is stored and prepared in such

a way that they can make the most out of it when used in an algorithm.

Data are stored in different sizes and formats, augmented so that crucial

information can be easily extracted in the following stage of feature ex-

traction. In the feature extraction phase, different techniques are used

so that the information serves the purpose for the implementation of the

fall detection algorithm. One of the major feature extraction technique

is background subtraction where the object of interest is separated from

the background. These features are then fed to the fall detection system

which is assisted by a certain algorithm to detect falls. These algorithms

may be analytical or machine learning based. Once the fall is detected,

the next stage is to send an alert to the appropriate department or person

that can promptly assist in this situation.
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1.5.2 Challenges in Vision based Fall Detection

An initial major concern in vision-based fall is to detect human silhouette

in motion. There may be different types of object in the scene. However,

the aim of this study is to detect a human during a fall and thus a moving

human body is the main target or object of interest. There are different

challenges in computer vision to identify the object of interest from the

rest of the available objects. It can be therefore be considered ideally

into two important preliminary tasks:

• Human as an object for Recognition: A person can be consid-

ered as an object in an image. There can be different other objects

in the same image. Machine learning has set a higher benchmark in

image recognition and object classification. Therefore, it is possible

to set the human in an image as one of the object class and attempt

to classify different objects. It can hence be seen as a classifica-

tion problem at the beginning of this study. But only classification

or recognition of the object which is human in this study cannot

provide sufficient information to analyse the occurrence of fall. In-

formation like the height of the body, width of the body and the

location of the body are some of the key information that can help

to track the human body during the fall. However, recognising a

pose after the detection of the human body can provide informa-

tion about the occurrence of fall if the poses are analysed in each

sequential frame of a video that demonstrates a fall event. If it is

possible to detect the human body in every frame, it is can also be

considered as detection-based tracking which can assist in visual

verification of the occurrence of fall.

• Human Silhouette Acquisition: One of the approaches to ob-

tain the human silhouette is background subtraction. A basic back-
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ground subtraction method can help to obtain the moving object

of interest in the foreground and discard the irrelevant information

from the background. The objects at the background are consid-

ered static in this case. The input images considered for classifica-

tion of poses in our case are also recorded in a way that a single

person is the only moving object in a room. Hence background

subtraction was considered. This study uses RGB and Depth im-

ages for background subtraction. They are different in terms of

their composition of pixel values. An RGB image can have pixel

values from 0 to 255 and Depth image are the distance values mea-

sured when the light travels from the emitter to the target. Hence

background subtraction is done separately to RGB and Depth im-

ages using two different thresholds. The threshold saves the pixels

values and distance values that represent the object of interest and

discards all others by re-setting the values to 0 or minimum-values.

The value of the threshold is considered solely on the basis of trails

and error method with the attempt to get the correct values that

represent the object of interest in the foreground after subtract-

ing the background. Although the human silhouette is obtained

by this approach, the output images can still have noises which

may be due to change in the background, reflection, presence of

shadow and lighting variations Ezatzadeh and Keyvanpour (2019).

The mechanism of background subtraction is discussed in detail in

the latter part of this study. The accuracy in object detection and

recognition is always compromised due to the following challenges:

1. View-point Variation: The change in camera angle can

generate different orientation of the same object in the image

and thus become hard to recognise.

2. Lighting Variation: Lighting changes can produce a change
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in the pixel values which can reduce the effect the segmenta-

tion of the object on the basis of the threshold pixel value.

3. Scaling: An object can appear bigger when close to the cam-

era and smaller when it is far. Hence scaling can also affect

the detection of the object.

4. Deformation: Deformation can also affect the detection as

the object might appear in a different shape if the object of

interest is not rigid.

5. Occlusion: There is a possibility that only a small portion of

the object is visible or completely disappear. In both cases,

the detection of the object is very difficult.

6. Background Clutter: The object of interest can sometimes

blend with the environment which makes the identification of

object even tougher.

A good classification model should be able to overcome all of these chal-

lenges to obtain a good accuracy in object recognition and detection

purpose. Convolution Neural Network (CNN) are robust models that

have set a higher benchmark in object recognition and classification.

The capability and mechanism of CNN are discussed in detail in the

latter part of this research.

1.6 Thesis Outline

The outlines of the remaining chapters of this report are listed below:

chapter 2 presents literature review in details. This chapter ex-

plores the work done in similar areas to understand the existing tech-

niques and ideas proposed for fall detection. This section provides the
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backbone to the research. Related works are discussed in two parts: vi-

sion based fall detection and neural network based fall detection. Issues

which are still a challenge in the fall detection are identified. The basic

idea is to find an area where this study can contribute in the available

methodology to tackle fall detection.

chapter 3 presents research aim, objective and identification of

the problems in fall detection. Then a solution is proposed with a con-

ceptual block diagram. A detail discussion of our approach is presented

to provide a better understanding of the problem identified. Further-

more, this chapter presents the essential theories that form the base of

our approach.

chapter 4 presents activities classification into six different classes:

Standing, sitting, lying, bending, crawling and other (empty) using CNN.

Furthermore, the proposed CNN architecture, dataset and experimental

setups are discussed in details. This chapter also presents the discussion

on theories for training and testing the model in detail. It presents a

discussion on the results of the research experiment. The outputs after

training, validation and test are presented and discussed in detail. The

performance of the model is analysed by observing the plot in terms

of accuracy and error from training and validation. The output from

the test confusion matrix is also illustrated and factors such as accuracy

and sensitivity are calculated. Furthermore, types of images that are

correctly predicted and wrongly predicted are also displayed and the key

factors influencing the result are also discussed.

chapter 5 presents pose estimation technique by transfer learning

using CNN. The problem in pose detection during challenging poses are

identified and a simplified human posture detection strategy is proposed

to achieve a stable detection. The three different body regions are de-

tected by grouping the available joint information representing in their
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respective areas. Data augmentation and training/validation settings are

also discussed in details. Several publicly available datasets are used for

testing under different conditions for different activities including fall.

Performance is evaluated on the basis of posture detection on different

activities in the publicly available dataset and compared with the output

of similar work of others. Finally, some failure cases and their reasoning

for the failure are also discussed.

chapter 6 presents the classification of fall from other activities

based on the location features using Long Short-Term Memory (LSTM)

recurrent neural network. The postures detected are stored and fed in a

frame sequence of a certain length to LSTM. A certain number of con-

secutive frames can represent a fall, a none fall, and an empty (absence

of human) scenarios. LSTM uses the contextual information from these

sequences to learn a pattern to recognise a fall pattern and distinguish

it from other activities include the empty sequence. The dataset used

during training and the output from validation are presented. The re-

sults are discussed and compared with the existing state of the art in fall

detection. Finally, a confusion matrix is presented to analyse the perfor-

mance of the proposed LSTM model with precision, recall and F-score

metrics.

chapter 7 presents conclusion of this research. The key findings

after the analysis of the performance of the model are compared with

related work done in the similar area. Furthermore, thesis contribution,

limitations and future work are also presented. References are included

at the end to complete the thesis.
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Chapter 2

Literature Review

Several reviews exist in the literature about the fall detection system.

Fall detection is not a new field of research as this area of research has

been explored in the last two decades and has evolved rapidly in recent

years. According to the survey presented by Xu et al. (2018), researchers

have put immense effort to understand and detect fall using novel sen-

sors and different technologies and algorithms. However, different bar-

riers to becoming a practical application still exist. Therefore this area

of research generates further research opportunities. One of the major

barriers to fall detection system is the nature of the data itself. Real

fall data are hardly available or inaccessible and the data that illustrates

a fall event are difficult to create. There are chances of people getting

real injuries while trying to create a fall event and if it is for the case

of the elderly, the risk is even more. Image-based human pose classifica-

tion and detection are very popular areas of research due to their wide

range of applications such as video games, human-computer interaction

and health care. Pose estimation can provide a very important clue

to fall detection by activity recognition. Machine learning methods for

pose estimation have achieved new benchmarks using complex deep con-

volutional network architecture Cao et al. (2017).There are mainly four
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approaches that were used to tackle the fall detection problem. They are

mainly: Body shape analysis, Inactivity detection, Head motion analysis

and Activity recognition using machine learning. The literature review

is therefore discussed under these four categories.

2.1 Body Shape Analysis Based Fall:

A video based automatic fall detection method in an indoor environment

using only static features of the person such as aspect ratio and inclina-

tion angle was presented by Vaidehi et al. (2011). They used background

subtraction to detect human silhouette initially and then achieve static

information from the human blob. Similar to the work by Vaidehi et al.

(2011), a fall detection system based on human blob extraction tech-

nique using background subtraction was proposed by Gasparrini et al.

(2014). They proposed a depth-based fall detection system using Kinect

by tracking human blob and exploiting anthropometric relationships and

features among the blobs of the human and another object. They ulti-

mately identified fall if the human blob is near to the floor considering

the relative distance between head and floor. Rougier et al. (2011) also

proposed a fall detection method based on depth map video sequences.

They utilised human centroid height relative to ground and body ve-

locity considering most falls ends on the ground or near to the ground.

They pointed out that velocity of the body can be a major clue for fall

occurrence. Vaidehi et al. (2011) proposed an automatic fall detection

method using static features that are aspect ratio and inclination an-

gle to identify fall. However, it is arguable that the system would also

identify a fall event in case a person is sleeping normally on a sofa. It

is not necessary that all the fall activities end up lying horizontally on

the floor. Furthermore, thresholds for height and velocity are defined as
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limit levels to estimate a fall activity. However, these thresholds can also

be misleading even though if they were set considering a high amount of

training dataset. For example, abruptly sitting on a low chair or a stum-

ble could generate a high velocity and raise a false alarm. Therefore, it is

necessary to recognise activities especially a lying pose and distinguish

it from other normal activities such as standing or sitting. There are

also some transitional activities such as bending and crawling that exist

during fall activities. These activities also provide an important clue to

analyse the direction of fall. For example, a fall event can be considered

as the sequence of poses starting from standing to bending or crawling

and then finally to lying. Therefore, the intention is to recognise different

types of poses that give valuable information regarding after-fall posture

and then analyse its static features that determine the characteristics

of the fall. Ultimately with these two major steps, one can detect a

fall with better accuracy. Furthermore, Vaidehi et al. (2011); Gasparrini

et al. (2014); Zhang et al. (2012) emphasised the use of depth image

for a major reason that is to maintain the privacy of the person during

monitoring. It is not possible to recognise a person observing a depth

image captured by the depth camera and hence the identity of the per-

son remains confidential. Zhang et al. (2012) proposed an automatic fall

detection for elderly using RGBD camera which can maintain privacy

making use of depth information and deploy RGB to support detection

in case of the distance limitation of depth images. Their detection system

recognised five classes of activities classified by Support Vector Machine

(SVM) using kinematic information. The first stage of this study is

partially similar to Zhang et al. (2012) where the classification of six

activities are performed using Convolutional Neural Network. Tracking

of body or body parts have been explored and applied in the past for

fall detection. However, the pose estimation strategy has never been

applied in fall detection to my knowledge. Some of the traditional track-
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ing methods include particle filter and Kalman filter. Nait-Charif and

McKenna (2004) proposed an overhead tracking strategy to recognise fall

in inactivity regions such as the floor using a particle filter. Jang et al.

(2002) proposed 2D human body tracking with a structural Kalman filter

which utilizes the relational information among sub-regions of a moving

object. The model uses previous time frame sub-regions information to

define sub-regions in the current frame. Similarly, Chua et al. (2015)

also uses the strategy to divide a human body into three sub-regions and

detect fall by analysing the shape of the human silhouette achieved after

background subtraction. The foreground blob is computed and then is

divided into three portions with a ratio of 30:40:30 percent. Most of

the tracking strategy is performed with different preliminary conditions

which can suffer when they are not met. Some more cases where human

body parts were tracked to differentiate fall with other normal activi-

ties such as standing and sitting were proposed by Bian et al. (2015);

Rougier et al. (2006); Yu et al. (2009).Min et al. (2019) proposed hu-

man fall detection using normalised shape aspect ratio (NSAR) which

is computed by dividing shape aspect ratio (SAR) by calibrated shape

aspect ratio (CSAR). They mention that the shape aspect ratio changes

substantially on camera layout variation which can be considered as an

important clue to identify fall. The value of NSAR is close to 1 dur-

ing walking and is largely different to 1 during fall. Fan et al. (2019)

proposed fall detection using slow features which are extracted from the

shape feature sequences achieved after background subtraction. The slow

features contain discriminative information about human actions. They

compute squared first order temporal derivatives of the slow features and

use them for classification using SVM. Alzahrani et al. (2019) presented

evaluation of skeleton features achieved from Microsoft Kinect V2 to

analyse fall using 4 supervised learning techniques: Random forest (RF)

decision tree, neighbourhood component analysis (NCA), artificial neu-
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ral network (ANN) and support vector machine (SVM). Random forest

was found to be the best performing classifier in this case.

2.2 Inactivity Detection Based Fall:

According to Delahoz and Labrador (2014), falls exhibit unique patterns

and characteristics that can be exploited to detect and predict them.

Characteristics such as the increase in negative acceleration of the body

due to sudden change in position, falls ending with an inactivity pe-

riod on the floor and sudden changes in height, width and inclination

angle of the body are explored in the literature and have been used as

a major clues for fall detection purpose as presented by Vaidehi et al.

(2011); Yu (2008); Rougier et al. (2011). Iazzi et al. (2018) proposed a

machine learning approach to detect fall based on posture analysis using

SVM. They used background subtraction to extract human silhouette

initially using the CodeBook model. However, they were not able to get

satisfactory human blob out of the background subtraction method in

the presence of shadows and the moving of furniture. In an attempt to

achieve a clearer human silhouette, they detected shadows using HSV

colour and gradient information and removed the shadows pixels using

a pre-defined threshold. To determine the actual human silhouette only,

they used two other assumptions: 1) remove all blobs which has an area

smaller than 50 pixels and 2) classify other blobs into many classes by

using the rectangle distance. The human silhouette was then determined

by using the motion information based on optical flow and the distance

between the current and previous positions of each class. Blob possessing

higher motion and smaller distance was considered as the actual blob.

Finally, they used histogram features from the rectangular bounding box

of the human silhouette to classify four postures: lying, sitting, standing
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and bending using a Multi-class SVM. Once a lying pose is accurately

classified, fall verification stage is triggered. In the verification stage,

they look into next 10 sequential frames and expect to get all lying pose

if its a fall. Their fall detection is based on the assumption that the

fallen person stays immobile after fall. Jansen and Deklerck (2006) also

investigated the area of the body and the orientation to analyse the fall

using depth images. The change in orientation of the body is used to

identify inactivity and if it exist in specified context, a fall is detected.

2.3 Head Motion Analysis Based Fall:

Nait-Charif and McKenna (2004) proposed a computer-vision based ab-

normal inactivity detection system in an indoor environment by tracking

activities of the occupant in the different region of a room. They consid-

ered sitting on a chair or lying on a sofa as a normal activity occurring

in the usual region and lying on the floor to be abnormal activity oc-

curring in the unusual region. They used a particle filter algorithm to

track movements of the head. However, it is debatable that a fall event

can also end up lying on a sofa. The other weakness in the strategy is,

a particle filter-based tracking can suffer as the acceleration of the body

part is high in real time. During a fall, the acceleration is not predictable

as each event occurs with different speeds. Moreover, the speed during

the fall is normally greater than the speed during normal activity. This

adds an extra challenge in tracking a fallen person. Halima et al. (2019)

proposed a particle filter based head tracking strategy using the fusion of

depth and thermal images. The paper suggested the fusion can improve

accuracy in tracking the head silhouette which was obtained after back-

ground subtraction. Similarly, Rougier et al. (2013) proposed a method

to extract ellipsoid shaped 3D head trajectory of a person using a single
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calibrated camera. Then the head was used for tracking during a fall

based on particle filter that used color histogram and shape information.

2.4 Activity Recognition for Fall Detection

using Machine Learning:

Ji et al. (2013); Simonyan and Zisserman (2014) proposed a convolutional

neural network for human action recognition which extracts features from

both the spatial and the temporal dimensions by capturing motion infor-

mation and dense optical flow available from multiple adjacent frames.

Similarly, Jain et al. (2013) also proposed a multi-layer convolutional

network architecture that learns low-level features and a higher-level

weak spatial model to perform human pose estimation. They found

that training multiple stage CNN with one network per feature resulted

in improved performance. Pose classification is the first and primary

objective at this stage of our research work as this can give a clue about

a lying pose after a fall event. The initial work is mainly inspired by the

work of Zhang et al. (2012) which is using RGB-D images to recognise

different pose and of Toshev and Szegedy (2014) that is pose estima-

tion using the convolutional neural network. So far in the literature,

RGB based data are mainly used in the convolutional neural network

and therefore the combination of RGB and Depth was explored. The re-

search aims to explore indoor based activities such as standing, sitting,

lying, bending and crawling only in the first stage that could represent a

fall when considered in a sequence. Hence, considering all these scenar-

ios, the dataset that contains only these activities for training were not

available. This situation motivated me to create my own data set. Al-

though creating my own data set was going to be time-consuming and its

accuracy in terms of labelling will bring a huge challenge, the data was
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created to specifically represent the major five poses mentioned above

and make them more useful for this research. The data is now pub-

licly available for similar academic research purpose. In past few years,

machine learning techniques have become popular to differentiate fall

from other normal activities. de Miguel et al. (2017) proposed vision-

based fall detection approach where they combined several algorithms

like background subtraction, Kalman filter, and optical flow to achieve

input features for a machine learning algorithm. This approach can suffer

in speed as different algorithms are combined which brings complexity to

the approach.Panahi and Ghods (2018)proposed a fall detection system

based on silhouette feature analysis after background subtraction using

Support Vector Machine (SVM) and a distance threshold that considers

the center of the human silhouette from the floor. They assumed that if

the lying down on the floor is for a longer period of time, they consider

it as fall. However, there are several chances of failure in this approach.

They consider the largest contour after subtraction as the human object

which can be misleading in case a pet is moving in the room. Other than

that, lighting variations, limited depth distance and falls that does not

end up on the floor are major issues in this approach.

Iazzi et al. (2018) proposed a machine learning approach to detect

fall based on posture analysis using SVM. They used background sub-

traction to extract human silhouette initially using the CodeBook model.

However, they were not able to get satisfactory human blob out of the

background subtraction method in the presence of shadows and the mov-

ing of furniture. In an attempt to achieve a clearer human silhouette,

they detected shadows using HSV colour and gradient information and

removed the shadows pixels using a pre-defined threshold. To determine

the actual human silhouette only, they used two other assumptions: 1)

remove all blobs which has an area smaller than 50 pixels and 2) classify

other blobs into many classes by using the rectangle distance. The human
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silhouette was then determined by using the motion information based

on optical flow and the distance between the current and previous posi-

tions of each class. Blob possessing higher motion and smaller distance

was considered as the actual blob. Finally, they used histogram features

from the rectangular bounding box of the human silhouette to classify

four postures: lying, sitting, standing and bending using a Multi-class

SVM. Once a lying pose is accurately classified, fall verification stage

is triggered. In the verification stage, they look into next 10 sequential

frames and expect to get all lying pose if its a fall. Their fall detection

is based on the assumption that the fallen person stays immobile after

fall.

Doulamis and Doulamis (2018) proposed an adaptive deep learning

approach to detect fall. They used deep learning to distinguish humans

in the foreground from the background and use adaptive learning when

there is a change in the background to retrain the model to confidently

achieve human in the foreground. The model automatically triggers an

adaptable mode when it understands that there is a significant change in

the background of the current environment. This adaptability is possible

by adjusting the weight constraints. The network weight adaptation

is performed with an aim that only minimum degradation of previous

knowledge is compromised so that the background data from the current

environment is trustworthy as much as possible.

Similarly, Núñez-Marcos et al. (2017) proposed convolutional neu-

ral networks-based fall detection where they classified fall from non-fall

activities using the transfer learning technique. They used the pre-

trained VGG-16 CNN model on Imagenet with the stack of optical flow

images as the input to the CNN model. Optical images represent the

motion between two consecutive frames. However, this motion informa-

tion is too short-timed to represent a fall and hence they used a stack
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size of 20 sets of optical flow images as the inputs to the CNN classifier.

They applied the fine-tuning technique to the pre-trained VGG-16 model

using UCF101 dataset from Soomro et al. (2012) to help the network to

learn motion features. The fine-tuning technique is used to specifically

narrow down the classification capability of a model from a higher num-

ber of classes to fewer classes. Although the model at this stage starts

to recognise only fewer classes, the classification capability of the model

on particular classes increases in comparison to the previously trained

stage. They froze the weight from the layer which has the capacity to

learn more generic features. Finally, they then further fine-tuned only

last two layers of the model for the classification of two classes: fall or

no-fall.

Another deep learning approach was explored by Shojaei-Hashemi

et al. (2018) where they used 3D joint skeleton features achieved from

Microsoft Kinect SDK to feed into an LSTM to identify fall. They

have mentioned that fall samples are limited in comparison to other nor-

mal activities samples like walking. Therefore, they first train a multi-

class LSTM on larger samples of human regular actions and transfer the

learned weight to retrain only the last layer of a two-class LSTM. They

used the transfer learning technique to avoid the need for a huge fall

dataset for training on LSTMs which have similar structures until the

second last layer. The last layer of the two LSTMs differs in the number

of hidden units which is set according to the number of classes. They were

able to achieve a precision value of 0.9323 and recall value of 0.9612 on

the NTU RGB+D Action Recognition Dataset Shahroudy et al. (2016)

which contains 56,880 video samples with 60 different actions including

fall.

Solbach and Tsotsos (2017) proposed a vision based fallen person

detection approach for the elderly which combines depth information
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with 2D human pose estimation based on CNN to estimate 3D human

key points. These 3D key points are then used to achieve CoG (Center

of Gravity) of the detected key points and UbC (Upper body Critical).

Using the Euclidean distance, the distance between two derived points

and the 3D points of the ground plane are then measured. The person is

considered to be fallen only when either the distance with CoG or UbC

is lower by 0.7m. The threshold 0.7m was chosen on the basis of informa-

tion that the lying or seating arrangements are usually made higher than

0.7m for elderly. Their approach was able to achieve a true positive rate

of 0.933 at home environment and 0.912 at the office environment. How-

ever, the approach heavily relies on ground plane detection which can

affect the accuracy when no depth information is available which may

simply be because of reflections. They have created their own dataset to

analyse fall under home environment and office environment.

Wang et al. (2016) proposed 2 stage fall detection approach based

on PCANet which was trained to predict the label for each image after

background subtraction. Then they used SVM to recognise fall or no fall

using the sequence of labels predicted from PCANet.
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Chapter 3

Research Methodology

3.1 Problem Statement

To develop a fall detection system, one needs to address three major

problems: (1) Classification of poses, (2) Track the person during all the

possible postures and (3) Distinguish fall from other normal activities.

3.2 Approach

This study purpose a fall detection system in four stages. These are

as follows: a) Human silhouette extraction, b) Activities recognition, c)

Fallen person posture detection and d)Classification of fall on the basis

of the detected postures.
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Figure 3.1: Conceptual Block Diagram.

Figure 3.1 represents the conceptual block diagram of the proposed

approach to detect fall. The conceptual block diagram can be explained

as:

• The input block represents images that are recorded from a single

un-calibrated Kinect sensor which is mounted at ceiling height.

32



• The label block contains information about the pose which repre-

sents the different type of activities in each image.

• The background subtraction block in the conceptual diagram is

used for extraction of a human silhouette. The object of interest is

obtained in the foreground image by subtracting the background

of the input image. Although background subtraction is used for

human silhouette detection, it can suffer when there is another

moving object is present together with the person. The other mov-

ing object beside the person can simply be another person, a toy,

pet, a support stick or a fan. This is one of the drawbacks of this

approach as it produces noise in the foreground image after sub-

traction of the background. Moving objects can also overlap and

have deformation issues as the silhouette may not appear to look

like a human visually after the overlap. To avoid this issue, the

input images are recorded carefully to ensure that the only mov-

ing object in the image is human for classification of poses. Even

then there can be a slight change in the background image during

the movement of the person. This will eventually produce further

noise in the input image. The reason for considering only a single

person is that, if a fall occurs in the presence of another person, the

other person can easily support the fallen person. This is therefore

mentioned as one of the limitations of our approach. The volume

of the dataset is the key to solve this issue using CNN. As long as

there are plenty of cleaner images where the person does not over-

lap, the model is robust enough to learn the features from these

images and ignore several variations and challenges that exist in

the fewer number of datasets. Datasets are therefore vital for a

CNN model as their accuracy can easily get tampered if there are

plenty of disturbed or noisy images in the training set. This stage

is discussed later in section 3.3.1.
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• After the background subtraction stage, the input image is then

fed to a CNN. The network is able to learn generic features from

the training images and able to recognise similar features for a new

set of images that it has never seen before. The CNN model is

trained to learn different poses represented by the input images

and expected to classify the unseen images during the test. For

evaluation, the true labels are compared with the prediction made

by the classifier. The CNN model needs to learn the posses from

the labelled training images. This approach can also be referred

to as supervised learning. In supervised learning, the model is

supervised to learn certain features based on the labelled inputs

and is ultimately expected to predict similar label in unseen data

after the training period Kotsiantis et al. (2007). The working and

architecture of the convolutional neural network are discussed in

detail in section 3.6.

• After pose recognition, pose estimation is performed using the ca-

pability of CNN again. The idea behind using the pose estimation

is to acquire stable posture location information that can be used

as features to distinguish fall from other normal activities.

• The posture location information is then fed to Long Short-Term

Memory(LSTM) recurrent neural network. LSTM is capable of

learning order dependence information and is, therefore, able to

tackle the prediction problem in sequential data. They have an

internal state that can use context information learnt from previous

time steps to influence the prediction at the current time stepsSak

et al. (2014). A fall is a special case of sequential change of poses

where the changes are at a higher rate in comparison to normal

activities. Hence, this higher rate of change is a unique feature that

distinguishes fall from other activities. In this study, the posture
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detection is performed to acquire the location information of the

person. One can further analyse the rate of change of postures in a

series of frames from the location information. This information is

crucial and can be used as features in the LSTM network to classify

fall and other normal activities.

3.3 Relevant Techniques

3.3.1 Background Subtraction

The first step for the fall detection consists of detecting human silhouette

which is possible with the help of background subtraction. Using this

technique, it is possible to obtain a human silhouette in the foreground

after subtracting the current image from a reference image. As illustrated

by OPENCV (2014), if C represents the current image and B as the static

background image, then an image pixel is said to be foreground F if

F =


C, if |C −B| > τ

0, otherwise

(3.1)

where τ is a predefined threshold.

The proposed fall detection is based in an indoor environment

where the possibility of a change of scene in the background is minimal

and hence static background is considered. The foreground obtained

after background subtraction is used for feature extraction. The hu-

man silhouette had some noticeable noise due to the certain variation of

light. This indicates the fact that light plays a significant role in back-

ground subtraction. However, depth images are less affected by lighting

changes. Furthermore, depth images also come with its limitation of dis-
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tance. Stone and Skubic (2015) mentioned that a fall detection model

can suffer due to the curse of distance limitation and noise if only depth

input is considered. The depth is estimated only up to a limited distance

(typically less than 5m) together with the inclusion of noise and their

field of view (aprox. 60 Degree) is also far more constrained than that of

the specialised camera (approx. 180 Degree) Zhang et al. (2012); Henry

et al. (2012). Combining RGB and depth is possibly a suitable solution

as they can complement each other.

3.3.2 Convolutional Neural Network

Overview

Convolutional Networks are biologically inspired trainable architecture

composed of filter banks, some non-linearity and feature pooling layers

that are capable of learning invariant features that could help in the

classification LeCun et al. (2010). These invariant features represent

those general characteristics that exhibit unique relevant information

about the object of interest despite different variations. The CNNs are

also data driven approaches similar to ordinary neural networks as they

rely heavily on the training dataset of labelled images. A high amount

of data is necessary to achieve variations in the training set that reflect

what could exist in the target environment.

In general, the convolution of an image refers to an operation to

analyse signal or features within an image after the effect of a filter or

kernel. A convolution is done by multiplying a pixel and its neighbouring

pixels colour value by a matrix of numbers called filter. It works by

determining the value of a central pixel by adding the weighted values of

all its neighbours together. The filter moves across the image from left to

right in a step by step manner in search of features in the image. Filters
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can be of different sizes and can contain a different pattern of numbers to

produce different features in the image Skymind (2016); Ludwig (2015).

Classification Approach with CNN

In computer vision, the problem of activities recognition can also be con-

sidered as image classification problem. Different poses can be uniquely

classified and recognised comparatively from the perspective of a human

eye. Therefore, the fall detection system can be taken a step further by

attempting to recognise the activities in terms of five different poses and

considering them as five different classes: class 1. Standing, class 2.

Sitting, class 3. Lying, class 4. Bending, and class 5. Crawling.

Figure 3.2: Different Poses in training dataset: a. RGB, b. Depth,
c. Background subtraction in RGB, and d. Background subtraction in
Depth

.
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In the above figure 3.2, different types of poses that are available in

the dataset are illustrated in four different forms of images: RGB, Depth,

background subtracted RGB and background subtracted Depth. These

poses are classified as different classes and are labelled as ground truth.

Apart from the five different classes mentioned earlier, there is a special

case where the occupant is absent from the room. Therefore, the system

should also understand that the occupant is absent. A totally occluded

case can also be considered as this special case where an occupant is

absent. Such scenarios are categorised into a different class by labelling

them as ’Other’. One of the special abilities of the supervised learning

based model is to learn from the training data. Therefore, it is important

to include such special cases in the training data so that the model can

classify such cases later in the validation and test data.

Regression Approach with CNN

The classification approach does not require to predict real or exact val-

ues and can just have generic values that represent a particular class.

However, there are cases that would require to predict real values. Pose

estimation is a classic example of a regression approach. A number of

joints are identified with their exact location information in the image.

It is expected from the training that a neural network is able to make

similar predictions in an unseen image.
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Figure 3.3: Human joint estimation

.

As seen in the above figure 3.3, there are several numbers of joints

that are labelled with their exact location information. These locations of

joints are used as ground truth to train a neural network and expected to

predict joints locations in unseen images. There are plenty of applications

for this kind of joints predictions. Location of joints can provide an

important clue regarding the location of a person and can be used in

tracking the person. Generally, a regression problem is considered to

be tougher than classification as the model need greater precision in

prediction of exact values to achieve a solution.

Next section will illustrate the complete architecture of convolu-

tional neural network including its operations in different stages.
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CNN Architecture

Convolutional neural network architecture is made up of three major

layers between input and output. They are illustrated in figure 3.4:

Convolutional Layer, Pooling Layer and Fully Connected Layer. There

may be few repetitions of these layers before the final output. Increasing

the number of layers makes the network deep which in turn can help to

acquire further complex features of the input LeCun et al. (2010).

Figure 3.4: General CNN Architecture

.

Input

The first part of Convolutional Neural Network architecture is the input

layer where the network receives images as the major inputs. According

to Skymind (2016), the image received in the input layer of the convolu-

tional neural network is considered as the volume of the n-dimensional
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object measured by width and height.

Convolution Layer

As shown in the above figure 3.4, the next block represents the convolu-

tion layer which undergoes three major operations: convolution, spatial

batch normalisation and Rectified Linear Unit (ReLU).

Operation1: Convolution

From the input image, an image patch is randomly cropped from the

entire image. Later this patch is used to perform convolution with a

number of filters of a certain size. The size of this image is chosen in

such a way that during the convolution operation, a filter of a certain size

can operate over the entire image with minimum risk of losing pixels in

the boundary. Padding is applied at the boundary of the image so that

the filter fits well with image patch and minimises the risk of missing

pixels at the boundary.

This layer of the CNN is responsible for generating the features

maps at different locations of an image by the process of convolution

with the filters(kernels).

A kernel looks for the same features but at a different location of

the input image.
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Figure 3.5: Feature maps formation after convolution

.

Figure 3.5 illustrates the formation of three feature maps from the

convolution operation with three filters. Here in the figure 3.5, similar

features share weights and are placed together as a single feature map.

Three different colour represents three types of features obtained from

three filters at three different locations of the input image. These features

are local pixels which are highly correlated and can form edges that are

picked in the initial stage of the convolution. These correlated pixels

transform into a unique feature. Let x be a colour image of size m2 x m3

and xi be feature map of each input. Let y be the output feature map

composed of n1 feature maps of size n2 x n3 and each output feature

map is denoted by yj. Let K{i,j} be the trainable kernel of size l1 x l2

linking i−th input map to j−th output map. The output feature map

can then be computed as in LeCun et al. (2010):

yj = bj +
∑
i

kij ∗ xi (3.2)

where ∗ is 2D discrete convolution operator and bj is a bias parameter.
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Operation2: SpatialBatchNormalization

The other operation that is processed after convolution is spatial batch

normalisation. For normalisation, mean and standard deviation are cal-

culated from a mini-batch of inputs as a pre-process. After convolution

operation, all the features from each feature map are then subtracted by

the calculated mean and divided by the calculated standard deviation(σ).

It is also referred to as SpatialBatchNormalization Ioffe and Szegedy

(2015).

y =
x−Mean(x)

StandardDeviation(σ) + Constant(β)
(3.3)

Subtracting each feature with the mean is done to centre the data around

the origin and once the data are zero-centred, they are then normalised

by dividing by standard deviation. A small value of constant (β) is

added to standard deviation term to avoid divide by zero cases. In this

case, beta (β) is set to 1e-3. The only reason for this normalisation is

that it is possible that different input features have different scales and

therefore they should be scaled to the same level so that they become

approximately equal importance for learning Li and Karpathy (2015). In

other words, consistency in the features is very crucial.

Operation3: ReLU

ReLUs are used to transform an input to a different domain such as from

linearity to non-linearity. They are also known as activation functions

in general. The network needs to achieve distinguished properties of the

input to learn. Since the input features are linear in nature, they are

not easily distinguishable in the case of only a small change in weights

in the input value. Hence an activation function serves as a threshold to

generate non-linearity from the linear input. Non-linearity is applied to

the inputs to separate high-level and low-level features from the input.
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ReLU maps the input x to max(0,x) which means that it maps nega-

tive inputs to zero and positive inputs become the outputs without any

change. Simply, the output x after ReLU operation means features are

present and zero means that there are no features. Similarly, some other

activation functions that are used in neural networks are: The sigmoid

function which maps an input to a value in the range from 0 to 1 and

Tanh function which maps an input to a value in the range -1 to 1.

Pooling Layer

The final attempt for the selection of features from a pool of features

available in the activation map is performed in the pooling layer. The

activation map is the feature map which is achieved after the ReLU

operation. Since only high-level features are selected from a region, the

operation is called max-pooling operation.

MaxPooling Operation

The max-pooling is the method of selecting the most responsive node

from a region of an activation map. A region of a certain size is selected

for pooling and a certain stride is considered assuring the selected area do

not overlap while passing over the entire activation map. The selection of

size is also done considering the region fits best over the activation map so

that it does not lose any information near the boundary. Once the size of

the region and stride are determined, the largest value from the region of

interest is selected and the rest of the values are discarded from the acti-

vation map. This results in a reduced resolution output feature map since

weaker information is left out. However, these features are more superior

and sensitive to small variations but they do not precisely tell where these

features were located in the previous layer LeCun et al. (2010). The two
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tables below demonstrate the max pooling operation as demonstrated in

Li and Karpathy (2015).

1 1 2 4

5 6 7 8

3 2 1 0

1 5 3 4

Table 3.1: Single
feature map

Maxpooling(R=2x2,S=2x2) �

6 8

5 4

Table 3.2:
Max-
pooled
feature
map

Table 3.1 shows single activation map of size 4 x 4 which undergoes

a Max-pooling operation with a region (R) of width = 2px and height =

2px and the next batch of selection takes place at a gap or stride (S) of

2. Here the 2x2 square region can move through 4 other blocks within

the activation map. Hence it will produce 4 maximum values from the

pool of 4 regions and preserve it in the same order as they were taken.

The maximum value is shown in bold in table 3.1 will be selected. Table

3.2 represents the maximum values pooled out of the activation map and

the overall 4 x 4 size of the activation map is down-sampled to exactly

half producing the output activation map of size is 2 x 2.

Fully-connected Layer

The features, after passing through several convolutions and pooling lay-

ers are stacked together finally in the fully connected layer. All these

features from the previous layers are connected to the output with the

help of the fully connected layer (FC). A fully connected layer is linearly

connected to the output. However, it allows a non-linear combination

of these features to extract more complex features using more than one

fully connected layer. A number of features are carefully selected on the
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basis of observation assuring a significant number of features are con-

sidered for recognition and at the same time, these number of features

does not lead to over-fitting. Over-fitting is the condition of the network

when it has higher capacity than required leading to poor performance.

Further detail on over-fitting is discussed later in the chapter.

Output Layer

The last layer is the output layer which predicts the output class. How-

ever, the output layer uses a classifier which computes the probability of

the class score which is achieved from the fully connected layer. Finally,

the maximum value out of these probabilities represents the correspond-

ing output class label. The softmax is a special classifier used in the

output layer of the convolutional neural network that computes the ex-

ponential of these scores and then divides each of these values by the sum

to normalise and achieve a uniform distribution of probabilities that sum

to one. A negative log is then applied to these normalised probabilities

to calculate cross-entropy loss. Therefore, the log of softmax which is

also referred to as LogSoftMax encourages the normalised log probability

of the correct class to be as high as 1 Li and Karpathy (2015).

3.3.3 Simple Recurrent Neural Network

Background

Recurrent Neural Networks (RNN) or Simple RNN came into existence

when there was a need for understanding of contextual information from

a sequential input related problems. Information is correlated in se-

quential inputs. The temporal information that is acquired from the

connection of sequential data is very critical for this kind of network.
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The information passed in the previous stage of RNN can influence the

outcome in the present stage. This can be further clarified with an ex-

ample of describing a fall scene. If one wants to recognise a fall event in

the video using the RNN, the RNN model can relate a lying pose in the

current frame to be a part of a fall. It can understand this by referring to

a few previous frames where the person could be standing or sitting. The

same thing applies again in a situation where a lying pose is observed in

the current frame and when referred to the previous frames, the model

could find more lying poses. In that sense, the model might understand

the whole scenario as a non-fall case or simply a lying case only.

RNN Applications

RNN model can have variable input and output length. This features can

be used for different applications. As shown in figure 3.6 from Karpathy

(2015), there are four applicable scenarios where their performance are

widely tested and their possibilities are immensely explored.

Figure 3.6: Input and output vector arrangements applicable in a RNN
model from Karpathy (2015).

• Case 1: The first case is the scenario where a single input is

passed to the RNN model and expected to predict output in the
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form of sequence. An example of such type of case is used for

image captioning as proposed by You et al. (2016). The RNN

model takes an image and provides a label that consists of words

to make a sensible sentence.

• Case 2: The second case is the scenario where the sequence of

inputs are passed to the RNN model and expected to predict a

single output. An example of such type of case is used for sentiment

analysis as proposed in the paper Zhang et al. (2016). The model

takes sentences as input sequences and classifies it as a positive

or negative sentiment. Another example of such cases is to feed a

sequence of images to recognise an action using such models.

• Case 3: The third case is the scenario where the synced sequence

of inputs are passed to the RNN model and expected to predict

synced output sequences. An example of such type of case is used

for labelling of each frame to understand human activity in a video

in more details like proposed in Yeung et al. (2018).

• Case 4: The fourth case is the scenario where the sequence of

inputs are passed to the RNN model and expected to predict some

output sequences. An example of such type of case is used for

machine-based translation work. A model is able to recognise the

words that are in English and then able to output the words with

similar meaning in French as proposed in Bahdanau et al. (2014).

Backpropagation Through Time

The RNN contains a loop set-up where information is passed from one

step of the network to the next and the model learns to relate the things

as a pattern from the longer sequences. It can be considered as multiple

copies of the same network interconnected in the activation state. The
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inter-connection allows the passing of information from the previous time

step to the current time steps.

Figure 3.7: Unrolling of an RNN model into different time-steps from
Olah (2015).

An example of an RNN having a loop can be seen on the left-hand

side of the equation in figure 3.7. An unrolled RNN structure is illus-

trated on the right-hand side of the equation. The chain-like structure

that is seen in their architecture is used to pass the message to their suc-

cessor at different time-steps. Recalling the backpropagation theory from

the earlier chapter for CNN, they are basically used to tweak the weights

of the model during training to achieve the minimal error by going back

through the network layers. In the process, the partial derivatives of the

error with respect to weights are obtained. This is then used by gradient

descent algorithm to adjust the weights so that the error between ground

truth and the prediction decreases further. However, in the case of an

unrolled RNN, backpropagation is done on the basis of time-steps and

hence is called Backpropagation Through Time (BPTT). In the case of

RNN, the error of given time-steps depends on the previous time-steps

and therefore the error is calculated at each time step to update the

weights. Hence, these arrangements can be computationally expensive

and time-consuming when there is a higher number of time steps. The

major issues are caused due to the gradients update that takes place at
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each time steps during backpropagation.

Issues in Recurrent Neural Networks

RNN suffers therefore with two important problems: Exploding Gradi-

ents and Vanishing Gradients.

• Exploding Gradients: Exploding Gradients is the case when

the value of the gradient is too high. The size of the gradients

build up further at each time steps by accumulation during each

update and eventually explode. This results in poor prediction due

to an unstable networkPascanu et al. (2012). Gradient clipping

is a method to limit the value of gradient going higher than a

norm with a certain predefined value. The other solution to this

problem is to use regularization and dropout technique to improve

the performance of the model Zaremba et al. (2014).

• Vanishing Gradients: Vanishing Gradients is the case when the

gradients accumulated over the time steps start to get too low or

become zero. This can lead to little to no training of the model.

Gradient clipping and Dropout can be used as the solution to tackle

this problemPascanu et al. (2013). Furthermore, using ReLUs as an

activation function which represents the activation function to have

maximum value only between 0 and the input. This restricts the

gradient value going lower than zero and provide a small gradient

to give a chance for the model to keep learning Talathi and Vartak

(2015).

RNNs are able to use information from the previous state, under-

stand the context and determine the future output. RNN has been suc-

cessfully deployed in a situation where the relevant information within a

short time step is enough to understand the context for an input. There
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are some cases where longer time steps are necessary to describe a context

in a better way. In case of long time steps or longer input dependencies,

RNN can forget the context of what has happened in a previous step.

RNNs are unable to learn to connect the information when the chain is

longer. The internal structure of the repetitive chain of state shown in

figure 3.8 is discussed below to understand the working of RNN further.

Figure 3.8: Internal structure of a simple RNN state Olah (2015).

A simple RNN passes the information from the previous input

through a single tanh layer to the current time-steps. That means the

gradient can have value lesser than 0 which is the major reason for the

vanishing gradient problem.These issues are solved by another type of

recurrent neural network called the Long Short-Term Memory(LSTM).

3.3.4 Long Short-Term Memory Networks

Background

LSTMs are a special kind of RNN that are capable of learning long-

term contextual information. They are specially designed with internal

memory state to overcome long-term dependency problem observed in
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simple RNN. LSTMs enables RNNs to remember longer dependencies

information with the help of the memory units where they are also able

to read, write, store and delete this information. These memory units

are categorised into three gated operational cells: input gate, forget gate

and output gate. An RNN network becomes LSTM network when the

units of an LSTM are used as the building units of the layers of RNN

Phi (2019).

LSTM Architecture

A repeating chain of state of LSTM architecture is shown in figure 3.9

below.

Figure 3.9: Internal structure of a LSTM state Olah (2015).

In figure 3.9, the arrow line indicates the transfer of the output

vector from one node to the input of another. The orange circles are

point-wise operations such as vector addition and the yellow boxes are

the learned neural network layers. ’C’ represents the cell state and ’h’

represents the input or output state at current or previous time-steps.

The three gates in the LSTM structure decides what to do with the

contextual information based on the importance it assigns to the infor-
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mation with the help of learned weight Sak et al. (2014). The features

of these three gates are:

• Forget gate: The forget gate denoted by ft determines whether

to keep the information or delete based on its importance. It uses

a sigmoid layer called as ’forget gate layer’ which outputs 0 or 1 in

the cell state Ct−1. O indicates that the information is completely

deleted and 1 indicates that the information is completed stored

based on previous output ht−1 and input xt. This can be expressed

mathematically as in Pascanu et al. (2012):

ft = σ(Wf .[ht−1, xt] + bf ) (3.4)

item Input gate: The input gate denoted by it determines which

new information to store in the cell state. It has two parts. First,

a sigmoid layer called an ’input gate layer’ which values will be

updated. Second, a tanh layer creates a vector of new candidate

information values given by Čt. These two things are then added

to update the cell state. This can be expressed mathematically as

in Pascanu et al. (2012):

it = σ(Wi.[ht−1, xt] + bi) (3.5)

Čt = tanh(Wc.[ht−1, xt] + bc) (3.6)

Once these things are done, it is now possible to update the pre-

vious cell state Ct− 1 with Ct. The old cell state is multiplied

by ft and then it*Čt is added. This gives the new candidate value

that will be used for the update. This update can be expressed
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mathematically as:

Ct = ft ∗ Ct−1 + it ∗ Čt (3.7)

• Output gate: The output gate denoted by Ot lets the information

to influence the output at the current time-step. For making the

output decision, there are another two steps. First, a sigmoid layer

is used to decide what parts of the cell state are taking part to

produce the output. Second, the current cell is passed through

the tanh to restrict the values between -1 and 1. This is then

multiplied with the output from the sigmoid state to obtain the

desired output. This can be expressed mathematically as:

Ot = σ(Wo.[ht−1, xt] + bo) (3.8)

ht = ot ∗ tanh(ct) (3.9)

3.4 Summary

This chapter presents the actual problem in this research and proposes

an approach to tackle this problem. The conceptual block diagram of

the proposed model is presented and discussed in detail. Furthermore,

relevant techniques necessary to understand the overall working of the

proposed model are discussed. These can support the proposed approach

with background information and justify the reason for their selection.
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Chapter 4

Activity Recognition Using

Convolutional Neural

Network

4.1 Proposed CNN Model

The figure shown in 4.1 below illustrates the architecture of the proposed

CNN model. The design and the necessary settings are also discussed

in details to further understanding the working of CNN. The relevant

theories and principles necessary for CNN to operate successfully are

also discussed in detail.

Figure 4.1: Proposed CNN Architecture

.
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The input image is of size 240x360. An image patch of size 156x108

and filter of size 3x3 are selected. Each dimension of the image is stacked

separately one on top of the other forming a depth volume of n-layers

which is also referred to as channels. In this case, RGB and Depth images

are used as inputs, and therefore, the input plane has four-dimensions

altogether: three from RGB and one from the depth. Hence, the input

volume as seen by the input layer is equal to a 4 x 156 x 108. The second

layer in CNN is the convolution layer. In the architecture, C1 and C2

represent the first and second stages of convolution which generates 16

features map that is extracted from 16 filters at a stride of 1 x 1 and zero

padding. The blue slices in stage C1 and C2 stages in figure 4.1 should

represent 16 feature maps generated from 16 filters although the right

number is not displayed in the illustrated figure. However, the number

of feature maps have been mentioned correctly in different stages of the

architecture in the CNN architecture.

Four hyper-parameters are essential to perform convolution. These

are a number of filters(K), the size of the filter (Kw, Kh), stride (S) with

which the filter will slide over the image and the amount of zero padding

(P) in case the filter does not exactly fit within the image. Therefore

the output volume can be represented as K x W2 x H2 as in Li and

Karpathy (2015) where: W2 = output width=(input width(W1)-kernel

width(Kw)+ 2 x P)/S + 1 , H2 = output height=(input height(H1)-

kernel height(Kh)+ 2 x P)/S + 1 . In our case, we have S=1, P=0

and (Kw, Kh)=(3,3). Hence the output volume after the C1 stage is

represented as 16 x 154 x106. Similarly, C2 operates receiving the output

of C1 as input and hence the output of C2 is 16 x 152 x 104. During

the max-pooling stage, the size of the image patch reduces to half from

the previous convolution layer but with the same number of the filter.

Therefore, after the first pooling stage (P1) the output is 16 x 76 x 52.

There is a repetition of similar stages and operations to obtain 32, 64
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and 128 feature maps respectively before the network introduces the fully

connected layer.

After 8 stages of convolution(c1-c8) and 4 stages of pooling operation(p1-

p4), there are two fully connected layers FC1 and FC2. In FC1 layer,

4096 features are considered. Similar, in FC2, only 6 non-linear combina-

tions of features out of 4096 features are considered which also represents

the class score (six different class).

4.2 Dataset

The datasets that are used for the simulation purpose are raw RGB and

Depth images of size 640x480 recorded from a single uncalibrated Kinect

sensor. The Kinect sensor is fixed at roof height of approx 2.4m. The

datasets contain a total of 21499 images. Out of total datasets of 21499

images, 15800 images are used for training, 3199 images are used for

validation and 2500 images are used for the test. The images in the

dataset are recorded in five different rooms which consist of 8 different

view angles. There are five different participants out of which there are

two male participants of age 32 and 50 and three female participants of

age 19, 28 and 40. All the activities of the participants represent five

different categories of poses that are standing, sitting, lying, bending and

crawling. Some images in the datasets are empty which are categorised

as ’other’. Images of two participants: the male of age 32 and the female

of age 28 combining total of 15800 images are used for training, and 3199

images for validation that contains a male participant of age 32 from the

training set. The validation dataset images are recorded in a different

room to that of training and testing set. Similarly, the test set contains

images of three participants out of which two female participants are

of age 19 and 40 and a male participant is of age 50. These images
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are also recorded in a different room that is not seen in the training or

validation set. These total of 21499 images are in sequence but have not

repeated anywhere in the sequence. Hence, this test set contains images

recorded with unseen participants and unseen room against training and

validation set.

Data augmentation is a technique that is used to increase the size

of the dataset by transforming them into more varied forms with op-

erations such as rescaling, flipping, cropping or rotating. This will not

only help to increase the size of the dataset but also achieve variations

in the dataset. This means that the class of the object will remain the

same despite having different variations Wu et al. (2015). Furthermore,

horizontal flip, scaling, cropping and rotation are also used as data aug-

mentation technique to the dataset. This gives the model an opportunity

to observe more data with different variations and improve by learning

more important invariant features for classification. An image contains

various information. However, depending upon the type of application,

the region of interest (ROI) are identified. Then ROI can be considered

as the primary deciding factor for influencing the learning of a model dur-

ing training. Image cropping is a strategy in data augmentation which is

basically used to remove unrelated information. This technique helps to

enhance the overall visual perception of the image if the ROI is present

within the image. This technique can contribute in two ways: First, the

learning capacity of the model can improve and second, the processing

speed of the model can also improve when dealing with lesser informa-

tion. However, image cropping is only of an advantage when the ROI is

available after the crop. There is a risk of losing essential information

that could cost the visual perception of an image. Therefore, cropping is

performed in an image before feeding to the model with careful consid-

eration which is not losing the ROI. It is better to visualize the output

image after cropping to make sure the ROI is clearly available within the
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image before feeding them to the model for training. The initial part

of this research uses background subtraction solely with the view to get

only the ROI or object of interest in the output image. All other infor-

mation was irrelevant for describing a pose. However, it is not completely

possible to get rid of all the irrelevant information after background sub-

traction. There can be some noises and some moving objects that will

appear in the foreground or output image. Therefore, another attempt of

getting more relevant information only was done with the help of image

cropping.

Five different posses are classified as five different classes to form la-

bels for all the dataset: These classes are categorised as class 1: Standing,

class 2: Sitting, class 3: Lying, class 4: Bending and class 5: Crawling

and class 6: Other which is also set as default for cases when the person

is absent.

Computation is done on 3.7GHz Xenon HP Workstation Z420 with

single Titan X 12GHz GPU and 12 GB of Ram using Lua Script and

Torch7 library.

In the upcoming sections, the necessary strategies on training, test-

ing and performance evaluation metrics of the model are explored before

demonstrating the experimental results.

4.3 Training

4.3.1 Learning with Gradient Descent

A training session simply refers to learning by error correction. Let the

desired target (Label) be T and the system output be Y. The error E

signal can then be computed as E = T - Y. A ConvNet model aims
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to maximise the probability of correct prediction by minimising this er-

ror function. In gradient descent, the learning algorithm computes the

derivative of the output with respect to the input and these derivatives

are used to manipulate weights iteratively for every input so that the

output has increased the probability of predicting the correct output.

This also means gradient descent (GD) algorithm is used to minimise

an error function by updating the weights positively or negatively. The

correction of weights takes place in backwards and hence this method is

called the back-propagation method. A cost function E(w), can be ex-

pressed in terms of the Mean Squared errors (MSE) as in Cauwenberghs

(1993); Karnin (1990) as:

E(w) =
1

2

∑
i

(Target(i) −Output(i))2 (4.1)

And magnitude and direction of the weight update are computed by

finding gradient or slope of the cost function by a step in its opposite

direction which can be written as:

∆wj = −η ∂E
∂wj

(4.2)

where η is the step size or the rate of convergence of weight. It plays a

significant role in achieving global minima choosing the path of steepest

descent. Therefore the weights are then updated after each epoch or

iteration as shown in equation (4.3) below.

w := w + ∆w (4.3)

where ∆w is a vector that contains the weight updates of each weight

coefficient w.

The gradient associated with the weight can be positive as well as

60



negative depending upon the position of initial weight. However in both

the cases, gradient descent helps in convergence along a steepest path to

reach global minima.

Figure 4.2: (a)Gradient is negative (b) Gradient is positive. Ng (2015)

If the initial weight is positioned to that shown in figure 4.2(a),

using gradient descent the weight update will take place in opposite

direction to weight axis to achieve global minima. Hence the tangent or

slope of the gradient is negative and can be mathematically expressed

as:
∂E

∂wj

≤ 0 (4.4)

If the initial weight is positioned to that shown in figure 4.2(b), using

gradient descent the weight update will take place in the positive direc-

tion to weight axis achieve global minima. Hence the tangent or slope of

the gradient is positive and can be mathematically expressed as:

∂E

∂wj

≥ 0 (4.5)

Now from equation equation(4.2) and equation(4.3), we can deduce

the update in weight as:

w := w − η ∂E
∂wj

(4.6)
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η is always a positive value and therefore, in both the cases of

gradient being either negative or positive as in equation(4.4) and equa-

tion(4.5), the weight update in equation (4.6) will always converge to-

wards global minima. Furthermore, it plays a significant role in the

convergence of the gradient descent in two different ways:

Case1: Step-size too small: In this case if the η is too small,

gradient descent can take a long time to converge which is not efficient.

Case2: Step-size too large: In this case if the η is too large,

gradient descent algorithm might only oscillate and also diverge instead

of converging to local minima.

In Gradient Descent (GD) optimization, the gradient is computed

based on the complete training set and hence is also referred to batch

gradient descent. However if we compute gradient as per training sample

by not accumulating weight as in GD, then it is referred to as stochastic

gradient descent. In case, the training samples are very large in num-

ber, computing GD can be costly in terms of convergence time. In every

iteration, it runs through the complete training set, accumulates all the

weight updates in a vector and then updated as shown in equation 4.6.

Whereas Stochastic Gradient Descent (SGD) uses only one randomly

shuffled training sample, computes gradient and updates weight simul-

taneously and therefore, convergence starts improving straight away from

the first sample Bottou (2010).

Stochastic learning can also perform better in comparison to gra-

dient descent due to the presence of noise in the updates by jumping

randomly into another possibly deeper local minima. However, due to

its stochastic nature, the path towards global minimum is fluctuating

because of noisy approximation of the true gradient. Therefore, it may

not successfully converge undergoing weight fluctuations. The size and

the fluctuations depend on the degree of noise during the stochastic up-
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dates and the size of learning rate η. One of the approach to reduce

these weight imbalance is to use mini-batch gradient descent. A min

batch gradient descent is a mid-way approach between gradient descent

and stochastic gradient descent method of learning. In this approach, a

small mini-batch size of training samples K is considered and instead

of computing gradient for either 1 sample (SGD) or the complete N

number of training samples (SD), the gradient is computed from 1 < k

< N . Therefore because of the frequent update in weights, mini-batch

gradient descent converges in fewer iterations in comparison to GD Le-

Cun et al. (2012). Another approach to minimise weight fluctuations

is parameter tuning. The parameters that directly affect the updates

of weights are learning rate, Momentum and Weight Decay which

will be discussed in the section below.

4.3.2 Learning by Back Propagation

Weights are initialized and forwarded along with the hidden units dur-

ing learning. However, initial values of the weights can have a significant

effect on the training process as they are to be chosen in such a way that

the activation function is primarily activated in its linear region. Back-

propagation is the most popular algorithm in training of neural network

with supervised learning approach. The basic idea of this algorithm is

to apply chain rule to compute the influence of each weight in the net-

work with respect to the cost function E. Let wij be the weight from

neuron j to neuron i, Yi be the output and neti be the weighted sum

of the inputs of neuron i. The backpropagation algorithm can then be

expresses as the chain rule as in Riedmiller and Braun (1993) as:

∂E

∂wij

=
∂E

∂Yi

∂Yi
∂neti

∂neti
∂wij

(4.7)
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Momentumα is used to minimize the fluctuation in weight changes

over consecutive iterations t by supporting the step size to move along

the direction of lower curvature region of cost function. Therefore equa-

tion(4.2) can be modified by adding the support of momentum as in

Riedmiller and Braun (1993) as :

∆wij(t) = wij − η
∂E

∂wij

(t) + α∆wij(t− 1) (4.8)

Weight decay β penalizes the weight changes in each learning steps.

Hence considering the weight decay, the weight update can be expresses

as in Hanson and Pratt (1989) as:

∆wij(t) = wij − η
∂E

∂wij

(t)− βwij(t− 1) (4.9)

During back propagation,according to their behaviour, update of

weights can be explained in terms of learning rate, momentum and weight

decay as:

∆wij(t) = wij − η
∂E

∂wij

(t) + α∆wij(t− 1)− βwij(t− 1) (4.10)

Adaptive learning rate η: The implementation of adaptive learning

rate can bring a stability during weight updates and convergence. It can

be done by using a constant a that deceases the rate over a period of

time t or epoch as in Xu (2011) as:

ηt+1 := ηt(
1

1 + aηtt
) (4.11)
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4.4 Testing

4.4.1 Overfitting and Underfiting Nature of the Net-

work

To analyse a model that is learning well or not, one can observe the

nature of the plot during training and validation based on accuracy and

the average loss. Loss is the average of the losses that is computed

by the softmax classifier on finding the variation between the actual

target value and the output value predicted by the model. Observing

the plot, one can get the idea of the capacity of the model. Setting the

right number of layers and their size are other important requirements

of the network. Increasing the number of layers and the size of the

model also increases the capacity of the network. Network with more

neurons can express more complicated features and can classify more

complicated data. However, the model can also easily suffer from the

over-fitting problem. This is also referred to as a high variance problem.

In contrast to this problem, it can also easily suffer from the under-fitting

problem if the size of the network is not big enough to handle complicated

features during training. It is also referred to as a high bias problem.

During validation and testing, we can find three general natures of the

plots: a high bias, balanced or a high variance which gives an idea of the

behaviour of the performance of the network Ng (2015).

High bias is the case of the underfitting model which simply means

the model is not deep enough to learn all the necessary features. There-

fore, a higher number of layers are desired in these cases to increase the

capacity of the model. The performance of such a model is usually poor.

A balance is a case when the accuracy plot is smoothly increasing

or the loss plot is smoothly decreasing with the number of the epoch. It
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is the ideal condition for a good model.

High variance is also referred to as the case of overfitting. That

means the model has a higher capacity than required and can easily

pick up extra noise with the necessary features. Even in this case, the

performance of the model is usually poor.

Most cases are over-fitting cases in neural networks. We can reduce

overfitting by controlling the number of iteration so that the deeper net-

work does not over-train. We need to stop early sometimes observing the

nature of the plots. Another solution to over-fitting is to add more data

to the network Nielsen (2016). Regularisation is an important technique

that can reduce the problem of overfitting of the neural networks.

Most popular and widely used regularisation is the L2 regularisa-

tion where weight is decayed linearly: W += - λ * W towards zero.

Apart from them, ’Dropout’ can also help in regularisation to some ex-

tent Li and Karpathy (2015). Dropout is actually used to delete half of

the hidden units randomly in between input and output neurons for a

temporary period. Now the model will still have to operate its general

processes that are forward and backward propagations over mini-batch

of examples. This also means that adjusting the weights and the biases

will now be with just half of the capacity of hidden units. In the next

mini-batch examples, those temporary deleted hidden units are restored

and another randomly selected hidden units are deleted and the same

process is carried out for updating weights and biases over the mini-batch

examples. Therefore, with dropout, weights are compensated using lesser

hidden units Nielsen (2016).
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4.5 Performance Evaluation Metrics

4.5.1 Confusion Matrix

Confusion matrix can help us to understand the performance of the

model on the test. They are used to visualise how well the model is able

to classify all the types of classes correctly. It contains information about

actual and predicted classifications done by a classification system. The

classification error occurs if two different poses are too similar to each

other. This is mainly during the transition periods where some poses

can be considered as another due to the similarity in the appearance of

the pose. Hence, while creating the ground truth, it is very important

to look for consistency in labelling of poses as these can easily confuse

the model and affect the accuracy. For example, in this study, stand-

ing, bending, sitting, crawling and lying poses are considered. Bending

and crawling are usually the transitional poses which can be difficult to

classify as these can sometimes be treated as another similar pose.

Figure 4.3: Example of a confusion matrix

.

Figure4.3 illustrates a confusion matrix for six different classes ac-

cording to this classification system drawn during the test. This gives in-

formation about the recognition of the classes with respect to the ground

truth. In other word, it contains information about actual and predicted

classifications done by our classification model on the test images. The
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diagonal elements represent the number of correctly classified classes and

the off-diagonal elements are the number of misclassified classes out of a

total number of test images. There are four important decision factors

that can be achieved from the confusion matrix to understand the per-

formance of the classification model as explained by Labatut and Cherifi

(2012):

• True Positive (TP): Is the proportion of positive cases that were

correctly predicted.

• False Positive (FP): Is the proportion of negative cases that were

incorrectly predicted as positive.

• True Negative (TN): Is the proportion of negative cases that were

correctly predicted as negative.

• False Negative (FN): Is the proportion of positive cases that were

incorrectly predicted as negative.

From these cases, one can calculate accuracy and sensitivity which

are considered to be the quality criteria for a recognition system. Accu-

racy is the overall performance of the model and can be calculated as:

Accuracy(AC) =
TP + TN

TP + TN + FP + FN
(4.12)

where as sensitivity is the accuracy of the model to predict each class

and can be calculated as in Noury et al. (2007) :

Sensitivity(SN) =
TP

TP + FN
(4.13)
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4.6 Experimental Results and Discussion

The total dataset of 21499 images is divided into three categories: first

15800 images for training, next 3199 images for validation and finally

2500 images for testing.

The proposed model has the following settings as shown below in

the table 4.1:

Learning rate 0.015

Weight decay 0.85

minimum learning rate 0.0001

momentum 0.95

maximum epoch 30

batch size 20

training set 15800

validation set 3199

test set 2500

Table 4.1: Setting details.

The validation set of data contain those images in which the model

has seen the person in the training data. However, these images are

from different rooms in comparison to training and test data. There are

two different sets of images with a single participant. The two sets are

recorded in two different rooms. One of the room is completely unseen

in training or in the testing dataset and the other is a room from the

test dataset. However, the position of furniture, position of mattresses

and view angle have been changed to create a different room out of

the room used in the test set. The validation set is very important

in the model selection which helps to tune the parameter of the model

so that the model is able to provide a meaningful estimation in the
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test set. Similarly, the test data set contain images in which there are

three participants and are never seen in the training dataset or validation

dataset. Furthermore, the position of furniture, mattresses and the view

angle were also changed to create a different room with all three different

participants to achieve a completely unseen dataset for testing.

4.6.1 Accuracy Plot during Validation

Figure 4.4: Accuracy plot during validation.

Figure 4.4 illustrates the behaviour of the CNN model during training

on the training dataset and testing on a validation set for accuracy. The

blue line represents the nature of accuracy plot on the training set and

the red line represents the accuracy plot on the validation set. The plot

demonstrates an increase in accuracy as the number of epoch increases.

This is a positive sign that the model is learning and improving with

every iteration. The training can be stopped once the accuracy reaches

to 100% on the training set after which the model is considered to overfit.

After performing training on each mini-batch, at the end of the epoch,

the model is tested on the validation set and is saved. Moreover, at the

end of the second epoch, if the new model after testing is better than

the previous model, the new model is saved. Otherwise, the old model

is preserved and the new is discarded. In this way, the best model at the
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end of validation is saved. Therefore, it is not necessary to stop at 100%

accuracy during training. The best model is then ultimately tested with

test data to get the overall generalised accuracy of the model considering

the test data are completely unseen. According to the figure 4.4 shown

above, the training set reaches to 100% on 29th iteration. 81% is the best

accuracy achieved by testing on validation dataset on the 17th epoch.

4.6.2 Average Loss during Validation

.

Figure 4.5: Average loss plot during validation.

Figure4.5 illustrates the average loss during training on the training

dataset and testing on the validation set. The average loss in the training

set is represented by the blue line and the loss on the validation dataset is

represented by the red line. From the figure 4.5 seen above, the loss has

a much smoother curve and is decreasing steadily in the training dataset.

However, in the validation test, the loss is not decreasing smoothly and

is higher compared to the training set. Comparing with the loss plot of

training data, the minimum average error loss on the validation set is

0.6 on the 16th epoch.
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4.6.3 Output with Confusion Matrix

Finally, the best model was tested on the test set of images. The overall

accuracy on the test set was 74% as illustrated by the output of the test

confusion matrix in the figure 4.6 below.

Figure 4.6: Output of confusion matrix on test.

Global correct or overall accuracy is determined by the ratio of the

sum of elements in the diagonal/sum of all the elements in the matrix

(i.e number of test set). Therefore, Overall Accuracy = 74%.

Similarly, the percentage on the right to the matrix elements asso-

ciated with the class is the sensitivity of each class. This parameter ex-

plains how well the model performed in predicting correctly for each class.

It can be computed as: The sensitivity of class ’Lying’ = TP/(TP+FN)

= 729/(729+(2)) = 99%. Similarly, the sensitivity of class ’standing’ is

80%.

From the above confusion matrix, the sensitivity of ’bending’ class

is 2% and crawling is 0%. This is very poor as the class are not well bal-

anced. More data is required with similar poses for a model to improve.

Moreover, the model is confused between standing and bending poses as

well as between lying and crawling poses. This is because these bending

and crawling are transitional poses and can easily be wrongly classified.

Similarly, sitting with 53% is also weak in terms of sensitivity and has

also hampered the overall accuracy of the model. However, the model is

able to achieve 99% sensitivity in lying pose which is very supportive to

the aim of identifying an after-fall pose.
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4.7 Pose Recognition on the Unseen Data

Correctly Predicted Scenario

Figure4.7 illustrates four unseen output images: subtracted RGB in the

left and subtracted Depth in the right.

Figure 4.7: Correctly predicted pose on unseen image.

The model was able to predict the correct pose with the accuracy

of 74%. Most of the correctly predicted pose is clearly visible poses

and with less transitional variations. That means the model performs

better on clearly visible poses of standing, sitting or lying. Bending

and crawling are not predicted well because they are sub-activities that
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appear similar to other poses and the model can get confused and classify

them incorrectly. These complex poses are transitional poses which are

observed during the change from one pose to another: standing to sitting

or lying and vice-versa.

Incorrectly Predicted Scenario

Figure4.8 illustrates three cases of incorrectly predicted four outputs

which are about 26% in the total test set.

Figure 4.8: Incorrectly predicted pose on the unseen image.

The proposed model fails when the person is not seen on the train-

ing images in both the input images like the one shown in the first image

block above. In actual, seeing the RGB image, the person is sitting on

the sofa and is therefore labelled as sitting. However, due to background
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subtraction and camouflage, the person seems to be missing visually. The

model is trained to learn an empty image labelled as ’other’ in training

examples. Therefore, the model is predicting as ’other’ in the output

class considering the person is absent in the image. A noisy image is also

vulnerable and can be wrongly recognised by this model.

In the second case, the person seems to be in transition from bend-

ing to standing vice-versa. The prediction goes wrong due to the confu-

sion of the pose. In this case, it is actually labelled as ’bending’. But the

model gets confused and can predict either of the one class depending

on the number of similar images present in training data. A lesser sen-

sitivity in standing pose is also due to the confusion between standing

and bending pose.

It is again the same with the case of crawling in the third case.

Hence, the proposed model’s performance was affected by these confusing

posses. In the fourth case, only a part of the body is seen while going

out or in the case of coming into the room. This is hard to recognise for

a model. The model here again does not get enough information about

the orientation of the body and therefore does not recognise a pose. It is

difficult to even label such partially seen body. However, several images

of such types in the training data can improve the prediction.

4.8 Our Contribution

The major contribution of this chapter is that the fusion of RGB and

Depth was attempted and used as the input to CNN. RGB and Depth im-

ages were recorded from the Kinect sensor for creating our own dataset.

Different types of input were tested to the proposed CNN model and the

experiment result suggested that combining RGB and Depth after per-

forming background subtraction can be a suitable combination as input
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as this can help the model to learn in a better way. The result of this

experiment can be analysed from the accuracy and loss plots illustrated

in the figures below. These are published in our paper Adhikari et al.

(2017).

Figure 4.9: Accuracy plot during test on validation set with different
inputs.

Figure 4.9 illustrates the classification accuracy of the CNN model

on a validation set during training with four different types of input

images. The plot shows an increase in the accuracy of identifying the

correct pose as the number of iteration or epoch increases. This is a pos-

itive sign that the model is learning and improving with every iteration.

We can stop the training once the accuracy reaches to 100% on the train-

ing set after which the model is considered to over-fit. After performing

training on each mini-batch, at the end of the epoch, the model is tested

on validation set and is saved. Next, at the end of the second epoch, if

the new model after testing is better than the previous model, the new

model is saved. Otherwise, the old model is preserved and the new is

discarded. In this way, we save the best model. Our proposed model was

able to achieve the best performance using the subtracted RGBD input

with 81% accuracy at the 17th epoch. This can be clearly observed by
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the green line clearly outperforming all other types.

Figure 4.10: Loss plot during test on validation set with different in-
puts.

Similarly, in the fig 4.10, sub-RGBD once again outperforms the

rest of the input. Validation loss for sub-RGBD was observed to be the

lowest 0.59 at 12th epoch in comparison to other inputs.

4.9 Discussion and Conclusion

In this chapter, a pose recognition model is developed which can use RGB

and depth images as input to a convolution neural network for activities

classification. Application of RGB and Depth using the convolutional

neural network is still not widely explored in the literature for fall de-

tection. The closest work to this study in fall detection for the elderly

using RGBD camera was presented by Zhang et al. (2012). They also

used the Kinect sensor to record five different activities for recognition

which are fall from the chair, fall from standing, standing, sitting on the

chair, sit on the floor. They used hierarchy SVM classifier to evaluate
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the appearance model and the kinematic model for fall detection. They

achieved 76% accuracy for the appearance model and 98% accuracy in

the kinematic model. They also claim to preserve privacy displaying only

depth for monitoring. Another work similar to our in human activity de-

tection using RGBD was presented by Sung et al. (2011). They captured

different activities for recognition using RGBD images from the Kinect

sensor. They proposed a machine learning method based on hierarchi-

cal maximum entropy Markov Model(MEMM) for activity recognition.

However, they aimed to train a personal robot to learn the normal activ-

ities of the person. They evaluated twelve different activities performed

by four different people in five different environments. They were able

to achieve the overall performance of 84.3% accuracy in detecting the

correct activity where the person is seen before in the training set and

64.2% when the person was not seen before.

In comparison to them, the proposed model was able to achieve

96.27% accuracy during cross-validation test where the person is seen

in the training set and 81.29% on the test where the person is never

seen in the training. This approach also can preserve privacy displaying

only foreground mask from subtracted depth. This system is capable of

recognising pose overcoming the problems of viewpoint variation, scaling,

deformation, illumination change and partial occlusion. Publicly avail-

able datasets were not used at this stage because they were not exactly

suitable for this research scenarios since they were created for different

other applications. Therefore, specific datasets that contain only five dif-

ferent poses that can be observed during a fall have been created. After

this stage, detecting a person for different poses to achieve the location

information can be of further advantage. This information can provide a

clue to locate a person during different activities including fall. It is also

necessary to test on the different publicly available dataset for analysing

the performance of the model and achieve generalisation.
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Chapter 5

Deep Learning Based Fall

Detection Using Simplified

Human Posture

5.1 Background

Pose estimation is a challenging task and to add more to this, it is even

more challenging when pose estimations are performed on challenging

poses that may occur during fall. Location of the body provides a clue

where the person is at the time of fall. This paper presents a vision-based

tracking strategy where available joints are grouped into three different

feature points depending upon the section they are located in the body.

The three feature points derived from different joints combinations rep-

resents the upper region or head region, mid-region or torso and lower

region or leg region. Tracking is always challenging when motion is in-

volved. Hence the idea is to locate the regions in the body in every frame

and consider it as the tracking strategy. Grouping these joints can be

beneficial to achieve a stable region for tracking. The location of the
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body parts provides crucial information to distinguish normal activities

from falls. A person can be tracked using a computer vision technique

during a fall. The pose and location information of the human body part

can be used to analyse the occurrence of fall. However, tracking using

computer vision on real-time are still an open area of research due to

these challenges that are still huge hurdles like lighting variations, the

motion of body parts, partial/ fully occlusion and pose deformations.

The challenges are even more severe during falls especially on bending

or lying pose recognition due to foreshortening distortion. Several im-

portant cues for detection are lost during these challenging poses making

detection extremely difficult Wang et al. (2012). Following are the ques-

tions that demand answers from a fall detection system.

1. Can a person be detected during a fall with rapid variation in

poses?

2. Can a person be detected during a fall under different light varia-

tions?

3. Can a person be detected under occlusion of any kind?

4. Can the system identify and track human in the presence of another

moving object like a pet or a toy?

A system that can defend itself from the above questionnaire is

highly desirable in the case of fall detection. This chapter will discuss

further regarding our new approach and present its results in the later.

5.2 Our Contribution

This work is mainly inspired by the work of Chua et al. (2015) andSolbach

and Tsotsos (2017). The contribution of this study is discussed below:
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1. Comparing to the work presented in Chua et al. (2015), the com-

plexity of their approach is further reduced by identifying the per-

son correctly (not moving toys or pets) without the need for back-

ground subtraction. The proposed approach will also overcome the

major weakness in their approach that they have mention which

is to be able to handle different light variations, occlusion and can

even be used outdoor to overcome scene and viewpoint variations.

2. Comparing to the work presented in Solbach and Tsotsos (2017),

a different low reference point is provided as an alternative to the

point on the ground plane. That means there is no need for calcula-

tion of ground plane and therefore one can avoid all the complexity

in the detection of it and get rid of the weaknesses that were ob-

served when they were missing the ground plane. The detected leg

region from the proposed model can be the other lower reference

point instead.

5.3 Problem Identification

All the vision-based approach analyses images and videos to identify fall

but tend to suffer heavily from the curse of extremely difficult poses that

are demonstrated during a fall. Tracking can be accurate during normal

activities where the pose is more stable but not during a fall. There are

so much of variation in body pose, its speed and also localization. It

becomes a big hurdle for a system to achieve better accuracy to fight

against such a series of frequently changing poses. Recently pose esti-

mation have reached a new level with joint localization accuracy. Cao

et al. (2017) and Güler et al. (2018) are currently the state of the art

in pose estimation arena setting a higher benchmark. They are able to

achieve a very accurate level of human joint estimation. However, they
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also suffer a lot while predicting all the joints position mainly when poses

are extremely challenging.

The model from Cao et al. (2017) is tested on the challenging im-

ages that can be observed during all falls. Their model is capable of

identifying 18 joints in the RGB images for multi-person. However, this

study aims a single person case and hence only single human cases are

examined. The issues identified are shown in figure 5.1. The above im-

ages are considered from Adhikari (2017) which the model has never seen

before. As illustrated in figure 5.1, the accuracy of all the joints can eas-

ily deviate while dealing with difficult poses. Other than that, it is very

difficult to predict those joints which are occluded by the body itself.

Figure 5.1: Issues in predicting all the available joints.

5.4 Our Approach

To solve this problem, this paper looks into a detection based tracking

strategy. The idea is to find a stable position of a body part that could

be detected all the time during a fall scenario. As shown in the fig

5.2 below, 18 different joints that are available in COCO dataset are

grouped into three subgroups to represent three different regions of the

body: Upper region or Head region, mid-region or Torso region and

lower region or leg region.As shown in the fig 5.2 below, left eye, left

ear, right eye, right ear and nose are grouped to represent upper-region

or head. Similarly, left shoulder, left elbow, left wrist, right shoulder,

right elbow, right wrist and neck are grouped to represent mid-region
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or Torso. Lastly, left hip, left knee, left feet, right hip, right knee and

right feet are grouped to represent lower region or leg. The grouping

strategy is proposed with the aim to achieve a stable individual region of

a human body. It is not important to identify all the joint positions or

body facing side upward or downward to determine fall. To distinguish

fall from other normal activities, all that is important is to identify the

positions of primary parts of the human body. Simply the height of a

head can provide a clue whether a person is standing, sitting or lying.

Hence, instead of considering several individual joints, three points were

created by grouping individual joints according to the section of the body

they could represent.

Figure 5.2: Illustration of joints configuration in COCO dataset grouped
into three regions.

As demonstrated in figure 5.2, the key points are arranged in three

individual groups that represent three different regions of the human

body. Earlier the model had 18 inputs as there were 18 key points with

their confidence value (probability distribution) available in the ground

truth. But now these 18 key points are rearranged into three groups.

The key points and their corresponding confidence maps for each group
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are then averaged to achieve one single location and confidence map that

represent the center of that group. Therefore, after averaging the key

points for each group, there are one central location and confidence map

for each group. These are now the three inputs of the model. The model

is then also expected to produce three center locations and confidence

maps as output. The predicted confidence of the available key points

can be averaged to achieve a stable confidence point that can represent

that group of nearby joints. Mathematically, the average confidence Λ

is given by the following equation as in Solbach and Tsotsos (2017):

Λ =
1

K

K∑
k=1

λk (5.1)

where K is is the number of available detected keypoints and λk denotes

the confidence of the k-th key point.

5.5 Data Augmentation and Training

Since the available joints have been divided into three groups of confi-

dence points, these three points are now fed to CNN model. The model

was trained for about a week as COCO datasets 2017 contains 118000

images as training dataset and 5000 as validation dataset. The model

was trained using SGD with a batch size of 20, momentum of 0.9 and

weight decay of 0.00005. An early stopping strategy was applied to stop

the training when the validation loss stops to improve by checking in

5 consecutive epochs. Different data augmentation techniques were im-

plemented to improvise the generalisation of learning. Settings such as

rotation range of 30 degrees, a width shift range of 0.2, a height shift

range of 0.2, a zoom range of 0.3 and the horizontal flip were used to

augment the training data. This technique provides different changes
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to the original images so that while training the model gets to adopt

all the possible changes that can be present in a test image. An adap-

tive learning rate technique was used to vary the learning rate during

the training process. A pre-defined learning rate (LR) of 1e-5 was set.

LR was reduced slowly by using step decay to drop the learning rate

after certain epochs. The decay factor of 0.1 after every 3 epochs were

used during training. The same model which is a modified VGG model

and pre-trained weight are used for training as used by Cao et al. (2017).

However, a transfer learning technique is further applied to this model as

the pre-trained weight already has better learning capacity if trained on

similar data. The top layer features are not specific to a particular object

and are more general types of features such as edges and colours. Hence,

these features can be considered as transferable for different datasets and

can be applicable to many other tasks Yosinski et al. (2014). Moreover,

the bottom 12 layers are unfrozen to train the model. The higher layers

have already learnt the basic features that are necessary for the pose

estimation. However, the lower layers that were trained to predict 18

joints are now retrained to predict three sets of points only using the

COCO dataset 2017 Lin et al. (2014).

Figure 5.3: Prediction on validation using COCO dataset.
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Figure 5.3 illustrates the output prediction heatmap and their cor-

responding PAF on validation using the COCO Dataset. The first row

illustrates the average confidence heatmap for the three individual re-

gions centred around that region in three separate images. The second

row demonstrates the ground-truth of Part Affinity Field (PAF) connec-

tions. Only 2 PAF connections are available in our case: the connection

between the upper and middle region is represented by one PAF and the

connection between the middle region and the lower region as the second

PAF. PAF preserves both the connection and direction information of

the body parts. PAF is very efficient in pose estimation to differenti-

ate the actual connection sides like left and right body parts. However,

in this case, the direction information from PAF for each connection

is unidirectional to locate three centre sub-regions. In the second row,

therefore, there are four images demonstrating 2 direction for each PAF

respectively.

Figure 5.4: The model output on the same image from fig 5.1.

Finally, on testing for the same images with the proposed solution

to the issues discussed above in figure 5.1, a stable region of detection

was achieved successfully. In the above figure 5.4, the three different

regions detected are displayed in three colour points with red as the

upper region, green as the middle region and blue as the lower region.

The best model was saved after validation. The best model was used to

detect the three points in a video which was created at a frame rate of 25

frames per second. The model started to predict the three points on the

human body within 5 seconds.The rest of the sections looks into different
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scenario and conditions to analyse the performance of the model.

5.5.1 Challenges:Lighting variations, pose complex-

ity and occlusion

The model performance was tested against five different datasets: COCO

datasetLin et al. (2014), Leeds Sports dataset(including extended)Johnson

and Everingham (2010), fall dataset from Chua et al. (2015) and Rougier

et al. (2013) and our own datasetAdhikari (2017). Both LSP datasets in

total contain 12000 different challenging images from the sports arena.

Similarly, the other two fall dataset from Chua et al. (2015) and Rougier

et al. (2013) contains above 20 videos that are specially created with the

aim to analyse an indoor fall for a person. Joints information are not

available in these last three fall datasets. Overall these images represent

all the challenges a model can easily suffer during a fall. They illustrate

variations in poses, scale changes, illumination changes, partial occlusion

due to the presence of furniture and also the presence of another object

in motion. This may be a presence of a toy, a pet or a stick which could

move in parallel with the human. These obstacles can easily confuse the

model to identify human as the object of interest in motion.
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Figure 5.5: Prediction on LSP, LSP extended and fall dataset from
Chua et al. (2015) and Rougier et al. (2013).

It can be observed from these outputs in Figure 5.5 that our model

can detect the postures correctly even during the complex bending, sit-

ting and lying poses in different environments making it more suitable

for the real world. From this, one can already get some hint that the

lying pose after a fall can be predicted in a more stable way.The re-

search is aimed to detect a fall for a single person or object of interest.

However, more than one person may be present in the room. The two

persons bodies can overlap at some point. In all the situations, only one

detection is possible which is mentioned as a limitation of this research.

Multi-person was never considered because one can assist or call for help

if another person present in the same room during or after the fall. Other

than that, if there is also a moving toy or a pet present, the model is

trained to recognize key points on humans only. The model was able to

recognize a human and detect the three points who was observed playing

with a moving toy demonstrated in the third image from the first row in

the above figure 5.5.
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5.5.2 Performance Evaluation

To be considered a correct detection, the area of overlap between the

predicted bounding box Bp and ground truth bounding box Bgt must

exceed 50% by the formula as in Everingham et al. (2015):

a0 =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
≥ 50% (5.2)

Considering the ground truth and the prediction as a centre for

three sub-regions, the bounding boxes representing these regions were

created of height 10 pixels and width of 10 pixels for each. Fig 5.6

demonstrates the output of our model with the overlapping rectangles of

ground truth and output prediction for visual evaluation on LSP dataset.

The ground truth bounding boxes of each regions are represented by ’Yel-

low’ bounding box for Head,’Orange’ bounding box for Torso and ’Pink’

bounding box for lower leg regions.Similarly, for predictions, the bound-

ing boxes that represents the three regions are: ’Red’ for Head,’Green’

for Torso and ’Blue’ for the legs.

Figure 5.6: IoU calulation on LSP and LSP extended dataset.

IoU for each regions is tested on 50 random images from the vali-

dation set which contains 1000 images from LSP datasets and the result

is presented in the table below:
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Dataset Mean IoUHead Mean IoUTorso Mean IoULeg

LSP+LSP extended 53.84 57.36 50.12

Table 5.1: Mean IoU for Head, Torso and Leg on LSP dataset.

The model was tested on 20 videos that contain different activities

including fall from the dataset used in Chua et al. (2015). Different num-

ber of events were observed from the dataset with respect to the number

of events mentioned in their paperChua et al. (2015). It is not men-

tioned how many videos were tested in total in their paper and therefore

it was assumed that only a few numbers of videos were used for their

test. Furthermore, different authors have compared posture detection

from a different perspective in the literature differentiating each posture

in more detail. On the other hand, some of the postures readings are

generalised as one posture like forward, backward or side fall to fall only

and so as with the case of sitting and bending. The evaluation of our ap-

proach on the same dataset provided by Chua et al. (2015) is presented

in table 5.2 below with our own perspective.

Events No.of Events Correctly Detected Incorrectly Detected

Fall 30 30 1

Sit 10 10 0

Walk 83 83 0

Run 6 6 0

Squat 5 5 0

kneel 6 5 1

Table 5.2: Detection of three regions during different activities.

Demonstrating 18 joints prediction using the model from Cao et al.

(2017)and three region based points prediction from the proposed model
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on LSP extended dataset and video1 from Chua et al. (2015) is shown

below in figure 5.7 .

Figure 5.7: Comparing prediction of 18 joints vs 3 points detection in
4 pair of images.

5.6 Failure cases

The model although has performed very well to detect the three regions

during different scenarios, it has also failed in some cases. As seen in

fig 5.8, the first two images represent the problem of deformation of the

body that can easily bring complexity in pose estimation. In this case,

the body regions were not completed distinguished and the regions seem

to overlap.

Figure 5.8: . Failure cases.

In the latter two images, the person is facing upside down. That
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means the direction of the head facing towards the bottom side of the

image. Similarly, even in the other three images, the person is lying

again with the direction of the head towards the bottom of the image.

During a lying pose, y-information is almost same or negligible

among the sub-regions. That means only the x-information contributes

to learning during a lying pose. It is possible that the training dataset

has images where the direction of the human head is mainly towards the

top side of the images. Therefore, it can be confusing for the model when

the head is towards the downside of the image. This logic can also be

justified by another information of the PAF. Usually, PAF is considered

for preserving the direction information in pose estimation Cao et al.

(2017) where the model learns to identify connections with directions(

left and right) among the human body joints. In our case, the sub-regions

are the average value represented at the centre of their group of joints.

Hence this model understands only the connection between these three

regions in one direction and that could be the major reason for this kind

of failure. Fine-tuning the model with more images having such cases

where the human head is present at the lower end of the image can help

to obtain better accuracy. Other than that, using a vertical flip during

data augmentation can also be beneficial.

5.7 Conclusion

This paper presents a stable region-based detection strategy that can

be used as an alternative to the traditional tracking of human body

regions during a fall. The detection of a person that has fallen in real-

time is the major interest of this study. The detected three regions can

provide significant clues to locate the human body part to distinguish

fall from other activities. The proposed model is able to detect region
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on different postures during fall with 96.7 % accuracy. In comparison

to Chua et al. (2015), the detection accuracy was only 90.5 % on the

same data due to difficulty in identifying 3 valid regions. Traditional

head tracking approach proposed in Rougier et al. (2013) failed in a

number of cases due to loss of balance during fall and partial occlusion

of the head. Moreover, the model is also able to detect complex pose like

kneeling with 83.3 % accuracy. Experimental results indicate that the

proposed method can detect and track people during a fall with better

accuracy and stability in real-time. This part of the work is available at

Adhikari et al. (2019).The possibility of using these region locations as

features for classification of fall and non-fall activities is further explored

in the next chapter.
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Chapter 6

LSTM Based Fall Recognition

Using Posture Information

6.1 Background

Fall is a series of change of poses and these changes take place at a

higher speed when compared with other normal activities. Therefore to

understand this characteristic of fall, one needs to analyse a sequence of

frames that contains all kind of activities. However, a fall sequence will

demonstrate a faster change of pose that is from standing or sitting to

lying and hold a longer lying pose after for a certain period. This is a

distinguishing unique characteristic of fall from other normal activities.

Pose estimation can be beneficial to analyse the rate of change of pose. It

is possible to detect the position of the person with information on body

regions or joint positions. The actual posture and position of the body

during the activities can be used as the features for classification of action

in a sequence of images. The sequence of images can be represented

as one whole action and then can be used as ground truth to train a

classifier that can handle a whole sequence, learn and make use of the
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contextual information from the sequence to predict back correctly on

similar actions. The basic idea is to make use of temporal information

that is the correlations between the images. In general, a sequence of

images taken at different time-steps can be used to monitor the dynamic

changes observed in the pose of the human body. This will, in turn,

provide a significant clue to distinguish fall from other normal activities.

Long Short-Term Memory (LSTM) networks are a type of recurrent

neural network capable of learning order dependence from a sequential

input. They are able to use contextual information from the input chain

using memory cellsSak et al. (2014). Finally, the posture information

is feed to LSTM for fall detection. The LSTM model takes two inputs:

posture information and the corresponding label for a sequence length

to represent an action. Classification of activities is considered in terms

of three categories: Class1 as Empty which represent the absence of

a person in the scene, class2 as no fall which represent all the normal

activities such as standing or sitting and class3 as fall. The fall class

sequence is carefully labelled from the start of fall that is when the body

starts to tilt or bend towards the ground until the body touches the floor

in a stable way. Besides that, all the after fall poses which is mainly lying

are considered as no fall.

6.2 Our contribution

The contribution of this chapter is to use the location of the three de-

tected human body region as primary features for the classification of

fall. The location information when considered in a sequential data can

provide a unique pattern and this pattern can be identified as a clue

by the LSTM based recurrent network to differentiate fall from other

activities.

95



6.3 Proposed LSTM Architecture

The model of our LSTM architecture is shown in figure 6.1.

Figure 6.1: . Proposed LSTM architecture.
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In this proposed LSTM architecture in figure 6.1, a fixed length

of posture feature sequence is considered as input together with a label

that represents the class for the whole sequence. These inputs are fed

forward to the LSTM with hidden units of size 256. It is then again

followed by another four dense layers with hidden units of size 128, 64,16

and 8. The activation functions in these layers are RELUs. The final

dense layer with hidden units of size 3 is the output layer that uses the

Softmax activation function for predicting the 3 classes.

The length of the layer and the size of hidden units are solely based

on the trial basis as recognised by their impacts on the behaviour of the

model.

6.4 Training and validation

The first 22 video datasets were used out of 24 datasets from Rougier

et al. (2013) to predict the three regions and then used them as features

for classification with the help of LSTM. The datasets are recorded with

8 different views. This is also beneficial for the proposed region based

posture detection in case if detection does not work from one view. All

the activities are classified into three categories: Empty(absence of per-

son), no fall(activities other than fall) and fall. The number for frame

sequences considered is 40 for the classification of each activity as ground-

truth. The length is chosen with the aim that a complete action is cap-

tured in a sequence.
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6.5 Experimental result

The LSTM model is trained with 278 samples and validated on 120

samples with a batch size of 32. Adam is used as the optimizer with the

learning rate of 0.0048 for 80 epochs. The overall accuracy of 88.33% on

validation is achieved in the 13th epoch as shown in figure 6.2 below. The

strategy of saving the best model is implemented whenever the accuracy

of the model increases to another higher level. The confusion matrix is

used to evaluate the performance of the proposed model.

Figure 6.2: . Training and validation on proposed LSTM.

Figure 6.3 demonstrates the performance of the classification model

in confusion matrix. The number in the diagonal represents the number

of correctly predicted samples and the confusion of the model for each

class in the rest.
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Figure 6.3: . Performance evaluation using confusion matrix.

The performance of the proposed model was analysed on the basis

of a simple 2 class confusion matrix. Precision, sensitivity or recall and F-

score are three important metrics that are widely used in the performance

measurements.

The precision metrics inform about how precise or accurate our

model is based on the total number of positive predictions. it can be

calculated as:

Precision =
TruePositive(TP )

TruePositive(TP ) + FalsePositive(FP )
(6.1)

The sensitivity or recall is the proportions of falls which are cor-

rectly detected. This gives the actual accuracy of the model for detecting
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only falls correctly. It is calculated as:

Recall =
TruePositive(TP )

TruePositive(TP ) + FalseNegative(FN)
(6.2)

F-Score is important to balance between precision and recall as

accuracy cannot identify the imbalance between the class. A model can

have high accuracy despite poor fall detection as it might be good on

detecting more non-falls. It can be calculated as:

FScore = 2× Precision×Recall
Precision+Recall

(6.3)

The result from confusion matrix in terms of these metrics for each

class are presented in the table 6.1 below:

Class Precision Recall F-Score

Empty 0.72 0.93 0.81

No Fall 0.94 0.87 0.91

Fall 1.00 0.87 0.93

Table 6.1: Performance metrics for evaluation of fall detection system.

6.6 Discussion and Conclusion

The precision of class fall is 1.0 which is the most desirable in the case

of fall detection. This means that the probability that any alarm raised

will be an actual fall and not a false alarm. In the case of the fall class, as

seen in the confusion matrix, false positive is zero. Achieving a minimum

false positive means the ability of the model to predict correctly is higher.

It can be of great advantage especially in the case of fall detection. This

means one could avoid the cost that can incur due to the false alarm.

Calling the medical team and the ambulance for help is very costly when
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it is in fact not needed. They could be more efficient somewhere else

where the fall has actually occurred.

Similarly, a recall value of 0.87 is observed from the above table

for the fall class. Recall value could, therefore, help us to select the best

model when there is a high cost associated with a false negative. If a fall

detected as no fall or empty, there can be life-threatening consequences

for the fallen person. This is also verified from the confusion matrix

that 13 falls were correctly predicted out of 15 falls. This is a promising

result considering the fact that the number of fall classes in the dataset

is lower in number in comparison to the other activities. Getting more

fall classes for training in the dataset could improve the detection rate.

The F-measure or F-score of 0.93 is observed from the above table

for the fall class. This is promising once again. The F-measure provides a

good overview of the performance of the model in terms of fall especially

as it considers all outcomes: Detected falls (TP), missed falls (FN) and

false alarms (FP) except non-falls (TN) Broadley et al. (2018). It is

therefore crucial in a sense that it provides the actual accuracy of the

model to detect only falls rather than detection of overall classes that

contribute to the total accuracy.

The specificity of our fall class is 100% compared to 98.8% achieved

by Wang et al. (2016) on the same multi-view camera based dataset. We

were able to achieve 88.33% overall accuracy with the help of LSTM using

location features detected from our proposed posture detection strategy.
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Chapter 7

Conclusion and Future Work

7.1 Thesis Contribution

The first major contribution is to be able to develop a pose recognition

system using the convolution neural network for activities classification

using both RGB and Depth images. Application of RGB and Depth

using the convolutional neural network is still not completely explored

according to the literature, especially for fall detection. The closest work

to ours in fall detection for the elderly using RGBD camera was presented

by Zhang et al. (2012). They also used Kinect sensor to record 5 dif-

ferent activities for recognition which are fall from the chair, fall from

standing, standing, sitting on the chair, sit on the floor. They achieved

76% accuracy for the appearance model. Another work similar to our

in human activity detection using RGBD was presented by Sung et al.

(2011). They captured different activities for recognition using RGBD

images from the Kinect sensor. They were able to achieve the overall

performance of 84% accuracy in detecting the correct activity where the

person is seen before in the training set and 64.2% when the person was

not seen before. In comparison to them, we are able to achieve 81%
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accuracy during validation test where the person is seen but not the

room in the training set and 74% on the test where the person and the

room are never seen in the training set. The sensitivity of lying pose

is 99% which is extremely desirable in fall detection where an after-fall

pose is considered to be lying. Our approach also can preserve privacy

displaying only foreground mask from subtracted depth. This system

is capable of recognising pose overcoming almost all the challenges that

exist in computer vision to some extent.

Secondly, the location of the person can better explain where the

person was during the fall. Hence, pose estimation was explored where

human joints can be predicted to understand the location of the human.

But pose estimation are not stable in a falling sequence. The problem in

pose estimation was identified, especially during fall. Fall adds further

complexity due to difficult poses that change at a higher speed. There-

fore, a solution is proposed which is to group the nearby joints to detect

three stable regions of the body. Location of these regions can provide a

significant clue for distinguishing fall from other normal activities. The

model was able to detect three body regions with 96.7% accuracy in

comparison to Chua et al. (2015) who were able to achieve only 90.5%

accuracy on the same dataset. The three regions based posture detection

was also tested on several publicly available datasets.

Finally, these locations information from the three-body region of

the postures were used as features to an LSTM based recurrent neural

network. The location information was feed in a sequence of the length

of 40 frames to the LSTM to identify the unique pattern that a fall has

from other normal activities. The ground truth was created in the form

of three classes to demonstrate fall, no-fall and empty cases. The fea-

tures were labelled as classes and used as input for the proposed LSTM

recurrent network to classify fall from other activities. The model was
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able to achieve 88.33% accuracy with our proposed LSTM model. Com-

paring the specificity of the fall class, the proposed LSTM model was

able to achieve 100% specificity while Wang et al. (2016) were able to

achieve only 98.8%.

7.2 Limitations

Following are the limitations of our research work:

• Although at the initial stage, RGB and Depth were both used as

input for pose classification, the later stages used only RGB input.

Limited availability of depth images for pose estimation and limited

distance information were major issues in their deployment in the

later stages.

• Posture detection fails when the fall ends up opposite to the camera

angle that is head facing towards the bottom of the image. This

can affect the classification using LSTM if the posture information

is not recorded for a fall in such direction.

• The system is trained with images where only one person is present.

The system does not recognise multiple persons in the same frame

and therefore there is a risk that a fallen person may not be de-

tected in the presence of another person.

• The other limitation of this research is that it does not run in

one attempt. Different stages are combined to finally achieve fall

classification.
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7.3 Future work

The recommended future work for this research are as follows:

• In future, it is recommended to training the model using more

balance data for fall and normal activities to improve the accuracy

for posture detection.

• Data augmentation settings can be further explored where the per-

son can be rotated to a greater angle, use vertical and horizontal

flips to enhance the learning of the model for detection. Better

posture detection can improve the classification accuracy of LSTM

in the final stage.

• Training the model with night scenes where the visibility is poor

can also be beneficial. This can help in the further generalisation

of the model.

• Test the detected region features with other classification tech-

niques to explore further possibilities in fall detection.

• In future, one can try to track a falling person in the presence of

another person.
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Adhikari, K., Bouchachia, H. and Nait-Charif, H., 2017, May. Activity

recognition for indoor fall detection using convolutional neural network.
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Adhikari, K., Bouchachia, H. and Nait-Charif, H., 2019.Long Short-

Term Memory Networks Based Fall Detection Using Unified Pose Esti-

mation. In 2019 Twelfth International Conference on Machine Vision

(ICMV 2019). SPIE.
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