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Abstract

We present a novel self-supervised framework for monocular image depth learn-

ing and confidence estimation. Our framework reduces the amount of ground

truth annotation data required for training Convolutional Neural Networks

(CNNs), which is often a challenging problem for the fast deployment of CNNs

in many computer vision tasks. Our DepthNet adopts a novel fully differential

patch-based cost function through the Zero-Mean Normalized Cross Correlation

(ZNCC) to take multi-scale patches as matching and learning strategies. This

approach greatly increases the accuracy and robustness of the depth learning.

Whilst the proposed patch-based cost function naturally provides a 0-to-1 con-

fidence, it is then used to self-supervise the training of a parallel network for

confidence map learning and estimation by exploiting the fact that ZNCC is a

normalized measure of similarity which can be approximated as the confidence

of the depth estimation. Therefore, the proposed corresponding confidence map

learning and estimation operate in a self-supervised manner and is a parallel

network to the DepthNet. Evaluation on the KITTI depth prediction eval-

uation dataset and Make3D dataset show that our method outperforms the

state-of-the-art results.

Keywords: Monocular Depth Estimation, Deep Convolutional Neural

Networks, Confidence Map

Email addresses: alwaysunny@gmail.com (Long Chen), wtang@bournemouth.ac.uk (Wen
Tang)

Preprint submitted to Journal of LATEX Templates January 16, 2020



1. Introduction

The human vision system is amazingly complex and extremely delicate. It

can perceive depth through stereopsis, which relies on the displacement of the

same object between the images received by the left and right retinas [1]. With

extensive visual experience and through trial and error, humans develop the5

ability to use contextual depth cues to achieve good and reliable perception of

depth and better understanding of spatial structure. Among these depth cues,

most of them do not rely on stereopsis (the perception of depth from binocular

vision), such as object occlusion, perspective, familiar and relative size, depth

from motion, lighting and shading. Therefore, if blind in one eye or if performing10

a monocular task such as endoscopic surgery, we can still judge distance from

these many di�erent intuitive depth cues. In contrast, when using machine

vision it is hard to infer the non-stereopsis depth cues.

With the recent development of Deep Convolutional Neural Networks (DC-

NNs), machines can solve many computer vision problems when provided with15

very large human annotated datasets such as ImageNet [2], which is known as

supervised learning. Acquisition of labelled datasets is one of the biggest chal-

lenges for supervised learning, however, which is an expensive, time-consuming

and labour-intensive task.

In this paper, we propose a novel self-supervised computational framework20

that mimics the process of how a human learns varies of contextual depth cues

from stereopsis. We propose to "teach" the neural networks to "learn" the depth

Figure 1: Our proposed framework can simultaneously estimate depth and the con�dence of

estimated depth.
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by themselves from "looking" to stereo image pairs. To be more speci�c, we

construct a patch-based loss function that leverages the epipolar constraint [3] of

stereo vision to minimize the depth prediction error from the context of a single25

image for each training iteration. Our approach does not require the ground

truth depth for supervised training. Instead, we derive the implicit function of

estimating depth from monocular images by the epipolar constraint of the stereo

image pair, which is very easy to acquire compared with the ground truth depth

that can only be obtained from LiDAR measurements. Therefore, our method30

can be regarded as self-supervised learning.

Compared with previous work [4] [5] [6] addressing the same problem, we

propose a novel patch-based depth learning strategy, inspired by the classic

patch matching algorithms for �nding the best-matched patches between the

left and right images. We use the Zero-Mean Normalized Cross Correlation35

(ZNCC) to measure the normalized similarities between these patches. A fully-

di�erential patch-based ZNCC cost function is implemented to guide the depth

synthesis process for more accurate and robust results. Visual assessment shows

that our approach can produce more accurate and reliable depth estimations in

both texture-rich and texture-less areas due to the enlargement of matching �eld40

from a pixel to a patch (see Figure 5). Empirical evaluations on KITTI dataset

demonstrate the e�ectiveness of our approach and produce a state-of-the-art

performance in monocular depth estimation task.

Our second contribution is that we train a parallel DCNN to evaluate the

performance of the monocular depth estimation which can output a 0 to 1 con-45

�dence map. The parallel DCNN is also trained in a self-supervised manner

thanks to our ZNCC similarity measurement function. As ZNCC is a nor-

malized measure of similarity, which can be approximated as the con�dence

of the depth estimation, we take the ZNCC loss to self-supervise the parallel

DCNN (Con�denceNet) during training so that we can estimate the con�dence50

of the depth estimated from the �rst DCNN (DepthNet) during testing mode

as shown in Figure 1. A con�dence map is extremely useful for the monocu-

lar depth estimation task trained in an unsupervised manner, as the learned
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epipolar constraint only works well when there are clear corresponding pixels

between the image pairs; it will fail and produce uncertain depth when occlusion55

and specularity exist in the images. Our con�dence map can give a real-time

assessment of the reliability of the predicted depth, which can then be further

integrated into many applications such as monocular dense reconstruction [7],

SLAM-based depth fusion [8], and many tasks need crucial accurate and con-

�dence such as the monocular endoscopic surgery and the perception task for60

self-driving.

2. Related Work

2.1. Stereo Depth Estimation

The problem of stereo images depth estimation has been well studied for

a long time [9] [10]. With the theory of epipolar constraint, accessing depth65

from stereo images can be regarded as a well-posed problem when ignoring the

occlusions and depth discontinuities. Many stereo vision algorithms managed to

achieve comparable results to ground truth depth acquired from depth sensors

[11] [12].

2.2. Monocular Depth Estimation70

In contrast, estimating depth from monocular images is an ill-posed problem

that is inherently ambiguous [13], and many research e�orts have been devoted

to the problem of monocular image depth estimation. One of the classic methods

is Shape from Shading (SFS) [14], which is based on the gradual variation of

shading as a cue to estimate the shape and depth. However, SFS has a strict75

prior assumption of Lambertian reectance, uniform color and texture, and

�xed light source direction, which are not applicable to most of the images

in the real world. Saxena et al [15][16][17][18] used Markov Random Field

(MRF) incorporated with multiscale image features to learn monocular cues

in a supervised manner. However, the hand-craft local features used in these80

approaches limit the expressive power of supervised learning, and lack a global

contextual understanding of the scene for learning consistent depth.
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2.3. DCNNs based Monocular Depth Learning

More recently, DCNNs [13] [19] are introduced to solve the challenge of

monocular depth estimation problem, and has pushed the state-of-the-art for-85

ward in this area. Building on the success of this approach, several improvements

have been made by incorporating probabilistic models such as Conditional Ran-

dom Fields (CRFs)[20] [21] [22] [23] [24], advanced network structures such as

Resnet [25], fully convolutional Resnet [26], two-streamed networks [27], multi-

task joint training [28] [19] [29] [30] [31] and novel loss functions such as sparse90

semi-supervision [32] [33], relative depth [34] [35] and depth as classi�cation

[26]. Impressive as these works are, ground-truth depth data are still needed for

the supervision of training these DCNNs. Recently,

2.4. Unsupervised Monocular Depth Learning

Driven by DCNNs, view synthesis technology [36] has proven to be e�ective95

on synthesizing new views by sampling pixels from existing views [37] [38], which

enables novel frameworks of unsupervised learning of monocular depth from

stereo pairs, e.g., Deep3D [39], Garget al [4]. The works by Godardet al [5] and

Zhou et al [6] advanced the networks by incorporating left-right consistency and

pose estimations. Further improvements including introducing Visual Odometry100

(VO) or Multi-View Stereo (MVS) to learn depth from monocular videos [40]

[41] [42] [43]. However, a common weakness of these approaches is the use

of pixel-wised photometric loss (L1-norm) to construct loss functions to guide

the back-propagation process. Gradients are derived from the pixel intensity

di�erence [6], which will lead to ambiguous gradients in texture-less areas and105

also in the regions that contain the mixture of thin structures and texture-less

areas. Although multi-scale and smoothness loss functions are used to prevent

such issue [4] [5] [6], the results are still not desirable and gradients are still

likely to converge to local minimums due to the ambiguous pixel-wise loss. As

shown in Figure 5, in a common speed limitation board area from the KITTI110

dataset, the direct pixel-wise photometric loss will lead to many local minimums

shown in the right curve chart. While as the left curve chart shows the result of
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using our proposed patch-based ZNCC loss, the loss is more smooth and likely

to converge to the global minimum in the epipolar line. And the experiment

result (the last row in Figure 5) shows our proposed method can e�ectively115

generate accurate depth in complex regions.

2.5. Novelty Compared to Previous Work

We propose a novel multi-scale patch-based cost function that adopts the

ZNCC as a similarity function to explicitly enlarge the matching �eld and in-

crease the matching robustness. From another point of view, our proposed120

patch-based cost function implicitly integrates the classic Patch Matching (PM)

algorithm as a minimization problem in our loss function. Although Garg et al

[4] have discussed a straightforward idea of using the stereo matching algorithm

as a pre-processing method to generate \quasi ground-truth" depth for train-

ing, their result is not desirable due to the poor quality of \quasi ground-truth".125

Similarly, Guo et al [44] proposed a more advanced method by training a proxy

stereo network from synthetic, then �ne tuned it on real data, and �nally used it

to train a monocular network. Due to the good quality of the �ne tuned stereo

network, the distilled monocular network can achieve good results. In contrast,

Luo et al [45] also proposed a similar framework that �rstly use a DCNN to130

synthesize stereo pairs from single images, and then use conventional stereo

matching to get depth for monocular depth training. Essentially di�erent from

these works which separate the stereo matching with monocular depth learning,

we treat the stereo matching as a minimization problem and implement a fully

di�erential Patch-Matching algorithm as a cost function that is seamlessly in-135

tegrated into our neural network. As the loss of the PM cost function can be

passed through the whole network during a backward propagation, our network

can produce more robust and consistent depth by large-scale self-supervised

training, which will not be limited by the performance of o�-the-shelf stereo

matching algorithms.140

Another novelty of our work is the con�dence map. As monocular depth

estimation itself is an ill-posed problem, although learning-based approaches
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Figure 2: Framework for proposed self-supervised monocular depth learning and con�dence

estimating networks.

achieve comparable results to stereo depth estimation, there are still many un-

avoidable mistakes in the predicted depth map. For the �rst time, our method

is able to provide a pixel-wise con�dence of the predicted depth by using a par-145

allel DCNN to capture and learn the con�dence during training. The con�dence

map will greatly improve the usability of deploying monocular depth estimation

into many practical tasks.

3. Method

3.1. Framework Overview150

Figure 2 illustrates the entire framework for our self-supervised monocu-

lar depth learning and con�dence estimation networks. Since the ground-truth

depth Dgt is absent for supervised training, we treat the monocular depth es-

timation as a problem of image synthesis error minimization during training.

Speci�cally, during training, we use the left imagesI l of the stereo pairs to syn-155

thesize per-pixel depthD using an encoder-decoder networkD = Fdepth (I l ; � ),

which is converted into disparities mapsd by the Equation 2. The disparities

map d is then used to guide the stereo view reconstruction̂I r = Fwarp (I l ; d) and

the sampling of patchesNx � d;y = Fsample (I r ; d). After that, the loss function

L total is calculated based on Patch Matching LossL P M , View Reconstruction160
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