
Received December 9, 2019, accepted January 9, 2020, date of publication January 14, 2020, date of current version January 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966630

Classification Algorithms Framework (CAF) to
Enable Intelligent Systems Using JetBrains MPS
Domain-Specific Languages Environment
SOFIA MEACHAM 1, (Member, IEEE), VACLAV PECH2, AND DETLEF NAUCK3
1Department of Computing and Informatics, Bournemouth University, Poole BH12 5BB, U.K.
2JetBrains MPS, 140 00 Prague, Czech Republic
3British Telecom, Adastral Park, U.K.

Corresponding author: Sofia Meacham (smeacham@bournemouth.ac.uk)

This work was financially supported by research funding allocated directly from British Telecom (Data Science team in BT Research
Headquarters in Adastral Park) to Bournemouth University.

ABSTRACT This paper describes the design and development of a Classification Algorithms Frame-
work (CAF) using the JetBrains MPS domain-specific languages (DSLs) development environment. It is
increasingly recognized that the systems of the future will contain some form of adaptivity therefore
making them intelligent systems as opposed to the static systems of the past. These intelligent systems
can be extremely complex and difficult to maintain. Descriptions at higher-level of abstraction (system-
level) have long been identified by industry and academia to reduce complexity. This research presents a
Framework of Classification Algorithms at system-level that enables quick experimentation with several
different algorithms from Naive Bayes to Logistic Regression. It has been developed as a tool to address
the requirements of British Telecom’s (BT’s) data-science team. The tool has been presented at BT and
JetBrains MPS and feedback has been collected and evaluated. Beyond the reduction in complexity through
the system-level description, the most prominent advantage of this research is its potential applicability
to many application contexts. It has been designed to be applicable for intelligent applications in several
domains from business analytics, eLearning to eHealth, etc. Its wide applicability will contribute to enabling
the larger vision of Artificial Intelligence (AI) adoption in context.

INDEX TERMS Classification algorithms, domain-specific languages, framework, intelligent systems.

I. INTRODUCTION
It is increasingly recognized that intelligent and adaptive
systems are the systems of the future [1]. The era of static
software and systems development that were the same inde-
pendent of the environment is coming to an end and all
application areas would need to add some ‘‘intelligence’’ that
will allow them to learn and adapt as they operate and collect
data. Furthermore, data collection and processing, commonly
called data analytics, are going to be part of all systems and
software in the modern big data era.

In order to add ‘‘intelligence’’ to systems the most com-
monly used algorithms are the classification algorithms. The
current practice followed by the data scientists is to use
libraries for classification algorithms such as scikit-learn,
etc. that provide python implementation code for a wide

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhe Xiao .

range of algorithms. Most of the times, the data scientists are
using directly the scikit-learn interfaces in order to run the
algorithms and get the results. This is a detailed and not very
user-friendly process.

There is a need to abstract the use of classification algo-
rithms at a system-level and provide an interface that would
be more user-friendly and achievable for the non-data scien-
tist user. This need has been recognized in environments such
the weka library that provide a user-friendly web interface.

However, in both the above approaches, an integrated
environment where the classification algorithms would be
considered at the system-level and in application context is
missing.

On the other hand, recent research in software and
systems engineering focuses on domain modeling and pro-
viding tools for abstracting technical implementation details
and leaving the domain expert-user to handle only domain-
related information. Domain-specific languages (DSLs) are a

14832 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8474-4917
https://orcid.org/0000-0002-0440-5772


S. Meacham et al.: CAF to Enable Intelligent Systems Using JetBrains MPS DSLs Environment

powerful tool for customized solutions that provide abstract
and domain-specific interfaces.

In this research, we used the JetBrains MPS DSL devel-
opment environment in order to develop a Classification
Algorithms Framework (CAF). This abstracted the detailed
information normally required for using the classification
algorithms by offering the user a one-page interface. Last
but not least, the developed CAF can be reused in other
application domains through the language modularization
offered by MPS. This can be accomplished by developing a
new domain language corresponding to the application, such
as a language for interfacing with business managers, medical
professionals, education professionals, etc. and then using
CAF in order to perform data analysis.

A background study on related work is presented in
Section II. Specifically, we start with the definition of intelli-
gent systems, existing research on frameworks for classifica-
tion algorithms and research for system-level descriptions of
intelligent systems. A background study of work on domain-
related research from software engineering is also presented
as it is part of our proposed solution. In Section III, our
developed Classification Algorithms language-Framework is
presented. The structure of the language is given through
the corresponding diagrams of the concepts. The way the
language can be used and extended aswell as the strong points
of the approach such as the code generation and extensibility
are also demonstrated. In Section IV, the evaluation through
feedback and workshops by BT and MPS engineers is pre-
sented. Finally, in Section V our conclusions and future plans
are detailed.

II. RELATED WORK
To the best of our knowledge, there is no direct comparable
work both in industry and academia.

This section consists of related work that attempts to
address the general problem of designing and implementing
intelligent or smart systems as they are called interchangeably
in the literature.

By intelligent systems, we refer to all systems that make
use of data collection and processing and adapt according to
the outcomes of these processes. Intelligent systems range
from systems that employ simple machine learning tech-
niques (adaptive systems) to inform the users (human-in-the-
loop) of the results from collecting and processing the data,
leaving the final decisions to the users, to fully autonomic
systems where the systems make decisions automatically
and without human-in-the-loop [2]. In all cases and irrele-
vant of the level of automation, special attention and new
techniques should be developed for intelligent systems in
order to address their complexity [3] and their applicability to
many contexts from business analytics [4] to IoT and smart
cities [5].

On the other hand, the algorithmic Artificial Intelligence
(AI) research has progressed so much in itself, and com-
plicated algorithms have been developed. However, their
applicability to several domains is being hindered by the

difficulties in explaining these algorithms and encapsulating
them at different contexts and at a system-level.

In this research, we have designed and developed a new
language for using classification algorithms (CAF) in domain
context. In the following subsections, existing work for clas-
sification algorithms frameworks, current industrial practice,
system-level descriptions of intelligent systems and current
status for domain-related and AI in context research are
detailed.

A. EXISTING WORK
1) RESEARCH: FRAMEWORKS FOR CLASSIFICATION
ALGORITHMS
The term ‘‘Framework’’ in general refers to providing a
predefined set of common functionalities in order to assist a
solution development. This can be applied to several domains
with most known ones the web frameworks for web devel-
opment (e.g. web2py, Django, etc.) and for different appli-
cation contexts such as education in [6]. Frameworks can
be software implementations that encapsulate expertise of
some domain and can therefore be based and built upon
architectural design patterns or a set of solutions [7] .

In this research, we developed a Classification
Algorithms Framework (CAF) using domain-specific lan-
guages. According to our knowledge, there is no exact work
that directly compares with this.

Most of the research work in ‘‘Frameworks for Classifi-
cation Algorithms’’ falls in the category of trying to solve a
particular application problem. For example, in [8], the focus
is on benchmarking of classification algorithms applied to the
domain of predicting software defects. In [9], a framework
for characterizing electric energy consumers is being built
using quality metrics. Both these works are focusing on how
to evaluate classification algorithms’ performance in specific
applications. No work up to now focuses on providing the
classification algorithms in their context and most of the
research revolves around optimizing the algorithms or choos-
ing a better algorithm in order to solve a problem. This type
of research is algorithmic research and it is a continuing and
very promising field. However, the advances in this field will
be of limited use if the algorithms are not adopted in several
application domains-contexts.

It is important to note that there are attempts to provide
tools that aid the use of AI for problem solving, such as
DataRobot, Dataiku, etc. However, none of these works
approach the problem from the domain focus and particu-
larly the separation between business and IT aspects that
domain-driven design is bringing in our proposed solution.
The DataRobot company is focusing on providing tools that
aid the automated and rapid evaluation of potential predictive
modelling solutions for prediction problems using statistical
learning techniques. This approach utilizes AI to enhance
software tool development (statistical learning to enhance the
tool) for developing AI itself. This is an advanced technique
that optimizes tool development (irrelevant of whether it is

VOLUME 8, 2020 14833



S. Meacham et al.: CAF to Enable Intelligent Systems Using JetBrains MPS DSLs Environment

for AI application development or not) but doesn’t address
the domain focus (through separation between business and
IT aspects) that is required by modern complex applications.
On the other hand, the Dataiku company is focusing more on
providing tools for the different stakeholders through a col-
laborative team-based interface that would be very beneficial
for the multidisciplinary and multiple-stakeholder projects of
our times. The main difference with our proposed environ-
ment is that, through domain modelling using MPS Jetbrains
DSL development, a personalized interface for each domain
expert can be delivered; this will contain all the details rele-
vant for their domain and abstractions for the rest. However,
the idea of collaborative interfaces (from Dataiku) could be
a useful future extension for our work, as well as using AI to
enhance the developed tool (fromDataRobot), In conclusion,
none of these approaches utilize the latest research on domain
modeling, with all of its corresponding benefits, such as
separation of business and IT or domain focus (that abstracts
implementation details from the user).

2) CURRENT PRACTICE MAINLY IN INDUSTRY: LIBRARIES
FOR CLASSIFICATION ALGORITHMS AND NOT
SYSTEM-LEVEL DESCRIPTIONS
In industrial applications and in many publications, libraries
that provide code for classification and other data science
algorithms are being extensively used. The following plat-
forms were identified as most commonly used: Weka library
is an open source Java-based platform. The advantage is that
it is an approachable platform for new comers as it has a
graphical user-interface for enhanced usability [10]. One of
the disadvantages of this tool is that it does not include all the
latest machine learning techniques. Scikit-learn is the most
popular python-based framework built upon two existing
libraries NumPy and SciPy. The advantage of using scikit-
learn is the number of algorithms available to the developer
and the fact that it provides source code in a widely used lan-
guage such as Python. However, although many algorithms
are provided, they are not tailored to solve deep learning [11].
Deep Learning 4 J is a framework that is primarily used for
deep learning tasks [12]. MLPack is efficient as regards to
speed [13]. Caffe is ideal for image recognition [14]. Apache
mahout is used for distributed computing therefore offering
scalability [15].

Summarizing and from our experience, the weka library
and scikit-learn stand out the most with weka having the best
user-interface and scikit-learn providing source-code python
implementations and a wider range of algorithms.

However, the level of abstraction used in all these libraries
is implementation/code-level. This is a big problem in com-
plex systems as code-level often means at least thousands of
lines making very hard to depict AI in context.

3) RESEARCH: SYSTEM-LEVEL DESCRIPTIONS OF
INTELLIGENT-SMART SYSTEMS
The literature in the area of intelligent systems (smart sys-
tems in this context) and their system-level descriptions

focuses on specific application domains and most commonly
IoT-related applications and discusses about formalisms
(SysML, SystemC, etc.) and simulations of complex systems.
Smart systems are equivalent to IoT systems in these contexts
as is presented recently in [16], [17].

Another area of research named Model-Based Machine
Learning focuses on creating models for solving application
problems that can be converted to machine learning algo-
rithms [18]. Part of this direction is the Bishop’s model [19].
This area is concentrating in the algorithmic requirements
posed by applications and can be categorized as algorithmic
research.

B. DOMAIN FOCUS IN ORDER TO PROVIDE AI IN
CONTEXT
All the above research doesn’t address the main issue we are
increasingly facing with AI adoption: the applicability of AI
algorithms in context. AI algorithms are very complicated
and require extensive research in a specialized field that
takes years to build. However, even the greatest performing
algorithms won’t be useful if they cannot be applied in real-
world applications.

Domain modeling is a rising area of research in systems ad
model-based engineering and most of the latest conference
papers are presenting ‘‘some kind of domain model’’ as their
innovative artefact.

The domain-related research has two main forms: domain-
driven design and domain-specific modelling.

The domain-driven design (DDD) according to its pio-
neer books in [20], [21] (called the ‘‘blue’’ book and the
‘‘red’’ book in the domain-driven societies by Eric Evans and
Vaughn Vernon) focuses on changing the way programmers
code andmaking it more efficient. It’s main strategy for this is
the separation of the domain issues from the implementation
which is effectively the evolution of the well-researched field
of business-IT alignment [22]. When following the patterns
defined by DDD pioneers, your code becomes a lot easier
to handle and maintain and there is a massive trend in the
industry for this approach. In order to benefit the most from
DDD, a range of patterns and DDD principles should be
applied for the duration of the project. In DDD, the system-
level model is not used, and your model is your code, which
means that the effort in learning modeling formalisms and
applying them to application contexts is being replaced by
learning DDD principles and applying them directly to your
coding. In our experience, it is debatable if system models
should be eliminated after all as the maintenance of the
code and handling its complexity are more easily handled by
systemmodels and classical model-based approaches and not
through enormous amounts of low-level code.

The domain-specific languages (DSLs) are the other
domain-related research that is focusing on developing new
languages to solve particular problems with emphasis on
isolating the domain-specific interaction from the actual code
implementation. Generally, the DSLs follow the domain-
driven design principles as the underlying idea is the same.

14834 VOLUME 8, 2020



S. Meacham et al.: CAF to Enable Intelligent Systems Using JetBrains MPS DSLs Environment

However, they focus on a development of a new language
that will give the domain expert an interface that targets
only the domain and hides all other implementation details.
They require effort and advanced technical expertise to build.
However, once they are built, they are optimal for the specific
problem [23]. Several advantages of DSLs have been detailed
in the literature [24]–[26], the most important of which being
the fact that they are usually smaller than general program-
ming languages and are therefore more efficient and quicker
to get used to.

There are two main streams of work in the area of DSLs:
the xText based work and the JetBrains MPS development
environment. In this work, we have chosen the JetBrains
MPS development environment as it contains more high-
level descriptions and better tooling according to our personal
experience. Also, an important aspect for our application
domain which is language composability is very strongly
supported by JetBrains MPS as detailed in [27].

This capability stems from the projectional nature of the
MPS editor. The languages in MPS, unlike in most today’s
language technologies, are not defined in terms of grammars
and parsers. Instead, MPS languages are defined in an object-
oriented manner using the notion of Concepts. Concepts
define essential language elements, such as IfStatement, Vari-
ableDeclaration, InputFileSpecification, ClassificationRule,
etc. Concepts specify their properties, children and refer-
ences and may form inheritance hierarchies, just like, for
example, classes inmost general-purpose object-oriented lan-
guages. So, an IfStatementmay be a sub-concept of a concept
Statement and so may inherit some capabilities from it.

The actual models consist of Nodes. Nodes are instances
of Concepts and form tree-like hierarchies with Root Nodes
at the base of the trees and other nodes being organized in
parent-child hierarchical relationships. These trees are gener-
ally called Abstract Syntax Trees (AST).

When the user desires to open a particular Root Node of the
model, theMPS editor projects theNodes that form the tree of
that Root Node on the screen. The way the AST is projected
on the screen and the way it reacts to user actions is defined
by the editor aspect of the language. The visualization, also
called notation, may vary depending on the user require-
ments. Structured text, non-textual symbols (e.g. math sym-
bols), tables, diagrams - these are all possible, as well as their
combinations. Language modularity is a natural consequence
of projectional editing. The code of the model is never in an
‘‘unresolved’’ textual form, instead it consists of Nodes. Each
of theseNodes unambiguously identifies theConcept it repre-
sents, irrespectively of the language that defines the Concept.
Adding more languages to a project merely expands the
virtual palette of Concepts that become available to the user.

III. PROPOSED SOLUTION – CLASSIFICATION
ALGORITHMS FRAMEWORK
A. JETBRAINS MPS FOR DSL DEVELOPMENT
In order to develop the CAF, the JetBrains MPS environment
was chosen [28].

FIGURE 1. High-level project structure diagram.

This was decided for many reasons. The JetBrains MPS
domain-specific languages environment offers a projectional
editor which is a very powerful feature [29]. The fact
that the user gets corrected as he/she types according to
the underlying rules defined by the language inserts ‘‘for-
mality’’ to the language designed and minimizes errors.
The non-projectional editors don’t offer this strong typing
characteristics. Also,MPS offers excellent provision for auto-
matic code-generation and model-to-model transformations
through templates which is very beneficial.

B. CLASSIFICATION ALGORITHMS DSL
1) LANGUAGE STRUCTURE
TheProject structure is depicted in Fig. 1 and consists of three
main parts:
• The properties of the project (Properties concept) which
define the input/output.

• The status (Status concept) which is connected with the
results of running a classification algorithm.

• All the different classification algorithms and their
parameters for calling them (Modeling Approach con-
cept).

Each of the above concepts can be further analyzed as
follows:

The Properties concept depicts interface logic between the
project and the outside world. This communication happens
through input/output files and tags. Specifically, in Fig. 2,
the Properties concept and its main parts are as follows:
• Tags (as a property) which are keywords that are con-
nected semantically to the domain of the application that
these algorithms will be used.

• Directory (as child) which is the directory where the
project is stored.

• Dataset (as child) which refers to the file that contains
the input dataset file.

• (Output) File (as child) which contains the classifica-
tion algorithm output (classification of the dataset and
assigning to the endpoint categories).

• (evalFile) File (as child) which contains performance
metrics for the chosen (ran) classification algorithm.

The ModelingApproach concept is depicted in Fig. 3:
The ModelingApproach concept consists of parameters

for cross-validation and an interface to several classification
algorithms.

VOLUME 8, 2020 14835



S. Meacham et al.: CAF to Enable Intelligent Systems Using JetBrains MPS DSLs Environment

FIGURE 2. The properties structure description.

FIGURE 3. ModelingApproach concept.

In this DSL implementation, we have included cross-
validation which is a machine learning technique for optimiz-
ing classification algorithms. The number of repeats and folds
are defined as properties of the Modeling Approach.

A range of classification algorithms can be called using the
weka libraries java calling implementation. The classification
algorithms supported are depicted in Fig. 4.

FIGURE 4. Classification algorithms supported.

2) LANGUAGE EDITOR – I/O
The editor page is the interface provided to the user for
configuring the framework by choosing the classification
algorithm and its related parameters.

There is a one-to-one correspondence between the con-
cepts defined in the Structure section of the language and
editor screens provided to the users. Most of the concepts are
represented in the editor and the user is required to provide
input in order to run the classification algorithms and obtain
the results.

There are three main steps in order to use the system and
are detailed as follows:

Step 1: Input data and rebuild the model
The initial screen that appears when creating a new project

in the sandbox is depicted in Fig. 5 together with example
input data.

In Fig. 5, we can see how we can configure a new project
by assigning the following:

1. Name - Samples
2. Home directory – c:/Users/sofia/MPSProjects/

ClassificationProject
3. Input - files/train.arff
4. Output – files/PredictionsNB.csv
5. Evaluation file – files/TrainNBeval.txt
6. Approach = the choice of algorithm
7. Cross-validation parameters
Then you need to rebuild the model for the input to take

effect.
Step 2: ‘‘Run’’ the selected classification algorithm
We ‘‘run’’ the generated code by right-clicking and choos-

ing the Run ‘Node Samples(1)’ MPS option. The code is
automatically generated by using MPS constructs and by
encapsulating the weka library code. More on the automatic
code generation in a following section.

Step 3: Load the Results in the same screen
In order to see the results of running the project, we click

on the LoadResults as appears in Fig. 6.
Note that the Load results button is only working when

there is some output file to be loaded. If you haven’t
run your simulation or have already loaded the results
with the intention, the Load results button doesn’t print
any results and a No results available window message
appears.

In order to implement the results to appear in the same
page, we implemented a public class called ResultProces-
sor and the code is located inside the Editor language con-
struct. The ResultProcessor class methods traverse informa-
tion from the generated files (the Output and the Evaluation
file) through going back and forth in the Abstract Syntax Tree
of the language.

The final screen that contains the results of running the
algorithms and performance evaluation is depicted in Fig. 6.

3) CODE GENERATION
The ModelingApproach concept consists of parameters for
cross-validation and an interface to several classification
algorithms.

The code generation (see Fig. 7) is a very strong point
of this work as it provides Java code automatically which is
ready for deployment.

For each algorithm the language author prepares a code
generator template. This template contains java code that
correctly configures and triggers the desired algorithm
using the target library - weka in this case. The tem-
plate is parametrized by the values inserted by the ana-
lyst into the model. In essence, the template takes care
of the ceremony required to run an algorithm, while the
model contains the important properties to initiate the
algorithm.

The level of automation is quite high for several reasons.
Only code that is necessary to be added to the high-level
model is provided in the MPS templates and the process
that needs to be followed is well-defined and simple. The
language developer only needs to identify the points where

14836 VOLUME 8, 2020



S. Meacham et al.: CAF to Enable Intelligent Systems Using JetBrains MPS DSLs Environment

FIGURE 5. Step1. Example input data.

FIGURE 6. Loading of the results of running the classification algorithms in the same page.

the code should relate to the language high-level concept
description and use the template to define that. For calling

code from libraries such as weka libraries in this project,
separate solutions were developed to include them.

VOLUME 8, 2020 14837



S. Meacham et al.: CAF to Enable Intelligent Systems Using JetBrains MPS DSLs Environment

FIGURE 7. Jetbrains MPS code generation using templates.

FIGURE 8. Adding new classification algorithms as concepts and inserting
corresponding template code.

4) FRAMEWORK EXTENSIBILITY – ADDITION OF NEW
CLASSIFICATION ALGORITHMS
The ModelingApproach concept consists of parameters for
cross-validation and an interface to several classification
algorithms.

This framework is easily extensible with more classifica-
tion algorithms in three steps as depicted in Fig. 8:

Step1: Create a new concept that directly corresponds to
the new classification algorithm.

Step2: Create a new reduction rule in the main of the
generator aspect.

Step3: Fill in the additional code in the reduction_template
with the links to the model concepts (see Fig. 7 above).

As part of our future plans, an editor with a user-friendly
interface for the language designer will be built so that these

steps can be automated. The user will be asked only the nec-
essary information specific to the new algorithm implemen-
tation and the DSL will automatically add the new algorithm
to its pre-existing structure.

IV. EVALUATION
We evaluated CAF according to the Quality characteristics
defined in paper [23] and using the feedback we got from BT
data scientists and MPS language developers (30 in total).

Several tasks from basic to advanced were set as part of a
CAF workshop. The basic tasks involved using the language
to choose and run a classification algorithm on a given data
file. The advanced tasks included extending the languagewith
more classification algorithms.

The results from the two different perspectives were as
follows:

Data scientist perspective: The results from the data sci-
ence perspective were as follows:
Functional suitability: CAF scored very high according to

its suitability for all the functionality required. The domain
was well specified, and it included processing of the data
using different classification algorithms.
Usability: The feedback regarding the usability of the

language was also quite good. The one-page interface that
presents the results as well as the output in one page was very
appreciated by the data scientists. It provided the option for
quick experimentation of alternatives and in context. How-
ever, the appearance of the one-page interface could be further
improved by integrating web technologies.

14838 VOLUME 8, 2020



S. Meacham et al.: CAF to Enable Intelligent Systems Using JetBrains MPS DSLs Environment

FIGURE 9. Evaluation through feedback by BT and MPS JetBrains.

Reliability: The language has precise semantics and the
user is not ‘‘allowed’’ to make mistakes from the standard
characteristics of the projectional editors. This was the most
attractive feature to the users although it required some initial
extra time of getting used to the editor.
Productivity: The use of this language will result in

increased productivity for the data-scientists as they will be
able to implement a quick turn-around time and experiment
with several classification algorithms. Also, the system-level
approach is expected to assist the adoption of the algorithms
in several contexts.
Compatibility: The fact that java code is automatically

generated from this language makes it very powerful for its
deployment to application contexts.
Expressiveness: The language is very expressive as it

has been developed through numerous meetings with BT’s
engineers and therefore extensive domain analysis has taken
place.

Language designer perspective: The results from the
language designer perspective were as follows:
Reusability: This language provides an excellent reusabil-

ity element as it can be used as part of any system that requires
data analysis. Its use within the education context proves the
plug-and-play strong element of the language.
Maintainability: The process of adding new algorithms is

not easy and requires technical expertise to understand and
maintain it. Appropriate interfacing needs to be developed to
enable easy extensibility of the language.

In Fig. 9 an Excel diagram depicts graphically the above
results and shows that the average evaluation of the lan-
guage is 8 out of 10 with strongest points the productivity,
compatibility and expressiveness as is expected for domain-
specific languages. Reusability has been scored excellent
as this language is anticipated to be at the core of many
adaptive systems applications. More evaluation and usage of
the language inside BT’s extensive commercial application
areas is planned.

V. CONCLUSION AND FUTURE WORK
There is a gap in AI research, specifically in providing AI in
context and at the system-level. Most of the research in the
AI area has been focusing on algorithmic improvements and
their performance. However, AI will have to be adopted in
several different application contexts from business processes
to autonomous cars. Domain modeling is a rising area in

software and systems engineering, and in this paper, we pre-
sented its application for providing AI in context. We devel-
oped a new domain-specific modeling language, using the
JetBrains MPS development environment, to model a Clas-
sification Algorithms Framework (CAF); this has as its main
target to enable data scientists and other domain experts to
perform quick, system-level and in-context experimentation
of several algorithms. Our future plans include applying CAF
in several business-related application contexts within BT
and other application areas. In the longer term, and on more
ambitious grounds, we will continue development of the lan-
guage by ‘‘blurring’’ the limit between the algorithms and the
domain, enabling optimal algorithm adoption in context.

REFERENCES
[1] S. Meacham, ‘‘Towards self-adaptive IoT applications: Requirements and

adaptivity patterns for a fall-detection ambient assisting living applica-
tion,’’ in Components and Services for IoT Platforms. Cham, Switzerland:
Springer, 2017, pp. 89–102.

[2] M. T. Ibrahim, R. J. Anthony, T. Eymann, A. Taleb-Bendiab, and
L. Gruenwald, ‘‘Exploring adaptation & self-adaptation in autonomic
computing systems,’’ in Proc. 17th Int. Conf. Database Expert Syst. Appl.
(DEXA), Sep. 2006, pp. 129–138.

[3] P. Lalanda, J. A. Mccann, and A. Diaconescu, ‘‘Future of autonomic
computing and conclusions,’’ in Autonomic Computing (Undergraduate
Topics in Computer Science). London, U.K.: Springer, 2013, pp. 263–278.

[4] R. Akerkar, ‘‘EmployingAI in business,’’ inArtificial Intelligence for Busi-
ness (Springer Briefs in Business). Cham, Switzerland: Springer, 2019,
pp. 63–74.

[5] A. A. Osuwa, E. B. Ekhoragbon, and L. T. Fat, ‘‘Application of artificial
intelligence in Internet of Things,’’ in Proc. 9th Int. Conf. Comput. Intell.
Commun. Netw. (CICN), Sep. 2017, pp. 169–173.

[6] S. Ivanova and G. Georgiev, ‘‘Using modern Web frameworks when
developing an education application: A practical approach,’’ in Proc.
42nd Int. Conv. Inf. Commun. Technol., Electron. Microelectron. (MIPRO),
May 2019, pp. 1485–1491.

[7] R. E. Johnson, ‘‘Frameworks = (components+patterns),’’ Commun. ACM,
vol. 40, no. 10, pp. 39–42, Oct. 1997.

[8] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ‘‘Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,’’ IIEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
Jul. 2008.

[9] V. Figueiredo, F. Rodrigues, Z. Vale, and J. Gouveia, ‘‘An electric energy
consumer characterization framework based on data mining techniques,’’
IEEE Trans. Power Syst., vol. 20, no. 2, pp. 596–602, May 2005.

[10] I. H. Witten, ‘‘Data mining: Practical machine learning tools and tech-
niques with Java implementations,’’ Acm SIGMOD Rec., vol. 31, no. 1,
pp. 76–77, 2016.

[11] Scikit-Learn: Machine Learning in Python—Scikit-Learn 0.21.3 Docu-
mentation. Accessed: Nov. 1, 2019. [Online]. Available: https://scikit-
learn.org/stable/

[12] Deeplearning4j. Accessed: Nov. 1, 2019. [Online]. Available: https://
deeplearning4j.org/

[13] Home. Accessed: Nov. 1, 2019. [Online]. Available: http://www.mlpack.
org/index.html

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for fast
feature embedding,’’ in Proc. ACM MM, 2014, pp. 675–678.

[15] J. Withanawasam, ‘‘Apache Mahout essentials?: Implement top-notch
machine learning algorithms for classification,’’ clustering, and recom-
mendations with Apache Mahout.

[16] M. Lora, S. Vinco, and F. Fummi, ‘‘Translation, abstraction and integration
for effective smart system design,’’ IEEE Trans. Comput., vol. 68, no. 10,
pp. 1525–1538, Oct. 2019.

[17] M. Crepaldi, M. Grosso, A. Sassone, S. Gallinaro, S. Rinaudo,M. Poncino,
E. Macii, and D. Demarchi, ‘‘A top-down constraint-driven methodol-
ogy for smart system design,’’ IEEE Circuits Syst. Mag., vol. 14, no. 1,
pp. 37–57, 2014.

VOLUME 8, 2020 14839



S. Meacham et al.: CAF to Enable Intelligent Systems Using JetBrains MPS DSLs Environment

[18] Model-Based Machine Learning (Early Access): An Online Book.
Accessed: Nov. 1, 2019. [Online]. Available: http://mbmlbook.com/

[19] C. M. Bishop, ‘‘Model-based machine learning,’’ Philos. Trans. R. Soc.
A Math. Phys. Eng. Sci., vol. 371, no. 1984, Feb. 2013, Art. no. 20120222.

[20] E. Evans, Domain-Driven Design?: Tackling Complexity in the Heart of
Software. Reading, MA, USA: Addison-Wesley, 2004.

[21] V. Vernon, Implementing Domain-Driven Design. Reading, MA, USA:
Addison-Wesley, 2012.

[22] J. Luftman and T. Brier, ‘‘Achieving and sustaining business-IT align-
ment,’’ California Manage. Rev., vol. 42, no. 1, pp. 109–122, Oct. 1999.

[23] B. Tekinerdogan and E. Arkin, ‘‘ParDSL: A domain-specific language
framework for supporting deployment of parallel algorithms,’’ Softw. Syst.
Model., vol. 18, no. 5, pp. 2907–2935, Oct. 2019.

[24] M. Challenger, G. Kardas, and B. Tekinerdogan, ‘‘A systematic approach
to evaluating domain-specific modeling language environments for multi-
agent systems,’’ Softw. Qual. J., vol. 24, no. 3, pp. 755–795, Sep. 2016.

[25] A. G. Kleppe, Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Reading, MA, USA: Addison-Wesley,
2009.

[26] S. Benz and M. Völter, DSL Engineering: Designing, Implementing and
Using Domain-Specific Languages. Scotts Valley, CA, USA: Create Space
Independent, 2013.

[27] M. Voelter, Language and IDE Modularization and Composition with
MPS. Berlin, Germany: Springer, 2013, pp. 383–430.

[28] MPS: The Domain-Specific Language Creator by Jet Brains. Accessed:
Nov. 1, 2019. [Online]. Available: https://www.jetbrains.com/mps/

[29] M. Völter and K. Solomatov, ‘‘Language modularization and composition
with projectional language workbenches illustrated with MPS,’’ in Proc.
3rd Int. Conf. Softw. Lang. Eng. (SLE), in Lecture Notes in Computer
Science, M. G. J. van den Brand, B. Malloy, and S. Staab, Eds. Springer,
2010.

SOFIA MEACHAM (Member, IEEE) received the
Diploma degree in computer and informatics engi-
neering and the Ph.D. degree from the University
of Patras, Greece, in 1994 and 2000, respectively.
She has been working in EU-funded projects as
a Researcher/Embedded Software Engineer both
in industry and in university, since 1995, and has
accomplished a large amount of teaching expe-
rience in several institutions (U.K. and Greece),
since 2000. She has strong links with British

Telecom research headquarters in Adastral park and currently working in
cutting-edge research in Explainable AI. She is also a Senior Lecturer
with Bournemouth University and part of the Smart Technology Research
Group (STRG). Her Ph.D. research interests fell in the area of system-
level design for embedded systems, and include specification techniques
for complex embedded telecommunication systems, hardware-software co-
design, formal refinement techniques, and reuse practices. Her latest research
interest involves methodologies (processes, tools, and methods) to improve
design and development of systems, such asmodel-based design and domain-
specific modelling for several applications from business processes to
education.

VACLAV PECH received the master’s degree in
computer science from the Faculty ofMathematics
and Physics, Charles University, Prague, in 1999.
Since then, he has participated as a Developer
and Consultant in various projects across Europe
workingmainly with server-side Java technologies
and domain-specific languages. He is a Seasoned
Software Developer and a programming enthusiast
with 22 years of Java development and consul-
tancy experience. He is currently involved in the
MPS project with JetBrains.

DETLEF NAUCK received the Ph.D. degree and
the Postdoctoral degree (Habilitation) in machine
learning and data analytics. He is currently the
Chief Research Scientist for Data Science with the
Research and Innovation Division, BT, Adastral
Park, Ipswich, U.K. He is leading a group of inter-
national scientists working on research into data
science, machine learning, and AI. He focuses on
establishing best practices in data science for con-
ducting analytics professionally and responsibly

leading to new ways of analyzing data for achieving better insights. Part of
his role is leading the initiative on the development and the use of responsible
and ethical AI in the company. He is a computer scientist by training. He is
also a Visiting Professor with Bournemouth University and a Private Docent
with Otto-von-Guericke University Magdeburg, Germany. He has published
three books, over 120 articles, holds ten patents, and has 30 active patent
applications.

14840 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	EXISTING WORK
	RESEARCH: FRAMEWORKS FOR CLASSIFICATION ALGORITHMS
	CURRENT PRACTICE MAINLY IN INDUSTRY: LIBRARIES FOR CLASSIFICATION ALGORITHMS AND NOT SYSTEM-LEVEL DESCRIPTIONS
	RESEARCH: SYSTEM-LEVEL DESCRIPTIONS OF INTELLIGENT-SMART SYSTEMS

	DOMAIN FOCUS IN ORDER TO PROVIDE AI IN CONTEXT

	PROPOSED SOLUTION – CLASSIFICATION ALGORITHMS FRAMEWORK
	JETBRAINS MPS FOR DSL DEVELOPMENT
	CLASSIFICATION ALGORITHMS DSL
	LANGUAGE STRUCTURE
	LANGUAGE EDITOR – I/O
	CODE GENERATION
	FRAMEWORK EXTENSIBILITY – ADDITION OF NEW CLASSIFICATION ALGORITHMS


	EVALUATION
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	SOFIA MEACHAM
	VACLAV PECH
	DETLEF NAUCK


