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Abstract 

The emergence of the paradigm of the Internet of Things has underpinned the development of data-driven cyber-physical 
systems that collect and process data that is dense both in space and time. The application areas of such data-driven IoT systems 
are numerous and their socio-economic impact of great importance as they enable the monitoring and management of processes 
in sectors ranging from urban management to management of the natural environment. In this work, we introduce and detail an 
end-to-end technological framework for data-driven IoT systems for landslide monitoring. The framework is articulated in three 
tiers – namely data acquisition, data curation and data presentation. For each tier we present and detail its design and 
development aspects; from the IoT hardware design and the wireless communication technologies of choice, to how Big Data 
infrastructure and Machine Learning components can be combined to support a sophisticated presentation tier that delivers the 
true added value of a system to its final users. The framework is validated, extended and fine-tuned by means of two pilots at 
locations experiencing the impact of different landslide types and activity. This work qualitatively improves upon existing 
methods of landslide monitoring and showcases how data-driven IoT systems can pave new pathways for interdisciplinary 
research as well as generate positive impact on modern societies.     
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1. Introduction 

Internet of Things (IoT) is an emerging technological 
paradigm that enables the massive and seamless 
interconnection of smart objects, things and machines 
over the Internet. The paradigm refers to an ecosystem of 
technologies applied in multi-sectors including 
geoscience, agriculture, farming, urban development, 
emergency response, medical, retail, security and 
surveillance that require continuous real-time data 
acquisition, analysis and evaluation.  
 
The IoT paradigm is a key enabler towards the cyber-
physical convergence. Small autonomous smart sensors 
and actuators deployed en masse enable the collection of 
dense data both in space and time. When coupled with 
technologies for Big Data analytics and Machine 
Learning, it allows the development of data-driven 
cyber-physical systems that can have a profound positive 
impact on individuals, societies and industries.  
 

Thus far, the development of IoT systems has been 
primarily focused on the verticals of Smart Cities & 
Communities; Smart Manufacturing and Supply Chains; 
and Smart Agriculture & Farming. However, IoT systems 
can significantly contribute to the efficient monitoring 
and management of our natural environment; an area 
whose importance is highlighted ever stronger with the 
ongoing Climate Crisis [1]. Natural phenomena such as 
landslides can be destructive and can have profound 
negative socio-economic impact.  
 
A landslide is defined as a movement or rock, earth or 
debris down a slope [2]–[4]. It is a physical system that 
develops through time in several stages driven by 
different phenomena including precipitation, snowmelt, 
temperature changes, earthquakes [5] and, if at the coast, 
marine processes. In the UK, the most active landslides 
are at the coast, driven by both terrestrial and marine 
processes. In other areas, such as India, precipitation 
levels are an important triggering factor for landslides.  
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Climate change models forecast scenarios that indicate an 
increase in the triggering conditions for landslide 
occurrence (e.g. high-intensity precipitation events and 
sea level rise) that are indisputably linked to the stability 
of natural and engineered slopes [6]. 
 
As well as loss of life and physical damage, landslides 
can pose significant repeated socio-economic threats in 
landslide prone areas (e.g.[7]) where the built 
environment and infrastructure are particularly at risk in 
the long term. It is the potential for increased impact that 
has motivated the need for novel and efficient methods of 
landslide monitoring. Traditional landslide monitoring 
methods and techniques are limited both in technical 
terms (quality and frequency of data) as well as in 
usability terms (high inferred costs, difficulty of 
deployment, restricted access to areas of interest). 

1.1. Setting the Scene 

The two pilot areas are on the south coast of England: 
Bournemouth and Barton-on-Sea.  Both sites have 
landslides of different scales where significant damage to 
public infrastructure is reported.   
 
East Cliff landslide, Bournemouth, Dorset. On 24th 
April 2016, a landslide occurred on the 35 m high section 
of the East Cliff in Bournemouth, Dorset (Figure 1).  The 
day before, cracks at the top of the cliff had been reported 
to Bournemouth, Christchurch and Poole Council (BCP) 
(Figure 2) who cordoned off the area, both at the cliff top 
and at the foot of the cliff.  The landslide damaged an 
Edwardian funicular railway as well as a toilet block and 
an array of fences and benches from the top of the cliff 
[8].  This event incurred high costs to the local authority 
for damage control and lengthy full-scale clean-up 
operations that spanned months. BCP council installed 
coir matting to minimise erosion and has employed 
several monitoring methods. These include conducting 6-

Figure 2 View of the public pathway leading to the beach front on 
top of the East Cliff, where the landslide incident took place in 2016. 
Red line denotes the new edge of the cliff after the incident. 
 

Figure 1 Aerial view of the landslide site at East Cliff, 
Bournemouth, UK. Note the damages inflicted on the public access 
pathway (top of the cliff), the public access building (bottom of the 
cliff) and the historic Edwardian funicular (side of the landslide). 
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monthly topographic surveys, visual and digital 
inspections (using LIDAR), and groundwater 
monitoring. 

 
Barton on Sea landslide, Hampshire. Much of the 
frontage at Barton on Sea is subject to ongoing complex 
landslide activity in the cliffs with significant events 
reported regularly.  The area behind the cliff is 
continuously affected and is mostly residential with some 
businesses and infrastructure (Figure 3 [9]). The cliffs are 
1.5 km long and 30-35 m high and have been subject to 
coastal protection and cliff stabilisation works since the 
1930s1 that have cost New Forest District Council 
(NFDC) significant amount of money.  NFDC actively 
monitor and survey the landslide2  with the support of the 
British Geological Survey (BGS) in the near future.   

 
The limitations in relation to characterising the 
aforementioned monitoring and control methods include 
– among others, sparse data turnaround and high inferred 
costs – provided the motivation for researching and 
developing an IoT-enabled system for efficient landslide 
monitoring. The solution ought to be highly scalable, 
easily deployable and should infer low maintenance 
costs. Additional functional requirements included (as 
elicited from the stakeholders): 
• The system should be able to monitor the landslide 

independently of any vegetation or other 
infrastructure (e.g. coir nets) present. 

——— 
 
 
1 
http://www.newforest.gov.uk/CHttpHandler.ashx?id=21516&p=0 

• The system should be able to provide high fidelity 
data with centimetre-scale accuracy. 

• The system should be able to allow remote 
monitoring of the landslide.  

• It would be desired for the data transmission to be 
wireless. 

• It would be desired for the data transmission to be 
(near) real time.  

 
In this context, the proposal for a solution based on a 
framework combining IoT technologies for sensing and 
wirelessly transmitting data, Big Data infrastructure and 
Machine Learning for data curation and a sophisticated 
web-based user interface was put forward. Our 
methodological approach was first validated in a proof-
of-concept pilot (referred to as Pilot 1) deployed at 
Bournemouth’s East Cliff site that ran successfully for 6 
months. An improved and significantly extended version 
of our system has been deployed in a second pilot 
(referred to as Pilot 2) at Barton-on-sea at a location that 
is closely surveyed by contemporary geological methods. 
The aim of Pilot 2 is to evaluate and compare the 
performance of the framework against these well-
established monitoring methods.  

1.2. Our Contribution 

In this work, we present a technological framework for 
landslide monitoring which employs emerging 
technologies such as Internet of Things, Big Data 
analytics and Machine Learning.  The framework has 
matured through and been validated in two Pilots; one at 
East Cliff, Bournemouth and one at Barton-on-sea. 
 

The framework specifies a modular, loosely coupled 
architecture consisting of three tiers; data acquisition, 
data curation and data presentation (Figure 4). 
  

2 http://www.newforest.gov.uk/article/13525/Introduction 

Data 
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Data 
Curation

Data 
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Figure 4 The architectural tiers of the presented framework 

Figure 3 View of the new clifftop landslide site at Barton on Sea, 
Hampshire, UK. This is an active landslide posing significant risks 
to the public and near-by infrastructure and buildings. 

http://www.newforest.gov.uk/CHttpHandler.ashx?id=21516&p=0
http://www.newforest.gov.uk/article/13525/Introduction
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Regarding the data acquisition tier, we detail the 
development of IoT sensing devices for landslide 
monitoring. We discuss the IoT boards that were used (a 
bespoke board for Pilot 1 and a commercially available 
one for Pilot 2), the wireless communication technologies 
used (SigFox for Pilot 1 and LoRa for Pilot 2) as well as 
the sensors used and their interfacing with the boards 
having in mind energy efficiency (detailed schemas are 
provided). 
 
 Regarding the data curation tier, we present the 
technologies used for collecting and handling IoT data 
streams. The backend architecture has been developed in 
a modular way having scalability in mind. Specialised 
technologies are used for Big Data curation and analytics 
as well as Machine Learning frameworks. The aim is for 
the backend not only to be able to handle streams of 
geological data from multiple sites, but also to be able to 
produce models that provide insights into landslide 
mechanisms as well as reliable predictions for 
anticipating future incidents.  
 
Regarding the data presentation tier, the architecture and 
design of a web portal is presented. Its development has 
been based on functional requirements provided by 
specialists working on landslides (geotechnical 
engineers, council assistants and geologists). This front-
end dynamically pulls data from the data curation tier and 
supports multi-modal data presentation featuring data 
overlaying with interactive maps and user-defined data 
plots.    
 
The introduced data-driven IoT framework contributes to 
the following: factors 
  
• It fills the apparent gap for a geological monitoring 

system that continuously provides reliable near-real-
time data, and is independent of workforce 
restrictions, accessibility, weather conditions and 
limitations.  

• It dramatically improves currently employed 
monitoring methods in terms of ease of deployment, 
scalability, cost efficiency, data precision, granularity 
of data, and agility of use for the end-user.  

• It provides a state-of-the-art platform for real time 
data acquisition, processing and visualisation that 
benefits the geologists, local government, community 
and other stakeholders. 

 
Finally, we would like to note that the framework does 
not intend to substitute the already existing methods, but 
aims at complementing them and, therefore augments the 

arsenal of available methods. In particular, existing 
monitoring methods rely upon highly sophisticated and 
expensive equipment of high accuracy and precision that 
require (in several cases) the employment of 
corresponding specialised expertise. These methods, in 
principle, provide data of high fidelity that are sparse in 
space and time. On the contrary, the proposed framework 
makes use of highly affordable infrastructure that 
introduces low capital and operational costs, and that can 
be easily deployed. While individual devices are not 
characterised by the same levels of accuracy and 
precision, the system compensates this by making use of 
state-of-the-art technologies in Big Data analytics and 
Machine Learning. 

2. Related work 

2.1. Background on landslide monitoring. 

Although, the primary driving force of landslides is 
gravity, the stability of a slope is influenced by a variety 
of other factors including: the material type and strength, 
lithological structure, hydrogeology, the slope angle, 
earthquakes, meteorological and other environmental 
conditions such as marine processes.  Knowledge of these 
conditions can help to predict the location, types, and 
volumes of potential failures [10], [11]. The geological 
data related to landslides are mostly complex, and data 
acquisition-devices and real-time data transmission 
network infrastructures must be carefully designed.   
 
Currently, available landslide monitoring techniques can 
coarsely be taxonomized in methods requiring physical 
access and methods of remote monitoring [12]. 
Topographic surveys and on-site visual inspection by 
experts are probably the most commonly employed 
method; however, this method is subject to ease of access 
and does not scale well with respect to area coverage. 
More accurate methods include the use of sophisticated 
equipment, such as terrestrial laser scanners [13], 
extensometers [14], tensiometers and inclinometers [15] 
(e.g. [16], [17]). However, these methods require specific 
expertise and introduce high operating costs. 
Furthermore, these methods are also not easily scaled to 
cover large areas. Remote monitoring methods include 
the use of satellites, either in the form of GPS systems 
[18] or interferometry techniques via synthetic aperture 
radar (SAR) satellite images [19]. It is worth mentioning 
that apart from the issues already discussed, few of the 
aforementioned methods are able to provide data in real 
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or near-real time. Also, some of these methods are not 
accessible to authorities of local communities either due 
to them requiring high expertise or due to inferred costs. 
 
Landslides have been monitored throughout the world 
using a range of technologies over time (e.g. [16], [20], 
[21], [22]).  As well as the aforementioned remote 
sensing techniques and visual inspections, traditional 
instrumented landslide monitoring systems collect 
information on landslide movement as well as 
conditioning factors such as weather conditions, 
groundwater, the geology and its geotechnical properties 
and, if at the coast, may include the state of the beach and 
any defences.  Instruments include down-borehole 
inclinometers and piezometers, geophysics such as 
Proactive Infrastructure Monitoring and Evaluation 
(PRIME) systems [23] and weather stations [16].  Some 
of these technologies use telemetric systems but these can 
be expensive to install and maintain and may require 
connection to mains electricity for continuous use; many 
rely on manually downloading data on site and most 
require specific expertise. 

2.2. Landslide monitoring using Wireless Sensor 
Networks. 

Wireless Sensor Networks (WSNs) are peer-to-peer ad-
hoc networks consisting of small autonomous sensing 
devices (a.k.a. sensor motes) that are able to carry out 
complex tasks collaboratively. WSNs are a key enabling 
technology of IoT [24], and their paradigm has 
contributed a lot in developing core IoT technologies 
such as IEEE802.15.4 and 6LoWPAN. There is abundant 
literature on WSNs being employed in several 
applications such as smart buildings [25], forest fire 
detection [26] and smart grids [27]. 
 
Regarding landslide monitoring with WSNs, the line of 
research presented in [28], [29] is probably the most 
notable one. The authors designed a column that houses 
several sensors for detecting landslides. In particular, the 
sensor suite consists of: 
 
• Dielectric Moisture Sensors: Measure water content 

in the soil. 
• Pore Pressure Piezometers: Measure groundwater 

pore pressure. 
• Strain gauges: Measure movement of soil layers 

attached to the Deep Earth Probe (DEP). 
• Tilt-meter: Measure the movement of soil layers 

regarding creep, slow or sudden movements. 

• Geophones: Measure vibrations caused during a 
landslide. 

• Rain Gauges: Measure the effect of rainfall on a slope 
and therefore, the ancillary effects such as pore 
pressure. 

• Temperature Sensors: Physical properties of soil and 
water change with temperature, recorded every 
fifteen minutes. 

 
The success of these devices was demonstrated by the 
early detection of a landslide in July 2009, providing 
validation for the authors' design during a substantial 
rainfall period in India's monsoon season. Criticisms of 
this system rely on the large physical form factor of the 
sensor columns (20 meters in length), their high energy 
consumption (the column relies upon a constant, wired 
power source which is backed by a power bank and a 
solar panel) and their high cost. 
 
Following the emergence of Internet of Things as a novel 
ICT paradigm, monitoring systems for the physical 
environment started to employ relevant technologies and 
approaches. One such comparable IoT themed system 
exists in Panzhihua Airport, located in the Sichuan 
province, China [30]. Similarly to the framework 
presented in this work, this system’s technical 
architecture also adopted a 3-layer approach; a sensor 
layer, a network layer and an application layer. The 
sensor layer of the system obtained and reported 
information about the physical geography of the slope, 
such as landslide deformation information like crack 
displacement, GPS and angle deformation and local 
rainfall data. The network layer included private 
networks employing cabled and wireless technologies, a 
network management system and an Internet-based cloud 
computing platform. The later was responsible for the 
transfer and processing of data from the sensor layer. The 
system utilised a total of 5 extensometers deployed in 
strategic placements along a fault crack in the slope, with 
one end on the landslide and the other on firmer ground.  
 
While the system successfully issued warnings for an 
impeding landslide, it demonstrates several limitations 
compared to the framework presented in this work. 
Firstly, it comprises specialised equipment (such as 
extensometers) that require specialised expertise to be 
deployed; they also increase the overall cost of the system 
significantly. In our approach, we employ consumer-
graded electronics that are abundantly available in the 
market, thus greatly reducing incurred costs and 
facilitating development and deployment. Secondly, we 
employ LPWAN communication technologies that allow 
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for seamless device interconnection to the Internet, 
therefore reducing the complexity of the system, 
increasing the battery lifetime of the devices, and further 
reducing incurred costs. Finally, the presented framework 
provisions the use of Big Data Analytics and Machine 
Learning infrastructure in the back-end, therefore greatly 
increasing the scalability of the system, enabling the 
system to support multiple sensing modalities and 
providing deeper insights to the geological processes that 
trigger landslide incidents.     
 
In [31] authors present a landslide monitoring system that 
makes use of wireless sensor networks and the LoRa 
LPWAN. The focus of this work is on the precise 
geolocation of the nodes of the network, such that the 
motion of the slope is monitored in detail. To this end, 
authors provide details on the sensors they employ 
(accelerometers, magnetometers, angular rate sensor) and 
the network architecture, consisting of three anchor nodes 
located at the top of the slope that enable the triangulation 
of the position of each node. While this system also uses 
LoRa and low-powered single board computers, in 
contrast to the presented framework in this work, it does 
not provide for Internet connectivity and does not support 
any sophisticated infrastructure for curating and 
leveraging upon the collected data. Finally, authors 
provide little insights on the set up of the sensing devices 
and their expected efficiency in energy consumption.   
 
In [32] authors present an IoT-based monitoring system 
employing two different node types; a meteorological 
node and a ground monitoring node. Similarly to our 
approach, the system makes use of consumer-graded 
electronics, such as LoPy [33] – a developing IoT 
platform supporting multiple wireless communication 
technologies. The system is detailed in terms of its back-
end infrastructure, which comprises a lambda 
architecture that communicates over a web interface with 
a scientific sharing platform. Although not explicitly 
mentioned, the architecture is capable of supporting the 
training of Machine Learning models for landslide 
forecasting. However, contrary to our presented 
framework, in [32] authors do not include explicitly in 
their design a front-end component. This is a commonly 
overlooked, yet crucial, component since it allows the 
end-user and the system stakeholders to harvest the added 
value of the system and collected data, e.g. by means of 
Visual Analytics. Furthermore, in [32] authors do not 
elaborate on the hardware configuration of their sensing 
devices and their energy efficiency. This is a crucial 
aspect of a monitoring system for the natural 

environment, since deploying and reclaiming devices can 
be very costly and challenging. 

2.3. Background on IoT technologies. 

Technological advances have greatly promoted the IoT 
paradigm in recent years. Regarding IoT hardware, the 
emergence of Single Board Computers, such as the  

Figure 5 Comparison of Sigfox, LoRa and NB-IoT[43] 
 

Figure 6 The ecosystem of IoT technologies [44] 
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Table 1 List of terms and acronyms used 

Raspberry Pi and the Arduino, have popularised IoT 
enabling the development of “at home” projects by non-
specialists. This has led to the growth of the 
corresponding market with new vendors, such as Adafruit 
and Sparkfun, introducing novel board designs while 
reducing the costs of purchase.  
 
Corresponding advancements have taken place regarding 
the wireless communication technologies. The landscape 
of IoT wireless technologies initially was dominated by 
Low Power Personal Area Networks (LoWPANs) 
making use of IEEE802.15.4, such as Zigbee, Z-Wave 

and 6LoWPAN. This family of protocols was the first to 
address the device characteristics imposed by the IoT 
paradigm directly (e.g. their highly constrained nature in 
computational resources and connectivity), however, 
they supported communications over small distances (in 
the order of 100 metres). This necessitated the use of 
gateways, which in turn hindered the scalability of IoT 
systems.  
 
The introduction of Low Power Wide Area Networks 
(LPWANs) substantially changed the landscape. By 
operating at low sub-GHz frequencies, LPWANs support 

Key Term Definition 
6LoWPAN IPV6 over Low Power Wide Area Network. Allows the sending of data using IPV6. 
Adafruit An electronics company specializing in single board computers. 
Amazon Web Service 
(AWS) 

An Amazon solution providing on demand cloud services and API’s to users over the 
internet. 

Application Programming 
Interface (API) 

An interface or communication protocol between different parts of a computer program 
or system. 

BlueFox v2.7 A single board computer provided by NetSensors Ltd. 
Bootstrap Framework for the quick development of front-end web application user interfaces. 
Django A python-based web-framework, allowing for the hastening of web application-based 

programming. 
IEEE802.15.4 Technical standard for low-rate Wireless Personal Area Network. 
Java Script High-level, just-in-time, programming language. 
JSON (JavaScript Object 
Notation) 

A file format allowing the communication of data objects. 

Kafka Used in the development of real-time data pipelines. 
LoRa (Long Range) A low power wide area network technology for IoT, with an option for personal network 

ownership, or to join a greater network. 
LoRaWAN LoRA Wide Area Network. A network created by the intercommunicating of LoRa 

devices. 
LoWPAN Low Power Personal Area Network. 
LPWAN Low Powered Wide Area Network. 
MCU Micro-controller unit.  
Model, View, Controller 
(MVC)  

Style of web application structure. Splits a web application into 3 parts, models, views 
and controllers. 

NB-IoT (Narrowband-
IoT) 

Low Power Wide Area Network designed for IoT, offering improvements to power 
efficiency. 

Node-RED Flow based visual programming software. 
opAmp Operational Amplifier. 
Python 4th Generation programming language. 
SigFox A narrow band, low power wide area network technology for IoT with paid access. 
Sparkfun An electronics company specializing in single board computers. 
Zigbee Low Power Personal Area Network, using IEEE802.15.4 Standard. 
Z-Wave Wireless protocol, mainly used in home automation with a range of 100m. 
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long range wireless communication (in the order of tens 
of kilometres) while still being highly energy efficient. In 
spite of this being achieved at the cost of low baud rates, 
they achieved network speeds suffice for most IoT 
applications. Furthermore, LPWANs successfully 
mitigate the issues of scalability, thus paving the way for 
the deployment of large-scale IoT systems. Figure 6 
illustrates the layers of IoT protocols prescribed by IEEE 
and ETSI (European Telecommunications Standards 
Institute). 
 
Sigfox [16] was among the few first LPWANs to be 
commercially available. The network is organised in 
cells, each one covering a maximum area of 50km, 
allowing up to 140 uplinks and 4 downlinks per device, 

per day. The technology operates as a one-hop star 
topology although the network requires a mobile operator 
to carry the generated traffic. In the Sigfox business 
model, the network access points are owned by the Sigfox 
company or official representatives, and users need to pay 
a premium per device per day. 
 
LoRa [17] – abbreviation for Long Range – is another 
popular LPWAN. Similarly, to Sigfox, it operates at low, 
sub-GHz frequencies at low duty-cycles, thus addressing 
the range-vs-energy trade-off. The main difference to 
Sigfox lies in the business model it assumes. The 
ownership and operation of LoRaWAN access points are 
open to everyone, and therefore, LoRa supports the 
operation of private IoT networks. Certain initiatives, 

Figure 7 The reference architecture of the framework for landslide monitoring 
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such as The Things Network , leverage upon this model 
in order to develop crowdsourced IoT networks spanning 
across entire regions (the UK network spans across the 
entire country and continues to grow). 
 
Complimentary to Sigfox and LoRa – wireless 
technologies that rely upon IoT-specific infrastructure – 
there are IoT wireless technologies being introduced that 
operate over the existing cellular network. NB-IoT 
(narrowband IoT) is such a technology that focuses 
specifically on indoor coverage, low cost, long battery 
life, and high connection density. It makes use of the LTE 
standard but dramatically limits the bandwidth, thus 
achieving energy efficiency. The great advantage of this 
technology is the fact that it makes use of the existing 
cellular infrastructure that already provides good 
coverage both indoors and outdoors. Figure 5 
demonstrates a comparison of Sigfox, LoRa and NB-IoT. 
Table 1 summarises the terms and acronyms definitions 
used.  

3. Overview of the Landslide Monitoring 
Framework and of the Two Pilots. 

Figure 7 depicts the reference architecture of the 
presented framework. It is articulated in three tiers that 
are loosely coupled with the use of APIs. This provides 
flexibility in fine tuning and adjusting the framework by 
amending the design of each tier and the choice of 
identical technologies used independently of the rest of 
the system. The data acquisition tier consists of the IoT 
sensing devices that are fitted with specialised sensors 
and are deployed in an area of interest. The devices are 
autonomous and highly energy efficient, being able to 
continuously operate for an extended period of more than 
600 days (see detailed discussion in Section 4.2). The 
devices collect geological data, which is then transmitted 
over a LPWAN network to the next tier. The data 
curation tier employs technologies for efficiently storing 
and managing IoT Big Data streams, as well as for 
training Machine Learning models for landslide 
monitoring. The architecture assumed is highly scalable 
and can accommodate (and if needed aggregate) data 
streams from multiple sites as well as from external 
sources, such as weather data. Finally, the data 
presentation tier dynamically retrieves data from the data 
curation tier visualising them using several modalities, 
such as overlaying data on Google maps, dynamic 
selection of data categories and figure plotting by the end 
user, cross-referencing data from multiple sources, and so 

on. Each tier is presented in detail in the following 
sections. 
 
Design and development for Pilot 1 commenced after a 
landslide incident that took place in 2016 at 
Bournemouth’s East Cliff. The morphology of the 

Figure 8 One of the sensing motes used in Pilot 1in its casing. The 
device features among other, a dual microprocessor, SigFox 
connectivity, a 3-axis accelerometer, soil humidity and temperature 
sensors and is powered by two 4200mAh batteries (visible in the back 
of the device). 

Figure 9 The sensing device in its final form prior to being deployed 
at the landslide site. The soil humidity and temperature sensors are 
visible, waterproofed via silicon glands. Installation was undertaken 
by specialist rope technicians and geotechnical engineers. 
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surrounding area in Bournemouth is characterised by 
cliffs that overlook a ten-mile stretch of public-access 
beachfront. The type of soil and local weather conditions 
– strong winds, high air humidity, precipitation levels 
during winter and high temperature variations during 
summer – make the area prone to landslides. 
Furthermore, landslide incidents pose a significant risk to 
public safety, as the cliffs and seafront are located well 
within the urban fabric of the town. The aim of Pilot 1, 
on one hand, has been to showcase the capabilities of 
data-driven IoT-enabled systems to the relevant 
stakeholders and, at the same time, validate the use of 
relevant technologies in application areas that move well-

beyond the usual domains – Smart Cities, Smart 
Manufacturing, Smart Agriculture – and into the domain 
of environmental sciences. In this context, validation 
entailed not only the definition of a data-driven system 
architecture for IoT systems, but also significant 
engineering challenges related to the choice of sensors, 
energy efficiency and the physical design of the sensing 
devices so as to withstand weather conditions and other 
adversarial elements (e.g. seagulls and rodents are known 
hazards for any equipment deployed on sea-side cliffs). 
To this end, three devices were deployed on site at 
carefully selected locations, each one demonstrating 
different characteristics (see Fig. 11) – one on a mild 

Figure 11 Aerial view of the landslide site East Cliff, Bournemouth, UK. Red symbols denote the deployment locations of the devices (symbols 
are also used to identify each device). One device (denoted by circle) is deployed on a mild slope; another one (denoted by cross) on a steeper 
slope; while the third one (denoted by dash) is deployed on the stone-paved support structure.  
  

Figure 10 Testing connectivity of Pilot 1 device prototype. Initially, connectivity was tested with the local SigFox AP at the base of the East 
Cliff landslide at Bournemouth beach (sub-fig.(a)); then connectivity was tested at a depth of 10 inches to test signal soil penetration (sub-fig. 
(b). Sand was then saturated with water to confirm signal penetration through wet sand at the same depth (sub-fig. (c)). Note that wet sand is 
one of the most harsh media for wireless signal propagation. Finally, verification of packet reception on the dashboard of the Sigfox network 
server (sub-fig (d)). 
 

                       (c)                                           (d) (a)                                        (b) 
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slope; another one on a steeper slope; while a third one 
on the stone-paved support structure. This enabled us to 
calibrate and validate the configuration of the devices by 
monitoring locations with different expected geological 
behaviour.  

Following the successful conclusion of the first pilot, the 
aims of Pilot 2 were firstly, to leverage upon lessons 
learnt from Pilot 1 and improve the framework 
accordingly and, secondly, compare the quality and value 
of data provided by the system to data collected via well-
established and proven methods employed in Geology. 
For these reasons, the advice of expert geologists of the 
BGS was sought, and the location of Barton on Sea was 
selected. At Barton on Sea there exists an active landslide 
that due to its on-going impact on the local community 
(public infrastructure has already been affected and 
private property may be at risk in the future) is actively 
monitored by local authorities and the BGS. This makes 
the location ideal for trialling and further evaluating the 
framework. A reconnaissance field survey was carried 
out in July 2019 and deployment positions were agreed 
to place the sensors.  As the site is publicly accessible (the 
base of the landslide is part of a public beach), the exact 
locations must remain undisclosed for security reasons. 
The exact locations must remain undisclosed for security 
reasons, but they are chosen to maximise the likelihood 
of capturing landslide movement, facilitate installation 

and be at a location monitored regularly by the authors 
and collaborators throughout the project.   

4. The Data Acquisition Tier 

The main functionality of this tier is to collect and 
transmit sensory data from the area of interest to the data 
curation tier. The tier includes the sensing IoT devices 
(sensors and IoT boards) as well as the IoT network. 
Regarding the devices, design considerations include the 
minimum required technical specifications of the boards 
(these are usually considered in the context of a trade-off 
with energy efficiency), means of powering the devices, 
the suite of sensors the devices fitted with and, finally, 
the physical form factor. The choice of wireless 
communication technology is dictated, on the one hand, 
by the functional requirements of the system (mainly 
volume and rate of data) and on the other hand by 
availability of and access to relevant infrastructure as 
well as on inferred capital and operational costs.  

4.1. Data acquisition in Pilot 1 

The IoT boards developed for Pilot 1 were based on the 
BlueFox v2.7 platform, provided by Net Sensors Ltd (a 
Bournemouth-based SME). The initial rationale was to 
use a bespoke hardware platform to maximise energy 
efficiency. The boards featured two low-power 
microprocessors, a SigFox modem, a 3-axis digital output 
accelerometer, humidity and temperature sensors. The 

Figure 12 The landslide at Barton on Sea, Hampshire, UK, showing the approximate deployment location of the sensing devices. 
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sensing capabilities of the boards were extended by 
means of a DS18B20 Waterproof Digital Thermometer 
[34] and the Analog Capacitive Soil Moisture Sensor 
V1.2 by DFRobot [35]. Finally, each device was powered 
by two D-cell batteries at 4200mAh capacity each, giving 
a total capacity of 8400mAh (Figures 8 and 9). The 
devices were programmed in C using the Arduino 
compiler/IDE. 

The choice of Sigfox as the LPWAN technology to be 
used was due to its availability in the area. In particular, 
Bournemouth is one of the focus areas in the UK for 
deploying and promoting the use of IoT technologies 
under the Things Connected3 initiative of Digital 

——— 
 
 
3 https://www.digicatapult.org.uk/projects/things-connected/ 

Catapult UK, and Sigfox provide a 100% coverage in the 
area. Although the use of the Sigfox network requires 
paying a premium per connection, this cost was covered 
by Digital Catapult.  

Since the motes were to be deployed in an outdoor 
environment, exposed to weather conditions and other 
hazards (seagulls and rodents have been proven to pose 
great threats for any type of equipment), particular care 
was taken to protect the motes. For this reason, the boards 
were waterproofed by the application of an acrylic 
conformal coating and an epoxy resin to protect the 
circuit boards of the capacitive sensor, and they were 
encased in an IP-67 graded case.   

Figure 13 Wiring diagram of the IoT boards for Pilot 2 equipped with GPS-RTK and geophone. The wiring permits the 
geophone to continuously monitor seismic activities and in the case of an incident to generate a wake-up signal to the board. 

This allows the board to remain in deep sleep mode for energy efficiency. 
 

https://www.digicatapult.org.uk/projects/things-connected/
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Prior to the final deployment, extended tests were carried 
out in order to investigate the penetration rate of the 
Sigfox signal to the ground and to establish the ability of 
the devices to successfully transmit sensory data. The 
first consideration had to do with the morphology of the 
area of interest and the possibility that the overlooking 
cliffs would cast a “connectivity shadow” over the 
devices. The second consideration had to do with the 
ability of the devices to wirelessly transmit through wet 
sand (Figure 10) - it is worth noting that this question is 
not well studied in the literature. The tests were 
successful, and the devices were deployed by cliff-
hanging specialists and operated continuously for 6 
months while collecting and transmitting data at 15-
minutes intervals.    

4.2. Data acquisition in Pilot 2 

Building upon lessons learnt from Pilot 1, the design of 
the sensing IoT devices for Pilot 2 was revisited. For the 
second pilot an off-the-self board was selected (Sparkfun 
Pro SAMD21 [36], [37]) in order to benefit from the wide 
development support from the manufacturer and the 
community. The sensor suite was also revised after 
consultation with experts of BGS.  The new revised suite 
consisted of the following components: 
 
• A 6-Degrees-of-Freedom (6DOF) inertial 

measurement unit (IMU) including an accelerometer, 
a magnetometer and a thermometer (board LSM303C 
[38]);  

• A high-fidelity geophone providing seismic data in 
1D, 2D and 3D seismic surveys (model SM-24 [39]); 

• An analogue capacitive soil moisture sensor (model 
DFRobot SEN0193 [35]);   

• An RTK2 (Real Time Kinematics) GPS board from 
ublox [40] for high-precision location data (accuracy 
~1cm) for monitoring soil movement. 

 
The sensors were interfaced with the IoT board using the 
I2C protocol and the QWIIC cable interface. The 
geophone made use of its own breaking board and two 
operational amplifiers. This configuration enabled the 
IoT board to remain in deep sleep state (thus greatly 
reducing energy consumption), while the geophone was 
continuously monitored for seismic activity – hardware 
frequency filters made sure the geophone was monitoring 
only on the desired spectrum of seismic activity, thus 
eliminating any false positives. Should any activity be 
detected, the geophone triggers an interrupt that would 
wake up the device. The wake-up time – consisting in the 
geophone picking up vibrations at a certain frequency 
spectrum and the break-out board generating an interrupt 
to the main board - is in the order of 30ms; quick enough 
to capture any ongoing incidents. Details of the wiring of 
the devices (version with geophone and the RTK-GPS 
module) are depicted in figure 11.  
 
Regarding the LPWAN technology, the location for Pilot 
2 did not provide Sigfox coverage. Furthermore, the 
restrictions imposed by Sigfox both on the maximum 
number of transmissions per day (144 messages) and the 
maximum size of each transmission were deemed rather 
restrictive for the application of landslide monitoring; 
particularly in the case of an incident when sensing and 
data transmission would need to be very dense. 
Therefore, for Pilot 2, the technology of choice has been 

Figure 14 The Architecture of the Data Curation for Pilot 1. 
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the LoRaWAN. LoRaWAN also carries several 
advantages. Firstly, one can deploy and manage their own 
private LPWAN network by procuring the required 
infrastructure (i.e. the wireless access points) privately. 
This is of great importance for the presented framework, 
as it enables authorities, such as local councils or the 
BGS, to commission their own networks. Furthermore, 
this greatly reduces the operating costs as LoRaWAN, 
contrary to Sigfox, does not require a subscription. 
Finally, LoRaWAN initiatives, such as The Things 
Network, support the adoption of crowdsourcing 
practices allowing the general public or third parties to 
augment the network’s coverage by providing roaming 
services via their own access points.  

 
Regarding the energy source, each device is equipped 
with two D-cell Li-Ion 3.3V batteries at 4200mAh each, 
totalling 8400mAh. Regarding battery lifetime special 
care has been taken to maximise energy efficiency and 
reduce energy consumption. This entailed both hardware 
interventions (such as dismounting LEDs off the main 
board and using programmable hardware switches to 
drive sensor components) and software optimisations. 
Figure 15 depicts the states and the related events of the 
activity cycle of the sensing devices. The states include 
the device waking-up, being active, conducting sensor 
measurement, transmitting data (comprising both 
transmit and receive modes), and finally the sleep state. 
Following is an operation outline for each state (time 
interval and drawn current figures were taken by means 
of specialised multi-meter). 

Active state – This state entails powering up and 
operating the device components that are needed to 
support basic functionality of the device; i.e. the MCU, 
the LoRa RF module, the operational amplifier (opamp) 
breakout board, etc. At this state, other sensors (such as 
the accelerometer and the soil moisture sensor) are kept 
on the power-down state by means of hardware switches 
to increase energy efficiency. 

Measure state – This state entails also powering up all 
sensor components, reading and registering sensor 
measurements. These include the 6-axis digital 
accelerometer, the soil moisture sensor, the opAmp 
breakout board and the geophone. The geophone itself is 
a passive unit (i.e. it does not draw any current), however, 
the opamp breakout board that drives it consumes a 
considerable amount of current. To mitigate any spikes in 
power consumption, sensors are sequentially powered up 
by means of a programmable hardware switch and 
powered down once the sensory readings are registered.  

Transmission state – This state entails the transmission of 
the registered sensory readings over the LPWAN. It 
consists of both transmit and receive modes for the radio 
module, also accounting for the reception of 
acknowledgments. The current drawn in this state can 
vary based on payload size, data rate, and selected 
spreading factor (for the LoRaWAN network). The 
power consumption can be reduced by making the right 
choice of gateway location, payload design and 
deployment model. In this state peripherals and sensors 
are powered down to further increase energy efficiency. 

Sleep state – In this state the entire device enters an 
extremely low power consumption mode were all 
components (including the MCU and radio module) are 
powered down. The device remains in this state the grand 
majority of the time thus achieving an extremely low duty 
cycle. The device exits this state when a corresponding 
interrupt is generated (e.g. when a timer expires).  
 
In order to estimate the expected battery lifetime of the 
devices, we have carried out detailed measurements using 
specialized equipment in our electronics lab and an 
analysis of the power consumption of the devices. In 
particular, by considering the time duration and current 
consumption at each state, we calculated the total charge 
(measured in mAh) consumed during each state per 
operational cycle. Having configured the devices to 
collect sensory measurements periodically every 3 hours, 
we calculated the estimated number of cycles and, 
therefore, the time each device will operate before 
depleting its batteries to be slightly more than 600 days.  
Table 2 summarises our analysis. 

5. The Data Curation Tier 

Once one of the IoT sensing devices collect some sensory 
data, this data is then transmitted over the LPWAN 
network to the corresponding network server and from 
there to the data curation tier. This tier of the framework  

Figure 15 State transition diagram capturing the operation states of 
the sensing devices. 
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Table 2  Summary of measurements and analysis regarding the expected battery lifetime of the sensing devices. 
C : Total available battery charge (mAh) C = 8400mAh 

  

Active State  

Ta : Amount of time the device remains in active state (ms) Ta = 0.1ms 
Ia : Active state current consumption (mA) Ia = 9.5mA 

Za : Charge consumed in active state (mAh) Za = 0.03x10-6 mAh 
  
Measure State  
Tgeo : Amount of time for taking and registering geophone readings (ms) Tgeo = 20ms 

Igeo : Current consumption during geophone readings (mA) Igeo = 9.5mA 

Zgeo : Charge consumed during geophone readings (mAh) Zgeo = 52.78x10-6mAh 
Tsen : Amount of time for taking and registering accelerometer and soil moisture sensor readings (ms) Tsen = 1ms 
Isen : Current consumption during accelerometer and soil moisture sensor readings (mA) Isen = 13.82mA 
Zsen  :Charge consumed during accelerometer and soil moisture sensor readings(mAh) Zsen = 3.84x10-6mAh 
Zmeas  : Total charge consumed in measure state (mAh)  Zmeas = 56.62x10-6mAh 
  
Transmission State  
Ttx : Amount of time for transmitting data (ms) Ttx = 73.3ms 

Itx : Current consumption during transmission (mA) Itx = 32.1mA 

Ztx : Charge consumed during transmission (mAh) Ztx =654x10-6mAh 
Trx : Amount of time for receiving data (ms) Trx =1ms 

Irx : Current consumption during reception (mA) Irx = 15.8mA 

Zrx : Charge consumed during reception (mAh) Zrx = 4.38x10-6mAh 
Ztrans  : Total charge consumed in measure state (mAh) Ztrans =658.38x10-6mAh 
  

Sleep State  

Ts : Amount of time the device remains in active state (hours) 3h 

Is : Current consumption during sleep state (mA) 0.57mA 

Zs : Charge consumed during sleep state (mAh) Zs = 1.71mAh 
  
Total charge consumed per 3-hour cycle   
Ztotal = Za + Zmeas + Ztrans + Zs Ztotal = 1.710715mAh 
  

Total number of cycles of operation; each cycle lasts 3 hours (C / Ztotal) 4910 cycles ≈ 14730 hrs ≈ 613 
days 
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effectively amounts to a back-end Big Data storage and 
processing system leveraging Big Data Analytics and 
Machine learning technologies. 

5.1. Data curation in Pilot 1 

Pilot 1 saw the development of a simple back-end 
system, serving as a proof of concept for the landslide 
monitoring framework and giving space to experiment 
with technologies. Figure 12 depicts the corresponding 
reference architecture, consisting of a cloud-based 
server (an AWS m4.large instance running Ubuntu 
Server 16.04), hosting a Node-RED instance, an MQTT 
Server and Broker, and the Elastic stack. 
 
The network server for both Pilots (Pilot 1 using Sigfox 
and Pilot 2 LoRaWAN) was provided by Things 
Connected; a Digital Catapult project initiative. Node-
RED is a flow-based development tool developed by 
IBM for connecting hardware devices and APIs towards 
the IoT paradigm [12]. It is implemented in JavaScript 
utilising the Node.js framework, establishing a dataflow 
driven design tool that consists of JSON (JavaScript 
Object Notation) data generated internally and externally 
from the application. Node-RED was employed to 
provide a means of establishing a modular framework for 
future extensions and providing the means to export the 
data with ease towards the Elastic Stack. 
 
Message Queuing Telemetry Transport (MQTT) is a 
lightweight publish and subscribe protocol for IoT and 
resource-constrained devices. MQTT was chosen in 
similar regards to providing a modular system design, by 
publishing topics, such as landslide data, and subscribing 
to these so that they may be logged and sorted within the 
Elastic Stack. The MQTT client is featured as a part of a 
Python Script, which specifies which topics to subscribe 
to, and converts the timestamps and JSON packet into a 
searchable variable within Kibana. 
 
The Elastic Stack, or ELK stack, is the terminology to 
define three open source projects, namely ElasticSearch, 
Logstash and Kibana. ElasticSearch is a distributed, 
RESTFUL search and analytical engine as JSON over 
HTTP, and excels at indexing large amounts of text. 
Logstash manages events and logs, collecting them and 
parsing them for storage and layer usage with the two 
complementary technologies. Kibana is a data 
visualisation and exploration tool that acts as a dashboard 
for the stack and allows the creation of graphs and figures 
to express stored data. 
 

Throughout the course of the first pilot, this first approach 
of the data curation tier proved to meet the functional 
requirements of the framework. The system was able to 
manage the ingress flow of IoT data streams. It provided 
quick search functionality and access to stored data and 
by leveraging upon Kibana, it also supported basic data 
visualisation (more sophisticated functions are provided 
by the Data Presentation tier).   

5.2. Data Curation Pilot 2 

The Data Curation tier for Pilot 2 built upon the first 
iteration, revamping the architecture and adding Big Data 
Analytics and Machine Learning technologies. This 
second iteration streamlined and improved the 
architecture put in place in the Pilot1, offering a more 
mature, modern and effective Data Curation tier. 
 
Much like Pilot 1, the backend system is hosted on a 
cloud server (an AWS Elastic Compute Cloud (EC2) 
instance). The core technologies used in the first iteration 
were maintained (Things Connected network server, 
Node-RED and Elastic Stack). The data processing and 
analysis components that were introduced include Kafka 
and a Python-based analytics system. The software 
architecture is depicted on figure 17. 
Raw sensory data arrive in the system via an HTTP 
interface from the ‘The Things Network’ server. Node-
RED captures and processes the data payload, parsing it 
into data segments and performing an initial pre-
processing before being fed to Kafka. Kafka is a real-time 
data processing and messaging platform used to send data 
to machine learning models periodically.  
 
From Kafka, data are consumed by two processes: 
Elasticsearch and a Python script. Elasticsearch indexes 
the data, and the Python script begins the data analysis 
process. Python-based machine learning models are used 
on time-series data to accomplish predictive tasks. 
Python libraries such as Pandas, Scikit learn and 
TensorFlow are used here. From the Python Script, data 
is used to train a set of prediction models in real-time. The 
results of the model are sequentially published back into 
Kafka, another Elasticsearch instance consumes them. 
 
Kafka is integrated into the system using the Confluent 
Platform. This is a complete streaming data platform, 
providing a full production-ready solution for real-time 
data streams, with Kafka at its core. This platform was 
chosen for its use of Kafka, easy integration and high-
performance clients for Kafka API [41]. Elasticsearch 
acts as the primary data storage for the backend. Multiple 
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indexes are defined to hold different information such as 
sensor data, model results and logs. Kibana is used to 
manage the Elasticsearch cluster and visualise sensor and 
model data.   

6. The Data Presentation Tier 

An aspect that is commonly overlooked in the design and 
development of data-driven IoT systems is that of data 
presentation. Indeed, for systems whose primary function 
is the collection and use of data (such as monitoring 
systems) their true added value resides in the final end-
users of the system being able to efficiently and 
conveniently consume collected data and information. 
How this will be achieved is a complex and multifaceted 
challenge that strongly depends on the nature of the 
application and the type of data, as well as on the 
stakeholders and end-users of the system. In the case of 
landslide monitoring the aim has been to develop a 
presentation layer that would be agile enough to 
accommodate the needs of both high-expertise users (e.g. 
geologists and geotechnical engineers) and local 
community stakeholders (e.g. local governments and 
planning authorities).  
 

The data presentation tier utilises a front-end system that 
integrates with the back-end infrastructure to display 
collected and curated data to the end-user in a meaningful 
and impactful way. In particular, in the presented 
framework, it took the form of a Web Application created 
using the Django web framework and written in Python. 
The UI elements of the system were created using the 
help of Frameworks such as Bootstrap, enabling rapid 
development of a UI.  

 
Django is a widespread high-level python framework that 
uses a Model View Controller (MVC) design. It 
encourages rapid development by taking care of the 
hassle in web development. It handles the ‘public’ 

Figure 16 The Architecture of the Data Curation for Pilot 2 
 

Figure 17 Data Visualization ‘Devices’ Page 
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features allowing a developer to purely focus on business 
logic. Further, Django has been designed to maximise 
speed of development, application security and 
scalability [42].Data displayed and used on the front-end 
environment are data made available by the back-end 
system and data analytics pipeline. The web application 
links directly to the Elasticsearch instance present in the 
data curation tier. This is accomplished with the use of 
the Python library Elasticsearch_DSL. This is used to 
create Django style Get Method models that retrieve 
sensor data stored on the backend Elastic Stack just like 
any other Django Model to database interaction. 
Elasticsearch_DSL provides a more convenient and 
friendly way to write queries to Elasticsearch, it keeps 
close to the format of Elasticsearch querying, keeping its 
terminology and structure, whilst allowing its expression 
in the Python language.  
 
This intuitive web application contains a full arsenal of 
data viewing and manipulation methods such as; 
Interactive Maps integration, enabled by the Python 
Library Leaflet JS; Custom graphing, using JS graphs; 
Kibana integration; Device specifications and statistics; 
and a notification system, with fully customisable user-
defined thresholds. All data handled by the front-end 
system is real-time, allowing the web application to 
express a constant and continuous up-to-date state of 
landslide sites, thus allowing trends to be observed as 
they appear. 
 
The maps integration allows the depiction of device 
nodes onto an accurate World map, allowing the 
presentation of physical device locations, in relevance to 
each other. This is coupled with the interactive ability to 
manipulate the maps scale and viewable region and 
functionality to select specific nodes present on the map. 
This also opens a page specific to that device, where 
specifications and statistics on the device can be seen, as 
well as custom and generic graphs explicitly relating to 
that device’s data. Custom graphing is achieved by 
JavaScript code, and allows for the generation of graphs 
with selectable data sources and is the primary way the 
application displays data to an end-user. 
Elasticsearch_DSL queries populate the graphs with data 
stored on the Elasticsearch instance, this is updated in real 
time, providing the user with a constant, up-to-date 
stream of data. 
 
In order to not lose functionality provided by the backend 
implementation, the web application is linked with a 
Kibana dashboard created as a product of the back-end 
Elastic Stack. This snapshot is shown to the user and 

allows them to keep functionality and visualisations 
created on Kibana, whilst hiding developer functions. 
Additionally, using Elasticsearch_DSL search queries, 
device specifications and statistics are printed to the user.  
 
The above features provide an end-user with a plethora of 
manipulation and viewing methods, providing versatility 
and diversity in the application’s use. Notification and 
warnings are also included; these send site-wide 
warnings when user-defined threshold levels have been 
met or exceeded for selected variables.  
 
The functionalities supported by the data presentation tier 
are the result of a designing stage that included eliciting 
requirements and needs from stakeholders. Its four main 
sections are: Dashboard; Devices; Node; and Settings. It 
is worth noting that the sections have feature and 
functionality overlaps, but present their functionality in 
differing ways; for example, Dashboard shows high-level 
information, whereas Devices offers specific in-depth 
information. 

6.1. The “Dashboard” section 

This section serves as the main ‘Hub’ of the tier. It 
includes the interactive map that shows the location of all 
sensors, and these sensors themselves can be interacted 
with to take the user to a device’s specific page. 
Additionally, using the applications notification 
functionality, if a node on the map has an alert (e.g. 
because soil activity was detected), then the node changes 
colour to red, visually notifying the user of an error or 
alert with that device. 
 

Figure 18 Data Visualisation ‘Dashboard’ page 
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Below this feature, further content is split into three tabs. 
The first tab shows all sensor data in graphs, per sensing 
device. The next tab contains all the notifications of the 
system, and these notifications are alerts that have been 
created due to incoming values exceeding set thresholds. 
The final tab includes a custom graph that allows the 
users to customize what data is shown and from what 
node. 

6.2. The “Devices” section 

This section includes details of specific devices, each 
device having its own dedicated view. Alongside this is a 
list of device specific details as well as a list of the latest 
figures are shown to end-users. Below this, there is a 3-
tab content system: the first tab displays readings from 
the device in graph format; the second tab includes 
notifications specific to that device, and the final tab 
includes a custom graph that allows the user to 
manipulate what data is shown. 

6.3. The “Settings” section 

This section includes settings that allow the user to adjust 
the alert threshold levels based on sensor readings. It also 
serves as a space to add any additional settings as 
required. For instance, a user could set up an alert to be 

generated when there is a change in the orientation of a 
sensing device (as this is indicated by the accelerometer 
readings) or when seismic activity is captured by one of 
the geophones.  

6.4. The “Nodes” section 

This section shows all the devices currently deployed in 
a table list format with a focus on the current status of the  
devices. This view omits recorded environmental data, 
and only shows technical device information, such as 
residual energy levels, quality of wireless connection, 
and so on.  

7. Conclusions & Future Work 

This work introduced a technological framework for 
data-driven IoT systems focusing on the application 
area of landslide monitoring. The three tiers of the 
framework – namely the data acquisition, data 
curation and data presentation tiers - were presented in 
detail and the corresponding considerations and design 
choices were elaborated. The framework was 
employed to develop two IoT systems in the context 
of two pilots for landslide monitoring. The two sites of 
deployment have landslides of different scales and 
characteristics and have, therefore, enabled to fine 
tune and validate the framework in real-life operating 
conditions. In particular, the use of state of the art IoT 
technologies has enabled the development of highly 
scalable and cost efficient systems that provide dense 
data both in space and time. The two pilots have also 
been key in demonstrating the added value of data-
driven IoT systems in inter-disciplinary research as 
they nicely complement already existing methods.  
 
This work focused on the methodological approach (as 
captured by the presented framework) of developing 
data-driven IoT systems and the technologies 
employed to develop them. The plan for future work 
is to allow Pilot 2, at Barton on Sea, to run for two 
years – such that two full seasons are captured – so as 
to a) validate and if needed, inform the design of the 
framework; and b) to collect data such that a dataset of 
IoT geological data is compiled. This dataset (which 
will be made available to the community) will be used 
to train corresponding Machine Learning models, 

Figure 19  Data Visualisation ‘Settings’ Page 
 

Figure 20 Data Visualisation ‘Nodes’ Page 
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whose accuracy on forecasting and identifying 
landslide incidents will be evaluated against currently 
employed methods. Also, bespoke Visual Analytics 
will be developed addressing the needs of different 
stakeholders (scientific community, local authorities, 
general public). A final strand of our research will be 
on developing further the framework (in particular the 
design of the devices) such that their potential 
environmental impact is reduced or even eliminated.    
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