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Abstract

Existing methods on representation-based subspace
clustering mainly treat all features of data as a
whole to learn a single self-representation and get
one clustering solution. Real data however are of-
ten complex and consist of multiple attributes or
sub-features, such as a face image has expressions
or genders. Each attribute is distinct and comple-
mentary on depicting the data. Failing to explore
attributes and capture the complementary informa-
tion among them may lead to an inaccurate repre-
sentation. Moreover, a single clustering solution is
rather limited to depict data, which can often be in-
terpreted from different aspects and grouped into
multiple clusters according to attributes. There-
fore, we propose an innovative model called at-
tributed subspace clustering (ASC). It simultane-
ously learns multiple self-representations on latent
representations derived from original data. By uti-
lizing Hilbert Schmidt Independence Criterion as
a co-regularizing term, ASC enforces that each
self-representation is independent and corresponds
to a specific attribute. A more comprehensive
self-representation is then established by adding
these self-representations. Experiments on several
benchmark image datasets have demonstrated the
effectiveness of ASC not only in terms of clustering
accuracy achieved by the integrated representation,
but also the diverse interpretation of data, which is
beyond what current approaches can offer.

1 Introduction
Representation-based subspace clustering is to partition data
points into their respective low-dimensional subspaces by
finding effective self-representations [Vidal and Favaro,
2014]. It assumes that every data point in a union of sub-
spaces can be represented as a linear combination of other
data points. Due to the insensitivity to initialization and
easy-to-solve with standard linear algebra [Liu et al., 2014],
the representation based subspace clustering has been widely
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used in computer vision and pattern recognition [Rao et al.,
2010; Liu et al., 2013; Zhou et al., 2014].

Recently, various self-representation based methods have
been proposed [Vidal and Favaro, 2014; Wu et al., 2015;
Zhang et al., 2017]. The sparse subspace clustering (SSC)
[Elhamifar and Vidal, 2009] seeks the sparse solution of self-
representation, which tends to be block diagonal. The low-
rank representation (LRR) [Liu et al., 2010] aims to preserve
low-rank data structure. The least squares regression (LSR)
[Lu et al., 2012] uses grouping effect for modeling correla-
tion structure of data and is more efficient than SSC and LRR.
The correlation adaptive subspace segmentation (CASS) [Lu
et al., 2013] simultaneously performs automatic data selec-
tion and groups correlated data, which can adaptively bal-
ance SSC and LSR. Based on LSR, the smooth representation
(SMR) [Hu et al., 2014] incorporates a weight matrix that
measures the spatial closeness of data. Given a dataset with
multiple types of features, [Cao et al., 2015] proposed a di-
verse multi-view subspace clustering (DiMSC) which learns
a complementary representation shared by multiple features.
[Zhang et al., 2017] then proposed latent multi-view sub-
space clustering (LMSC) method, which clusters data points
with latent representation and simultaneously explores under-
lying complementary information from multiple views. With
the utilization of prior information, NNLRR [Fang et al.,
2015] encodes label information with graph-based regular-
ization to seek low-rank and sparse representation simultane-
ously with nonnegativity constraints. Later, LRRADP [Wang
et al., 2018] was proposed by using adaptive distance penalty
to construct an affinity graph, which enforces the representa-
tions of every two consecutive neighboring data to be similar.

These representation-based approaches, which incorporate
regularization terms or prior information for more accurate
learning, all tend to intuitively utilize the features of orig-
inal data as a whole and learn a single self-representation.
However, real data are complex and consist of multiple sub-
features or attributes [Changpinyo et al., 2013; Ou et al.,
2015]. As shown in Figure 1, the face images consist of multi-
ple attributes including facial expressions, ethnicity and shad-
ows, and the cat images have different rotations and shapes.
Since each attribute represents one aspect of data and contains
specific information, exploring diverse and complementary
information among multiple attributes is of vital importance
to learn a more accurate self-representation.
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Figure 1: Sample images from the Yale and COIL20 datasets. Each
row represents one subject with different attributes.

Moreover, the exploration of attributes may lead to mul-
tiple clustering solutions that provide a more comprehen-
sive understanding of data. Taking the Yale in Figure 1
as an example, current subspace clustering methods can
only obtain one clustering solution based on the single self-
representation, i.e., grouping all face images of a person into
one group, which is often rather limited to depict and under-
stand the dataset adequately. However, with multiple self-
representations corresponding to attributes (e.g. shadow and
expression), the face images could be clustered as happy/dull
expression, with/without glass or left/right-lit. In fact, the
effectiveness of attribute exploration has also been demon-
strated in some other research fields, including network em-
bedding, ordinal embedding, information retrieval and so on
[Niu et al., 2014; Liao et al., 2018; Mazaheri et al., 2018].

In this paper, we propose an innovative representation
based subspace clustering approach, called Attributed Sub-
space Clustering (ASC), which interprets data from differ-
ent perspectives and obtains multiple clustering solutions by
leveraging the data’s multiple attributes. Specifically, ASC
learns multiple self-representations based on latent repre-
sentations which are drawn from the original data. Utiliz-
ing Hilbert-Schmidt Independence Criterion (HSIC) [Gret-
ton et al., 2005] to co-regularize the latent representations,
each self-representation is enforced to be independent and
correspond to a particular attribute. Adding all these self-
representations together results in an integrated representa-
tion which leads to a more accuracy clustering by capturing
comprehensive information.

2 Attributed Subspace Clustering
2.1 Preliminary
Given n data matrix X = [x1,x2, . . . ,xn] ∈ Rm×n, where
each data vector xi is m-dimensional, we need to find ef-
fective self-representations for constructing an affinity ma-
trix and applying spectral clustering methods [Shi and Malik,
2000] to cluster the data into their respective subspaces. To
achieve so, representation-based approaches assume that ev-
ery data point in a union of subspaces can be represented as
a linear combination of other data points, i.e., X = XZ + E,

where Z ∈ Rn×n is the learned self-representation matrix
and E ∈ Rn×n is the error term. It can be formulated as the
following optimization problem to compute the optimal Z:

min
Z

Θ(E) + αΩ(X,Z),

s.t.X = XZ + E,Z ∈ T ,
(1)

where α is the trade-off parameter, Θ(E) is the noise term.
Ω(X,Z) and T are the regularizer and constraint set on Z,
respectively.

Taking LRR, one of the most representative subspace clus-
tering methods as an example, it seeks the low rank represen-
tation by solving the objective function:

min
Z
‖X−XZ‖2F + α‖Z‖∗. (2)

Obviously, the self-representation of LRR is learned
straightforwardly from the features of original data without
exploring sub-features. Hence, it cannot represent multiple
attributes and capture the diverse information among them.
To understand and represent data thoroughly and in-depth,
we propose our attributed subspace clustering (ASC) below.

2.2 The Proposed ASC
As seen in (2), the self-representation Z is learned from the
original features of X by using X itself as a basis matrix.
Hence, if X comes with V attributes, we can modify (2) to
learn multiple self-representations Z(v) simultaneously, with
each one corresponding to one attribute:

V∑
v=1

‖H(v) −H(v)Z(v)‖2F + α
V∑
v=1

‖Z(v)‖∗, (3)

where H(v) contains sub-features that can represent the v-th
attribute of X and so called latent representation. Consider-
ing that every H(v) describes one aspect of X, given a basis
matrix W(v) ∈ Rm×k(v)

with a reduced dimensionality k(v),
the product of each W(v) and the corresponding H(v) could
well approximate X, hence we can easily factorize X as

min
W(v),H(v)

V∑
v=1

‖X−W(v)H(v)‖2F . (4)

However, since there is no constraint for learning H(v), the
diverse information of multiple attributes may not be explored
effectively, as every H(v) could be very close to or even equal
to each other. Consequently, if we simply combine (4) and
(3), Z(v) will also be similar to each other, so that the distinct
information of each attribute cannot be fully explored.

Given a case of data xi, with two attributes, v and w, the
latent distinct information of each attribute cannot be fully ex-
plored unless the representations of two attributes, i.e., h

(v)
i

and h
(w)
i , are enforced to be independent to each other. For

n data vectors, if we assume that each vth attribute is drawn
from X space and the wth attribute from Y space, essentially,
we aim to learn a mapping functionG of their representations
from S := {(h(v)

1 ,h
(w)
1 ), (h

(v)
2 ,h

(w)
2 ), . . . , (h

(v)
n ,h

(w)
n )} ⊆

X × Y , i.e., G: X → Y , to minimize the dependence
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between the data representations in the X and Y . To do
so, we employ the Hilbert-Schmidt Independence Criterion
(HSIC) due to its simplicity and neat theoretical properties
such as exponential convergence. HSIC computes the square
of the norm of the cross-covariance operator over the domain
X × Y in Hilbert Space. As an effective measure of depen-
dence, HSIC has been applied to several machine learning
tasks recently [Song et al., 2007; Zhang and Zhou, 2010;
Niu et al., 2010]. Mathmatically, an empirical estimate of
HSIC [Gretton et al., 2005] is defined as

HSIC(H(v),H(w)) = (n− 1)−2tr(RK(v)RK(w)), (5)

where K(v) and K(w) are the centered Gram matrices of
kernel functions defined over H(v) and H(w), respectively.
R = I − 1

neeT , where I is an identity matrix and e is an
all-one column vector.

It is worth noticing that by utilizing the inner product ker-
nel for HSIC, namely, K(v) = H(v)TH(v) and ignoring the
scaling factor (n − 1)−2 for notational convenience, we can
derive HSIC(H(v),H(w)) into a very simple F-norm formu-
lation as

HSIC(H(v),H(w)) = tr(RK(v)RK(w))

= tr(RH(v)TH(v)RH(w)TH(w)) = ‖H(v)RH(w)T ‖2F .
(6)

Combining (3), (4) and (6) gives us the final objective func-
tion:

min
W(v),H(v),Z(v)

V∑
v=1

‖X−W(v)H(v)‖2F + λ1

∑
v 6=w

‖H(v)RH(w)T ‖2F

+ λ2

V∑
v=1

‖H(v) −H(v)Z(v)‖2F + λ3

V∑
v=1

‖Z(v)‖∗.

(7)

Here λ1 > 0, λ2 > 0 and λ3 > 0 are the trade-off parame-
ters to balance the diversity among attribute representations,
errors and intrinsic data structures for all V attributes, respec-
tively. Specifically, the first term uncovers the underlying rep-
resentations {H(v)}Vv=1 from the original data matrix X by
using the second term as a regularizer. The first two terms
guide the learning process of self-representation {Z(v)}Vv=1

in the third term. The last term regularizes {Z(v)}Vv=1 to cap-
ture the low rank structure of data of each attribute.
Remarks ASC is not limited to one specific subspace clus-
tering method such as LRR. In fact, it can also be flexibly
adapted and applied to most if not all current representation-
based subspace clustering approaches such as SSC, LSR and
SMR which differ mainly on regularization on Z. For exam-
ple, SSC can be advanced as

min
W(v),H(v),Z(v)

V∑
v=1

‖X−W(v)H(v)‖2F + λ1

∑
v 6=w

‖H(v)RH(w)T ‖2F

+ λ2

V∑
v=1

‖H(v) −H(v)Z(v)‖2F + λ3

V∑
v=1

‖Z(v)‖1,

s.t. diag(Z(v)) = 0.
(8)

Thus, SSC could be more powerful and practical by simulta-
neously learning spare self-representation and exploring mul-
tiple attributed self-representations, which we will investigate
in our future work.

2.3 Optimization
Since the optimization problem (7) is not convex for each
variable W(v), H(v) and Z(v), it is infeasible to find the
global minimum. Hence we divide (7) into three subprob-
lems and alternately update each subproblem with the other
two fixed.

W(v)-subproblem: It is a standard matrix factorization de-
composition, so we obtain

W(v) = XH(v)T (H(v)H(v)T )−1. (9)

H(v)-subproblem: Updating H(v) with other subproblems
fixed leads to the following objective function:

min
H(v)

J(H(v)) = ‖X−W(v)H(v)‖2F

+ λ1

V∑
w=1,w 6=v

‖H(v)RH(w)T ‖2F + λ2‖H−H(v)Z(v)‖2F .

(10)
The problem (10) is smooth convex. Differentiating (10) with
respect to H(v) and setting it to be 0, we get the following
optimal solution H(v) which satisfies

A(v)H(v) + H(v)B(v) = C(v).

s.t. A(v) = W(v)TW(v),C(v) = W(v)TX,

B(v) =λ1R
V∑

w=1,w 6=v

H(w)TH(w)R+λ2(I− Z(v)T+Z(v)TZ(v)).

(11)
The equation above is a standard Sylvester equation [Bartels
and Stewart, 1972]. To avoid the instability issue, we ensure
A(v) to be strictly positive definite by Â(v) = A(v) + εI,
where I is an identity matrix and ε ∈ (0, 1]. In the following,
we prove it has a unique solution.

Proposition 1. The Sylvester equation (11) has a unique
solution.

Proof. The Sylvester equation A(v)H(v) + H(v)B(v) =
C(v) has a unique solution for H(v) exactly when there are no
common eigenvalues of A(v) and −B(v) [Bartels and Stew-
art, 1972]. Since A(v) is a positive definite matrix, all of its
eigenvalues are positive: α(v)

i > 0. For B(v) is a positive
semi-definite matrix, all of its eigenvalues are nonnegative:
β
(v)
i ≥ 0. Hence, for any eigenvalues of A(v) and B(v),
α
(v)
i +β

(v)
j > 0. Accordingly, the Sylvester equation (11) has

a unique solution.
Z(v)-subproblem: Updating Z(v) with other subproblems

fixed leads to

min
Z(v)

J(Z(v)) = ‖H(v) −H(v)Z(v)‖2F + λ3‖Z(v)‖∗.
(12)

This can be solved via the following lemma.
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Lemma 1 [Favaro et al., 2011]. Let A = UΛVT

be the SVD of a given matrix A. The optimal solution to
minC ‖C‖∗ + τ

2‖A−AC‖2F is

C = V1(I− 1

τ
Λ−21 )VT

1 , (13)

where U = [U1U2], Λ =diag(Λ1,Λ2), and V = [V1V2]
are partitioned according to the sets I1 = {i : σi > 1/

√
τ}

and I2 = {i : σi ≤ 1/
√
τ}, where σi is the ith entry of Λ.

Moreover, the optimal value is

ψ(A) =
∑
i=I1

(1− 1

2τ
σ−2i ) +

τ

2

∑
i∈I2

σ2
i . (14)

The whole procedure of ASC is summarized in Algorithm 1.

Algorithm 1 Solving ASC

Input: Original data matrix X, Number of attributes V ,
Number of subspaces p, Parameters λ1, λ2, λ3

Output: Clustering result.
for v = 1 : V do

Initialize W(v), H(v) and Z(v) with random values.
end for
while not converge do

for v = 1 : V do
Fixing H(v) and Z(v), update W(v) by (9).
Fixing W(v) and Z(v), update H(v) by solving (11).
Fixing W(v) and H(v), update Z(v) by solving (12).

end for
end while
Construct an integrated self-representation matrix Z =∑V
v=1 Z(v) and a similarity matrix S = |Z|+ |ZT |.

Segment the data into p groups by Normalized Cuts.

2.4 Complexity and Convergence Analysis
The complexity of updating W(v) in (9) isO(mnk(v)+k(v)

3
)

and H(v) in (11) is O(k(v)
3
) by using Bartels Stewart algo-

rithm for solving the Sylvester equation. Updating Z(v) has
O(n3) complexity as it involves SVD decomposition. Since
usually k(v) � n, the overall cost is

∑V
v=1O(mnk(v) + n3)

which is the same as that of LRR. Hence, we can conclude
that ASC does not increase the complexity with respect to n
as the result of exploring attributes, while in the meantime,
multiple representations are learned to depict data compre-
hensively. Since the optimizations of all subproblems are
convex and we can obtain each optimal solution, the value
of (7) is monotonically decreasing. Therefore, the objective
function (7) converges as it has trivial lower-bound 0.

3 Experiments
3.1 Dataset
To demonstrate the effectiveness of ASC, we carried exper-
iments on several benchmark datasets. The Yale1 contains

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

11 face images for each of 15 subjects. The face images of
each subject are either in different facial expressions (such
as happy or sad) or configurations (such as with or without
glasses). The COIL202 is composed of 1440 images for 20
objects. The 72 images of each object were captured by a
fixed camera at a pose intervals of 5 degree. Some sample im-
ages of the two objects are shown in Figure 1. The Extended
YaleB (YaleB) [Hu et al., 2014] contains 38 individuals and
around 64 near frontal images under different illuminations
for each individual. We use the first 10 classes of this dataset,
which consists of 640 frontal face images. The ORL3 dataset
consists of 40 subjects with each containing 10 face images
with various lighting and facial expressions. The Notting-Hill
[Zhou et al., 2014] is a video face dataset, which is derived
from the movie “Notting Hill”. We used the 4660 faces from
5 main casts. The USPS [Hu et al., 2014] contains 9298 im-
ages of handwritten digits belonging to ten digits, 0-9. We use
the first 100 images of each digit for our experiments. The
images vary in each class but have common stroke attributes
(such as 3 and 8) in different classes.

3.2 Experiment Setup
We compared ASC against the state-of-the-arts SSC [Elham-
ifar and Vidal, 2009], LRR [Liu et al., 2013], LSR [Lu et
al., 2012], SMR [Hu et al., 2014] and L2-Graph [Peng et
al., 2017]. The parameters of these methods were tuned to
achieve the best performance for a fair comparison. For ASC,
we empirically fixed (λ1, λ2) = (0.2λ3, 0.1λ3) and tuned λ3
from [0.1, 0.2, 0.3, 0.4, 0.5]. We also fixed the number of at-
tributes V = 3 and each reduced dimension k(v) = 50 for all
experiments. For all approaches, the similarity matrices were
conducted on the typical similarity measures [Georghiades et
al., 2001] and Normalized Cuts [Shi and Malik, 2000] was
employed to produce the final clustering results. Four widely
used evaluation metrics, including accuracy, normalized mu-
tual information (NMI), Purity and F-score are used to assess
the quality of the results with a comprehensive evaluation,
and the best results are highlighted in boldface.

3.3 Performance Analysis
Clustering Results. Table 1 summarizes the average clus-
tering results along with standard deviations. We can see
that ASC performs the best on all datasets, which proves
the effectiveness of exploring diverse information among at-
tributes. Especially for YaleB dataset, ASC outperforms the
second best result achieved by LRR with a large margin, i.e.,
11.68%. This could be due to two reasons. One is that
YaleB comes with heavy noises and outliers. LRR learns
self-representation based on the original data X but ASC is
based on latent representations {H(v)}3v=1, the features of
which are extracted from the original data with noises al-
leviated by the first term in (7). Hence, the learned self-
representations of ASC are more accurate and lead to a higher
accuracy. The other reason is that ASC learns more com-
prehensive information of data by exploring diverse informa-

2http://www1.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

3http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Methods Metrics Yale YaleB ORL USPS COIL20 NHill

SSC

Accuracy 58.84±0.79 62.72±0.21 75.05±1.29 75.64±0.00 73.19±0.00 68.35±0.46
NMI 60.20±0.64 63.26±0.16 87.91±0.26 75.54±0.10 89.03±0.80 82.64±1.22
Purity 60.00±0.74 62.72±0.21 78.90±1.05 79.24±0.00 80.42±0.00 76.46±0.56
F-score 36.60±1.14 38.43±0.30 63.32±1.46 65.66±0.16 68.84±0.00 60.66±0.94

LRR

Accuracy 57.27±0.74 62.38±0.28 78.80±0.93 78.40±0.00 82.79±0.56 67.51±0.13
NMI 54.23±0.52 63.62±0.21 88.15±0.25 81.22±0.00 91.16±0.32 80.31±1.05
Purity 50.42±0.51 62.47±0.20 83.10±0.88 82.80±0.00 87.87±0.00 74.36±1.02
F-score 33.17±1.39 44.92±0.81 64.29±1.18 72.27±0.00 80.21±0.70 58.25±0.65

LSR

Accuracy 57.09±0.66 66.56±0.00 74.60±1.28 69.13±0.33 69.44±0.76 72.16±0.45
NMI 58.64±0.39 62.54±0.00 86.81±0.69 65.74±0.24 78.83±0.39 83.12±0.16
Purity 57.82±0.54 67.34± 0.00 78.40±1.17 73.19±0.18 69.96±0.88 75.67±0.32
F-score 35.10±0.54 42.09±0.00 66.26±1.71 53.73±0.33 62.08±1.06 60.03±0.47

SMR

Accuracy 55.39±0.33 63.81±0.00 76.50±0.61 79.72±0.00 73.33±0.00 69.93±0.33
NMI 56.53±0.55 64.52±0.00 85.27±0.18 67.69±0.11 86.05±0.22 84.39±0.32
Purity 56.00±0.33 61.81±0.00 77.10±0.38 74.72±0.00 76.99±0.00 73.88±0.48
F-score 32.06±0.57 40.96±0.15 60.79±0.33 59.23±0.00 62.87±0.00 57.76±1.24

L2-Graph

Accuracy 54.42±1.27 63.53±0.00 74.15±1.24 69.52±0.11 67.46±0.16 66.65±1.13
NMI 57.48±1.43 63.91±0.00 85.39±1.17 66.73±0.31 76.38±0.29 80.67±0.24
Purity 55.03±1.27 62.53±0.00 76.15±1.46 73.36±0.13 68.38±0.17 74.64±1.09
F-score 33.27±0.93 40.77±0.00 62.42±1.41 54.26±0.36 59.09±0.28 60.95±0.81

ASC

Accuracy 60.12±1.57 74.06±3.85 81.20±1.07 79.04±0.81 84.25±0.92 72.64±1.46
NMI 60.72±0.44 71.01±2.67 88.97±0.63 82.19±0.72 93.14±0.55 84.68±0.56
Purity 60.12±1.57 74.06±3.85 84.10±0.84 83.44±0.92 88.03±0.22 76.11±0.65
F-score 37.32±1.43 56.26±4.03 68.84±1.55 73.75±1.14 80.69±0.99 61.48±1.12

Table 1: Clustering results (mean ± standard deviation).

Figure 2: Illustrations of self-representations of ASC against LRR on the Yale, with their dimensionalities of features being reduced to 2-D by
PCA. The solid circles in different colors indicate the face images of different subjects and the blue rectangle indicates the same image. The
attributed self-reresentations Z(1) and Z(2) of ASC uncover multiple attributes, demonstrating that the images sharing the common attribute
are close together. The integrated Z of ASC reveals a clearer structure than that of LRR - the distribution of a subject’s images is more
coherent.

tion among multiple independent self-representations and in-
tegrating them together. However, LRR learns a single self-
representation based on the features of original data only. To
validate our reasoning, below we take a close look at the self-
representations.

Study of Attributes. Figure 2 illustrates the learned self-
representation matrices of ASC and LRR for the Yale dataset.
We only demonstrate the images of four subjects for clearer
visualization, as well as two (out of three) attributed self-
representations Z(1) and Z(2) of ASC due to page limitation.
We can see that the closeness among images are different in
Z(1) and Z(2). For example, the face images with shadow
are very close to each other in Z(1) while the faces with
happy/surprised expressions are close in Z(2). Apparently,
these representations enable the understanding of the data
from multiple perspectives, which could be hardly achievable

by current subspace clustering approaches. It is worthy notic-
ing that the image that enclosed in blue rectangle in Z(1) is
also represented in Z(2), which means that the same image
could be grouped differently based on different attributes.

Figure 3: Diverse clustering solutions of the COIL20 dataset. Each
clustering is based on an attribute: left rotation, right rotation and
quasi cyliner shape. Images circled in red are outliers.
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Figure 4: The effect of the parameter λ3.

Moreover, in terms of the whole features of data (i.e., sub-
ject), the integrated Z of ASC shown in Figure 2 has a much
clearer data structure than that of LRR. This will undoubtedly
lead to better clustering results which are in line with the re-
sults given in the Table 1. We further tested ASC on COIL20,
a larger dataset, and demonstrated some example clustering
results in Figure 3. Again, the results are quite impressive and
promising, with multiple clusters being obtained through dif-
ferent attributes (rotation, shape, etc), which is beyond what
existing subspace clustering approaches can offer.

Parameter Analysis. Here we tested the sensitivity of pa-
rameters λ1, λ2 and λ3 on clustering results. We varied λ3
from 0.1 to 0.5 with an increment of 0.1 and we experimen-
tally fixed (λ1, λ2) = (0.2λ3, 0.1λ3). Since the performance
on each dataset has a similar tendency, we show the param-
eters’ effects on the accuracy for Yale and YaleB only. As
shown in Figure 4, ASC shows a relatively stable perfor-
mance on the two datasets, which demonstrates the robust-
ness to parameter tuning. Also, the performance of ASC is
consistently better than LRR when λ3 is tuned in a suitable
range. Taking the Yale as an example, ASC performs better
when λ3 ∈ [0.3, 0.5] than 0.5727 that is achieved by LRR
(Table 1). Worth to mention that, the better accuracies could
be expected by grid search λ1, λ2 and λ3, though it will in-
evitably incur a higher cost of the parameter tuning. We also
evaluated the effect of the number of attributes V for both
Yale and YaleB. Here we fixed λ3 = 0.5 and gradually in-
creased V from 1 to 5. As illustrated it in Figure 5, the ac-
curacy for both datasets increases when V is tuned from 1
to 3, which signifies the effectiveness of the exploration of
multiple attributes. However, the accuracy decreases when
V increases from 3 to 5. The fluctuation could be due to
a compromise between the amount of available features for
each H(v) and the diverse information among them. When
V increases, more diverse information can be utilized. How-
ever, when V exceeds the number of prominent attributes, the
amount of discriminative features for each H(v) could be in-
sufficient for representing an attribute.

Convergence Analysis. Having proven the convergence of
ASC in the Section 2.4, here we experimentally demonstrate
its convergence in Figure 6, where the horizontal axis is the
number of iterations and the vertical axis is the value of ob-
jective function. It can be seen that the values of the objective
function are non-increasing and drop sharply around 10 iter-
ations on the Yale.
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Figure 5: The effect of the number of attributes V .
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4 Conclusion
In this paper, we have proposed an attributed subspace clus-
tering (ASC) approach which explores multiple attributes of
data to understand data from various aspects. Different from
existing subspace clustering approaches that seek for a sin-
gle self-representation based on original data, ASC simul-
taneously learns multiple self-representations with each one
corresponding to one attribute and obtains an aggregated self-
representation by adding them together. Extensive experi-
ments on six image benchmarks have clearly shown that ASC
not only achieves multiple clustering solutions with each one
reflecting one property of data, but also improves the clus-
tering accuracy based on an aggregated self-representation.
Though ASC has shown the effectiveness for each dataset
with the same number of attributes being fixed in our ex-
periments, nevertheless, investigating the optimal number of
attributes for each dataset with model selection which could
potentially enable ASC to be more desirable and practical.
This could be our future work.
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