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WARDOG: Awareness detection watchdog for
Botnet infection on the host device

G. Hatzivasilis, O. Soultatos, P. Chatziadam, K. Fysarakis, I. Askoxylakis, S. loannidis, G.
Alexandris, V. Katos, and G. Spanoudakis

Abstract —Botnets constitute nowadays one of the most dangerous security threats worldwide. High volumes of infected
machines are controlled by a malicious entity and perform coordinated cyber-attacks. The problem will become even worse in
the era of the Internet of Things (I0T) as the number of insecure devices is going to be exponentially increased. This paper
presents WARDOG — an awareness and digital forensic system that informs the end-user of the botnet’s infection, exposes the
botnet infrastructure, and captures verifiable data that can be utilized in a court of law. The responsible authority gathers all
information and automatically generates a unitary documentation for the case. The document contains undisputed forensic
information, tracking all involved parties and their role in the attack. The deployed security mechanisms and the overall
administration setting ensures non-repudiation of performed actions and enforces accountability. The provided properties are
verified through theoretic analysis. In simulated environment, the effectiveness of the proposed solution, in mitigating the botnet
operations, is also tested against real attack strategies that have been captured by the FORTHcert honeypots, overcoming
state-of-the-art solutions. Moreover, a preliminary version is implemented in real computers and IoT devices, highlighting the
low computational/communicational overheads of WARDOG in the field.

Index Terms—computer crime, forensic, intrusion detection, intrusion prevention, network security, security management.
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1 INTRODUCTION

He fight against botnets is ongoing for more than a

decade now. According to Microsoft, around 1% of all

machines that install updates automatically, are found
infected with malware [1]. From one month to the next,
most of these infected computers are unique which intui-
tively means that almost 1 in 10 users will experience an
infection in the next year.

Several countermeasures have been proposed [2], [3],
[4], involving Internet Service Providers (ISPs), industry
and governmental organizations, and end-users. The in-
fection rate has been reduced since the beginning of this
war, and after 2009 it seems to be relative stable [5].

However, the financial cost and losses are still consid-
ered significant for the global economy [6]. Malwares
have evolved from disruptive and highly visible at the
early 2000s (ILOVEYOU, CODE RED, etc.), to stealthy
code that resides undetectable in the victims machine as
part of the criminal infrastructure (GAMEOVER ZEUS).
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Nowadays, cybercrime is organized in a Service Oriented
Architecture (SoA) where botnet herders and malware
authors can trade their assets in a market of attack-tools
and integrated attack strategies [7], [8]. The criminal ac-
tivity involves, among others, Distributed Denial-of-
Service (DDoS) attacks, user credentials harvesting, finan-
cial fraud, spamming, hosting of phising sites, click fraud
on advertising networks and so on [9].

Normally, the end-users do not bear the full cost of this
botnet scourge, with ISPs undertaking the main mitiga-
tion efforts with the assistance of national initiatives (e.g.
the London Action Plan (LAP) [10] that promotes anti-
botnet and anti-spam policies). However, ISPs are not
incentivized by the market to mitigate botnets and several
ISPs try to avoid this additional cost [11].

Nevertheless, the end-user plays a significant role con-
cerning the overall Internet security. This fact is becoming
even more important with the evolution of the Internet of
Things (IoT) where high volumes of personal and mobile
devices must be protected against “botinization” [12],
[13], [14], [15]. Marai botnet is an indicative case [16]. In a
short period of six months, the malware had infected
around 600,000 IoT devices, such as CCTV cameras with
default passwords. Then on October 2016, the botnet per-
formed massive DDoS attacks, overwhelming several
high-profile targets and leaving much of the Internet in-
accessible on the US east coast [17]. Thus, the more active
involvement of the user should be considered as the next
step towards a safer and sustainable Internet and the fur-
ther reduction of the abovementioned infection rate [5].

This paper proposes the WARDOG; an end-user
awareness system for botnet mitigation on the infected
machine’s side. Once a botnet attack is detected by a legit-
imate and trusted network entity, the involved infected
machines are alerted.

As a practical example, we consider the detection of a
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DDoS attack by a web server or honeypot [18]. At the cur-
rent setting, the compromised equipment will continue
serving the hacker’s commands even after the release of
the attack and the exposure of the infected infrastructure.
With the WARDOG now in place, the entity that is under
the attack can send alert messages back to the machines
that transmit the malicious traffic (based on the IP ad-
dress). WARDOG receives these messages at the device-
end and acts as an intrusion mitigation mechanism. It will
automatically verify the entity’s claim based on locally
logged information, block the malicious activity, and ad-
vise the user of the botnet’s infection. Then, the notified
users can authorize the collection of logging data by an
anti-virus program. The traces from the various compro-
mised machines are correlated in order to detect the han-
dler-bots at the adjacent layers that forward the attacker’s
commands and remain hidden during the attack. Digital
evidence is concentrated and automatically establishes
legal documentation that can be used to prosecute the
hackers. The proposed system’s key advantages include:
Compatibility: No modifications are required on
the Internet infrastructure. WARDOG is compati-
ble with the routing infrastructure and runs upon
intra-domain routing and tunneling mechanisms.

2. Transparency: The system is fully transparent to
the end-user. It can protect legacy systems without
any modifications to the client/server software
applications.

3. Scalability: WARDOG can protect a high volume
of users and services on the global scale with low
impact on legitimate entities.

4. Versatility: A high variety of malicious activities
can be effectively and efficiently mitigated.

5. Economic incentive: No further economic impact
to the ISPs or the end-users.

6. Forensic/Accountability: The overall approach
provides accountability and non-repudiation of
performed actions (digital signatures, blockchain-
ing, etc.). The forensic documentation is produced
from the processed data in an automatic manner.

7. Cross-border digital investigation: As malware
infection and botnet recruitment can spread all
around the world, the proposed solution facilitates
the collection of forensic data and the prosecution
of the hackers despite the physical location of the
victim or the involved machines.

WARDOG develops a cost effective mechanism that
tackles the critical factors towards a sustainable infor-
mation security and forensic computing framework. It
has been properly designed to marshal important sus-
tainability aspects such as computational costs, resource
usage, scalability, and energy efficiency. The overall solu-
tion is able in providing a suitable degree of security and
forensic capability, and accomplishes sustainable security
tracking and detection, effective machine intelligence to
cyber-attacks, efficient information sharing and digital
cyber-crime investigation. Moreover, our proposal is suit-
able for IoT ecosystems and other modern networks, with
the overall operation causing no additional costs to the
ISPs.

The rest of the paper is organized as: Section 2 refers to
background and related work, Section 3 outlines the
WARDOG system operation, Section 4 presents the secu-
rity aspects of the proposed system. The related theoretic
analysis is detailed in Section 5 and the provided forensic
evidence is presented in Section 6. Section 7 shows the
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simulation outcomes while a real preliminary version is
described in Section 8. Section 9 discusses the overall re-
sults and compares them with relevant studies. Finally,
Section 10 concludes and refers future work.

2 BACKGROUND & RELATED WORK

Today, several botnets have been neutralized and ana-
lyzed by security experts [19], [20]. The general botnet
architecture was firstly revealed via the analysis of the
Torbig [19], with other significant efforts including the
exposure of Botters [8] and Conficker [20]. Surveys for
botnet attacks, attacker tools, and mitigation techniques
are detailed in [2], [4], [9], [21], and [22].

2.1 Botnet Infrastructure

A botnet [19], is typically defined as a network of infected
end-hosts, called bots, which are controlled by one or
more persons, known as bot-master/s. The botnet recruits
vulnerable machines across the Internet utilizing several
techniques that are exploited by various classes of mal-
ware (e.g. software flaws, social engineering, default sys-
tem configurations, etc.). The infected machines establish
a Command and Control (C&C) infrastructure among them,
in order to receive instructions from the bot-master and
coordinate malicious activities. The main C&C functional-
ity [19], [20]:

1. Facilitates monitoring and recovery by the bot-

master

2. Provides robust network connectivity

3. Limits the exposure of the botnet infrastructure

that is visible by each distinct bot

4. Supports individual encryption and control traffic

dispersion

Thus, the bot-master distributes commands to the bot
armies via this C&C mechanism. Normally, the attacker
establishes intermediate layers of bots, called handlers.
Handlers forward the bot-master’s commands to other
bots that they control directly. The communication finally
reaches to the end-bots that actually perform the attack.
Thus, the individual’s actual location and identity are
concealed and the hacker is protected from the law au-
thorities.

The communication channels can operate over various
(logical) networks and utilize different communication
means. Botnet management involves a series of systems
and tools that typically install malicious code and control
the victim via the Internet Relay Chat (IRC) [23]. None-
theless, the hacker can alter the communication approach,
with several botnets nowadays supporting more than one
protocol in order to incommode their detection (e.g. [8],
[20], [24]).

2.2 Attacks

Commonly, botnets are exploited for launching DDoS
attacks on computer networks, applications, or the Web in
general [4], [9]. The current trend is the performance of
DDoS attacks at the application layer [4], [9], [25]. It re-
mains among the most difficult issues to safeguard
online, especially in the case of web servers.

The most common strategy includes HTTP/S flooding
[9] that is originated from the bots to the targeted server.
The attack presupposes a high volume of bots that can
continuously exhaust the server’s bandwidth and there-
fore prevent legitimate users from gaining access.

As the end-bots that perform the attack do not need to
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get any response back from the attacked server, they can
send requests with spoofed IPs [26]. Each bot attacks the
server with various fake IPs. The true IP address is kept
hidden from the server and the deployed prevention
mechanisms, like black-listed IPs from firewalls or other
network monitoring tools, are overcome as the bot keeps
changing addresses [27].

Moreover, the bot-master can further hide the end-bots
via a layer of reflectors and attack the server indirectly
[26]. Reflectors are non-compromised systems that exclu-
sively send replies to a request. The bots make requests to
the reflectors using as spoofed IP, the IP address of the
attacked server. Thus, the reflectors answer back to the
server, performing the actual attack.

Except from flooding, Slowloris constitutes a state-of-
the-art variant of DDoS [25], [28]. The attacker establishes
many connections to the targeted server and keeps them
open with minimum effort for as long as possible. The
attack can be effectively performed with less bots than in
flooding. Moreover, the bots consume less resources and
this fact increases the possibility of remaining unnoticed
by the owner of the compromised machine.

The main difference between botnets and the typical
malwares is the existence of the C&C. Thus, if we detect
the location of the C&C, the botnet can be tracked and
removed. This strategy exploits the possible weaknesses
of the communication approaches that applied by the
botnet. It is relatively easier to take down a centralized
infrastructure. Therefore, as the detection mechanisms
become more effective, hackers start moving towards
Peer-to-Peer (P2P) and hybrid topologies [29], [30]. This
comes with a cost of higher latency as the communication
between the bot-master and the bots have to pass through
several peers before reaching the end-host that will even-
tually perform the attack (i.e. HITP flooding). On the
bright side, it offers higher untraceability from the bot-
net’s persecutors [29], [30].

Undoubtedly, botnets can be utilized for a variety of
malicious activities [9]. This paper considers all types of
malicious botnet activity, however for our purposes, we
will concentrate on DDoS techniques and demonstrate the
effectiveness of our proposal in mitigating HTTP flooding
[9] and Slowloris [25] attacks (Sections 5-7).

2.3 Countermeasures

Three types of botnet countermeasures are identified [4].
The first type prevents the setup of the botnet, blocks the
infection of secondary victims and detects/neutralizes the
botnet’s handlers. The second type deals with ongoing
botnet attacks at runtime, including mechanisms that de-
tect, prevent, or mitigate the malicious activity. The third
type utilizes forensics technologies that analyze the botnet
characteristics, after a launched attack.

The typical techniques for preventing systems from
getting infected include anti-viruses/anti-malwares, fire-
walls, and patching [31]. Thus, malicious code is detected
based on signatures, behavior and /or heuristic character-
istics [32]. Then, it is quarantined for further analysis or
permanent deletion. Fruitful information is also collected,
resolving the attacker’s tactics. The system’s vulnerabili-
ties are exposed and the legitimate software/hardware is
updated accordingly. These mechanisms constitute an
integral part of the overall defence. Except from protect-
ing single machines or networks their functionality is
now extended to the Cloud [33].

However, these techniques cannot always protect the

legitimate assets. An anti-virus, for example, can only
discovery malicious patterns that are already known.
Thereafter, an attacker can examine the scanning capabili-
ties of the protecting mechanism and apply a strategy to
avoid detection (i.e. zero-days).

Thus, anomaly detection approaches are suggested
[34]. The normal operation of the system is recorded by
machine learning components (e.g. based on fingerprint-
ing [35], fuzzy estimators [36], synergetic neural networks
[37], or deep learning [38]). When a new type of attack is
performed, the abnormal activity is tracked and mitiga-
tion policies are applied. So, DDoS attacks can be detected
by network monitoring approaches that parse the traffic
at runtime [36], [39]. Then, prevention mechanisms, like
the Moving Target Detection (MTD) [40], can reduce the
attack’s side-effects. BotFlex [41] is a state-of-the-art
community-driven solution for network monitoring. The
raw data of the inspected networking operations, which
have been performed by the underlying machines, are
transformed in high-level events (e.g. port scan, down-
load form site, or other transactions). An inference engine
parses this information and tries to detect symptoms of
malicious activities (formed as logic rules). One drawback
is the high volume of data that must be processed. Thus,
singular value decomposition from the Big Data filed are
applicable here [42]. The high-order data dimensions are
reduced, even for encrypted data [42], and the computa-
tional overhead is significantly reduced.

On the other hand, stealthy DDoS strikes where the at-
tacker combines several different attacks instead of a sin-
gle and easily identified pattern, can overcome anomaly
detection and statistical analysis [43]. Moreover, the legit-
imate organization must devote sufficient effort in order
to deploy and keep up-to-date the defence measures [11].

Apart from these main safeguards at the system level,
Internet-wide mechanisms are also developed by the ISPs
to marshal the networking activity without the active in-
volvement of the end-users [44]. Although ISPs cannot
take responsibility and lock down every customer’s in-
fected machine, they can at least ensure that they do not
serve traffic that contains malicious packets. The main
actions should include [45]:

1. IP-spoofing: The provider should not forward
traffic with spoofed IP addresses and all packets
that contain any RFC 1918 or reserved IP address
in the source or destination should be immediately
discarded.

2. Filtering: Ingress filtering should be performed for
all the incoming packets to the ISP’s network. For
traffic that is coming from a customer’s site, it
should be verified that the NET _ID field in the
source IP address matches the assigned NET_ID of
this specific customer. Egress filtering should be al-
so applied in order to examine the outgoing traffic
to upstream and peer ISPs.

3. Broadcast: The IP directed broadcasts must be dis-
abled.

4. High-profile entities: Careful attention should be
paid for high-profile servers and customers.

5. Dissemination: The customers could be educated
in order to increase the security awareness and
protect themselves.

Ordinarily in botnets, the infected machines tend to
connect malicious domains or Domain Name System
(DNS) that are controlled by the bot-master in order to
receive and respond to commands [19], [46]. If these



communication patterns to the C&C are identified by the
ISP (e.g. router-based TCP/UDP inspection [47], honey-
pots [48]), the interaction can be repealed (e.g. blocking
malicious domains/IPs, routing and DNS blacklist) [46].

Nevertheless, relying on detecting bot communication
is not considered viable in the long term [23]. The C&C
interaction can be extremely flexible and polymorphic,
utilizing encryption or other masking techniques [23].

Forensics are utilized throughout these procedures to
gather juridical data. This mainly includes honeypots,
computer and network forensics [49], [50]. Yet, the high
volume of participating machines/users, the global cov-
erence of bots, and, consequently, the various involved
law authorities from different countries, pose great diffi-
culties in the prosecution of the wily hacker [51].

WARDOG concentrates in the last two classes of pro-
tection mechanisms (prevention of ongoing attacks and
forensics), while contributing in the detection and neu-
tralization of the infected bots and handlers of the first
line of defence (botnet’s setup and secondary victims). To
our knowledge, this is the first attempt that tackles these
three aspects in a concrete manner. Once an ongoing at-
tack is identified, the system stops the malicious activity
in the host devices. Then, through crowdsourcing, the
involved legitimate users can contribute in the collection
of related data from their systems that are analyzed by
security organizations (i.e. Computer Emergency Re-
sponse Teams (CERTs) and anti-virus companies). After
several iterations, the bot-master can be traced back. Fo-
rensic information is automatically gathered throughout
this process, resulting in adequate digital evidence that
substantiates the malicious activity.

3 WARDOG

WARDOG is an active botnet mitigation mechanism that
is applied on the end-users’ machines. It is considered a
part of the mainstream security software. For example,
the WARDOG functionality can be incorporated to a fire-
wall or an anti-virus. Its goal is threefold: i) stop the at-
tack, ii) inform the user that his/hers equipment is com-
promised, in order to perform a security upgrade and iii)
provide adequate digital forensic/evidence that can po-
tentially lead to the bot-master’s identification, capture,
and conviction.

3.1 Traffic Monitoring at Normal Device Operation
As aforementioned, botnet attacks do not always require
to receive response traffic or acknowledgments from the
target [26]. Thus, false IP addresses can be casted in order
to hide the real bot/node source from the victim (target).

The WARDOG component detects IP-spoofing in the
end-user device. The outgoing traffic is filtered. When a
packet is sent with an IP address that has not been as-
signed to this machine (or to any Virtual Machine (VM)
that runs in the same system), the incident is recorded, the
traffic is blocked and the user is prompted to take further
actions, (similarly with the case of receiving a WARDOG
alert from an attacked entity as described in the next sub-
section). Such an ingress filtering method can significant-
ly reduce the IP-spoofing and the indirect DDoS attacks
via reflectors [52].

Moreover, to further constrain the bot’s capabilities
and mitigate Slowloris, WARDOG performs a failed con-
nection (FC) mechanism [53] on the end-user’s machine.
FC tracks the TCP connections towards a unique IP ad-
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dress (e.g. packets with the TCP RST or TCP SYN flags). If
the broken connections go beyond a threshold at a specif-
ic time-window, the new connection requests to this IP
address are limited.

Except from monitoring, the system also logs the ongo-
ing traffic. When an entity alleges that the machine partic-
ipates in an attack (e.g. HTTP flooding), the stored infor-
mation is utilized in order to verify the claim as it is de-
scribed in the following subsections.

3.2 Under-Attack Functionality

When a network entity is under an attack, like a web
server that is hit by a DDoS, it deploys intrusion detection
mechanisms that discern the malicious traffic and collect
related information regarding the hacker’s strategy (e.g.
[36], [35], [38], and [40]). However, at this point the victim
can only utilize this data mainly for self-performing ac-
tions (e.g. discard packets from the suspicious sources)
[40], [52].

3.2.1 First iteration — The bots’ layer

With WARDOG now installed, as the attacked entity (AE)
gathers evidence about the ongoing attack, it can inform,
in real time, the directly involved end-user devices (bots)
that are actively participating in the malicious effect. The
entity provides digital evidence to each machine concern-
ing its claims. For example, part of the logged HTTP traf-
fic including the machine’s IP address as a source and the
entity’s IP address as the destination (see Section 8).

At first, the WARDOG component authenticates the
AE (see Section 4 — security mechanisms). Then, it evalu-
ates the provided evidence by examining related log files
that have been captured on the machine-end (i.e. network
traffic logs). If the evidence is verified, WARDOG filters
and blocks the outgoing traffic to the entity and prompts
the user to take further actions.

The user can choose to erase the constraint and permit
future transmissions, denoting that he/she is aware of the
transactions and the communication is legitimate (accept-
ing also the responsibility of this action). We expect that
the high majority of the users will not unblock the inimi-
cal communication until they have fixed the security
problem (i.e. anti-virus/anti-malware scan, operating
system format, software /hardware upgrade).

Thus, the distributed attack will be automatically
stopped once detected, and the bots will be neutralized
(see Section 6 — simulation study). The AE will continue
sending WARDOG alarms though, if the device keeps
sending traffic during the ongoing attack. This will be
repeated at most three times per case, to reserve AE’s re-
sources and prevent attackers from exploiting the alerting
procedure for their benefit. Only a small amount of the
overall bots that are directly administrated by the attack-
ers are anticipated to remain active in the bots’ network.
Consequently, it is then feasible for ISPs and network fo-
rensics to detect this small amount of devices and provide
adequate evidence in order to accuse their owners in the
court of law (e.g. [2], [3], [4]). However, we consider that
this will not be the usual case, as bots are mostly owned
by legitimate users and not by the bot-masters.

3.2.2 Second iteration — The handlers’ layer

After exposing the end-bots layer of the malicious infra-
structure at the first phase, we move forward in detecting
the bot handlers. The compromised machines that partic-
ipated in the direct attack (end-bots) can further contrib-
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ute in the forensic efforts.

Except from informing the user for the infection,
WARDOG requests from the user to give his/hers explicit
consent in order to transmit further information to a
trusted cyber-security organization (i.e. the anti-virus
company), which will analyze that attack-related data. We
expect that a sufficient number of users will permit this
interaction. Thus, log files are collected from various bots.
The goal is to discover common communication patterns,
investigate them further, and disclose the commands that
where sent by the handlers. After excluding common traf-
fic from legitimate services, the security experts concen-
trate in the malicious data in order to isolate the IP ad-
dresses of the handler machines. The process can be per-
formed in an automated manner, similarly with the gen-
eral network monitoring forensic approach [21], [50].

As with the first phase, the WARDOG component of
the machine will receive an alarm from the anti-virus
server (AVS) informing the user that he/she is part of the
handlers’ layer of the botnet. The digital evidence is a
blockchain of the logs that were collected from the con-
trolled bots. It contains traffic patterns with the machine’s
IP address as a source and each bot’s IP address as the
destination. The WARDOG verifies the claim, blocks
communication to the bot IPs, and prompts the user. As
with the first bot-neutralization phase, we consider that
the legitimate users that own the handlers will also coop-
erate and perform the same actions.

3.2.3 Further iterations — The rest C&C infrastructure
and the bot-master

The second phase is then iterated several times. The idea

is to continue discovering the C&C traffic in the various

nested or P2P botnet layers until we find the malicious

equipment and reach as close as we can to the bot-master.

4 SECURITY PROTOCOLS

Three security protocols are established in order to im-
plement the above mentioned interaction between the
various entities:

1. The AE detects an ongoing attack and informs the
involved machines/end-bots.

2. The user allows the local WARDOG component of
the affected machine to gather data and distribute
them to the correlated AVS.

3. The AVS analyzes the collected local logs from the
underlying machines and tracks their handlers.
Then, AVS updates these machines regarding the
infection. Protocol 2 can be repeated afterwards.

The combination of 1 and 2 is performed once for each
end-bot, when the attack is launched. Then, protocols 3
and 2 are executed for several iterations as long as there
exist contributing users on the various adjacent botnet
layers.

4.1 AE to end-bot communication

At first, the end-bots start attacking the AE. The entity
detects the malicious activity and records each suspicious
IP (sIP). AE exports relevant sub-logs that contain the in-
volved traffic patterns from each sIP and sends the evi-
dence to the machines. Fig. 1 depicts the exchanged mes-
sages between the AE, the machine and the user.

AE initiates the WARDOG interaction by distributing
its digital certificate. It contains information about the AE
and its public key (AE..).

Then, the entity creates an incident ID (IncID) for this
specific attack. The IncID is formed by the entities identi-
fier (e.g. name, URL, IP address, etc.), the date, and a
unique index that is generated randomly.

The evidence for the attack contains the IncID, the rel-
evant sIP and sub-log, and a random nonce (nonce.). The
evidence’s digest is signed with AE’s private key (AE.).
The result is sent to the corresponding bot.

The WARDOG component on each end-user machine
begins with the verification of AE’s certificate and the
extraction of the AE.. Then, it validates the integrity of
the transmitted evidence. If the message has not been re-
played (based on nonce.) or altered (digest check), WAR-
DOG examines the sub-log’s events. If the same events
have been also recorded in the local logs (local-log), the
data is validated.

The communication with the AE is blocked automati-
cally. The user is informed about the infection and can
retain the restriction or unblock the interaction.

4.2 Infected machine to AVS communication

After the verification of the infection, the WARDOG com-
ponent prompts the user to send the local-log to the AVS
for further processing. If the user grants his/hers explicit
permission, the machine establishes a secure channel with
the AVS, based on SSL similarly with the update pro-
gramming approaches that are commonly supported,
where each software distribution comes with pinned
asymmetric keys and the public key of the communi-
cating server [54], [55], [56], [57], [58]. The result is the
session key SK that encrypts the subsequent messages.
Fig. 2 illustrates the communication protocol.

The machine sends a message (encrypted with SK) that
contains the AE’s message (including the IncID and evi-
dence for the attack), the local-log, and a nonce (nonce.).
AVS decrypts the message with the SK and retrieves the
data. It can (optionally) re-verify AE’s evidence. An entry
is created for the IncID in the local data base, if there is
none yet, and the local-log is stored.

Henceforth, AVS can correlate the communicating pat-
terns from several infected machines for this specific
event and detect the handlers in the adjacent botnet layer.
The outcome is structured as a set of blockchains for eve-
ry identified handler. For each initial message M a chain
is created that contains the trace from the AE to the speci-
fied machine. The related digital certificate for the AE is
also included. The evidence is sent to the handler ma-
chine, as it is described in the next subsection.
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Fig. 1. Communication between AE and end-bot.

4.3 AVS to handler communication

The AVS initiates the communication with the handler by
establishing an SSL connection, as in the previous com-
munication protocol. Then, AVS encrypts the evidence
blockchain and transmits it to the machine.

The handler extracts the AE’s public key and verifies
the initial claims for the attack. For each message M, the
machine can track back the logged activity. The final node
of each chain includes the participation of the handler.
This is contrasted with the local-log. If the malicious activi-
ty is verified, the user is informed accordingly as in the
rest of the cases.

5 THEORETICAL ANALYSIS

This section details the theoretical analysis of our pro-
posal and its effectiveness in countering the attacker
models that are detailed in the simulation study (Section
7).

5.1 Protocol Analysis

The theoretic security analysis of the communication links
between the involved entities and the WARDOG compo-
nent is modelled in the verification tool ProVerif [59] (the
code is not included in this document due to the page
limit). It is a widely-used automatic symbolic protocol
verifier that proves the security properties of the exam-
ined protocol, like authentication, secrecy, and adversary
equivalence aspects. The examined protocol is modelled
in a process calculus and is automatically translated in
Horn clauses [59]. The tool resolves these clauses and de-
termines if the security properties hold or not. In case
where all properties are validated, ProVerif returns
“true”. Otherwise, it outputs the properties that could not
be satisfied.

——Crowdsourcing—| i

|
|
l«-Permission granted—| |
i i |
j———SSI Handshake————»,|
‘N—Sessi on Key <SK>———

i
i Send evidence i
— SSL Record: —>
M' = Enc(SK, [M | local-log | nonce;]) |
i —
Decrypt message
Dec(SK, M')
Check <nonce,> for replay attacks
Verify <M>'s integrity

(Optional: verify M)
Retrieve <IncID> from <M>
Store <local-log> in the <IncID> entry

'r—]

Detect common malicious patterns
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) .
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I
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|
I
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Fig. 2. Communication between the infected machine and AVS.

5.1.1 Attack-notification by AE

The initial communication between the AE and the end-
bot machines provides only one-way authentication
without secrecy. No prior knowledge is required, the AE
does not receive any response back and the exchanged
data is already known to the attacker. This approach ena-
bles a lightweight and fast reaction of the entity that is
under the botnet's attack and its computation-
al/communicational capabilities are strained (see Section
8 — Implementation).

ProVerif validates that the interaction is safe, achieving
the authentication of the sender, integrity, and immunity
to replay attacks. Alternatively, a secure channel could be
set up in order to accomplish confidentiality (as it is used
for the rest interactions that are described below).

5.1.2 Interaction between AVS and the infected
machines

The interaction between the anti-virus server and the end-
user machines imposes two-way authentication. At first,
both parties must authenticate each other. The process is
similar with the SSL handshake phase [60]. The result also
includes a session key that is randomly generated by the
second participant and is securely transmitted to the first
one that initiates the interaction (see subsections 4.2 and
4.3). Then, the two parties use this key to encrypt the ex-
changed data, as with the SSL record phase [60].

ProVerif evaluates the various protocol steps and vali-
dates that the overall setting provides, authentication,
confidentiality, integrity, and immunity to replay attacks.

5.1.3 Blockchaining

Finally, the blockchaining enforces non-repudiation of the
main performed actions. ProVerif validates the blocks’
integrity, authenticity, and privacy, and consequently the
security of the implemented chains [61]. The chaining
approach offers the required authorship and accountabil-
ity of each contributing participant, either for the attacked
entity that informs about the ongoing incidents or the
involved end-user machines that distribute their forensic
data.
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5.2 Botnet Mitigation
The theoretical security analysis for the WARDOG's effec-
tiveness in mitigating the botnet’s operations is per-
formed in three steps. First, we prove that packet loss due
to an attack is bounded (Theorem 1). Then, we argue that
WARDOG'’s success is determined by the end-user’s
compliance with the AE’s call to block the communication
(Lemma 1 and 2). Finally, we evince that WARDOG can
still mitigate the attack even without the full compliance
of the end-users (Theorem 2).

We start by providing some definitions and then the
theorems and the proofs.

Definition 1: Let pkt- be the total number of success-
fully transmitted packets.

Definition 2: Let pkt- be the total number of lost pack-
ets.

Definition 3: Let Tpkt be the total number of transmit-
ted packets, determined as the summation of pkt and pkt-

Definition 4: Let p be the transmission success rate of
the totally transmitted packets Tpkt.

5.2.1 Bounded packet loss due to the attack

Theorem 1: The ideal network exhibits pkt~ — p - pkt* <
0. For up to an additive constant, ignoring a bounded num-
ber ¢ of packets lost, it holds that the number of lost pack-
ets is a pfraction of the number of transmitted packets.
Specifically, there exists an upper bound ¢, as described in

).

pkt™ —p-pkt* <¢ (1)
Proof: Assume that there are N nodes, m of which are
malicious and m<N. Let MIPs be the set of IPs that are
controlled by the malicious nodes (bots).

Let Sbe the number of served packets that exposes an IP
as suspicious or malicious when a DDoS attack is detected.
+
The number of convictions ce is at least %, where e is a
single M/P. Thus,

pkt*

Ce— <
° B/p

eeMIPs

0 ()

Similarly, the number of rehabilitation operations re is at
most pkt~ /. Thus,

Kt
P N <o @3
Therefore, eertivs
pkt™ pkt*
DRI RN

eeMIPs
By combining (1) and (4), we derive:

pkt™ —p-pktt < p Z (r,—c.) < B-MIPs (5)
eeMIPs

Since B = b-m, where b is the number of malicious
packets that are served per window, (4) becomes:
pkt~ —p-pkt* <b-m-MIPs (6)
Therefore, the amount of disruption an attacker can
cause to the network is bounded. If there are no malicious
nodes (6) describes the ideal case, where pkt™ —p:
pkt* < 0. [

5.2.2 Correlation between the user’s compliance and

the disruptive capabilities of WARDOG

Lemma 1: The WARDOG proof alerting can decrease
the attack rate.

Proof: Based on (6), it is derived that b_up=b_wd, where
m_up and m_wd are the number of malicious nodes per
window with no protecting mechanism in place and with
the WARDOG proof alerting, respectively. m

Lemma 2: The mitigation rate of WARDOG is directly
affected by the end-users compliance with the AE’s re-
quest to block the malicious traffic.

Proof: The probability of blocking (p.) an end-bot from
continuing the attack is described in (7):

0 < (ps. = Pys " Puc) =1 (7

Where p.. is the probability of unspoofed IP addresses
and, thus, the verification of AE’s evidence, and p.. is the
probability of user’s compliance with the AE’s request.
We assume that the ingress filtering mechanism of WAR-
DOG will prevent spoofing at the device (p.=1). Then,
from (6) and Lemma 1, we can derive that the higher the
user’s compliance (p..), the lower the attacker’s bounded
effect.

As attacking nodes exceed the malicious threshold
(mal.,) during the congested period of the DDoS, they are
detected and excluded (p-pkt™ =maly, > (m=m—
1)). The attack rate is further decreased as MIPs is de-
creased. If all attackers are detected MIPs becomes 0, re-
sulting also the ideal case. m

5.2.3 Attacker’s effort and level of user compliance

Theorem 2: The WARDOG does not require the abso-
lute compliance of end-users in order to effectively miti-
gate a DDoS attack.

Proof: Consider that pkt~ is the maximum volume of
packets that can be sent be a node in N. The upper bound
for the current traffic (CT) to the AE is at most:

CT = LT + MT < N - pkt™™  (8)

Where CT is the summation of the legitimate (LT) and
malicious (MT) traffic, respectively.

The malicious effect starts as the CT exceeds the AE’s
bandwidth (B), as shown in (9):

CT=LT+MT>B (9)

Then, the attack is detected by the AE’s IDS and the
WARDOG informs the user’s to stop this activity. The
positive effect of the defence is described in (10), as the
blocked malicious traffic (BMT):

BMT < pkt™ - Z poe  (10)
Ps

Henceforth, from (8) and E(Ii/l(l)), we derive:
CT = LT + MT —BMT  (11)

With the full compliance of the end-users (pg, =1 for
all e € MIPs), all detected bots stop the malicious traffic to
the AE (BMT=MT). CT is now containing only legitimate
traffic which is normally less than B. Thus, no packet loss
is caused due to the attack.

Even with a lower level of compliance, the attack can
still be countered. In order to initiate the malicious effect
and make the AE not serving requests, the botnet must fill
up the remaining bandwidth (MT > B — LT). Thus, there
is a volume of bots that can remain active (not blocked by
the end-user) while no side-effect is being noticed by the
AFE’s legitimate users (MT < B — LT).

Nevertheless, even when this ratio is overcome by the
botnet, legitimate requests can still be served. The service
is degraded but not denied completely. In order to ac-



complish the absolute denial of the service, the malicious
traffic volume must be significantly higher than the re-
maining traffic (MT > B — LT). Thus, there can be a toler-
ance threshold of uncompliant end-users (UC.) under
which service is still provided to legitimate requests. m

6 FORENSICS

The section describes the forensics features that are ena-
bled with WARDOG. These are summarized as automati-
cally generated and self-validated documentation, and
enhanced cross-border digital investigation.

6.1 Forensics and Automatically Generated
Documentation

The supported communication protocols validate the col-
lected information and accomplish non-repudiation for
the contributing data (i.e. through digital signatures and
blockchaining). The overall security setting confirms the
malicious activity and the accountability of a potentially
identified attacker.

The AE creates the incident ID (IncID) representing the
forensic identification for the specific case. The overall
forensics evidence that is provided by the WARDOG in-
cludes:

1. The digital certificates (X.509) of each involved

participant (CA, AVS, AE, end-user machines).

2. The blockchains that were collected by the AVS
and entailed the initial evidence for the involve-
ment in the bots’ layer. Each chain contains the in-
cident claim, made by the AE, and the related veri-
fication of a specific bot.

3. The blockchains that were constructed by the AVS
and include the secondary evidence for the in-
volvement in the rest botnet layers. Each chain
contains the communication patterns between
botnet nodes of adjacent layers, which have been
verified by both parties (the bot and its handler).

4. The integration of the two abovementioned evi-
dence sources for each contributing anti-virus or-
ganization to a unitary documentation by the law
enforcement authorities or other collaborating or-
ganizations (i.e. CERTs).

The final document can act as an official record for this
cyber-incident and utilized by the law authorities in case
hackers or malicious equipment have been traced. More-
over, the document can be distributed between the in-
volved entities (i.e. lawyers, victims, judges), with the full
content being validated automatically (offline) through a
recursive verifier.

6.2 Cross-Border Digital Investigation

It is almost the norm for botnets to extend their function-
ality across several countries [48], [49]. However, interna-
tional cooperation in digital investigations remains a chal-
lenging task [51]. The collection of cross-border evidence
raises many issues including data authorization, different
legislation and investigation capabilities, and which au-
thority has the command for the process.

It is common practice for hackers to attack the target
that is deployed in one country through bots that lay in
another country with which there is a conflict (i.e. attack-
ing a web server in USA with bots that are located in Chi-
na). With WARDOG, the security organizations can gath-
er the appropriate information via crowdsourcing. The
end-users authorize the distribution of timely and ade-
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Fig. 3. Simulated DDoS attack with 50,000 end-bots. The red dots
represent the infected IPs.

quate data, assisting both in the mitigation of the threat
and the prosecution of the liable persons [62]. To our
knowledge, this is a unique feature of the proposed solu-
tion that is not handled properly by the current forensic
solutions in such a systematic and automatic manner.

7 SIMULATION STUDY

The largest reported DDoS attack was recorded against
GitHub in 2018 [63]. The attack launched from over a
thousand of different autonomous systems across tens of
thousands of unique endpoints. It exhausted the victim’s
memory resources that peaked at 1.35Tbps via 126.9 mil-
lion of packets per second. The hacker exploited thou-
sands of misconfigured Memcached servers, many of
which are still vulnerable over the Internet and can be
utilized again for more massive hits.

This section presents the simulation results for WAR-
DOG and its effectiveness in mitigating the large scale
malicious activity of a botnet. In order to simulate our
proposal under a realistic attack environment, we further
analyze the malicious traffic patterns (e.g. worm, SYN
floods, etc.) that have been captured by a system of dis-
tributed honeypots that was run by the FORTHcert [48],
[49], since 2014. We establish the various simulation as-
pects that are detailed below based on these observations
and the investigated hacker strategies.

7.1 Attack Mitigation

The simulated botnet launches HTTP flooding (make a
vast amount of requests to the victim) [9] attacks. The bots
perform HTTP flooding on attacks on a central access-
point (i.e. a server).

Bandwidth [Kbps] Current Traffic (CT)

3000
<1000000

2500 —— Bandwidth

——IDS activation
No protection

—+WARDOG-0.5
WARDOG-0.8

—— WARDOG-1.0

Attack time [sec]

Fig. 4. The Current Traffic (CT) of the various simulated attack sce-
narios
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TABLE 1 O
SIMULATION PARAMETERS / avs O
P it
arameter Value o o /
Simulator BoNeSi, NS3 * Bot-master &
Visualization PyGeolpMap, NSNAM
Bots (IP addresses) 50,000 i Handlers  End-bots
Attack Type HTTP Flooding A. B.
Packet payload 32 bytes o
Packets per second 5000 BYS ,85
Average bot’s bandwidth (MT) 22 Kbps _0 /
Average botnet’s bandwidth 1 Gbps O '®) ©0~0
o/o\o_ O
AE’s max bandwidth (B) 1 Mbps Botemaster A€ ol NG AE
andlers Bot-master
Service port 80 Hand! o<ﬂop Handlers
End-bots

Average legitimate traffic (LT) 10 Kbps End-bots
User’s compliance (p..) 1,09,0.8,0r 0.5 c. D.

The Botnet Simulator (BoNeSi) [64] is utilized for this
study, which emulates a system of 50,000 bots. The simu-
lator generates realistic traffic patterns for TCP and UDP
flows, and enables the configuration of several network-
ing aspects, like, the number of IP addresses, the total
packets per second and the data volume that are sent to
each target. Table 1 summarizes the specific simulation
parameters that are applied for this study.

The PyGeolpMap [65] plots the involved IP addresses
on a world map, as depicted in Fig. 3. The botnet is
spread in almost every country with sufficient Internet
infrastructure. The high majority of the infected machines
is located in Europe and North America.

The bots perform a SYN flooding DDoS on the legiti-
mate web server through port 80. The bots send bursts of
1000 packets, with a packet generation frequency of 10,
30, or 60 packets per second. The average bots bandwidth
is 22 Kbps, with the total botnet’s attacking-power ex-
ceeding the 1 Gbps on average [66].

Based on the theoretical results, WARDOG's effective-
ness is strongly affected by the user’s cooperation (p.). We
stress the system’s responsiveness to the attack for p. =
1.0, 0.8, and 0.5 level of compliance to the mitigation ef-
fort.

Each experiment was performed 10 times and the av-
erage values were recorded. Fig. 4 illustrates the evalua-
tion results. When the current traffic (CT) exceeds the 90%
of the AE’s bandwidth (B=1 Mbps) the potential IDS de-
tects the attacking IPs. Therefore, the threshold for the AE
to start the communication with the machines/bots is
overcome before the maximum bandwidth is filled up
(alternative, the AE could deploy a redundant/alternative
communication link for higher resilience). The WARDOG
components are informed and block the malicious activity
based on the p. level of each case (i.e. BoNeSi stops send-
ing traffic with these IPs). As time progresses and more-
and-more malicious IPs are blocked, the malicious traffic
(MT) is increased with smaller rates.

As is evidence, for high collaboration degrees (p.2 0.8)
the malicious activity is circumscribed and the attack ratio
is retain below the AE’s bandwidth. If the interplay with
the end-users is moderate (p.~ 0.8) the operational quality
is degraded, but legitimate users can still be served by the
AE. The attack can be successful for low volume of con-

Fig. 5. The four main botnet topologies as modelled in NS3/NSNAM
(A. Scenario 1, B. Scenario 2, C. Scenario 3, and D. Scenario 4).

tributing users (p. < 0.5). Nevertheless, the gather forensic
data could trace back part of the malicious infrastructure
afterwards.

In this simulation study, we evaluate the effectiveness
of WARDOG for different levels of user compliance, rang-
ing from 50%-100%. As we mentioned before, we consider
that even if the users do not want to participate in the
crowdsourcing functionality, they will block the potential
attack with high probability (to retain their own re-
sources). Thus, we estimate that a compliance value of 0.8
< p.< 0.9 will represent the normal state in real incidents.
The overall discussion regarding the user’s compliance
also reflects the efficacy of the WARDOG approach in
case of partial adoption level by the general audience.

7.2 Botnet’s Exposure

Apart from being part of the first line of defence, the pro-
posed system can track the nested botnet layers. We in-
vestigate the capabilities of WARDOG to dig out the bot-
master in an emulated environment with the Network
Simulator 3 (NS3) and the NS Network Animator
(NSNAM) [67].

A botnet of 50,000 bots is modelled again. This time we
consider that the user’s compliance ratio is fixed at p.= 0.9
and we vary the botnet’s topology. We track the trace
originated from a single bot-master towards the end-bots.
Four main scenarios are investigated:

1. Scenario 1: the bot’s are controlled directly by the

bot-master.

2. Scenario 2: a layer of handlers is intercepted with
each handler commanding one end-bot (1-1 rela-
tion).

3. Scenario 3: each handler controls a small percent-
age of the overall end-bots (10%-30%).

4. Scenario 4: a P2P network of handlers is added be-
tween the bot-master and the handlers of the pre-
vious case.

Fig. 5 depicts the examined topologies.

We perform a single experiment for each of the two
first cases, as the outcome was deterministic. In the third
scenario, we execute 10 iterations where the control rate
for each handler was assigned randomly (between 10%-
30%). Finally, we investigate 3 P2P topologies with 10



TABLE 2
END-USER DEVICES
Smart Embedded
Feature PC

phone device
Model Lenovo Samsung BeagleBone

Galaxy
Operating 64-bit Windows 32-bit 32-bit Ubuntu
system 8.1 Pro Android Linux 3.16

6.0.1
KNOX 2.6

Anti-virus ClamWin CyberGod ClamAV
Cryptography OpenSSL Bouncy OpenSSL

Castle
Programming Ct++ Java Ct++
language
CPU model Intel Core i7 Krait 400 AM3359 ARM

Cortex-A8

Frequency 2.1 GHz 2.5 GHz 500-720 MHz
Cores 6 4 1
RAM 8GB 16GB 256MB
Internet Ethernet, WiFi 4G, WiFi Ethernet, USB-
connectivity WiFi

peers each for: i) 1-1 relations among the peers, ii) binary
tree connection, and iii) links with higher granularity. For
each setting, we perform 10 experiments for random con-
trol rates at the handler layer, similarly with the previous
synthesis. The average results are reported below.

The direct control of the bots is the worst case scenario
for the attacker (scenario 1). The derived evidence is strong
as his/hers digital footprint is testified by all infected ma-
chines.

The best concealing strategy for the hacker can be
achieved with a 1-1 analogy of handlers and end-bots
(scenario 2). However, the adversary must pay a great cost
of reducing the total attacking force in the half. WARDOG
stops the attack at the end-bots but cannot spot the han-
dlers at this point. Nevertheless, the collected forensic
data can be kept by the AVS and reveal these unique han-
dlers once there are utilized again in another incident.
Moreover, the mitigation mechanisms that try to figure
out the communication channels of the botnet are appli-
cable here (e.g. [35], [38]). Such mechanisms analyze the
collected data and discover the various interaction op-
tions of the botnet. This information could then be pro-
vided to the WARDOG components in order to expose
the handler machines.

The two last tested scenarios would be the most com-
mon cases in real attacks. The handlers that command the
end-bots are easily spotted even for smaller controlling
ratios (lower than 10%). This always leads to the bot-
master’s detection for the scenario 3, with quite strong
evidence. In the final set, the P2P links are exposed as
long as there is not a 1-1 relation among the peers and the
attacker is also convicted (scenarios 4.11 and 4.iii). Other-
wise (scenario 4.i), the forensic procedure is similar as in
scenario 2.
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TABLE 3
RESOURCE CONSUMPTION

Memory usage
(KB)

Parameter Processing time (ms)

AE operation

Attack alerting mes- 40.0/-/- 102 /-/-

sage

User device

Local traffic logging  35.0 / 35.0 /36.0 34.0 / 40.0 /41.0

and filtering

One-way authenti- 70/80/86 03/02/28
cation
Mutual authentica- 11.5 / 20.0 / 65.0 10.7 / 2.1 /94.7

tion & session estab-

lishment
Verification of bot 05/05/05 02/06/1.0
participation
Verification of han- 15/15/15 05/15/22
dler participation

AVS contribution
Discovery of han- 80.0 /- /- 203 /- /-

dlers from received
local logs

Each parameter describes the resource consumption for [PC] | [Smart
phone] | [Embedded device].

8 IMPLEMENTATION AND PERFORMANCE
EVALUATION

A testbed is evaluated on real machines. The research
cloud platform GRNET Virtual MAchines (VIMA) is uti-
lized for the main server functionality. Two VMs are in-
stalled (Intel Core i7 at 2.1 GHz CPU, 8GB RAM, 64-bit
OS Windows 8.1 Pro) that represent a simple web server
as the AE and the set of three AVS services that collect the
forensic data, respectively.

As mentioned in the introductory sections, the high
volume of the IoT devices can be exploited for massive
botnet attacks (e.g. [14], [15]). Novel security mechanisms
have to be scalable and deal with the heterogeneity of the
IoT ecosystem. Thus, we justify the feasibility of WAR-
DOG by applying it in three different types of end-user
devices (as identified in our previous work in the IoT
domain): i) a laptop that controls a smart campus [68], ii)
a smart phone that acts as the infotainment system of a
smart vehicle in a Vehicular Ad hoc Network (VANET)
setting [69], iii) and a BeagleBone embedded device that
gathers environmental parameters in a Wireless Sensor
Network (WSN) for precision agriculture [70]. The devic-
es’ features are detailed in Table 2. Each of these devices
participates in an emulated botnet that performs a DDoS
attack in the targeted web server.

As a case study, we develop the WARDOG operation
in three different open source anti-virus, one for each one
of the three deployed devices. For the laptop (power node
with sufficient computational /communicational capabili-
ties), we extend the functionality of ClamWin: — a variant
for Windows of the most widely-used open source anti-

*GRNET ViMA: https:/ /vima.grnet.gr/about/info/en/
> ClamWin: www.clamwin.com
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virus for research purposes ClamAV-. For the smart phone
(mobile personal device with moderate efficiency), we
install the Android application of CyberGod: For the
BeagleBone (embedded device with constrained re-
sources), we deploy the core ClamAV that runs on Linux.
ClamWin/ClamAV are implemented in C++ and Cyber-
God is implemented in Java. For cryptographic opera-
tions (e.g. digital signatures, file digests, etc.), the Clam-
Win/ClamAV utilize the OpenSSL [60], while in the case
of CyberGod we have to import the cryptographic library
Bouncy Castle [71].

The system’s network communication is binded in the
port 9090 for each machine. Benchmarks were performed
consisting of dummy traffic patterns that trigger several
times the WARDOG functionality in each entity. Table 3
summarizes the average resource consumption in the
three platforms (the transmission time has been excluded
as it is strongly determined by the potential application
environment).

The AE only sends the initial alerting messages. The
cost is one message per bot, which corresponds to 40KB of
RAM and 10.2 ms CPU time. The AE is supposed to have
already in place logging mechanisms that would perform
similarly with the reported WARDOG logging and filter-
ing components.

At the client side, WARDOG captures the network traf-
fic, creating a log file that is compatible with the widely-
used PCAP format (each PCAP entry in the log repre-
sents one transaction and requires around 40 bytes to be
stored). Fig. 6 illustrates an example trace from a local log
file for the WiFi traffic of the evaluated laptop. The trace
highlights the transmission of data from the laptop to the
AE. The AE provides as evidence its own version of the
trace, capturing the laptop’s interaction. The WARDOG
installation at the device-end, correlates the two tracks
and if the evidence is verified the communication is
blocked. The local traffic logging and filtering parameter
represents the runtime overhead of WARDOG during
normal operation. As is evident, the additional effort is
low (around 35-36KB RAM for 34-41 ms processing) and
feasible even for embedded devices. When an attack is
launched, the authentication and validation procedures
are also efficient and adequate for operation in real-time
settings.

The authentication is the same for the AVS (PC meas-
urements). The main contribution of the AVS is the analy-
sis of the received local logs from the infected machines
and the induction of the handler IPs. The processing time
is the most important aspect. The achieved delay is decent
for our study as it enables the system to send evidence to
the handler devices that can be verified in a factual period
of time (before the machine changes the current IP ad-
dress).

In the case of IoT devices with minimal or absent inter-
face with the user, the device will block its participation in
the attack and raise an alarm to its controller or gateway.
These intermediate equipment should then inform the
user afterwards. If the device’s resources are constrained,
the full WARDOG functionality could be also performed
by these equipment (e.g. network logging).

> T. Kojm, ‘ClamAV’: http:/ /www.clamav.net/
+ CyberGod: https:/ /www.codeproject.com/Tips/1179918 / CyberGod-
An-Antivirus-in-Cplusplus-for-Windows-and
: Libpcap File

s Format:
https:/ / wiki.wireshark.org/Development/LibpcapFileFormat

No. Time
1 0.000000
2 4,348212
3 4,951763
4 9,999928
5 10.469332
6 14,140689
7 14,140689
8 14,349989
9 14,349989
10 14.765533
11 14.765533
12 15.218700
13 15,218700
14 20.002278
15 21.921690
16 22.015469

Destination
169.54.204,232
52,91,228.38
64.233.166.188
169.54,204,232
104.25.27.30
239,255,255,250
239,255,255,250
239,255,255,250
239,255,255,250
239,255,255.,250
239,255,255.,250
239,255.255.250
239,255,255.250
169.54.204.232
192.132.33.27
192.132.33.27

Protocol  Length Info

TLSv1.2 75 Application Data
SSL 41 Continuation Data
TCP 41 6159645228 [ACK] Seq=l A
TLSvA.2 75 Application Data
SSL 41 Continuation Data
UoP 684 5739843702 Len=656
uop 684 5739843702 Len=656
uop 684 5739843702 Len=656
op 684 5739843702 Len=656
Uop 684 5739843702 Len=656
Uop 684 5739843702 Len=656
UoP 684 57398+3702 Len=656
UDP 684 57398+3702 Len=656
TLSv1,2 75 Application Data
SsL 41 Continuation Data
SsL 41 Continuation Data

Source

192,168.1.19
192,168.1.19
192,168.1.19
192.168.1,19
192.168.1.19
192.168.1.19
192.168.1,19
192,168.1,19
192,168,119
192,168,119
192,168,119
192.168.1.19
192,168.1,19
192,168.1.19
192,168.1.19
192,168.1.19

Fig. 6. Example trace visualized with WireShark.

9 DiscusSION AND COMPARISON WITH OTHER
SYSTEMS

As aforementioned in the introductory sections, the cur-
rent protection approaches target specific aspects of the
overall defence against botnets. Their interplay is not al-
ways administrated and some vulnerabilities can lead to
security breaches. WARDOG acts as an additional safe-
guard that can interoperate with these solutions and
shield the legitimate operation. Moreover, the enhanced
forensic capabilities permit the cross-border investigation
and the conviction of the bot-masters.

The active involvement of the end-user’s machine that
is utilized by our system, is mainly proposed by offensive
protection mechanisms. For example, the system in [72]
proposes that in case of DDoS, the legitimate users should
‘speak-up’ and increase their request volume. Thus, the
legitimate traffic could exceed the bounded malicious
bandwidth, with the AE serving several requests (as it
was also discussed in Theorem 2 — MT > B — LT).

However, the AE is still receiving a vast amount of traf-
fic. Thus, an extension is proposed in order to perform the
decision making closer to the edge network and permit a
constrain number of the speak-up traffic to reach the tar-
get [73]. Yet, the countermeasure is effective only if a de-
cent volume of legitimate users are interacting with the
AE during the attack (otherwise the LT will not overcome
the MT).

Nevertheless, the criticism against such offensive tech-
niques is the fact that they can be exploited for malicious
operations as well. An attacker can manipulate the under-
lying procedures in order to perform an attack. Consider
an IoT setting where the user accesses Internet services
via his/hers smart phone. The activation of [72], [73]
would increase the requests that are made by the device,
and consequently, the economic charge and the energy
dissipation. WARDOG overcomes these problems, im-
plementing secure and lightweight procedures that can-
not be used for attacks.

Other defence approaches suggest the utilization of a
pricing method, where the interacting entities will devote
some effort in order to designate their legitimacy. The
Completely Automated Public Turing test to tell Comput-
ers and Human Apart (CAPTCHA) is the indicated choice
[74], [75]. Once a new request is made, the server de-
mands from the clients to solve the CAPTCHA test. The



TABLE 4
COMPARISON OF PROTECTION MECHANISMS
8 § L E § % 3 'gﬁo £ g
A S ez 2 & ¢ ] 2 3
Feature g L<= 98 9828 § =&
S ESFEHE £ £E5
z < =g T8
Prevention of bot in- P Y N N N
fection
Block ongoing botnet Y N p N P
attacks
Forensics Y Y P Y N
Cross-border investi- Y N P P N
gation
Botnet exposure Y N p p N
Bot-master conviction P N N P N

Notations for the offered compliance with the feature’s main
goal/functionality: yes (Y), no (N), or partial (P)

goal is discriminate if the request has been made by a
human or a bot. Yet, designing secure CAPTCHAs that
can be managed efficiently by the AE is not a trivial task
[76], [77]. If the tests are lightweight, the crea-
tion/verification burden for the server is low, but the at-
tacker can also resolve them easier. On the other hand, if
the riddles are hard, they would result higher false nega-
tives for the legitimate participants [77]. Also, these
methods cause delays not only during the attack but in
normal operation as well, and are annoying for most us-
ers.

Table 4 summarizes the qualitative comparison results.
The WARDOG offers a unique functionality that tackles
several important and practical security aspects which are
not handled by the current solutions in such a solid and
systematic way.

Additionally, the performance of WARDOG, en-
hanced /simple speak-up, and CAPTCHA mitigation ap-
proach is evaluated with qualitative metrics. We model
the 4 systems in the simulation setting of Section 7 for
mitigating the Scenario 1 botnet (50,000 end-bots). We
deploy the WARDOG-0.8 synthesis (80% of user compli-
ance). For the enhanced/simple speak-up phase, we de-
termine that each legitimate entity will reach its maxi-
mum bandwidth (22 Kbps). In the case of CAPTCHA, we
consider a secure puzzle method that will not be over-
whelmed by the attacker and impose an average 5 sec
delay to the user, with no false attempts (this is the opti-
mal option for the scheme, as in a real-world application
there will be both false positives and negatives).

We evaluate the defence mechanisms based on three
performance metrics. We estimate their mitigation effec-
tiveness (percentage of unique legitimate requests that are
processed by the AE) and make observations regarding
the overall traffic that reaches the AE and connection es-
tablishment latency.

We test the systems for different volume of legitimate
nodes which send traffic concurrently. Fig. 7, depicts the
main evaluation results regarding the effectiveness of
each system, as the average the delivery ratio (the higher,
the better). An indicative web site that has an average of
150,000 visitors per month would expect 417 requests per
hour, while a typical DDoS attack would conscript several
thousands of bots [17]. The WARDOG can successfully
stop the malicious traffic and serve all legitimate visits.
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Fig. 7. The mitigation effectiveness of the 4 schemes.

However, this is not the case for the rest schemes. As the
volume of the legitimate users is low, only a small num-
ber of requests reaches the target after several retries,
even in the case of speak-up. The related mechanisms
start to be effective only for a quite high volume of legiti-
mate participants (which is not the actual case). Neverthe-
less, even under these assumptions, the speak-up variants
enable the processing for only a small number of links. As
the server receives too many requests, both from the bots
and the increased number of users, the connection is fur-
ther delayed and a successful communication takes more
time. The speak-up variants increase significantly the traf-
fic burden on the network for low profit. The perfor-
mance of the CAPTCHA approach was even worse. As
long as the legitimate links are fewer, it is harder to be
queued in the server. The establishment of a connection
takes also much time (as it would be expected) but the
confidence on the request’s legitimacy is higher. On the
other hand, WARDOG does not impose any additional
connection establishment delays. The additional traffic
load (alerts to the compromise machines) is low and quite
gainful as it instantly stops the malicious traffic. Thus, the
connected users are served in a timely manner, while in
the cases of the rest schemes a successful interaction takes
several ms or even secs due to the overall bandwidth al-
location.

WARDOG'’s effectiveness is far more advanced as it
blocks the malicious activity instantly once an attack is
exposed and permits the processing of user requests even
when the volume of the legitimate entities is lower than
the malicious ones. On the other side, the effectiveness of
alternative schemes, like speak-up or CAPTCHA, is re-
vealed only when the legitimate nodes are more than the
compromised ones. However, this is not the ordinary
case, as the botnets are composed from several thousands
of bots that transmit traffic concurrently, while the users
that consume services at the same time are much fewer.
Nevertheless, even under an optimal setting for the alter-
native  solutions, =~ WARDOG is  computation-
al/communicational more efficient and does not impose
any additional connection establishment overhead (i.e.
like the CAPTHCA verification delay from the user).

10 CONCLUSION

The malicious botnet activity and the DDoS attacks are
undoubtedly two of the most serious security issues
across the Internet that challenge the growth rate and the
public acceptance of online businesses and governmental
services. In this paper, we propose a novel system, called
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WARDOG, which works towards the exposure of the
malicious infrastructure with the parallel collection of
juridical evidence in order to accuse the liable wily hack-
ers. The main functionality is performed by the infected
machine that blocks the malicious activity, once an attack
is detected. We prove that the proposed mechanism can
mitigate DDoS attacks effectively and efficiently, even
with not the absolute compliance from all users. Through
crowdsourcing, the involved device owners can then con-
tribute to the further disclosure and neutralization of the
botnet infrastructure. A preliminary implementation on
real IoT devices exhibits the applicability of our solution
in real applications. Finally, WARDOG facilitates an au-
tomatic generation of forensic documentation, thus aug-
menting and enhancing the international cybercrime in-
vestigation process. Our proposal offers unique features
in comparison with the state-of-the-art systems and can
provide runtime protection, mitigating instantly the mali-
cious effects.
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