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Abstract: In order to reduce the data size and simplify the process of creating characters’ 3D models,
a new and interactive ordinary differential equation (ODE)-based C2 continuous surface creation
algorithm is introduced in this paper. With this approach, the creation of a three-dimensional
surface is transformed into generating two boundary curves plus four control curves and solving a
vector-valued sixth order ordinary differential equation subjected to boundary constraints consisting
of boundary curves, and first and second partial derivatives at the boundary curves. Unlike the
existing patch modeling approaches which require tedious and time-consuming manual operations to
stitch two separate patches together to achieve continuity between two stitched patches, the proposed
technique maintains the C2 continuity between adjacent surface patches naturally, which avoids
manual stitching operations. Besides, compared with polygon surface modeling, our ODE C2 surface
creation method can significantly reduce and compress the data size, deform the surface easily by
simply changing the first and second partial derivatives, and shape control parameters instead of
manipulating loads of polygon points.

Keywords: surface modelling; C2 continuity; physics-based; data size reduction; ordinary
differential equation

1. Introduction

Surface creation approaches are widely applied in creative, digital, and design industries to create
external appearances of various objects. Depending on different mathematical representations, surfaces
can be divided into implicit, explicit, and parametric ones. Among them, parametric surfaces are the
most common methods. Current popular surface creation techniques are polygon, patch modeling
such as NURBS, and subdivision. The polygon technique creates complicated models from simple
geometric primitives through manipulating surface points. The patch technique divides a complex
model into a lot of patches, creates all these patches separately, and stitches them together to produce
the model. The subdivision technique uses approximating or interpolating schemes to subdivide the
polygonal faces of a coarse polygonal model into smaller faces and generates a denser polygon mesh
of the model. Moreover, the patch technique is especially suitable for smooth curved surfaces with a
small data size.

In spite of the suitability of the patch technique in creating smooth curved surfaces, further
improvements are required in the following aspects. First, when using this technique to create
three-dimensional (3D) objects, tedious and time-consuming manual operations are required to stitch
adjacent surface patches together and achieve smoothness between adjacent patches. Second, when
the control points of a surface patch are plenty to preserve the detail, the global shape of the patch
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is difficult to manipulate. Thirdly, the traditional patch modeling technique is purely geometric
and does not consider any underlying physics of object deformations. Introducing physics into the
patch technique usually involves computationally expensive numerical calculations, leading to slow
surface modeling.

ODE-based surface creation generates a surface from the solution to a vector-valued ordinary
differential equation subjected to boundary constraints. This technique is simple and efficient in
manipulating the global shape of a surface patch. However, how to achieve the solution is not easy
work. For complicated surface creation, it also depends on heavy numerical calculations. In addition,
it is very difficult to analytically achieve tangent or curvature continuity in two different parametric
directions of a 4-sided surface patch at the same time.

In order to tackle the above limitations, in this paper, as shown in Figure 1, we develop a
new ODE-based C2 continuous surface creation technique which transforms creation of curvature
continuous surfaces into the task to find the closed form solution of a vector-valued 6th order ordinary
differential equation subjected to the constraints of boundary curves, and first and second partial
derivatives at the boundary curves. After that, the iso-parametric line for each vertex on the boundary
curve is calculated for the whole surface creation. With this technique, only two boundary curves or
two boundary curves and four control curves are required. Different surface shapes can be created
easily and efficiently through the shape control parameters.

Figure 1. Overview of the proposed approach.

The contributions of the proposed method include: (1) Compared to the existing patch modeling
technique, the proposed technique achieves up to curvature continuities naturally, no manual
operations are required to stitch adjacent patches together and deal with the continuity problem
between them. (2) Compared with polygon surface and other modeling technique, the data size of
character’s 3D model can be sharply compressed and reduced by the proposed method for accelerating
network transmission. (3) The global shape of a surface patch can be manipulated easily and efficiently
through simply changing one of the first and second partial derivatives at boundary curves and
shape control parameters. (4) Since the curves used to define a surface are controlled by differential
equations which characterize natural physical process, the proposed technique is one physics-based
surface creation method. (5) Compared with other ODE-based surface creation methods, our proposed
technique is simpler and more efficient due to its analytical nature.

2. Related Work

Polygon modeling and skin surface creation [1] have been widely applied in commercial available
graphics package. This modeling approach can produce detailed or branched models, assign UV
texture coordinates, and create hard edges more readily than NURBS modeling. However, polygons
are incapable of accurately representing curved surfaces. Therefore, a large number of polygons must
be used to approximate curved surfaces in a visually appealing manner. The typical patch modeling
approach is NURBS modeling [2,3]. With NURBS modeling, smooth curved objects can be created and
edited with few control points. One obvious disadvantage for NURBS modeling is that a lot of manual
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operations are required to stitch adjacent patches together and deal with the continuity problem
between different patches. Subdivision modeling [4–7] starts the modeling with a coarse polygonal
model, subdivides its polygonal faces into smaller faces through approximating or interpolating
schemes, and generates a denser polygon mesh of the model. Subdivision makes the modeling of
complex geometry more easily and rendering more efficiently. Some disadvantages of subdivision
modeling are difficult to specify precision and lack of underlying parametrization. In contrast to the
approaches based on trimmed surfaces and control polyhedra, in curved network-based design feature,
curves can be directly created and edited in 3D. The method introduced by [8] focuses on special
design techniques to adjust the interior of transfinite patches when further shape control is needed.

Physics-based modeling considers the underlying physics of surface deformation. It has the
capacity to create more realistic appearances. Various physics-based modeling approaches are reviewed
by [9]. These approaches include finite element method, finite difference method [10], finite volume
method, mass-spring systems, mesh-free methods, coupled particle systems, and reduced deformable
models using modal analysis.

ODEs have been widely applied in scientific computing and engineering analyses to describe
the underlying physics. For example, fourth-order ODEs have been used to describe the lateral
bending deformations of elastic beams. Introducing ODEs into geometric processing can create
physically realistic appearances and deformations of 3D models. ODE-based sweeping surfaces [11],
ODE-based surface deformations [12,13], and ODE-based surface blending [14] have also been
developed previously. Compared with the conventional surface modeling methods, the ODE-based
methods provide the user with a higher level control of the generated surfaces using the parameters
and the boundary conditions of the ODE instead of hundreds of control points. Therefore, they can
be easily implemented as an easy to use interactive modeling package. However, before that can
be realized, one serious hurdle to be overcome, which is to solve the corresponding ODE efficiently.
Currently, it is done either ad hoc or only for simple problems. For complicated problems, expensive
numerical methods are still the only available choice, such as the finite element method [15,16], finite
difference method [10,17], and collocation point method [18]. In order to improve the computational
efficiency, the Fourier series method was proposed [19,20]. Although researchers studied ODE-based
surface creation and deformations, modeling of curves and surfaces with up to curvature continuities
using analytical solutions to ordinary differential equations has not been investigated yet.

3. Mathematical Model

Any 3D parametric surfaces always can be described by the vector-valued mathematical equation
X = S(u, v), where u and v are two parametric variables usually defined in the region: 0 <= u <= 1
and 0 <= v <= 1 , X is a vector-valued position function which has three components x, y, and z,
and S(u, v) also has three components Sx(u, v), Sy(u, v), and Sz(u, v). When the parametric variable v
takes the constant vi, the surface at the position becomes a parametric curve Ci = S(u, vi), where the
vector-valued function Ci has three components Cxi, Cyi, and Czi. Therefore, the surface X = S(u, v)
can be regarded as the set of the parametric curves C0, C1, C2, ..., which are obtained by changing vi
from 0 to 1 continuously. Based on this consideration, the modelling of 3D parametric surfaces can be
transformed into that of a set of parametric curves.

In order to achieve the C2 continuity between two adjacent surface patches, the two surface
patches should share the same position function, and first and second partial derivatives with respect
to the parametric variable u at their joint should interface. That is to say, a C2 continuous surface patch
in the parametric direction u should exactly satisfy the boundary constraints at u = 0 and u = 1 which
consist of position functions, and the first and second partial derivatives determined by the adjacent
surface patches at the positions. If the position functions, and the first and second partial derivatives
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at the positions u = 0 and u = 1 are cj(v)(j = 1, 2, 3, 4, 5, 6), the boundary constraints which a C2
continuous surface patch should satisfy can be written as

u = 0 S(0, v) = c1(v), ∂S(0, v)/∂u = c2(v), ∂S2(0, v)/∂u2 = c3(v)

u = 1 S(1, v) = c4(v), ∂S(1, v)/∂u = c5(v), ∂S2(1, v)/∂u2 = c6(v) (1)

where c1(v) and c4(v) are position functions, c2(v) and c5(v) are the first partial derivatives, and c3(v)
and c6(v) are the second partial derivatives at the boundaries.

With the above treatment, the task of surface modeling is to determine the mathematical equation
of the set of the parametric curves which meets Equation (1) at their two ends.

A parametric curve can be described by some popular curve functions such as NURBS. However,
these curve functions are purely geometric and did not involve any underlying physics. It has
been realized that the physics can be introduced into geometric modeling to improve the realism of
geometric modeling and many research studies have addressed physics-based geometric modeling and
deformations. Ordinary differential equations (ODEs) usually can be used to describe the deformations
of curve-like objects such as beams and members. It is known that the accurate solution of second
order ODEs has two unknown constants only which are used to satisfy the constraints of two position
functions, and that of fourth order ODEs has four unknown constants which can be used to meet
the constraints of two position functions and two first partial derivatives at boundaries. In contrast,
the solution of sixth order ODEs contains six unknown constants which can be used to satisfy all
the position functions, and the first and second partial derivatives given in boundary constraints
Equation (1). Therefore, the following vector-valued sixth order ODE is introduced

ρd6S(u, vi)/du6 + ηd4S(u, vi)/du4 + λd2S(u, vi)/du2 = F(u) (2)

where ρ, η, and λ are shape control parameters, S(u, vi) represents a 3D parametric curve Ci whose
components are Sx(u, vi), Sy(u, vi), and Sz(u, vi), and F(u) is the virtual sculpting force function whose
components are Fx(u), Fy(u), and Fz(u).

The set of parametric curves can be obtained by finding the solution to Equation (2) subjected to
boundary constraints Equation (1). The solution consists of two parts: a complementary solution of
the associated homogeneous equation of ODE Equation (2) and a particular solution. In this work,
interactive surface creation using the complementary solution is investigated. Surface manipulation
using the particular solution will be addressed in the following work.

Before investigating the complementary solution to ODE Equation (2), let us first discuss how to
generate the boundary constraints Equation (1). Here, two different approaches are proposed.

The first approach is to draw two boundary curves c1(v) and c4(v), as shown in Figures 2a and 3a.
Then boundary tangents and boundary curvature are taken to be the same forms as the boundary
curves modified by different coefficients, i.e., c2(v) = w1c1(v), c3(v) = w2c1(v), c5(v) = w3c4(v), and
c6(v) = w4c4(v) where wk(k = 1, 2, 3, 4) are different coefficients. Some surfaces generated with this
approach were depicted in Figures 2 and 3.

(a) (b) (c)

(d) (e)

Figure 2. Closed surface modelling by using two boundary curves.
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(a) (b) (c) (d) (e)

Figure 3. Open surface modelling by using two boundary curves.

As shown in Figures 4 and 5, the second approach is to create two boundary curves c1(v) and c4(v)
at u = 0 and u = 1, respectively, and generate the other four control curves c̄2(v) at u2(0 < u2 < u3),
c̄3(v) at u3(u2 < u3 < u4), c̄5(v) at u5(ū4 < u5 < u6), where ū4 is different from u4, and c̄6(v) at
u6(u5 < u6 < 1) by duplicating the boundary curves and deforming the duplicated curves through
some of geometric transformations: translation, scaling, and rotation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Closed surface modelling by using two boundary and four control curves.

(a) (b) (c) (d)

Figure 5. Open surface modelling by using two boundary and four control curves.

For an arbitrary point on the boundary curve c1(v) at the position vi, firstly use the following
forward difference formula to calculate the first derivative at the points c1(vi) and c̄2(vi), i.e.,

c2(vi) = [c̄2(vi)− c1(vi)]/u2 c̄′2(vi) = [c̄3(vi)− c̄2(vi)]/(u3 − u2) (3)

Then the same forward difference formula is used to calculate the second derivative at the point c1(vi)

c3(vi) = [c̄′2(vi)− c2(vi)]/u2

= {[c̄3(vi)− c̄2(vi)]/(u3 − u2)− [c̄2(vi)− c1(vi)]/u2}/u2

= [u2 c̄3(vi)− u3 c̄2(vi) + (u3 − u2)c1(vi)]/[u2
2(u3 − u2)] (4)

Similarly, for an arbitrary point on the boundary curve c4(v) at the position vi, the following backward
difference formula is used to calculate the first derivative at the points c4(vi) and c̄6(vi), i.e.,

c5(vi) = [c4(vi)− c̄6(vi)]/(1− u6) c̄′6(vi) = [c̄6(vi)− c̄5(vi)]/(u6 − u5) (5)

Next, use the same backward difference formula and the first derivative at the points c4(vi) and c̄6(vi)

to calculate the second derivative at the point c4(vi)

c6(vi) = [c5(vi)− c̄′6(vi)]/(1− u6)

= {[c4(vi)− c̄6(vi)]/(1− u6)− [c̄6(vi)− c̄5(vi)]/(u6 − u5)}/(1− u6)

= [(u6 − u5)c4(vi) + (1− u6)c̄5(vi)− (1− u5)c̄6(vi)]/[(1− u6)
2(u6 − u5)] (6)
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When vi changes from vi = 0 to vi = 1, the boundary tangents and boundary curvature in the above
equations are continuous functions of the parametric variable v. Therefore, the functions c2(v), c3(v),
c5(v), and c6(v) in Equation (1) can be written as

c2(v) = [c̄2(vi)− c1(vi)]/u2

c3(v) = [u2 c̄3(vi)− u3 c̄2(vi) + (u3 − u2)c1(vi)]/[u2
2(u3 − u2)]

c5(v) = [c4(vi)− c̄6(vi)]/(1− u6)

c6(v) = [(u6 − u5)c4(vi) + (1− u6)c̄5(vi)− (1− u5)c̄6(vi)]/[(1− u6)
2(u6 − u5)] (7)

In Figures 4 and 5, some surfaces which are generated with the second approach are presented.
The surface created by the complementary solution of the associated homogeneous equation

of ODE Equation (2) subjected to boundary constraints Equation (1) can be manipulated by the
shape control parameters in Equation (2), and the first and second partial derivatives in Equation (1).
In order to increase the capacity of surface manipulation, we can further manipulate the created surface
through deforming some curves on the surface using the particular solution of ODE Equation (2),
which involves a sculpting force represented by the term of the right-hand side of ODE Equation (2).
We will address this issue in the following work. The sections below discuss how to achieve the closed
form complementary solution of ODE Equation (2) subjected to boundary constraints Equation (1) and
use the solution to create various parametric surfaces.

4. Closed Form Complementary Solution

After drawing two boundary curves or 2 boundary curves plus 4 control curves used for
the determination of the first and second partial derivatives, the above two approaches can be
used to obtain the boundary constraints Equation (1), and create 3D parametric surfaces with the
complementary solution S̄(u, vi) of the associated homogeneous equation of ODE Equation (2), i.e.,

ρd6S(u, vi)/du6 + ηd4S(u, vi)/du4 + λd2S(u, vi)/du2 = 0 (8)

subjected to the boundary constraints Equation (1).
The sixth order ODE Equation (2) can be changed into a fourth order ODE by introducing the

following vector-valued second order ordinary differential equation

S̄(u, vi) = d2S(u, vi)/du2 (9)

Calculating the second and fourth derivatives of S̄(u, vi) with respect to the parametric variable u and
substituting them as well as Equation (9) into Equation (8), the following fourth ODE is reached

ρd4S̄(u, vi)/du4 + ηd2S̄(u, vi)/du2 + λS̄(u, vi) = 0 (10)

The vector-valued ODE Equation (10) can be transformed into an algebra equation by considering

S̄φ(u, vi) = eru (φ = x, y, z) (11)

Substituting Equation (11) together with the second and fourth derivatives of S̄φ(u, vi) with respect to
the parametric variable u into Equation (10) and deleting eru, the following quartic equation is obtained

ρr4 + ηr2 + λ = 0 (12)

If q = r2 is further introduced, the quartic equation Equation (12) is changed into a quadratic
equation below

ρq2 + ηq + λ = 0 (13)
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whose roots are
q1,2 = −η(1±

√
1− 4ρλ/η2)/(2ρ) (14)

For the sake of conciseness, here only consider the situation of 4ρλ/η2 < 1. The other situations can
be treated with the same methodology. After substituting Equation (14) into the relation q = r2 , and
introducing two new constants ξ1 and ξ2 which are determined by

ξ1,2 =

√
η(1±

√
1− 4ρλ/η2)/(2ρ) (15)

the following four roots of the quartic equation Equation (12) are obtained

r1,2 = ±iξ1 r3,4 = ±iξ2 (16)

According to the above four roots, the solution to Equation (10) can be written into the following form

S̄(u, vi) = b̄1 cos ξ1u + b̄2 sin ξ1u + b̄3 cos ξ2u + b̄4 sin ξ2u (17)

where b̄k(k = 1, 2, 3, 4) are vector-valued unknown constants. Substituting the above equation into
Equation (9) and solving the second order ordinary differential equation, the following solution to the
sixth order ordinary differential equation Equation (8) is achieved

S(u, vi) = b1 cos ξ1u + b2 sin ξ1u + b3 cos ξ2u + b4 sin ξ2u + b5u + b6 (18)

where bk(k = 1, 2, ..., 6) are vector-valued unknown constants. Inserting Equation (18) into the
boundary constraints Equation (1), solving for the 6 vector-valued unknown constants bk(k = 1, 2, ..., 6),
and substituting them back into Equation (18), the following functions which define a 3D parametric
surface satisfying the ODE Equation (8) and the boundary constraints Equation (1) exactly is reached:

S(u, v) = g1(u)c1(v) + g2(u)c2(v) + g3(u)c3(v) + g4(u)c4(v) + g5(u)c5(v) + g6(u)c6(v) (19)

where

g1(u) = −d1 cos ξ1u− d4 sin ξ1u + d1(e11 + 1) cos ξ2u + e9 sin ξ2u− (ξ2e9 − ξ1d4)u− (e11d1 − 1)

g2(u) = −(d1 + d2) cos ξ1u− (d3 + d4) sin ξ1u + (e9 + e10) sin ξ2u−
[ξ2(e9 + e10)− ξ1(d3 + d4)− 1]u− e11(d1 + d2)

g3(u) = −d5 cos ξ1u− d7 sin ξ1u + d10 cos ξ2u + (e5e9 + e6e10

+e12/ξ2) sin ξ2u− [ξ2(e5e9 + e6e10)− ξ1d7 + e12]u− (e11d5 − 1/ξ2
2)

g4(u) = d1 cos ξ1u + d4 sin ξ1u− d1(e11 + 1) cos ξ2u− e9 sin ξ2u + (ξ2e9 − ξ1d4)u + e11d1

g5(u) = d2 cos ξ1u + d3 sin ξ1u− d2(e11 + 1) cos ξ2u− e10 sin ξ2u + (ξ2e10 − ξ1d3)u + e11d2

g6(u) = −d6 cos ξ1u− d8 sin ξ1u + d6(e11 + 1) cos ξ2u + (e7e9 + e8e10 −
e13/ξ2) sin ξ2u− [ξ2(e7e9 + e8e10)− ξ1d8 − e13]u− e11d6 (20)

d1 = e1/(e1e3 − e2e4) d2 = −e2/(e1e3 − e2e4)

d3 = e3/(e1e3 − e2e4) d4 = −e4/(e1e3 − e2e4)

d5 = d1e5 + d2e6 d6 = d1e7 + d2e8

d7 = d4e5 + d3e6 d8 = d4e7 + d3e8

d9 = (e11 + 1)(d1 + d2) d10 = −1/ξ2
2 + (e11 + 1)d5 (21)
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and

e1 = ξ1(cos ξ1 − 1) + ξ2
1 sin ξ1(1− cos ξ2)/(ξ2 sin ξ2)

e2 = sin ξ1 − ξ1 + ξ2
1 sin ξ1(1/ sin ξ2 − 1/ξ2)/ξ2

e3 = cos ξ1 − 1 + ξ2
1(1− cos ξ2)/ξ2

2 + ξ2
1(cos ξ2 − cos ξ1)(1/ξ2 − 1/ sin ξ2)/ξ2

e4 = ξ1(− sin ξ1 + ξ1 sin ξ2/ξ2) + ξ2
1(cos ξ2 − cos ξ1)(cos ξ2 − 1)/(ξ2 sin ξ2)

e5 = (1/ξ2 − cos ξ2/ sin ξ2)/ξ2

e6 = (sin ξ2 + cos2 ξ2/ sin ξ2 − cos ξ2/ sin ξ2)/ξ2

e7 = (1/ sin ξ2 − 1/ξ2)/ξ2 e8 = (1− cos ξ2)/(ξ2 − sin ξ2)

e9 = ξ2
1[d4 sin ξ1 − d1(cos ξ2 − cos ξ1)]/(ξ2

2 sin ξ2)

e10 = ξ2
1[d3 sin ξ1 − d2(cos ξ2 − cos ξ1)]/(ξ2

2 sin ξ2)

e11 = ξ2
1/ξ2

2 − 1 e12 = cos ξ2/(ξ2 sin ξ2) e13 = 1/(ξ2 sin ξ2) (22)

5. Continuity between Adjacent Surface Patches

The mathematical equations describing parametric surfaces involve two parametric variables
u and v. When parametric surface patches are connected together, they should maintain specified
continuities in both u and v parametric directions, shown as Figure 6. In what follows, the continuity in
the u parametric direction, and then the continuity in the v parametric direction, will be investigated.

5.1. Continuity in Parametric Direction U

For the continuity of two connected surface patches in the u parametric direction, assuming the
two parametric surface patches to be connected together are S(u, v) and Ŝ(u, v), respectively. They are
defined by Equation (1) and Equation (8). For the surface patch Ŝ(u, v), the vector-valued function
S(u, v), known vector-valued functions cj(v)(j = 1, 2, 3, 4, 5, 6), and shape control parameters ρ, η,
and λ in Equations (1) and (2) are replaced by Ŝ(u, v), cj(v)(j = 1, 2, 3, 4, 5, 6), and ρ̂, η̂, λ̂, respectively.

If the two surface patches are required to maintain up to the curvature continuities at the interface
where the two surface patches are connected together, the constraints S(1, v) = Ŝ(0, v), ∂S(1, v)/∂u =

∂Ŝ(0, v)/∂u, and ∂S2(1, v)/∂u2 = ∂Ŝ2(0, v)/∂u2 must be satisfied. If the surface patch Ŝ(u, v) with the
following boundary constraints are created,

Ŝ(0, v) = c4(v) ∂Ŝ(0, v)/∂u = c5(v) ∂Ŝ2(0, v)/∂u2 = c6(v)

Ŝ(1, v) = ĉ4(v) ∂Ŝ(1, v)/∂u = ĉ5(v) ∂Ŝ2(1, v)/∂u2 = ĉ6(v) (23)

continuities of the position, tangent, and curvature between the two surface patches in the u parametric
direction are achieved.

Figure 6. (a–c) illustrate that our approach can connect surface patches with up to C2 continuities in
both u and v parametric directions. (d) shows the comparison between C1 and C2 continuity—our
approach can achieve better continuity between patches.
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The above conclusion is also demonstrated visually in Figure 6a. In the figure, the left surface
patch is created by introducing the following boundary conditions into Equations (19) and (20).

S(0, v) = c1(v) ∂S(0, v)/∂u = w1c1(v) ∂S2(0, v)/∂u2 = w2c1(v)

S(1, v) = c4(v) ∂S(1, v)/∂u = w3c4(v) ∂S2(1, v)/∂u2 = w4c4(v) (24)

and the right surface patch is generated by using the following boundary constraints

Ŝ(0, v) = c4(v) ∂Ŝ(0, v)/∂u = w3c4(v) ∂Ŝ2(0, v)/∂u2 = w4c4(v)

Ŝ(1, v) = ĉ4(v) ∂Ŝ(1, v)/∂u = w5 ĉ4(v) ∂Ŝ2(1, v)/∂u2 = w6 ĉ4(v) (25)

5.2. Continuity in Parametric Direction V

For the continuity of two connected surface patches in the v parametric direction, the first and
second partial directives of S(v, u) = [Sx(u, v), Sy(u, v), Sz(u, v)]T with respect to the parametric
variable v are required and can be determined from Equation (19). The first and second partial
directives of S(u, v) and the mathematical equations of the surface S(u, v) can be unified as

S(i)(u, v) = g1(u)c
(i)
1 (v) + g2(u)c

(i)
2 (v) + g3(u)c

(i)
3 (v) + g4(u)c

(i)
4 (v) + g5(u)c

(i)
5 (v) + g6(u)c

(i)
6 (v) (26)

where i = 0, 1, 2 indicates the surface of S(u, v), its first and second partial derivatives with respect to
the parametric variable v, respectively, and c(i)k (v) = (i = 0, 1, 2; k = 1, 2, ..., 6) can be determined from
boundary constraints Equation (1).

We still denote the two surface patches to be connected together with S(u, v) and Ŝ(u, v), and
use Equations (15), (20)–(22), (26) to determine them and their first and second partial derivatives
with respect to the parametric variable v. In the equations, with and without the symbol ∧ on top,
denotes for the two adjacent surface patches Ŝ(u, v) and S(u, v) and their first and second partial
derivatives, respectively.

At the interface where the two surface patches S(u, v) and Ŝ(u, v) are to be connected together,
the continuity of the position function, and first and second partial derivatives require S(i)(u, 1) =
Ŝ(i)(u, 0)(i = 0, 1, 2) to be met. According to Equation (26), if g(i)k (u) = ĝ(i)k (u)(i = 0, 1, 2; k = 1, 2, ..., 6)

and c(i)k (1) = ĉ(i)k (0), the constraints S(i)(u, 1) = Ŝ(i)(u, 0) are always satisfied.
If setting ξn = ξ̂n, have ejp = êjp (p = 1, 2, ..., 13) according to Equation (22), dl = d̂l (l=1, 2, ..., 10)

from Equation (21), and g(i)k (u) = ĝ(i)k (u) (i = 0, 1, 2; k = 1, 2, ..., 6) according to Equation (20).
Therefore, two adjacent surface patches achieve up to C2 continuities at their interface if ξn =

ξ̂n (n=1, 2) and the position of the boundary curve and its first and second partial derivatives with
respect to the parametric variable v for the first surface patch are equal to the ones for the second
surface patch at the interface point of the two boundary curves.

The image in Figure 6b is used to visually indicate two surface patches are connected together in
the parametric direction v and achieve up to C2 continuities. The shape control parameters for the two
surface patches are: ρ = 1, η = 1, λ = 3, ρ̂ = 0.1, η̂ = 0.1, and λ̂ = 3 and the function of the boundary
curves for the two surface patches are c1(v) and ĉ1(v). The experiment in Figure 6c demonstrates that
various patches can be smoothly connected together with up to C2 continuities, both in direction u and
direction v. In Figure 6d, we decompose the original mesh into 4 parts and recreate the surfaces with
C1 and C2 respectively. It indicates the difference between C1 continuity and C2 continuity: (1) C2
continuity can achieve better continuity than C1; (2) and C2 continuity provides the second derivatives
as a shape manipulation tool and makes shape manipulation more powerful, as shown in Figure 10.

6. Experiments and Application

Quite a number of experiments are presented to show that the proposed technique achieves up to
curvature continuities naturally—no manual operations are required to stitch adjacent patches together
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and deal with the continuity problem between them. Compared with polygon surfaces, the data
size of 3D models can be sharply compressed and reduced by the proposed method for accelerating
network transmission. The global shape of a surface patch can be manipulated easily and efficiently
through simply changing one of the first and second partial derivatives at boundary curves and shape
control parameters.

6.1. Creation of Single Surface

The implemented tool initially uses the first approach to create a closed surface. We draw two
boundary curves which were depicted in Figure 2a. The surface created using the Maya loft operation
was shown in Figure 2b.

Then, we took the mathematical equation of the first and second partial derivatives to be the
same form as the corresponding boundary curves but modified them with the modifying coefficients
wk(k = 1, 2, 3, 4). When wk = 0(k = 1, 2, 3, 4) , the surface is generated in Figure 2c, which is the same
as that achieved with the Maya loft operation.

If only the first partial derivative is changed and the second partial derivative is kept unchanged,
i.e., take w1 = −1, w3 = 10, and w2 = w4 = 0, the surface indicated in Figure 2d was produced. If the
modifying coefficients were changed into w1 = w3 = 0, w2 = 1, and w4 = −10, which means only the
second partial derivative was modified, the surface shown in Figure 2e was obtained.

These images indicate that the proposed surface creation method not only can produce surface
shapes generated by the Maya loft operation, but also can create different shape changes through
manipulating the first and second partial derivatives.

Next, we use the second approach to create a closed surface. Firstly, draw two boundary curves
which are the top and bottom ones on the image shown in Figure 4a. Then use the top boundary curve
as reference to create another two curves as the control curves of the top boundary curve. Similarly,
generate the other two control curves of the bottom boundary curve. Using the Maya loft operation,
obtain the surface given in Figure 4a, which interpolates the 2 boundary curves and four control
curves. Using Equation (2) to determine the first and second partial derivatives at the top and bottom
boundary curves and first taking the shape control parameters to be ρ = λ = 1, and η = 3, the surface
created with the proposed second approach is given in Figure 4b.

Comparing Figure 4a with Figure 4b, it can be concluded that this approach can also create similar
surfaces to those generated by the Maya loft operation. However, this approach has two advantages
over the Maya loft operation.

First, this approach can achieve up to C2 continuities between the adjacent patches and there
are no manual operations to stitch these adjacent patches together. This is because the two adjacent
patches created with this approach share the same first and second partial derivatives.

Second, the shape of the surfaces created with this approach is controllable. This can be
demonstrated by comparing Figure 4b and Figure 4c, where the surface in Figure 4c is obtained
with the same boundary and control curves as those in Figure 4b but the shape control parameters ρ

and λ are reduced to 0.0001. The shape change between Figure 4b and Figure 4c can be more clearly
observed from Figure 4d where the surfaces in Figure 4b,c are shown in the same figure.

If the four control curves in Figure 4a are scaled down, different surfaces are achieved, given in
Figure 4e–h where the surface in Figure 4e is from the Maya loft operation, that in Figure 4f is from
the proposed second approach with the shape control parameters ρ = γ = 1 and η = 3, and the
one in Figure 4g is from ρ = λ = 0.0001 and η = 3. Figure 4h is used to compare the surfaces given
in Figure 4f,g.

The images in Figure 4 also indicate that the surfaces created with this approach may or may not
pass through the four control curves depending on different values of the shape control parameters.

Apart from the applications in creating closed surfaces, the proposed two approaches also apply
to open surfaces. We demonstrate this in the following Figures 3 and 5.
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In Figure 3, we use two boundary curves and the first approach to create different surface shapes
defined by the two boundary curves and different first and second partial derivatives. Figure 3a
indicates the two boundary curves, Figure 3b is from the Maya loft operation, Figure 3c–e are from the
first approach where Figure 3c is from zeroed first and second partial derivatives, Figure 3d is from the
first partial derivative w1 = −1, w3 = 10 and zeroed second partial derivative, and Figure 3e is from
zeroed first partial derivative and the second partial derivative w2 = 1 and w4 = −10. These images
also demonstrate that the proposed first approach not only can create those generated by the Maya loft
operation, but also those which cannot be obtained from the Maya loft operation.

In Figure 5, we use two boundary curves, four control curves shown in the figure, and the second
approach to generate different surface shapes. Figure 5a is generated by the Maya loft operation,
Figure 5b is from the second approach and the shape control parameters ρ = λ = 1 and η = 3, and
Figure 5c is from the second approach and the shape control parameters ρ = λ = 0.0001 and η = 3.
The influence of the shape control parameters on surface shapes can be clearly observed from the side
view Figure 5d of the surfaces in Figure 5b,c where the surface in yellow is from Figure 5b and the
other is from Figure 5c. These images also indicate that the proposed second approach not only creates
the surface shapes by the Maya loft operation, but also other surface shapes which cannot be obtained
through the Maya loft operation.

6.2. Creation of Complicated Objects

This section introduces how to create complicated objects with the above developed approach.
Two approaches will be discussed below.

The first approach is to decompose a surface object into parts. For some complicated parts, they
are further decomposed into simple surface patches. The proposed approach is used to create each
surface patch which shares the same boundary constraints of position and first and second partial
derivatives with the adjacent patch at its four edges.

Taking the dog model in Figure 7a as an example, we first decompose the dog model into parts of
head, neck, torso, tail, ears, eyes, front legs, and rear legs. Each of the front legs is further decomposed
into three surface patches and each of the rear legs is divided into two surface patches. Then, each
surface patch is created and two adjacent patches share the same constraints of the position and the first
and second partial derivatives. Besides, the flower model in Figure 7b and plane model in Figure 7c
are also created by this approach.

Figure 7. Creation of surface models by patches.

The second approach is to generate some sketched curves on the model to be created. These
sketched curves define some 4-sided and 3-sided patches. For each of 4-sided or 3-sided patches, an
ODE surface is created with the constraints of the position and the first and second partial derivative
being the same as those of the adjacent surface patches. Here, take the creation of a female face as
an example. Some sketched curves in Figure 8a are used to define the plane model, and, accordingly,
ODE surface patches are used to build the face model, shown in Figure 8b.
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Figure 8. Creation of surface model by sketch.

From the experiments carried out above, we demonstrate that our approach can compress and
reduce the data size of polygon model by just curves, then recreate the surface by our ODE-based
method. The recreated model can have the same topology exactly as the original polygon model, as
shown in Figure 9, or lower or higher resolution, depending on the parameters chosen by the user,
as shown in Figure 10. Table 1 shows the data size comparison between polygon models and our
approach. As shown in Figures 7, 8, and 12, in our approach, we only use several boundary curves,
and the first and second partial derivatives at the boundary curves to represent and reconstruct the
whole original polygon models, so the data size of our approach consists of the vertices’ coordinates of
the boundary curves, and the values of first and second derivatives at the boundary curves. Taking
the male face model in Figure 12 for instance, the polygon model has 4081 vertices, but the number of
vertices on the curves is only 489, in this case, the number of first and second derivatives is 489 as well,
so the number of curve variables used by our approach is 1467, and the data size comparison of 36%
refers to the curve variables 1467 divided by the original polygon vertices 4081, as shown in the second
column of Table 1. This illustrates that the data size of the face model generated by our approach is
largely reduced compared with polygon models, being only about one third of original polygon model;
the data size of the plane reduced to about one forth; and the data size of the flower model and dog
model were reduced to about one fifth of the original polygon models by our approach.

Figure 9. Global comparison between the face model (red golden) created by the curve network with
the proposed method and the original polygon face model (silver).

Table 1. The data size comparison between variables of polygon model and our approach.

Models Male Face Flower Petal Leaf Dog Plane

Polygon Verts 4081 37,584 6594 1538 148,450 19,042
Curve Variables 1467 6462 1132 298 24,066 4526

Data Size Comparison 36% 17% 17% 19% 16% 23%
Proportion of Data Compression 64% 83% 83% 81% 84% 77%

Polygon Verts: the vertex number of polygon model. Curve Variables: the variables to represent the models by our
approach. Data Size Comparison = CurveVarialbes/PolygonVerts. The forth row shows the proportion of data size
reduced by the proposed approach.
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Figure 10. (a) shows the patch surface generated by default shape control values, (b) shows changing
the values of shape control paremeters will generate different surfaces.

6.3. One Application of C2 Curve Network for Face Modeling

Face modeling plays a crucial role in both the animation industry and computer graphic academia,
in order to obtain high-quality character’s facial shapes for various applications. In this section, one
application of the proposed C2 continuous ODE-based surface creation approach is demonstrated.
First, one curve network structure is built to represent the 3D facial mesh according to the Facial
Action Coding System (FACS) [21], which can be used to obtain diverse face shapes by changing
corresponding parameters. Movements of individual facial muscles are encoded by FACS from slightly
different instant changes in facial appearance [22]. It is a common standard to systematically categorize
the physical expression of emotions, and it has proven useful to psychologists and animators. Using
FACS, ref. [23] human coders can manually code nearly any anatomically possible facial expression,
deconstructing it into the specific action units (AU) and their temporal segments that produce the
expression. As AUs are independent of any interpretation, they can be used for any higher order
decision making process including recognition of basic emotions, or pre-programmed commands for
an ambient intelligent environment.

As discussed above, the Facial Action Coding System could be used as powerful rules to achieve
any anatomically possible facial expression. But how can FACS be implemented and represented by
mathematical model to reduce tedious manual work and process more accurately? In order to solve
this problem, our work develops one curve network as the mathematical representation of FACS, as
shown in Figure 11. Based on the FACS mentioned in the section above, we build the curve network to
represent both the neutral human face and approximate diverse facial actions only by several curves.
These curves are the basis that can be used accordingly to reconstruct the whole facial model by our
C2 continuous ODE surface method.

Figure 11. Mathematical representation of Facial Action Coding System (FACS).

Figure 12 shows the front view and side view of one practical facial curve network structure
created by implementing the ODE-based parameterization method, in order to reduce tedious manual
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work for efficient surface creation. This approach can greatly reduce the data size for facial models
compared with polygon models and provide one new and quick way to build different face shapes
and expressions by changing the boundary curves and shape control parameters.

Figure 12. One face curve network template which can be used to represent and reconstruct different
face shapes by our algorithm.

Figure 13 shows the different facial action units reconstructed by the proposed approach which
only uses few curves. The first row in Figure 13 shows the polygon models of different Action Units
and the curve network (colored curve points) designed for surface representation. The second row
shows the red golden area on the right face is reconstructed by curves and the proposed approach,
and the remaining area is the original polygon model for comparison. Compare the right side and left
side of the models in the third row, the difference between recreated areas (red golden) and original
polygon surface can hardly be seen visually. So, the color map is computed for each action unit to
show the differences between original and recreated meshes, the Maximum Vertex Errors (MVEs) of
AU1, AU2, AU4, and AU9 are 0.011671, 0.013067, 0.020739, and 0.026909, respectively.

Figure 13. Reconstruct the surface of different Action Units from few curves by the proposed approach,
and compare the realism between reconstructed surfaces and polygon surface.

Figure 9 shows the global comparison between the face model (red golden) created by the curve
network with proposed method and the original polygon face model (silver). The front and side views
of comparison are shown in (a) and (b). In (c) and (d), the red wireframe is the wireframe of surface
created by the curve network, while the green wireframe is from the original polygon surface. From (c)
and (d), we can see the surface can be created following the same resolution and edge flow of original
model. (e) and (f) show the curve network can also be used to generate detailed areas, such as the
ear part, shown in Figure 9f, which uses 4 curves to reconstruct the ear part. The proposed process
includes: extracting curve network from one template mesh; generating mesh by curve network and
C2 continuous ODE surface method; comparing the reconstructed mesh with original mesh to optimize
the shape control parameters.
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The obtained results shown in Figures 9 and 13 demonstrate that our method can compress the
polygon model into a much smaller data size but still keep the quality of the original model. The data
size reduced by the curve network can be seen in Table 1.

The implementation of a GUI for showing the curve network structure and using default
parameters to generate initialized surfaces are shown in Figure 14. This implementation of the
ODE-based continuous surface creation algorithm is accomplished by C++11 in Visual studio 2017 on
a computer with an i7 8650U CPU, 16 GB RAM, and Intel(R) UHD Graphics 620. Figure 14a shows
the curve network in the main window and two child windows, the curve network window, and the
single patch window. In the curve network window, we can select different numbers of surfaces to
create, as shown in Figure 14b,d. Then, Figure 14c,e show the surfaces generated from different input
numbers. The above generations depend on the default parameters saved beforehand.

Figure 14. GUI for showing the curve network structure and use default parameters to generate
initialized surfaces.

Instead of using default parameters, the values can be changed in the single patch window to
optimize each generated surface shape. The influence of the controller’s value can be seen as Figure 10.

From these experiments, compared to the existing patch modeling technique, the proposed
technique achieves up to curvature continuities naturally, and no manual operations are required to
stitch adjacent patches together and deal with the continuity problem between them. Compared with
polygon surface, the data size of a character’s 3D model can be sharply compressed and reduced by
the proposed method for accelerating network transmission. The global shape of a surface patch can
be manipulated easily and efficiently through simply changing one of the first and second partial
derivatives at boundary curves and shape control parameters.

7. Discussion and Conclusions

In this paper, an efficient ODE-based surface generation technique has been proposed to create C2
continuous surfaces. This technique is based on the mathematical model consisting of a vector-valued
sixth order ordinary differential equation and C2 continuous boundary constraints.

The solution to the vector-valued sixth order ordinary differential equation is a three-dimensional
curve which is used to define an iso-parametric line of surface models. By making an isoparametric
line satisfying the constraints of the position, and the first and second partial derivatives, a surface
patch is created. The surface models consisting of such surface patches always maintain C2 continuity
between different surface patches.

In order to create surface patches quickly, the analytical solution to the vector-valued sixth order
ordinary differential equation subjected to the constraints of position and the first and second partial
derivatives is developed. With the obtained analytical solution, the users only generate two boundary
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curves or two boundary curves plus four control curves, the proposed approach transforms them into
the boundary constraints of the position and the first and second derivatives, and creates a surface
patch precisely satisfying these constraints.

When building surface models, existing patch modeling techniques require tedious and
time-consuming manual operations to stitch two separate patches together to achieve tangential
or curvature continuity. The technique proposed in this work solves this problem. All created surface
patches are connected together automatically with C2 continuity. Moreover, the technique can largely
reduce the data size of polygon model, especially suitable for quick network transmission. Besides,
the proposed approach introduces physics to improve the realism of geometric modeling.
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