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Three-Dimensional Footwear Impressions*

ABSTRACT: This paper examines the reliability of Structure from Motion (SfM) photogrammetry as a tool in the capture of forensic foot-
wear marks. This is applicable to photogrammetry freeware DigTrace but is equally relevant to other SfM solutions. SfM simply requires a dig-
ital camera, a scale bar, and a selection of oblique photographs of the trace in question taken at the scene. The output is a digital three-
dimensional point cloud of the surface and any plastic trace thereon. The first section of this paper examines the reliability of photogrammetry
to capture the same data when repeatedly used on one impression, while the second part assesses the impact of varying cameras. Using cloud
to cloud comparisons that measure the distance between two-point clouds, we assess the variability between models. The results highlight how
little variability is evident and therefore speak to the accuracy and consistency of such techniques in the capture of three-dimensional traces.
Using this method, 3D footwear impressions can, in many substrates, be collected with a repeatability of 97% with any variation between mod-

els less than ~0.5 mm.

KEYWORDS: evidence recovery, footwear impression, three-dimensional, 3D, digital evidence, reliability testing, validity

Footwear evidence relies upon human pattern-matching, anal-
ysis of those matches and ultimately the opinion of the exam-
iner. Consequently, it has been criticized in the past for a lack
of scientific objectivity. U.S. and U.K. Government reports
have called over the last decade for the increasing use of more
objective, preferably automated techniques, that have a proven
level of accuracy and precision (1,2). An increasing amount of
research is now focused on demonstrating the limits of accuracy
and precision of a given technique, or piece of forensic equip-
ment. This focus on reliability and quantification of error mar-
gins is not new. For example, “The Frye Standard,” introduced
in 1923 required evidence to have a “general level of accep-
tance in the specific scientific community to be admissible in
court” (3). This was followed by a 1993 US Appeal court rul-
ing known as the Daubert standard. This broadened the admis-
sibility test for evidence, but also challenged the use of
scientifically unchallenged expert witness statements (4). This
liberal approach allowed for additional factors to affect the
decision of admissibility. Neither set of rulings settled the mat-
ter definitively about what is, and is not, eligible in the way of
scientific evidence and concerns remained (5). Forensic examin-
ers and expert witnesses must strive, as they do always, to
improve the reliability of the raw data (evidence) collected at
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the scene and this is fundamental to addressing these types of
concerns. While often neglected in favor of other lines of foren-
sic data, the analysis of footwear marks is undergoing a minor
revolution in terms of potential scene capture methods. This
revolves around the application of small-scale (close-up) pho-
togrammetry to capture 3D models, allowing rapid capture,
visualization and numerical analysis of 3D traces. Footwear
marks and impressions can now be recovered from a variety of
locations and mediums without recourse to traditional casting or
lifting methods. With the introduction of new techniques, it
is essential that their reliability is examined and the sources of
error or variance established. The aim of this paper is to pro-
vide an assessment of the reliability and reproducibility of
small-scale 3D capture methods involving structure from motion
(SfM) photogrammetry.

Reliability has previously been defined as a combination of
repeatability, reproducibility, and accuracy (6) a definition that
draws from the PCAST definition (6).

Andalo et al. (7) demonstrate the potential of SfM in the
recovery of footwear evidence and through the advent of free-
ware such as DigTrace (8) this is now openly available to practi-
tioners. In addition, commercial solutions such as that provided
by Agisoft are also available and increasingly being marketed to
forensic practitioners. Photogrammetry is successfully being used
in other disciplines to capture and visualize in three-dimensional
traces. Archaeological and geological uses are now common,
whether to capture small finds or entire landscapes. All manner
of camera types, drones, action video cameras are utilized to do
so. Examples of this include Zimmer et al. (9) and Matthews
et al (10). The use of photogrammetry in other areas of forensic
practice highlight the perceived value and general feelings of the
community regarding the technique; specifically regarding levels
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of accuracy and validity (11,12). Currently, three-dimensional
footwear impressions are either cast or photographed in 2D.
Casting has been used for over a century to collect the three-di-
mensional data of an impression but is not underpinned by a
body of peer-reviewed research (13). With the advent of an alter-
native, we must gain a measure of the reliability in 3D capture
methods. In light of this, we evaluate the reliability of Structure
from Motion (SfM) photogrammetry in capturing footwear evi-
dence.

Methods

There are two elements to the method used. Firstly, establish-
ing a standard protocol for the capture of images for use with
SfM algorithms and secondly, establishing a means of compar-
ing 3D outputs.

Close Range Photogrammetry Procedure

Falkingham (14) alongside Bennett and Budka (8) provide
several important methodological points regarding the use of
open-source SfM photogrammetry. To make a model of a foot-
wear impression, a standard photographic procedure, developed
by the authors, is followed (Fig. 1). While some latitude is pos-
sible, the key elements must be adhered to. At least 20 sharp
photographs from different angles around and above the impres-
sion are needed extending well beyond the immediate area of
the subject. SfM works by matching individual, or groups of,
pixels identified automatically between different images taken
with different oblique orientations. This is used to place first the
camera positions and then the pixels themselves in three-dimen-
sional space via photogrammetry. In this way, the surface of the
impression is depicted by a cloud of points each with an x, y,

1723

TABLE 1—Cloud to cloud comparison statistics to show variation between
models of the same impression in sand (selected at random from pot of 50).

Distance Distance

Between Between
Points Points
Mean (mm) (mm)

Distance Std of 99% of 90%

Model 1  Model 2 (mm) Deviation RMS of Model of Model
42 6 0.235 0.157 0.595 0.815 0.430
15 41 0.168 0.082 0.578 0.432 0.263
37 39 0.161 0.089 0.556 0.475 0.254
44 13 0.176 0.084 0.552 0.446 0.279
38 35 0.174 0.088 0.563 0.474 0.276
49 30 0.204 0.120 0.689 0.609 0.333
48 14 0.197 0.096 0.600 0.478 0.320
1 25 0.265 0.152 0.610 0.735 0.465
43 50 0.176 0.093 0.568 0.502 0.281
23 26 0.202 0.110 0.675 0.564 0.341
7 14 0.231 0.141 0.600 0.699 0.408
34 46 0.171 0.092 0.564 0.475 0.274
9 44 0.216 0.126 0.576 0.608 0.358
39 41 0.169 0.087 0.554 0.454 0.261
45 50 0.194 0.129 0.562 0.690 0.308
38 6 0.255 0.180 0.608 0.970 0.467
37 4 0.346 0.209 0.670 1.045 0.602
47 22 0.169 0.093 0.566 0.499 0.267
30 2 0.293 0.179 0.613 0.948 0.496
28 42 0.199 0.114 0.581 0.603 0.326
Average 0.210 0.121 0.594 0.626 0.350

and z coordinate. This is then scaled in relation to a ruler or
scale bar placed by the impression prior to the photographs
being taken. The surface of the point cloud can then be meshed
using a variety of alternative surfacing algorithms (8). While the
principles remain constant across different SfM algorithms and
workflows, the details vary.

. Standard Photo Procedure

Take 1 photo from directly
above the impression

Take 2-3 photos from each
side at differing oblique
angles

Step 3

- Always place a scale next to
your impression and take a
minimum of 20 photos
Divide the impression into
6-8 sections and
photograph each segment
from above (landscape)
ensuring overlap between
photos

- If possible, cautiously move
aside any over hanging
vegetation that may obstruct
the impression

- If a specific part of the
impression is of interest, take
additional photos of that
section

- Use a polarising filter if

Repeat step 3 but impression is at all reflective

photograph in portrait.
Make sure to include
enough surrounding areas
in all photos

- If an area of the impression is
in a shadow, take additional
photos from an angle where
light can access the shadowed
area

FIG. 1—Author’s photo procedure for use with DigTrace. [Color figure can be viewed at wileyonlinelibrary.com]
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Unlike commercial photogrammetry solutions, DigTrace was file saved in an asc, csv, or ply. format and analyzed within Dig-
developed specifically for the capture and analysis of footwear Trace as required or exported to other software solutions.
and fossil footprint impressions and uses open-source code for There are several potential areas of error associated with SfM

the SfM process (OpenMVG) (15). The output is an x, y, and z beyond the failure of the algorithms used to match points
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FIG. 2—Example Cloud to Cloud distance heat maps of 10 randomly selected cloud pairs for models made of a shoeprint in sand. Scale in mm. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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successfully that may occur where surfaces have little or no
pixel contrast (i.e., are to uniform) or are reflective leading to
false placement of points. Here we focus on the user-controlled
errors, these are linked to: (i) variance between point clouds cre-
ated of the same subject but with different combinations of pho-
tographs; and (ii) the impact of changing different cameras
depending on what is available to a scene officer at a given
moment. Included in the first of these errors is the issue of scal-
ing a model using the ruler or scale bar.

A sand impression was used as the subject in the first part of
this experiment, placed outdoor in uniform light. The procedure
outlined in Fig. 1 was used to collect photographs for 50 three-
dimensional models. Between each set of photographs, the oper-
ator straightened-up, put the camera down and looked away.
Each of the 50 sets of circa. Twenty images were then used to
build 50 independent three-dimensional models of the subject
using DigTrace. The precise orientation and frame of each pic-
ture in the 20-30 used to build each 3D model is different, this
is the critical variable that is independent. This is equivalent to
making 50 independent models. The models were numbered 1—
50 and twenty pairs were selected at random for comparison.
This process was repeated using impressions made in natural set-
tings in both snow and mud. A second user was introduced to
collect the snow photographs. In a second experiment four den-
tal stone casts were used as the subject and two models of each
were made with different cameras being used. Photographs were
taken using a Full Frame Sony A7 mirrorless camera (24
megapixels) and an Apple Iphone XS Max (12 megapixels).
Three-dimensional models were again made using DigTrace.

Cloud Comparisons

There are several methods available to compare point clouds
and meshes. These range from simple comparison of least
squares to more sophisticated measures such as Hausdorff Dis-
tances. They all give very similar results when dealing with 2D
surfaces (8), and we have adopted that which can be easily
implemented via CC or Meshlab and is increasingly an industry
standard in object matching. Hausdorff distances are commonly
used and can be seen to outperform other methods, with specific
advantages such as not requiring user defined parameters identi-
fied (16). Here, however, we use the freeware CloudCompare
(http://www.danielgm.net/cc/) to compute cloud to cloud dis-
tances. This method is similar to that of Thompson and Norris
(17) and has been specifically used to compare the quality of
experimental footprint surfaces by Wiseman (18) To ensure
repeatability of this work, we document the method used in
some detail, this would allow other users to repeat this experi-
ment for their given equipment and/or software.

e Step One: Two different point clouds are imported into
CloudCompare and aligned both in the x-y and z planes. A
rough alignment was first undertaken using a system of
matching points and with a minimum of 10 points being used
in each case evenly distributed across the whole surface (i.e.,
including toe area, mid area, and heel area of model). This is
simply a matter of matching identifiable landmark features on
both point clouds. A fine alignment using an iterative closest
point (ICP) algorithm was then applied. This minimized the
difference between the two clouds to a root mean square of
around 0.6.

e Step Two: Approximate cloud to cloud distances were then
measured, this computes the distances between adjacent
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points on the two clouds using a “nearest neighbour”” method.
The first output is an option that reduces the maximum dis-
tance between the points reducing computational drain. Since
the distances are low, the maximum distance is selected, and
the process run again. The results are shown in a scalar color
field and the standard deviation and mean of the distances
reported.

Results

Using the tracks made in sand the randomly selected cloud
pairs show little difference, with an average distance between
points in any two clouds of 0.21 mm and a standard error of
4+0.0lmm (Table 1; Fig. 2). The more uniform the color in
Fig. 2 (blue = 0 to <0.5 mm) the closer the two clouds map one
to the other. There is less than 3% difference between the mod-
els compared (Table 1). In general, 99% of points have an inter-
point distance of less than or equal to 0.626 mm. The patterns
of errors are not focused on any one part of the impression
although there is a concentration in some comparisons at the tip
of the heel and toes (Fig. 2). In snow, 99% of points have an
inter-point error of less than or equal to 3.123 mm, although the
average error is only 0.542 mm with a standard error of
4+0.016 mm. As with traditional casting, snow can be challeng-
ing for SfM capture due to reflection and the uniformity of the
pixels. SfM performs best where there is lots of pixel color vari-
ability allowing features to be extracted easily; fresh snow can
be a little uniform in color. A consequence is that StM models
of snow can have a greater number of holes, caused by missing
points, compared to models made on other substrates. These
small holes and imperfections result in the lower reliability val-
ues obtained (Table 2). The mud comparisons for randomly
selected cloud pairs show results closer to sand with an average
point to point distance between clouds of 0.248mm with a stan-
dard error of £0.0lmm (Table 3). A histogram example of a

TABLE 2—Cloud to cloud comparison statistics to show variation between
models of the same impression in snow (selected at random from pot of 50).

Distance Distance

Between Between
Points Points

Mean (mm) of (mm) of

Distance Std 99% of 90% of

Model 1 Model 2 (mm) Deviation RMS Model Model
15 5 0.574 0.745 0.943 3.465 0.935
39 8 0.524 0.520 0.924 2.793 0.908
45 43 0.478 0.474 0.875 2.440 0.812
4 32 0.516 0.629 0.877 3.697 0.902
19 38 0.571 0.601 0.969 3.365 1.047
46 47 0.537 0.562 0.843 2.698 0.271
31 33 0.628 0.649 1.182 2.782 1.065
16 41 0.550 0.684 0.890 3.668 0.940
28 18 0.492 0.448 0.923 2.158 0.846
2 35 0.654 0.996 1.085 5.441 1.055
16 17 0.494 0.550 0.785 2.975 0.848
21 34 0.568 0.565 0.967 2.909 1.067
48 32 0.519 0.532 0.937 2.515 0.902
35 46 0.497 0.525 0.775 2.702 0.817
20 47 0.732 0.682 1.708 3.805 1.234
1 14 0.548 0.958 0.849 4.565 0.790
6 38 0.544 0.639 0.916 3.279 0.945
19 14 0.385 0.376 0.801 1.690 0.684
39 30 0.558 0.971 0.887 3.021 0.896
46 44 0.477 0.559 0.759 2.486 0.764
Average 0.542 0.633 0.945 3.123 0.886
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TABLE 3—Cloud to cloud comparison statistics to show variation between
models of the same impression in mud (selected at random from pot of 50).

Distance Distance

Between Between
Points Points

Mean (mm) of (mm) of

Distance Std 99% of 90% of
Model 1  Model 2 (mm) Deviation RMS Model Model
42 35 0.232 0.157 0.705 0.783 0.404
2 11 0.252 0.222 0.504 1.044 0.436
28 41 0.244 0.336 0.517 0.917 0.405
34 33 0.216 0.298 0.489 0.750 0.346
36 5 0.256 0.269 0.568 1.423 0.435
31 29 0.302 0.251 0.638 1.178 0.569
44 32 0.286 0.238 0.664 1.241 0.533
45 46 0.209 0.137 0.509 0.707 0.357
21 16 0.209 0.148 0.492 0.710 0.353
24 3 0.280 0.328 0.586 1.891 0.469
40 22 0.218 0.172 0.501 0.875 0.365
46 20 0.218 0.172 0.485 0.858 0.371
29 6 0.185 0.242 0.457 0.668 0.284
36 37 0.232 0.163 0.552 0.812 0.402
17 13 0.295 0.249 0.710 1.264 0.568
31 43 0.386 0411 0.734 1.796 0.771
6 27 0.242 0.249 0.500 1.121 0.413
41 20 0.209 0.267 0.507 0.816 0.331
40 45 0.225 0.294 0.503 0.873 0.356
12 15 0.260 0.230 0.614 1.173 0.462
Average 0.248 0.242 0.562 1.045 0.432

mud paired model comparison is shown in Fig. 3, illustrating
the frequency of point cloud distances with the vast majority of
points being between 0 and 0.5 mm.

In terms of the second experiment using different cameras the
cloud to cloud comparisons are shown in Fig. 4. One of the
cameras was a smartphone (Iphone XS) the other a full frame
mirrorless camera (Sony A7). In this case, the difference

54000 4

Frequency

between the computed point clouds is low. Of the four compar-
isons completed the mean point distance was of the order of as
little as ~0.193 mm (Table 4). A difference this low provides a
level of confidence that, regardless of the camera used, the
three-dimensional model will be close to being identical.

Discussion

Cloud to cloud distances from multiple models of the same
impression demonstrate the reliability of a SfM type approach
for a given trace environment. Photogrammetry of this kind
relies upon input photographs from different angles and heights,
which will vary from occasion to occasion and from operator to
operator hence the importance of establishing this type of relia-
bility assessment. For DigTrace or similar programmes to be
used as a forensic tool, we need to be able to say with certainty
that the results of each model would be the same if the process
were to be repeated by the same user or a different one.

The results of the reliability test show which substrates tested
would only require one model of the impression to accurately
reproduce the impression as evidence. It is intended for this
method to be repeated by other examiners in order to create a
library of repeatability and reproducibility rates in all manner of
substrates. The results differ slightly with environment as each
environment may have attributes that lend themselves to StM
more than others. Snow can be seen in this experiment to have
the largest disparity between clouds as it incorporates the larger
distances that model holes create. This highlights that additional
steps in the recovery methodology may be required to increase
the reliability, by increasing the quality of the models. This
includes the application of contrast increasing sprays or control-
ling the light sources around the impression. The disparity
between the snow results and the sand and mud results could be
attributed to being taken by another user but, under inspection of

T
1.5

20 25 30 35 40

Cloud to Cloud Distance (mm)

FIG. 3—Example histogram of Model 16 and Model 21 mud comparison. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 4—Cloud comparisons of camera type in scalar field format. Followed by initial DigTrace models. [Color figure can be viewed at wileyonlinelibrary.c
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the photographs, the author deemed them to be of sufficient
quality and in alignment with the photographic procedure. The
sand experiment undertaken in this paper illustrates as near to
perfect conditions as possible, thus giving us a confidence level
of the method. The snow and mud experiments were conducted
in more realistic conditions and allow a greater understanding of
the entire method in different environments. The average error
rate for snow at 99% is 3.123 mm. This is significant in relation
to footwear where shoe sizes fall into a size category based on a
matter of millimeters. Erroneous conclusions could, however, be

mitigated to a certain degree by visual analysis of the point
cloud. The output as seen in Fig. 2 identifies the area of the
impression that shows largest disparity. The high error rating
could, therefore, be successfully attributed to a certain area
allowing for confident conclusions regarding the rest of the
impression to be made.

The technique described, although robust, does rely upon a
user collecting appropriate photographs of an impression as per
Fig. 1. Poor understanding of the instructions could lead to poor
models and this should also be considered at a training level.


www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

1728 JOURNAL OF FORENSIC SCIENCES

TABLE 4—Cloud to cloud statistics detailing the variability in point clouds
when using an iphone and a Sony A7 to acquire photographs.

Distance
Between
Points
(mm)
Mean Std of ~97%
Model 1 Model 2 Distance  Deviation RMS of Model
Adidas (1) Adidas (1) 0.205 0.137 0.570  <0.505
iPhone Sony A7
Adidas (2) Adidas (2) 0.213 0.109 0.539  <0.455
iPhone Sony A7
Nike (1) Nike (1) Sony 0.163 0.089 0.561  <0.355
iPhone A7
Nike (2) Nike (2) Sony 0.190 0.121 0.564 <0411
iPhone A7
Average 0.193 0.114 0.432

However, this will manifest itself in models that have missing
parts or large holes and careful examination of a point cloud is
essential to mitigate this. It is worth noting that commercial StM
algorithms such as those provided by Agisoft have a workflow
that automatically provides a surface or mesh between the
points. This is a natural hole filling profile, and it is essential
that in all cases the original point clouds, that is the raw data, is
examined and that surfaced models are not accepted without
question.

The second experiment is important particularly given the
increasing ubiquity of smartphones with high quality cameras.
The smartphone model gave results comparable to a high quality
forensic grade camera. Having said this, the results confirm that
the better the image taken the better, within reason, the output
model. There are areas of slightly higher inter-cloud distances in
the Adidas 1 and Nike 2 comparisons (lower right corners
Fig. 4). These can be attributed to the smartphone models not
having enough photos of this area at different oblique angles,
which could be addressed by increasing the number of pho-
tographs collected via a smartphone as default. Other differences
reflect the fact that the mirrorless camera manual settings were
used to ensure the highest quality photographs were obtained
varying the aperture, shutter speed, white balance, exposure, and
ISO. These settings are all automatic on the smartphone. The
differences noted here are superficial and as per the cloud to
cloud comparisons results, the variability between the clouds is
low.

One of the transformative powers of SfM for the capture of
trace evidence is the use of the smartphone which has the advan-
tages of availability, speed, and ease of collection. The potential
to develop solutions that aim to provide real-time intelligence
from trace evidence is clear. The first attending officers could
potentially collect evidence that is at risk of degradation, without
waiting for crime scene examiners to attend.

It is also possible for a scene or forensic officer to calibrate
their camera or smartphone and/or the typical environments that
they face using the methods outlined here. This provides a
means of officers addressing directly the fundamental question
often posed in court or during accreditation process of “how reli-
able is your technique, equipment, and officers?”

The application of photogrammetry via SfM tools such as
DigTrace can be considered a viable alternative, or least addi-
tion, to the recovery of three-dimensional impressions via tradi-
tional casting. Digital recovery of 3D impressions comes with
many benefits, most notable are, calibration of the process, scale

placement issues not existing as they do in 2D photographs, and
lens distortion corrected for in the making of the 3D image. The
photogrammetry process at scene requires a matter of minutes
per impression. It is, therefore, much quicker than the traditional
method of casting which requires time for mixing the product,
pouring, setting, removing, and packaging the cast. The reliabil-
ity of casting cannot be assessed as SfM photogrammetry has
been in this study due to being a destructive technique. The high
level of reliability that SfM photogrammetry has displayed with
respect to repeatability and input differences are of a level appro-
priate to forensic science. In the current study, comparing cam-
eras of very different specifications showed that the type of
camera used at a crime scene does not negatively affect the out-
put. This is particularly relevant in crime scene recovery as
between forces and countries, the camera used to collect crime
scene photographs will vary due to differences in budgets, prac-
ticality, and resources.

The limitations surrounding this study include the participation
of only two users; further study is encouraged increasing this
number. The authors have, over many years of research using
DigTrace, seen little disparity between models created by differ-
ent users and any differences that are seen are attributed to num-
ber and quality of photographs taken. Other variables could be
further explored such as differences seen in DSLR cameras typi-
cally used for crime scene photography. The variability that
exists in types of snow should also be a consideration for further
research and reliability testing to avoid any erroneous conclu-
sions being made.
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