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Abstract

Two new ionic liquids ([Neg66][Cs.0o] and [Nee66l[Ciso]) synthetized from fatty acids through a salt
metathesis reaction were both characterized from a physicochemical and tribological point of view.
Density, viscosity, corrosion activity and thermal stability tests were performed before making tribological
tests under ball-on-disc both unidirectional (with fixed and variable slide-to-roll ratio) and reciprocating
configuration. The main results of this work were the following: the longer the length of the alkyl chain of
the anion the lower both viscosity and density and higher both viscosity index and thermal stability; these
ionic liquids (ILs) are not corrosive; the [Ne66.6][Cie:0] behaved better changing from elastohydrodynamic
to mixed lubrication regime at lower speeds; their antiwear behavior at high load seems depend on their
viscosity (for tests made at room temperature) and thermal stability and IL-surface interaction (for tests
made at high temperature).
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1. Introduction

The importance of lubrication in industrial engineering applications is a widely considered issue in
Tribology [1-3]. Although lubrication science is usually focused on reducing friction, minimizing wear,
evacuating heat and removing contaminants, the main struggle in this research area nowadays is the
continuous search for both improving efficiency and developing greener lubricants. This fact is mainly
related to the greater awareness of the pollutant effects on the environment of the human activity [4,5].
The study of using ionic liquids (ILs) as lubricants began almost two decades ago because of their
remarkable characteristics, such as negligible vapour pressure, non-flammability, electrical conductivity,
inherent polarity and excellent thermal and oxidative stability, which making them feasible to be included
in lubricant formulation [6-14]. ILs have demonstrated excellent lubricant properties, especially related to
the ability to form tribofilms on the contact surfaces that result in a reduction of friction and wear [15-29].
However, the most of ILs synthetized until now are constituted by some elements that are toxic or hazardous
to the environment [30-39].

Although natural oils are largely used as lubricants since the beginning of lubrication, utilisation of bio-
based lubricants is rising [40-46]. The enormous possibilities of synthetizing ILs through the combination

of existing ions lead to the obtention of new environmentally friendly compounds that improve
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biodegradability and non-toxic characteristics contributing to a more sustainable development [47]. One of
these novel compounds are fatty acids anion-based ionic liquids (FAILs) and their obtention via metathesis
was reported for the first time in 2013 [48]. Since then, some researches regarding the feasibility of using
these substances in lubrication have been published [49-56].

This work deals with the physicochemical and tribological characterization of two new ionic liquids
(tetrahexylammonium octanoate and tetrahexylammonium hexadecanoate) synthetized through a salt

metathesis reaction with the aim of using them in lubrication.

2. Experimental details

2.1 Chemicals

In order to carry out the synthesis of the fatty acid ionic liquids (FAILs), some reagents were used:
tetrahexylammonium bromide ionic liquid ([Negeee][Br]) (= 99%), octanoic and hexadecanoic acids
(natural > 98%) as cation and anion precursor, respectively; ethanol solution (70%w/w), sodium hydroxide
and toluene (99.8%). These chemical substances were supplied by Sigma-Aldrich S.A and employed
without any further purification.

2.2. Synthesis of FAILs

A couple of novel FAILs: tetrahexylammonium octanoate ([Nggeel[Cso]) and tetrahexylammonium
hexadecanoate ([Ngg66][Cis0]) Were obtained from natural sources via synthesis using a known salt
metathesis reaction. This chemical procedure starts with the ester formation, mixing 25 mmol of sodium
hydroxide (aqueous solution) with 25 mmol of the selected fatty acid (ethanol solution). The resulting
mixture was stirred at 800 rpm for 12 h. In order to obtain the expected ester, the organic solvent is
eliminated in a rotary evaporator by vacuum distillation and the water is removed in a temperature fixed
oven (65 °C). This purification step should be ended when the product reaches the stoichiometric weight.
The synthesis continues with the double replacement reaction: the ester obtained in the previous step was
dissolved again (aqueous medium) and blended with an organic phase of 25 mmol of tetrahexylammonium
bromide (toluene medium). The 2 phases-mixture was left 24 h under continuous stirring at 800 rpm. The
organic phase should contain the objective FAIL synthetized, which will be purified using several ultrapure
water washes after the removal of the water phase. Finally, the solvent of the purified organic phase will be
removed in a rotary evaporator by vacuum distillation obtaining a bright orange liquid product (ionic liquid)

with the yield ranging 85-95%.



2.3. Identification of FAILs

'H and 3C NMR analyses, besides the FTIR spectra, were carried out with the aim of confirming the
molecular structures of the two synthesized FAILs. A Bruker AV600 nuclear magnetic resonance
spectrometer (NMR) were used to obtain both NMR spectra, using CDCl; as solvent. The resonance
frequencies for 'H and 3C NMR were 600.15 and 150.92 MHz, respectively. Fourier transform Infrared
spectra (FTIR) of the FAILs were obtained in a Varian 670-IR FTIR spectrometer, using 16 scans, 600-
4000 cm'! operation range and 4 cm’! resolution.

2.4 Density, viscosity and thermal properties

A Stabinger Viscometer SVM3001 equipment was employed to measure density and dynamic viscosity of
the FAILs. Measurements were carried out according to ASTM D7042 at atmospheric pressure and
temperature from 20 to 100 °C. Kinematic viscosity and viscosity index (VI) were calculated from the
previous results following the ASTM D2270-04. Thermogravimetric analysis (TGA) of both FAILs were
carried out using a DSC/SDT Q600 TA Instruments equipment. Dynamic scans were conducted employing
a sample of about 6 mg, from 25 to 600 °C and using a 10 °C/min heating rate under an oxygen atmosphere
of 50 mL/min of flow rate.

2.5. Corrosion behavior

A couple of straightforward tests were conducted in order to analyze the corrosion activity of the FAILs.
Both ionic liquids studied were applied separately on AISI 52100 steel surfaces used in this work keeping
them at room temperature in air for two different exposure times: a) 20 days and b) 365 days [57,58]. All
surfaces were previously cleaned with heptane in an ultrasonic bath and air dried. In addition, corrosion
tests were also conducted for both ILs during 24 h at 100 °C with the aim of avoiding humidity issues.
Afterward, all AISI 52100 steel surfaces were cleaned with heptane and air dried and then analyzed by
scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).

2.6. Tribological tests

This section could be divided in 2 different stages performed in two different tribometers. In the first stage,
a Mini Traction Machine tribometer (PCS Instruments) was used to study the lubrication behavior of the
FAILSs under different lubrication regimes. Firstly, a ball-on-disc configuration at 50% of slide-to-roll ratio
(SRR) was used with the following test conditions: mean entrainment speed between 2500 and 10 mm-s'!

(steps of 100 mm-s™! from 2500 to 100 and steps of 10 mm-s' from 100 to 10), at 30 N-load (equivalent



to 0.95 GPa of maximum contact pressure), temperature of 40, 60, 80, and 100 °C, and a lubricant volume
of 10 mL. Secondly, tests at increasing SRR values (5-50%) were performed at a rolling speed of 2000
mm-s! and at the same load and temperatures than that used firstly.

The average velocity or mean entrainment speed can be determined used Eq. (1), where u, and u,, are the
velocity of the disk and the ball at the point of contact, respectively. Finally, the slide-to-roll ratio (SRR)

was calculated using Eq. (2), being (i, - u;) the sliding speed.

Ug +up
U = ()
2(ug - wp)
SRR (%) = Tt ) x 100 2)

Coecfficient of friction and ECR (electrical contact resistance) were determined during the tests and the so-
called Stribeck curve was obtained, allowing to study the lubricant behavior of the FAILs under boundary
and mixed lubrication regimes. Before each test, the specimens (balls and discs) were ultrasonically cleaned
in heptane for 10 min, then rinsed in ethanol and dried in hot air. A description of the specimens used in
these tests is included in Table 1.

The second stage involves the use of a UMT-3 tribometer (Bruker Corporation) with a reciprocating ball-
on-disc configuration. Two temperatures (25 and 100 °C) and three different loads: 10 N (or 1.43 GPa of
maximum contact pressure), 30 N (or 2.06 GPa of maximum contact pressure) and 50 N (or 2.43 GPa of
maximum contact pressure) were employed in the tribological tests. The rest of tests conditions were the
following: 15 Hz frequency, 4 mm of stroke length, relative humidity in the range 40-60% and 4 mL of
lubricant sample. The test duration was 30 min and three replicates were done with a relative error lower
than 10% in all cases. The coefficient of friction (COF) was measured during the assay and the wear volume
on the disc surface was measured after testing using a Leica DCM 3D confocal microscope. Table 1 shows
the description of the specimens employed to conduct all tribological tests. The specimens were cleaned
following the same procedure used with the MTM specimens.

Finally, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed
in order to assess the chemical interaction of the FAILs with the surface. The equipment used for this
purpose was a JEOL-6610-LV SEM with tungsten filament electron gun working at 20 kV of acceleration
voltage, secondary electron detector and a maximum resolution of 3.0 nm from 5 to 50 000 increases. In
addition, EDS microanalysis equipment has an SDD detector with linear resolution of 125 eV in Mn Ka

from 1 to 20 000 cps and active area of 50 mm? integrated in the microscope. An Oxford INCA Complete



integrated software allows to select points or areas on the microscopic image for analysis and the ultra-thin

window allows the detection and quantification of ultralights elements of (C, N, O ...).

Table 1 Main properties of the specimens used in tribological tests.

Chemical composition (%)

C Si Mn Cr P S
AISI 52100 steel
0.98-1.1 0.15-0.30 0.25-0.45 1.30-1.60 0.025 0.025
Specimens Dimensions Hardness Roughness (Ra)
. 46 mm diameter
Disks . 720-780 HV;, <0.02 um
MTM x 5 mm thick
Balls 19.05 mm diameter 800-920 HV ;3 <0.02 um
Disk 10 mm diameter 925 HV 0.018
isks .
UMT x 3 mm thick 30 Hm
Balls 6 mm diameter 58-66 HRC 0.05 pm

3. Results and discussion
3.1 Identification of the FAILs
3.1.1. NMR
'H and 3C NMR analyses confirmed the chemical structure of the FAILs. The chemical shifts of 'H NMR
and 13C NMR along with their assignments are shown below:
[Né,6.6,61[Cs:ol

IH NMR (600 MHz, CDCls) 5 (ppm): 3.3 (m, 8H, -N-CH,), 2.14 (t, 2H, -CH,COO), 1.62 (m, 10H, -CH, -
N/ -CH,-0), 1.2-1.4 (m, 32H, -CH,), 0.8-0.9 (m, 15H, -CH).

13C NMR (150 MHz, CDCl5) & (ppm): 179.3 (1C, -COO), 58.96 (4C, -CH,-N), 39.32 (1C, -CH,COO),
26.03-31.93 (16C, .CH,), 22.1-22.7 (5C, -CH, -N/ -CH,-0), 13.84-14.08 (5C, -CHs).

[N6,6,6,6] [C 1 6:0]

!H NMR (600 MHz, CDCl3) & (ppm): 3.34 (m, 8H, -N-CH,), 2.15 (t, 2H, -CH,COO), 1.61 (m, 10H, -CH,
N/ -CH»-0), 1.19-1.39 (m, 48H, -CH.), 0.82-0.88 (m, 15H, -CH).

BC NMR (150 MHz, CDCl;) ¢ (ppm): 179.06 (1C, -COO), 58.94 (4C, -CH,-N), 39.11 (1C, -CH,COO),
26.06-31.88 (24C, .CH,), 22.14-22.65 (5C, -CH,-N/ -CH,-0), 13.84-14.07 (5C, -CHj).

Analyzing both "H NMR and '>*C NMR spectra, the terminal methyl group (-CHj3) of tetrahexylammonium
cation and both octanoic and hexadecanoic fatty acid-based anions showed chemical shift in the range of
0.8-0.9 ppm and 13.84-14.08 ppm, respectively. The chemical shifts at 1.19-1.39 ppm ('H) and 26.06-

31.88 (13C) were attributed to the shielded methylene units (-CH,) in both cation and anion. The methylene
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group at intermediate position, close to the electronegative atoms (N or O), showed chemical shifts at 1.61—
1.62 ppm or 22.1-22.7, respectively. These atoms have a strong effect on the electron density of the nearby
groups, affecting the chemical shifts. This fact can be also observed either in the methylene group next to
COOr, exhibiting chemical shifts at 2.14-2.15 ppm ('H) or 39.11-39.32 (13C), either the ones bonded to
cationic nitrogen center, exhibiting resonance at 3.3-3.34 ppm ('H) and 58.94-58.96 ppm (13C),
respectively. Finally, the carboxylic group of the fatty acid anion showed a chemical shift in the 3C NMR
spectra at 179.06-179.3 ppm.
3.1.2. FTIR

Fig. 1 shows the vibrational spectra of the two FAILs, both exhibiting important peaks in the 3000-2850
cm™! zone. This expected behavior was assigned to the stretching vibrations of C-H of methyl units of alkyl
chains [59]. In addition, bending vibration of N-H bond appeared around 1550 cm™ [60]. On the other
hand, bending vibrations of methyl units in the alkyl chains exhibited peaks close to 1400 cm™! [59] and
the stretching vibration at 1300 cm™! was assigned to the carboxylic group in the ester [60]. Finally, the
signal appearing around 700 cm™! is probably due to the rocking vibration of an aliphatic chain with four

or more carbon atoms [61].
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Fig. 1 FTIR spectra of the FAILs including the assignments of the peaks:
a) [Nes66][Cs:o] and b) [Neg6.6][Cisol



3.2. Density, viscosity and thermal properties

Table 2 shows the density and viscosity values of the FAILs studied in this research. For quaternary
ammonium ILs, Zhang ef al. [62] reported that the higher their number of carbons the lower the density. In
addition, Yu et al. [63] observed that longer alkyl chain makes the salt more viscous because of an increase
in van der Waals interactions. However, both properties decrease in this research with the increase of the
alkyl chain length of the anion, similarly to other FAILs employed in previous research works [64-67]. The
differences in viscosity behavior could be explained in a similar way that what happen with surface tension
[46]. The alkyl chain interactions seem to have a major contribution to the viscosity while the polar groups
of'the FAILs seem to have a reduced influence. Therefore, FAILSs viscosity behaved like hydrocarbons [68].
In addition, Reeves et al. [69] found that viscosity values of fatty acids converge at high temperatures. This
fact is also in agreement with the results found here, both FAILs have close viscosity values at 100 °C.
Finally, the [Ne66][Cie0] IL has the highest viscosity index, showing that an increase in the alkyl chain
length improves the lubrication potential of the FAIL [64, 67].

Table 2 Density and viscosity values of the ionic liquids.

Tonic Density@20°C  Kin. viscosity (mm?>s)  Viscosity index

liquids (grem?) 40°C 100°C ASTM D2270
[Ne6.6.6][Cs:o] 0.9132 4443 25.10 71
[Ne6661[Creol 0.8848 243.0 19.80 93

Fig. 2 displays the thermogravimetric analysis (TGA) of the two FAILs used in this research. It is important
to notice that both samples are completely degraded around half the maximum temperature used in this test

(600 °C). Besides, the onset of temperature degradation was between 165 and 180 °C (Table 3).
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Fig. 2 Thermogravimetric behavior of the ionic liquids.



Comparing these mentioned results with that of two ILs containing the same anions obtained in a previous
research, it was found that thermogravimetric results are almost the same until Tsg, (around 200 °C) [64].
However, the FAILs studied in this work exhibited a drastic loss of mass from this moment, especially the

[Ne.6.6.6][Cs.0], reaching the T, in the zone between 330-360 °C.

Table 3 Thermal properties of the ionic liquids.

ILs Tonset °C)  Tio% (°C)  Tagn (°C)  Tso% (°C)  Trgow (°O)
[Ne6.66[Csol 167.1 162.3 172.9 190.8 3312
[Nesssl[Ciso] 1761 169.6 184.0 205.5 359.5

3.3. Corrosion tests

No signs of corrosion attack appeared in any of the experiments carried out. The steel surfaces tested with
the FAILs did not show physical changes in comparison to a non-treated steel surface. In addition, the steel
surface analyzed by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS)
confirmed the absence of corrosion, showing only the presence of the elements of the steel surface (Table
4) and a higher carbon content with the one reported for the AISI 52100 steel (Table 1). That result could

be a consequence of possible remaining ionic liquid or cleaning solvent from those employed in the test.

Table 4 EDS analysis (at. concentration, %) on the disc surface after corrosion tests.

FAILSs / Time and Temperature C Cr Mn Fe
None (non-treated disc) 835 1.62 0.53 89.50
[Ne6.66][Cs:0] / 2 weeks at RT 11.31  1.71 0.02 86.96
[Ne6.66][Ciso] 2 weeks at RT 12.74 147 0.17 85.63
[Ne6.66][Cso] 1 year at RT 9.06 155 0.16 89.23
[Nes66l[Cisol 1 year at RT 835 1.62 0.53 89.50
[Ne.6.6.6][Cs:0] 24 h at 100 °C 16.15 1.57 0.63 81.65
[Ne.6.6.6][Cis0] 24 h at 100 °C 567 153 028 9251

3.4. Tribological properties of the FAILs
The Stribeck curve of both FAILs were obtained at different temperatures (40, 60, 80, 100 °C). Fig. 3 shows

that both FAILs operate under elastohydrodynamic lubrication at all speeds at 40 °C, with [Ne¢66][Ci6:0]



operating under above mentioned lubrication regime even at 60 °C at almost all speeds (a slight increase in

the friction coefficient occurs at speed around 20 mm/s).
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Fig. 3 Friction coefficient (Stribeck curves) and electrical contact resistance (ECR) during tests at
different temperatures.

Besides, a slight increase of friction coefficient with speed was verified under these low temperature
conditions, especially in the case of [N 6][Cic0]- This performance could be caused by the high viscosity
values for the FAILs at this temperature, provoking a growth in the lubricant film thickness that avoids
metal-metal contact. However, this behavior is less clear than the obtained with other FAILs with higher
viscosity values [64]. On the other hand, the thinner lubricant film obtained at low speeds (<100 mm/s)
provokes metal-metal contact and the corresponding increase in friction coefficient and decrease in the
ECR. This behavior is much less pronounced in the case of [N 66][Ci60]- The [Ngg66][Cs:0] changed from

elastohydrodynamic to mixed lubrication regime at higher speeds and temperatures than the [N ¢ 6.6][Ci6:0]



due to its lower viscosity index, which lead to a quick reduction of viscosity with temperature and hence a
lubricant film thickness reduction and an increase of friction coefficient.

Fig. 4 exhibits the results from traction tests performed at variable SRR values and at different temperatures.
Both FAILs had similar behavior: the friction coefficient increased when the SRR varied from 5 to 50%,
being [N 6.6][Cs:0] slightly better from a friction point of view at all temperatures. The friction coefficient
decreased with temperature because for the speed used (2000 mm-s!) the test was performed under
elastohydrodynamic lubrication regime (see in Fig. 3 that tests performed at 2000 mm-s' and SRR of 50%
took place under elastohydrodynamic lubrication regime). In addition, the friction coefficient decreases at

SRR values lower than 50% because the sliding component in the contact is lower.
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Fig. 4 Friction behaviour of the [Ne6.6.6][Cs:0] and [Ne6.6.6][Cie0] at different temperatures and variable
SRR values.
The tribological tests made under a reciprocating ball-on-disc configuration showed that in general the
[Ne6.6.6][Cs:0] reduces friction more effectively than the [Ngg66][Ciso], Fig. 5. The [Nee6.6][Cie0] only
performed better at 25 °C and 10 N, probably due to its lower viscosity combined with softer contact

conditions, which lead to a thicker lubricant film thickness where friction is controlled by the lubricant
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viscosity. At both higher loads and temperature, the higher friction coefficient values registered with the
use of the [Ngg66l[Ciso] can be related to its lower viscosity, which promotes thinner lubricant film

thickness and more asperities contact.
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Fig. 5 Friction coefficient in the 30-min tribological tests at: left: 25 °C; right: 100 °C.
Fig. 6 shows the wear volume measured on the disc surface after 30-min tribological tests. As expected
wear increased with temperature. The use of [Ng¢66][Cs:0] and [Ngg66][Ci60] led to similar wear volume
values under both 10 and 30 N-load for each temperature (Fig. 7). However, the antiwear behavior of the
FAILs changed with temperature at 50 N-load. This performance at room temperature could be attributed
to the quite higher viscosity of the [Ne¢66][Cs.0] With regard to that of the [Ng¢66][Cis:0], Whereas at high

temperature (100 °C) the better thermal stability of the [Ngg66][Ci6:0] favoured lubrication.
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Fig. 6 Wear volume after the 30-min tribological tests at: a) 25 °C; b) 100 °C.

The wear scar images obtained by SEM after the 30-min tribological tests at 25 °C are shown in Fig. 7. The
increase of load results in a higher width of the wear track as expected and the wear mechanism found in
all samples seemed to be plastic deformation due to an adhesive process. No relevant wear differences
between the two FAILs can be found under the same testing conditions, except at 50 N-load as it was

explained in the discussion of Fig. 6.
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[Fig. 7 Worn surfaces after tribological tests at 25 °C: (a) [Ng666][Cs:0] at 10 N; (b) [Neg66][Cso] at 30 N;
(C) [Nege6l[Cso] at 50N; (d) [Ne6.6,61[Cieo] at 10 N; (e) [Ne,6,6,61[Ci6:0] at 30N; (f) [Ne.,6,6,6][Cie:0] at 50 N.

In addition, Fig. 8 shows the corresponding wear scar images of tests made at 100 °C. The wear scar width
rises with load as in tests at 25 °C and the wear mechanism in this case was the same. However, the impact
of higher temperature is quite visible on the wear surface resulting in a higher degree of plastic deformation

and more material displacement to the edge of the wear scar.
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Fig. 8 Worn surfaces after tribological tests at 100 °C: (a) [Ng46.6][Cs:0] at 10 N; (b) [Ne66.6][Cs:0] at 30 N;
() Ne6.66][Cs:0] at S0 N; (d) [Nes66][Cieo] at 10 N; () [Nos.6.6][Ciso] at 30 N; (f) [Nes66][Ciso] at SO N.
The EDS analysis from all wear scars (Table 5) showed that the presence of oxygen increases at higher
temperature (100 °C), suggesting an interaction between the FAIL and the surface. On the other hand, the
presence of organic matter (carbon and oxygen) seems to be a little bit higher under [Neg66][Cie:0]
lubrication, which could also explain their better wear behaviour. In all cases, the EDS analysis showed
that mainly the elements present in the steel disc were found on the wear scar (with the addition of oxygen

at 100 °C).
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Table 5. EDS analysis (at. concentration, %) after 30-min tribological tests.

FAILSs / Load / Temperature C (0] Cr Fe Zn

[Ne666][Cso] — 10 N—25°C 1.83 0.01 1.59 96.12 0.45
[Ne666][Cso] —30 N—25°C 2.49 0 1.90 95.12 0.49
[No666][Cs0] —50 N—25°C 3.01 0.27 1.76 94.93 0.03
[Ne666][Cs0] —10 N—100 °C 4.48 4.51 3.74 87.24 0.03
[Ne6.66][Cs:0] —30 N - 100 °C 3.95 6.84 4.20 84.79 0.22
[Ng6.66][Cs:0] —50 N—100 °C 6.29 6.14 3.63 83.54 0.40
[Ne666l[Cis0] — 10 N —25°C 2.00 0.48 1.54 95.88 0.10
[Ne6.66l[Ci60] —30 N —25°C 4.25 0.28 1.75 93.30 0.42
[Ne666][Ci60] —SON —25°C 2.44 0 1.77 95.89 0.15
[N6666][Ci60] — 10 N =100 °C 3.73 7.18 2.70 86.32 0.07
[Ne6.6.6][Ci6:0] —30 N—100 °C 5.60 5.54 243 86.06 0.37
[N6666][Ci6:0] —50 N—100 °C 4.10 7.5 4.29 83.66 0.45

4. Conclusions

A couple of novel fatty acid anion-based ionic liquids (FAILs): tetrahexylammonium octanoate
([Ne.6.6.6][Cs:0]) and tetrahexylammonium hexadecanoate ([Neg66][Cie:0]) Were synthesized and identified
by NMR and FTIR techniques. Physicochemical properties of these two ionic liquids, such as density,
viscosity, corrosion activity and thermal stability, were tested before studying their tribological properties
in steel-steel contacts when they are used as neat lubricants. From the results obtained can be drawn the
following conclusions:

e  Viscosity and density values are higher in the case of the [Ng ¢ 6.6][Cs.0], which can be attributed to
its shorter alkyl chain length in the anion. On the other hand, the [Ng¢66][Ci6.0] showed a higher
viscosity index.

e The [Nes66][Cieo] showed better thermal stability than the [N 66][Cs:o]. The thermal stability of
these FAILSs are lower than that of the traditional ionic liquids studied before in lubrication studies.

e None of these ionic liquids presented corrosive activity on the steel surfaces.

o Both FAILs performed under elastohydrodynamic lubrication regime at the lowest temperature
(40 °C) for all speed range tested and changed to mixed lubrication regimen at increasing
temperatures but the [Ne 6 6.6][Ci6:0] behaved better changing to a mixed lubrication regime at lower

speeds.
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o Both FAILs had similar antiwear behavior at 10 and 30 N-load for each temperature but at the
highest load showed different behavior probably due to their quite different viscosity at room
temperature and the higher thermal stability of the [Ng¢66][Ci6:0] at high temperature.

e The EDS detected higher presence of organic matter (carbon and oxygen) on the wear scar under
the [Ne6.6.6][Cis0] lubrication, which suggest an interaction between the FAIL and the surface,

especially at 100 °C.
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