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Abstract

Thin shell structures have been widely applied in crafts, art, industry, architecture,
aerospace, etc. The dilemma in printing thin shell structures is the balance
between material efficiency and structural soundness. The use of more material
will produce a more solid and sound structure but it takes more time and material
to fabricate. On the contrary, a thinner structure is more economical but the
object tends to be more fragile or deformable. Therefore the problem of finding
an optimal supporting structure is crucial to save printing material consumption
while maintaining mechanical performance.

To solve the problem, some methods have been proposed such as inserting
struts, local thickening, skin-frame structure, grid-shell structure and Voronoi
structure. However, these techniques either use traditional finite elements or
ignore shell contribution. The advantages of attaching stiffeners seamlessly to
skin surface are:

• Stiffeners can alleviate interior space compared to insertion of struts or
Voronoi structure;

• Stiffeners are less likely to cause stress concentration compared to skin-
frame structure which connects frame to skin at nodes;

• The stiffened plate theory takes stiffeners and surface as a coupled system
by adding stiffness contribution of stiffener elements to corresponding plate
elements which yields more accurate solution;

• The strength or ability to resist bending can be further improved by
improving shape of stiffeners.

Inspired by these good properties of stiffeners, the research presents three
computational methods to automatically generate optimized layout and size of
stiffeners:

First, the research discretizes the input geometry into a triangular mesh.
The faces and edges of the mesh are taken as traditional plate and beam
elements respectively. The contributions from stiffeners (beams) are assembled
to corresponding plate elements and the coupled system is solved to obtain initial
stress field. An optimization framework is proposed to use the initial stress field
to guide the layout of stiffeners to follow the flow of stress, and to optimize the
shape of stiffeners once the layout is fixed. The disadvantage of this approach is
that stiffeners need to align with edges and in order to fulfil this requirement
the input mesh has to update iteratively during flow process.

To maintain the geometry, the second approach is to formulate the stiffeners
using same shape functions from plate elements. This method assembles stiffness
contribution from any stiffener within a plate element without re-meshing the
triangular mesh. An optimization framework to generate uni- and bi-directional
stiffeners using this stiffened element is proposed to reinforce thin shell structures.

The intuitive way of distributing stiffeners equally in space is not the best
way to create the supporting structure as it does not follow the stress field.
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the third method is therefore presented to utilize stress field to guide the
generation of stiffener layout and optimize the cross-sectional shape to achieve
the purpose of material saving. 3D printed objects based on these three methods
are manufactured to verify the effectiveness of these approaches.

The simulations of all three methods are presented and discussed in separate
chapters. The optimized results are printed with 3D printers to verify these
methods can be used to generate optimised minimum supporting structures
under given conditions.

The research only implements Constant Strain Triangle element to simulate
the inplane membrane behaviour which may not best reflect the flow of stress
in the object, an improvement is to use Linear Strain Triangle element instead
of CST element. During the optimisation of stiffened elements, the width and
height of stiffened plate elements are assumed to be constant, which will cause
some waste of materials since materials over lower stress areas are not fully used.
To overcome this problem, the future work is to use varying cross-sections so
that the size of cross-section will follow the flow of stress. Finally, the shape
of the stiffened elements is not discussed. There are plenty of other shapes
widely applied in Engineering which have good mechanical properties. Therefore
a combination of multiple shapes of stiffeners under complex loads should be
studied in the future.
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Chapter 1

Introduction

1.1 3D printing

Unlike traditional machining techniques, which remove materials by subtractive
methods such as cutting or drilling, 3D printing is an additive process of making
3D objects of any shape from a digital model. It was predicted there will be
182 million people involved with 3D printing products in 2019 Burton et al.
(2017). 3D food printing, with the benefits of convenience, customization, and
cost savings, has been used by food production companies and could come
to consumers’ kitchens in near future. It will be possible for people to print
high-fashion dresses in their homes. Apart from applications in our daily life,
3D printing is widely used for both prototyping and distributed manufacturing
with a wide range of applications in architecture, construction, industrial design,
automotive, aerospace, military, fashion, footwear, jewellery, eye-wear, education,
geographic information systems, food, and many other fields. 3D printers have
been used to make many parts for air-planes and jet engines by Boeing and
General Electric.

As the 3D printing technology continues to improve and prices continue to
fall, desktop 3D printers are becoming more affordable and accessible for personal
consumers. It is now possible to produce 3D printed objects with exceptionally
high fidelity and precision. However, although the quality of 3D printing has
improved, both the time to print and the material costs have remained high. To
reduce time and save material consumption, the general approach is to print
hollowed objects.

The problem of saving time and material is formulated as a cost minimiza-
tion. Typical methods for this cost minimization problem can be divided into:
hollowing, wall thickness minimization, skin-frame structure and honeycomb-like
structure. The hollowing and wall thickness minimization methods can release
the internal space of 3D printed objects. However, such pure shell structures are
not strong which may break during transportation and use. Although skin-frame
and honeycomb-like structures are strong, they occupy the internal space of 3D
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printing objects which will be used in many situations. Therefore, how to print
3D objects with minimum cost but good strengths and non-occupied internal
space is an unsolved problem.

1.2 Stiffened shell structures

Shell structures, such as aircraft fuselages, boat hulls, and large-span roofs, are
lightweight constructions by assembling shell elements. The use of shell elements
can achieve high degree of reserved strength and structural integrity, but also
greatly release the internal space (Ventsel & Krauthammer 2001). However, the
accompanying dilemma of such structures is weakened stiffness and strength
when a shell has a large span and/or thin thickness. To overcome the problem,
additional supporting structures or stiffeners like pillars (Esterhuizen et al. 2010),
scaffoldings (Davis & Block 2011), frames (Wang et al. 2013), or ribs (Lam
& Santhikumar 2003), are introduced to improve mechanical performance and
reinforce the structural soundness.

Stiffened structures also called rib-skin structures including stiffened shells
and stiffened plates(plates and shells are interchangeable in this thesis since
the shell structure here refers to large span thin shell structure which will
be modelled as plate elements) can be more frequently found in nature and
engineering structures. A lot of engineering structures are stiffened to raise
strength and rigidity and to reduce material costs. These rib-skin structures
include barrels (Figure 1.1a), train station (Figure 1.1b), boat (Figure 1.1c) and
architecture (Figure 1.1d).

The use of stiffeners introduces mechanical performances and geometrical
properties in several aspects:

• stiffeners don’t occupy too much internal space compared with pillars,
scaffoldings and frames.

• stiffeners attach to the surface entirely so all parts contribute to supporting
the object and while also increasing its stability (Arashmehr et al. 2012,
Kang & Chang 2013). While pillars, scaffoldings and frames may cause
buckling under different loads, stiffeners are connected to the surface in a
face-to-face way instead of a point-to-face way and therefore avoid stress
concentrations at nodes.

• stiffeners can have variable cross-sectional shapes which can meet different
performance goals (Lam & Santhikumar 2003).

Motivated by excellent performance of stiffening structures in supporting
skin, they are introduced to enhance 3D printed objects. However, the design
of supporting structures is a complicated and difficult problem even for experi-
enced artists or architectures. The common problems for creating an optimised
supporting structure include:

• how many ribs to use,
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(a) “Wine barrels at the storage room at
Toneleŕıa Nacional, Chile” by Gerard Prin-
s / CC BY-SA 3.0

(b) “Helensburgh Railway station bus
stop” by Abesty / CC BY-SA 3.0

/ Transformed.

(c) “Thompson canoe with half-ribs and
stringers” by Squirrelwhisperer / CC BY-
SA 4.0

(d) “Raspberry Island Bandshell” by
Bobamnertiopsis / CC0

/ Transformed.

Figure 1.1: Rib-skin structures in architecture.

• where to place, and

• what’s the optimal cross-section?

To solve above questions, various factors need to be taken into consideration
simultaneously like boundary conditions, external loads, material properties,
and manufacturing capabilities, which requires knowledge of engineering and
structural optimization. All these difficulties form barriers for ordinary users
without special knowledge to apply stiffened structures to their own 3D printed
objects.

1.3 Motivation

According to the distribution of stiffeners, rib-skin structures can be divided
into three categories: unidirectional, bidirectional, and arbitrary. Unidirectional
structures are stiffened with stiffeners in one direction (Figure 1.2a). Bidirectional
structures are stiffened with stiffeners in two different directions (Figure 1.2b).
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Arbitrary structures are stiffened in any directions and stiffeners can be straight
or curved (Figure 1.2c).

(a) Interior of Igloo-Shaped Church by
Adam Jones / CC BY-SA 3.0

(b) “Glass Tunnel” by George Hodan /
CC0

(c) “Ceiling In Church” by Vera Kra-
tochvil / CC0

Figure 1.2: Different types of stiffened structures: unidirectional stiffeners (a),
bidirectional stiffeners (b), and arbitrary stiffeners (c)

Inspired by biomorphic structures of distributing more material to support
critical areas like plant leaf (Figure 1.3a), wing (Figure 1.3b) and human body
(Figure 1.3c), the research proposes an automatic way to generate stress guided
stiffeners and optimize shapes.

According to whether the skin is stiffened on one side or on both sides,
stiffened structures can be divided into single- and double-sided ones. The
single-sided (see Figure 1.4a) stiffened structures have all the stiffeners on one
side of the skin surfaces. The double-sided (see Figure 1.4b) stiffened structures
have the stiffeners on both sides of skin surfaces. Due to the requirement for
aesthetics, most 3D printed objects are stiffened on one side. Therefore, only
single sided stiffened structures are investigated in the research.
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(a) “Victoria cruziana Blattunterseite” by
Jojona / CC BY-SA 3.0

(b) “Diplacodes melanopsis male wings”
by John Tann / CC BY 2.0

(c) “3D Female Skeleton Anatomy” by
Bernhard Ungerer / CC BY-SA 3.0

/ Transformed.

Figure 1.3: Rib-skin structures in plant leaf, wing and human body

(a) “Cutaway of the Potez 630” by J.
Godefroy / Public Domain (b)

Figure 1.4: Single- and double-sided stiffened structures (a) single sided (b)
double sided

1.4 Contribution

In engineering, most work focuses on the analysis of rib-shell structures, namely
the mechanical property of a given layout of ribs (Prusty & Satsangi 2001,
Arashmehr et al. 2012). Only a small number of works study the location of ribs
on simple surfaces like plates, cylinders, etc (Lam & Santhikumar 2003, Ding et al.
2013). In computer graphics, there are extensive works on the generation and
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optimization of triangle-based, quad-based or hex-dominant grid-shell structures
(Liu et al. 2011, Cutler & Whiting 2007, Li et al. 2015). They primarily take
geometry into account, and only a few consider the static performance (Pietroni
et al. 2015, Schiftner & Balzer 2010).

Although there are many existing related works, there is no computation-
al method which construct and optimize rib layout simultaneously on shell
structures with arbitrary shape.

Edge stiffener based method

To address the cost minimization problem with structural optimization, a com-
putational pipeline is proposed to design and optimize rib layout on arbitrary
surface. The basic idea is to place ribs along the principal stress lines which
can maximally reinforce the stiffness of shell (Kwok et al. 2016, Tam, Mueller,
Coleman & Fine 2016). The system first generates a dense rib network, followed
by a simplification procedure which removes redundant ribs with little contribu-
tion. Later a rib flow optimization is introduced to re-adjust the distribution of
ribs and a size optimization to achieve certain stiffness requirements with the
least amount of material. Finally, the cross-sectional shape of ribs is optimized
by using T-section to further reduce material usage while maintaining overall
physical properties.

The contributions of this method are summarized as follows.

• a computational pipeline is provided to automatically generate and optimize
rib network to reinforce the stiffness and physical performance of shells.

• a rib flow optimization is proposed which takes each rib as a whole and
allows ribs flowing on surface, to adjust rib layout and achieve better
mechanical performance.

Unidirectional and bidirectional stiffeners based method

In order to maximize the effect of such an introduction, finite element analysis
is used to determine stress distribution in stiffened 3D printed objects, and an
optimization is formulated to obtain optimized stiffened structures.

This research will lead to the following main contributions.

• A new approach to automatically create optimized stiffened structures of
3D printed objects with maximum strength and minimum material costs;

• Introduction of finite element analysis of stiffened structures into unidirec-
tional, bidirectional and arbitrary stiffened 3D printed objects;

• Integration of finite element calculations into optimization design to for-
mulate the optimal distribution of stiffeners as a min-max problem to
minimize material cost and maximize strength of 3D printed objects.
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Stress guided stiffener based method

The spatially equally distributed uni-directional and bi-directional stiffeners are
straightforward, simple and easy to generate according to geometry dimensions.
The disadvantage of the intuitive method is the generated stiffeners may not
best follow the flow of the stress field. Additionally, materials distributed over
low stresses areas are not efficient since stress in these locations lie far below
material strength causing a waste of materials.

To address the above problem, the idea is to spread printing materials
precisely at the places need to be strengthened, i.e. critical areas with high
stresses.

To generate stress guided stiffeners, a stress field of the input geometry is
calculated by finite element analysis. Based on the stress map, seeds are placed
randomly on the surface according to the stress map. The input mesh along
with 3D seeds are then parametrized to 2D space so that a Voronoi diagram
of projected seeds can be computed. The Voronoi diagram is projected back
to 3D space and the result is a representation of stiffeners following stress field.
Since the initialization of seeds is a random process based on probability, the
distribution of seeds might not be the optimal solution. To solve this problem,
Monte-Carlo simulation is introduced and iterated a given number of times to
cover possible situations and avoid local minimum.

The contributions of this method are summarized as follows.

• Use stress field to guide the distribution of seeds over surface;

• Convert a 3D stiffener generation problem to a problem of finding 2D
Voronoi diagram of some seeds;

• Introduce Monte-Carlo simulation to avoid local minimum.

1.5 Outline

Chapter 2 gives a through review of the development of stiffened plate element and
up-to-date techniques / methods used in 3D printing to optimise the supporting
structures for thin shell objects.

Chapter 3 explains in detail the formulation of classical FEM elements
including CST, DKT and Beam elements. All necessary equations to form these
elements are given in this chapter including transform matrix, shape function,
strain-displacement matrix, stress-strain matrix etc. In order to compensate the
rank deficiency of plate element, drilling degree is also introduced. The failure
theory which contains the von Mises stress along with 3D printing material
properties are also explained in detail to introduce the stress criteria used
throughout the dissertation.

Chapter 4 demonstrates the first method proposed in this dissertation to
stiffening shell structures using edge aligned stiffeners. The method is based on
traditional elements and a technique of rib network flowing is presented in order
to distribute materials over critical areas.

8



Chapter 5 presents the second approach proposed in this thesis to solve the
same problem but using a well developed stiffened plate element. Unlike the first
approach, this method first calculates the bounding box of the input geometry
and then automatically slice the bounding box into different slices to generate
stiffeners. After the generation of stiffeners, the cross-section size optimization
is formulated as a constrained minimization problem to obtain the optimised
supporting structure.

Chapter 6 presents the third method which uses the same element in Chapter
5 but takes into account the stress field, so the generation of stiffeners is guided
by the stress. This method first distributes seeds over the surface domain based
on the stress map. Then the geometry along with the seeds is parametrized
and a Voronoi diagram of the seeds is therefore created. The diagram is then
re-projected back to 3D using barycentric coordinates to create the stiffener.
The optimisation of stiffener structure is solved in a similar way as proposed in
Chapter 5. In order to avoid local minima, Monte-Carlo simulation is introduced
and the simulations are repeated a few times to obtain the best optimisation
results.

Chapter 7 contains the conclusions of this research and recommendations for
future work.
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Chapter 2

Related Work

The aim of this research is to strengthen 3D shell objects with minimum printing
material under given external conditions. To carry out this research, a thorough
literature review on stiffened plate theory and 3D printed structural analysis is
studied. The stiffened plate theory section presents a review of the development
of the theory over time and the 3D printed structural analysis section is divided
into FEM based and geometry based methods.

2.1 Stiffened plate structure analysis

Stiffened plate structures are very common in daily engineering, and are indis-
pensable in aerospace and ship-building disciplines. The wings or fuselage of an
aircraft consists of a skin with an array of stiffening stiffeners. The hull of a
ship, its deck and super-structure, a road bridge and the launching pedestal of a
rocket are only a few examples of stiffened plate structures.

2.1.1 Edge aligned stiffeners

Lumped model

In the lumped model method (Figure 2.1(a)), stiffeners placed within a plate
element are shifted to the nodal lines of the plate, i.e. stiffeners are assumed
to be concentrated along the nodes of the plate element as bar elements. This
model introduces certain inconsistencies. The lumped model is theoretically
inaccurate, as the lumped stiffener indicates a coupling along the nodes to which
it is connected whereas a stiffener placed within plate element indicates coupling
of all the nodes of the element. Secondly, the stiffener inside a plate element is
shifted to a new position in the lumped model. It introduces an uncertainty in
the accurate evaluation of stiffener stresses and it might also affect the plate
stresses. This becomes more evident when analysis is carried out using higher
order elements, for which mesh division is coarser and as such greater spacing of
stiffeners is required.
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Orthotropic plate model

Turner (1956) considered the orthotropic plate model (Figure 2.1(b)) in which
the stiffened plate is replaced by a bare plate with orthotropic properties. This
model is used efficiently if the stiffeners are small and placed uniformly at close
intervals. Equal spacing of stiffeners imposes a limitation on the use of this
model and further, the evaluation of the stresses of plate and stiffeners creates
additional difficulties.

Fine model

The fine model (Figure 2.1(c)) with exact representation of stiffeners represents
stiffeners by bar or beam elements. On the occasions where great accuracy is
required the stiffener may itself be modelled using plate or shell elements. In this
model the layout of the stiffeners dictates the layout of the finite element mesh.
This may be wasteful and inefficient leading to excessively fine meshes in areas of
structure not of prime importance. It may also lead to topological difficulties in
mesh generation, where the pattern stiffeners are irregular or complex. Clearly,
in general the optimal mesh layout may not coincide with the actual pattern of
stiffeners.

Figure 2.1: Three modes of representation
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Grillage model

Another approach is to consider the stiffened plate as a grillage. The compar-
atively complicated theories for plated grillages, as put forward by Fraeijs de
Veubeke (1963) have indicated that good results may be obtained for design
work by an unplated grillage calculation, which includes an effective breadth
of plating (varying from 50 to 100% of the stiffener spacing) as the flange of
the beam. This method of analysis gives deflection normally within 5% and
occasionally within 10% and the beam stresses vary generally within 10 to 20%
of the experimental values.

Isoparametric quadratic stiffened plate bending element

To improve over existing lumped stiffener and orthotropic plate models, Mukhopad-
hyay & Satsangi (1984) presented an isoparametric quadratic stiffened plate
bending element. Similarly, Thompson et al. (1988) and Thompson & Bettess
(1991) presented an 8 noded, eccentrically stiffened plate bending element. The
advantage of the element is that the formulation of the element is based in a
general manner without disturbing the position or properties of the stiffeners. As
the derivation has been based on the isoparametric quadratic element, irregular
boundaries and also the transverse shear deformations of the plates and the
stiffeners can be very conveniently taken into account. A comparison between
this approach and the lumped model verifies the extent of inaccuracy inherent
in the latter approach. Many rectangular stiffened plates have been studied
and the results were compared with those either theoretically or experimentally
available.

High-order four-noded stiffened-plate bending element

The isoparametric element has been the most successful among available elements
because of its ability to model a curved boundary successfully. However, the
shear-locking problem inherent in the isoparametric element makes it unsuitable
for analysing thin plates of arbitrary shapes. To overcome this problem, Barik &
Mukhopadhyay (2002) developed a four-noded stiffened-plate bending element
for the analysis of bare as well as stiffened plates. This is derived by combining
the four-noded rectangular plane-stress element having 8 degrees of freedom with
the simplest rectangular plate-bending element having 12 degrees of freedom
(commonly known as the ACM Element, after Adini & Clough (1960), Melosh
(1963)). The new element has all the advantages of the isoparametric element
in modelling an arbitrary plate shape, but without the disadvantage of the
shear-locking problem.

Skew stiffener element

To study the large deflection behaviour of stiffened plates, Srinivasan & Ra-
machandran (1977) presented an analysis for the large deflection of clamped
laterally loaded skew plates with stiffeners parallel to the skew directions. The
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eccentricity of the stiffeners is taken into account when deriving the governing
non-linear differential equations. The solution of the problem is solved by a
numerical procedure involving the use of integral equations of beams and the
Newton-Raphson method. The impact of variation of skew angle and size of
stiffener on the behaviour of the stiffened skew plate has been studied as well.

The stiffened plate is idealized as an equivalent anisotropic bare plate in the
formulation. Drawbacks with the idealization are the requirement such as that
the stiffeners should be identical, light and equally spaced.

Super-element

Koko & Olson (1991b) used a super-element approach for the large deflection
and elastoplastic analysis of orthogonally stiffened plates. The super-elements
are designed to contain all the basic modes of deformation so that only one
plate element per bay and one beam element per span are needed to analyse
a stiffened structure, therefore reducing the storage requirement and solution
times. The authors further extended the proposed approach for the non-linear
modal and transient analysis of stiffened plates (Koko & Olson 1991a, 1992). The
proposed method was limited to the study of isotropic rectangular plates and
shells, stiffened in mutually perpendicular directions. Hence the super-element
approach is restricted by the condition that the stiffeners must pass through the
edges of the super-element.

The limitation of the method is that the formulation is made for rectangular
plates only where the stiffeners must pass through nodal lines. The results have
indicated overestimation of deflections and underestimation of stresses.

Beam-plate model

An optimal beam-plate model should involve, as explained in Barut et al. (2000),
the placement of the beam element within the plate or shell element at an
arbitrary orientation. This requires the definition of the displacement fields at
any point within a slave element (beam element) in terms of the field variables
of a master element (plate or shell element). Since the beam kinematic field is
described by the shell kinematic field, only the master plates or shells are needed
to discretize the entire stiffened shell structure, thus eliminating the modelling
difficulties attributed to the conventional beam-plate and beam-shell models.
This approach is referred to as the arbitrary-orientated stiffener approach and
has been widely applied for more than two decades to the linear analysis of
stiffened plates (Mukhopadhyay & Satsangi 1984, Satsangi & Ray 1998) and
stiffened shells (Samanta & Mukhopadhyay 1998, Prusty 2003).

2.1.2 Arbitrary-oriented stiffener

Rao et al. (1993) presented an efficient and accurate finite element static analysis
of the large deflection response of isotropic stiffened plates using the isopara-
metric quadratic stiffened plate bending element. The stiffened element was a
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development of the linear formulation presented in Mukhopadhyay & Satsangi
(1984). The authors excluded the contribution of the stiffener non-linearities
in the formulation. This was later introduced in Chattopadhyay et al. (1995).
In this later work, the large deflections of laminated composite stiffened plates
were analysed using an eight noded isoparametric element. The element for-
mulation was based on Reissner–Mindlin’s hypothesis with a total Lagrangian
description of motion. In both works the arbitrary orientated stiffener approach
was applied so that the stiffener may lay within the element, with the limitation
that the stiffener ends had to pass through two opposite edges of the element.
The presented formulation was not capable of modelling stiffeners of arbitrary
cross-section.

The arbitrary-orientated stiffener approach was applied to the geometrically
non-linear analysis of stiffened shells in Goswami & Mukhopadhyay (1995).
Geometrically non-linear finite element static, modal and transient analyses
of laminated composite stiffened shells were carried out using a nine noded
Lagrangian curved shear flexible isoparametric stiffened element with five degrees
of freedom per node. Again the formulation accounts for arbitrarily orientated
stiffeners with the limitation that stiffeners have to pass through two opposite
edges of the element. Hence, it is not possible to model stiffeners that are
required to pass through two adjacent edges of the shell element.

Barut et al. (2000) recently presented a stiffened shell element formulation
for the geometric non-linear analysis of composite laminated stiffened shells.
It is a four node, triangular, C0 anisoparametric element with five degrees of
freedom at the corner nodes and two degrees of freedom at the centre node. The
formulation accounts for transverse shear deformation and material anisotropy
in both the shell and stiffener. The laminated stiffeners may be arbitrary in
orientation and cross-section. Although the study discusses the incorporation
of arbitrarily shaped and arbitrarily orientated stiffeners, only one example for
laminated cross-ply stiffened shell with rectangular stiffeners was covered.

In view of this restriction, Samanta & Mukhopadhyay (1999) presented
a formulation for the large deflections of deep isotropic stiffened shells. The
analysis was conducted using a combination of Allman’s plane stress triangle
and the discrete Kirchhoff triangle plate bending element which was previously
used by the authors to solve linear examples of stiffened shells (Samanta &
Mukhopadhyay 1998). The element initially had 24 degrees of freedom which
were later reduced to 18 using appropriated constraint equations. The proposed
formulation was limited to thin, isotropic plates and shells reinforced with
stiffeners of rectangular cross-section only. The element, being faceted, differs
slightly from the actual shell and hence the coupling of stretching and bending
is excluded from the element due to the absence of element curvature.

For the geometrically non-linear analysis of isotropic and laminated arbitrary
orientated stiffened panels, Ojeda et al. (2007) presented an 8 node isoparametric
plate element combined with 3 node beam element, using the concept of equal
displacements at the plate-stiffener interface. The non-linear formulation has been
based on the linear, arbitrarily oriented, stiffener formulation of Prusty (2003) for
the analysis of stiffened plates and shells. Arbitrary orientation, eccentricity, and
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diverse cross-sectional shapes of the stiffener are taken into account to generate
the stiffness matrix of the stiffened element in the geometrically non-linear range.

The modelling of stiffened elements and the mesh generation of 3D curved
surfaces are the major difficulties in the adaptive analysis of stiffened shells.
The conventional finite element models for the stiffened shells have the shell
elements arranged such that the stiffeners are restricted to shell element nodal
lines. This restriction causes difficulty in the automatic mesh generation for the
adaptive analysis which results in either excessive mesh refinement or severe
mesh distortion in order to keep the element mesh layout coincident with the
actual pattern of stiffeners.

To overcome this difficulty, Thompson et al. (1988), Thompson & Bettess
(1991) developed an integrally stiffened Ahmad shell element which combines a
shell element with the stiffener beam elements distributed in the shell element.
Because the effects of the stiffener and the associated generalized strains are
expressed by using the shell element shape functions and their derivatives, the
stiffness contribution of the stiffener is reflected at all the nodes of the shell
element, while the stiffener positions and properties remain undisturbed. This
allows arbitrary orientation of any number of stiffeners within a shell element.

With advantages of the integrally stiffened shell finite elements, Li et al.
(1997) presented an automatic mesh generation of 3D quadrilateral elements.
The method for the generation of a quadrilateral element mesh for stiffened
shells is combined with a sophisticated error estimate and an effective mesh
refinement strategy established at an element level in order to complete the
adaptive analysis. The stiffeners in the presented study may be either discrete
stiffeners, dense stiffeners or a combination of both discrete and dense stiffeners.

The bucking and vibration characteristics of stiffened plates and shells sub-
jected to initial or dead loads are of considerable importance to mechanical and
structural engineers.

Samanta & Mukhopadhyay (2004) developed a general three noded triangular
shell element for the analysis of dynamic characteristics of the stiffened structures.
The basic shell element employed is a combination of Discrete Kirchhoff’s Triangle
(DKT) plate bending element (Gunderson et al. 1969) and Allman’s plane stress
triangle (Allman 1984).

Using the technique where stiffeners are modelled by beam finite elements,
Jirousek (1981) formulated a 4-node isoparametric beam element including
transverse shear and Saint-Venant torsion effects.

Similarly, Srivastava et al. (2003) modelled the plate and the stiffeners as
separate elements where the compatibility between these two types of elements
is maintained.

In order to attain displacement continuity, a rigid fictitious link is applied
to connect one node in the plate element to the beam node sharing the same
section. This approach neglects the out-of-plane warping displacements of the
beam section and, in such cases, the usual formulation overestimates the stiffener
torsional rigidity. To eliminate this problem Baker & Pavlovic (1982) introduced
a torsion correction factor. This is analogous to the shear correction factor
commonly introduced in the shear deformation beam theory.

15



Vörös (2007) proposed an efficient procedure modelling the connection be-
tween the plate/shell and the stiffener, and as part of it the constraint torsion
effect in the stiffener. In structural modelling, the plate and stiffener are treated
as separate finite elements where the displacement compatibility transforma-
tion takes into account the torsion-flexural coupling in the stiffener and the
eccentricity of internal (contact) forces between the beam-plate/shell parts. The
development of the stiffener is based on a general beam theory, which includes the
constraint torsional warping effect and the second order terms of finite rotations.

Nguyen-Thoi et al. (2013) presented a new method to analyse eccentrically
stiffened plates by the cell based smoothed discrete shear gap method (CS-FEM-
DSG3) using triangular elements. In the method, the original plate element
CS-DSG3 is combined with a membrane element and stiffened by a thick beam
element. The eccentricity between the plate and the beam is included in the
formulation of the beam. And the compatibility of deflection and rotations of
stiffeners and plate is assumed at the contact positions.

As a potential aerospace structural concept, hierarchical stiffened plates
under axial compression are characterized by multiple local features. To demon-
strate the higher lightweight potential of hierarchical stiffened shells compared to
traditional ones, Hao et al. (2014) presented a hybrid minimum-weight optimiza-
tion formulation for the hierarchical stiffened shells based on Smeared Stiffener
Method. The hybrid optimization framework of hierarchical stiffened shells
includes imperfection sensitivity analysis, and has the advantage of combining
the efficiency of SSM with the accuracy of FEM. Unlike Hao’s approach, Wang
et al. (2015) takes the skin and minor stiffeners as an unstiffened anisotropic
plate based on a novel numerical implementation of asymptotic homogenization
method. Then the equivalent plate together with major stiffeners are treated as
a hybrid model which can be calculated by FEM.

To guide the practical design method for stiffening thin steel plate shear
walls, Alinia & Shirazi (2009) presented a numerical investigation on one-sided
transverse and longitudinal flat stiffeners located in various arrangements on
shear plates which effectively divide the plate into sub-panels. The results ob-
tained from several non-linear static analyses providing applicable and empirical
relationships for evaluating optimal dimensions of stiffeners.

Unlike the conventional topology optimization methods characterized by
“subtraction mode”, Li et al. (2013) presented a simple and practical multi-
discipline topology optimization method to produce the stiffener layout for
plate/shell structures based on the observation of the natural morphogenesis of
leaf veins. The “addition mode” method simulates the emergence of complex
branching patterns copying the self-optimization of leaf veins which always try
to grow into a configuration with global optimal performances.

2.1.3 Rib-shell structures in engineering

There are lots of researches on rib-stiffened shell structures in engineering. Most
works focus on the analysis of a given rib-shell structure Johannes (1958), Prusty
& Satsangi (2001), Arashmehr et al. (2012), Kang & Chang (2013), namely
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investigating the stiffening effect of ribs on a certain surface under given external
loads. Others consider the optimization of size, shape or location of ribs on
surface to enhance the performance of total structure Liu & Shimoda (2014),
Wang et al. (2017), Ansola et al. (2004). And only a few works study the design
of ribs on given shells. Lam & Santhikumar (2003) introduced an automatic
method to place ribs on surface by optimizing the thickness of shell first, then
put ribs on the surface where the thickness is smaller than a given threshold
value. Another method to design ribs is the so-called adaptive growth technique.
Stiffeners start from the seed points, grow and branch off towards direction
with the maximal effectiveness of the global mechanical performance, which is
dependent on the design sensitivity of the current structure (Ding et al. 2013, Ji
et al. 2014). Szczepanik & Burczyński (2012) proposed to use particle swarm
algorithm to optimize rib locations. Almost all of these works only discussed
some very simple surfaces. For an arbitrary 3D freeform surface, the design of
rib-shell structure is still a tough job.

2.2 3D printing structural analysis

2.2.1 FEM based method

The 3D printing has rapidly expanded in the past couple of years. Now, it is
possible to produce 3D printed objects with high fidelity and precision. In spite
of improved quality, there is no guarantee of the structural soundness of 3D
printed objects.

There are a number of reasons why a 3D model cannot be manufactured or
is likely to fail:

• the dimensions of thin features (walls, cylinder-like features, etc) are too
small for the printing process, resulting in shape fragmentation at the
printing stage;

• the strength of the shape is not high enough to withstand gravity, at one
of the stages of the printing process;

• the printed shape is likely to be damaged during routine handling during
the printing process or shipment;

• the shape breaks during routine use.

The first automatic method devised to detect structural issues of printed
objects was proposed in Telea & Jalba (2011). The method detects thin and
thick parts and then uses a set of basic geometric rules to determine whether a
given thin part can support its attached parts. Although the method detects
some problematic cases, it lacks the structural analysis component necessary to
accurately approximate stress in more complex topological forms. Furthermore,
this work does not address the fundamental goal of correcting the detected
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structural issues. Even in the presence of prefect analysis, it may not be obvious
or easy for the user to know where to start making corrections.

For the problem of determining the easiest (in terms of minimal applied force)
ways to break it or severely deform it with given shape of an object and its
material properties, Zhou et al. (2013) presented a framework (shown in Figure
2.2) approximating the solution that would identify structural problems without
specific assumptions on loads and manual load set-up.

Figure 2.2: Overview of the steps of the algorithm to find worst-case force
distribution by Zhou et al. (2013) (Figure from Zhou et al. (2013))

The problem is formulated as finding the worst-case force distribution satis-
fying the constraints of the model and optimizing this objective function, which
has the form of

max
Ω

max
i=1,2,3

|σi| → max;

Lu = 0 on Ω, C :
(
∇u+∇uT

)
n = pn on ∂Ω∫

∂Ω

pndA = 0,

∫
∂Ω

pn× (x− xc)dA = 0,∫
Ω

udV = 0,

∫
Ω

u× (x− xc)dV = 0,

0 ≤ p ≤ pmax on ∂Ω,

∫
∂Ω

pdA = Ftot

(2.2.1)

where maximal principal stress max
Ω

max
i=1,2,3

|σi| is a commonly used measure of

interest, with σi eigenvalues of the stress tensor.
The solution of the problem in Equation 2.2.1 can be obtained by solving a

sequence of problems in which the objective function max |σi|2 is maximized for
every point and then taking the maximum of all results. Due to non-linearities
and non-convexity, any optimization is likely to get stuck in local minima.

To efficiently approximate the algorithm, Zhou et al. (2013) incorporated
modal analysis which they used to restrict the part of the object where they
need to maximize the stress or another functional. Meanwhile, the problem in
Equation 2.2.1 is replaced with a functional that can be optimized efficiently
and that is minimized by a similar pressure distribution, p, to the original.

The final formulation is as follows:
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∫
wtrσdV → max w.r.t. u and p;

Lu = 0 on Ω, C :
(
∇u+∇uT

)
n = pn on ∂Ω∫

∂Ω

= pndA = 0,

∫
∂Ω

pn× (x− xc)dA = 0,

0 ≤ p ≤ pmax on ∂Ω,

∫
∂Ω

pdA = Ftot

(2.2.2)

Stava et al. (2012) proposed a first step in the direction of physically based
automatic solutions for the detection and correction of major structural problems
in 3D models before they are printed, while attempting to minimally alter their
appearance. They first detect major printability issues of the input model through
printability assessments. Then they correct the model by using three different
approaches: local thickening, strut adding, and hollowing. Local thickening
increases the strength of the object’s thin parts, and it preserves the form and
the surface detail of the object. Struts can be inserted to prevent non-rigid
deformations of the object, and they are automatically placed at locations that
are least visible to the user. Hollowing eliminates material inside the object,
reducing the weight of certain parts to alleviate the stress at other locations.
Local thickening The goal of local thickening is to identify and fix the prob-
lematic thin parts of the model. To determine which part of the mesh should be
considered a thin component, the value of stress needs to be taken into account.
When the stress is high, larger parts of model require thickening than when
the stress is less. In Stava et al. (2012) they used combined information about
stress and about the local thickness and topology that is stored on the computed
interior medial axis.

The target thickness td is determined by

td = tm
3
√
σm/σc (2.2.3)

and the threshold thickness tt that separates the thin part from the thick parts
is defined as tt = cttd, where ct is a predefined constant, tm is the local thickness
associated with the medial point, σm is the maximal stress and σc is the allowed
critical value.
Adding struts The local thickening can be effectively used to solve many of
the structural problems of the printed objects, but in certain cases, the thin
components that causes the printability issues are essential for the object’s visual
style. When they are noticeably thicker, the objects might be visually altered
too much.

For the purpose of reducing material cost in printing a given 3D object, Wang
et al. (2013) presented an automatic solution to minimize material cost of the
object in 3D fabrication. The key idea is to ’hollow’ the object by creating a
light weight frame structure (see Figure 2.6). The frame structures benefit from
two aspects:
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a) b)

c) d)

Figure 2.3: To reduce the stress in the object (a), Stava et al. (2012) identifies
the linear chains of the medial axis with an excessive stress (b). The part of the
component that must be thickened is determined by the value of the stress and
by the distance of individual vertices from the medial points of the component
(c). The thickness of the component together with the stress is used to compute
a thickening correction (d) (Figure from Stava et al. (2012)).

• the mass of object could be significantly reduced through the use of frame
structures while maintaining its strength and stiffness (Gibson & Ashby
1999);

• frame structures provide sufficient flexibility and variability, which make
them possible to meet a variety of constraints in 3D printing.

Two main factors are considered in the paper: frame volume and structure
redundancy which makes the problem a multi-objective programming formulation.
As it is very difficult to construct an appropriate weight to trade off the two
objectives, the problem is formulated as a multi-objective programming (MOP)
problem:

min
r,Vint,Eint

Vol(r,V,E) & ‖Eint‖ (2.2.4)

where the frame volume Vol(r,V, E) has higher priority over the number of
internal struts ‖Eint‖.
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Figure 2.4: The most effective strut to reduce the stress of the object (a). The
geodesic curve connecting the strut end points is marked in green and the stress
is significantly reduced across the model (c). A strut that prefers the visual
impact over efficiency (b) transfers a portion of the stress from the left to the
right; however, it accumulates stress at the strut end points (d). (Figure from
Stava et al. (2012))

The overview of the algorithm is shown in Figure 2.7. Given an input
mesh, an initial frame with the radii of its struts is generated from the size
optimization. Then the algorithm runs alternatively the topology optimization
and geometry optimization until the frame volume does not decrease. The
topology optimization eliminates the redundant struts by approximately solving
an `0 sparsity optimization under the frame volume constraint. The geometry
optimization refines the positions of internal nodes, the radii of struts, and, to
some extent, the topology of a frame structure. Finally, an optimized frame
structure with minimum volume is obtained as the final result.
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Figure 2.5: To create a hollowing correction, a distance field on the object’s
interior using Laplace’s equation bounded by the medial points of the hollowed
component and the vertices of the mesh (a). Marching tetrahedrons creates a
new triangular mesh that represents the hole (b), and the mesh is simplified and
applied to the object (c). (Figure from Stava et al. (2012))

Figure 2.6: Common frame structures used in architecture. (Figure from Wang
et al. (2013))

Honeycomb structures are known to be of minimal material cost while pro-
viding strength in tension. Lu et al. (2014) introduced a hollowing optimization
algorithm based on the concept of honeycomb-cells structure. The honeycomb
like cells which define the inner structure is generated by utilizing an adaptive
centroidal Voronoi diagram. Given a set of sites, the Voronoi diagram defines a
space partitioning into closed-cells of nearest regions with respect to the sites
(Voronoi 1908). As the number of sites increases, Voronoi cells converge to
hexagonal honeycomb-like shapes (Bronstein et al. 2008), producing a structure
of high strength-to-weight ratio for any material (Wilson 1990).

From a given 3D geometry with exterior loads and gravity, the stress map
representing stress at each internal point (Figure 2.8 (a)) is computed and treated
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Figure 2.7: Overview of the algorithm proposed in Wang et al. (2013). Given an
input model (a), an initial frame structure (b) is generated. The algorithm runs
alternatively the topology optimization (c) and the geometry optimization (d).
The struts in (b), (c), and (d) are shown with colour visualizations of their radii.
Note that the frame in (c) is much sparser than that in (b). The frame volumes
of (b) and (d) are 3.79× 104 and 2.875× 104mm3 respectively. The saving ratio
of the frame volume is about 24%. In this example, an external force of 5N is
loaded vertically downside on top of the model. (Figure from Wang et al. (2013))

Figure 2.8: Given a 3D shape of a shark and external forces Lu et al. (2014)
compute an initial stress map (a) and generate a corresponding interior point
distribution (b). The lightest interior can sustain the given stress computed
through an optimization process. Two steps of the optimization are shown
in (c-d) and an optimal strength-to-weight ratio structure is illustrated in (e).
(Figure from Lu et al. (2014))

as a continuous volumetric density map so a locally varying point distribution
reflecting the underlying density map (Figure 2.8(b)) can be generated. The
object’s interior is then partitioned into a set of closed-cells by constructing an
adaptive centroidal Voronoi tessellation. The pore is computed by explicitly
extracting iso-surface inside a harmonic field within each Voronoi cell and carving
out the inner volume (Figure 2.8(c)). Two parameters: the total number of
inner cells α and hollowing amount β inside each cell are used to control the
construction of the pore-based inner structure.

For geometries with non-closed surfaces, adding support structures, however,
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would make the fabricated objects differ from their original designs either visually
or functionally. The added support structures can be partially seen or affect how
the objects are used. To maintain the user-specified structural stability without
additional support structures, Zhao et al. (2016) introduced an approach to
fabricate shell objects with optimized thickness parameters. The input surface
is first segmented into a number of patches (see Figure 2.9), and each patch
is assigned with a single parameter to significantly reduce the optimization
variables so that the total number of design variables in the optimization can be
decreased.

Figure 2.9: A segmentation result on bunny model. (a) is the von Mises stress
under the external force applied on the head and the bottom is fixed. (b) is the
segmentation result. Note that the regions with high stress value (indicated in
red) are usually concave and covered by the transitional regions. (Figure from
Zhao et al. (2016))

The Fuzzy cut method presented by Katz & Tal (2003) is adopted here to
cut the surface at concave edges and extract convex regions. Another technique
sensitivity analysis investigated by Paris et al. (2010), Arnout et al. (2012) is
also introduced to compute the derivative of stress with respect to the thickness
parameter, and convert the original non-linear optimization problem into sequen-
tial linear programming problem. The problem is then solved by an alternating
algorithm (AOP) to optimize patch and transitional regional thickness.

Stress lines

Structural Topology Optimization (STO) has been applied to many structural
design problems, such as the design of materials and mechanisms to obtain the
optimal distribution of material that maximizes the stiffness of the structure
(minimize the compliance). A classic problem of the optimum structural design
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is due to Michell’s theorem (Michell 1904), in which the lightest frame structure
S of a bounded compliance is to be found to transmit a given load to given
supports in a feasible domain Ω (Sokó l 2011).

From Michell’s theorem, to find a virtual deformation within design domain,
the minimum weight structure needs to satisfy two conditions: the displacements
vanish on the supports and the strains distribute along the members of the
structure. That means the minimum weight structure should follow the direction
of principal stresses (tension or compression) so that no shear stress presents on
the structure members (Kwok et al. (2016)).

Principal Stress Lines are pairs of orthogonal curves and are traced in the
design domain along the direction of principle stresses, therefore PSLs provide a
visualization of the natural force flow in a structure, which shows the lines of
desirable material continuity for a given design domain (Adriaenssens et al. 2014).
There are some works on structure optimization inspired by principal stress lines.
Su et al. (2014) presented an algorithm to generate the grids that are concordant
with the force flow. Tam, Mueller, Coleman & Fine (2016) introduced stress line
additive manufacturing which can achieve better structural performance. Tam,
Coleman, Fine & Mueller (2016) proposed to enhance structural performance by
adding stress line to the surfaces. Wu et al. (2017) found that micro-structures of
trabecular bone are aligned along the principle stress directions and proposed an
approach to generate bone-like porous structures. Kwok et al. (2016) developed
a novel structural topology design method to accordingly define the topology
and shape of the structures. After the stress and related optimal region analysis,
the structural pattern of the local region around the load and supports can be
obtained. An example of the classic case of the single-load and two-supports
cantilever is shown in Figure 2.10, where the loading point is a T-point and the
two fixed supports are S+-point and S−-point, respectively. Therefore, a pair
of orthogonal compression and tension members meets at the point of loading,
while a set of tension/compression members ends at the support points (see
Figure 2.11 (a)). After knowing the local structural patterns, the next step is to
trace the principal stress lines. As shown in Figure 2.11 (b), the blue and red
PSLs correspond to the tension and compression members, respectively. Based
on these PSLs, the connectivity of the truss structure can be defined where
the intersection points of the PSLs are the joints, and the PSLs between the
intersection points are the structure members (see Figure 2.11) (c)).

The overview of the STO algorithm is illustrated in Figure 2.12. Based on the
given design domain with the specified loads and supports, the Finite Element
Analysis (FEA) is used to compute the stress field in the design domain, and
identify the candidates of joints. After that, the initial structure S0 is generated
by tracing PSLs to connect the load to the supports. The initial structure is
then refined iteratively to reduce the total strain energy E in the structure. This
topology updating process has two nested loops: the outer loop performs the
topology and shape updates, and the inner loop optimizes the size once the
topology is updated. The stop criteria is when the change of energy is smaller
than a given threshold.
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Figure 2.10: Types of optimal regions in Michell trusses. Blue solid lines and
red broken lines represent tension and compression bars, respectively. (Figure
from Kwok et al. (2016))

Figure 2.11: The idea of PSLs based truss structure. (Figure from Kwok et al.
(2016))

2.2.2 Geometry based method

cross section analysis

Traditionally, structural validity of 3D objects was evaluated using the finite
element method. However, FEM involves time-consuming 3D mesh generation
and the solution of large linear systems. As a result, FEM is generally not
integrated into the real-time visualizations of interactive tools, making it difficult
for users to consider structural robustness during incremental trial-and-error
design.

To achieve fast shape validation, Umetani & Schmidt (2013) proposed cross-
sectional structural analysis. They computed a number of cross sections of an
object and determined the forces on the sections. The well-known Euler-Bernoulli
assumption (Timoshenko & Goodier 1970) is extended to greatly reduce the
complexity of the problem.

Stability analysis

To maintain static equilibrium, the centre of mass of an object must either
project along the gravity direction into the support polygon or at the suspension
point. While positioning the centroid at the boundary of the support polygon
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Figure 2.12: The flowchart of the PSLs based STO algorithm. (Figure from
Kwok et al. (2016))
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Figure 2.13: Overview of the algorithm by Umetani & Schmidt (2013)

is sufficient for feasibility, the stability is further optimized by setting the ideal
centre of mass c∗ to project within a “safe region” of the base as shown in 2.14.
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Figure 2.14: (Left) The support polygon for standing models (orange) is chosen
as the set of the lowest vertices relative to the gravity direction. The horizontal
component of the target centre of mass c∗, for which we optimize, is the projection
of c onto the “safe region” (green) of the support polygon, defined by the toppling
angle γ. We assume that the height of c∗ is equal to that of c when we define
the safe region. (Right) For suspended models the target centre of mass is the
selected suspension point. (Figure from Prévost et al. (2013))

To assist users in producing novel and properly balanced designs, Prévost
et al. (2013) proposed a pipeline by interactively deforming an existing model.
The balance optimization problem is formulated as an energy minimization,
improving stability by modifying the volume of the objects, while preserving its
surface details.

The method takes an unstable triangle meshM representing the outer surface
of the model as input. Then it finds an optimal mass distribution to carve the
interior volume and simultaneously allows deformation of the original surface.
To be more precise, given a target centre of mass c∗, the optimization problem
is formulated as:

arg min
MO,MI

(1− µ)ECoM (MI ,MO) + µEM(MO) (2.2.5)

where EM(MO) is the shape-preserving term which measures the deviation of
the outer shapeMO from the input shapeM, and ECoM measures the projected
distance to the target centre of mass:

ECoM (MI ,MO) =
1

2

∥∥(c(MI ,MO)− c∗)⊥g
∥∥2

(2.2.6)

where the vector g is the gravity direction ( ‖g‖ = 1) and ⊥g denotes the
perpendicular projection onto the support plane along the gravity vector.

To carve mass, a voxel grid V is computed as a discretized representation
of the volume. Each voxel is then assigned a binary fill value αi (1 means full
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and 0 means empty), the whole set of these values is denoted by α. In order
to reduce the unnecessarily large number of DOFs, the paper uses the simple
linear blending skinning (LBS) deformation model with bounded biharmonic
weights (Jacobson et al. 2011) for parametrizing the deformation of the solid
shape, where users place a small number of handles H within the shape’s volume.

The final energy formulation in terms of the voxel variables α and deformation
handles H is:

arg min
α,H

(1− µ)
1

2

∥∥(c(MI(α,H),MO(H))− c∗)⊥g
∥∥2

+ µEM(MO(H)) (2.2.7)

The objective 2.2.7 has a complex form: it mixes discrete (binary) variables
α for the voxel fills with continuous variables H for the transformations of the
handles. The stability optimization therefore is approached with an iterative
process that alternates between inner volume and object geometry optimization.
The first phase assumes a fixed surface mesh MO and aims to find the optimal
mass distribution inside the object. The second phase aims to deform the
object to improve stability while preserving features. This can be seen as block
coordinate descent method (see e.g. Ortega & Rheinboldt (1970)): the algorithm
alternates between fixing H and optimizing 2.2.7 by varying α, and vice versa
aiming to decrease the energy in each step.

Figure 2.15: The stability optimization alternates between two phases: inner
carving and shape deformation. The output is two meshes representing the
deformed outer surface MO and the inner surface (the boundary of interior
voids) MI , respectively. (Figure from Prévost et al. (2013))

Freeform structures

Freeform shapes in architecture is an area of great engineering challenges and
novel design idea. Existing literature has been motivated by the problems in
fabrication of steel/glass and other structures and mostly aims at the realizations
of freeform shapes by meshes with planar faces (Glymph et al. 2004, Liu et al.
2006).

To deal with an important class of fabrication constraints of planar con-
struction material such as glass or plywood, Cutler & Whiting (2007) presented
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an iterative clustering method to remesh complex curved input surface into
planar panels following a cost function. And edges are carefully arranged to form
solid continuous ribs to carry the forces from the roof down to the foundation
(Holgate 1997, Schober & Kuerschner 2005). To overcome the challenge in the
architectural design of freeform shapes, Pottmann et al. (2007) presented a
method using local structure of single- and multi-layer constructions along with
mesh parallelism.

Figure 2.16: Multi-layer constructions based on the geometric support structure
defined by two parallel meshes M, M′ at approximately constant distance. On
the left, the lower layer of the glass roof is suspended from the upper layer
which has a structural function. The right-hand side image shows a rudimentary
construction of a glass facade where the closed space between layers has an
insulating function. (Figure from Pottmann et al. (2007))

Later Pottmann et al. (2008) presented a new concept of semi-discrete surface
representation, which constitutes a link between smooth and discrete surfaces, to
solve the problem of covering freeform surface by single curved panels, and also
introduced another concept of a support structure of a polyhedral cell packing
for quad meshes or hex-dominant meshes in Pottmann et al. (2015).

Grid-shell structures

Grid-shells, such as steel-glass structures, have been used for about 40 years in
architecture (Frei & Rasch 1995). In the field of architectural geometry, most
contributions are concerned with the optimization of geometric properties of
polygonal meshes, mostly quadrilateral mesh to approximate a free-form surface.
Many works address the planarity of faces, such the construction of PQ (planar
quad) meshes (Liu et al. 2011, Yang et al. 2011, Zadravec et al. 2010), CP (cell
packing) meshes (Schiftner et al. 2009, Pottmann et al. 2015), and polygonal
hex-dominant meshes (Tang et al. 2014, Cutler & Whiting 2007, Li et al. 2015).
Some works try to approximate surface by a union of patches, so-called panels
(Pottmann et al. 2008, Eigensatz et al. 2010). Among these only a few works
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take the statics of structures into account when designing the grid structure.
Pirazzi et al. (2006) developed the software GEOS to generate the form and
the design of the optimized grid to the final construction of lightweight space
structures. By arranging ribs on the surface to geodesic lines, bending about the
strong axis of the boards can be avoided. Schiftner & Balzer (2010) presented a
simple but effective statics-aware initialization procedure for the layout of PQ
meshes approximating a given freeform surface.

Driven by the statics of the input surface and aiming at improving the
strength of the stiffened structure, Pietroni et al. (2014, 2015) introduced a
framework for the generation of grid-shell structures that achieve excellent static
performances based on Voronoi diagrams.

Figure 2.17: A FEM static analysis of the input surface is performed to obtain a
stress tensor field, which is decomposed into a double orthogonal line field (a),
an anisotropy scalar field (b) and a density scalar field (c). Then an Anisotropic
Centroidal Voronoi Tessellation is built with its elements sized and aligned
according to the stress tensor field; this tessellation is optimized for symmetry
and regularity of faces. The resulting grid-shell is hex-dominant and it is designed
to fulfil the required static properties. (Figure from Pietroni et al. (2014))

The initial input of the system is a surface and the system aims to produce a
grid-shell that approximates the surface closely. A static analysis of the surface
is performed to obtain an anisotropic, non-Euclidean metric described by the
stress tensor. To transform this anisotropic metric into an Euclidean metric, the
surface is deformed similar to Panozzo et al. (2014) on the deformed surface.
The Centroidal Voronoi Tessellation of the deformed surface is built on sampled
points by Poisson sampling. The diagram is mapped backed to the original
surface to obtain an Anisotropic Centroidal Voronoi Tessellation.

2.3 Summary

This chapter has studied the development of stiffened plate element methods.
Various models have been proposed by researchers to study the behaviours
of stiffened plates including lumped model, orthotropic model, isoparametric
quadratic bending elements, arbitrary stiffening elements, etc. Among all these
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models and elements, the arbitrary stiffening element has the advantage of
keeping the geometry and topology of the object the same, but integrating the
contribution of stiffeners to the attaching plate elements so that the positioning
of the stiffeners can be arbitrary within the plate element. Hence, arbitrary
stiffening element is adopted in this research to analyse the behaviour of the
objects.

In the field of 3D printing structural analysis, a lot of research is focusing on
using geometric based method to study the behaviour of objects under external
loads. Although geometric based method is popular and fast, the disadvantage
of this method is that only surface properties have been taken into consideration.
To improve the accuracy of geometric based method, FEM based method has
also been proposed and researched by researchers. In order to obtain the most
accurate results as possible, the research in this thesis is based on FEM method
and the well developed arbitrary stiffening element is adopted and applied to
optimise the supporting structures for thin-shell geometries.
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Chapter 3

Finite elements of rib-shell
structure

The finite element method is a numerical technique originated as a method of
stress analysis in the design of aircrafts. It started as an extension of matrix
method of structural analysis. But the advance of the technology enables the
method to approximate solutions while maintains all the complexities of the
problems, like varying shape, boundary conditions and loads. Because of its
diversity and flexibility as an analysis tool, FEM is receiving much attention in
a wide range of research fields. Today FEM is applied not in solid mechanics
analysis, but also in the analysis of fluid flow, heat transfer, electric and magnetic
fields and many others. Civil engineers use this method extensively for the
analysis of beams, spaceframes, plates, shells, folded plates, foundations, rock
mechanics problems and seepage analysis of fluid through porous media.

When a flat plate is subjected to both in-plane and transverse or normal
loads as shown in Figure 3.1 any point inside the plate can have displacement
components u, v, and w parallel to x, y, and z axes, respectively. In the small
deflection (or linear) theory of thin plates, the transverse deflection w is uncoupled
from the in-plane deflections u and v. Consequently, the stiffness matrices for the
in-plane and transverse deflections are also uncoupled and they can be calculated
independently. Thus, if a plate is subjected to in-plane loads only, it will undergo
deformation in its plane only. In this case, the plate is said to be under the action
of “membrane” forces. Similarly, if the plate is subjected to transverse loads
(and/or bending moments), any point inside the plate experiences essentially
a lateral displacement w (in-plane displacements u and v are also experienced
because of the rotation of the plate element). In this case. the plate is said to be
under the action of bending forces. The in-plane and bending analysis of plates
is considered in this chapter. If the plate elements are used for the analysis of
three-dimensional structures, such as folded plate structures, both in-plane and
bending actions have to be considered in the development of element properties.

In this chapter, basic finite elements including Constant Strain Triangle,
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Discrete Kirchhoff Triangle and Beam elements are introduced and formulated.
This aspect of coupling the membrane and bending actions of a plate element is
also considered in this chapter.

Figure 3.1: In-plane and transverse loads in a plane

3.1 Constant strain triangle element

The in-plane behaviour of thin shell structures is simulated using triangular
membrane elements. In this section, the simple 2D constant strain triangle
element is discussed and used to determine in-plane deformations and stresses
within thin shell.

3.1.1 Displacement and shape function

The triangular membrane element is considered to lie in the xy plane of a local
xy coordinate system as shown in Figure 3.2. The nodes are arranged as i, j and
m in anti-clockwise. Each node includes 2 degrees of freedom. The displacement
components can be expressed as:

qe =
[
ui vi uj vj um vm

]T
(3.1.1)

By assuming a linear displacement variation inside the element and intro-
ducing a set of area coordinates, the displacement model can be expressed
as:

u = α1 + α2x+ α3y

v = α4 + α5x+ α6y
(3.1.2)
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Figure 3.2: Triangular membrane element

By considering the displacements ui and vi as the local degrees of freedom
of node i, j,m, the constants a1, · · · , a6 can be evaluated. Thus, by using the
conditions

ui = α1 + α2xi + α3yi

vi = α4 + α5xi + α6yi

uj = α1 + α2xj + α3yj

vj = α4 + α5xj + α6yj

um = α1 + α2xm + α3ym

vm = α4 + α5xm + α6ym

The constants α1, · · · , α6 can be expressed in terms of the nodal degrees of
freedom:

α1 =
1

2∆

∣∣∣∣∣∣
ui xi yi
uj xj yj
um xm ym

∣∣∣∣∣∣ α2 =
1

2∆

∣∣∣∣∣∣
1 ui yi
1 uj yj
1 um ym

∣∣∣∣∣∣ α3 =
1

2∆

∣∣∣∣∣∣
1 xi ui
1 xj uj
1 xm um

∣∣∣∣∣∣
(3.1.3)

α4 =
1

2∆

∣∣∣∣∣∣
vi xi yi
vj xj yj
vm xm ym

∣∣∣∣∣∣ α5 =
1

2∆

∣∣∣∣∣∣
1 vi yi
1 vj yj
1 vm ym

∣∣∣∣∣∣ α6 =
1

2∆

∣∣∣∣∣∣
1 xi vi
1 xj vj
1 xm vm

∣∣∣∣∣∣
(3.1.4)
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where

2∆ =

∣∣∣∣∣∣
1 xi yi
1 xj yj
1 xm ym

∣∣∣∣∣∣
Substituting Equation 3.1.3 into Equation 3.1.2:

u =
1

2δ
[(ai + bix+ ciy)ui + (aj + bjx+ cjy)uj + (am + bmx+ cmy)um]

v =
1

2δ
[(ai + bix+ ciy)vi + (aj + bjx+ cjy)vj + (am + bmx+ cmy)vm]

(3.1.5)

where

ai = xjym − xmyj
bi = yj − ym (i, j,m)

ci = xm − xj
(3.1.6)

Let

Ni =
(ai + bix+ ciy)

2∆
(i, j,m) (3.1.7)

This leads to the displacement model:

U =

[
u(x, y)
v(x, y)

]
= Nqe

=

[
Ni(x, y) 0 Nj(x, y) 0 Nm(x, y) 0

0 Ni(x, y) 0 Nj(x, y) 0 Nm(x, y)

]

ui
vi
uj
vj
um
vm


3.1.2 Element strain

By using the relations:

ε =

εxxεyy
εxy

 =

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 (3.1.8)

the components of strain can be expressed in terms of nodal displacements as:

ε = Bqe (3.1.9)

where
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B =
1

2∆

b1 0 b2 0 b3 0
0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3

 (3.1.10)

3.1.3 Element stress

The stress-strain relations are given by:

σ = Dε (3.1.11)

where

σ =

σxxσyy
σxy

 (3.1.12)

and the stress-strain matrix D is defined as:

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (3.1.13)

where E is Young’s modulus, and ν is Poisson’s ratio.

3.1.4 Element stiffness

The stiffness matrix of the element Ke can be found by using:

Ke =

∫∫∫
Ω

BmathsfTDBdΩ =

∫∫
∆

BmathsfTDBhd∆ (3.1.14)

where Ω denotes the volume of the element.
If the plate thickness is taken as a constant h, the evaluation of the integral

in Equation 3.1.14 presents no difficulty since the elements of the matrices B
and D are all constants (not functions of x and y). Hence, Equation 3.1.14 can
be rewritten as:

Ke = BmathsfTDBh

∫∫
∆

d∆ = h∆BmathsfTDB (3.1.15)

3.2 Discrete Kirchhoff triangle element

Apart from in-plane behaviours, thin shell structures also undergo bending
deflections. The bending deformations and stresses can be effectively calculated
with plate bending elements.

A large number of plate bending elements have been developed and reported.
In the classical theory of thin plates discussed in this section, certain simplifying
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approximations are made. One of the important assumptions made is that shear
deformation is negligible. Some elements have been developed by including the
effect of transverse shear deformation also.

According to thin plate theory, the deformation is completely described by
the transverse deflection of the middle surface of the plate (w) only. Thus, if a
displacement model is assumed for w, the continuity of not only w but also its
derivatives has to be maintained between adjacent elements.

3.2.1 Displacement model

Figure 3.3: Degrees of freedom of triangle element

At each node of a triangular plate element shown in Figure 3.3. The transverse
displacement w and rotations about the x and y axes are taken as the degrees
of freedom. Since there are nine displacement degrees of freedom in the element,
the assumed polynomial for w(x, y) must also contain nine constant terms. To
maintain geometric isotropy, the displacement model is taken as:

w =a1L1 + a2L2 + a3L3 + a4L2L3 + a5L3L1 + a6L1L2+

a7(L2L
2
3 − L3L

2
2) + a8(L3L

2
1 − L1L

2
3) + a9(L1L

2
2 − L2L

2
1)

(3.2.1)

The first three terms represent rigid displacements and terms 3 ∼ 6 correspond
to constant strain. The constants (a1, a2, · · · , a9) have to be determined from
the nodal conditions:
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Substituting area coordinates of each node into Equation 3.2.1 will derive:

a1 = w1

a2 = w2

a3 = w3

(3.2.2)

The derivatives of deflection w with respect to area coordinates are determined
by:

∂w

∂L1
=w1 − w3 − a4L2 + a5(L3 − L1) + a6L2+

a7(L2
2 − 2L2L3) + a8(4L1L3 − L2

1 − L2
3) + a9(L2

2 − 2L1L2)

∂w

∂L2
=w2 − w3 + a4(L3 − L2)− a5L1 + a6L1+

a7(L2
3 + L2

2 − 4L2L3) + a8(2L1L3 − L2
1) + a9(2L1L2 − L2

1)

(3.2.3)

Note L3 is not an independent variable, it should be regarded as L3 =
1− L1 − L2. The constants a4, · · · , a9 can be obtained by:

a4 =
w,L23

− w,L22

2

a5 =
w,L13

− w,L11

2

a6 =
w,L12

+ w,L21
− w,L11

− w,L22

2

a7 = w3 − w2 +
w,L23 + w,L22

2

a8 = w1 − w3 −
w,L11

+ w,L13

2

a9 = w2 − w1 +
w,L11

+ w,L12
− w,L21

− w,L22

2

(3.2.4)

In Equation 3.2.4, w,Lij means derivative of deflection w to area coordinate
Li at node j.

Substituting area coordinates of three nodes into equation 3.2.3 will give:

w,L11 = w1 − w3 − a5 − a8

w,L12 = w1 − w3 − a4 + a6 + a7 + a9

w,L13 = w1 − w3 + a5 − a8

w,L21 = w2 − w3 − a5 + a6 − a8 − a9

w,L22 = w2 − w3 − a4 + a7

w,L23 = w2 − w3 + a4 + a7
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Substituting Equations 3.2.2 and 3.2.4 into Equation 3.2.1 will give:

w =
[
N̄ i N̄ j N̄m

]  δ̄iδ̄j
δ̄m

 (3.2.5)

where:

δ̄1 =
[
w1 w,L11 w,L21

]
δ̄2 =

[
w2 w,L12

w,L21

]
δ̄3 =

[
w3 w,L13

w,L23

]
N̄1 =

[
N1 N,L11

N,L21

]
N̄2 =

[
N2 N,L12

N,L21

]
N̄3 =

[
N3 N,L13

N,L23

]
and the components of the shape function are:

N1 = L1 − (L1L
2
2 − L2L

2
1) + (L3L

2
1 − L1L

2
3)

NL11 =
−L1L2 − L3L1 + (L1L

2
2 − L2L

2
1)− (L3L

2
1 − L1L

2
3)

2

NL21
=
L1L2 + (L2L

2
1 − L1L

2
2)

2

N2 = L2 − (L2L
2
3 − L3L

2
2) + (L1L

2
2 − L2L

2
1)

NL12
=
L1L2 + (L1L

2
2 − L2L

2
1)

2

NL22
=
−L2L3 − L1L2 + (L2L

2
3 − L3L

2
2)− (L1L

2
2 − L2L

2
1)

2

N3 = L3 − (L3L
2
1 − L1L

2
3) + (L2L

2
3 − L3L

2
2)

NL13
=
L1L3 + (L1L

2
3 − L3L

2
i )

2

NL23
=
L2L3 + (L2L

2
3 − L3L

2
2)

2

The relationship between Cartesian coordinates and area coordinates is:

∂x

∂L1
= x1 − x3 = c1

∂y

∂L1
= y1 − y3 = −b1

∂x

∂L2
= x2 − x3 = −c1

∂y

∂L2
= x2 − x3 = b1

(3.2.6)
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which leads to

∂w

∂L1
= c2

∂w

∂x
− b2

∂w

∂y
= −b2θx − c2θy

∂w

∂L2
= −c2

∂w

∂x
+ b2

∂w

∂y
= b2θx + c2θy

(3.2.7)

The relation of nodal displacements between Cartesian system and area
system is:

δ̄i =

 wi
w,L11

w,L21

 =

1 0 0
0 −b2 −c2
0 b1 c1

wiθxi
θyi

 = Pδi (3.2.8)

Using Equation 3.2.8, the Equation 3.2.5 can be rewritten as:

w =
[
N̄1 N̄2 N̄3

] P 0 0
0 P 0
0 0 P

δ1

δ2

δ3

 =
[
N1 N2 N3

] δ1

δ2

δ3

 (3.2.9)

where

Ni = N̄ iP =
[
Ni Nxi Nyi

]
Ni = Li + L2

iLj + L2
iLm − LiL2

j − LiL2
m (i = 1, 2, 3)

Nxi = bjL
2
iLm − bmL2

iLj +
(bj − bm)

2
LiLjLm

Nyi = cjL
2
iLm − cmL2

iLj +
cj − cm

2
LiLjLm

3.2.2 Stiffness matrix

The shape function uses L1 and L2 as independent variables. To obtain stiffness
matrix in global space, transformation matrix T is introduced:[

∂/∂x
∂/∂y

]
=

1

2∆

[
b1 b2
c1 c2

] [
∂/∂L1

∂/∂L2

]
(3.2.10)

From the first derivatives given in the above equation, the second derivatives
are obtained as  ∂2/∂x2

∂2/∂y2

2∂2/∂x∂y

 =
1

4∆2
T

 ∂2/∂L2
1

∂2/∂L2
2

∂2/∂L1∂L2

 (3.2.11)

where
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T =

 b21 b22 2b1b2
c21 c22 2c1c2

2b1c1 2b2c2 2(b1c2 + b2c1)

 (3.2.12)

The element strain matrix becomes:

ε = Bδe = z
[
Bi Bj Bm

]  δiδj
δm

 (3.2.13)

where

Bk = −

Nk,xx

Nk,yy

Nk,xy

 = − 1

4∆2
T

Nk,11

Nk,22

Nk,12

 (k = 1, 2, 3) (3.2.14)

The element stiffness matrix in global space is obtained as:

Ke =
h3

12

∫∫
Ω

BTDBdxdy (3.2.15)

3.2.3 Gauss quadrature

To simplify computation, Gauss quadrature is used to obtain the integral involved
in Equation 3.2.17 as discussed below.

Firstly, the integral over the triangular domain Ω is converted into:

∫∫
Ω

f(L1, L2, L3)dxdy = 2∆

∫ 1

0

∫ 1−L1

0

f(L1, L2, L3)dL1dL2 (3.2.16)

The right-hand side term can be calculated using:

∫ 1

0

∫ 1−L1

0

f(L1, L2, L3)dL1dL2 =

n∑
i=1

Wif(Li1, Li2, Li3) (3.2.17)

In Equation 3.2.17, n is the number of Gauss points, Wi is weight, and
(Li1, Li2, Li3), i = 1, 2, 3 are the integration points.

3.2.4 Transformation matrix

Since the shape functions are defined in the plane of the triangle, the z-coordinates
for the nodes in the plane are equal to zero.

Assuming that the triangular element under consideration is an interior
element of a large structure. Let the node numbers 1, 2, and 3 of the element
correspond to the node numbers i, j, and k, respectively, of the global system.
Then place the origin of the local xy system at node 1 (node i), and take the
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Table 3.1: 2D Gauss points and weights

y axis along the edge 12 (edge ij) and the x axis perpendicular to the y axis
directed toward node 3 (node k) as shown in Figure 3.5.

The directions are defined as:
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Figure 3.4: Transformation matrix in 3D

Figure 3.5: Unit vectors describing xyz system.

v1 =

x2 − x1

y2 − y1

z2 − z1


v̄2 =

x3 − x1

y3 − y1

z3 − z1


v3 = v1 × v̄2

v2 = v3 × v1
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Since the unit vectors can be expressed as:

e1 =
v1

|v1|

e2 =
v2

|v2|

e3 =
v3

|v3|

the transformation matrix is:

T =
[
e1 e2 e3

]
(3.2.18)

With the obtained transformation matrix, the nodal coordinates in the local
coordinate system are related to the nodal coordinates in the global coordinate
system by xlyl

zl

 = TT

xgyg
zg

 (3.2.19)

3.2.5 Global element stiffness matrix

The full transformation matrix Tg(12 × 12) can be obtained from T(3 × 3)
through the following equation

Tg =

T 0 0
0 T 0
0 0 T

 (3.2.20)

and the global element stiffness matrix below is obtained by multiplying
the local element stiffness matrix with the full transformation matrix and its
transpose

Ke
g = TgK

eTT
g (3.2.21)

3.3 Drilling degree

It is well known that when all elements connected to a node are coplanar, zero
stiffness appears in the direction normal to the plane rotation (θz). This causes
the assembly stiffness matrix at a global level to be singular (Zienkiewicz & Taylor
1991). The normal approach to deal with the stiffness of the drilling degrees of
freedom is to approximate the stiffness for the drilling degrees of freedom. Bathe
& Ho (1981) developed a flat shell triangular element by combining the CST
element for membrane stiffness and the plate bending element using the Mindlin
theory of plates for the bending stiffness. They introduced a fictitious stiffness
to approximate the drilling degrees of freedom in the development of the element
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stiffness matrix for the triangular flat shell element. Knight (1997) suggested
that a very small value be specified for the stiffness of the drilling degrees of
freedom so that the contribution to the strain energy equation from this term
will be zero. Zienkiewicz & Taylor (1991) developed the addition of a 3 × 3
artificial rotational stiffness matrix Ke

θ for triangular flat shell elements. This
stabilization stiffness matrix which also appears in a more recent formulation
(Cook 1993, Zengjie & Wanji 2003) is given by:

Mz1

Mz2

Mz3

 = αEA

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

θz1θz2
θz3

 = Ke
θ

θz1θz2
θz3

 (3.3.1)

where θzi(i = 1, 2, 3) is the drilling DOF at the node of the flat element, A
is the area of the element, E is the elastic modulus, α is a small constant as
α = t× 10−4, and t is the thickness of the element. Equation 3.3.1 is a penalty
function and provides a fictitious stiffness for θz.

3.4 Beam element

To simulate the behaviour of stiffeners, they are discretized into and treated as
beam elements. In this section, beam elements are discussed and formulated to
calculate the strain and stress tensors and stiffness matrix of stiffeners.

3.4.1 Displacement model

Each node of beam element has 6 degrees of freedom, corresponding to 6 nodal
forces. A beam element with nodes i and j is shown in Figure 3.6. In a right-hand
coordinate system, x axis is taken as element axis then y and z axes become
main moment axes of cross-section.

The nodal displacements are:

δi =
[
ui vi wi θxi θyi θzi

]T
δj =

[
uj vj wj θxj θyj θzj

]T (3.4.1)

or in a more simple form:

δe =
[
δTi δTj

]T
(3.4.2)

By assuming a linear change for axial displacement u and angular rotation
θx, and a cubic variation for deflection v and w, these terms can be represented
as:
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Figure 3.6: Beam element

u = a0 + a1x

v = b0 + b1x+ b2x
2 + b3x

3

w = c0 + c1x+ c2x
2 + c3x

3

θx = e0 + e1x

(3.4.3)

The axial nodal displacements, deflections and rotations can also be written
in a vector form:

δu =
[
ui uj

]T
δv =

[
vi θzj vj θzj

]T
δw =

[
wi θyj wj θwj

]T
δθ =

[
θxi θxj

]T
(3.4.4)

Equation 3.4.3 becomes:

u = Nuδu

θx = N θδθ

v = Nvδv

w = Nwδw

(3.4.5)

Any displacement inside the element is expressed as:
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u =


u
v
w
θx

 =


Hu

Hv

Hw

Hθ

A−1δe = Nδe (3.4.6)

where:

Hu(x) =
[
1 0 0 0 0 0 x 0 0 0 0 0

]
(3.4.7)

Hv(x) =
[
0 1 0 0 0 x 0 x2 0 0 0 x3

]
(3.4.8)

Hw(x) =
[
0 0 1 0 x 0 0 0 x2 0 x3 0

]
(3.4.9)

Hθ(x) =
[
0 0 0 1 0 0 0 0 0 x 0 0

]
(3.4.10)

and

A =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 l 0 0 0 0 0
0 1 0 0 0 l 0 l2 0 0 0 l3

0 0 1 0 l 0 0 0 l2 0 l3 0
0 0 0 1 0 0 0 0 0 l 0 0
0 0 0 0 −1 0 0 0 −2l 0 −3l2 0
0 0 0 0 0 1 0 2l 0 0 0 3l2



(3.4.11)

3.4.2 Strain and stress

When a beam undergoes tensile, compressional, bending and torsional deforma-
tion, its axial strain is composed of three parts: tensile or compressional strain
ε0, bending strain εby and εbz and shear strain where the shear strain caused by
torsion is γ. Hence,

ε =


ε0
εby
εbz
γ

 =


u′

−yv′′
−zw′′
rθ′x

 =


H′u
−yH′′v
−zH′′w
rH′θ

A−1δe = Bδe (3.4.12)

where y and z are the coordinate values of the point in the cross-section, and r
is the distance to x axis.

By using Hooke’s law, the stress can be expressed as:
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σ =


σ0

σby
σbz
τ

 =


EH′u
−EyH′′v
−EzH′′w
GrH′θ

A−1δe = DBδe (3.4.13)

where

D = diag(E,E,E,G) (3.4.14)

3.4.3 Stiffness matrix

The stiffness matrix now can be integrated expressively:

Ke =

∫∫
dA

∫ l

0

BTDBdx

=



EA
l 0 0 0 0 0 −EAl 0 0 0 0 0

0 12EIz
l3

0 0 0 6EIz
l2

0 − 12EIz
l3

0 0 0 6EIz
l2

0 0
12EIy

l3
0 − 6EIy

l2
0 0 0 − 12EIy

l3
0 − 6EIy

l2
0

0 0 0
GJk
l 0 0 0 0 0 −GJkl 0 0

0 0 − 6EIy

l2
0

4EIy
l 0 0 0

6EIy

l2
0

2EIy
l 0

0 6EIz
l2

0 0 0 4EIz
l 0 − 6EIz

l2
0 0 0 2EIz

l

−EAl 0 0 0 0 0 EA
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(3.4.15)

In Equation 3.4.15, Iy =
∫∫

z2dA and Iz =
∫∫

y2dA are main moments of
beam cross-section with respect to y and z axes respectively, Jk is the second
area moments about x axis.

3.5 Assembly of Plate and Beam elements

To simulate stiffened structures, stiffness contributions from both plate elements
and beam elements are assembled at corresponding nodes in a coupled way to
consider the influence of shell and rib network simultaneously.

Figure 3.7 demonstrates how a plate element is reinforced by a beam element.
The three nodes of a triangular plate element are denoted as i, j and k. The
two nodes of a beam element are connecting to the plate element at nodes j
and k respectively. Once elemental stiffness matrices of plate Ke

p and beam Ke
r

are obtained, they are assembled to the global stiffness matrix. The assembling
process is taking block entries from each element and accumulate to corresponding
place in the global stiffness matrix. For example, the block entries Ke

p(ij) that

49



lie in 1st row and 2nd column of plate elemental stiffness Ke
p are assembled to

the block of ith row and jth column of the global stiffness matrix Kg.

𝑖 𝑗

𝑘

𝑥

𝑦

𝑧 𝑥′

𝑦′

𝑧′

𝐊𝑝
𝑒 =

𝐊𝑝(𝑖𝑖)
𝑒 𝐊𝑝(𝑖𝑗)

𝑒 𝐊𝑝(𝑖𝑘)
𝑒

𝐊𝑝(𝑗𝑖)
𝑒 𝐊𝑝(𝑗𝑗)

𝑒 𝐊𝑝(𝑗𝑘)
𝑒

𝐊𝑝(𝑘𝑖)
𝑒 𝐊𝑝(𝑘𝑗)

𝑒 𝐊𝑝(𝑘𝑘)
𝑒 𝐊𝑟

𝑒 =
𝐊𝑟(𝑗𝑗)
𝑒 𝐊𝑟(𝑗𝑘)

𝑒

𝐊𝑟(𝑘𝑗)
𝑒 𝐊𝑟(𝑘𝑘)

𝑒

𝐊
𝑔
=

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ 𝐊𝑝(𝑖𝑖)

𝑒 ⋯ 𝐊𝑝(𝑖𝑗)
𝑒 ⋯ 𝐊𝑝(𝑖𝑘)

𝑒 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ 𝐊𝑝(𝑗𝑖)

𝑒 ⋯ 𝐊𝑝(𝑗𝑗)
𝑒 + 𝐊𝑟(𝑗𝑗)

𝑒 ⋯ 𝐊𝑝(𝑗𝑘)
𝑒 + 𝐊𝑟(𝑗𝑘)

𝑒 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ 𝐊𝑝(𝑘𝑖)

𝑒 ⋯ 𝐊𝑝(𝑘𝑗)
𝑒 + 𝐊𝑟(𝑘𝑗)

𝑒 ⋯ 𝐊𝑝(𝑘𝑘)
𝑒 + 𝐊𝑟(𝑘𝑘)

𝑒 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Figure 3.7: Stiffness matrix assembling for a coupled structure.

The assembled stiffness matrix is written as:

Kg = Ke
p + Ke

r (3.5.1)
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3.6 Stress

In materials science, the strength of a material is its ability to withstand an
applied load without failure or plastic deformation. The field of strength of
materials deals with forces and deformations that result from external forces
acting on a material. A load applied to a mechanical member will induce internal
forces within the member called stresses which are defined as the force per unit
area. The stresses acting on the material cause deformation of the material in
various manners. Deformation of the material is called strain defined as extension
per unit length. The applied loads may be axial (tensile or compressive), or
rotational (torsion or shear). The stresses and strains that develop within a
mechanical member must be calculated in order to assess the load capacity
of that member. This requires a complete description of the geometry of the
member, its constraints, the loads applied to the member and the properties of
the material of which the member is composed. With a complete description of
the loading and the geometry of the member, the state of stress and the state of
strain at any point within the member can be calculated. Once the state of stress
and strain within the member is known, the strength (load carrying capacity) of
that member, its deformations (any changes in the shape or size of an object due
to external actions ), and its stability (the ability of the structure to support a
specified load without undergoing unacceptable (or sudden) deformations ) can
be calculated. The calculated stresses may then be compared to some measure of
the strength of the member such as its material yield or ultimate strength. The
calculated deflection of the member may be compared to a deflection criteria that
is based on the member’s use. The calculated buckling load of the member may
be compared to the applied load. The calculated stiffness and mass distribution
of the member may be used to calculate the member’s dynamic response.

Figure 3.8: Basic static response of a specimen under tension

Material strength is the ability to withstand an applied load without failure
or plastic deformation. Yield strength refers to the point on the engineering
stress–strain curve (yield stress) beyond which the material experiences deforma-
tions that will not be completely reversed upon removal of the loading and as a
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result the member will have a permanent deflection. The ultimate strength refers
to the maximum stress that a material can withstand while being stretched or
pulled before breaking.

3.6.1 Strength terms

Uniaxial stress is determined by

σ =
F

A
(3.6.1)

where F is the force[N ] acting on an area A[m2]. The area can be the unde-
formed area or the deformed area, depending on whether engineering stress or
true stress is of interest.

Mechanical properties of materials include the yield strength, tensile strength,
fatigue strength, crack resistance, and other characteristics.

Figure 3.9: A material being loaded in a) tension, b) compression, c) shear

• Yield strength is the lowest stress that produces a permanent deformation
in a material. In some materials, like aluminium alloys, the point of yielding
is difficult to identify, thus it is usually defined as the stress required to
cause 0.2 % plastic strain. This is called a 0.2 % proof stress.
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• Compressive strength is a limit state of compressive stress that leads to
failure in a material in the manner of ductile failure (infinite theoretical
yield) or brittle failure (rupture as the result of crack propagation, or
sliding along a weak plane - see shear strength).

• Tensile strength or ultimate tensile strength is a limit state of tensile stress
that leads to tensile failure in the manner of ductile failure (yield as the
first stage of that failure, some hardening in the second stage and breakage
after a possible “neck” formation) or brittle failure (sudden breaking in
two or more pieces at a low stress state).

• Fatigue strength is a measure of the strength of a material or a component
under cyclic loading, and is usually more difficult to assess than the static
strength measures. Fatigue strength is quoted as stress amplitude or stress
range ( ∆σ = σmax − σmin), usually at zero mean stress, along with the
number of cycles to failure under that condition of stress.

• Impact strength, is the capability of the material to withstand a suddenly
applied load and is expressed in terms of energy. Often measured with the
Izod impact strength test or Charpy impact test, both of which measure the
impact energy required to fracture a sample. Volume, modulus of elasticity,
distribution of forces, and yield strength affect the impact strength of a
material. In order for a material or object to have a high impact strength
the stresses must be distributed evenly throughout the object. It also must
have a large volume with a low modulus of elasticity and a high material
yield strength.

3.6.2 Hooke’s Law

Hooke’s law is a principle of physics that states that the force F needed to extend
or compress a spring by some distance X is proportional to that distance. That
is: F = kX, where k is a constant factor characteristic of the spring: its stiffness,
and X is small compared to the total possible deformation of the spring.

Hooke’s law is only a first-order linear approximation to the real response of
springs and other elastic bodies subjected to applied forces. It must eventually
fail once the forces exceed some limit, since no material can be compressed
beyond a certain minimum size, or stretched beyond a maximum size, without
some permanent deformation or change of state. Many materials will noticeably
deviate from Hooke’s law well before those elastic limits are reached.

On the other hand, Hooke’s law is an accurate approximation for most solid
bodies, as long as the forces and deformations are small enough. For this reason,
Hooke’s law is extensively used in all branches of science and engineering, and
is the foundation of many disciplines such as seismology, molecular mechanics
and acoustics. It is also the fundamental principle behind the spring scale, the
manometer, and the balance wheel of the mechanical clock.

The modern theory of elasticity generalizes Hooke’s law to say that the strain
(deformation) of an elastic object or material is proportional to the stress applied
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Figure 3.10: Hooke’s law of spring

to it. However, since general stresses and strains may have multiple independent
components, the “proportionality factor” may no longer be just a single real
number, but rather a linear map (a tensor) that can be represented by a matrix
of real numbers.

In this general form, Hooke’s law makes it possible to deduce the relation
between strain and stress for complex objects in terms of intrinsic properties of
the material it is made of. For example, one can deduce that a homogeneous
rod with uniform cross section will behave like a simple spring when stretched,
with a stiffness k directly proportional to its cross-section area and inversely
proportional to its length.

3.6.3 Stiffness Tensor for continuous media

The stresses and strains of the material inside a continuous elastic material (such
as a block of rubber, the wall of a boiler, or a steel bar) are connected by a linear
relationship that is mathematically similar to Hooke’s spring law, and is often
referred to by that name.

However, the strain state in a solid medium around some point cannot be
described by a single vector. The same parcel of material, no matter how small,
can be compressed, stretched, and sheared at the same time, along different
directions. Likewise, the stresses in that parcel can be at once pushing, pulling
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and shearing.
In order to capture this complexity, the relevant state of the medium around

a point must be represented by two second-order tensors, the strain tensor ε (in
lieu of the displacement X) and the stress tensor σ (replacing the restoring force
F ). The equation analogous to Hooke’s spring law for continuous media is then

σ = −Cε (3.6.2)

The symmetry of the Cauchy stress tensor (σij = σji) and the generalized
Hooke’s laws:

σij = cijklεkl (3.6.3)

imply that cijkl = cjikl. Similarly, the symmetry of the infinitesimal strain tensor
implies that cijkl = cijlk. These symmetries are called the minor symmetries of
the stiffness tensor (C). This reduces the number of elastic constants from 81 to
36.

Since the displacement gradient and the Cauchy stress are work conjugate,
the stress-strain relation can be deprived from a strain energy density function
(U), thus

σij =
∂U

∂εij
=⇒ cijkl =

∂2U

∂εij∂εkl
(3.6.4)

The arbitrariness of the order of differentiation implies that cijkl = cklij .
These are called the major symmetries of the stiffness tensor. This reduces the
number of elastic constants to 21 from 36. The major and minor symmetries
indicate that the stiffness tensor has only 21 independent components.
where C is a forth-order tensor (that is, a linear map between second-order
tensors) called the stiffness tensor or elasticity tensor. The equation may also be
written

ε = −Sσ (3.6.5)

where the tensor S, called the compliance tensor, represents the inverse of the
linear map.

In a Cartesian coordinate system, the stress and strain tensors can be
represented by 3× 3 matrices

ε =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (3.6.6)

Being a linear mapping between the nine numbers σij and the nine numbers
εkl, the stiffness tensor C is represented by a matrix of 3× 3× 3× 3 = 81 real
numbers Cijkl. Hooke’s law then says that

σij = −
3∑
k=1

3∑
l=1

Cijklεkl (3.6.7)
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where i and j are 1, 2, or 3.
All three tensors generally vary from point to point inside the medium, and

may vary with time as well. The strain tensor ε merely specifies the displacement
of the medium particles in the neighbourhood of the point, while the stress tensor
σ specifies the forces that neighbouring parcels of the medium are exerting on
each other. Therefore, they are independent of the composition and physical
state of the material. The stiffness tensor C, on the other hand, is a property of
the material, and often depends on physical state variables such as temperature,
pressure, and microstructure.

3.6.4 Principal stresses

Consider an infinitesimal element with its edges parallel to x, y and z axes, if only
the x and y faces are subjected to stresses (σz = 0 and τzx = τxz = τzy = τyz = 0),
it is called plane stress shown in Figure 3.11.

𝜏𝑥𝑦
𝜎𝑥

𝜎𝑥

𝜎𝑦

𝜎𝑦

𝜏𝑥𝑦

𝜏𝑦𝑥

𝜏𝑦𝑥

𝑥

y

Figure 3.11: Plane stress element in 2D

Here, equal normal stresses act on opposite faces, shear stress τ has two
subscripts, the first denotes the face on which the stress acts, and the second
gives the direction of that face. τxy means acting on x face directed to y axis
and τyx means acting on y face directed to x axis.

For design purpose, the largest positive and negative stresses are usually
needed, the maximum and minimum normal stress are called the principal
stresses.
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Figure 3.12: Principal plane stress

Consider the stress transformation equation

σx1 =
σx + σy

2
+
σx − σy

2
cos 2θ + τxy sin 2θ (3.6.8)

to find the maximum normal stress, set dσx1/dθ = 0:

dσx1

dθ
= − (σx − σy) sin 2θ + 2τxy cos 2θ = 0 (3.6.9)

which leads to:

tan 2θp =
2τxy

σx − σy
(3.6.10)

where θp (Figure 3.12) defines the orientation of the principal plane.
Equation (3.6.10) also leads to:

cos 2θp =
(σx − σy)

2R

sin 2θp =
τxy

R

(3.6.11)

where

R =

√(
σx − σy

2

)2

+ τ2
xy (3.6.12)
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Substituting cos 2θp and sin 2θp into the Equation (3.6.8), the larger principal
stress is obtained as

σ1 = (σx1)max =
σx + σy

2
+

√(
σx − σy

2

)2

+ τ2
xy (3.6.13)

and the smaller principal stress denoted by σ2 is obtained as

σ2 = σx + σy − σ1 =
σx + σy

2
−

√(
σx − σy

2

)2

+ τ2
xy (3.6.14)

3.6.5 Von Mises stress

The von Mises stress is widely used to predict yielding of materials under any
loading condition(Logan 2011). A material is said to start yielding when its von
Mises stress reaches a critical value known as the yield strength. The von Mises
stress is a scalar which can be deduced from the Cauchy stress tensor (Logan
2011)

σ2
v =

(σ11 − σ22)
2

+ (σ22 − σ33)
2

+ (σ33 − σ11)
2

+ 6
(
σ2

23 + σ2
31 + σ2

12

)
2

(3.6.15)
where the components σ11, σ22, σ33 are orthogonal normal stresses, and

τ12, τ23, τ13 the orthogonal shear stresses.

3.7 Failure theories

There are four failure theories: maximum shear stress theory, maximum normal
stress theory, maximum strain energy theory, and maximum distortion energy
theory. Out of these four theories of failure, the maximum normal stress theory
is only applicable for brittle materials, and the remaining three theories are
applicable for ductile materials. Of the latter three, the distortion energy theory
provides most accurate results in majority of the stress conditions. The strain
energy theory needs the value of Poisson’s ratio of the part material, which is
often not readily available. The maximum shear stress theory is conservative.
For simple unidirectional normal stresses all theories are equivalent, which means
all theories will give the same result.

• Maximum Shear stress Theory: This theory postulates that failure will
occur if the magnitude of the maximum shear stress in the part exceeds
the shear strength of the material determined from uniaxial testing.

• Maximum normal stress theory: This theory postulates that failure will
occur if the maximum normal stress in the part exceeds the ultimate tensile
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stress of the material as determined from uniaxial testing. This theory
deals with brittle materials only. The maximum tensile stress should be
less than or equal to ultimate tensile stress divided by factor of safety.
The magnitude of the maximum compressive stress should be less than
ultimate compressive stress divided by factor of safety.

• Maximum strain energy theory: This theory postulates that failure will
occur when the strain energy per unit volume due to the applied stresses
in a part equals the strain energy per unit volume at the yield point in
uniaxial testing.

• Maximum distortion energy theory: This theory is also known as shear
energy theory or von Mises-Hencky theory. This theory postulates that
failure will occur when the distortion energy per unit volume due to the
applied stresses in a part equals the distortion energy per unit volume at
the yield point in uniaxial testing. The total elastic energy due to strain
can be divided into two parts: one part causes change in volume, and the
other part causes change in shape. Distortion energy is the amount of
energy that is needed to change the shape.

For ductile materials there are two commonly used strength theories - the
Maximum Shear Stress (MSS) or Tresca theory and the von Mises or Distortion
Energy theory.

3.7.1 Maximum Shear Stress:

This states that failure occurs when the maximum shear stress in the component
being designed equals the maximum shear stress in a uniaxial tensile test at the
yield stress. The maximum shear stress is determined by

τmax =
Sy
2n

max(|σ1–σ2|, |σ2–σ3|, |σ3–σ1|)
2n

(3.7.1)

where the yield strength Sy is reduced by the factor of safety n. Note for the
plane stress state, σ3 is zero.

3.7.2 Von Mises or Distortion Energy Theory

Distortion energy

For ductile metals and alloys materials, according to the Maximum Shear Stress
failure theory (aka “Tresca”) the only factor that affects dislocation slip is the
maximum shear stress in the material. This is really a 1-dimensional explanation;
a single parameter (maximum shear stress) is the only thing that causes yielding.
Therefore, the Tresca theory does work well in a 3D world. Nonetheless, a slight
improvement upon Tresca’s theory has been made. That is, yielding (dislocation
slip) is somewhat better explained (i.e. it is better supported by empirical data)
by considering strain energy.
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A material will deform if a load is applied. The units of energy are the
products of forces and distances, so when a load is applied and the material
deforms, energy is put into the material. The strain energy is the energy
introduced into the material due to the loading. The strain energy density is
normalized strain energy by unit volume. The area under a stress-strain curve is
the energy per unit volume.

The strain energy is composed of two distinct forms – volume changes and
distortion (angular change). Normal strains cause a change in volume, shear
strains cause distortions. The total stain energy is the sum of distortion energy
and volume energy:

Utotal = Udistortion + Uvolume (3.7.2)

where Utotal = total strain energy, Udistortion = strain energy due to distortion,
Uvolume = strain energy due to volume change (aka hydrostatic strain energy).

The distortion energy are defined as:

Udistortion = Utotal − Uvolume (3.7.3)

where Utotal is total strain energy and Uvolume is volume energy.
For general (3D) loading conditions, the total strain energy is given in terms

of principal stresses and strains:

Utotal =
1

2
(ε1σ1 + ε2σ2 + ε3σ3) (3.7.4)

Using Hooke’s law ε1 = [σ1–ν(σ2 + σ3)]/E, ε2 = [σ2–ν(σ3 + σ1)]/E, ε3 =
[σ3–ν(σ1 + σ2)]/E. The total strain energy equation 3.7.4 can be written in
terms of stress only:

Utotal =
1

2
E
(
σ2

1 + σ2
2 + σ2

3 − 2ν (σ2σ3 + σ1σ3 + σ1σ2)
)

(3.7.5)

Remember that hydrostatic stress causes volume change and that it is invari-
ant (hydrostatic stress is a scalar – it is not directionally dependent – therefore
it does not vary depending upon axis orientation). The hydrostatic stress can
be determined from the average magnitudes of the three principal stresses:

σhydrostatic = σave = (σ1 + σ2 + σ3) /3 (3.7.6)

σhydrostatic is the stress condition that causes volume change. It is invariant.
Let’s consider a loading condition that was purely hydrostatic with magnitude of
hydrostatic as calculated in equation 3.7.6. If the only stress in this material is
σhydrostatic then for this special loading condition the 3 principal stresses would
be equal to σhydrostatic(σ1 = σ2 = σ3 = σhydrostatic). Equation 3.7.5 would
become:

U =
1− 2ν

6E

(
σ2

hyd + σ2
hyd + σ2

hyd + 2
(
σ2

hydσ
2
hyd + σ2

hydσ
2
hyd + σ2

hydσ
2
hyd

))
(3.7.7)
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For assumed purely hydrostatic loading condition in equation 3.7.7, there
is no distortion energy (Udistortion = 0) so Utotal = Uvolume. Regardless of the
existence of distortion energy or not, equation 3.7.7 – being based on the invariant
hydrostatic stress – is the energy due to volume change, Uvolume:

U =
3(−2ν)

2E
σ2

hyd (3.7.8)

Substituting equation 3.7.6 into 3.7.8 gives:

Uvolume =
1− 2ν

6E

(
σ2

1 + σ2
2 + σ2

3 + 2σ2σ3 + 2σ1σ3 + 2σ1σ2

)
(3.7.9)

To determine the strain energy due to distortion only (not volume change)
Equation 3.7.9 is subtracted from Equation 3.7.5:

Udistortion = Utotal − Uvolume

=
1

2E

(
σ2

1 + σ2
2 + σ2

3 − 2ν (σ2σ3 + σ1σ3 + σ1σ2)
)

− 1− 2ν

6E

(
σ2

1 + σ2
2 + σ2

3 + 2σ2σ3 + 2σ1σ3 + 2σ1σ2

)
=

1 + ν

3E

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2

(3.7.10)

The Maximum Shear Stress theory works well in predicting yielding of ductile
materials since shear stress is the force that causes dislocation slip (aka plastic
deformation). The shear stress caused by shear strains is: τmax = (σ1−σ3)/2. It
is the difference between principal stress divided by 2. Equation 3.7.10 combines
the maximum shear stress in each of the 3 principal planes into a single equation.

The Distortion Energy failure theory is a bit more mathematically sophisti-
cated than the Maximum Shear Stress failure theory, but is really very similar.
Rather than considering only the maximum shear stress at a point, it combines
the maximum shear stress at a point in the 3 principal planes. These two theories
give very similar results, but Distortion Energy does match empirical data better.

Distortion energy failure theory

For uniaxial tensile loading (as is used to create a stress-strain curve), σ2 = σ3 = 0,
and at the onset of yielding, F/A = σ1 = Sys (at onset of yielding).

Therefore, for uniaxial loading substituting yield strength Sys for σ1 and
σ2 = σ3 = 0 into equation 3.7.10

Udistortion =
1 + ν

3E
S2

ys (3.7.11)

The Distortion Energy Theory states that when the distortion energy in a
material equals or exceeds the distortion energy present at the onset of yielding
in uniaxial loading tensile test for that material, the part will experience plastic
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Yield point 

Figure 3.13: Yield point in uniaxial test

deformation (i.e. it will yield). In order to ensure plastic deformations do not
occur, the following equation must be satisfied.

Udistortion,part ≤ Udistortion,uniaxialtest (3.7.12)

Letting the distortion energy in general 3D stress condition (Equation 3.7.10)
equal to or less than the distortion energy in simple uniaxial loading (Equation
3.7.11) by substituting Equations 3.7.10 and 3.7.11 into Equation 3.7.12:

1 + ν

3E

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
≤ 1 + ν

3E
S2

ys

σeff =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
≤ Sys

(3.7.13)

3.8 Common 3D printing material properties

There are an abundance of 3D printer filament materials available in the market,
like the thermoplastics that comprise the common 3D printer filament types
such as ABS and PLA and many other choices like nylon, polycarbonate, carbon
fibre, polypropylene. The material properties of some of the common filaments
are briefly introduced in the following:

1. Acrylonitrile butadiene styrene (ABS) is tough, non-toxic. It melts and
becomes pliable at 220 degree Celsius. It’s also water- and chemical-
resistant. When heated, ABS will produce a slightly unpleasant smell, and
the vapour can contain some nasty chemicals. ABS can be broken down
by UV radiation, it isn’t suitable for long-term outdoor use, as it loses its
colour and becomes brittle. Because ABS is able to withstand high stress
and temperature, items made of ABS can be frequently handed, dropped
or heated. Examples include phone cases, high-wear toys, tool handles,
automotive trim components, and electrical enclosures.
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2. Polylactic acid (PLA) is a biodegradable thermoplastic, made from annually
renewable resources like cornstarch or sugar-cane. PLA is a tough, resilient
material with a matte, opaque quality and melts at between 180 and 200
degrees Celsius. It’s generally considered an odourless filament though
there is a slight smell when it is heated, but no toxic odours or vapour.
PLA is generally the preferred option for low-cost 3D printers because
it will stick well to a print base covered in white glue or blue painter’s
tape, which means that a heated print bed is not needed. PLA begins to
deform at temperatures above 60 degrees Celsius, and it is not water or
chemical resistant. PLA is usually for prints include models, low-wear toys,
prototype parts and containers.

3. Nylon (a.k.a. Polyamide) is a tough material that has a very high tensile
strength, therefore it can hold a lot of weight without breaking. It melts
at 250 degrees Celsius which is hotter than many extruders can manage.
And it is harder to get it to stick to the print bed than with ABS or PLA.
Nylon generally requires both a heated print bed and white glue to stick
while printing. Nylon is hygroscopic, meaning it absorbs moisture from
the air causing a negative effect on printing. The general use of Nylon is to
create tools, functional prototypes or mechanical parts like hinges, buckles
or gears.

4. PETG is a Glycol Modified version of Polyethylene Terephthalate (PET),
which is clearer, less brittle and easier to use than PET. It is a semi-rigid
material with good impact resistance, but it has a slightly softer surface
which makes it prone to scratch. It is sticky during printing, making it a
poor choice for support structures but good for layer adhesion. Due to its
flexibility, strength, temperature and impact resistance, PTEG is an ideal
filament for objects which might experience sustained or sudden stress,
like mechanical parts, printer parts and protective components.

5. Polyvinyl alcohol (PVA) is soluble in water and is used to make supports
that hold 3D prints in place. It melts at about 200 degrees Celsius, and
can release some nasty chemicals if heated to higher temperatures. It can
be used in a standard 3D printer extruder to form parts that support
other objects, and it sticks to a heated, glass print bed well. Parts printed
with PVA supports usually need to be placed in water for a few hours to
dissolve PVA, leaving the rest of the insoluble print behind. This makes
PVA filament a great choice to print complex models that require supports,
or even models that include moving parts.

The density, ultimate strength and cost data come from Simplify3D (2019)
The Young’s modulus for PVA is given in Yamaura et al. (1986). The Young’s
modulus for Nylon is summarised in Bainbridge (2017).

In this thesis, all geometries are printed with ABS, therefore the material
properties of ABS are used throughout all simulation, that is for Young’s modulus
E = 2GPa and the ultimate strength σs = 40MPa.

63



Table 3.2: Common 3D printing material properties

Type
Young’s Modulus

GPa
Ultimate strength

MPa
Density
g/cm3

Cost
$/kg

ABS 2.0 40 1.04 10 - 40
PLA 3.5 65 1.24 10 - 40
PVA 1.5 - 3.75 78 1.23 40 - 110
Nylon 3.3 40 - 85 1.3 20 - 60
PETG 2.2 53 1.23 20 - 60

3.9 Summary

In this chapter, the theory and formulation of CST, DKT and Beam elements
have been introduced. The plate element is formed by assembling the CST and
DKT elements together. In order to avoid the rank deficiency of plate element,
drilling degree is also introduced here. Since von Mises stress(equivalent stress)
is the criteria used to determine if the structural is sound / or if there exists any
fracture in the object, this chapter also presents details of the theory of stress
and failure analysis and also the formulation of von Mises stress. Finally, this
chapter also includes an introduction of 3D printing materials where the ultimate
material strength of ABS(40MPa) is chosen as the stress limit throughout this
research.
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Chapter 4

Edge stiffened structures

4.1 Overview

Figure 4.1: System overview: Given an input surface (a), a dense rib network (b)
is generated, followed by a simplification process to remove the ribs with little
contributions (c). Then a rib flow optimization is performed to adjust the layout
of ribs (d). Finally, the cross-section of ribs is optimized using hyperelliptic
T-section (e).

To enhance freeform surface with attached rib network, the first approach
composed of four stages (see Figure 4.1) is proposed in this research: 1) rib
network initialization, 2) rib network simplification, 3) rib flow optimization and
4) rib cross-section optimization.
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4.2 Pipeline of the edge stiffened optimisation

Figure 4.2: The pipeline of edge stiffened structure optimization

Rib Network Initialization Given a surface with specified thickness and
boundary conditions, Finite Element Analysis(FEA) is used to determine the
stress field. The stress field is then converted to principal stress field, which
shows desirable material continuity and encodes the optimal topology. Using
this principal stress field, a global parametrization is calculated, and then a
quad-mesh whose edges align with orthogonal directions is extracted. Based
on singular vertices and connectivity of the quad-mesh, the mesh is further
represented as a rib network which consists of tree-like, circular and curved rib
elements.
Rib Network Simplification Since the mesh extracted from stress analysis
and parametrization is a dense mesh, some ribs may have little contributions to
the overall shell. Therefore a simplification step is involved here by dropping
some rib elements with less contributions to the overall strain energy further.
Rib Flow Optimization The removal of ribs of the previous step will alter
the stress field of the initial dense rib network. Hence a further adjustment on
the layout of remaining ribs is needed to flow ribs on the surface and reduce
total strain energy.
Rib Cross-section Optimization The final step of the framework is to opti-
mize the rib cross-section with the goal of satisfying material strength requirement
with least material usage. The size of cross-section is first roughly determined by
using rectangular section. The material usage is further improved by replacing
rectangular section with hyperelliptic T-section, as it moves more materials away
from the surface to make the hyperelliptic T-section have more capability to
resist bending. The shape of hyperelliptic T cross-section is then optimized to
find the optimal material distribution.
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4.3 Rib-shell Structure

4.3.1 Rib-shell Structure

Given an input meshM0, the rib-shell structure H consists of a thin shell S and
ribs R, as shown in Figure 4.3. S is a thin shell between M0 and its offset M1

with a thickness t. R is composed of a set of ribs R = {Ri, i = 1, 2, · · · , n}. Each
rib is closely attached to one or both sides of S and contains a set of consecutive
rib points Ri = {Rij , j = 1, 2, · · · , ni}, where the subscript i indicates the ith

rib, and ij indicates the jth node of the ith rib.

Figure 4.3: Illustration of the rib-shell structure.

4.3.2 Rib Network

All the ribs R in a rib-shell structure compose a rib network N which contains
three fundamental element sets, i.e., curved Rc, circular Ro and tree-like Rt
rib element sets. A rib element consists of ribs and has semantic information.
Usually the tree-like rib element plays a more important role in reinforcing a
shell. And circular and curved rib elements enhance local stiffness and strength
and assist to increase global performance of rib-shell structures. Figure 4.4 shows
the three types of rib elements in a rib network. Note that curved rib element is
the fundamental rib element which is also called rib for convenience. A tree-like
rib element consists of several curved rib elements, and a circular rib element
can be regarded as a curved rib element whose two ends meet at a same point.

4.3.3 Rib Cross-section

A wide range of profiles of cross-section for ribs have been applied in engineering.
Among them, T-shaped cross-section is rather popular due to some practical
advantages. T-section offers greater and significantly more resistance to bending.
And the material is present where it should be and in the right quantities (Lam
& Santhikumar 2003). This makes the rib more economical and lighter and in
turn makes a rib-shell structure even more economical. However, the commonly
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Figure 4.4: From left to right: curved, circular and tree-like rib elements. The
right tree-like rib element consists of eight curved ribs.

used right-angled T-section has a stress concentration on the corner which results
in a localized increase in stress and causes cracks or even catastrophic failure
(Kokcharov & Burov 2013). To avoid potential stress concentration at sharp

corners, an improved hyperelliptic T-section is applied to rib section. The
formulation of a hyperellipse with order n(n > 2) can be formulated as follows∣∣∣x

a

∣∣∣n +
∣∣∣y
b

∣∣∣n = 1, (4.3.1)

where a and b are the semi-major and semi-minor axes, respectively. As the
order n increases, the hyperellipse converges to a rectangle and the cross-section
of rib tends to be a standard right-angled T-section as shown in the inset.

Hyperelliptic T-section inherits the advantages of right-angled T-section and
improves stress concentration at the same time. To show stress distribution
improvement of hyperelliptic T-section over right-angled one, an FEA simulation
of two types of ribs is performed. For the test case, both ends of the rib are fixed,
and same loads are imposed on the middle of the mesh. The results in Figure
4.5 indicate hyperelliptic T-section has better performance and can prevent from
stress concentration to some extent.
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Figure 4.5: Hyperelliptic (a) and right-angled (b) T-section. Colour encodes the
von Mises stress. The stress of right-angled T-section in the back is much higher
than that of hyperelliptic T-section.

4.4 Rib Network Generation

4.4.1 Principal Stress Calculation

Principal stresses are the components of a stress tensor when the basis is changed
in such a way that the shear stress components become zero. The rib network
generation is based on principal stresses of the original shell structure, more
precisely, placing ribs along principal stress directions. The stress tensor σ
has three real eigenvalues λ1, λ2, λ3 and three mutually orthogonal eigenvectors
e1, e2, e3, satisfying σei = λiei(i = 1, 2, 3). Therefore, by multiplying a coor-
dinate transformation matrix to transform the original coordinate system to
the coordinate system with axes e1, e2, e3, the stress tensor now only has three
normal components, i.e., principal stresses and three eigenvectors which are
principal stress directions.

Principal stress directions are useful as they indicate the trajectories of
internal forces and, therefore naturally encode the optimal topology for any
structure for a given set of boundary conditions (Adriaenssens et al. 2014). Here,
principal stress directions are used to guide the construction of rib layout and
align ribs with these directions. By doing so, the ribs can best reinforce shells
under external loads.

4.4.2 Quad-mesh Extraction

Based on the principal stress field defined on the surface of input mesh, a global
parametrization of the surface is computed using the MIQ method (Bommes
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et al. 2009). Next a quad-mesh from the input surface is extracted by the method
of QEx (Ebke et al. 2013). Since edges of the resulted quad-mesh align with the
principal stress directions of the surface, the dense rib network can be initialized
from the quad-mesh.

Principal Stress Field Smoothing To get a better parametrization result,
the principal stress field is smoothed with the introduction of smoothness energy.
The smoothness energy is defined based on the method in Kälberer et al. (2007),
which blends a smoothness energy with an alignment term:

Esm = λ
∑
eij∈E

cos 4(θi + rij − θj + αi − αj) + (1− λ)
∑
fi∈F

α2
i . (4.4.1)

Here θi and θj are stress directions in local frames of face fi and fj , respectively,
and rij is the angle between both local frames. The variables αi and αj are
the direction deviations on face fi and fj , respectively. The rightmost term
is the penalty of large deviations which keeps the resulting cross field aligning
with the original stress field. The factor λ determines if there is more emphasis
on smoothing or alignment, and it is set to be 0.8 here. Figure 4.6 provides a
comparison of stress field before and after smoothing.

Figure 4.6: Left: principal stress directions. Right: principal stress directions
after smoothing.

Global Parametrization In the global parametrization, each vertex of the
input mesh is assigned a (u, v) parameter value so that its iso-parameter lines
on the surface are locally aligned with the principal stress field. The optimal
parametrization is obtained by minimizing the following energy function

ET =
∑
fi∈F

Afi(‖ρ∇u− ufi‖2 + ‖ρ∇v − vfi‖2), (4.4.2)

where ρ is a global scaling parameter which controls the length of edges in
the resulting quad-mesh. And ufi and vfi are two orthogonal vectors in face
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fi corresponding to the cross field directions. The scalar Afi is the area of face fi.

Quad-mesh Extraction and Processing As long as the global parametriza-
tion result is found, a quad-mesh can be generated by just using the method
of QEx (Ebke et al. 2013). The quad-mesh is further smoothed using a simple
Laplacian smoothing method, and then projected to the original triangle mesh
along vertex normal directions.

For some complex surfaces, the output quad-mesh may contain many sin-
gularities, which is harmful to the rib generation process. Therefore Peng’s
connectivity editing operations (Peng et al. 2011) is used to explicitly move and
merge singularities.

4.5 Rib Network Initialization

Given a quad-mesh M(V,E, F ), consecutive edges that don’t bend too much
are traced and the resulting curve is taken as a rib. For a rib R, it reaches an

adjacent edge e intersecting at point p with normal n. To compute the angle
between the rib R and e, edge ê adjacent to e in rib R as well as edge e are
projected onto the tangent plane passing the point p perpendicular to the normal
n. Then the angle between the rib R and edge e can be calculated by the two
projected edge êt and et as follows

](R, e) = arccos

(
êt · et

‖êt‖‖et‖

)
, (4.5.1)

where êt = ê− (n · ê)n and et = e− (n · e)n are the projections of edges ê and
e on the tangent plane, respectively.

When tracing a rib, a user-specified parameter φ is used to control the degree
of bending. The algorithm to trace a rib is described in Algorithm 1.

During the rib network tracing process, tree-like rib elements are first extract-
ed by tracing from the edges originated from the singularities of the quad-mesh.
If a rib reaches a new singularity, the tracing will span from here and continue
until it reaches boundary or meeting any visited nodes. After all the singularities
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Algorithm 1: {R, E} = ribTracer(M, E , e)

Input: Quad-mesh M, edge set E and starting edge e;
Output: Rib R and new edge set E ;

1 add e into R;
2 while true do
3 best align = + inf;
4 e best = −1;
5 foreach e next adjacent to rib R do
6 if e next ∩ R is singularity then
7 return;
8 end
9 if e next 6∈ E then

10 continue;
11 end
12 if ](R, e next) < best align then
13 best align = ](R, e next);
14 e best = e next;

15 end

16 end
17 if e best 6= −1 and best align < φ then
18 add e best into R;
19 remove e best from E ;

20 else
21 break;
22 end

23 end

are processed, namely, tree-like rib elements are all extracted, the rest ribs will
either be a circular rib or a curved rib depending on if it meets starting point.

The complete rib network extraction process is described in Algorithm 2.
Since the edges of quad-mesh align with the principal stress directions, the
resultant rib network also lies along these directions. Once a dense rib network
is obtained, all the ribs are projected back to the input mesh to make them on
the final shell.

4.6 Rib Network Simplification

For the dense rib network generated from quad-mesh, using all the ribs will
be wasteful and unnecessary as some ribs have little contribution to the shell.
Moreover, since main deformations in shell structures are bending, a thick rib
has much larger second moment of area than several thin ribs whose total cross-
section area is same as the thick rib. Therefore, a sparse thick rib structure
resists bending deformations more effectively than a dense thin rib structure.
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Algorithm 2: {N} = ribNetworkTracer(M)

Input: Quad-mesh M(V,E, F );
Output: Rib network N = Rc ∪Ro ∪Rt;

1 create rib element sets Rc,Ro,Rt, and create set E and S;
2 add all edges in E into E and singularities of M into S;
3 while S is not empty do
4 create S and move a singularity s in S into S;
5 create tree-like rib element Rt;
6 while S is not empty do
7 foreach edge e in E originated from s do
8 {R, E} = ribTracer(M, E , e);
9 if R has singularity s′ and s′ ∈ S then

10 move s′ from S into S;
11 end
12 add R into Rt;

13 end
14 add Rt into Rt;
15 end

16 end
17 while E is not empty do
18 choose an arbitrary starting edge e;
19 {R, E} = ribTracer(M, E , e);
20 if R is a loop then
21 add R into Ro;
22 else
23 add R into Rc;
24 end

25 end

To measure the contribution of each rib element to the shell, the total strain
energy U0 of the pure shell structure is calculated using U0 = uT

0 Ks
0(t)u0 with

shell thickness t. Then given a certain volume V of material, the strain energy
of shell together with rib element i is computed as

Ui = uT
i (Ks

0(t) + Kr
i (wi, hi))ui. (4.6.1)

Here wi and hi are the width and height of rib element. An assumption here
is that the cross-sectional shape of all the ribs is square to make it simpler.
That is to say, wi = hi and liwihi = V with total rib length li. And now the
contribution for rib element i is defined as

Ci = 1− Ui
U0
. (4.6.2)

That means the more strain energy reduces, the more important the rib element
is. Based on strain energy contribution of each rib, any rib element whose
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contribution is less than a user-specified threshold value γ is discarded. Figure
4.7 shows an example of rib network simplification.

Figure 4.7: Rib network simplification of Guscio. The histogram on the left
illustrates the contribution of each rib element. The resultant simplified rib
network is coloured in blue. Light orange rib elements are dropped.

4.7 Rib Network Optimization

4.7.1 Rib Flow Optimization

The removal of rib elements with little contribution affects the rest of ribs as
this process changes the rib network. To ensure after removal processing the
rib network still follow the stress field, a flow step is introduced to readjust the
layout of the rib network. Since the rib network is extracted from a quad-mesh
M, whose vertex positions are denoted as p0

v, v = 1, 2, · · · , |V |, each rib point
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Rij has a unique integer vij corresponding to a vertex in quad-mesh. And for
each point R0

ij in a rib, it has two moving directions as d+
ij and d−ij . Assume

each rib point has a signed moving distance δij along its actual moving direction

dij =

{
d+
ij δij > 0

d−ij δij < 0
. (4.7.1)

The new position of each vertex of the quad-mesh can be solved by the following
equation

pv = p0
v +

∑
vij=v

|δij |dij . (4.7.2)

The rib point position is updated by Rij = pvij to keep the correspondence of
ribs and quad-mesh. And the goal of rib flow optimization is to minimize the
total strain energy of rib-shell structure by optimizing the position of each rib
point, which is dependent on the moving distance δij .
Rib Moving Directions Considering most rib points in quad-mesh have a
valence of four, for these points, the moving directions are defined as the two
outgoing edge vectors with unit length, as shown in Figure 4.8. And the maximum
moving distance for each direction is defined as the half of corresponding edge
length L+

ij and L−ij . For singularity points whose valence are not four, the

Figure 4.8: Moving directions for rib point with degree 4.

moving directions are ambiguous to define. An alternative way is to update their
positions from a linear combination of theirs neighbouring vertex positions.
Problem Formulation The rib flow optimization is aimed at minimizing the
total strain energy by changing the rib point positions. To keep the smoothness
of ribs after flowing, a smoothing term is added by modifying the standard
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mid-point scheme (e.g., pi−1 +pi+1 ≈ 2pi) so that it reflects the varying density
of rib points. The smoothness of rib Ri is defined as

Si =

ni−1∑
j=2

‖(1− uj)Ri,j−1 + ujRi,j+1 −Rij‖22, (4.7.3)

and the weight is define as

uj =
‖R0

ij −R0
i,j−1‖2

‖R0
ij −R0

i,j−1‖2 + ‖R0
i,j+1 −R0

i,j‖2
. (4.7.4)

Hence the objective function of rib flow optimization can be written as
follows:

min
δij

1

2
uTK(δij)u+ λr

n∑
i=1

Si. (4.7.5)

Here λr is the weight of smoothing term and is set as 30 in the research.
The moving distances are constrained to corresponding edge lengths

−
L−ij
2
≤ δij ≤

L+
ij

2
. (4.7.6)

Figure 4.9 gives the results of rib flow optimization. And the strain energies of
the shell for Guscio and Botanic reduced about 1.32% and 3.57%, respectively.

Figure 4.9: Rib network before (blue) and after (red) rib flow optimization for
Guscio (left) and Botanic (right).

4.8 Cross-Section Optimization

The aim of rib cross-section optimization is to minimize the material usage of
ribs while guaranteeing the overall physical performance of rib-shell structure.
As illustrated before, hyperelliptic T-section has many advantages. However,
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the calculation becomes a headache. To tackle this problem, the cross-section is
first optimized as a rectangle with two variables: width and height. Then based
on the rectangular ribs, the cross-sectional shape is further optimized to form a
hyperelliptic T-section.

4.8.1 Size Optimization

For point Rij of rectangle cross-sectional shape of each rib, the width and height
are wij and hij , respectively. The goal is to minimize the rib volume while
achieving certain stiffness requirement. The objective function is a combination
of total rib volume and a smoothing energy. The smoothing term Swi and Shi
are Laplacian smoothing of width and height along the ribs, and λw and λh are
their weights, respectively. And the formulation of rib size optimization is as
follows:

min
{wij ,hij}

n∑
i=1

(Vi + λwSwi + λhShi ) (4.8.1)

s.t.


σmax ≤ σ,
s ≤ wij ≤ s,
s ≤ hij ≤ s,
1
r ≤

wij
hij
≤ r.

Here σmax is the maximum von Mises stress, and σ is the maximum allowable
stress which reflects the strength limit of material. s and s are the lower and
upper bound of rib size. And the last constraint keeps the ratio of width and
height staying in a reasonable range. This optimization problem calculates the
minimum needed material to keep the shell in a safe state.

Shape Optimization

Second Moment of Area The resistance of bending for a rib can be evaluated
using second moment of area:

Ix =

∫∫
A

y2dA, (4.8.2)

Iy =

∫∫
A

x2dA, (4.8.3)

where A is cross-sectional domain we concern. Equation 4.8.2 and 4.8.3 indicate
that for a shape with a given area, the more geometry accumulates away from
z-axis the larger bending resistance it possesses. This provides a more convincing
reason to use T-section from the perspective of mechanics principle.
Hyperelliptic T-Section A hyperelliptic T-section is formed from a rectangular
rib by removing two halves of a hyperellipse from a rectangle as shown in the
Figure 4.10. So the area of the cross-section is the difference between the area of
the rectangle and the area of the hyperellipse. And the area of the hyperellipse
can be explicitly expressed in terms of the gamma function (Rosin 2000).
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Figure 4.10: Hyperelliptic T-Section attached to a shell with thickness t.

Shape Optimization The goal of cross-sectional shape optimization is to
further reduce material usage from a rectangular rib while maintaining the
mechanical stiffness of the rib-shell structure under external loads. So the
objective function is also the volume of ribs

min

n∑
i=1

Vi(wij , hij , aij , bij), (4.8.4)

where Vi(wij , hij , aij , bij) is the volume of rib i with hyperelliptic T-section. wij
and hij are width and height of the bounding box of cross-section, which are
near the original rectangular cross-section by the following constraints:

|wij − w∗ij | ≤ εww∗ij ,
|hij − h∗ij | ≤ εhh∗ij .

(4.8.5)

Where w∗ij and h∗ij are width and height of rectangular rib from rib size optimiza-
tion. εw and εh are parameters that control the change of rib width and height,
respectively. And furthermore the parameters of hyperellipse are constrained by
shell thickness t as follows:

wij = 2aij + τw,

hij = 2bij + τh,
(4.8.6)

where τw and τh are flange and web thicknesses of the hyperelliptic T-section,
respectively. To ensure the strength of the T-section, we further constrain τw

and τh by the shell thickness t using the following equations:

t < τw < wij ,

t < τh < hij .
(4.8.7)
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To guarantee the mechanical performance of each rib, the second moment of
area of rib i can’t be less than original rib with rectangular cross-section.

Ix(i) ≥ I∗x(i),

Iy(i) ≥ I∗y (i).
(4.8.8)

Here I∗x(i) and I∗y (i) are the second moment of area for original rectangular rib i.
And Ix(i) and Iy(i) are the second moment of area for hyperelliptic T-sectional
rib i.

From the analysis above, the cross-sectional shape optimization can be
formulated as a non-linear optimization problem with objective function Equation
4.8.4 and constraint Equations 4.8.5, 4.8.6, 4.8.7 and 4.8.8.

4.9 Results

The algorithm is implemented on a desktop PC with an Intel I5 CPU and 8G
memory. The FEA and initial rib network generation process are implemented
in C++, while the rib optimization process is implemented with Matlab. The
non-linear optimization problems (Equations 4.7.5, 4.8.1 and 4.8.4) can be solved
using the Interior Point Method (Nocedal & Wright 2006) where the gradients
are estimated using finite differences.
Parameters Setting In the experiments the models are all scaled such that
the maximum edge length of bounding box is 100. The shell thickness t is set to
1.2. The lower and upper bounds of rib size are set as 0.8 and 8, respectively.
The maximum ratio of rib width and height r is set as 4. Note that the unit is
millimetre. The scaling parameter ρ for MIQ is between 18 and 30 in our method.
And smoothing weights λw and λh are both set as 10. And parameters εw and
εh are set as 0.2 here. The maximum allowable von Mises stress σ is set as 40
according to the yield strength of plastic (42 MPa). And the angle deviation
threshold φ in Algorithm 1 is set as π/3. The external loads are imposed as
gravity by default.

Discussions

Choice of Hyperelliptic Order As the order of hyperellipse in Equation
4.3.1 increases, it looks apparently like a rectangle with rounded corners. The
performances of hyperelliptic T-section with different orders are shown in Figure
4.11. In the figure, only moments for bending resistance in height direction
are shown as they are more important than moments in width direction for
shell structures. It can be seen that with the growth of orders, both values of
hyperelliptic T-section are getting closer to corresponding values of right-angled
T cross-section. But the computational cost of hyperelliptic shape rises as the
increase of orders. Consequently the order is chosen to be 6 where the changes
of area and moment properties are small and the order is not too large.
Iteratively Alternate Optimization of Rib Flow and Cross-section The
rib flow optimization and cross-section optimization can be performed alternately
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Figure 4.11: Area (blue) and second area moments (red) about orders of right-
angled and hyperelliptic T-sections.

and iteratively. But it turned that after a round of rib flow and cross-section
optimization, the effect of rib flow in the next step is pretty minor. As a
consequence, the rib flow and cross-section optimization are not done iteratively
.

Comparisons

Comparison Between Concentrated and Distributed Load The final rib-
shell structure depends on the principal stress directions which are determined by
external load conditions used in FEA. Results from distributed and concentrated
loads are compared and shown in Figure 4.12, and turned out that under the
concentrated external loads, ribs tend to be denser near the region of loading
nodes.

Figure 4.12: Top: distributed loads (gravity). Bottom: concentrated loads (load
nodes are marked as red).
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Comparison to Grid-shell Structure Figure 4.13 shows the results of Voronoi
grid-shell (Pietroni et al. 2015) and self-support quad grid-shell (Vouga et al.
2012) structures for visual comparison. The rib-shell structure is simpler and
easier to fabricate compared with the other two which are assembled by a mass
of beams. Moreover, rib-shell structure achieves better global structural stability
especially at the centre. Unfortunately, due to the lack of sufficient information,
like boundary conditions, grid size and so on, no numeric comparison is made.

Figure 4.13: Results of Lilium. From (a) to (c): Our result, Voronoi grid-shell
(Pietroni et al. 2015) and self-support quad shell (Vouga et al. 2012).

Results

Examples Figure 4.14 showcases various rib-shell structures produced by our
method. Figure 4.15 demonstrates the improvement of structural strength for
the Lilium. In order to compare with a pure shell, the thickness of the shell is set
to a value so that it has the same volume as the final rib-reinforced shell. The
maximum von Mises stress for the pure shell is 69.42 MPa which is beyond the
allowable yield strength, and it is less than below 40 MPa for the rib-reinforced
shell. This comparison indicates rib-reinforced shell structures have a much
higher strength than the pure shells with the same amount of material.
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Figure 4.14: Rib-shell structures generated by our system, including Snail,
Neumunster, Aquadom, and Bridge.

Figure 4.15: Rib-reinforced shell structure (c) generated from input mesh (a).
And (b) and (d) are colouring visualizations of von Mises stress for pure shell
and rib-reinforced shell, respectively, which cost the same volume of material.

Physical Experiments By performing a boolean operation on ribs and shell,
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a watertight mesh of Guscio is obtained and fabricated rib-shell structure using
an SLA 3D printer. To show the improvement of ribs, a pure shell with same
amount of material is also fabricated. As shown in Figure 4.16 (a-1) and (b-1),
the weight of the pure shell is 19.26g, while the weight of the shell reinforced
by ribs is 19.25g. To compare the stiffness of the two models, same external
loads are applied on the centre as shown in the bottom of Figure 4.16 to see the
deformation. Figure 4.16 (a-2) and (b-2) are the initial states of the two shells
for reference, and (a-3) and (b-3) are the final state under external loads. In
Figure 4.16 (a-3), the pure shell is under a 30N load, the displacement at the
centre is 5.6mm. While for the shell reinforced by ribs, the displacement at the
centre is 1.2mm under a 33N load. The rib-shell structure achieves over 4 times
higher strength compared with a pure shell under the same external load with
the same volume of materials.

Figure 4.16: The fabricated shell (a-1) and rib-reinforced shell (b-1) cost about
the same amount of materials (19.26g for the former and 19.25g for the latter).
When imposing loads at the centre, the pure shell has a displacement of 5.6mm
under a 30N load (a-3), while the displacement is 1.2mm for the rib-reinforced
shell under a 33N load (b-3). And (a-2) and (b-2) are initial states without load
for reference.
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Extensions The system is also capable of generating other results similar to
rib-shell structures. Two triangular meshes are generated from the images of
kite and leaf shown in Figure 4.17 (a) and (c). For the kite model, the centre is
fixed, and loads are imposed to every node to simulate wind force. And the for
the leaf model, the petiole is fixed and gravity is applied. The resultant rib-shell
structures for kite and leaf generated by the method are shown in Figure 4.17
(b) and (d), which seem to make sense to some extent.

Figure 4.17: Rib-shell structures for kite (b) and leaf (d) models generated by
our system, which imitate the things (a and c) in real world to some extent.

4.10 Summary

In this chapter, a method based on traditional elements is presented to generate
and optimize a rib network to reinforce the structural stiffness and physical
strength of input shell structure. The basic idea is to place ribs along the
principal stress directions which are calculated from FEA results and encode the
optimal topology. A variety of examples validate the capability and efficiency of
the computational method.
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Chapter 5

Unidirectional and
bidirectional stiffened
structure

5.1 Overview

(a) (b) (c) (d)

Figure 5.1: System overview. From left to right (a) the stress field on input
surface, (b) the geometry is sliced equally, (c) after number and cross-section
optimization of stiffeners, the final stress field on the same surface and (d) a
cut-away show of the underlying stiffener structure.

The previous chapter introduced traditional finite elements including CST
and DKT elements to simulate in-plane and out-plane behaviour of plate, and
beam element to simulate behaviour of stiffeners. The coupled system of plate
and beam elements is formulated by adding stiffeners’ stiffness contributions to
connecting plate nodes. Following the stress field computed from the coupled
system, the stiffener network is flowed to best align with stress field so that the
stiffener network can maximally support the geometry. The drawback of this
method is that all the stiffeners must align with edges of the surface since the
formulation of the coupled system is adding contribution from beam elements to
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the connecting plate nodes.
To overcome above problem, this chapter introduces a well studied stiffened

plate element (Samanta & Mukhopadhyay (2004)) in engineering that is capable
of accounting for influence of arbitrary stiffener within a plate element. By
applying plate’s shape function to attached stiffener, the stiffener is able to
deform simultaneously with plate element at any point. Thus, the stiffener
does not have to align with any edge of the plate element, instead, it can be in
arbitrary location within the plate element. Also the formulation can account
for the influences of multiple stiffeners in a single element. With introduction
of the stiffened element, the input mesh can be stiffened in arbitrary direction
without affecting the geometry. A simple strategy of slicing the Axis-Aligned
Bounding Box of input mesh is adopted to generate stiffeners along the interior
surface of the mesh, and a constrained problem of finding minimum supporting
structure is formulated and solved.

5.2 Stiffener element formulation

5.2.1 Stiffness matrix of the stiffener element

The formulation of the stiffener has been made in such a way that the stiffener
can be placed within the shell element (Figure 5.2). The following assumptions
have been made for the formulation of the stiffener.

• The stiffeners are considered as straight axis ribs in a 3D space.

• The stiffeners have same displacements as that of the plate.

• The common normal to the plate and stiffener system before bending
remains straight and normal to the deflected shape after bending.

• The middle plane of the shell is taken as reference plane in the analysis of
the stiffener, as shown in Figure 5.3.

The common shape function is used for both shell and stiffener element. It
not only facilitates expressing the stiffness matrix of the stiffener in terms of
the parameters of the shell element, but also maintains the compatibility of the
stiffener within the shell.

If the angle between the arbitrary oriented stiffener and the local coordinate
axis x of the shell element is φ ( Figure 5.3), then the relationship between
stiffener local coordinates ξ, η and shell local coordinates x, y can be expressed
as

ξ = (x− x0) cosφ+ (y − y0) sinφ

η = −(x− x0) sinφ+ (y − y0) cosφ
(5.2.1)

The relationship between the stiffener local displacement and shell elemental
local displacement can also be expressed in a similar manner as
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Figure 5.2: Local axis system of the stiffener, placed within the shell element

Figure 5.3: A stiffened plate showing the reference axis of the stiffener

u′ = u cosφ+ v sinφ

θξ = θx cosφ+ θy sinφ

θη = −θx sinφ+ θy cosφ

(5.2.2)
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where u′, θξ, θη are the deflection and rotations in the stiffener local coordinate
system as shown in Figure 5.2. The generalized strain vector εs in the stiffener
local coordinate system (ξ, η) is given by:

εTs =
{

∂u′

∂ξ −∂θξ∂θ −∂θη∂θ
}

(5.2.3)

As the strain vector is expressed in terms of displacements in the shell middle
plane, the shape function used is the same as that of the shell element which
yields the stiffness matrix of the stiffener in terms of the nodal parameters of
the shell element. Thus the deformation compatibility between the shell and the
stiffener is ensured. Moreover, it avoids the incorporation of additional degrees
of freedom for the stiffener element which is the most elegant feature of this
modelling.

The generalized strain in the stiffener local coordinate system (ξ, η) has been
transformed into the shell elemental local local coordinate system (x, y) by using
the following transformation

εs = Tsε
′
s (5.2.4)

where Ts is the transformation matrix for the stiffener to correlate the strain
in the stiffener local coordinate system to the shell elemental local coordinate
system. ε′s can be defined as

ε′s =
{

∂u
∂x

∂v
∂y

(
∂u
∂y + ∂v

∂x

)
−∂θx∂x −∂θy∂y −∂θx∂y −∂θy∂x

}
(5.2.5)

Equation 5.2.1 can be rewritten as

x = x0 + ξ cosφ− η sinφ

y = y0 + ξ sinφ− η cosφ
(5.2.6)

The partial derivations of x and y with respect to ξ are

∂x

∂ξ
= cosφ and

∂y

∂ξ
(5.2.7)

By applying the chain rule, the strain matrix in the stiffener coordinate
system can be written as

∂u′

∂ξ
=
∂u′

∂x

∂x

∂ξ
(5.2.8)

With the help of Equation 5.2.2 and Equation 5.2.7, Equation 5.2.8 can be
expressed as

∂u′

∂ξ
=

∂

∂x
(u cosφ+ v sinφ) cosφ+

∂

∂y
(u cosφ+ v sinφ) sinφ (5.2.9)
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which leads to

∂u′

∂ξ
=
∂u

∂x
cos2 φ+

∂v

∂y
sin2 φ+

(
∂u

∂y
+
∂x

∂x

)(
1

2
sinφ

)
(5.2.10)

Similarly other strain terms in the stiffener local coordinate system can be
written as

−∂θξ
∂ξ

= −
(
∂θx
∂x

cos2 φ+
∂θy
∂y

sin2 φ+
∂θx
∂y

(
1

2
sin 2φ

)
+
∂θy
∂x

(
1

2
sin 2φ

))
−∂θη
∂ξ

= −
(
∂θx
∂x

(
−1

2
sin 2φ

)
+
∂θy
∂y

(
1

2
sin 2φ

)
+
∂θx
∂y

(
− sin2 φ

)
+
∂θy
∂x

(
cos2 φ

))
(5.2.11)

So the transformation matrix Ts can be written as

Ts =

cos2 φ sin2 φ 1
2 sin 2φ 0 0 0 0

0 0 0 cos2 φ sin2 φ 1
2 sin 2φ 1

2 sin 2φ
0 0 0 − 1

2 sin 2φ 1
2 sin 2φ − sin2 φ cos2 φ


(5.2.12)

The stress-strain relationship of the stiffener in the local coordinate system
can be expressed as

σ̄s = Dsεs (5.2.13)

where

σ̄s = {Nss Mss Tss}T (5.2.14)

and

Ds =

EsAs EsSs 0
EsSs EsIs 0

0 0 GsJs

 (5.2.15)

In the above equations, Nss,Mss, Tss are the axial force, bending moment and
torsion in the stiffener. Es is the modulus of elasticity of the stiffener material,
As is the cross-sectional are of the stiffener. Ss is the first moment of the stiffener
cross-sectional area about the reference axis (i.e. the plate middle surface) as
shown in Figure 5.3. Is is the second moment of the stiffener cross-sectional
area about reference axis, Gs is the modulus of rigidity and Js is the polar
moment of inertia of the stiffener cross-sectional area. The details of Js is given
by Mukhopadhyay & Satsangi (1984).

Eccentricity of the eccentric stiffener has been taken into account in the
rigidity matrix, where Is and Ss have been calculated with reference to the plate
middle surface. For concentric stiffener this eccentricity is zero and Is and Ss
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have been calculated with reference to the stiffener middle surface, as in this
case plate middle surface and stiffener middle surface are same.

Using the principle of virtual work, the element stiffness matrix of the stiffness
matrix of the stiffener is given by

ks =

∫
Ls

TTBT
sTT

sDsTsTdξ (5.2.16)

where T is the transformation matrix defined in Equation 3.2.18.
In the above equation, all the matrices are defined previously. Equation

5.2.16 has been integrated by two point Gaussian quadrature rule (see Table 5.1)
along the length of the stiffener Ls, where Ls is shown in Figure 5.2.

After the element stiffness matrix of the stiffener has been formulated, it is
added to the element stiffness of the shell with which the global stiffness matrix
K is assembled.

In the above formulation of the stiffener, as the same displacement function
is used for both the shell and the stiffener element, the compatibility condition
at the shell beam junction is ensured. The formulation of the stiffener is done in
such a manner that it can be placed anywhere within the shell element. Due
to this the restriction of mesh grading is obviated and thus the treatment of
stiffened shell problems can be carried out in a more elegant manner.

5.3 Pipeline of the uni- and bi-stiffened optimi-
sation

Figure 5.4: The pipeline of the uni- and bi-stiffened structure optimization

Figure 5.4 shows the pipeline of optimisation. Given the input geometry,
the bounding box of the object is first computed. Two values corresponding
to number of slices NU in U direction and number of slices NV in V direction
are given here to slice the bounding box. In total, there are a combination of
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Table 5.1: 1D Gauss points and weights

{Sij |∀i ∈ {1, NU},∀j ∈ {1, NV }, i + j 6= 0} situations. Starting from step 0
(S00) which doesn’t generate any stiffeners), the algorithm then automatically
takes one slicing Sij out of the set to slice spatially equally in one direction or
two directions to produce unidirectional or bidirectional stiffeners. With the
generated stiffeners, lower and upper bounds of cross-section size and maximum
material strength, a constrained optimization problem is formulated to find least
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(a) (b)

Figure 5.5: Unidirectional (a) and bidirectional (b) slicing of geometries

material. The algorithm terminates when all slicing cases have been examined
and the optimal slicing Si∗j∗ ∈ Sij with minimum material consumption will be
returned as solution.

5.3.1 Unidirectional and bidirectional slicing

In this part, two ways are presented to generate stiffeners along geometry surface.
The unidirectional stiffeners are generated by slicing objects in the same direction
as can be seen in Figure 5.5 (a). While the bidirectional stiffeners are created by
slicing the geometry in two orthogonal directions (Figure 5.5 (b)).

5.3.2 Optimization formulation

For 3D printed objects and structures, the wall-thickness of shell structures is
usually taken to be the minimum printing wall-thickness to reduce material
consumption. The structural strength and stiffness are satisfied by stiffening
shell structures with stiffeners. Since the wall-thickness of shell structures has
been the minimum printing thickness, minimizing material consumption of 3D
printed objects and structures becomes minimization of the total volume of all
stiffeners.

There are a number of different types of stiffeners available in engineering
applications. Here stiffeners with rectangle cross-sections are used to demonstrate
the optimization design model. Let w and h represent the width and height of
the stiffener cross-section. The goal is to minimize the overall volume of stiffeners
while satisfy the strength requirement. The objective function for optimization
design can be formulated as finding the minimum of total stiffener volume:
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min
w,h

n∑
i=1

VolumeRi (5.3.1)

s.t.


σmax ≤ σ̄
w ≤ w ≤ w
h ≤ h ≤ h

(5.3.2)

where σmax is the maximum von Mises stress in both shell elements and stiffener
elements, and σ is the material yield strength, w, w, h and h are the lower and
upper bounds of stiffener width and height.

5.4 Numerical examples and experimental result-
s

The integrated finite element analysis and optimization design are implemented
in MATLAB on a desktop PC with an Intel Xeon E5 CPU and 32GB memory. As
the FEA is computational expensive, the CST, DKT and stiffener elements are
implemented in C++ but compiled as MEX functions for speed-up consideration.
The constrained problem can be solved using Interior Point method.

Unidirectional stiffeners Stiffened flat plates and stiffened curved shells
are most popular. A flat plate is first considered here to be stiffened optimally
with unidirectional stiffeners. The unidirectional stiffeners mean that all the
stiffeners go in same direction.

(a) (b) (c)

Figure 5.6: Optimized unidirectional stiffeners from the algorithm

Figure 5.6 presents optimized supporting structures in same direction. Figure
5.6(a) has 4 stiffeners reaching size limits with a volume consumption 3710.55mm3

but still fails to satisfy strength requirement. Figure 5.6(b) is the best output
within the searching domain which has a material consumption 1301.65mm3.
Figure 5.6 (c) shows more stiffeners than Figure 5.6 (b) are used, and the overall
material usage 1658.35mm3 is slightly larger than Figure 5.6 (b).
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Bi-directional stiffeners In order to maintain overall structure strength under
loads, there is a limit of minimum material required. For the purpose of saving
material, less supporting stiffeners are to be expected. To find out the balance
between maintaining object soundness and reducing printing material, all possible
combinations of stiffeners in orthogonal directions are iterated to search for an
optimized result.

(a) (b) (c)

Figure 5.7: Optimized bidirectional stiffeners from the algorithm

Figure 5.7 presents some of the optimized results with different slices. For
the case in Figure 5.7 (a), less stiffeners are used in both directions leading to
less volume of stiffeners 7068.91mm3. But the stress constraint σ < σ̄ cannot be
satisfied even when the size of stiffeners reaches the upper limit. Figure 5.7 (b)
is the best output from the algorithm with material usage at 6780.97mm3. In
Figure 5.7 (c), though the stress constraint is satisfied, the use of more stiffeners
causes the material usage up to 7200.96mm3.

5.5 3D printed uni- and bi-directional stiffened
objects

With the optimization algorithm of unidirectional and bidirectional stiffened
objects proposed in this chapter, the minimum stiffener volumes of some stiffened
objects were obtained, their 3D printed models were shown in Figure 5.8, and the
stress changes with and without the optimized stiffeners were shown in Figure
5.9 -Figure 5.15, respectively.

Figure 5.9 shows the stress distributions, stiffeners, and 3D printed model of
a unidirectionally stiffened plate. In the figure, (a) depicts the stress distribution
in the flat plate without unidirectional stiffeners with a maximum stress of
278.198MPa, (b) shows the optimized unidirectional stiffeners with a total volume
of 338.53mm3, (c) gives the stress distribution in the flat plate stiffened by the
optimized stiffeners with a maximum stress 22.9778MPa, and (d) is a photo of the
3D printed model of the stiffened plate. By applying the optimized unidirectional
stiffeners, the maximum stress reduces from 278.198MPa to 22.977MPa.
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Figure 5.8: All prints

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed plate

Figure 5.9: Unidirectionally stiffened flat Plate.

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed square

Figure 5.10: Bidirectionally stiffened Square.

Figure 5.10 gives the stress distributions, stiffeners, and 3D printed model of a
bidirectionally stiffened square. Figure 5.10 (a) shows initial stress distribution of
square without bidirectional stiffeners with a maximum stress of 159.268MPa, (b)
shows the optimized bidirectional stiffeners with a total volume of 481.623mm3,
(c) gives the stress distribution in the square stiffened by the optimized stiffeners
with a maximum stress 21.749MPa, and (d) is a photo of the 3D printed model
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of the stiffened square. By applying the optimized bidirectional stiffeners, the
maximum stress reduces from 159.268MPa to 21.749MPa.

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed snail

Figure 5.11: Unidirectionally stiffened Snail.

The stress fields, stiffeners and 3D printed model of a unidirectionally stiffened
snail are shown in Figure 5.11. In the figure, the initial maximum stress within
the snail without any stiffening structures is 33.273MPa as shown in (a). After
applying a total volume of 141.645mm3 stiffeners (b) to the snail, the maximum
stress (c) drops from 33.273MPa to 27.2818MPa in the final printed 3D model
(d).

(a) Initial stress (b) Stiffener (c) Final stress
(d) 3D printed botan-
ic

Figure 5.12: Bidirectionally stiffened Botanic.

Another example of botanic is given in Figure 5.12 to show the stress distri-
butions, stiffeners, and 3D printed model. Figure 5.12 (a) shows initial stress
distribution of botanic without bidirectional stiffeners with a maximum stress
of 90.927MPa, (b) shows the optimized bidirectional stiffeners with a total vol-
ume of 346.926mm3, (c) gives the stress distribution in the botanic stiffened
by the optimized stiffeners with a maximum stress 38.6041MPa, and (d) is
a photo of the 3D printed model of the stiffened botanic. By applying the
optimized bidirectional stiffeners, the maximum stress reduces from 90.927MPa
to 38.6041MPa.

The stress fields, stiffeners and 3D printed model of a unidirectionally stiffened
bridge are shown in Figure 5.13. In the figure, the initial maximum stress within
the bridge without any stiffening structures is 94.4982MPa as shown in (a).
After applying a total volume of 281.855mm3 stiffeners (b) to the bridge, the
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(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed bridge

Figure 5.13: Unidirectionally stiffened Bridge.

maximum final stress (c) drops from 94.4982MPa to 15.7848MPa in the final
printed 3D model (d).

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed dome

Figure 5.14: Bidirectionally stiffened Dome.

Figure 5.14 show the stress distributions, stiffeners, and 3D printed object of
a dome. The maximum stress 59.028MPa in the initial stress distribution without
bidirectional stiffeners (a) is reduced to the maximum stress 35.6306MPa (c)
with the introduction of a total volume of 689.206mm3 bidirectionally stiffened
stiffeners (b). (d) is a photo of the 3D printed model of the stiffened dome.

(a) Initial stress (b) Stiffener (c) Final stress
(d) 3D printed hemi-
sphere

Figure 5.15: Bidirectionally stiffened Hemisphere.

Figure 5.15 show the stress distributions, stiffeners, and 3D printed object
of a hemisphere. The initial stress distribution without bidirectional stiffeners
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has a maximum stress of 42.0198MPa shown in (a), (b) shows the optimized
bidirectional stiffeners with a total volume of 989.145mm3, (c) gives the stress
distribution in the hemisphere stiffened by the optimized stiffeners with a
maximum stress 36.6904MPa, and (d) is a photo of the 3D printed model of
the stiffened hemisphere. The applied optimized bidirectional stiffeners help to
reduce, the maximum stress from 42.0198MPa to 36.6904MPa.

5.6 Summary

In this chapter, stiffened structures widely applied in engineering are used to
stiffen 3D printed objects and structures for saving material costs and improving
structural strength and stiffness. To this aim, finite element analysis of stiffened
structures with unidirectional and bidirectional stiffeners placing in arbitrary
positions is investigated, optimization design of the stiffened structures is ex-
amined, and they are integrated to minimize the material consumption of 3D
printing. Numerical examples demonstrate obvious improvements brought in by
the proposed approach.
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Chapter 6

Stress guided stiffened
structures

6.1 Overview

(a) (b) (c)

(d) (e)

Figure 6.1: Algorithm overview. From left to right: (a) the initial stress field of
a pure plate shell structure (b) seeds dispersed randomly on dangerous areas (c)
Voronoi diagram in parametric space (d) stiffeners created in 3D space based on
2D Voronoi diagram and (e) final stress field after size optimization of stiffeners
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In Chapter 5 a well studied stiffener element has been introduced and analysed.
However, during the simulation, a naive and straight-forward method is applied
to generate stiffeners, which is to slice the axis aligned bounding box of the
object. It is easy to implement ans has a small amount of user inputs to
control the generation of stiffeners. Also it requires little knowledge of FEM
and optimization for the user to find an optimised result. The drawback of the
uni- and bi-stiffened optimisation is the stiffeners are created purely based on
the geometry information, regardless of stress field of the mesh which might not
place the stiffeners in the best locations. To improve the uni- and bi-stiffened
optimization, a stress guided stiffener optimisation is proposed using the same
stiffener element.

6.2 Pipeline of stress guided stiffener optimisa-
tion

Figure 6.2: The pipeline of the stress guided stiffener optimization

The pipeline of the stress guided stiffener optimisation is summarised in
Figure 6.2.
Seed generation To seed the mesh, the stress field of the geometry is first
calculated under given boundary conditions and forces. A probability map P
of the surface is built by dividing the stress map with the material strength
P = {σi/σs}. With the computed probability map P, a given number Ns of
seeds are placed along the geometry. The seeding is driven by the map P and
tends to place more seeds in areas with higher stress. Therefore more supporting
structures will be generated around dangerous places.
Stiffener generation Once seeds S ∈ R3 are obtained, they are mapped to
2D space by LSCM to create a 2D Voronoi diagram of these seeds. Then
the 2D Voronoi diagram is re-projected back to 3D space using barycentre
coordinate and edges of the diagram are representations of stiffeners attached to
the geometry. An optimization of the stiffeners’ cross-sections is carried out to
find the optimized size to meet design conditions with least printing material
used.
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Monte-Carlo simulation As the generation of seeds is a random process based
on stress field and is fixed during the optimization after initialization, it is more
accurate to simulate the seeding step some times to find a global optimal solution.
To fulfil this goal, Monte-Carlo simulation is therefore introduced to repeat the
procedure by a given number of times to avoid local minima.

6.3 Seed generation

In order to generate stress guided stiffeners, it is natural to identify and enhance
dangerous areas based on stress field. In this research, the strategy to achieve
the above goal is by controlling the distribution of seeds over the geometry. The
generation of these seeds over the surface of a 3D mesh is thus a constrained
sampling problem.

In the past decades, a lot of research effort has been envisaged to develop
new and efficient sampling algorithms, especially to create sampling with blue
noise features, that best fit the needs of several geometric modelling and graphics
applications (Li et al. 2008, Lagae & Dutré 2008, Cline et al. 2009).

In the following, nt stands for the number of triangles of the mesh, si the
stress of triangle ti, σs the material strength, ns the number of expected seeds,
p∗ for the probability threshold.

Algorithm 3: Seed generation

Input: stress field {si}, material strength σs, number of expected seeds
ns and probability threshold p∗

Output: markedFaces

count = 0
markedFaces[nt] =false
while count ≤ ns do

ti = UniformRandom(1, · · · , nt)
p = UniformRandom(0, 1)
if not markedfaces[ti] and p∗ < p < si/σs then

count++
markedFaces[ti] = true

end

end

The algorithm 3 shows how to generate seeds over the surface. For an input
shell with given boundary conditions and external loads, an initial stress field
is calculated. The stress field is used to compute si/σs for each triangle. The
algorithm then randomly picks an unmarked triangle with randomly generated
probability p. If the probability p is over probability threshold p∗ and smaller
than the computed si/σs, the triangle is seeded and marked. The algorithm
repeats searching for faces with high stress until reaching the expected ns seeds.
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6.4 Parametrization

To generate a Voronoi diagram from a number of seeds in 3D and trace stiffeners
from the diagram and the mesh is more complicated than in 2D since it requires
searching for geodesic lines between arbitrary two points. Once converted to
2D space, the tracing of stiffeners in 3D space becomes the problem of finding
intersections between a segment and mesh edges, which is easier to implement.

Based on a least-squares approximation of the Cauchy-Riemann equations,
Lévy et al. (2002) proposed a new quasi-conformal parametrization method.

6.4.1 Conformal Maps

Figure 6.3: In a conformal map, the tangent vectors to the iso-u and to the
iso-v curves are orthogonal and have the same length. (Figure from Lévy et al.
(2002))

As shown in Figure 6.3, an application X mapping a (u, v) domain to a
surface is said to be conformal if for each (u, v), the tangent vectors to the iso-u
and iso-v curves passing through X (u, v) are orthogonal and have the same norm,
which can be written as:

N(u, v)× ∂X
∂u

(u, v) =
∂X
∂v

(u, v) (6.4.1)

where N(u, v) denotes the unit normal to the surface. In other words, a conformal
map is locally isotropic, i.e. maps an elementary circle of the (u, v) domain to
an elementary circle of the surface.

6.4.2 Conformality in a Triangulation

Consider a triangulation G =
{

[1 · · ·n] , T , (pj)1≤j≤n
}

, where [1 · · ·n], n ≥ 3
corresponds to the vertices, T is a set of n′ triangles represented by triples of
vertices, and pj ∈ R3 denotes the geometric location at the vertex j. Each
triangle has a local orthonormal basis, where (x1, y1), (x2, y2), (x3, y3) are the
coordinates of its vertices in this basis (i.e., the normal is along the z-axis). The
local bases of two triangles sharing an edge are consistently oriented.

By considering the restriction of X to a triangle T and applying the confor-
mality criterion to the inverse map U : (x, y)→ (u, v), Equation 6.4.1 becomes:
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∂X
∂u
− i∂X

∂v
= 0 (6.4.2)

where X has been written using complex numbers, i.e. X = x+ iy. According
to the theorem on the derivatives of inverse functions, this implies that

∂U
∂x

+ i
∂U
∂y

= 0 (6.4.3)

PC
where U = u+ iv.

Since this equation cannot in general be strictly enforced, the violation of
the conformality condition is minimized in the least squares sense, which defines
the criterion C:

C(T ) =

∫
T

∣∣∣∣∂U∂x + i
∂U
∂y

∣∣∣∣2 dA =

∣∣∣∣∂U∂x + i
∂U
∂y

∣∣∣∣2AT (6.4.4)

where AT is the area of the triangle and the notation |z| stands for the modulus
of the complex number z. Summing over the whole triangulation, the criterion
to minimize is then

C(T ) =
∑
T∈T

C(T ) (6.4.5)

(a) (b) (c)

Figure 6.4: Overflow of the generation of Voronoi stiffeners.

Figure 6.4 gives an example of overflow of the generation of Voronoi stiffeners.
After 3D seeds are obtained from previous step, they are projected to 2D space
by LSCM parametrization as shown in Figure 6.4.

6.5 Voronoi diagram

Voronoi diagrams appear in many forms in nature, and in several cases they are
related lightweight and strong structures. For example, bones have a Voronoi-like
porous structure (see Figure 6.5), with a higher concentration of material where
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the bone undergoes more stress. This natural principle has also been applied
recently to 3D print honeycomb-like structures (Lu et al. 2014) and grid-shell
structures (Pietroni et al. 2014).

Figure 6.5: Example of cancellous bone. Cancellous bone has fully interconnected
porous structure. (Figure from Ishikawa (2010))

For the input boundary surface S and a given number n of seeds {si} , i ∈ (1, n)
defined in the interior domain of S, a Voronoi tessellation of S is defined to be
the collection of Voronoi cells {Ωi} , i ∈ (1, n) of these seeds, where

Ωi = {x ∈ S|‖x− si‖ ≤ ‖x− sj‖,∀j 6= i} (6.5.1)

and ‖·‖ denotes the Euclidean norm. A Voronoi tessellation is called a centroidal
Voronoi tessellation (CVT) (Du et al. 1999) if each seed coincides with the
centroid of its Voronoi cell, where the centroid ci of its Voronoi cell Ωi is defined
as

ci =

∫
x∈Ωi

ρ(x)xdσ∫
xi∈Ωi

ρ(x)dσ
(6.5.2)

in which dσ is the area differential, and ρ(x) is the density function over the
domain S.

6.6 Stiffener Extraction

After having the Voronoi diagram in 2D, the next thing is to extract stiffeners
from the diagram. Suppose two ends of an edge of the diagram is represented as
pa and pb respectively. And the edge intersects with the projected input mesh
at mi, i = 1, · · · , n, n is the number of intersections (shown in Figure 6.6).
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Figure 6.6: Stiffener extraction

The stiffener extraction step takes each edge from the Voronoi diagram, and
iterates through all triangles tli to detect all intersections p1, p2 in all triangles. In
order to easily project 2D intersection points back to 3D, the found intersections
p1, p2 are converted to area coordinates L1, L2 using local triangle tli. After all
edges of the Voronoi diagram have been processed, all intersections represented
in local area coordinates are converted back to 3D coordinates. The algorithm
is summarized in Algorithm 4.

Algorithm 4: Stiffener Extraction

Input: voronoi diagram, local triangles tli, global triangles tgi
Output: stiffeners

for each edge ei in voronoi diagram do
for each tlj do

if ei intersects with tlj then
[p1, p2] = IntersectSegments(ei, t

l
j)

[L1, L2] = AreaCoords(p1, p2, tlj)

stiffeners.append(L1, L2, tlj)

end

end

end
Project all 2D stiffeners back to 3D space
for stiffener in stiffeners do

[p1, p2] = CartesianCoords(L1, L2, tgi )
end
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6.7 Size optimization

With obtained layout of stiffeners from previous steps, the next step is to reduce
the volume of the supporting structure by find an optimized size of cross-section
for the stiffeners. The objective of the size optimization is to find the least usage
of material. The constraints here consist of several parts:

• printer minimal wall thickness;

• user specified upper bound for thickness;

• the material strength for both stiffeners and plates

Therefore the problem of size optimization can be formulated as a constrained
minimum volume problem:

arg min
w,h

∑
volRi

,

s.t.

w ≤ w ≤ w
h ≤ h ≤ h
sRi < σs

sj < σs

(6.7.1)

where w is the width of stiffener cross-section, w and w are lower and upper
bounds for width respectively, h is height of stiffener cross-section, h and h are
lower and upper bounds for height separately, sRi stands for stress of stiffener
Ri and sj means stress of triangle tj , and σs is the material strength.

6.8 Monte-Carlo simulation

Monte Carlo sampling is one of the most classic sampling methods employed in
several problems such as evaluation of integrals, physical simulation, optimization
and so on.

As stated in Algorithm 3, the seeded face ti and probability p are both
randomly generated from uniform distribution. The following optimization step
relies on the generated seeds from this algorithm.

To avoid local minima, a Monte-Carlo stochastic sampling approach is in-
corporated in the research to improve the optimization result. A number of
nm Monte-Carlo simulation iterations are specified and then the whole process
is repeated nm times with different random generator seeds rs to search for
the best optimized structure. In this research, the number nm of Monte-Carlo
iterations is set to be 100. During the simulations, it turns out 100 simulations
are large enough to avoid local minima.
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6.9 Results

The proposed algorithm is implemented in Matlab with FEM calculations com-
piled into MEX functions for speed reason. The results are tested on a PC with
an Intel Xeon E5 CPU and 32GB memory, running Windows OS.

6.9.1 Parameter setting

During the optimization and fabrication, the printer minimal wall thickness ws is
set to be 1mm so both the w and h are set to be 1mm. The material strength σs
for photosensitive resin is 42N/m

2
. The user specified upper printing thickness

is assumed to be 4mm.

6.9.2 Different probability thresholds

The probability threshold p∗ is introduced here to control the spread of the
seeds over the geometry. When p∗ is set to a low value, the faces with small
probabilities will not be filtered out and marked as seeded faces (triangles),
causing a wide spread of seeds over all faces. On the contrary, if p∗ is set to a
high value, triangles with stress less than p∗σs will never be chosen, therefore
guarantee the concentration of seeds around critical areas. Figure 6.7 shows the
effect of different probability thresholds p∗ on the generated stiffeners. As can
been seen from the figure, a smaller p∗ will produce a more uniform distribution
of stiffeners than a larger p∗, but seeds still prefer the areas with large stress.

(a) (b) (c)

Figure 6.7: Effect of different probability thresholds p∗ on the distribution of
seeds. From left to right, p∗ = 0, p∗ = 0.3 and p∗ = 0.5

Figure 6.7 illustrates the effect of probability. It can be noticed a smaller p∗

leads to a more uniform distribution of seeds over the surface, while a larger
p∗ drives seeds towards critical areas and creates more supporting structures
around those places.

6.9.3 Monte-Carlo simulations

Figure 6.8 shows the effect of random number generator seed rs. With the same
stress map and same number of seeds(ns = 35), the distributions of seeds in
Figures 6.8a, 6.8b and 6.8c are different, leading to variational Voronoi diagram
demonstrated in 6.8d, 6.8e and 6.8f respectively and creates different supporting
structures as shown in 6.8g, 6.8h, and 6.8i respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.8: Monte-Carlo simulations of Guscio. The random number generator
seeds rs for each column are: 10, 20 and 30 respectively.

6.10 3D printed stress-guided stiffened objects

With the optimization algorithm of stress-guided stiffened objects proposed
in this chapter, the minimum stiffener volumes of some stiffened objects are
obtained, their 3D printed models are shown in Figure 6.9, and the stress changes
with and without the optimized stiffeners are shown in Figure 6.10 - Figure 6.18,
respectively.

Figure 6.10 shows the stress distributions, stiffeners, and 3D printed model
of a stress-guided stiffened plate. In the figure, (a) depicts the stress distribution
in the flat plate without stiffeners with a maximum stress of 278.198MPa, (b)
shows the optimized stiffeners with a total volume of 418.5148mm3, (c) gives
the stress distribution in the flat plate stiffened by the optimized stiffeners with
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Figure 6.9: All prints

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed plate

Figure 6.10: Stress-guided stiffened Plate.

a maximum stress 24.6426MPa, and (d) is a photo of the 3D printed model of
the stiffened plate. By applying the optimized stiffeners, the maximum stress
reduces from 278.198MPa to 24.6426MPa.

(a) Initial stress (b) Stiffener (c) Final stress
(d) 3D printed Botan-
ic

Figure 6.11: Stress-guided stiffened Botanic.

Another example of Botanic is given in Figure 6.11 to show the stress
distributions, stiffeners, and 3D printed model. Figure 6.11 (a) shows the
initial stress distribution of Botanic without stiffeners with a maximum stress of
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90.927MPa, (b) shows the optimized stiffeners with a total volume of 418.856mm3,
(c) gives the stress distribution in the Botanic stiffened by the optimized stiffeners
with a maximum stress 33.8706MPa, and (d) is a photo of the 3D printed model
of the stiffened Botanic. By applying the optimized stiffeners, the maximum
stress reduces from 90.927MPa to 33.8706MPa.

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed Snail

Figure 6.12: Stress-guided stiffened Snail.

The stress fields, stiffeners and 3D printed model of a stiffened Snail is shown
in Figure 6.12. In the figure, the initial maximum stress within the Snail without
any stiffening structures is 33.273MPa as shown in (a). After applying a total
volume of 84.0108mm3 stiffeners (b) to the Snail, the maximum stress (c) drops
from 33.273MPa to 28.3634MPa in the final printed 3D model (d).

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed Dome

Figure 6.13: Stress-guided stiffened Dome.

Figure 6.13 shows the stress distributions, stiffeners, and 3D printed object
of a Dome. The maximum stress 59.028MPa in the initial stress distribution
without supporting stiffeners (a) is reduced to the maximum stress 34.3583MPa
(c) with the introduction of a total volume of 754.704mm3 stiffened stiffeners
(b). (d) is a photo of the 3D printed model of the stiffened Dome.

The stress fields, stiffeners and 3D printed model of a stiffened bridge is
shown in Figure 6.14. In the figure, the initial maximum stress within the bridge
without any stiffening structures is 94.4982MPa as shown in (a). After applying
a total volume of 535.109mm3 stiffeners (b) to the bridge, the maximum final
stress (c) drops from 94.4982MPa to 16.8744MPa in the final printed 3D model
(d).
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(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed bridge

Figure 6.14: Stress-guided stiffened Bridge.

(a) Initial stress (b) Stiffener (c) Final stress
(d) 3D printed hemi-
sphere

Figure 6.15: Stress-guided stiffened Hemisphere.

Figure 6.15 shows the stress distributions, stiffeners, and 3D printed object of
the hemisphere. The initial stress distribution without stiffeners has a maximum
stress of 42.0198MPa shown in (a), (b) shows the optimized stiffeners with a
total volume of 1961.93mm3, (c) gives the stress distribution in the hemisphere
stiffened by the optimized stiffeners with a maximum stress 31.2246MPa, and
(d) is a photo of the 3D printed model of the stiffened hemisphere. The applied
optimized stiffeners help to reduce to the maximum stress from 42.0198MPa to
31.2246MPa.

(a) Initial stress (b) Stiffener (c) Final stress
(d) 3D printed Gus-
cio

Figure 6.16: Stress-guided stiffened Guscio.

Figure 6.16 show the stress distributions, stiffeners, and 3D printed object of
the Guscio. The maximum stress 43.8379MPa in the initial stress distribution
without supporting stiffeners (a) is reduced to the maximum stress 29.5158MPa
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(c) with the introduction of a total volume of 711.483mm3 stiffened stiffeners
(b). (d) is a photo of the 3D printed model of the stiffened Guscio.

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed lilium

Figure 6.17: Stress-guided stiffened Lilium.

Figure 6.17 show the stress distributions, stiffeners, and 3D printed object of
a Lilium. The initial stress distribution without stiffeners has a maximum stress
of 52.0412MPa shown in (a), (b) shows the optimized stiffeners with a total
volume of 227.294mm3, (c) gives the stress distribution in the Lilium stiffened
by the optimized stiffeners with a maximum stress 35.3578MPa, and (d) is a
photo of the 3D printed model of the stiffened Lilium. The applied optimized
stiffeners help to reduce, the maximum stress from 52.0412MPa to 35.3578MPa.

(a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed leaf

Figure 6.18: Stress-guided stiffened Leaf.

The stress fields, stiffeners and 3D printed object of a leaf is shown in
Figure 6.18. In this example, the initial maximum stress in the leaf without
any stiffening structures is 54.9437MPa as shown in (a). After attaching a total
volume of 112.512mm3 stiffeners (b) to the leaf, the maximum final stress drops
from 54.9437MPa to 20.2208MPa as depicted in (c) and the final printed 3D
model is given in (d).

6.11 Summary

The stress guided stiffener optimization framework uses a stress field to guide
the distribution of seeds. A parametrization of the input object based on LSCM
is computed to map the geometry and seeds to 2D. A Voronoi diagram of the
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projected 2D seeds is calculated and 2D stiffeners are reconstructed from the
Voronoi diagram and the projected mesh. Finally, the 2D stiffeners are projected
back to 3D space by area coordinates and a size optimization is conducted
to obtain least supporting structure under current configuration. And some
stochastic Monte-Carlo simulations are repeated so that local minimum can be
avoided. The results are lightweight supporting structures that can sustain given
boundary conditions, external forces and material strength.
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Chapter 7

Conclusion and Future
Work

7.1 Overview

Large span shell structures are widely applied in architecture, engineering and
daily life. To support these shell objects, additional supporting structures are
used to improve bending resistance and overall structural soundness. It is obvious
that the more material used to stiffen the object, the more solid and sound it
will be. But the increase of material will also increase both the cost and time of
fabrication. Additionally, the generation, layout and shape of the stiffeners are
not easy even for experienced experts or architecture. Therefore the objective of
this research is to design automatic pipelines with a few simple user inputs that
can automatically generate and optimise the supporting structure for the input
geometry without a lot of manual efforts. To this aim, three different methods
of enhancing thin shell structures have been proposed in this research.

7.2 Edge stiffened structures

The first method is to combine traditional plate elements and beam elements to
simulate the in-plane membrane deformations and out-plane deflections respec-
tively. The stiffness contributions from the beam elements are calculated and
added to corresponding nodes. The optimization of this method comes into two
parts, 1) a layout optimization to generate stiffeners and remove redundant ones
and flow stiffeners to align stress field and 2) a size and shape optimization to
further reduce material usage while keeping structural soundness. The disadvan-
tage of this method is the stiffeners are aligned to the mesh edges and the edges
need to be updated repeatedly during the flow step.

The limitations future work of this method are:

• The in-plane behaviour of the plate element is simulated using CST element.
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Although the CST element is simple to formulate and compute, it is only
used to simulate constant strain in-plane deformation. Advanced triangular
elements like Linear Strain Triangular element(LST) that are capable of
accounting for various variable strains inside an element should be used to
replace CST element;

• DKT triangle element assumes the input is thin shell structures, for thick
shell structures, elements without neglecting shear forces should be more
appropriate;

• The method is based on the principal stress directions which are computed
from FEA results. However, the FEA results depend on the external
loads. As a consequence, the rib-shell structure has remarkable structural
properties under the initial external load. When the loads change, the
overall performance cannot be guaranteed. Actually, this is a common
limitation for all FEA-based method.

7.3 Uni- and bi-directional stiffened structures

Unlike the first method which changes the geometry constantly during the flow
process, the stiffened plate element allows stiffeners to be placed anywhere within
the shell element. The theory applies plate element’s shape function to stiffeners
so that the stiffness terms from the stiffeners can be integrated together into
the plate elements. Based on the stiffened plate element, the second method
computes the bounding box of the geometry and slice the object in uni- and
bi-directional directions to create uni- and bi-directional stiffeners. The stiffener
generation step is followed by a size optimization of the cross-section. To avoid
local minima, different number of slices in both directions are simulated to find
out the best material usage.

The limitations and future work for this method are:

• The Axis Aligned Bounding Box (AABB) of a gemotry is sliced equally in
space to generate supporting stiffeners without considering the stress field
therefore the distributions of unidirectional and bidirectional stiffeners are
not optimized for the stress map. An approach to overcome this problem
is to find the bounding box of areas exceeding material strength and slice
the geometry within these critical areas.

• During the shape optimisation, only rectangular cross-section has been
discussed, other cross-sections with good mechanical properties need to
be investigated to assess their performances in saving material costs and
improving structural strength and stiffness.

• During the size optimization, all the stiffeners are assumed to be the same
and have same cross-section size. This assumption will involve much less
optimization variables and can be much faster to find the optimal result in
the design domain. The disadvantage of this method is that the optimized
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stiffener structure will have the same size over the whole geometry and
cause material waste in low stress areas. An improvement to this process
is to let each stiffener segment has its own width and height to relax
constraints on the cross-section.

7.4 Stress guided stiffened structures

The second method generates stiffeners in an intuitive and straightforward way by
slicing bounding box of the geometry spatially equally. The generated stiffeners
are not stress guided so that may cause material waste at low stress areas.
To overcome this problem, the third method is first to compute a probability
map which will help disperse seeds based on the stress field. The strategy for
spreading seeds is to place more seeds over critical areas since theses places have
higher stresses therefore larger probability. Once the seeds are obtained, they
are projected to 2D space using LSCM to create a Voronoi diagram. The 2D
diagram is then projected back to 3D space so that edges of the 3D diagram
are a representation of the stiffeners. The size optimization is carried out to
further reduce material use. However, the seeds generation is a random process
so that the computed Voronoi diagram and generated stiffeners are also random
patterns. To ensure global optimization result, some Monte-Carlo simulations
are conducted to search in design domain to find global minimum.

The limitations and future work for this method are:

• In current implementation, each plate element can at most has one seed at
the centre of the element, limiting the location and number of stiffeners
within the element. In the future, the seed should be randomly placed
within the element and the element should be able to have multiple seeds
so that more supporting structures can be introduced for this element.

• The distribution of seeds are based on the ratio of element stress against
material strength. And the ratios of all elements are assumed to be fixed
during the seed insertion step which is not accurate. In the future, an
incremental way of adding seeds should be discussed to update the stress
field after each insertion.

• Since the Monte-Carlo simulations are independent of each other, the
method can be easily parallelised to use several threads to simulate various
situations simultaneous in the future.
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