
Non-functional Requirement Prioritization Approach

Varun Gupta
*
, Shivam Lohia, Deniz Çetinkaya and Hye-jin Kim

Assistant Professor-III, ASET/CSE, Amity University, Noida.

Student, B. Tech, ASET/CSE, Amity University, Noida.

Assistant Professor, Department of Software Engineering, ATILIM University,

Turkey.

Business Administration Research Institute,

Sungshin W. University, Seoul, Korea

Vgupta7@amity.edu , lohiashivam@yahoo.com, deniz.cetinkaya@atilim.edu.tr,

hyejinaa@daum.net

Abstract

This paper proposes a non-functional requirement prioritization technique where

both functional and non-functional requirements are prioritized and that is based on

AHP (Analytic Hierarchy Process) technique employing suitable aspects.

The non-functional requirements are further re-prioritized based on their

dependency with high priority functional requirements and usage counts. The usage of

the proposed method is illustrated with a hypothetical example. The technique is also

executed on a case study of the evolving software and the technique resulted in

selection of 16 requirements out of 30, yielding considerable reduction in the number

of requirements to be implemented. Although the use of the AHP technique may limit

the optimization, the use of the numerical assignment technique based on the usage

count and dependency count do considerably reduce the number of requirements.

The proposed technique prioritizes non-functional requirements independently from

functional requirements but they are further selected in terms of their dependencies

and usage counts with respect to functional requirements.

Keywords: Non-functional requirements, functional requirements, prioritization

1. Introduction

Non-functional requirements together with functional requirements comprise the

complete software system. Functional requirements are demanded by the customer and

intended users since they satisfy the needs or expectations of the users. Users generally

not directly ask for non-functional requirements but these requirements determine the

level of acceptability of the software system. For example, a user may need many

functions to be provided by the ATM software, but the level to which it can be used

depends not only on functional requirements but also on non-functional ones like

security, reliability, usability, performance, etc. In any incremental software

development process, the development team has to perform decision making about the

requirements to be implemented under resource and time constraints. Number of

requirements is numerous and increases significantly with every increment, which

makes it difficult to select the set of functional and non-functional requirements.

There exist many techniques for prioritization of non-functional requirements like

those proposed in (Dabbagh and Lee, 2013; Dabbagh et. al., 2014; Thakurta, 2013).

These techniques may be based on various approaches like separate prioritization of

functional requirements from non-functional ones, prioritization together or hybrid

* Corresponding Author

mailto:Vgupta7@amity.edu
mailto:lohiashivam@yahoo.com
mailto:deniz.cetinkaya@atilim.edu.tr
mailto:hyejinaa@daum.net

approach as proposed in (Chopra et. al., 2016). It had been reported in literature

that the prioritization of non-functional requirements is mostly ad-hoc and non-

functional requirements are mostly ignored or neglected (Mairiza et. al., 2010a,

b; Thakurta, 2013). However, it had been reported that the non-functional

requirements are crucial for the product to be successful (Svensson et. al., 2011).

This paper presents a non-functional requirement prioritization approach which

is based on findings of (Chopra et. al., 2016) that non-functional requirements must

be prioritized separately but in accordance with the functionality of the proposed

system. The paper is structured as follows: Section 2 explains the proposed

algorithm and Section 3 illustrates the use of the proposed technique with a

hypothetical example. Section 4 executes the technique on a case study of the tool

―automatic analysis and comparison of different release planning methods‖ and

highlights the optimization achieved. Finally, the paper is concluded and directions

for future work is given in Section 5.

2. Proposed Requirement Prioritization Approach

The proposed algorithm for the prioritization of non-functional requirements does

the prioritization of functional and non-functional requirements separately using AHP

(Analytic Hierarchy Process) technique considering the aspects like business values,

cost, time or any other as deemed necessary by the organization. The non-functional

requirements are further re-prioritized and selected in accordance with their impact on

the highest priority functional requirements, dependencies with them and historical

usage count. The idea is to first prioritize the requirements separately, then to consider

all non-functional requirements with only highest priority value (threshold may vary

from company to company) on the basis of their dependencies with these functional

requirements and usage count as revealed by the historical values of same or similar

projects. So, the non-functional requirements that are ranked high by the developer and

have dependency on these functional requirements and are used maximum times, are

considered to be of highest priority.

Usage count of non-functional requirements is to be managed through establishing

relationships with the usage count of functional requirements. The algorithm is given

as follows:

ALGORITHM: NFR_Prioritization (F, NFR, USAGE, DEP).

Where F is set of functional requirement with cardinality N,

NFR is the set of non-functional requirements with cardinality M,

USAGE is the set that stores the usage count for every element of the set NFR,

DEP is the N * M matrix that stores the dependency count between one element of set

F and another element of set NFR. The value of DEP lies in the range of 0 to 9 where

0 means no dependency and 9 means highest dependency (subjective judgment).

Step 1. Prioritize both F and NFR separately using AHP technique.

Step 2. Select the functional requirement from the set F that has threshold

value of priority above the organization dependent value of Q. Call

this set as F
1
.

Step 3. Populate the DEP array by putting the elements of set F
1
 as columns of

the array and all NFR as the rows. The array is to be filled by the

entries lying between 0 to 9. This is subjective judgment of the

developer.

Step 4. Populate the USAGE set.

USAGE(i) = U(F(j)) + U(F(k)) + …….. + U(F(l))

Here U is the function that returns the usage count of a functional

requirement F(i). Here a NFR say i is dependent on functional

requirements j, k and l.

Step 5. Prepare three buckets namely High priority, Medium priority and Low

priority. Put the NFR in particular bucket according to the value of

established priority and maximum value of DEP array. In other words,

first put NFR in particular bucket according to the priority value. Then

reshuffle those of medium and low priority bucket to higher level (low

to medium and medium to high) with highest value of dependency

with functional requirements belonging to the set F
1
.

Step 6. Further shuffle the requirement from low to medium and medium to

high according to their usage count values. The bucket with High

priority is to be implemented during current release.

The algorithm employs the numerical assignment technique in step 5 and 6. The

ever increasing requirements may make the proposal bit less scalable due to the use of

AHP technique but large number of requirements can be handled as numerical

assignment technique is also employed.

3. Hypothetical Example

Let there are 4 functional (A, B, C and D) and 4 non-functional requirements (E, F,

G and H) and are already prioritized using AHP resulting in the ordering B, D, A, C

and H, G, F, E. The usage count is given as E(5), F(2), G(1) and H(1). The dependency

count of each NFR with other functional requirements is given in Table 1.

Table 1. Dependency Count of Each NFR on all Functional Requirements

A B C D

E 2 1 2 2

F 4 1 2 8

G 5 2 1 1

H 2 2 2 4

The H and G are in High priority bucket, F is in medium and E is in low priority

bucket. Let’s suppose that B and D are above threshold and considered as high priority.

On the basis of Usage count, E will get shifted to medium priority bucket. On the basis

of usage count, only the requirement E will get shifted to High priority bucket. Thus

three NFR’s will be implemented namely H, G and E.

4. Proposed Method Evaluation

The proposed technique is evaluated on a software project of tool for automatic

analysis and comparison of different release planning methods, developed in the

Computer Programming laboratory of Jawaharlal Nehru Govt. Engineering College,

Sundernagar, India.

The reason for using this tool was that this project was implemented in the year

2012 and the authors had the evolution details of the software. This software evolved

six times in form of six increments. The total functional requirements of sixth

increment were 24 and non-functional were 6.

The proposed technique was executed in the following steps:

1. The 24 functional requirements and 6 non-functional requirements were

independently compared using pair wise comparison using AHP technique. The

total number of pair wise comparisons were 276 for functional and 15 for non-

functional requirements. Let’s denote non-functional requirements by A, B, C,

D, E and F.

2. The AHP established the priority of all requirements and as per the analysis of

historical changes in requirement priorities, it had been observed to keep the

threshold value at the 50% of the number of requirements on the basis of its

priority.

3. Total 13 functional requirements were finally selected for later stage processing.

4. All six prioritized non-functional requirements were placed in either of the three

buckets i.e. High priority, Medium priority and Low priority. Requirement B

and F were added to High bucket, A in medium bucket and C, D and E were

added to Low priority bucket.

5. The requirements were added in six increments and the usage count was

maintained for all requirements. To maintain it, the counter is associated with

each requirement and as the software is getting executed in the laboratory, the

usage count value changes.

6. The six non-functional requirements were organized as rows and 13 functional

requirements as columns of the dependency matrix. The dependency values

were filled. The B and F remained in High bucket, A remained in medium

bucket and C moved to medium bucket with others remaining in Low bucket.

7. Based on above dependency values, the usage count of all non-functional

requirements was calculated. The requirement A moved to High bucket with

others remaining in old buckets.

8. High bucket thus has requirement A, B and F, medium has C and Low has D

and E.

9. Software team must select all 13 functional requirements and 3 non-functional

requirements from High bucket and may go ahead with medium bucket if

resources allows.

10. This way, there were total 16 requirements out of 30 requirements.

.

5. Conclusion & Future Work

The proposed technique prioritizes NFR separately from functional requirements but

considers their dependencies with functional requirements and the usage count. The

use of AHP will make the proposal susceptible to scalability problem but not to that

amount due to use of numerical assignment technique. Further, subjective judgments

may prove to be threat to validity. The validation of the proposed work on large data

set is planned as the future work.

References

[1] Dabbagh M. and Lee S., ―A Consistent Approach for Prioritizing System Quality Attributes‖, 14th

ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, (2013), pp. 317-322.

[2] Dabbagh M., Lee S. and Parizi R., ―Application of Hybrid Assessment Method for Priority

Assessment of Functional and Non-Functional Requirements‖, International Conference on

Information Science and Applications (ICISA), (2014).

[3] D. Mairiza, D. Zowghi and N. Nurmuliani, (2010a), ―An investigation into the notion of non-

functional requirements‖, ACM symposium on applied computing—SAC, pp. 311–317.

[4] D. Mairiza, D. Zowghi and N. Nurmuliani, (2010b), ―An investigation into the notion of non-

functional requirements‖, In Proceeding of the 25th ACM symposium on applied computing. Sierre,

Switzerland.

[5] Thakurta R. (2013), ―A framework for prioritization of quality requirements for inclusion in a

software project‖, Software Quality journal, vol. 2, pp. 573–597.

[6] Svensson R., Gorschek T., Regnell B., Torkar R., Shahrokni A. and Feldt R. (2011), ―Prioritization

of Quality Requirements: State of Practice in Eleven Companies‖, IEEE 19th International

Requirements Engineering Conference, pp. 69-78.

[7] Chopra R., Gupta V., and Chauhan DS (2016), ―Experimentation on accuracy of non-functional

requirement prioritization approaches for different complexity projects‖, Perspectives in Science, vol.

8, pp. 79-82

Authors

Varun Gupta, has done PhD, M. Tech (Research) and B.

Tech (Hon’s) in CSE. He is working as assistant Professor-III in

amity school of Engineering & Technology (ASET), Amity

University, Noida. He is working in the area of Software

Engineering and had worked with National Institute of

Technology-Hamirpur, PEC University of Technology-

Chandigarh and Indian Institute of Technology-Mandi. The

author has authored numerous research papers in peer reviewed,

referred International Journals and various International and

National Conferences that were held in India and Abroad.

Shivam Lohia, is doing Btech in CSE from ASET, Amity

University, Noida, U.P.. He had been doing his minor and major

research project under the guidance of Dr. Varun Gupta & Dr.

Deniz Cetinkaya. He is interested in software engineering

especially requirement prioritisation. He has technical expertise

in C, C++, java and SPSS. He has implemented various

technical projects and has various scholastic achievements to his

credit.

Deniz Çetinkaya, received PhD from Delft University of

Technology (The Netherlands), her Master from Middle East

Technical University and Bachelor degree from Hacettepe

University. She is working as an Assistant Professor in the

Department of Software Engineering, ATILIM University,

Turkey. She is working in Software Engineering, Systems

Engineering, Simulation, Conceptual modeling and Model

driven development. She had numerous papers in leading

Journals and Conferences.

