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Abstract 

More than three million people are suffering from stroke in England. The process 

of post-stroke rehabilitation consists of a series of biomechanical exercises- 

controlled joint movement in acute phase; external assistance in the mid phase; 

and variable levels of resistance in the last phase. Post-stroke rehabilitation 

performed by physiotherapist has many limitations including cost, time, 

repeatability and intensity of exercises. Although a large variety of arm 

exoskeletons have been developed in the last two decades to substitute the 

conventional exercises provided by physiotherapist, most of these systems have 

limitations with structural configuration, sensory data acquisition and control 

architecture. It is still difficult to facilitate multistage post-stroke rehabilitation to 

patients sited around hospital bed without expert intervention.  

To support this, a framework for elbow exoskeleton has been developed that is 

portable and has the potential to offer all three types of exercises (external force, 

assistive and resistive) in a single structure. The design enhances torque to weight 

ratio compared to joint based actuation systems. The structural lengths of the 

exoskeleton are determined based on the mean anthropometric parameters of 

healthy users and the lengths of upperarm and forearm are determined to fit a 

wide range of users. The operation of the exoskeleton is divided into three regions 

where each type of exercise can be served in a specific way depending on the 

requirements  of users. Electric motor provides power in the first region of 

operation whereas spring based assistive force is used in the second region and 

spring based resistive force is applied in the third region. This design concept 

provides an engineering solution of integrating three phases of post-stroke 

exercises in a single device. With this strategy, the energy source is only used in 

the first region to power the motor whereas the other two modes of exercise can 

work on the stored energy of springs. All these operations are controlled by a 

single motor and the maximum torque of the motor required is only 5 Nm. 

However, due to mechanical advantage, the exoskeleton can provide the joint 

torque up to 10 Nm. 

To remove the dependency on biosensor, the exoskeleton has been designed with 

a hardware-based mechanism that can provide assistive and resistive force. All 

exoskeleton components are integrated into a microcontroller-based circuit for 

measuring three joint parameters (angle, velocity and torque) and for controlling 

exercises. A user-friendly, multi-purpose graphical interface has been developed 

for participants to control the mode of exercise and it can be managed manually or 

in automatic mode. To validate the conceptual design, a prototype of the 

exoskeleton has been developed and it has been tested with healthy subjects. The 

generated assistive torque can be varied up to 0.037 Nm whereas resistive torque 

can be varied up to 0.057 Nm. The mass of the exoskeleton is approximately 1.8 kg.  

Two comparative studies have been performed to assess the measurement 

accuracy of the exoskeleton. In the first study, data collected from two healthy 
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participants after using the exoskeleton and Kinect sensor by keeping Kinect 

sensor as reference. The mean measurement errors in joint angle are within 5.18 

% for participant 1 and 1.66% for participant 2; the errors in torque measurement 

are within 8.48% and 7.93% respectively. In the next study, the repeatability of 

joint measurement by exoskeleton is analysed. The exoskeleton has been used by 

three healthy users in two rotation cycles. It shows a strong correction (correlation 

coefficient: 0.99) between two consecutive joint angle measurements and  

standard deviation is calculated to determine the error margin which comes under 

acceptable range (maximum: 8.897). The research embodied in this thesis 

presents a design framework of a portable exoskeleton model for providing three 

modes of exercises, which could provide a potential solution for all stages of post-

stroke rehabilitation. 
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Chapter 1   Introduction 

In the last two decades, the mortality rate due to stroke has increased as per the 

statistics provided by WHO (World Health Organization)(Thrift et al. 2017). 

Patients suffering from stroke usually lose their muscle functions. Such 

occurrences may lead to loss of power or complete paralysis of limbs if left unused 

in the acute phase. It is recommended that intensive occupational therapy in the 

early stages can provide superior rehabilitation to the affected limb (McPherson 

and Ellis-Hill 2007). Stroke is a life-threatening event that affects not only the 

person who is the victim but also their family members and the caregivers. 

Paralysis is a condition caused by complete loss of muscle function of one or more 

muscle groups. In such cases, patients do not have any control of physical 

movement of the affected part. Also, different cognitive problems may occur due to 

stroke-like problems with concentration, memory and visual perception (Stroke 

Association 2018a) which do not allow them to do the normal activity of daily 

living. In general, people lose their mobility, way of communication as well as their 

strength, therefore, they have to go through some bio-mechanical exercises to 

recover their original strength. It has been proven that if patients are under 

rigorous and intensive rehabilitation for several months after stroke, their active 

range of motion as well as muscle strength can increase significantly (Krakauer 

and Marshall 2015). The sooner the rehabilitation training started, the more likely 

they are to regain the lost abilities and skills. A repetitive and early training 

session will improve their neuro-motor functionality. The training includes all 

forms of orthopaedic and neurological lessons that would be compatible with the 

human muscle movement. The rehabilitation training is generally performed by 

physiotherapist but patient has to confront a lot of socioeconomic and 

technological problems (Lo and Xie 2012) such as cost, time constaint and lack of 

intensitive therapy due to the limitations of conventional therapy which are 

described below.  

1. It has been found that a physiotherapist can run the training for 8-10 hours a day 

for subacute rehabilitation (Winstein et al. 2016) and can provide the service at a 

very high cost (Tam et al. 2019). According to the report of Stroke Association of 
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the UK, the numbers of stroke-affected people are increasing day by day (Figure 

1.1) which in turn also increases the demand for intensive therapy. Present 

Statistics shows that there are about 1.2 million stroke survivors (Stroke 

Association 2018b) in the UK. The annual health and social costs of caring for 

disabled stroke patients are estimated to be in excess of £5 billion in the UK (Sabeo 

Plc 2017). 

 

Figure 1.1. Stroke statistics (Stroke Association 2018b) 

2. There is a shortage of sufficient number of trained physiotherapists (Condon and 

Guidon 2018) in the UK. Therefore,  people with short-term training have to 

perform these activities which may not be effective and may cause negative effects 

on patients. They may even omit certain exercises which are essential for patients. 

3. It is not possible for patients to receive the recommended amount of medical care 

from manual therapy (Clarke et al. 2015). The training session is not adequate due 

to the fatigue of therapists because after a few sessions of therapy, 

physiotherapists got tired and they are unable to support post-stroke patients with 

their joint movements. Patients may not get repetitive and accurate exercise 

sessions in case of manual intervention. On the other hand, exoskeleton could 

potentially provide rehabilitation training for a longer period of time without any 

break even without the presence of a therapist (Ren et al. 2013). 

4. Due to unavailability of therapists, robotic-assisted therapy could be a possibility 

to provide post-stroke rehabilitation in remote areas. Any trained person can offer 

rehabilitation training to a patient with the help of exoskeleton from a remote 

location. 
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Considering time, cost, repeatability, reproducibility and accuracy, robotically 

assisted rehabilitation process could be a better option than human-assisted 

training (Lo et al. 2010). Robotic exoskeletons are proved to be clinically beneficial 

for providing rehabilitation therapy to post-stroke patients (Saha et al. 2016) in 

case of providing long term and intensive therapy. The purpose of exoskeleton in 

human rehabilitation is to strengthen motor skills, provide mobility training, 

constraint-induced therapy and wide range-of-motion therapy. Exoskeletons or 

wearable skeletons are people-oriented robots designed to be worn for training 

and assistance. These robots are designed based on the function and shape of 

human body so that users are able to control intuitively. Exoskeletons can assist in 

walking, running, jumping or even lifting objects one would normally not be able 

to. These examples are only some of the most basic ways that these robots will be 

used for. It may be put on to different parts of human body such as upper limb, 

lower limb, wrist or as full-body vest. There have been a number of research 

projects on human arm exoskeleton, it started with the concept of supporting 

military personnel in a war zone for undertaking strenuous works. However, as 

time moved on, the area of application has expanded to a large number of diverse 

applications. Broadly it can be divided into three major areas: firstly, it can be used 

as an assistive device for paralysed and elderly people; Secondly as a therapeutic 

device for patients suffering from different neuromuscular weakness; and finally it 

could be used as powerful muscle support for military personnel in lifting under 

hazardous loading conditions. So the design and development of such systems are 

driven by the requirements depending on the application. Most of the daily life 

activities are performed by upper limb of human body, for an example wheelchair 

based users can perform eating, picking and placing objects and grasp or push 

something without using their lower limb. In this research project, we have 

focused on upper arm exoskeletons used for post-stroke rehabilitation. 

1.1 End-effector based systems for rehabilitation 

Initially, end effector based systems have been used for rehabilitation therapy. It 

only connects the distal part of forearm with a system that looks like a serial 

manipulator. The movements of the end effector can change the position and 

orientation of whole arm since the distal part of forearm is connected to the 
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system, all other segments automatically move with it. It is easy to design since it 

does not take care of the structure of human arm. But the main problem with end-

effector based systems is that it is difficult to initiate a particular movement of a 

specific joint (Molteni et al. 2018). Dependent on the configuration, sometimes it 

may create a risk to a patient’s arm. Notable systems in this category are MIT 

MANUS (Krebs et al. 2000) and CRAMER (Spencer et al. 2008) (Figure 1.2). 

Therefore it is difficult to provide specific joint based exercises with end effector 

based system (Molteni et al. 2018). To achieve a specific joint based therapy, 

exoskeleton based rehabilitation process needs to be engaged. 

           

MIT MANUS (Krebs et al. 2000)    CRAMER (Spencer et al. 2008) 

Figure 1.2. End effector based robotic rehabilitators 

1.2 Types of Exoskeleton 

This particular area of research needs a complete understanding of human 

movements, involving the anthropometric data, its kinematics and dynamics. 

Mostly two types of design have been developed as shown in Figure 1.3. The first 

one is ground-based exoskeleton system which is attached to a base platform such 

as ARMin (Nef et al. 2009). The second one is body-based portable/wearable 

device such as Titan arm (Beattie et al. 2012). 

          
        ARMin (Nef et al. 2009)         Titan arm (Beattie et al. 2012) 

Figure 1.3. Arm exoskeleton systems (ground & body-based) 
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The question is whether rehabilitation based exoskeleton should be a complex 

system installed in hospitals or care centres, or it may be used in a home setting 

with simple and easy to use configurations. Exoskeletons like ARMin (Nef et al. 

2009) and MGA exoskeleton (Carignan et al. 2007) require a large space for 

installation. Actuators can be fitted to human joint with structural support from 

the base (Nef et al. 2009) or remotely actuated by setting it on the rucksack 

(Beattie et al. 2012). The majority of ground-based exoskeletons have utilized 

brushed or brushless DC motor (Maciejasz et al. 2014) as actuators. Also, there are 

hydraulic driven exoskeletons (Vitiello et al. 2013), (Stienen et al. 2009a), (Otten et 

al. 2015) and pneumatically controlled exoskeletons (Klein et al. 2010),  (Culmer et 

al. 2011) available. In ground-based exoskeleton, the motion transferred to human 

arm is very stable because the connected actuators can provide maximum torque 

to joint irrespective of the weight of arm. Generally, hospitals, health care centres 

can have this facility to accommodate a large number of patients. All required 

rehabilitation features have been installed into those exoskeletons making those a 

sophisticated and expensive device. In the body based exoskeletons, all mechanical 

and electronic components including energy source are mounted on a patient’s 

body such as Titan arm (Beattie et al. 2012), shown in Figure 1.3. Human joint can 

be directly driven by actuator placed at joint or remotely controlled from different 

position like backpack or upper shoulder. The required joint torque is higher in 

case of joint based motor. Although there are new types of soft actuators like 

pneumatic muscle (Tondu and Lopez 2000) or flexible fluidic actuators 

(Landkammer and Hornfeck 2014) being developed for making portable and 

lightweight exoskeletons, there are still a number of structural limitations 

associated with these actuators. 

Ground-based exoskeletons are generally suitable for rehabilitation purpose 

where the size and weight of exoskeletons are not important. But for a portable 

exoskeleton, the actuator should be small and lighter in weight. If the device is 

meant to have several degrees of freedom, this entails a lot of actuators which will 

increase the mass and size of the exoskeleton. Devices like WOTAS (Rocon et al. 

2007) and HAL (Sankai 2010) fall under this category (Figure 1.4). Sometimes 

such devices have been installed on a wheelchair: MUNDUS (Pedrocchi et al. 2013) 

and MULOS (Johnson et al. 2001) for patients who do not have the ability to walk 
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(Figure 1.4). In such cases, patients can carry out exercises without worrying 

about the size and mass of the exoskeleton. 

                           

     HAL (Sankai 2010)    WOTAS (Rocon et al. 2007) 

                 

       MUNDUS (Pedrocchi et al. 2013)      MULOS (Johnson et al. 2001) 

Figure 1.4. Portable exoskeletons 

Depending on the type of actuation, exoskeletons can be further divided into two 

categories such as active device and passive device. 

• Active exoskeletons use actuator (electric, pneumatic, hydraulic or new 

type of actuation) for joint movement (Figure 1.5). As a result, the cost of 

such devices is comparatively higher. Since these systems use actuator, it 

consumes energy and requires a reliable energy source. 

• Passive exoskeletons use passive elements for actuation. It may include 

rubber band or spring actuated mechanism to apply supportive force or 

resistive force (Figure 1.5). Such exoskeletons do not use actuators, 

therefore, lighter in weight and could be used as a portable device. These 

exoskeletons are less expensive because of no actuator.  
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Motor based active exoskeleton  Spring based passive exoskeleton 

(Gopura et al. 2009)                               (Wu and Chen 2014) 

Figure 1.5. Divisions of exoskeleton based on actuators 

1.3 Strategy for multistage post-stroke rehabilitation 

The exercises involved in different post-stroke stages do not only recover the 

muscle strength to get patients back to normal life but also improves their mental 

health to fit into social life. Before selecting the type of exoskeleton, it is necessary 

to know the type of exercises required in different post-stroke stages. The 

rehabilitation process normally involves a series of biomechanical exercises to 

provide therapy from the acute phase to the full recovery phase after stroke. 

Variety of activity modules are followed by different organizations such as 

stroke.org, sabeo.com, flintrehab etc. They have shown different type of arm based 

exercises to improve muscle strength. Exercise may include normal arm 

movements as well as specific joint based training to enhance neuro-motor control 

and to improve the functional activities of daily living. Even different martial art 

technique like tai-chi is also being considered as the rehabilitation protocol for 

joint recovery (Zhang et al. 2014). If exoskeleton can provide all kinds of exercises 

aligned with the post-stroke recovery stage in a standalone model, it can be used 

for multistage rehab device. However, there is no standard approach documented 

yet for providing specific exercise from acute phase to full recovery stage. So, we 

have proposed a combined and comprehensive rehabilitation strategy of exercises 

for a single human joint that can be used as a potential standard solution for post-

stroke rehabilitation from acute to full recovery stage. A few of the published 

guidelines are listed below (Error! Reference source not found.). 
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Figure 1.6. Few published guidelines for stroke rehabilitation 

After analyzing the function and treatment procedure of those published 

guidelines (Proietti et al. 2016),(Pineda-Rico et al. 2016),(Chonnaparamutt and 

Supsi 2016), pathway of rehabilitation for a single human joint can be categorized 

into three distinct phases as per the stages of post-stroke conditions; acute, mid-

stage and last stage, (Figure 1.7). Each stage may consist of a specific set of 

exercises which can be achieved by a specific type of mechanism. Joint conditions 

in each stage show the sign of recovery. Early stage exercises need an external 

force to move the joint due to their poor muscle strength in the acute stage. After a 

rigorous and intensive exercise session, patients may regain some amount of 

muscle strength which helps them to perform some basic movements but those 

are not voluntary. In this phase, spasticity continues to decrease, and patients can 

initiate joint movements themselves. Therefore, exercises with supportive force 

will assist these patients to move their arms in a desired position and orientation. 

Assistive force along with individual effort may help those patients to generate 

complex and coordinated movement in the upper limb. After a lot of repetitions of 

arm movements, controllability of muscle can be improved to a stage where 

patients are able to initiate complex voluntary movement. However, the problem 

remains as they may not able to apply enough force during the movement. 

Exercises in the last stage can be strenuous for patients. To enhance muscle 

strength and joint torque, exercises are normally designed to place joint motion in 

more difficult situations where patients would need more joint torque to achieve 

the goal. Such exercises may help patients to enhance their load bearing capability.  
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Figure 1.7. Three phases of the rehabilitation process after stroke 

If exercises are performed in the transverse plane, users only need to overcome 

the frictional force (Figure 1.88a) due to joint stiffness. However, a lot of structural 

changes will be required in the mechanism if the same exercise is to be performed 

against gravity (Figure 1.88b). The range of reachable points with post-stroke 

robotic rehabilitation will improve if those exercises are performed in gravity 

compensated training environment (Beer et al. 2008). Postural stability can be 

achieved by the active holding of the body segment against an external force (Kolar 

2014). In upper limb daily life activities, gravitational force seems to play a 

significant role because it places body segment in real-life activities. This also helps 

to enhance the range of motion and relative stiffness of joints. Antagonistic muscle 

activity against gravitational force will lead to a better clinical output.  

                                   

a. Elbow rotation in transverse plane   b. Elbow rotation in sagittal plane 

Figure 1.8. Exercises in different planes 



Introduction 

 

10 
 

1.4 Motivativation for the research 

After analysing the exercises involved in post-stroke rehabilitation, three types of 

exercises (external force, assistive and resistive) have been proposed from acute to 

the last phase after stroke. It is also challenging to imitate human joint movement 

using exoskeleton due to its complex biomechanical structure. We could not find 

any standard guidelines available to design specific exoskeleton for providing 

multistage post-stroke rehabilitation. Most of the standard active exoskeletons 

(Nef et al. 2009; Rahman et al. 2010a) used electric motor placed at joint in a 

coaxial manner to deliver joint-oriented exercises. The internal control system can 

generate assistive or resistive motor torque as per the signal triggered by 

biosensor (EMG, EEG) (Krasin et al. 2015), however, biosensor based control may 

not be efficient for chronic stroke patients (Cesqui et al. 2013) because those 

sensors are affected by multiple factors of joint spasticity and anomalous stiffness. 

Fine EMG data extraction from stroke patients is difficult because of abnormal 

EMG-torque relations in chronic stroke (Bhadane et al. 2016). EEG based pattern 

recognition approach is also difficult to decode movement intention for post-

stroke patients (Koyas et al. 2013). Passive exoskeletons are designed to facilitate 

a specific type of exercise, such as TWREX (Housman et al. 2007) can only provide 

assistive force. The actuation system and its associated control architecture are 

different for providing a particular type of exercise. Therefore it is difficult to 

incorporate hardware-based multistage post-stroke rehabilitation using a 

standalone exoskeleton model. Researchers have come up with their own 

customized design for their particular needs. Few developed exoskeletons have 

focused on the design aspect which includes portability and user-friendliness but 

failing on providing different types of exercises. Though few exoskeletons have 

proved to be beneficial in terms of clinical outcomes, still a proper guideline is 

unavailable to get the best out of it. Joint-based motor may require higher torque 

compared to those structures where joint is controlled remotely from backpack or 

different arm location. To provide user’s joint movement consisting higher load, 

the specification of electric motor would change, for an example it’s size and 

weight can be increased (Marcheschi et al. 2011) and the production cost becomes 

higher. These types of systems always consume energy for maintaining the range 

and joint torque. The size of energy source is also increased to deliver higher joint 
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torque using motor, so the portability of the device would be compromised. The 

design of exoskeleton should follow human biomechanics and anthropometric 

data of human arm considering its safety prospectives. The existing models still 

have a lot of ergonomic challenges (Schiele 2008). A recent survey among the 

health professional and patients (Wolff et al. 2014) shows that patients would 

prefer a portable, simple and affordable system rather than a big complicated one. 

For a portable system, weight and energy consumption of the exoskeleton is 

another critical issue. Also, the cost of such kind of devices is too prohibitive for 

general public to afford. Which type of control system should be used in 

exoskeleton design is an important consideration. Day to day, the control system is 

getting improved by increasing the complexity of control algorithms with the 

advent of new sensors and fast computing power. When it comes to the dynamic 

interaction between user and exoskeleton, force or position individually is not 

enough to satisfy the control strategy. It must take account of different feedback 

parameters such as kinematic and dynamic joint parameters. The design must also 

consider different external force like gravitational force, frictional force etc. There 

should also be a provision of manual override together with local intelligence 

system for safety purposes. Modern adaptive control is a suitable choice for 

providing multistage rehabilitation using electric motor (Peternel et al. 2016) 

however it has a negative effect on the recovery rate such as controlling joint 

movement completely by making patients passive (Reinkensmeyer and Boninger 

2012).  The majority of these devices were platform-based and that may be one of 

the main inhibiting factors why users found such devices too cumbersome to use. 

Out of a few commercial portable exoskeletons, most are used as assistive devices 

for elderly people to support their ADL (Maciejasz et al. 2014), however, there is a 

lack of rehabilitation based exoskeletons. This opens up a question, what 

specifications of upper arm exoskeleton will meet users’ acceptability to become a 

portable exoskeleton providing multistage rehabilitation? Therefore, we have 

focused on designing an exoskeleton model to implement three stages of 

rehabilitation without compromising its portability and other necessary features. 

A metric of user’s requirement is drawn from the literature survey and shown in  

in Table 1.1 to map a correlation between user’s demand and its solution. 

However, it does not involve any patients or clinical input from medical experts.
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Table 1.1. Need vs solution (User’s requirement based on the literature survey) 
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                                           Need 

Exoskeleton can provide multistage post-
stroke rehabilitation from acute to full 
recovery phase 

* *                    

Reduction of the cost of post-stroke 
therapy 

* * *     *              

Intensive and long hours exercise    *                  
Exoskeleton can lift the forearm during 
external-force controlled mode 

    *                 

Portable device      * * *            * * 

Ease of controlling the mode of exercise         * * *           

Joint flexibility and ergonomic property            * *         

Safety of user              * *       

Wearable device                * *     

Maximum reachable workspace                  *    

Enhancement of user’s participation                   *   

Minimization of energy consumption                    * * 
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In order to design an upper arm exoskeleton model for implementing the metric 

shown in Table 1.1, we have chosen elbow joint as it is one of the simplest human 

arm joints having 1 DOF. Prior to constructing the elbow exoskeleton, we need to 

know a few parameters of human arm such as length of upperarm and forearm, 

mass of forearm. Length of arm segments and range of motion are required to 

create the structural formation of the exoskeleton and mass of the forearm decides 

the power of actuator used for joint movement. There is no direct method for 

measuring those body parameters, therefore, can be estimated based on the 

proportion between the segment and total body as per biomechanics rule (Table 

1.2). 

Table 1.2. Segment mass and lengths of human arm 

Segment Length of 
segment/ 

total 
height 

Segment 
mass/ Total 
body mass 

Length of centre 
of mass from 

proximal end (m) 

Radius of gyration 
with respect to the 
centre of mass (m) 

Upper arm 0.186 .028 0.436 0.322 
Forearm 
and hand 

0.254 .022 0.682 0.468 

Arm parameters of five healthy subjects have been taken to get an idea for 

constructing the exoskeleton fitting with elbow joint (Table 1.3).  

Table 1.3. Segment arm lengths and mass of five healthy subjects 

Subjects Height 
(m) 

Mass 
(kg) 

Upperarm 
length (m) 

Forearm 
length (m) 

Forearm 
mass (kg) 

# 1 1.60 79 0.298 0.406 1.738 
# 2 1.75 60 0.326 0.445 1.320 
# 3 1.81 89 0.337 0.459 1.958 
# 4 1.80 83 0.335 0.457 1.826 
# 5 1.62 46 0.301 0.411 1.012 

Mean 0.319 0.436 1.570 

 
Anthropometric data are subjective to users, however, in order to design the 

project, the structural lengths of the exoskeleton were determined based on the 

data collected from five healthy users. The mean of upperarm and forearm lengths 

are found to be 0.319 m and 0.436 m, however minimum length of a user was 

0.301 m and 0.411 m. Therefore, the structural lengths of the proposed 

exoskeleton were decided with forearm length of 0.40 m and upperarm length of 

0.35 m where both lengths can be adjusted up to ±0.04 m to fit the exoskeleton for 
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several users.  The mean of forearm mass is 1.570 kg; since the forearm mass can 

vary for different users, the maximum motor torque is kept as 5 Nm which can 

create a joint torque of 10 Nm due to the mechanical advantage (discussed in 

section 4.4.1). The maximum joint torque would be 5.89 Nm for lifting the forearm 

mass of 3 kg (full body mass of 136 kg), therefore the exoskeleton can easily 

provide the required joint torque during motor actuated control. The ideal 

reachable elbow angle is 140o (Manna and Bhaumik 2013), therefore the range of 

motion in the exoskeleton is supposed to be the same joint angle, however, due to 

structural limitation, the maximum reachable joint angle of the exoskeleton is 

designed to move the forearm up to 135o. The affordable cost of exoskeleton for 

general public is subjective, so the aim was to keep the cost of the device below 

£1000. Also, we have tried to keep the mass of the exoskeleton below 2 kg so that 

users can easily carry it during exercises. Wearability of the exoskeleton is 

evaluated based on the design specifications and opinion of users after using the 

exoskeleton. 

Based on the metric shown in Table 1.1 and calculated anthropometric parameters 

of healthy subjects, a product design specification (PDS) sheet has been formed 

where probable solutions are categorized into qualitative and quantitative 

solutions in Table 1.4 with ideal, target and achieved values. Most of the ideal 

values are subjective to user’s specifications, however, based on our study (Manna 

and Dubey 2018), few achievable targets were set-up. A prototype of the elbow 

exoskeleton has been developed to achieve most of the targets by implementing 

those qualitative and quantitative features. Achieved targets are shown in the sixth 

column of Table 1.4. 

Qualitative solutions have been achieved through the conceptualization and 

development of the exoskeleton whereas quantitative solutions have been attained 

through the selection of components and validated either through simulation 

results or experimental analysis, shown in Table 1.4. 
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Table 1.4. Product design specification (PDS) sheet 

Property Sl. 
No. 

Solutions Ideal value Target value Achieved value Qualitative 
/quantitative 

Validation method 

Structural 
property 

1 Integration of three types of 
exercises (external control, 
assistive force and resistive 
force) in a single system 

  Achieved Qualitative Device development 
and Experimental 
analysis 

2 Exoskeleton can provide variable 
assistive and resistive torque 

Subjective to users  Variation of torque:  0.04 Nm 
in assistive mode and 0.06 
Nm in resistive mode 

Qualitative and 
Quantitative 

Experimental 
analysis 

3 Production cost of exoskeleton is 
affordable for general public 

Subjective to users <£1000 £886 Quantitative Cost estimation 

4 Consistent and repeatable 
exercise module 

Subjective to users Repeatability 
Correlation 
coefficient ≥ 0.9 
1.96*SD of error =0 

Mean measurement errors in 
joint angle:  
5.18 % for participant 1 and 
1.66 % for participant 2 
Mean measurement errors in 
joint torque: 
8.48% for participant 1 and 
7.93% for participant 2 
Correlation coefficient ≥ 0.99 
Maximum error margin 
(1.96*SD of error) 8.897 

Quantitative Experimental 
analysis 

5 Motor can provide required joint 
torque 

5.89 Nm (joint 
torque for lifting a 
forearm of 3 kg) 

5.89 Nm 10 Nm Quantitative Simulation 

6 Enhances torque to weight ratio Subjective to users  By two Quantitative Simulation 
7 Weight of the exoskeleton is 

lighter 
Subjective to users < 2 kg 1.8 kg Quantitative Device development 

8 Smaller energy source for 
operation 

Subjective to users < 5 W 5 W Quantitative Device development  

9 
Design should follow the 
biomechanical structure and 
anthropometric data of human 
arm 

Elbow joint: 1 DOF 
Upperarm length: 
subjective to users 
Forearm length: 
subjective to users 

Elbow joint: 1 DOF 
Upperarm length: 
0.35 ±0.04 m 
Forearm length: 
0.40 ±0.04 m 

Elbow joint: 1 DOF 
Upperarm length: 0.35 
±0.04 m 
Forearm length: 0.40 ±0.04 
m 

Quantitative Device development  
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Property Sl. 
No. 

Solutions Ideal value Target value Achieved value Qualitative 
/quantitative 

Validation method 

Structural 
property 

10 Opinion of users after using the 
exoskeleton (wearability and 
usability) 

Subjective to users Opinion poll from 
healthy users  
Wearability ≥ 75% 
Ease of use ≥ 75% 

Opinion poll from 5 healthy 
users = Wearability ≥ 76% 
Ease of use ≥ 80% 

Quantitative Survey analysis 

11 Exoskeleton can reach maximum 
joint angle 

140o  140o 135o Quantitative Experimental 
analysis 

12 Using of passive energy source 
for joint actuation 

  Achieved Qualitative Device development   

13 Using of spring-actuated 
mechanism for switching 
between exercise 

  Achieved Qualitative Device development 

14 Use of universal joint instead of 
revolute 

  Achieved Qualitative Device development 

15 Compensation of joint 
misalignment during rotation 

  Achieved Qualitative Device development 

Control 
property 

16 Should have both control 
scheme: automatic and manual 

  Achieved Qualitative Device development 

17 Mode of exercises can be 
switched easily based on joint 
condition 

  Achieved Qualitative Device development 

18 Develop the control strategy 
using joint parameters without 
using biosensor 

  Achieved Qualitative Device development 

19 Control mechanism will allow 
users to put their effort to do 
joint movement 

  Achieved Qualitative Device development 

Safety 
property 

20 Mechanical constraint to restrict 
the joint movement beyond the 
anatomical limit 

  Achieved Qualitative Device development 

21 Software control to restrict the 
joint movement beyond the 
anatomical limit 

  Achieved Qualitative Device development 
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Through the PDS sheet (Table 1.4), major aspects of design-related issues of 

exoskeleton have been considered and the challenges can be overcome using 

appropriate solutions. For example, the design should consider human arm’s 

anatomical structure and anthropometric data to justify the optimal design 

performance. It should also consider the reconfiguration of the exoskeleton for 

misalignment in the design and weight of the device to make it portable and 

wearable. A user-friendly control algorithm can be implemented to facilitate 

automatic as well as manual set up in case of insufficient sensory data. Above all, 

the design should maintain the safety of users using electromechanical constraints 

and software controlled algorithm. 

1.5 Research questions and objectives 

The main research hypothesis is to investigate if an exoskeleton could be designed 

that may offer different modes of exercise using a standalone system for providing 

post-stroke rehabilitation at all stages. 

It is evident that a lot of advancements are still required in design and 

development of upper arm exoskeleton to meet these features as mentioned in 

PDS (Table 1.4) such as innovative mechanism, actuators, actuation system, type of 

exercises involved in post-stroke rehabilitation and control strategy. Therefore, 

the main research question addressed in this research project is qualitative which 

is shown below. 

What kind of mechanism can be designed that can provide three 

modes of exercises (external force, assistive force and resistive force) 

and is also portable and wearable in a standalone system? 

Considering user’s perspective, few quantitative measures have been targeted to 

cover many users. Table 1.4 shows the required quantitative properties with the 

target and achieved values. In order to satisfy the above research question, few 

broad objectives have been set for the project. 

 

➢ To implement three types of exercises in a single module,  

• The function of the exoskeleton needs to be distributed into three regions of 

the entire operating range where each mode of exercise can be served in a 

specific region in coordination with the stages of post-stroke condition. 
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➢ To build a portable and wearable system 

• Torque to weight ratio of the exoskeleton can be enhanced compared to joint 

based actuation model.  

• Both electric motor and springs can be incorporated in the actuation 

mechanism to minimise the energy consumption to reduce the battery size. 

Electric motor can be used to control the joint in external force-controlled 

mode whereas, in rest of the two modes, joint motions can be supported by 

stiffness of the springs for providing assistive or resistive force.  

• Spring stiffness can be used in the switching mechanism to shift between 

mode of exercises; therefore, no brake or clutch is required making it an 

energy efficient mechanism and thus reduces battery size.  

• The actuation mechanism can be designed in a way so that a single motor is 

used to achieve all these features. 

 

➢ To control the mode of exercise in the exoskeleton 

• In this design, joint range, velocity and torque can be changed since these 

parameters demonstrate user’s reachable workspace, recurrence of 

movement and weightlifting limit which can be used as the feedback 

parameter for patient improvement.   

  

➢ To compensate joint misalignment and joint offset during movement 

• The exoskeleton may use a universal elbow joint which can provide a slight 

movement in transverse plane to compensate for joint misalignment and 

offset. 

• Also forearm structure of the exoskeleton can have a linear passive joint to 

balance the joint misalignment between the centre of human arm and 

exoskeleton. 

 

➢ To maintain the safety of users 

• Both hardware and software-control can be implemented to restrict the joint 

movement beyond the maximum anatomical range. 
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1.6 Research methodology 

The research methodology adopted for this project is in conjunction with 

achieving this set of objectives. In the beginning, user’s biomechanics data (weight, 

height and elbow joint range) is needed to design the framework of the structure. 

Biomechanics data of five healthy users have been considered and the mean of 

those data has been used to decide the structural lengths of the exoskeleton, 

selection of actuator and actuation system. During the experiment, the joint 

parameters are measured to prove the working principle. Finally, feedback from 

participants is taken to evaluate the usefulness of the device. 

1. Conceptualization of the design: First of all, the existing approaches to 

providing post-stroke exercises have been assessed. After that, these exercises 

are arranged in three stages (external force, assistive and resistive) for acute to 

final stage of stroke, it has been analysed how those exercises provided by a 

therapist can be replaced by different mechanism and robotic systems (Manna 

and Dubey 2018). However, the main problem is how to integrate all these 

actuation systems in a single mechanism to facilitate all types of exercise 

without adding extra actuator. Therefore, different switching mechanism and 

clutches have been investigated. In the end, two switching mechanisms have 

been developed to exchange between different mode of exercise; external force 

to assistive mode and assistive mode to resistive mode. 

a) The first mode of exercise in the exoskeleton can be controlled by an 

external actuator such as electric, hydraulic or pneumatic and actuation 

system can be direct driven, link driven or cable driven mechanism. Now the 

selection of actuator and actuation system is one of the major issues as it 

determines the required joint torque. After analysing the advantages, 

specifications and control mechanism of all types of actuator, it has been 

found that electric motor is the most used actuator in active exoskeletons 

because it is easy to control and deliver high power cum bandwidth. It can 

be easily installed in the system. To enhance the torque to weight ratio, link 

driven actuation system is used instead of direct drive. So, a leadscrew-

based slider-crank mechanism is used to transfer the motion from the 

electric motor to elbow rotation.  
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b) After that, a spring-based switching mechanism is developed to switch from 

external force-based exercise to assistive force-based region. The advantage 

of using this mechanism is that the same motor (used for the external force-

based exercises) can be used for switching function.  

c) In the second mode of exercise, variable assistive force can be generated 

either by the torque variation of electric motor or passive actuator like 

spring with a separate mechanism to vary its force. In order to reduce 

energy consumption, it has been decided to use spring energy for giving 

assistive force to users. The developed switching mechanism (used for 

transferring the mode of exercise from assistive to resistive force mode) is 

also used to facilitate a range of variable assistance to users. 

d) The third mode of exercise (resistive force) can be developed either by 

complaint mechanism or some semi-active actuator (example 

magnetorheological fluid-based system). As it was not intended to use 

another actuator in the exoskeleton, therefore, spring-based antagonistic 

model (a type of complaint system) is used for varying the resistive force 

and motor rotation is used for changing the parameters in the proposed 

antagonistic spring set-up. 

Following a thorough literature survey (Manna and Dubey 2018), most of the 

desired design parameters (shown in Table 1.4) are incorporated to build a 

portable exoskeleton providing three modes of exercise. Also, different kinds of 

mechanism have been investigated to get better performance in terms of 

gravity compensation, better torque to weight ratio, compensation of joint 

misalignment and energy efficiency. 

 

• Hardware and Software development 

Considering all those parameters, a few conceptual joint models for elbow 

exoskeleton have been designed and 3D models (Model  1 to 10) are drawn 

in Solidworks platform for visualization (shown in Appendix II : Solidworks 

models of exoskeleton). 

i) In the first conceptual model (Model 1), a gear-driven joint 

mechanism is designed to give elbow rotation.  
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ii) In the next model (Model 2), a leadscrew-based mechanism was 

implemented with a motor to control the movement of elbow 

rotation. 

iii) In the next model (Model 3), a motor is fitted at the elbow for 

rotation and a leadscrew based slider-crank mechanism was set-up 

to reduce the required joint torque compared to the direct motor-

driven mechanism i.e. joint based actuation. 

iv) In the fourth model (Model 4), a spring was attached between 

forearm and upperarm as a part of the gravity compensating 

mechanism, which also enhances the torque to weight ratio. 

v) In the fifth model (Model 5), a spring-based assistive force model 

was incorporated into the exoskeleton. Previously, a separate motor 

was used for this purpose, however, later the motor used for 

external force was utilised through an innovative mechanism. 

vi) In the sixth model (Model 6), spring-based actuation was combined 

with motor-based control in the exoskeleton model. Therefore, a 

switching mechanism was introduced consisting of two sliders and 

compression springs to divide the region of operation into two for 

different modes of exercise. 

vii) In the seventh model (Model 7), a spring-based antagonistic model 

was placed into the exoskeleton to generate resistive force. The 

linear movement of the nut slider on the leadscrew was used to 

support the model. A universal elbow joint was placed for user’s 

flexibility. 

viii) In the eighth model (Model 8), a torsional spring-based switching 

mechanism was incorporated in the exoskeleton to serve two 

functions: generation of variable assistive force and switching from 

assistive to resistive mode. The mechanism can be driven by the 

linear movement of nut-slider. The mechanism of arm holder was 

also designed. It can produce twisting motion to forearm. The 

mechanism can accommodate motor-controlled movements along 

with user’s originated movements to consider user’s ergonomic 
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comfort. As it is a different kind of forearm motion, an extra motor 

was used for it. 

The aim was to provide three types of exercise for three stages of post-

stroke rehabilitation; therefore, it needs to incorporate all kinds of 

actuation mechanism in a standalone platform. After several iterations and 

models, a final exoskeleton model (Model 9) has been designed to satisfy all 

features. A linear passive joint at forearm supporting link is engaged to 

compensate joint misalignment. 

• Experimental work 

A simulation study on the designed exoskeleton model is performed in 

Solidworks™ using the motion analysis tool. It includes experiments for 

evaluating the mechanical advantage of the design such as a comparative 

torque requirement for the proposed model with respect to a motor placed 

directly at the joint during movement, also whether the system is able to 

incorporate all three type of exercises or not.  

 

2. Development of the prototype: A working prototype is developed to 

establish the working principle of the proposed exoskeleton combining electric 

motor and springs. Stiffness of each spring used in the exoskeleton has been 

determined through mathematical modelling. Besides, the manufacturing cost 

of the exoskeleton is also calculated to estimate the cost of implementing post-

stroke rehabilitation using the exoskeleton. 

 

• Hardware and Software development 

A final prototype has been manufactured using 3D printed components. 

ABS is the structural material. Springs and rest of the components are 

assembled to convert it into a working model. 

 

• Experimental work 

Characteristics of all springs in the exoskeleton are evaluated and forces 

provided by those springs during motion have also been computed. 

Kinematics and dynamic analysis of the whole arm exoskeleton have been 
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done in MATLAB based on the mathematical model of the exoskeleton. A 

comparative study of torque requirement is shown for the proposed model 

with respect to the joint axis-based motor mechanism. Forces generated by 

the springs have been derived. Another study is carried out for finding out 

the variation of elbow joint stiffness at the end of the operating region. 

Dexterity of the exoskeleton has also been analysed.  

 

3. Controlling the mode of exercises: A joint parameter-based control strategy 

has been implemented to generate different exercises using the exoskeleton 

considering angle, velocity and torque. The exoskeleton has been tested with 

healthy users to verify its working principle. The wearability and usability of 

the exoskeleton are determined by the opinion of users through a post-

experiment survey. 

 

• Hardware and Software development 

A potentiometer is integrated with a microcontroller circuit to measure the 

joint angle and rest of the joint parameters like velocity and torque can be 

computed from the mathematical model of the exoskeleton. Switching 

conditions (specific boundary values of joint parameters) is defined to 

control the mode of exercise by the exoskeleton. Also, an application is 

developed in MATLAB to monitor joint parameters for user-friendly 

operation and to control the operation in two modes; in automatic sensory 

mode, the mode of exercise can be controlled autonomously based on the 

joint parameters; in the manual mode, the exercise mode can be changed 

manually. 

 

• Experimental work 

The experiment included the elbow joint movement by healthy users after 

wearing the exoskeleton. They can only participate in the experiment after 

agreeing with the participant information sheet and signing the participant 

agreement form. Users are asked to move their right arm in three different 

modes and their elbow joint angle is recorded. 
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➢ In the first mode (electric motor-controlled mode), users are asked to keep 

their arm idle so that electric motor can rotate the elbow joint. 

➢ In assistive mode, users are asked to use their normal strength to rotate 

their elbow joint. 

➢ In resistive mode, users are asked to use their normal strength to rotate 

their elbow joint. 

Joint parameters (velocity and torque) are computed at different modes of 

exercise. The main aim of the experiment is to analyse the working principle of the 

exoskeleton, whether the device can facilitate three types of exercise. 

4. Assessment of joint measurement using exoskeleton: The measurement 

accuracy of the exoskeleton is assessed through two experiments. In the first 

experiment, the measured joint parameters from exoskeleton are compared 

with Kinect sensor (Microsoft XBOX V2). In the following experiment, the 

repeatability of joint measurement is evaluated. Users can rotate their elbow 

wearing the exoskeleton multiple times. Ultimately, the correlation coefficient 

and SD of consecutive measurements are calculated. 

 

• Hardware and Software development 

A virtual platform is developed in Unity where user’s right arm movement 

is synchronized with a basketball and a 3D avatar is placed in the 

environment to produce a human touch. The operation and synchronization 

of arm movement are programmed in Microsoft visual studio.  Few audio-

visual features are also integrated with the movement of right arm.  

 

• Experimental work 

Healthy users can rotate their elbow joint in front of Kinect sensor wearing 

the exoskeleton in assistive mode. Kinect sensor can capture joint vectors of 

human body by its inbuilt motion capture technique therefore joint angle, 

velocity and acceleration can be computed with reference to time. 

Exoskeleton use potentiometer to measure joint angle and rest of the joint 

parameters are calculated from it. Euler-Lagrangian model of one degree of 

freedom manipulator is used for measuring joint torque and mass of the 
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forearm is calculated from the standard biomechanics rule. The measured 

data from Kinect are compared with the joint parameters collected from the 

exoskeleton to validate the model. 

Joint parameters from exoskeleton have been recorded for two full cycles of 

rotation (a combination of full flexion and extension) to compute the 

repeatability score. It is determined by the correlation coefficient of 

consecutive measurements and SD of measurement error. 

A small post-experiment survey is conducted to prove the wearability and 

usability of the exoskeleton. It consists of two questions and users can give 

answers using a scale from 1 to 5 (strongly disagree to strongly agree). 

1.7 Thesis structure 

The whole thesis consists of five chapters which are described below. 

1.7.1 Discovering the advantageous of robotic rehabilitation system over the 

manual therapy 

In Chapter 1, the severity of stroke on society was explained and showed how it is 

difficult for physiotherapists to provide the recommended amount of therapy due 

to certain limitations. It was also shown how exoskeleton can provide specific joint 

based therapy compared to end effector-based systems. Three types of exercises 

external force, assistive, resistive) were proposed for post-stroke rehabilitation 

after analyzing several established guidelines of exercise modules to make the 

rehabilitation process simple and straightforward. The existing exoskeletons were 

divided into two categories: body-based and ground-based depending on the 

structural configuration; active, passive and haptic depending on the type of 

actuation. The properties of each type of exoskeleton were explored to find their 

advantages and drawbacks. After reviewing the current status of exoskeletons 

based on post-stroke rehabilitation, a metric (Table 1.1) is shown to analyze the 

market needs and probable solutions as well as a product design specification 

sheet (Table 1.4) has been created along with all qualitative and quantitative 

features. To achieve the required features, a research question and few objectives 

were defined. In the end, the research methodology for the project is described 



Introduction 

 

26 
 

starting from developing the concept of the exoskeleton, making the prototype and 

validating the design principle. 

 

1.7.2 Reviewing the issues and limitations of available exoskeletons 

A comprehensive literature survey was carried out in Chapter 2 in order to find the 

existing design solutions to achieve the required features shown in PDS (Table 

1.4). The advantages and shortcomings of the existing actuators and actuation 

systems were described with quantitative data. It was found that electric motor is 

the most suitable choice as actuator. It also came out from the literature survey 

that energy efficiency of an actuation system can be maintained by the respective 

ways; enhancing torque to weight ratio of an actuator, collaborative usage of 

energy source by an active and passive actuator. Few kinematic and dynamic joint 

parameters were accumulated for controlling exoskeleton. Additional structural 

design features were recognized like universal joint for joint flexibility and passive 

linear joint for enhancing the ergonomic property of exoskeleton. Several other 

factors such as bandwidth of rehabilitation, degreed of freedom, redundancy, 

hyperextension and alignment were also discussed which could influence the 

designing process of exoskeleton. Finally, the process of integrating three types of 

exercises in a standalone system had been explored through two types of 

solutions; one is the software-based approach where motor can generate variable 

joint torque based on software-controlled algorithm whereas different hardware-

based passive systems can also generate assistive or resistive joint movement. 

1.7.3 Design and development of a new elbow exoskeleton to overcome the 

shortfall of existing systems 

These objectives were achieved by designing an elbow exoskeleton to facilitate 

three modes of exercises using an innovative mechanism. As discussed in Chapter 

3, structural analysis of the developed exoskeleton was carried out to validate the 

model. An energy-efficient actuation system was designed to accommodate active 

and passive actuation system. Therefore, the electric motor was used to control 

joint movements for the first mode when users are unable to move their joints 

whereas springs were used to change the amount of assistive and resistive forces 

for users in next two phases when users have some residual strength to undertake 
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exercises. All these modes were controlled by changing the region of operation 

which makes the exoskeleton easy to operate without implementing any complex 

algorithms, and it also removed the dependency on biosensors. The size of the 

energy source is reduced since spring force was used in assistive and resistive 

modes of operation without engaging any active actuator. To reduce the weight of 

the system and energy source, the exoskeleton was operated using a single motor 

and spring energy was also used for shifting from one exercise mode to another 

without using any electromagnetic switch. User’s safety is ensured in this 

exoskeleton by using the switching mechanism between motor control and 

assistive mode which worked as a safety gate and released the joint control from 

motor after crossing the maximum anatomical limit (135o). The required motor 

torque of the exoskeleton was reduced by two times compared to the joint based 

motor which allows users to use a smaller motor to generate the same torque. The 

exoskeleton can generate the maximum torque up to 10 Nm which is more than 

the required joint torque to lift a forearm mass of 3 kg. In this exoskeleton, a 

universal joint was used at elbow to offer flexibility to user’s movement. To fit 

different human arm size and to increase the level of ergonomic comforts, a 

passive linear joint combined with a compression spring was incorporated at the 

forearm supporting structure. The prototype of the exoskeleton was manufactured 

using 3D printed components and the cost of production is estimated to be £ 886. 

1.7.4 Controlling the mode of exercise in the exoskeleton 

The control model of the exoskeleton was developed by combining only three joint 

parameters: joint angle, velocity and torque without using any biosensor signal 

(discussed in Chapter 4). The estimated boundary conditions of these three joint 

parameters were used for switching between different modes of exercise. These 

specific values of joint parameters can be set as a standard for estimating the post-

stroke recovery rate at a particular stage. User can be promoted from external 

force-based exercise to assistive mode if they can rotate their elbow joint up to 

135o, self-movement at 1 Hz and joint torque up to 1.175 Nm whereas the 

conditions for crossing the resistive mode are reachable joint angle - 135o, joint 

frequency at 2 Hz and joint torque up to 1.232 Nm.  However, these switching 

parameters can be modified for different users as recommended by 
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physiotherapist. The cost of electronic control was reduced by computing different 

joint parameters from the outcome of one sensor without using separate sensors 

for measurement. For example, the joint angle was measured by calibrating the 

potentiometer value, therefore, the joint velocity and acceleration were 

determined by differentiating the joint angle with respect to time. Also, the joint 

torque was calculated from the developed mathematical model instead of using a 

rotary torque sensor. In order to make a user-friendly system, the exoskeleton was 

controlled in two modes using the developed graphical user interface. In sensor-

based automatic mode, the exoskeleton worked as a fully controlled system by 

integrating inbuilt microcontroller circuitry and sensor. In the manual control 

mode, users changed the exercise mode physically. 

1.7.5 Validation of the measurement accuracy of the exoskeleton 

The exoskeleton was used by healthy users and the joint parameters are recorded 

to see whether the developed mechanism can develop different mode of exercises 

or not. Also, the error between two consecutive cycles of full elbow rotation 

(flexion and extension) was calculated for all three modes of joint movement 

(motor control, assistive and resistive) to get the repeatability score of the joint 

measurement (discussed in Chapter 5). The correlation coefficient for all three 

modes was more than 0.99 which defines a strong correlation between 

consecutive tests. Also, the error margin was calculated by deriving 1.96 times SD 

of measurement error, the maximum value was 8.897. The scale of usability and 

wearability were determined by the data gathered from the post-experiment 

survey, which was happened to be 76% for wearability and 80% for ease of use. 

The measurement accuracy of the exoskeleton was validated by a comparative 

study where two healthy subjects were asked to move their elbow joint in front of 

Kinect sensor wearing the developed exoskeleton and the joint information 

collected from Kinect sensor was compared with the exoskeleton-based 

measurement. A virtual set-up was designed where users rotated their right arm 

following a basketball and Kinect sensor measured the joint angle. All the 

measured data from Kinect sensor were stored in an excel file and more joint 

features such as velocity, acceleration and torque were extracted using MATLAB. 

The measurement errors between the exoskeleton and Kinect sensor was turned 
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out to be in the acceptable range; 5.18% for subject 1 and 1.66% for subject 2 in 

case of joint angle; 8.48% and 7.93% for subject 1 and subject 2 respectively in 

case of joint torque. The above results proved that joint parameters can be 

monitored accurately using the Kinect sensor. This contactless measurement 

technique will give a pathway to use these joint parameters for conducting 

rehabilitation with the exoskeleton in future. 
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Chapter 2   Design parameters of an exoskeleton 

Although a large number of exoskeletons have already been developed and a lot of 

researches have been undertaken on it, there are some major issues which restrict 

their use as a portable rehabilitation device which can provide three types of 

exercises. There are few significant properties which should be incorporated in 

actuation system to get a compact and lightweight exoskeleton.  

All these key features have been categorized into four divisions (Figure 2.1): 

functional property, technological characteristics, financial benefits and 

psychological benefits.  

 

Figure 2.1. Key features required for a portable exoskeleton system 

Out of the four divisions, the first two are highly important. Functional property is 

related to the appropriate functioning of the system to the rehabilitation process 

which not only includes all types of joint movement but also ensures safety and 

comfortability to users. The main requirement of exoskeleton is to make it a handy 
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device which can be easily put-on and taken-off. One of the key factors of making a 

portable device is torque to weight ratio which should be high enough to support 

the maximum load during exercises. At the same time, the weight of the system 

should be lighter so that it will be wearable and convenient to move during 

exercises. The degree of freedom is another important factor of the design as the 

system is applied to human joint. The structural material is also essential for 

maintaining lightweight. Several actuation mechanisms have been designed for 

transferring motion from actuator to human joint. Choice of actuators and their 

supporting mechanical structure are mainly important for maintaining the 

required joint torque to rotate any joint. These mechanisms dictate the amount of 

energy needed for operation and ability to carry out daily exercises. Besides, the 

battery life is also crucial for supplying power to exoskeleton for a long time. All 

these attributes may require an energy-efficient mechanism to make it better than 

the existing models. Considerations should be given for the cost of actuator and 

type of sensor as it is important to make exoskeleton based rehabilitation a cost-

effective therapy compared to manual treatment. Moreover, awareness should be 

raised amongst the patients and caregivers for utilization of exoskeleton in 

rehabilitation, since the acceptance level of patients to cope with new technology is 

very low (Van Ninhuijs et al. 2013). Sometimes patients would not go for 

exoskeleton based therapy due to its complicated architecture and mechanical 

look. Though appearance is least important among all the construction parameters 

of the exoskeleton, it should still provide a pleasant and aesthetic look to make it 

attractive to the patients.  

The value of human labour rises with time whereas technical products becoming 

cheaper which will make these exoskeletons affordable. The prerequisites of an 

exoskeleton are significantly distinct for two stakeholder groups (Wolff et al. 

2014). Specialists might want an exoskeleton with innovative characteristics 

which can deliver the finest therapeutic lessons in terms of recovery. From their 

perspective, the actuation mechanism of an exoskeleton should be fit for creating 

an assortment of joint movements. The clients' perspective is to get a customized 

gadget which is wearable and easy to use with an attractive and tasteful look. In 

this way, it is difficult to combine the perspectives of two sides in the development 

of exoskeleton. Safety is one of the vital factors (Wolff et al. 2014) for structuring 
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any human-based frameworks which can be accomplished using specific 

mechanisms such as back-drivable system, compliant mechanism and serial elastic 

actuators (Maciejasz et al. 2014). The design of exoskeleton should follow the ISO 

9000 standards in the European Community (Duchemin et al. 2004) where the 

design is safe for use from structural point of view and secured 

electromechanically using limit switch and mechanical restriction. Those systems 

are required to be programmed to hold the joint motion under anatomical range.  

There are two types of movement in human arm: gross manipulation and fine 

manipulation (Manna and Bhaumik 2013). Shoulder and elbow joint are in charge 

of controlling human arm in a larger 3D space as opposed to wrist and joint joints 

which normally provides small manipulation task for fine movement. The weight 

lifting and other strenuous exercises are supported by shoulder and elbow joint 

whereas grasping, touching and other small-scale activities are performed by wrist 

and hand joints. Hence the properties of designed mechanism for facilitating 

movements of these joints are significantly different. For example, in case of 

shoulder and elbow joint, the level of joint torque and degree of freedom are the 

basic criteria therefore different actuation mechanism are incorporated to reduce 

the size and weight of the exoskeleton (includes the upper and lower arm). On the 

other hand, wrist and hand-based exoskeletons require very minute control for 

object manipulation with maximum degree of freedom. In general, an actuation 

mechanism for arm segments whether it is for upper arm, lower arm or hand, 

should produce a wide range of rehabilitation-based exercises required for post-

stroke patients.  

Actuators in exoskeleton can be divided into three types depending on its 

property; active, semi-active and passive (Figure 2.2). An active actuator can 

deliver a variable range of movements with various speed and torque. Electric 

motor, pneumatic and hydraulic systems are the most conventional active 

actuators which are generally used for exoskeleton (Manna and Dubey 2016). The 

semi-active actuator can’t provide any active torque to human joint however can 

apply resistive force if it has been displaced from its stable position. Normally 

there are two types of actuator named under this category: magnetorheological 

fluid based system (Oda et al. 2009) and compliant mechanisms (Van Ham et al. 

2009). This type of actuator controls the joint stiffness as per the task requirement. 
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Passive actuators provide assistive force to the joint; these actuators are based on 

passive elements like spring (Sanchez et al. 2004) or rubber band (Housman et al. 

2007) which uses its elastic property to generate force. There are some new kinds 

of actuators, for example, artificial muscle, shape memory alloy (SMA), 

electroactive polymer (EAP) and piezoelectric motor are also well received for 

exoskeleton designs (Letier et al. 2006).  

 

Figure 2.2. Type of actuators used in exoskeletons 

After investigating 46 arm exoskeletons (Manna and Dubey 2016), it has been 

found that 56% of the total exoskeletons have electric motors (either brushed or 

brushless) as an actuator. Figure 2.3 shows the statistics of stationary and portable 

systems based on different actuators. According to this survey, passive actuator-

based exoskeleton turns out to be the best choice for designing a portable system 

compared to those exoskeletons using conventional active actuators. However, it 

was discussed in the previous chapter that controlled joint movement is required 

in the acute phase of rehabilitation which cannot be achieved without active 

actuators. Out of all sorts of active actuators, pneumatic actuators are the 

favourable choice for making a portable exoskeleton, however, electric motors are 

still used as an actuator in most of the exoskeletons for providing actuation 

because of its linear and ease of control properties. Figure 2.4 shows a guide map 
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of different actuators along with its actuation system used in the existing 

exoskeletons. 

 

Figure 2.3. Statistics of actuator used for stationary and portable systems 



Design parameters of an exoskeleton 

 

35 
 

 

Figure 2.4. Different types of actuation systems 
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2.1 Actuation system for providing three types of joint movements 

In this section, the existing actuators and actuation systems have been discussed to 

provide three types of joint movement to elbow joint. The advantages, as well as 

the limitations, are described with quantitative data.  

2.1.1 External force-based exercise using active actuation   

At the primary stage of rehabilitation, patients get joint movements comprising of 

some predefined orthopaedic exercises at various frequencies since they don't 

have any muscle control left. As patients do not have active participation, all types 

of arm-based activities are completely controlled by exoskeleton as a part of 

exercises; joint movement produced by exoskeleton is attached to affected body 

segment of patients. In human body, few muscles activate synergistically to deliver 

movement to a single joint, however, it is quite challenging to recreate human 

muscle structures in exoskeleton design, though it could be possible to accomplish 

the same level of joint torque and speed by incorporating active actuators with the 

proper mechanism design. 

• Electric motor  

It has been found that electric motor is the most popular actuator used in active 

exoskeletons because it can be controlled easily and facilitates high power cum 

bandwidth. In generall, brushed DC motor is used due to less complicated 

electronics circuit. On the other hand, brushless electric motor provides better 

power to weight ratio. In the majority of existing exoskeletons, motor is used as 

direct drive actuator which is located at human joint. The motor should have the 

capacity to generate enough torque to start, accelerate and control the exercises at 

the specific speed required for the treatment. Exercises in this phase of 

rehabilitation mode are performed at different loads. Motors normally behave with 

specific attributes to coordinate the particular speed-torque relationship in a joint. 

When an exoskeleton attempts to lift human arm against gravity during 

rehabilitation (including its own mass), it is subjected to a varying level of torque. 

As these activities are carried out by motor, large motors might be required to 

assist the human arm. Problem happens when a heavy and bulky electric motor is 

placed at the joint axis which needs to be carried by user. The condition could be 

worsened when a serial manipulator type exoskeleton is attached to human arm 
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along with motors situated at joints. In this case, the motor used for shoulder has 

to take care of the load of the full arm including those motors used for elbow and 

wrist together attached to the mechanical structure. Sometimes more than two 

motors are connected in parallel as a parallel manipulator which acts more like 

muscle structure of human arm, for example, in MAHI (Gupta et al. 2008). The 

parallel mechanism also offers higher stiffness in a confined space. The motor 

produces high speed, low torque and is smaller in size but the frequency needed in 

rehabilitation is normally in the range of 1-2 Hz (Brooks 1990), therefore, those 

motors cannot be used. Gears are used in motor to reduce speed which typically 

adds more mass and decreases the efficiency level (Van Ninhuijs et al. 2013).  

Additionally, there is another issue with power consumption as it would fluctuate 

with the motor torque. The energy source of a portable exoskeleton should 

provide a continuous supply to the motor for a longer period. The bigger energy 

source meant additional mass to the exoskeleton. To improve the energy efficiency 

of a system, another direction of research emanating is on energy optimization 

techniques (Ghozzi et al. 2004).  

To overcome the torque and energy-related issues, many actuation mechanisms 

have been created along with motor to improve the ratio of torque to volume and 

torque to weight which in turn enhance the possibility of developing a portable 

system. A system with low inertia provides better dynamic performance. The most 

well-known arrangement is to put the motor in a remote location and controls the 

joint using link-driven or cable driven systems. Actuators can be located either on 

the posterior attached to backpack (Rahman and Avi 2015) or on the arm 

structure itself  (Agrawal et al. 2009). The four-bar linkage system was used to 

exchange the movement from one point to the next without any loss (Ching and 

Wang 1997). The advantage of using rigid links in mechanism is to transmit power 

without any loss of efficiency.  

Cable tension should be maintained positive for joint actuation in cable-driven 

exoskeletons, however, the mechanism causes frictional loss because of cable and 

pulley-based systems. Joint torque is also subjective to the stiffness of cable. Cable-

driven exoskeletons (Agrawal et al. 2009), (Ball et al. 2007), (Dehez and Sapin 

2011) and (Perry et al. 2007) can produce a higher range of movement compared 

to other existing designs. Two actuators are necessary to create a bi-directional 
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movement for a joint as it can generate motion in one direction (only pull but not 

push).   

The dynamic range of a motor is affected if it is used in combination with a speed 

reducing or torque enhancing component. In the event, if an arrangement is made 

to offload the actuator’s torque by balancing gravity, it not just reduces the power 

requirement of the whole system but also helps to make it compact. This type of 

technique is called passive gravity compensation technique. There are few 

approaches such as adding an extension spring with the actuator so that a portion 

of the required motor torque can be compensated using spring energy (Dubey and 

Agrawal 2011). This type of compensating model is called series elastic actuator 

which is developed by combining an elastic element like spring with the actuator. 

This type of arrangement reduces the impendence as well as provides a balancing 

force in gravity compensation (Crea et al. 2016). It also presents more resonances 

in the framework however brings down the functional bandwidth (Van Ninhuijs et 

al. 2013). As arm therapy doesn’t need higher bandwidth, this kind of design is 

used in many exoskeletons (Crea et al. 2016), (Ragonesi et al. 2011). The elastic 

element of exoskeleton also provides safety (Chen et al. 2015) in arm movement 

by adding compliance. 

The tension of a spring can be varied by the motor associated with it so that it can 

support extra load of the arm (or exercise with different loads in hand). To 

overcome frictional loss and backlash problem, sometimes electric motor is used 

along with a cable-capstan reducer (Letier et al. 2008) in place of the conventional 

speed reducer. A motor associated with capstan can adjust the tension between 

spring and joint. By using planetary gearbox with limited backlash and low 

reduction ratio, the frictional loss and creep in the cable-driven system can be 

reduced. Sometimes a slip clutch can be attached to a motor for providing safety 

from spastic motions (Carignan and Liszka 2005). It also functions as a torque-

limiting device. If the joint torque crosses a specific limit, the slip clutch will 

separate the actuator from the exoskeleton structure. It enables free movement of 

the affected joint if spasm occurs in human arm. Clutches can be used for 

improving the usefulness of springs and actuators in exoskeletons (Diller et al. 

2016). The clutch is connected to springs to control the spring force. The harmonic 

drive can provide high gear ratio and high torque in a compact space (Taghirad 
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and Belanger 1998). It can also perform complex dynamic behaviour compared to 

conventional gear drives. HAL is an example of harmonic drive based commercial 

full-body exoskeleton (Kawamoto and Sankai 2002). 

• Hydraulic actuator 

The hydraulic joint actuator can generate the highest torque to weight ratio 

(Brown et al. 2003) however not appropriate for making a portable system 

because the entire system needs an oil pump along with a reservoir to produce 

compressive oil for movement. The push and pulling force are produced by the 

compressive fluid which is injected into a hydraulic cylinder under high pressure. 

Those systems have the issues of oil leakage and the control of systems is non-

linear. For example, exoskeleton like NEUROEXOS (Vitiello et al. 2013) has a big 

chamber and pump associated with it, therefore, it is extremely difficult to move it 

during motion. The leadscrew based motor-driven mechanism can be also used to 

drive the hydraulic cylinder to provide bi-directional motion. There are some 

newly developed hydraulic actuators which have been developed to enhance 

portability like hydro-elastic actuator (HEA) (Stienen et al. 2008) and flexible 

fluidic actuator (FFA) (Landkammer and Hornfeck 2014). Hydro-elastic actuator 

generates rotational force using a motor in combination with a spring which keeps 

the elasticity during motion. But it has the drawback of using an individual motor 

for a particular joint motion whereas a single reservoir with an oil pump is 

sufficient to give power to all hydraulic cylinder driven joints in an exoskeleton. 

FFA is a new type of modular fluidic actuator which is used for elbow joint. The 

main component of FFA is a few reinforced flexible bellows which are connected 

together and inflate due to pressurization. If an FFA is attached between two links, 

it can generate rotational movement to the joint. It needs a small hydraulic pump 

as well as a small portable reservoir for its operation.  

• Pneumatic actuator 

Pneumatic actuators can also provide good power to weight ratio. There are two 

types of pneumatic actuators which have been developed for exoskeleton; 

pneumatic cylinder based actuation and pneumatic artificial muscles. The function 

of pneumatic cylinder is the same as hydraulic cylinder where compressed oil is 

replaced by air to generate motion in both directions. The artificial muscle is also 
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known as Mckibben muscle (Tondu and Lopez 2000) which behaves like natural 

muscles and it is advantageous compared to existing active actuators because it 

can provide higher torque to weight ratio by maintaining less weight. The 

impedance property of pneumatic muscle is also lower than electric motors. 

Exoskeletons such as RUPERT (Balasubramanian et al. 2008), Pneu-Wrex 

(Reinkensmeyer et al. 2012), ASSIST (Sasaki et al. 2005), Salford arm (Tsagarakis 

and Caldwell 2003) fall under this category. The structure of pneumatic muscle 

consists of two layers fabricated from braided nylon. When the material is under 

pressure due to compressed CO2, the braided material inflates and the axial length 

contracts, therefore showing similar action like human muscle. This sort of 

actuator facilitates smoothness, lightness and compliance in the system. For this 

reason, pneumatic muscle based exoskeletons are also called soft-robots. It can 

produce natural compliance in the mechanism which in turn improves the 

ergonomic property of exoskeleton and makes it more user-friendly. Exo-suit 

(O'Neill et al. 2017) is a standout amongst the developed models of soft-robots, 

designed at Harvard University where the structural material of the exoskeleton is 

soft fabric and small wearable sensors are attached to it for measuring joint 

movement. This type of exoskeleton can be fitted under garments empowering 

users to avoid any open exhibit. Researchers have also developed different fabric 

using thermal adhesive film placed inside pneumatic muscle (Yang 2017) to 

enhance the performance of exoskeleton. However, there are several 

disadvantages of artificial muscle such as low bandwidth, non-linear 

characteristics, unidirectional operation and bigger size. It is difficult to put this 

type of actuator in a small area with other components due to its size. Since it can 

only provide motion in one direction, a pair of pneumatic muscle is required for 

generating bi-directional joint movement. Human joints such as shoulder joint and 

wrist joint having several degrees of freedom, therefore it is difficult to recreate 

human joint motion using this type of actuator. 

• Electroactive polymer 

Electroactive polymer (EAP) is a recently created flexible material which has an 

elastic property similar to human muscles (Bar-Cohen 2005). Using the movement 

of ionic species in this material, actuation can be produced. However, this material 
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can be used for micromanipulation in the exoskeleton. There are few qualities 

possessed by EAP for example, high bandwidth, higher electrical-to-mechanical 

power conversion ratio but has very low torque to weight ratio. Hence currently it 

is not fit for the actuation in exoskeleton. It is anticipated that the properties of 

EAP can be improved with further research and make it an acceptable solution for 

portable exoskeleton in the near future. 

• Ultrasonic motor 

Another new type of actuator providing high power to weight ratio is ultrasonic 

actuator which can be a suitable choice for portable exoskeletons (Choi and Choi 

2000). It can generate mechanical vibration depending on the piezoelectric effect. 

Unlike the other motors, it consists of two parts; electrical energy is converted into 

mechanical vibration using stator and the rotor converts the vibration into 

rotational movement using friction. There are two piezoelectric elements attached 

serially which are used to transmit the vibration from stator to rotor. The main 

benefit of using ultrasonic motor is that the ratio of torque/weight and 

torque/volume can be enhanced up to 20 times higher than DC motors (Letier et 

al. 2006). The other benefits of ultrasonic motor are lightweight system and 

compact in size. It doesn’t make any electromechanical noise during operation. 

This type of actuator can support rehabilitation based activities because it can also 

be operated at low speed. Along with few advantages, it has some disadvantages as 

well such as ultrasonic motor needs local force feedback to control its operation. 

Besides these actuators are very stiff and difficult to fabricate due to high 

production cost (Petit and Gonnard 2005). 

• Shape memory alloy 

The functional property of shape memory alloy (SMA) is similar to EAP and 

pneumatic artificial muscle because it contracts or expands with reference to heat. 

It can be an alternative to an activity which requires less movement. It is 

recognised as smart material fabricated from different metal alloy specially 

copper-aluminium-nickel and nickel-titanium. However, there are some materials 

from which it can also be created such as alloying-zinc, copper, gold and iron. SMA 

is normally deformed due to heating but it will return to its initial shape after 

cooling. It performs as a memory element by recovering from its pre-deformed 
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shape before heating. The shifting of crystalline structure between two stages 

causes the movement in SMA, known as martensite and austenite. The low-

temperature stage is called martensite and high-temperature stage is called 

austenite. The nonlinear property of SMA including hysteresis makes it difficult to 

control (Heo et al. 2012). Moreover, the bandwidth of SMA is very low due to the 

cooling cycle. Few hand exoskeletons have been developed using SMA such as 

hand orthosis (Dittmer et al. 1993)  and a differential rotational actuator (Tang et 

al. 2013). A couple of exoskeletons have also been designed with SMA wire-based 

actuators for elbow joint (Copaci et al. 2017) and forearm cum wrist (Hope and 

McDaid 2017) for rehabilitation of post-stroke patients. 

• Electrostatic force  

Electrostatic force (Diller et al. 2016) can be used for actuation by applying a 

voltage to a pair of electrodes separated by an insulating dielectric layer. Adhesion 

property of insulating material can be changed by the electrostatic force. This 

procedure will create a different gripping force at the electrode. Table 2.1 shows 

technical specifications of few existing exoskeletons using active actuator.  

Table 2.1. Exoskeletons with active actuator 

Exoskeleton 
Design 

Actuator 
Actuation 

System 
Degree of 
freedom 

Attached 
to 

Mass Torque Portability 

ARMin (Nef et 
al. 2009) 

Harmonic 
Drive 

Direct drive 
& link drive 

6 Full arm 18.76 kg 
37.76 

Nm 
No 

MGA 
exoskeleton 
(Carignan et 

al. 2007) 

Electric 
Motor 

Direct drive 7 
Shoulder, 

elbow, and 
forearm 

12 kg 137 Nm No 

ExoRob 
(Rahman et 
al. 2010a) 

Harmonic 
Drive 

Direct drive 5 
Elbow joint 
and wrist 

joint 

Actuator 
mass- 

1.15 kg 
5.5 Nm No 

MEDARM 
(Ball et al. 

2007) 

Electric 
Motor 

Cable drive 3 
Shoulder, 

elbow, 
wrist 

115 kg 73 Nm No 

ShouldeRO 
(Dehez and 
Sapin 2011) 

Linear 
Actuator 

Bowden 
Cables 

2 
Shoulder 

joint 
1 kg 50 Nm No 

NEUROEXOS 
(Vitiello et al. 

2013) 

Hydraulic 
Drive 

Antagonistic 
Compliant 
actuation 

3 
Shoulder 

joint 

2.30 kg 
(without 
pump , 

reservoir) 

15 Nm No 

Multiple Joint 
Robotic Arms 

(Jang et al. 
2004) 

Ultrasonic 
motor 

Direct drive 4 

Shoulder, 
elbow, 
wrist 

- 63 Nm No 



Design parameters of an exoskeleton 

 

43 
 

Exoskeleton 
Design 

Actuator 
Actuation 

System 
Degree of 
freedom 

Attached 
to 

Mass Torque Portability 

Skeleton Arm 
(Brackbill et 

al. 2009) 

Electric 
Motor 

Tendon- 
Driven 

6 Human arm - - No 

BONES (Klein 
et al. 2010) 

Pneumatic 
Parallel 

Drive 
4 

Shoulder 
and elbow 

- 22 Nm No 

Dampace 
(Stienen et al. 

2009a) 

Hydraulic 
Actuator 

Cable & 
spring drive 

4 
Shoulder 

and elbow 
- 50 Nm No 

Limpact 
(Stienen et al. 

2008) 

Rotational 
hydroelectric 

actuator 

Direct 
drive, cable 

& spring  
4 

Shoulder 
and elbow 

8 kg 36 Nm No 

Pneu-Wrex 
(Reinkensme

yer et al. 
2012) 

Pneumatic Link drive 4 
Shoulder, 

elbow, and 
finger joint 

- 
80 N 
force 

No 

Intelliarm 
(Ren et al. 

2009) 

Electric 
motor 

Direct drive 
& cable 

drive 
9 

Shoulder, 
elbow, 

wrist and 
finger joint 

- 
10.20 

Nm 
No 

SUEFUL-7 
(Gopura et al. 

2009) 

DC servo 
motor 

Direct drive 
& gear drive 

7 

Shoulder, 
elbow, 

wrist and 
finger joint 

5 kg 
5.90 
Nm 

No 

MIME-
RiceWrist 

(Gupta et al. 
2008) 

Electric 
Motor 

Parallel 
Drive 

3 Wrist 1.96 kg 
5.08 
Nm 

No 

Salford 
Rehabilitation 

exoskeleton 
(Tsagarakis 

and Caldwell 
2003) 

Pneumatic 
muscle 

Antagonistic 
actuation 

7 
Shoulder, 

elbow, and 
wrist 

2 kg 30 Nm No 

CADEN-7 
(Perry et al. 

2007) 

DC Brushed 
motor 

Cable drive 14 

Shoulder, 
elbow, 

forearm 
and wrist 

6.80 kg 
6.20 
Nm 

No 

WOTAS 
(Rocon et al. 

2007) 
DC motor Direct drive 3 

Elbow, 
forearm, 

wrist 
0.85 kg 8 Nm Yes 

MAHI Exos-II 
(French et al. 

2014) 

Frameless 
DC 

brushless 
motor 

Parallel 
Drive 

5 
Elbow, 

forearm, 
wrist 

Motor-
0.48 kg 

11.61 
Nm 

Yes 

RehabExos 
(Vertechy et 

al. 2009) 

DC 
brushless 

motor 
Direct drive 4 

Shoulder, 
elbow, and 

forearm 

Motor- 
3.70 kg 

150 Nm No 

ARAMIS 
(Colizzi et al. 

2009) 

DC brushed 
motor 

Direct drive 12 
Shoulder, 

elbow, and 
forearm 

19 kg 94 Nm No 

iPAM (Culmer 
et al. 2011) 

Pneumatic Link drive 6 
Shoulder, 

elbow, and 
forearm 

Wheelchai
r-based 
system 

15 Nm No 

L-Exos 
(Frisoli et al. 

2012) 

Electric 
Motor 

Cable and 
link drive 

5 
Shoulder, 

elbow, and 
forearm 

11 kg 
Torque
- 3.70 

Nm 
No 
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Exoskeleton 
Design 

Actuator 
Actuation 

System 
Degree of 
freedom 

Attached 
to 

Mass Torque Portability 

MULOS 
(Johnson et al. 

2001) 

Electric 
Motor 

Direct drive 5 
Shoulder, 

elbow, and 
forearm 

Wheelchai
r-  based 
system 

14.95 
Nm 

No 

Hybrid Elbow 
Orthosis 

(Pylatiuk et 
al. 2009) 

Hydraulic 

Flexible 
fluidic 

actuation 
using 

bellows 

1 elbow 1.20 kg 3 Nm Yes 

Exorn (Manna 
and Bhaumik 

2013) 

DC Brushed 
and 

brushless 
motor 

Direct drive 10 

Shoulder, 
elbow, 

forearm 
and wrist 

10 kg 
Motor 

torque- 
30 Nm 

Yes 

ALEx 
(Pirondini et 

al. 2016) 

Brushless 
Motor 

Direct drive 6 

Shoulder, 
elbow, 

forearm 
and wrist 

14.50 kg 80 Nm Yes 

ABLE (Garrec 
et al. 2008) 

Electric 
Motor 

Link drive 4 
Shoulder, 

elbow, and 
wrist 

- 18 Nm No 

SAM (Letier 
et al. 2008) 

Electric 
Motor 

Capstone 
wheel based  

drive 
7 

Shoulder, 
elbow, 

forearm 
and wrist 

6 kg 
19.70 

Nm 
No 

Myomo (Stein 
et al. 2007) 

DC motor Direct drive 4 
Elbow and 

wrist 
- - Yes 

SUE 
(Allington et 

al. 2011) 
Pneumatic Link drive 2 

Forearm 
and wrist 

0.56 kg - Yes 

Self-aligning 
exoskeleton 
(Beekhuis et 

al. 2013) 

Electric 
motor 

Gear drive 
and direct 

Drive 
3 

Forearm 
and wrist 

- 3 Nm Yes 

Exo-suit 
(O'Neill et al. 

2017) 

Soft textile 
pneumatic 

actuator 
 

Direct drive 1 Shoulder - 20 Nm Yes 

Pneumatic 
elbow 

exoskeleton 
(Yang 2017) 

Pneumatic 
muscle 

Direct drive 1 Elbow 0.30 kg 
300 N 
force 

 
Yes 

 
 

ExoGlove 
(Yap et al. 

2015) 

Pneumatic 
actuator 

Direct drive - Hand 0.20 kg - Yes 

Hand 
rehabilitation 
system (Tang 

et al. 2013) 
 

Shape 
memory 

alloy 
Direct drive 3 Finger - 

20 N 
force 

Yes 

Soft Robotics 
Wearable 

Elbow 
Exoskeleton 
(Copaci et al. 

2017) 
 
 

Shape 
memory 

alloy 

Bowden 
Cables 

1 Elbow 0.60 kg 
Pulling 
force- 
34.9 N 

Yes 
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Exoskeleton 
Design 

Actuator 
Actuation 

System 
Degree of 
freedom 

Attached 
to 

Mass Torque Portability 

Wearable 
Wrist and 
Forearm 

Exoskeleton 
(Hope and 

McDaid 2017) 

Shape 
memory 

alloy 

Spring and 
cable drive 

3 
Elbow and 

wrist 
0.95 kg 20 Nm Yes 

 

Short conclusion: After reviewing these actuators and actuation systems, 
electric motor is considered as a best suitable choice for providing the 
required joint torque in acute phase of post-stroke rehabilitation. Link-
driven mechanism can be used to enhance the torque to weight ratio. 

2.1.2 Methods for assistive force-based exercise 

After rigorous external force-based exercises, patients can initiate their joint 

movements because they normally recover some muscle strength. But they can 

barely keep their arms in a balanced condition to manoeuvre it in a certain 

orientation. Therefore, support from exoskeleton would be useful for patients to 

do different exercises. Assistive force in exoskeleton can be achieved using an 

active actuator or passive elements. 

2.1.2.1 Software based approach   

The easiest solution for delivering assistive force to user is based on soft 

computing approach (Rahman et al. 2010a) where the controller circuit can detect 

patient’s intention of motion using different biosensors (EMG and EEG). An 

intelligent control framework can produce variable motor torque depending on 

the patient’s triggering signal extracted from sensors. In case patients are not 

capable enough to do physical activity on their own, the control signal regulates 

the required motor torque which may help to refine arm movements. Exoskeleton 

would reduce the amount of motor torque in case of improved health conditions of 

patients. However, there are a few constraints regarding the stability of sensor 

signals. In software based approach, exoskeleton can show dissonant behaviour on 

sudden effect of impact force because of delay in the signal transmission. In this 

type of control, electric motor is engaged to human joint constantly along with 

other electronic components thus may result in constant draining of energy 

source. This technique may not be suitable for an energy-efficient system. On the 

other hand, the movement of human joint is always controlled by motor where the 
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function of motor is to maintain the rotation angle beyond the anatomical limit is 

not ideal from a safety perspective. 

2.1.2.2 Hardware based solution 

Through hardware-based mechanism, reverse forces can be generated against 

gravity to balance the arm in a specific position such as putting a counterweight in 

the exoskeleton on the opposite side of joint rotation so that the arm can be 

balanced by the load under gravity (White and Xu 1994). However, this type of 

solution is not useful for making a portable system where weight reduction is the 

main goal. A passive elastic material like spring or rubber band can assist human 

arm by reducing the joint torque for arm movement. Extension spring always 

reacts to get into its normal shape and due to its property, it would generate an 

opposite force to gravity. Therefore, passive elastic elements can create energy-

free exoskeleton because joint movement does not need any involvement of active 

actuator. 

Springs are normally attached to a mechanism made up of solid links (Wu and 

Chen 2014). The position of front-end or rear-end of the spring is tied between 

two separate links which are attached to two adjunct arm segments. Spring force 

may assist to deal with the arm movement that needs movement against gravity. 

Assistive power can be varied by modifying the connection points of the spring in 

the mechanism. However, the range of motion is reduced due to the free length of 

springs in those systems. Spring length may restrict the joint movement to a 

specific degree but using complex link mechanism, it may possible to enhance the 

efficiency of joint torque as well as the range of motion. Full range of joint motion 

should be obtained using zero-free-length spring which is not easy to manufacture. 

To expand the range of motion, cable can be attached to the end point of a spring 

(Herder et al. 2006). One arrangement is to put it in a remote position and 

provides the spring force using cables. Rubber band is also a good choice to 

provide assistive force without adding complexity to design such as T-WREX 

(Housman et al. 2007) which is a commercial exoskeleton, it is a simple and 

affordable device.  

Rotational joint torque is different for different users based on their arm size and 

mass. A user requires variable joint torque for lifting different loads in therapy 
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process. There are two different procedures to modify the spring force 

dynamically during the operation; one approach is to change the number of active 

coils in spring (Hollander et al. 2005) and another is to change its displacement 

range by moving the front-end or rear-end position of the spring (Kramer et al. 

2007). The first procedure changes the stiffness of a specific spring while the 

second arrangement changes the spring force. In any case, it is important to ensure 

that the changing of spring dimension should not last permanently and it should 

restore to its original dimension. Most of the exoskeletons have used extra motors 

to develop the platform for providing variable spring force. This type of 

arrangement might be suited from a control perspective however not suitable for a 

compact device due to the addition of extra motor. It also increases the size of the 

system. Lists of few passive element based exoskeletons are shown in Table 2.2. 

  Table 2.2. Exoskeleton with passive element (spring & rubber band) 

Exoskeleton 
Design 

Actuating 
system 

Passive 
elements 

Degree of 
freedom 

Attached 
to 

Mass Torque Portability 

T-WREX 
(Housman et al. 

2007) 
Link drive 

Rubber 
band 

5 
Shoulder, 

elbow, and 
finger 

- - 
Wheelchair

-based 
system 

Armon (Herder 
et al. 2006) 

Link drive 
and cable 

drive 

Spring 
based 

3 
Shoulder, 

elbow, and 
wrist 

- 
23 N 
force 

Wheelchair
-based 
system 

SLERT (Wu and 
Chen 2014) 

Link drive 
Spring 
based 

4 
Shoulder, 

elbow 
- - No 

Armeospring 
(Sanchez et al. 

2004) 
Link drive 

Spring 
based 

7 

Shoulder, 
elbow, 

wrist and 
finger 

- - No 

Hybrid arm 
support 

(Cannella 2015) 
Link drive 

Spring 
based 

1 
Arm 

support 
10 kg - No 

 

Short conclusion: After reviewing these actuators and actuation systems, 
passive spring-based system is considered as a best suitable choice for 
providing assistive force in mid phase of post-stroke rehabilitation because 
it does not need any energy source for actuation. However, there should be a 
provision to vary the range of the assistive force. 

2.1.3 Techniques for creating variable stiffness at exoskeleton joint 

The second phase of rehabilitation solely depends on patient’s recovery condition 

and assistive force. Neuromuscular activity improves with time as patients regain 

their strength. Training-induced cortical activation is dependent on post-stroke 

rehabilitation process and the difficulty level of exercises enhances the 

contralesional activation. It makes them familiar with real-time force activities 
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through different learning process. Therefore, exercises in the third phase of 

rehabilitation should be intense and strenuous with time.  

Joint stiffness of exoskeleton is being kept constant during the first phase of 

rehabilitation since patients do not participate actively. Patients start participating 

in their exercises in the second and third phase of rehabilitation. If the joint 

stiffness of exoskeleton can be made stiffer, patients have to give extra torque to 

move the joint. There are three different ways to vary the joint stiffness. 

2.1.3.1 Active actuator based joint stiffness control 

Dynamic joint stiffness control can be acquired in active actuator using soft 

computing technique to maintain a specific resistive force in a particular 

environment (Kircanski and Goldenberg 1997). An exoskeleton can impose 

variable joint stiffness to human arm during exercises by adjusting its motor 

torque. The strategy is similar to the assistive force based rehabilitation process 

but the nature of applied force is opposite. Toward the beginning of self-movement 

based activities, assistive force is required to support joint movements whereas 

variable resistive force is imposed later on to restrict those movements. This kind 

of technique is purely programming-oriented and it should be adaptable according 

to the health status of patients. As an example, patients may experience 

unpredictable neurological effects due to involuntary muscular contraction 

resulting in undesirable joint torque. 

2.1.3.2 Semi-active actuator based joint stiffness control 

The semi-active actuator can also control the joint stiffness in exoskeleton. The 

internal design mechanism of this actuator is only suitable for the application 

where resistive force is required because it can’t generate active force. It contains 

controllable fluid and its viscosity can be changed by adjusting its electromagnetic 

property. As a result, stiffness of the joint connected to it is also varied. One of the 

developed semi-active actuators is MR (Magnetorheological) brake which provides 

a resistive torque up to 1.1 Nm (Oda et al. 2009). The magnetorheological fluid is 

placed between the gap of stator and rotor. It contains a large number of micron-

sized magnetic particles inside the liquid carrier and forms a structure like 

magnetic chain whenever exposed to the external magnetic field. Eventually, the 

viscosity level of the fluid is modified and as a result, the stator can impose 



Design parameters of an exoskeleton 

 

49 
 

variable frictional force to the rotor and the mechanism can apply different 

stiffness at the joint. The advantage of MR brake is about its intrinsic stability to 

the patient for keeping their arm at a specific location. In some systems, the semi-

active actuator and normal actuator are combined together to provide stiffness to 

the joint with better efficiency and extra features which is not possible to achieve 

by the semi-active actuator. Normally, the operating voltage range of MR brake is 

2-25 volt with a current rating of 1-2A. 

2.1.3.3 Compliant actuator based joint stiffness control 

It is possible to achieve variable joint stiffness using different mechanisms. This 

type of approach can replace the complex control system by incorporating 

different passive component-based mechanism in exoskeleton structure. A couple 

of series elastic materials, for example, spring or bending rod can be used for this 

purpose. There are a couple of standard mechanisms used for changing the 

stiffness of joint however all of those procedures can't be utilized for human 

applications. The most standard solution is compliant actuator (Vanderborght et 

al. 2013). The property of compliant actuator shows elastic behaviour when the 

end effector of the mechanism deviates under an external force but comes back to 

its original state if no force is existing. It consists of passive elements which 

basically keeps and releases the elastic energy for actuation. It appears in recent 

publications that the compliant actuator is more efficient than electromagnetic 

brakes for making arm based exoskeleton as far as safety and comfort are 

concerned (Van Ham et al. 2009). The main advantage of using this type of 

actuator is that it normally imposes less impact force on the joint under external 

shocks and keeps it intact. From a technical perspective, stiffness and compliance 

are reverse in nature; a stiff actuator always tries to keep a human joint at a 

particular position if the external force is withdrawn. A compliant mechanism is 

displaced from its balanced position based on the applied force. However, it 

restores to its stable configuration with zero potential energy. Since the compliant 

property of a mechanism can substitute the non-stiff behaviour of it, it can be used 

as differential stiffness actuator. In actual circumstances, the exercises of post-

stroke rehabilitation require relatively less stiffness and the joint stiffness can be 

eventually increased when patients are able to regain their muscle control.  
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Active actuator can provide the characteristics of spring through control algorithm 

whereas passive compliant mechanism uses spring for generating the joint 

stiffness. The disadvantage of using active actuator is that it always needs power 

source to create any type of reaction force. On the other hand, passive compliant 

mechanism requires some additional components like spring and motor to vary 

the resistive force. A couple of existing designs are discussed here for creating 

compliant behaviour in a system such as: 

• Antagonistic controlled stiffness (Migliore et al. 2005): The structure of the 

mechanism consists of two non-linear springs associated with two 

actuators in series which are connected to the joint antagonistically, 

imposing force against each other. The joint stiffness of the compliant 

mechanism can be controlled by changing the displacement of those springs 

using actuator.  

• Structure controlled stiffness: A few mechanical structures such as 

cantilever beam or bending rod acts like a spring because of their elastic 

property. These material are also used to provide variations in stiffness 

(Speich 1999). The stiffness of those elements is decided by the structural 

material and dimension. The stiffness of spring can also be controlled by 

adjusting the effective spring length e. g. jack spring (Hollander et al. 2005) 

which uses a mechanism for controlling the effective number of active coils.  

Majority of the mechanisms providing variable stiffness generally use spring-based 

system which is controlled by one or two active motors. However, the addition of 

extra motors or mechanism increases the mass of the exoskeleton which is one of 

the principal inhibiting factors of portable exoskeleton development.  

Back-drivable actuators are also used for providing safety and comfort. Higher 

joint torque is required to actuate stiff actuator while back-drivable actuator can 

be actuated with a small amount of torque. In case the back-drivability of an 

actuator is turned out to be too low, the gearbox may be damaged because of 

sudden external force. The resonance of mechanical systems is increased (Van 

Ninhuijs et al. 2013) and the system bandwidth is reduced due to the addition of 

springs. A couple of exoskeletons offering variable joint stiffness are shown in 

Table 2.3. 
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Table 2.3. Exoskeleton with variable joint stiffness 

Exoskeleton 
Design 

Actuating 
system 

Actuator 
Degree 

of 
freedom 

Attached 
to 

Mass Torque Portability 

Semi-active actuator 

MEM-MRB 
(Oda et al. 

2009) 
Link drive 

Magneto-
rheological 
fluid brake 

1 Elbow 
26.40 

kg 
27.5 
Nm 

No 

MUNDUS 
(Pedrocchi et 

al. 2013) 

Link and 
cable drive 

Electro-
magnetic 
DC brake 

3 
Shoulder, 

and 
elbow 

2.20 kg - 
Wheelchair

-based 
system 

DVB orthosis 
(Loureiro et 

al. 2005) 
Link drive 

Magneto-
rheological 

Fluid 
1 Wrist 

<0.20 
kg 

50 N 
peak 
force 

Yes 

Compliant actuation system 

Biologically 
Inspired 

Joint 
(Migliore et 

al. 2005) 

Antagonistic 
series 
elastic 

actuation 

Electric 
motor 

1 Any joint - - - 

VSA-II 
(Schiavi et al. 

2008) 

Antagonistic 
series 
elastic 

actuation 

Electric 
motor 

1 Any joint 
0.35 
kg 

- Yes 

AwAS-II 
(Jafari et al. 

2011) 

Lever and 
spring based 

Electric 
motor 

1 Any joint 1.10 kg 80 Nm Yes 

Hybrid Dual 
Actuator Unit 

(Kim and 
Song 2010) 

Double 
spring based 

Electric 
motor 

1 Any joint 1.80 kg 50 Nm Yes 

CompAct-
VSA 

(Tsagarakis 
et al. 2011) 

Lever and 
spring based 

Electric 
motor 

1 Any joint - 117 Nm - 

vsaUT-II 
(Groothuis et 

al. 2012) 

Spring and 
belt drive 

Electric 
motor 

1 Any joint - - - 

HVSA (Kim 
and Song 

2012) 

Lever and 
spring based 

Electric 
motor 

1 Any joint - 
8.50 
Nm 

- 

VSA-CubeBot 
(Catalano et 

al. 2011) 

Spring and 
wire drive 

Electric 
motor 

1 Any joint 
0.26 
kg 

3 Nm Yes 

PVSA (Nam 
et al. 2010) 

Antagonistic 
actuation 
with cam 

Electric 
motor 

1 Any joint 
0.98 
kg 

- Yes 

VSJ (Choi et 
al. 2011) 

Leaf-spring 
based 

Electric 
motor 

1 Any joint 
4.95 
Kg 

- - 

DLR FSJ 
(Wolf et al. 

2011) 
 

Roller-based 
cam drive 

Electric 
motor 

1 Any joint 
1.41 
Kg 

67 Nm Yes 
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Exoskeleton 
Design 

Actuating 
system 

Actuator 
Degree 

of 
freedom 

Attached 
to 

Mass Torque Portability 

mVSA-UT 
(Fumagalli et 

al. 2012) 

Spring and 
gear drive 

Electric 
motor 

1 Any joint 
0.10 
Kg 

1 Nm Yes 

CCEA (Huang 
et al. 2011) 

 

Antagonistic 
link based 

spring 
Drive 

Electric 
motor 

1 Any joint 
0.80 
Kg 

13 Nm Yes 

MACCEPA 
(Van Ham et 

al. 2007) 

Link and 
spring drive 

Electric 
motor 

1 Any joint - - - 

 

Short conclusion: After reviewing these actuators and actuation systems, 
passive spring-based antagonistic compliant set-up can be considered for 
providing resistive force in last phase of post-stroke rehabilitation because it 
does not need any energy source for actuation. However, there should be a 
provision to vary the range of the resistive force. 

2.2 Mechanism for forearm motion 

Existing exoskeletons like ARMin (Nef et al. 2009), SUEFUL (KIGUCHI et al. 2016) 

can provide the twisting movement of arm using motor based operation. 

ShouldeRO (Dehez and Sapin 2011) use a series of motor connected serially in 

combination with a cable-driven mechanism to create alignment-free motion in 

human arm which can substitute the twisting motion. Sometimes two actuators 

are placed on shoulder top or remote location to control the clockwise-

anticlockwise twisting motion (Mao et al. 2015). Large numbers of motor consume 

more energy and increase the cost of the system. Tension in Bowden cable results 

in frictional loss. Parallel manipulator exoskeletons such as MAHI (French et al. 

2014) can generate twisting movement but the range of movement is restricted 

due to its mechanical structure. All these mechanisms used in those exoskeletons 

generate motor controlled movement without considering user’s flexibility. ARMin 

(Nef et al. 2009) has used back drivable motor for twisting motion. 

Short conclusion: The design should have twisting motion with a spring-
based system to enhance user’s flexibility. 

2.3 Other structural factors for designing exoskeletons 

Apart from the actuators and auxiliary structure of actuation systems used for 

upper limb exoskeleton, there are also other structural factors responsible for 

designing an exoskeleton which is discussed below. 
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2.3.1 Joint misalignment 

One of the major issues in designing exoskeleton is to align its joints with human 

arm when attached. During joint motion, the distal point of exoskeleton will move 

with respect to the centre of joint at different postures. The attachment is normally 

shifted to a new position (Figure 2.5), as a result, the actuator of exoskeleton may 

move a certain segment of the arm misaligned which is not desirable (Schiele 

2008). It may cause injury to patients such as scratching, attachment of 

exoskeleton to soft tissue may also create problems to patients  (Schiele and van 

der Helm 2006). Therefore, a perfect coupling is necessary to place the 

attachments near to the neutral tissue less prone to pain. Most of the modern 

exoskeletons are controlled through impedance or admittance approach which is 

based on force feedback. Due to misalignment, the joint of human arm may not 

match properly with the exoskeleton joint resulting in an error in force transfer. As 

exoskeleton behaves like a mechanical chain connected serially with several 

linkages, an offset will be generated at the end of each distal end. These 

consecutive errors will be accumulated and transferred to the next linkage. 

Though the offset may be minimal for a single joint, the accumulated error may 

create a major problem for proper device functioning. Use of spring actuated 

passive joints could compensate for misalignment (Schiele and van der Helm 

2006). In some exoskeletons, pneumatic artificial muscle has been used as actuator 

(Balasubramanian et al. 2008) which inherently acts like human muscle and may 

reduce the extra weight of passive joint.  

 

Figure 2.5. Change of centre of rotation during movement (Schiele 2008) 

Short conclusion: A linear passive joint can compensate the joint 
misalignment between human arm and exoskeleton. 

2.3.2 Degree of Freedom 

Based on the bioelectric signal generated in human muscle, the activation 

mechanism of human joint occurs by a bunch of muscle fibres. However, it is very 
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hard to reproduce the same kind of motion using actuators. A human arm can 

provide 7 independent DOF (shoulder-3 DOF, elbow-1 DOF, forearm-1 DOF, and 

wrist -2 DOF). Also, the structure of an exoskeleton requires passive joints to 

adjust joint misalignment. A couple of cable driven exoskeletons have been 

designed to mimic the tendon based actuation. However, large numbers of 

actuators will be required in cable driven exoskeletons making it complex and 

bulky. Shoulder and wrist possess multiple DOF from a single point. To imitate this 

type of characteristics using electric motors, several actuators need to be 

positioned in a small space and the axis of rotation of all actuators must coincide at 

a single point. Also the offset between all actuators should be minimum to make it 

an efficient joint. Parallel manipulators are designed to move its end effector in a 

3D space however its end-effector motion is restricted due to structural formation 

(French et al. 2014). A new solution has been proposed for providing multiple DOF 

from a single actuator by creating spherical magnet arrays using the magnetic 

charge (Motoasca et al. 2013). The movement of a spherical joint cannot be 

controlled by a single actuator however any position in a 3D space can be accessed 

by creating a magnetic field on the surface of a sphere. This concept is not yet 

implemented and still in research. In ShouldeRO (Dehez and Sapin 2011), several 

actuators are moulded and supported by Bowden cable to generate motion to 

shoulder joint. 

Short conclusion: DOF is an important consideration in exoskeleton design, 
for elbow exoskeleton one DOF rotational motion (flexion-extension) and 
forearm twisting motion (pronation-supination) should be considered 

2.3.3 Structural lengths and reachable joint angle 

The structural lengths of upperarm and forearm for making an elbow joint 

exoskeleton is decided based on the lengths of human arm. The structural lengths 

of the exoskeleton should be such that it will help users to reach maximum joint 

angle and provides comfort and flexibility to users. Most of the exoskeletons such 

as ARMin (Nef et al. 2009), CADEN-7(Perry et al. 2007) have considered the 

variation of arms length to fit with different users.  

Short conclusion: Structural lengths of exoskeleton should not be fixed, and 
can be determined based on the collected user’s anthropometric data. 



Design parameters of an exoskeleton 

 

55 
 

2.3.4 Bandwidth 

Actuator’s bandwidth of an exoskeleton decides the quality of rehabilitation 

services. If the bandwidth of an exoskeleton is same or higher than that of a 

patient, it shows better performance. The natural frequency of a human is in range 

of 1-2 Hz for unpredicted signal, 2-5 Hz for repetitive signal and 5 Hz for learned 

actions (Brooks 1990). Each actuator has specific characteristics. However, 

additional components such as gear and spring influence its bandwidth. The 

control bandwidth of DC motors is generally in the range up to 200 Hz (Schiele and 

Hirzinger 2011), however, can be reduced to 50 Hz using gear reduction. The 

cable-driven system can reduce the bandwidth up to 40 Hz. Spring attached DC 

motor delivers lower bandwidth compared to an independent DC motor relying 

upon the spring stiffness. The bandwidth of pneumatic artificial muscles is 2.4 Hz 

which is close to human muscles, 2.2 Hz (Aaron and Stein 1976). Hydraulic disk 

brake works at 10 Hz (Stienen et al. 2009b) and hydro-elastic actuator associated 

with spring can deliver the bandwidth in between 6.5-7.2 Hz (Vitiello et al. 2013). 

Short conclusion: The range of joint frequency can be varied between 1-2 Hz. 

2.3.5 Energy consumption 

Energy efficiency is equally important for designing a portable system. The 

required joint torque of shoulder, elbow, and wrist are not same as it relies on the 

inertia of the arm segment. Exoskeletons with gravity compensating mechanism 

may reduce the torque level, therefore consume less energy. Passive exoskeletons 

operate on the potential energy of springs for implementing assistive or resistive 

torque. At equilibrium condition, these systems are torque balanced with zero 

potential energy. WREX (Housman et al. 2007) and Armon (Herder et al. 2006) are 

the exoskeletons using this concept. Passive exoskeletons may be helpful for 

designing a portable system as they do not need any energy source to hold an arm 

joint in a balanced condition, but those systems can’t generate active actuation 

force. A structurally optimized system with a combination of active and passive 

components can be considered to design a portable exoskeleton. It should be able 

to provide two phases of self-initiated exercises; one with assistance and another 

with resistance. 

Short conclusion: A hybrid system of active and passive actuators can be 
combined to optimize the use of energy resources. 
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2.3.6 Redundancy  

Redundancy of an exoskeleton is nothing but adding an extra joint to the structure. 

Though the extra joint adds up complexity to the system, many researchers found 

that it provides extra advantages as well (Ren et al. 2009), (Gopura et al. 2009). 

Problems such as misalignment, singularity could be reduced with additional joint. 

It also helps the system to get flexibility similar to human arm and increase the 

level of ergonomic value and comfort  (Schiele 2008) shown in Figure 2.6. Also, the 

offset compensation in sternoclavicular joint and wrist joint is reduced using the 

redundant joint but at the same time, it will create complexity to the design, 

kinematics, and control, though these extra joints are passive in nature. 

 

Figure 2.6. Joint offset compensation using redundant passive DOF (Schiele 2008) 

Short conclusion: Redundant joint has an advantage of compensating joint 
misalignment. 

2.3.7 Singularity 

When two or more axes remain collinear, this results in unpredictable motion due 

to the loss of a DOF.  This is called singularity configuration and occurs in a 

structure where revolute joints are connected serially. In an exoskeleton, internal-

external rotations of shoulder sometimes align with elbow pronation-supination 

motion and may create this type of configuration. In these circumstances, small 

velocity of arm will require very large joint motions. From kinematics point of 

view, the solution to avoid the occurrence of singularity is to impose some 

constraints (joint angle limits) so that the link never reaches the singularity 

configurations. 

Short conclusion: The structure of exoskeleton should be designed to avoid 
singularity condition using mechanical barrier or software-controlled 
motion. 
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2.3.8 Modularity and reconfigurability 

Some exoskeletons have been designed by integrating different detachable parts 

and can be reconfigured for a specific joint motion. It also supports the portability 

and flexibility of the system. Depending on the type of rehabilitation service, the 

modules of the system could be changed and assembled. Therapy costs are claimed 

to be reduced by adopting this concept. MUNDUS (Pedrocchi et al. 2013) is a 

modular system. Another example such as Universal Haptic Device is used for 

shoulder and elbow joint however, can be used for elbow and wrist joint too 

(Oblak et al. 2010).  

Short conclusion: Modular and reconfigurable system can be dissembled and 
reassembled easily and can be used for the exercise of multiple joints. A 
series of small components can be combined to make a bigger system. 

2.3.9 Feedback signal 

Initially, exoskeletons relied on position data because it was based on resolved 

motion rate control or independent joint control (Manna and Bhaumik 2013). 

Later PD (Secoli et al. 2011) and PID (Tsagarakis and Caldwell 2003) controls were 

implemented where velocity and acceleration data were merged with position 

data for better stability and lower steady state error. Since positional data cannot 

analyse the dynamics of a system, torque (Gupta et al. 2008) and inertial sensors 

(Song et al. 2012) have been introduced. Sometimes an array of sensors is used so 

that force extraction at human-exoskeleton interface can be monitored in case of 

shifting of exoskeleton with respect to muscle (Tamez-Duque et al. 2015). In 

impedance (Gupta et al. 2008) and admittance (Mihelj et al. 2008) control, 

kinematic and dynamic data of exoskeleton are the controlling parameters. An 

EMG (electromyogram) sensor measures the bio-electric potential generated in 

muscles during the contraction using non-invasive electrode. This strategy has 

been used for upper limb exoskeleton (Gopura et al. 2009). More recently EEG-

based Brain-machine control (Viriyasaksathian et al. 2011) has been used to 

capture the pattern of neural activity in the brain that decides joint motion. Also 

visual (Secoli et al. 2011), audio (Secoli et al. 2011) and haptic (Letier et al. 2010) 

signals could be integrated for making a user-controlled autonomous system. 

Motion and physiological data can be captured from smart devices such as Mayo 
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Armband (Nymoen et al. 2015), Kinect sensor (Guevara et al. 2013). Figure 2.7 

shows a schematic of such a possibility.  

 

Figure 2.7. Feedback signal for an adaptive human-machine interaction 

Short conclusion: Both Kinematic (position, velocity and acceleration) and 
dynamic (torque, spasticity and stiffness) joint parameters should be used as 
feedback signal for controlling dynamic force in an exoskeleton. 

2.3.10 Material selection 

Selection of material for building exoskeleton is directly contributing to the weight 

hence the portability of the design. Most of the existing designs use metal alloy 

such as aluminium for constructing the body of the exoskeleton. However, with the 

advancement of new materials which are light as well as strong, portable 

exoskeletons could be developed from nylon, polypropylene, ABS (Acrylonitrile 

butadiene styrene). Carbon fibre also has high strength to weight ratio which could 

be suitable for developing a portable structure.  

Short conclusion: Lightweight and strong material like ABS can be used as 
the structural material for the exoskeleton. 

2.3.11 Hyperextension 

Hyperextension is the movement beyond the anatomical limit. It is one of the 

crucial requirements for designing exoskeletons. Every human joint has its range 

of motion and beyond that, it will cause injury. The exoskeleton design should be 

mechanically as well as electronically protected so that it operates in the safe zone. 
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Short conclusion: Electromechanical and software-controlled barrier should 
be incorporated to avoid hyperextension of joint movement. 

2.3.12 Workspace 

The design should cover maximum reachable points in 3D space. In an 

exoskeleton, workspace evolution is one of the important criteria since it shows 

how different rehabilitation activities can be provided. The majority of 

exoskeletons have limited workspace because of mechanical restrictions on link 

length and joints. Dexterous workspace always adds extra advantage to the 

ergonomic value of exoskeleton (French et al. 2014) therefore, can also avoid 

singular locations (Chen et al. 2007) The workspace evaluation can relate with the 

exoskeleton’s performance. 

Short conclusion: Workspace of the exoskeleton should be covering the 
maximum reachable range of motion with the utmost flexibility. 

2.3.13 Control system design 

Which type of control system should be used in exoskeleton system design is an 

important consideration. It should take account of different parameters like 

gravitational force, frictional force, and Coriolis components. Day to day the 

control system is enhanced by increasing the complexity of the control algorithms 

with the advent of new sensors and fast computing power. 

When it comes to the dynamic interaction between environment and robotic 

exoskeleton, force or position individually is not enough to satisfy the control 

strategy. The impedance of a system basically depends on the task to be 

performed. It specifies the relation between the interaction force and the desired 

motion.   Impedance control is based on force feedback where the error between 

the desired position and existing position is computed to create a force at end 

effector during contact. It is suited for low contact force. The main disadvantage of 

impedance control is that accurate force measurement requires compensation for 

natural dynamics of exoskeleton such as gravity loading and drives friction, it will 

show poor accuracy in free space due to friction. It can be improved by integrating 

torque sensor and joint with low friction. L-Exos is a classic example of this kind of 

exoskeleton (Frisoli et al. 2012). Admittance control is the opposite approach of 

impedance where the error of joint force is converted into the corresponding 

displacement which has been applied to servo controller to drive the joints to 
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desired position. Impedance and admittance control are complementary to each 

other. However, admittance control has the major drawback of instability for 

dynamic interactions. MGA Exoskeleton (Carignan et al. 2007) is an example of this 

approach and the more recently ARMin Exoskeleton (Nef et al. 2009) can operate 

in either admittance or impedance mode. Nonlinear sliding mode technique 

(Rahman et al. 2010a) is also proposed for controlling an exoskeleton used for 

shoulder, elbow and wrist joint. In this approach, an exponential reaching law is 

being used along with the integral of the error signal to have better tracking 

performance. The new trend is to use sophisticated control regimes like neuro-

fuzzy, genetic, hybrid and pattern-based control by integrating all types of bio-

signal to make it an intelligent system. Both EMG and EEG-based control has been 

executed with neuro-fuzzy control (Gopura et al. 2009). It makes a synergistic 

combination of the two techniques; reasoning based fuzzy algorithm with the 

learning pattern of neural networks. Also in this control, some complicacy due to 

the cognitive behaviour of human can be incorporated (Bueno et al. 2008). As an 

example, Fuzzy Hybrid Force-Position Control is used for the robotic arm of an 

upper limb rehabilitation robot powered by pneumatic muscles (Jiang et al. 2010). 

Nowadays the above control strategies have become obsolete and adaptive control 

is becoming popular for exoskeleton control since it can change the mode of 

exercises, level of difficulty and force level depending on the patient’s requirement. 

This can also include other forms of data like visual, audio and emotions to decide 

the ultimate control action. There should also be a provision of manual override 

together with local intelligence system for safety purposes. The overall system 

could be a hybrid control system where master/slave, as well as automatic local 

control scheme, may be integrated for rehabilitation and if there is any problem in 

the local control system due to malfunction, it should be controlled by the master 

controller from outside. Table 2.4 shows a list of existing control strategies along 

with feedback system used in arm exoskeleton. 

Table 2.4. Different control system and feedback sensor used in exoskeletons 

Exoskeleton Sensors and Feedback Control architecture 

ARMin (Nef et al. 2009) Force & Position sensor Labyrinth control scheme 
Sarcos Mater arm (Mistry 

et al. 2005) 
 

Force sensor Independent PD servo control 
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Exoskeleton Sensors and Feedback Control architecture 

HAL 5 (Sankai 2010) 
Bioelectric sensor, angular & 

acceleration sensors, floor 
reaction force sensors 

Cybernetic Autonomous 
Control 

MGA exoskeleton 
(Carignan et al. 2007) 

Force feedback & torque 
Admittance control & 

impedance control 

RehaBot (Hu et al. 2011) 
Position & kinematic data 

controlled 
Tele-rehabilitation 

 
ExoRob (Rahman et al. 
2010a), (Rahman et al. 

2010b) 
Force feedback Sliding mode control 

MEDARM (Ball et al. 2007) Position & kinematic data  Independent joint control 
ShouldeRO (Dehez and 

Sapin 2011) 
Angular position data Not defined 

NEUROEXOS (Vitiello et al. 
2013) 

Flow controlled 
Agonist-antagonist mechanical 

actuation system 
Multiple Joint Robotic 

Arms (Jang et al. 2004) 
piezo-deflection amplitude Independent joint control 

Skeleton Arm (Brackbill et 
al. 2009) 

Pressure & Kinematic data 
Kinematic & force based 

control 

BONES (Klein et al. 2010) 
Joint angles and cylinder 

pressure 
Impedance control 

Dampace (Stienen et al. 
2009a) 

Joint angles and torque Passive system 

Limpact (Stienen et al. 
2008) 

Joint angles and torque 
compliant impedance control 
and stiff admittance control 

Armeospring (Sanchez et 
al. 2004) 

Joint angles and grasp force Java Therapy* 

ASSIST (Sasaki et al. 2005) Joint angle EMG & torque based 
Pneu-Wrex 

(Reinkensmeyer et al. 
2012) 

Joint angles, grasp force 
 

PD force control 

Intelliarm (Ren et al. 2009) Joint angles & torque VR based impedance control 
MUNDUS (Pedrocchi et al. 

2013) 
sEMG, Button, eye-movement 
or brain-computer interface 

BCI based control 

HEnRiE (Mihelj et al. 2008) 
End-point torque, position 

and velocity and joint angles 
and end-point force 

Admittance control 

Gentle/G (Loureiro and 
Harwin 2007) 

End-point torque, position 
and velocity and joint angles 

and end-point force 
Admittance control 

ARMOR (Mayr et al. 2008) Joint angles EMG based control 
SUEFUL-7 (Gopura et al. 

2009) 
sEMG, Joint forces EMH based fuzzy control 

MIME-RiceWrist (Gupta et 
al. 2008) 

Force Sensor 
impedance-based force 

control 
UMH (Morales et al. 2011) Joint torque Impedance control 

RUPERT 
(Balasubramanian et al. 

2008) 

Joint torque and actuator 
pressure 

Impedance control 

Salford Rehabilitation 
exoskeleton (Tsagarakis 

and Caldwell 2003) 
Joint position and torque PID control 

ESTEC exoskeleton 
(Schiele and van der Helm 

2006) 
 

Joint angles Impedance control 
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Exoskeleton Sensors and Feedback Control architecture 
CADEN-7 (Perry et al. 

2007) 
SEMG joint angles and 

angular velocities and torque 
Force base trajectory control 

& Impedance control 

WOTAS (Rocon et al. 2007) Angular velocity, torque 
Active tremor suppression 

control strategy 
MAHI Exos-II (French et al. 

2014) 
Joint angles Proportional control 

T-WREX (Housman et al. 
2007) 

Joint angles, grasp force Java Therapy* 

RehabExos (Vertechy et al. 
2009) 

Joint torques Force based control 

W-EXOS (Gopura and 
Kiguchi 2008) 

sEMG, torque Fuzzy-neuro control 

ARAMIS (Colizzi et al. 
2009) 

Joint angles and torque Distributed force control 

iPAM (Culmer et al. 2011) Joint torques Admittance control 

L-Exos (Frisoli et al. 2012) Force feedback 
Proximal segments motor 

control 
MULOS (Johnson et al. 

2001) 
Joystick Angle oriented control 

Armon (Herder et al. 2006) Joint angles and torque 
Zero gravity compensation 

based system 
DVB orthosis (Loureiro et 

al. 2005) 
Not defined DRIFTS control scheme 

MEM-MRB (Oda et al. 
2009) 

Joint angular velocity, torque PI controller 

EXOSTATION (Letier et al. 
2010) 

Joint torque Joint to joint control algorithm 

Hybrid Elbow Orthosis 
(Pylatiuk et al. 2009) 

sEMG EMG based control 

Myomo (Stein et al. 2007) sEMG 
EMG based Haptic & Inertia 

control 
ALEx (Pirondini et al. 

2016) 
EMG sensor EE control 

Exorn (Manna and 
Bhaumik 2013) 

Joint position Resolve motion rate control 

 

Short conclusion: Impedance and admittance control are considered as a 
standard choice for exoskeleton. Modern adaptive control is also getting 
popular, however, it has a drawback of slowing down the recovery process 
by making patients passive during exercise. 

2.3.14 Clinical parameters for arm exoskeletons 

2.3.14.1 Different ways of implementing rehabilitation therapy 

Exoskeletons can be evaluated in terms of structural efficacy. However, such 

systems are subjected to clinical trial for measuring their effectiveness in 

rehabilitation process. The clinical requirement of rehabilitation will depend on 

different grounds such as psychological, medical and ergonomic values. The task-

oriented motor learning program improves motor function. Several new 

innovative techniques of therapy like constrained induced movement therapies 
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have been used to improve the motor function and patient engagement during the 

exercises. It is patient’s personal motivation to rehabilitation which will help the 

whole process effectively. Such as task based rehabilitation exercise will engage 

patients with a game in a virtual platform which may resemble with the kind of 

movement required for their day to day activities. The difficulty level can be varied 

in the game according to the level of exercises. This will create a more engaging 

therapy process which will motivate patients to take part in cooperatively. An 

example of VR based stroke neuro-rehabilitation is Rehabilitation Gaming System 

(RGS) (Cameirao et al. 2012). It is based on goal-oriented movement which 

improves the mirror neuron system. It is not ascertained how many patients could 

withstand in terms of intensity of the training, it is yet to be seen what intensity 

dose of training is the right for an individual patient and for each stage of 

rehabilitation process. A comparative study is examined between one exoskeleton 

having single DOF and another multi-DOF exoskeleton system but surprisingly 

after a week of exercises, the net result in terms of improvement in muscle 

function is the same in both cases (Milot et al. 2013). So this provides some insight 

that a simpler system could be as effective as a complex one if rehabilitation is 

planned properly.    

Also, it needs to be investigated whether bilateral training or unilateral training is 

more beneficial for patients. Experiments in post-stroke therapy using progressive 

task specific in two modes-unilateral and bilateral have shown that bilateral 

training is more useful for patients (Byl et al. 2013). All these features of smart 

innovative rehabilitation process are only possible through exoskeleton therefore, 

exoskeleton based training can play a significant role in rehabilitation process 

(Otaka et al. 2015).  

Short conclusion: Intensive and task-based exercise improve neuro-motor 
function. VR and Game based therapy can motivate patients during exercise. 

2.3.14.2 Standard Clinical scale for rehabilitation evaluation 

There are several scales proposed for evaluating the effectiveness of rehabilitation 

to measure the patient condition after stroke. However, most of the clinical scales 

are being used for assessment of sensory and motor function. Many organizations 

have made their own scale of assessment such as Nottingham sensory assessment 

(Milot et al. 2013), California Functional Independence Scale (Byl et al. 2013), 
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Modified Ashworth Scale (Milot et al. 2013), however, after a thorough review, 

mostly two scales seem to be mainly used for evaluation of the patients conditions 

from different neuromuscular diseases.  

1. Fugl-Meyer Motor scale(FMA)  

2. Wolf-Motor Function Test (WMFT)  

FMA scale is not only used for stroke assessment but for other activities such as 

ADL, functional mobility and pain. It includes all measurable parameters of human 

body for the assessment of post-rehabilitation conditions such as motor function, 

sensory function, balance, joint range of motion and joint pain. On the other hand, 

WMFT is also applicable to stroke, dexterity, strength and upper extremity 

function. It basically considers task based rehabilitation therapy in terms of time, 

functional ability and strength; all the scales developed are used for manual 

therapy process. Till now there is no standard scale defined especially to measure 

the improvement after rehabilitation using exoskeletons. So there is a need to 

develop some standards to analyse the clinical effectiveness of exoskeletons for 

rehabilitation. Most research papers have reported the study of mechanical 

advantage of exoskeletons however, some have reported relating the rehabilitation 

outcomes with fMRI of brain. If any improvement in the neuromotor function 

happens, it will show up in the lesson portion of brain through fMRI (Carey et al. 

2007) (Figure 2.8). 

 

Figure 2.8. Pre and post rehabilitation of brain fMRI 

Short conclusion: FMA and WMFT are considered as the standard scale of 
estimating post-stroke recovery condition of patients. 

2.3.15 Cost of production 

One of the main aims was to make post-stroke therapy using exoskeleton 

affordable for public. However, the purchasing cost of exoskeleton is so high that 

restrict people to use it. One of the reasons could be that there is no 

standardization of exoskeleton and the research to find the best design is still 
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continuing. Therefore, most of the exoskeletons available in the market used as 

assistive device to support a specific or multiple joint movements. However, there 

is a sacristy of exoskeleton to provide rehabilitation service to post-stroke 

patients. The function of assistive exoskeleton is to provide assistive power to help 

in routine activities or to attempt strenuous task. However, a rehabilitation 

exoskeleton is mainly used to provide therapy to patients and the type of activities 

can be varied based on the post-stroke recovery requirements. It could be 

providing assistive or resistive force during rehabilitation. Table 2.5 shows the 

price of few commercial exoskeletons, where passive spring exoskeletons are 

cheaper from motor based system due to the cost of actuator. 

Table 2.5. Price of few commercial exoskeletons 

SL 
NO. 

Name of the exoskeleton Price range Type pf actuation 

1 TILTA ARM-T02 Armor Man 2.0 £2,318.40 Passive spring based system 

2 WREX £3,299.99 Passive spring based system 

3 EksoVest™ $6,995.00 Passive spring based system 

4 HAL $14,000- 

$19,000 

Motor based system 

5 Myomo exoskeleton $20,000-

$50,000 

Motor based system 

 

Short conclusion: The cost of exoskeleton is generally high, however, it 
should be less for user acceptability. 

2.4 Integration of all modes of exercises in a standalone system 

As per the proposed rehabilitation strategy is shown in Figure 1.7, external force-

based exercise is required in acute phase and assistive cum resistive force based 

self-initiated exercise is needed in the next two phases for the users who are 

undergoing recovery process. However, it is not a trivial task to integrate both 

features in a single mechanism because mechanism associated with these types of 

exercises are contradictory in nature. Movements entirely controlled by outside 

force require firm contact with human arm during activities while self-initiated 

movements require flexible or loose contact to carry forward the exercises 

according to the triggering pattern of the patient. The objective of implementing 

three types of exercises (external force, assistive and resistive) in a single 
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structure can possibly be accomplished in two ways (Figure 2.9); one is the 

mechanism-based solution and the other is software approach. 

 

Figure 2.9. Solutions for integrating different stages of rehabilitation 

In order to execute exercises using external actuator, electric motor is placed at 

joint in most of the exoskeletons (Nef et al. 2009; Rahman et al. 2010a). The motor 

torque is varied as per software-based complex control algorithm based on the 

signal from biosensor (Krasin et al. 2015), therefore, these exoskeletons are 

inoperable without those sensors. There are few limitations (Table 2.6) in 

software-based approach to generate different types of exercise. These biosensors 

are normally attached to user’s body and measure user’s muscle activity (Lenzi et 

al. 2012). Motor provides assistive or resistive torque to the affected joint as per 

the recommended therapy which is incorporated into the controller as a program. 

Joint-based actuation system requires higher torque compared to these designs 

where joint is remotely controlled. The requirement of joint torque is changed 

substantially depending on the load during exercises. To carry out the exercises 

with higher load, size and mass of the motor are increased (Marcheschi et al. 2011) 

and so is the cost. The size of the energy source is also increased to deliver higher 

joint torque using motor. Also, the active range of motion is not constant for each 

patient, therefore, the adaptive control system should satisfy all kinds of demand. 

A sophisticated control algorithm used for controlling the variable joint torque all 

the time may result in constant draining of energy. Motor-based control always 

Solution for the integration of all modes of exercises

Software approach

Joint based actuation (different 
type of motor torque is generated 

using control algorithm)

Mechanism approach

Combination of spring 
and actuator

Back-drivable motor

Compliant actuation

Engagement of more 
actuators
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consumes energy for maintaining the range and joint torque, therefore, the design 

requires a bigger energy source to provide uninterrupted power supply. Users 

cannot carry the whole system along with the energy source, as a result, most of 

the electric motor controlled exoskeletons are ground-based system (Manna and 

Dubey 2018). EMG sensor based joint control (Peternel et al. 2016) has a 

disadvantage that slows down the recovery rate as it controls joint movement 

completely by making patients passive (Reinkensmeyer and Boninger 2012). 

Apparently, it will reduce user’s effort and affect the rehabilitation process.  

Muscle-based EMG sensor may not be efficient for collecting the feedback signal 

from chronic stroke patients (Cesqui et al. 2013) because joint spasticity and 

anomalous stiffness of patients influences these sensors. It is also difficult to 

extract fine EMG data from stroke patients due to the abnormal EMG-torque 

relationship in chronic stroke (Bhadane et al. 2016), therefore, it would be difficult 

to decode movement intention for post-stroke patients. EEG based brain-computer 

interface may be not affected by those factors in terms of extracting the signal, 

however, it is difficult to recognize the type of action required by analysing the 

EEG signal (Koyas et al. 2013). 

 
Table 2.6. Limitations of Software based post-exercise using exoskeleton 

Issues Problems of existing technology 
Structural 
issues 

Size and mass 
of the system 

Motor torque is higher depending on the load. 
Size and mass of the motor will be increased. 

Bigger energy source is needed for continuous power 
supply. 
Exoskeletons are normally ground based system. 

Sensory 
problems 

Bio-sensor 
(EMG, EEG) 
based control 

Abnormal signal recorded using EMG from stroke 
patients can generate unexpected motor torque. 
It is also challenging to interpret EEG data for joint 
movement. 

Control 
issues 

Software 
controlled 
exercises 

Negative effect on the recovery rate because pre-
actuated control from exoskeleton reduces the user’s 
participation in the exercise. 

Other 
issues 

Energy 
consumption 

Motor based control always consumes energy for 
maintaining the range and joint torque. 

There are other limitations regarding stability and feedback constraints in 

software solution. Users may suffer from painful and involuntary muscular 

contraction which may lead to a joint stiffness with undesirable joint torque. In 

this technique, human joint motion is always under motor control which might not 
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be ideal from a safety point of view. If the motor will move beyond the anatomical 

limit of human joint due to malfunction, accident may happen. 

Integration of multistage rehabilitation services can also be accomplished using 

different mechanisms; however, this approach reduces the complexity in control 

system by including different active and passive components in the structure. The 

actuation system of arm exoskeleton is different depending on the exercise. 

External force should be stable and constant throughout the exercise, so the 

actuator plays a vital role in providing the required torque and effective 

rehabilitation to patient. Passive actuation systems use elastic elements such as 

spring or rubber band which can provide the required joint torque for reducing 

gravity force during elbow movement. Spring-based exoskeletons(Housman et al. 

2007),(Sanchez et al. 2004) do not need any energy source to actuate but these 

systems can only provide assistive force to users. A few hardware-based 

exoskeletons which consider both types of rehabilitation are based on hand 

functions such as iHandRehab (Li et al. 2011), HANDEXOS (Chiri et al. 2009). The 

back-drivable motor in combination with a series elastic actuator (Crea et al. 2016) 

is also able to provide both types of rehabilitation. Still mechanism based solutions 

also have lists of structural problems as illustrated in Figure 2.10. 

A complex mechanism may consist of a lot of mechanical components making the 

mass of the system higher. Motors are designed with certain characteristics to 

match specific speed-torque requirement for various loads. Also, for other 

properties such as stiffness control and compensating gravitational force, these 

exoskeletons would need more actuators and additional components which would 

make it heavy and difficult to use. Systems can also use an electromagnetic switch 

for shifting from one rehabilitation mode to another and it will drain some energy 

and create unwanted noise during switching. 
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Figure 2.10. Mechanism based solutions for different rehabilitation modes 

2.5 Summary of literature survey 

Though several new types of actuators such as ultrasonic motor, EAP, SMA and 

pneumatic muscle are developed, electric motor is still extensively used in most of 

the exoskeleton designs. To improve the efficiency of an actuator, hybrid systems 

are designed where different types of actuators are combined to get better 

performance such as electric-pneumatic, electric-hydraulic systems. Link based 

and string-based actuation systems are integrated with spring or rubber band to 

provide more advantages such as compensating gravity force, higher torque to 

weight ratio, compliance and joint flexibility. The structure of exoskeleton can be 

modified to improve user-experience while doing exercises. For example, 

incorporating a passive joint in the supporting arm link can help users to 

compensate joint misalignment and to improve the ergonomic property of the 

device. To design the control system of exoskeleton, both kinematic parameters 

(joint angle, velocity and acceleration) and dynamic parameters (impedance or 

admittance) should be included for getting an adaptive model. Though several 

•Advantage: It can create energy less system.
•Disadvantage: It can only generate assistive force.

Exoskeletons actuated by
passive element

•Advantage: It can generate different types of
exercise.

•Disadvantage: It increases the weight and size of the
system.

Engagement of more actuators

•Advantage: It can generate variable assistive force
for the users.

•Disadvantage: To achieve different modes of
rehabilitation, a complicated mechanism is
required.

Combination of spring and
actuator

•Advantage: It helps patients to do self-movement
along with external control.

•Disadvantage: If the back-drivability is too low, the
gearbox can be damaged due to sudden external
force.

Back-drivable motor

•Advantage: It is a standard solution for providing
variable stiffness to the joint. It provides elastic
behaviour to the joint.

•Disadvantage: It can only generate resistive force.

Compliant mechanism
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medical scales such as FMA, WMFT are used for evaluating the recovery rate of 

post-stroke patients, the actual components of these clinical scales are mainly joint 

attributes such as functional mobility, pain, dexterity and strength. Those joint 

attributes can be measured from kinematic and dynamic joint parameters such as 

angle velocity, acceleration and torque, jerk, stiffness and so on. Therefore, these 

controlling joint parameters (kinematic and dynamic) can also be considered to 

measure the recovery rate. To make a compact and wearable design, these design 

features should be incorporated into the design of an exoskeleton (Figure 2.11). 

 

Figure 2.11. Desirable features of exoskeleton design 

 

Though mechanism based approach requires much more complex mechanism, it is 

still preferable for human-machine interactions for safety reasons. The PDS is 

already described in the introduction chapter to meet the design requirements of 

the exoskeleton. After this thorough literature survey, we have gathered the 

existing mechanisms, parameters and design specifications to achieve the 

desirable solutions in PDS, shown in Table 2.7. 

•Electric motorActuator

•Attchement of spring with link driven systemActuation system

•Kinematic parameters: angle, velocity and 
acceleration

•Dynamic parameters: impedance and 
admittance

Feedback signal

•Passive linear joint for compensating 
misalignment and improving ergonomic 
property

Other deesign parameters

•Kinematic and dynamic joint parametersRecovery rate

•Kinematic and dynamic joint parametersClinical scale
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Table 2.7. Benchmarks achieved by the existing solutions 

Property Sl. 
No. 

Market need Solutions Achieved so far 

Structural 
property of 
elbow 
exoskeleton 

1 Exoskeleton can 
provide multistage 
post-stroke 
rehabilitation from 
acute to full recovery 
phase 

Integration of three types of 
exercises (external control, 
assistive force and resistive 
force) in a single system 

Active exoskeletons such as ARMin (Nef et al. 2009), 
ExoRob (Rahman et al. 2010a) mainly generate different 
types of joint torque to provide assistive or resistive force.  
Passive exoskeletons such as T-WREX (Housman et al. 
2007), Armon (Herder et al. 2006) can only provide 
assistive torque. 
Exoskeletons like VSA-II (Schiavi et al. 2008), DVB 
orthosis (Loureiro et al. 2005) can only provide resistive 
torque. 
Also, there is no such exoskeleton which combines the 
benefits of active and passive actuation in a single 
mechanism. 

Exoskeleton can provide 
variable assistive and resistive 
torque 

Active exoskeletons such as ARMin (Nef et al. 2009), 
ExoRob (Rahman et al. 2010a) can vary the assistive or 
resistive torque based on the control signal. 
Passive exoskeleton such as SLERT (Wu and Chen 2014) 
and VSA-II (Schiavi et al. 2008) uses another motor or 
actuator to vary the assistive or resistive force in the 
structure. 

2 Reduces the cost of 
post-stroke therapy 

Production cost of exoskeleton 
is affordable for general public 

The cost of active exoskeletons such as HAL (Sankai 2010) 
comes in the range of £10,000- £15,000 whereas  
the cost of passive exoskeleton such as WREX 
(Reinkensmeyer et al. 2012) is £3,299.99 

3 Intensive and long 
hours therapy 

Consistent and repeatable 
exercise module 

Exoskeletons like ARMin (Nef et al. 2009), Intelliarm (Ren 
et al. 2009) and MGA exoskeleton (Carignan et al. 2007) 
can provide repeatable and consistent joint movement. 
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Property Sl. 
No. 

Market need Solutions Achieved so far 

Structural 
property of 
elbow 
exoskeleton 

4 Exoskeleton can lift 
the forearm during 
external-force 
controlled mode 

Motor can provide required 
joint torque 

ExoRob (Rahman et al. 2010a) is an elbow exoskeleton 
that can provide joint torque up to 5.5 Nm. 

5 Portable device Enhances torque to weight 
ratio 

No information is given 

Weight of the exoskeleton is 
lighter 

Mass of ExoRob (Rahman et al. 2010a) is 1.15 kg 

Smaller energy source for 
operation 

Most of the active exoskeletons have ground-based large 
energy source to provide uninterrupted power supply. 
Passive exoskeletons do not need any energy source. 

6 Wearable device Design should follow the 
biomechanical structure and 
anthropometric data of human 
arm 

The structure of elbow exoskeleton consists of 1 DOF and 
it can be varied for different arm length 

Opinion of users after using the 
exoskeleton 

No information is given 

7 Maximum reachable 
workspace 

Exoskeleton can reach 
maximum joint angle 
(wearability and usability) 

140o 

8 Energy consumption Using of passive energy source 
for joint actuation 

Passive exoskeletons like T-WREX (Housman et al. 2007), 
Armon (Herder et al. 2006) use spring energy for joint 
actuation.  
However, no such design has been developed so far to 
integrate both spring and active actuator 
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Property Sl. 
No. 

Market need Solutions Achieved so far 

Structural 
property of 
elbow 
exoskeleton 

8 Energy consumption Using spring-actuated 
mechanism for switching 
between exercise 

Not used so far 

9 Joint flexibility and 
ergonomic property 

Using of universal joint instead 
of revolute 

Universal joint is used in NEUROEXOS exoskeleton 
(Vitiello et al. 2013) to facilitate joint flexibility during 
movement 

Compensation of Joint 
misalignment during rotation 

Linear passive joint (Schiele and van der Helm 2006) is 
used to compensate the misalignment between the centre 
of exoskeleton and human joint 

Control 
property of 
elbow 
exoskeleton 

10 Ease of controlling 
the mode of exercise 

Should have both control 
scheme: automatic and manual 

Active exoskeletons mostly perform in automatic mode to 
create different type of joint torque. 
Passive exoskeletons do not need any control as it 
depends on spring force. 

Mode of exercises can be 
switched easily based on joint 
condition 

Adaptive control can detect human intension and 
provides assistive or resistive force as per the human bio-
signal. 

Develop the control strategy 
using joint parameters without 
using biosensor 

Kinematic and dynamic parameters-based control, 
Passive actuator-based system (spring and rubber band 
based). 

11 Enhance the 
participation of user 
during exercises 

Control mechanism allows 
users to put their effort to do 
joint movement 

PID control, Impedance and Admittance control, Adaptive 
control, Neuro-fuzzy control. 

Safety 
property 

12 Safety of user Mechanical constraint to 
restrict joint movement up to 
anatomical limit 

Electromechanical switch, limit switch, clutch, ISO 9000 
standards in the European Community. 
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Property Sl. 
No. 

Market need Solutions Achieved so far 

Safety 
property 

  
Software control to restrict 
joint movement up to 
anatomical limit 

Adaptive control algorithm, ISO 9000 standards in the 
European Community. 

Structural 
property of 
forearm 
motion 

13 Twisting motion in 
forearm 

Motor controlled twisting 
motion with user’s flexibility 

Most of the active exoskeleton use motor controlled 
twisting movement 
ARMin (Nef et al. 2009) has used back drivable motor 
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Chapter 3   Mechanism design of the elbow exoskeleton 

 

It was concluded that the exoskeleton should consist of a few distinct design 

properties to make it a cost-effective and portable system which can provide three 

types of joint movements. To achieve those desirable features for exoskeleton 

design (shown in Table 1.4) and to overcome the limitations of existing 

exoskeletons (shown in Table 2.7), specific material, appropriate mechanism and 

actuation system, actuator have been incorporated to make a portable and 

affordable exoskeleton which has the potential to provide multistage post-stroke 

exercises. The aim of this research is to design a new mechanism to allow all types 

of rehabilitation in a single module. With this idea in mind, elbow joint has been 

selected for the design of exoskeleton because it is one of the simplest human 

joints and majority of gross manipulation tasks cannot be performed without 

elbow motion. In the simplest form, it could be visualized as a revolute joint with 

one degree of freedom with further flexibility provided for pronation-supination 

motion of forearm (Figure 3.1). The following joint movements of elbow and 

forearm are studied to facilitate the design development. 

1. Elbow flexion - The movement of bending the elbow causing the anterior surface 

of the arm and forearm to move toward each other. 

2. Elbow extension – It is the opposite motion of flexion causing forearm to move 

away from each other.  

3. Pronation of the forearm - This movement involves twisting the forearm and 

palm from a palm forward to a palm backward. 

4. Supination of the forearm – It is just the opposite motion. Pronation and 

supination movements of the forearm occur primarily because of articulation of 

the radius and ulna. 

 

Figure 3.1. Joint movements of elbow and forearm (Manna and Bhaumik 2013) 
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In the first section, the mechanism is created to generate flexion-extension of 

elbow and then the mechanism providing pronation-supination of forearm is 

explained. Actuation in human arm takes place due to the ligaments and muscle-

tendon movements. Biceps muscle helps forearm in elbow flexion and triceps 

muscle applies opposite motion-extension to straighten forearm back to its own 

position. The pattern of human joint movement requires a lower amount of torque 

compared to a motor connected at joint. The actuation mechanism of the 

developed exoskeleton for elbow rotation takes place due to the pulling force 

instead of joint based actuation, therefore it enhances the torque to weight ratio.  

As per the proposed rehabilitation protocol, external forces are required in the 

first stage of training, after that patients have to initiate their own movements 

during the exercises. The last stage requires variety and difficulty of exercises. All 

these exercises are not performed at the same time and are followed gradually one 

after other. Therefore, the mode of exercise in the exoskeleton can be changed 

depending on user’s condition. The idea is to divide the whole operating region 

into three sub-regions consisting of different training regimes providing specific 

exercise (Figure 3.2). The mechanical components related to the actuation system 

of the exoskeleton will be different depending on the situation whether the 

exercises are controlled by the exoskeleton or users themselves. All these regions 

are interconnected and will appear one after another automatically. 

The first section controls the joint movements externally using electric motor 

without user’s participation whereas the middle section allows users to do joint 

movements supported by the spring force and the level of assistance can be varied 

by adjusting the displacement of the spring. In the last section, a spring assembly is 

used to provide variable resistive force to the joint. A couple of springs 

(compression and torsional) have been used in the exoskeleton design for 

switching between different regions using their stiffness property. As a result, no 

extra energy source is required to move from one training regime to another 

making it an energy-efficient mechanism. It also removes the complexity of 

electromechanical switches. In the developed exoskeleton, both electric motor and 

passive elements have been introduced in a single structure which allows the 

exoskeleton to utilize the motor torque during acute phase when users may not 

have enough strength and to provide spring energy during self-movement for 
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generating assistive and resistive from the exoskeleton. Therefore, the energy 

source is only used to provide power to the motor in the first mode. With this 

technique, it becomes an energy-efficient system. The aim of the designed 

exoskeleton is to use as much as fewer actuators for the whole operation making it 

a portable device. Therefore, a single motor is used in this exoskeleton to achieve 

all the above features with the help of springs (Manna and Dubey 2019a).  

 

Figure 3.2. Operating region of the developed exoskeleton 

In this exoskeleton, the number of rotations of the motor determines the position 

of the nut slider on the leadscrew. The mode of exercise is differentiated by the 

region of operation which is decided by the position of the nut slider on the 

leadscrew. The relationship between the distance covered by the nut slider (x) and 

the motor rotations (n, θ) is given by 

𝑥 = 𝜃𝑒  Where 𝑒 =
𝑛𝐿

2𝜋𝑁
                              3.1 

Where n = Number of turns in the motor  

θ = Motor angle 

L = Lead of the screw 

N = Gear ratio 

Mode of exercise:                0 ≤ 𝑥 ≤ 𝑥1     = Electric motor based joint control         

        𝑥1 < 𝑥 ≤ 𝑥2   = Spring based assistive force                                                                                            

        𝑥2 < 𝑥 ≤ 𝑥3   = Spring based resistive force                    

Where x1, x2 are the switching positions.  
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The schematic diagram of the exoskeleton and its 3D model are shown in Figure 

3.3 and Figure 3.3 respectively. The final model is designed after nine initial 

models which have been described in the introduction part and shown in 

Appendix II. 
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(1) Baseplate   (7) Nut slider     (13) Connecting link  

(2) Motor   (8) Concentric slider    (14) Universal joint  

(3) Gear      (9) Elbow joint     (15) Claw-type jaws   

(4) Solid rods     (10) Revolute joint    (16) Rectangular slider 

(5) Slider for variable stiffness (11) Compression spring for passive translational joint (17) Connected plates  

(6) Leadscrew   (12) Forearm supporting link   (18) Small cylindrical rod 
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Table 3.1 shows the components used for each function of the exoskeleton. 

 

(1) Baseplate   (7) Nut slider     (13) Connecting link  

(2) Motor   (8) Concentric slider    (14) Universal joint  

(3) Gear      (9) Elbow joint     (15) Claw-type jaws   

(4) Solid rods     (10) Revolute joint    (16) Rectangular slider 

(5) Slider for variable stiffness (11) Compression spring for passive translational joint (17) Connected plates  

(6) Leadscrew   (12) Forearm supporting link   (18) Small cylindrical rod 
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Table 3.1. Components used for each mode of exercise in the exoskeleton 
Function Mechanism used Components involved 

Electric motor based 
joint movement 

Lead-screw based Slider-
crank mechanism  

(1) Baseplate  
(2) Motor 
(3) Gear    
(6) Leadscrew 
(7) Nut slider 
(8) Concentric slider 
(9) Elbow joint 
(10) Revolute joint 
(11) Compression spring for passive 
translational joint 
(12) Forearm supporting link 
(13) Connecting link 
(14) Universal joint 
(15) Claw-type jaws 

Switching from electric 
motor controlled mode 
to assistive mode 

The stiffness of S5 is greater 
than S6. When S5 and S6 

clash with each other, S6 is 
compressed and both claw 
type jaws are opened to 
free the concentric slider 
from the lock. 

(2) Motor 
(3) Gear    
(6) Leadscrew 
(7) Nut slider 
(8) Concentric slider 
(15) Claw-type jaws 
Compression springs (S5 and S6) 

Assistance from the 
exoskeleton in assistive 
mode 

S2 provides assistive force 
during joint movement. 

(6) Leadscrew 
(8) Concentric slider 
(9) Elbow joint 
(10) Revolute joint 
(11) Compression spring for passive 
translational joint 
(12) Forearm supporting link 
(13) Connecting link 
(14) Universal joint 
Extension spring (S2) 

Switching from 
assistive to resistive 
mode 

The displacement range of 
S2 is varied to provide more 
assistance to users. 

(1) Baseplate  
(2) Motor 
(3) Gear    
(6) Leadscrew 
(7) Nut slider 
(16) Rectangular slider 
(17) Connected plates 
(18) Small cylindrical rod 
Compression spring (S1) 
Torsional springs (S7 and S8) 

Resistive force during 
joint movement  

Both S3 and S4 are extended 
to increase joint stiffness 
therefore creating more 
resistive force  

(1) Baseplate  
(2) Motor 
(3) Gear 
(4) Solid rods 
(5) Slider for variable stiffness    
(6) Leadscrew 
(8) Concentric slider 
(9) Elbow joint 
(10) Revolute joint 
(11) Compression spring for passive 
translational joint 
(12) Forearm supporting link 
(13) Connecting link 
(14) Universal joint 
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3.1 Electric motor based joint control mode 

In the first operating region (0 ≤ 𝑥 ≤ 𝑥1), the electric motor controls elbow joint 

movement without any active participation from user. Patients are being 

rehabilitated with free movement consisting of some predefined orthopaedic 

lessons prescribed by the physiotherapist. In this exoskeleton, the actuation 

system consists of a leadscrew-based motion along with a slider-crank mechanism 

as shown in Figure 3.5 (a & b). These two mechanisms have been integrated to get 

a non-slipping motion during movement because leadscrew maintains 

unidirectional firm contact with the movable part and slider-crank mechanism 

allows elbow rotation. The motor is connected to the exoskeleton behind the 

baseplate. It doesn’t occupy any extra space on either side of the exoskeleton 

structure. Motion from the motor is transferred to the leadscrew using two 

mutually coupled reduction gears. Slider-crank mechanism converts the linear 

motion of leadscrew into elbow joint rotation. Part of the forearm supporting link 

acts like the crank, therefore forearm is pulled by the connecting link. This type of 

actuation system requires lower amount of motor torque compared to most of the 

existing exoskeleton models where motor is connected directly at the joint axis. By 

this technique, torque to weight ratio can be enhanced by engaging a small motor 

to create the joint rotation. 

 

                             

a. Schematic diagram (Electric motor based joint control) 



Mechanism design of the elbow exoskeleton 

 

82 
 

 

b. 3D model diagram 

Figure 3.5. Electric motor based joint control 

To incorporate assistive and resistive force in next two operating regions, the 

leadscrew based slider is not directly connected to the crank mechanism. There 

are two sliders on the leadscrew; one of which acts as a nut that translates in both 

directions following the guiding path of screw thread as per the rotation of the 

motor and another slider can only slide on the leadscrew concentrically (Figure 

3.6). The inner diameter of the concentric slider is the same as the outer diameter 

of the leadscrew with a clearance level, as a result, the concentric slider can slide 

on the periphery of the leadscrew. In the first operating region, a spring-actuated 

locking mechanism keeps both sliders in a single unit to construct the situation 

where crank rotation is fully controlled by the motor but unlock them during self-

movement. Two compression springs (S5 and S6) of different stiffness are 

responsible for the locking operation as shown in Figure 3.6. S6 maintains its two 

claw-type jaws parallel to latch both sliders throughout the first region to provide 

motor controlled motion. The range of elbow joint motion during rehabilitation is 

135o. 
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Figure 3.6. Locking mechanism 

The leadscrew is placed in the middle of both sliders which are supported by two 

solid rods (Figure 3.5), therefore, the moment created by the pulling force will not 

disturb the motion of the nut along the screw. It also reduces the possibility of self-

locking of the concentric slider and helps those sliders to maintain a linear sliding 

motion during movement. All sliding contacts have linear bearings to reduce 

friction.  

3.2 Electric motor to assistive force mode 

Switching between operating regions has been achieved using the stiffness 

property of springs (Figure 3.7).  However, the motor rotation is also required for 

keeping the nut slider in a particular position to make this operation successful. 

Schematic diagram in Figure 3.7 of pre and post condition of the switching 

mechanism has been explained in detail. The locking of both sliders keeps the 

control of joint movement to the electric motor, however, the unlocking of the 

concentric slider from the nut slider allows the concentric slider to move freely on 

the leadscrew as a result, the elbow joint is not controlled by the motor. 
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Figure 3.7. Method of switching from motor controlled to user-controlled mode 

As discussed in the design section, a spring (S6) actuated lock is required for 

maintaining the locking condition and another compression spring (S5) is used to 

open the lock. In the locking mechanism, two claw-type jaws are connected to the 

nut slider in the form of a four-bar mechanism (Figure 3.8a, Locked condition). The 

compressive force created by S6 attaches both leadscrew sliders (concentric and 

nut slider) by keeping its two jaws parallel during the motor controlled regime. 

Locking condition will remain the same until two compression springs S5 and S6 

clash with each other due to backward movement of the nut slider.  As soon as the 

nut slider crosses the switching position (x>x1), two compression springs (S5 and 

S6) push each other and the switching operation takes place. The stiffness of S5 is 

quite higher than that of S6 so that a small displacement of S5 causes a large 

displacement in S6. As a result, S6 will be compressed by the resultant force and 

both jaws will rotate about a fixed point, thus opening the lock to free both sliders 

from the single attachment (see unlocked condition, Figure 3.8b). However, 

forward movement of the nut slider beyond the switching point will restore the 

locking mechanism again. The ratio of the stiffness of S5 and S6 has been 

determined in a way that the switching region becomes as small as possible. 
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a. Schematic diagram of pre and post locking condition 

 

b. 3d model of pre and post locking condition 

Figure 3.8. Switching from motor based control to spring assisted force 

3.3 Assistive force based exercise mode 

A fixed number of motor rotations keep the joint movement in the first operating 

region allowing a full range of motion. A slight increment in the motor rotation 

shifts the working region from motor controlled mode to assistive self-controlled 

mode by opening the lock. In this situation, the control of joint rotation won’t be 

under electric motor. It is shown in Figure 3.8 that the leadscrew based concentric 
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slider is connected to an extension spring (S2) and it can help them to rotate the 

elbow joint during flexion by providing assistive force. The same assistive force 

opposes the joint freefall during extension, therefore it balances the arm weight 

and slows down the joint movement to reach full extension. Joint would be torque 

balanced at every configuration due to spring force and only a small joint torque is 

required to move the forearm from the statically balanced condition. Assistive 

force during joint movement should be adaptable for different type of exercises 

and muscle strength of users. It is important to ensure that changing of spring 

force in S2 is not permanent and it should restore to its normal condition after the 

operation. The spring force provided by S2 can be changed in three different ways: 

changing the material, no of active coils or the displacement range, as shown in 

Figure 3.9. To change the spring force dynamically without adding any extra 

actuator, solution 3 is considered as the best for the developed mechanism. 

Therefore in this exoskeleton, the range of assistive force can be varied by 

changing the span of displacement. 

 

Figure 3.9. Solutions for changing the spring force in the exoskeleton 

Higher assistive force reduces the effort of users. The structural part of the 

exoskeleton to provide variable assistive force (Figure 3.10a & b) consists of two 

torsional springs (S7 and S8), one compression spring (S1), one small cylindrical 

rod (CR1), one small rectangular slider (SL1) and two rectangular plates (RP1 and 

RP2). SL1 is concentric to CR1 which is attached to the base plate. As shown in 
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Figure 3.10, SL1 is also attached between S1 and S2. The range of spring force 

provided by S2 can be amplified by changing the span of displacement. RP1 and RP2 

are connected to SL1 using S7 and S8 on both sides in such a way that those plates 

can rotate about the axis of these torsional springs. RP1 and RP2 have been used to 

maintain the force balancing condition during joint movement to maintain a 

constant supply of assistive force. CR1 has a rectangular channel to provide a 

guiding path to SL1. The guiding path has two mechanical restrictions for 

controlling the movement of SL1 within a particular range (x1<x≤x2) where 

different spring force can be generated by S2. The role of S1 is to restore the whole 

setup to its original position once released. 

At the initial condition, the front end of S2 is fixed which allows a fixed range of 

spring force. To increase the spring force dynamically, the front-end of S2 is shifted 

backward near the baseplate. The extended part of the nut slider has been utilized 

for this purpose. The backward movement of the nut slider in this region pushes 

RP1 and RP2 connected to S7 and S8. The stiffness of S7 and S8 is high enough to be 

deflected by a small force, as a result, the whole arrangement connected to SL1 will 

move backward along with the nut slider. Due to the torsional stiffness, S7 and S8 

create an opposing torque which is equalized by the reaction force from the nut 

slider during the movement. The second mechanical restriction on the guiding 

path does not allow SL1 to move further in the backward direction. This is the 

position where the exoskeleton can develop maximum assistive force at the joint 

using S2. Therefore, further pressure from the nut slider will put S7 and S8 beyond 

their limit and RP1 and RP2 are deflected to come out from the range of nut slider. 

Because of the stiffness property of S1, SL1 will come to its initial position with all 

its arrangement after the end of the second region. 
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a. Schematic diagram 

 

b. 3D model 

Figure 3.10. Assistive force based spring configurations 

3.4 Resistive force based rehabilitation mode 

In this stage of the operating region, variable resistive force is imposed to restrict 

the movement (Figure 3.11). At this level, the level of difficulty should be 

increased, this could be varied by changing the joint stiffness of the exoskeleton. 

An additional setup of extension spring assembly (S3 and S4) is used for changing 

the joint stiffness of the exoskeleton. Further backward movement of the nut slider 
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beyond the second region (𝑥2 < 𝑥 ≤ 𝑥3) will stretch both S3 and S4 resulting in 

higher contact force at the elbow joint. As a result, joint stiffness will change. Two 

pairs of S3 and S4 are connected on both sides of the joint in parallel to maintain 

the elbow joint in a stable condition. In this mechanism, both S3 and S4 are 

connected to another slider which can slide on two solid parallel rods. Those solid 

rods are not only used for strengthening the exoskeleton but act as a guide to the 

slider at the time of stretching of those parallel springs (S3 and S4). Proper 

calibration is required to exert the required stiffness for the elbow joint with 

respect to the position of the nut slider. Two linear springs (S3 and S4) of different 

stiffness have been considered in the exoskeleton. 

 

a. Schematic diagram of the third rehabilitation region 

 

b. 3D model diagram of the third rehabilitation region 

Figure 3.11. Resistive force based spring configuration for variable joint stiffness 
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3.5 Additional structural features 

All sliding contacts have been developed with linear bearings to reduce the 

frictional loss during motion. The mechanism of the exoskeleton has also improved 

with other design features to get more advantages from other existing systems. In 

this exoskeleton, a universal joint (Figure 3.12) is used to replace the normal 

revolute joint. The biological structure of human forearm allows elbow joint not to 

be fixed during flexion and extension. If the arm segment is connected rigidly to 

the exoskeleton, it can cause discomfort to user and articulation. Therefore, the 

universal joint will provide a slight movement (±5o) laterally during elbow joint 

rotation. Out of its two degrees of freedom possessed by the universal joint, active 

one is responsible for flexion-extension of the elbow whereas the passive joint 

supports the flexibility during joint movement. Two mechanical stops with rubber 

padding are attached to restrict the joint motion in the transverse plane. Another 

universal joint is also connected at the junction between leadscrew based 

concentric slider and connecting rod to maintain joint flexibility. 

 

Figure 3.12. Universal joint at the elbow joint 

The upperarm and forearm lengths can be varied up to 0.04 m from its fixed length 

of 0.35 m and 0.40 m to fit with different users. As shown in Figure 3.13, the 

forearm supporting link consists of two parts: the fixed link which is connected to 

joint has a rectangular tunnel in which the second solid part can slide. Both parts 

have a series of discrete holes, therefore, the length of the total forearm supporting 

link can be varied by matching the holes of both parts. Also, the upper arm 
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supporting structure has different holes to configure its total length. In this way, 

the exoskeleton can be fitted to different arm lengths. The distance between the 

forearm gripper and elbow joint can be slightly varied for different postures 

during exercises. As a result, the centre of the exoskeleton is normally shifted from 

elbow joint and not aligned with it anymore. To get flexibility similar to the human 

arm and to increase the level of ergonomic comforts, a passive linear joint is 

introduced at the forearm. To maintain the alignment of the centre of rotation 

between exoskeleton and user, the passive linear joint has a compression spring 

whose length is varied to compensate for the length variation during joint rotation.  

 

Figure 3.13. Joint misalignment compensation in the exoskeleton 

3.6 Mechanism for forearm twisting motion 

Most of the existing mechanisms used in exoskeletons can only provide motor 

based twisting movement without considering user’s flexibility. In order to 

overcome those problems, the arm holder of the exoskeleton is designed to 

accommodate motor controlled activities along with user’s originated movements. 

In this exoskeleton, the twisting motion of forearm pronation-supination is 

achieved using a gear-driven mechanism. A big half-circular gear is engaged to body 

segment and it is coupled with another small gear which is actuated by an electric 

motor. The electric motor controls the twisting joint angle. The ratio of both gears 

should be such that users can reach the full anatomical limit of joint angle. The 

electric motor is connected to the base structure which is used to attach the half-

circular ring with the exoskeleton. The half-circular ring has two circular channels 

and it can slide along the first circular channel based on two circular rods during 

motor-controlled movement. In the second circular channel, a small rectangular 
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slider is placed between two compression springs (S9 and S10) connected to two 

ends of the ring. This part of the mechanism provides free space to users for 

twisting their arms if they are capable of moving their joints. The stiffness and 

dimension of S9 and S10 are same, therefore the force exerted by two springs 

maintain the arm in a balanced condition. If users want to twist this arm in any 

direction, it has to put its own effort. In that situation, the spring on the twisting 

side will be more compressed to allow the joint angle. Human arm is attached to the 

small rectangular slider with strap. The inner side of the strap is made up of fur, 

therefore would not create any friction during motion. The schematic diagram of 

and 3D model of the arm holder is shown in Figure 3.14 (a & b).  It enhances the 

ergonomic property of the system and provides safety to users as they can twist 

their joint in case of arm spasticity. 

 

a. Schematic design    b. 3D model 

Figure 3.14. Arm holder for providing forearm motion 

3.7 Supportive structure of the exoskeleton 

The whole structure of elbow exoskeleton is attached to user’s body to offload the 

weight of user’s arm. The structure is made of circular holder and those holders 

are placed around the body tightened with belt. It helps to reduce the load on user 

by supporting it from two sides; two circular holders are fitted around the chest 

connected by a solid link and help to attach the exoskeleton with user’s body in 
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transverse plane whereas the shoulder based holder usually takes care of the 

weight of the exoskeleton against gravity. The supporting structure is assembled 

by detachable components, therefore the length of formation around the chest and 

shoulder can be changed as per different body shape requirements as shown in 

Figure 3.15 (a and b). 

 

a. Changing of length in horizontal plane 

    

a. Changing of length in vertical plane 

Figure 3.15. Design of the flexible supportive arm structure 

3.8 Selection of spring and their stiffness 

All linear springs (S1, S2, S3, S4, S5 and S6) and torsional springs (S7 and S8) are used 

in the exoskeleton either for providing the spring force or switching from one 

mode of exercise to another. Therefore, the stiffness of all springs is determined 

for smooth functioning of the exoskeleton (Manna and Dubey 2019a). 

• Stiffness of S1 

The function of S1 is to restore the position of the front-end of S2 at the end of the 

assistive force based region, therefore, the stiffness of S1 needs to be high enough 

to overcome the frictional force between SL1 (along with the all other components 

connected to it) and CR1, see Figure 3.16. 
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Figure 3.16. S1 in fully compressed state 

As per the mechanism design, 𝐾1𝑥𝑠1 > 𝜇𝑚𝑔                                  3.2 

The force of S2 is not considered here because S2 would not impose any force when 

elbow joint is in full flexion. However, S1 should be able to overcome the frictional 

force. 

Where K1 = Stiffness of S1  

xs1 = Displacement covered by S1 in fully compressed position = 0.02 m 

µ = Coefficient of static friction between SL1 and CR1 = 0.45 

m = Mass of the assembly connected to SL1 = 0.102 kg 

g = Acceleration due to gravity = 9.81 m/s2 

Substituting all these parameters, the frictional force becomes 0.451 N.  We have 

considered the value of K1xs1 as 0.5 N (>0.451 N) for safe operation to overcome 

the frictional force created during sliding movement by SL1. The switching from 

assistive to resistive region starts when nut slider positioned at 0.181 m and S1 

produces maximum force when it is fully compressed by the nut slider (x = x2) 

(Figure 3.17). Therefore, 𝐾1 = 25 N/m where xs1 = 0.02 m (maximum) 

 
Figure 3.17. Force generated by S1 



Mechanism design of the elbow exoskeleton 

 

95 
 

• Stiffness of S2 

Spring force of S2 is mainly responsible for assisting the elbow movement in the 

second operating region (Figure 3.18). In the exoskeleton, S2 will be extended for 

sharing the required torque used to rotate the joint against gravity. 

 

Figure 3.18. Force balancing in the assistive force region 

As linear bearing is connected to the sliding contact between the concentric slider 

and leadscrew, the frictional force during motion is negligible compared to the 

elbow actuation force and is not taken into account. 

In this mode, the required torque (τ’) for rotating the elbow joint is given by 

𝜏′ = 𝑀𝑔𝐿1 𝑐𝑜𝑠 𝛽                                         3.3 

The assistive force provided by S2 is  𝑓𝑠2 = 𝐾2(𝑥𝑠2 − 𝑥′𝑠2)                                 3.4 

Where K2 = Stiffness of S2 

xs2 = Displacement of S2 

x’s2 = Free length of S2 

Pulling force (T’) along the connecting link is same as the force during the electric 

motor based control. The only difference is that S2 is taking care of the load in spite 

of the motor. Therefore, by equilibrating the forces at point ‘A’ in Figure 3.18, the 

stiffness of S2 becomes  

                                      𝐾2 =
𝑀𝑔𝐿1 cos β sin α

𝑟 cos(𝛼 − 𝛽) (𝑥𝑠2 − 𝑥′𝑠2)
                                                      3. 5 
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The value of K2 is calculated for different mass of forearm (1 to 5 kg) at the 

maximum joint angle where the required joint torque is highest and the required 

stiffness of S2 can be varied from 246.5 N/m to 739.6 N/m. The range of assistive 

force for an individual can be increased by changing the elongation limit of xs2. The 

backward movement of the nut slider will shift the starting point of S2 and the 

range of xs2 will be increased (Figure 3.19), thus providing more assistive force 

(Figure 3.20). In this exoskeleton, the maximum range of assistive force will be 

provided by the exoskeleton if the position of nut slider will be at the end of this 

region. The range of xs2 can be varied from 0.12 m to 0.14 m in the designed 

exoskeleton for the position of the nut slider from 0.181m to 0.20 m. 

     

Figure 3.19. Variation of the range of S2 with respect to the position of nut slider 

(x) 

 

Figure 3.20. Variation of fs2 with the range of displacement (xs2) 

• Stiffness of S3 and S4 

The stiffness of S3 and S4 does not depend on any construction parameter. But 

those springs are mainly used for changing the joint stiffness during the third 
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operating region as shown in Figure 3.21. The elbow joint stiffness is dependent on 

three springs (S2, S3 and S4). The displacement of S3 and S4 is changed to create a 

variable joint stiffness in the elbow joint by moving the nut slider in the backward 

direction. In this configuration, the joint stiffness can be taken as a function of the 

distance travelled by the nut slider (x) and elbow joint angle (β). The position of 

the nut slider can be varied from 0.201 m (x2) to 0.24 m (x3) during this 

rehabilitation regime. 

 

Figure 3.21. Elbow exoskeleton during variable joint stiffness control 

The component of the spring force exerted by S2 about the point C is given by, 

𝑓′𝑠2 =
𝐾2(𝑥𝑠2 − 𝑥′𝑠2) cos(𝛼 − 𝛽)

sin α
                                                                                          3. 6 

Spring force exerted by S3, 

𝑓𝑠3 = 𝐾3(𝑥 − 𝑟1𝛽 − 𝑥
′
𝑠3)                                                                                                          3. 7 

Where K3 = Stiffness of S3, x’s3 = Free length of S3 

Spring force exerted by S4, 

𝑓𝑠4 = 𝐾4(𝑥 + 𝑟1𝛽 − 𝑥
′
𝑠4)                                                                                                          3. 8

     

Where K4 = Stiffness of S4, x’s4 = Free length of S4 

The joint stiffness of the elbow exoskeleton is same as the torsional stiffness K’ 

which is given by 

                𝐾′ =
𝜏

𝛽
=
𝑟1(𝑓𝑠4 − 𝑓𝑠3)

𝛽
−
𝑟𝑓′

𝑠2

𝛽
                                                                         3. 9 
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 Where r = Length of the crank 

r1 = Radius of the pulley connected at the elbow joint 

Two pairs of S3 and S4 are connected in this mechanism, therefore, the force 

exerted by both springs will be doubled. Substituting the value of f’s2, fs3 and fs4 in 

Eq. (3.9), the elbow joint stiffness is given by  

𝐾′ =
2𝑟1{(𝐾4 − 𝐾3)𝑥 − (𝐾4𝑥

′
𝑠4 − 𝐾3𝑥

′
𝑠3)} −

𝐾2𝑟(𝑥𝑠2 − 𝑥
′
𝑠2) cos(𝛼 − 𝛽)
sin α  

𝛽
+ 2𝑟1

2(𝐾4 +𝐾3)                                                                                             3. 10 

For experimental purpose, two different extension springs are selected for the 

mechanism. However, those springs can be changed to get the required joint 

stiffness for exercises. The stiffness of S3 and S4 are chosen as 2.5 N/m and 10 N/m 

respectively.  The value of K’ has been calculated based on the forearm mass of 1 

kg. Figure 3.22 shows the variation of elbow joint stiffness depending on the 

position of nut slider (x) and elbow joint angle (β) during resistive force based 

region.  

K' = K' (minimum) when position of nut slider(x) = 0.201 m = 4.184 Nm/rad 

  = K' (maximum) when position of nut slider(x) = 0.24 m = 5.043 Nm/rad 

 

Figure 3.22. Elbow joint stiffness variation for different position of the nut slider 

(x) 

• Stiffness of S5 and S6 

The stiffness of both compression springs (S5 and S6) used for locking operation is 

equally important in switching operation between the first and second operating 
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region. The ratio of the stiffness of S5 and S6 depends on the construction 

parameters of the locking mechanism (Figure 3.23).  

 

Figure 3.23. Force balancing diagram during unlocked condition 

Force produced by the spring S5,  

𝑓𝑠5  =  𝐾5𝑥𝑠5                                                              3.11 

Force produced by the spring S6,  

𝑓𝑠6  =  𝐾6𝑥𝑠6                                     3.12   

When the exoskeleton is unlocked, KMPO is shown here as the right-sided jaw 

which is deflected to free the attachment. The upper-end point of the jaw O should 

be outside of the region covered by these sliders (shown in dotted line OM). It is 

clear that these two jaws need to rotate a minimum angle ’  about point M to 

unlock the concentric slider from the locking range.  

Here, ΔOMP is a right-angled triangle. Therefore 𝜑′ = tan−1
𝑒

𝑑
                              3.13 

The locking mechanism has some solid links such as a, b, c, d, e and h, the length of 

those links are fixed. The value of ∠MLI and ∠KMP are also fixed as those are the 

part of the structure. Therefore, the value of ’  is constant for unlocking.  

The locking mechanism can function successfully if it satisfies the following 

condition, K5 » K6 [Where K5 = Stiffness of S5, K6 = Stiffness of S6]  
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which means, xs5 « xs6 

At the time of opening the lock, both springs will be in equilibrium which means 

force exerted by S5 and S6 will be same at that position. 

Therefore, 𝑓𝑠5  =  𝑓𝑠6 

i.e. 𝐾5𝑥𝑠5  =  𝐾6𝑥𝑠6 

𝐾5  =  
𝐾6 𝑥𝑠6

𝑥𝑠5
                                                       3.14 

To achieve the defined angle of ’, S6 moves a specific distance which is derived 

from the geometrical parameters. 

From Figure 3.23, it shows 

∠LMN = (𝛼′ − 90𝑜)                                                 3.15 

∠LMK = (180𝑜 − (𝛼′ + 𝜑′)) = (180𝑜 − (𝛼′ + 𝑡𝑎𝑛−1
𝑒

𝑑
))                                          3. 16 

From ΔLMK, it can be derived that,  

cos( ∠LMK) =
𝑏2 + 𝑐2 − LK2

2𝑏𝑐
 

Substituting the value of ∠LMK taken from Eq. (3.16), the value of LK can be 

obtained 

cos (180o − (𝛼′ + tan−1
𝑒

𝑑
)) =

𝑏2 + 𝑐2 − LK2

2𝑏𝑐
 

LK2 = 𝑏2 + 𝑐2 − 2𝑏𝑐cos (180o − (𝛼′ + tan−1
𝑒

𝑑
)) 

LK2 = 𝑏2 + 𝑐2 + 2𝑏𝑐cos (𝛼′ + tan−1
𝑒

𝑑
)                                                                            3. 17 

From ΔLMK, it can also be derived that,  

cos ∠MLK =
𝑐2 + LK2 − 𝑏2

2𝑐LK
 

Substituting the value of LK taken from Eq. (3.17), it shows 

∠MLK = cos−1

(

 
𝑐2 + (𝑏2 + 𝑐2 + 2𝑏𝑐cos (𝛼′ + tan−1

𝑒
𝑑
)) − 𝑏2

2𝑐 ∗ √𝑏2 + 𝑐2 + 2𝑏𝑐cos (𝛼′ + tan−1
𝑒
𝑑
)

)
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∠MLK = cos−1

(

 
𝑐 + 𝑏cos (𝛼′ + tan−1

𝑒
𝑑
)

√𝑏2 + 𝑐2 + 2𝑏𝑐cos (𝛼′ + tan−1
𝑒
𝑑
)
)

                                                 3. 18 

 As ∠MLI is constant, ∠KLI can be seen as 

∠KLI = ∠MLI - ∠MLK 

= 𝛼′ - ∠MLK 

Substituting the value of ∠MLK taken form Eq. (3.18) in the above equation, the 

value of ∠KLI will be 

= 𝛼′ − 𝑐𝑜𝑠−1

(

 
𝑐 + 𝑏𝑐𝑜𝑠 (𝛼′ + 𝑡𝑎𝑛−1

𝑒
𝑑
)

√𝑏2 + 𝑐2 + 2𝑏𝑐𝑐𝑜𝑠 (𝛼′ + 𝑡𝑎𝑛−1
𝑒
𝑑
)
)

                                      3. 19 

From ΔKLI, it can be seen that, 

IK2 = ℎ2 + LK2 − 2ℎLK cos∠KLI                                                             3.20 

Substituting the value of LK (from Eq. (3.17)) and ∠KLI (from Eq. (3.19)) in Eq. 

(3.20), it has been derived 

IK2 = ℎ2 + 𝐴1 − 2ℎ√𝐴1 𝑐𝑜𝑠 (𝛼′ −  𝑐𝑜𝑠
−1 (

𝐵1

√𝐴1
))                                                      3. 21 

Where 𝐴1 = 𝑏
2 + 𝑐2 + 2𝑏𝑐𝑐𝑜𝑠 (𝛼′ + 𝑡𝑎𝑛−1

𝑒

𝑑
) 

and 𝐵1 = 𝑐 + 𝑏𝑐𝑜𝑠 (𝛼′ + 𝑡𝑎𝑛
−1 𝑒

𝑑
) 

From ΔKLI, the value of ∠KIL can be derived as      

cos ∠KIL =
ℎ2 + IK2 − LK2

2ℎIK
 

After substituting the value of LK and IK taken from Eqs. (3.17) and (3.21) 

respectively, it has been derived 

∠KIL = 𝑐𝑜𝑠−1

(

 
 

ℎ − √𝐴1 𝑐𝑜𝑠 (𝛼′ − 𝑐𝑜𝑠
−1 (

𝐵1
√𝐴1

))

ℎ2 + 𝐴1 − 2ℎ√𝐴1 𝑐𝑜𝑠 (𝛼′ −  𝑐𝑜𝑠−1 (
𝐵1
√𝐴1

))
)

 
 
                                3. 22 

During unlocking condition, the displacement made by S6 create ΔJIK where ∠JIK 

can be seen as (90o −  ∠KIL) 
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From ΔJIK, cos ∠JIK  can be calculated as 

𝑥6
2 + IK2 − 𝑎2

2𝑥6IK
 

cos(90o −  ∠KIL) =
𝑥6
2 + IK2 − 𝑎2

2𝑥6IK
                                        3. 23  

After substituting the value of ∠KIL (from Eq. (3.22)) and IK (from Eq. (3.21)) in 

Eq. (3.23), xs6 can be expressed as a function of a, b, c, d, e, h and 𝛼′. The measured 

value of xs6 defines the condition for opening the locking system. After putting all 

the structural parameters as per our design in Eq. (3.23),  

the value of xs6 will be 1.5 cm (approximately). 

Where a = 1.25 cm, b = 1.375 cm, c = 1.5 cm, d = 4.6 cm, e = 1.25 cm, h = 0.75 cm 

and 𝛼′ = 135.61o 

Primary length of xs6 = 2 cm (before opening of the lock) 

Therefore, total displacement ∆𝑥𝑠6 = (2 − 1.5) = 0.5 cm (approximately) 

As per the design, the value of K5 should be higher than K6 so that the distance 

covered by S6 for the opening condition can be accomplished for a little movement 

of S5. In order to make a boundary between two regions, the switching region 

should be as small as possible. Satisfying the criteria (xs5 « xs6), we assume that xs6 

moves 0.5 cm for the displacement of xs5 = 0.1 cm for proper functioning. 

Therefore, putting the value of xs5 and xs6 in Eq. (3.14),  

it has been derived K5 = 5K6                                     3.24 

In this exoskeleton, a small compression spring (S6) is considered to fit into the 

small space of the locking system and its stiffness (K6) is 103 N/m. Therefore, the 

value of K5 should be at least 515 N/m to satisfy the unlocking condition.  

The spring (S6) connected to two jaws experience a higher and opposite force from 

S5 after opening of the lock. S6 cannot be compressed after a certain limit due to 

the mechanical restriction thus produces a constant force for the rest of the 

motion. However, due to the backward movement of the nut slider in the second 

operating region, S5 will be compressed and will maintain the unlocked condition 

during the rest of the range as shown in Figure 3.24. 
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Figure 3.24. Force generation in two springs of the locking mechanism 

• Stiffness of S7 and S8 

Figure 3.25 shows the force balancing diagram of the mechanism during the final 

stage of assistive force-based region where both torsional springs S7 and S8 are at 

their maximum deflected position. The stiffness of S2 depends on the combined 

weight of the arm and load which is already shown in Eq. (3.5). Compression 

spring S1 is able to keep the cylinder based rectangular slider at its normal 

condition if no force is present. Nut slider will generate an equal and opposite 

force in return of the torque generated by those torsional spring (S7 and S8). Those 

two rectangular plates associated with S7 and S8 will be deflected to their 

maximum position.  

 

Figure 3.25. Force balancing of the mechanism in final stage of the assistive force 
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The reaction force produced by the nut slider should be able to balance the forces 

generated by S1 and S2. The stiffness of S7 and S8 can be derived from the force 

balancing condition of the mechanism. Both S7 and S8 offer equal stiffness because 

construction wise both springs are the same. 

From ΔA1B1D1, it can be derived that, 

𝑟2(1 − 𝑐𝑜𝑠 𝜆) = 𝑎′ 

𝜆 = 𝑐𝑜𝑠−1(1 −
𝑎′

𝑟2
)                                                                                                                    3. 25 

Where a’ = Width of the extension part of the nut slider 

 r2 = Length of rectangular plates connected to S7 and S8 

λ = Angle made by those rectangular plates at maximum deflected position 

Force produced by S1,  

𝑓𝑠1 = 𝐾1𝑥𝑠1                                     3.26 

Force produced by S2 at maximum deflected position, 

𝐹2 = 𝐾2(𝑥𝑠2 + 𝑥𝑠1 − 𝑥′𝑠2)                                       3.27 

In this mechanism, 𝐾7  = 𝐾8 [Where K7 = Stiffness of S7 and K8 = Stiffness of S8] 

The torque created by each torsional spring is given by 

𝜏′′ =  𝐾7𝜆  

𝐹′𝑟2 𝑐𝑜𝑠 𝜆 =  𝐾7𝜆 [Where F’ = Tangential force by S7 and S8 = Reaction force of nut 

slider] 

𝐹′ = 
𝐾7𝜆

𝑟2 𝑐𝑜𝑠 𝜆
                                                                                                                             3. 28 

The force created by both torsional springs is given by 2F’ 

As per the force equilibrium condition,  

2𝐹′ =  𝑓𝑠1 + 𝐹2                                                                         3.29 

Substituting the value of 𝑓𝑠1  (from Eq. (3.26)), 𝐹2 (from Eq. (3.27)) and F’ (from Eq. 

(3.28)) in Eq. (3.29), it shows 

2𝐾7𝜆

𝑟2 𝑐𝑜𝑠 𝜆
=  𝐾1𝑥𝑠1 + 𝐾2(𝑥𝑠2 + 𝑥𝑠1 − 𝑥′𝑠2) 

𝐾7 =
𝑟2 𝑐𝑜𝑠 𝜆 (𝐾1𝑥𝑠1 + 𝐾2(𝑥𝑠2 + 𝑥𝑠1 − 𝑥′𝑠2))

2𝜆
                                                                  3. 30 

After putting the value of λ (taken from Eq. (3.25)), the value of K7 will be, 
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𝐾7 =
(𝑟2 − 𝑎′)(𝐾1𝑥𝑠1 + 𝐾2(𝑥𝑠2 + 𝑥𝑠1 − 𝑥′𝑠2))

2 𝑐𝑜𝑠−1(1 −
𝑎′
𝑟2
)

                                                                3. 31 

To be deflected by the nut slider, both plates RP1 and RP2 needs to rotate near 

about (𝜆) 31o. After substituting the structural parameters in the above equation, 

the value of K7 and K8 becomes 0.63Nm/rad. The pressure on S7 and S8 has been 

created since the starting of assistive force-based region (0.181 m) and it ends up 

at 0.205 m due to the angular deflexion limit of both torsional springs.  Figure 3.26 

shows the force generation by both springs (S7 and S8) during the assistive force-

based spring formation. 

 

Figure 3.26. Force generated by S7 and S8 

Specification of all compression, extension and torsional springs used in the 

exoskeleton are shown in Table 3.2. 

Table 3.2. Specifications of the springs used in the exoskeleton 

Spring 
number 

Type of the 
spring 

Stiffness 
(N/m) 

No of 
turns 

Wire 
diameter 

(m) 

Material Mean 
diameter 

(m) 

Function 

S1 Compression 25 N/m 8 0.000681 ASTM 
music 
wire 

0.02 Restoration of the 
slider (SL1) assembly 
at the end of assistive 

force based region 
S2 Extension 246.54 

N/m 
35 0.0017 ASTM 

music 
wire 

0.021 Generation of the 
assistive force during 

self-initiated joint 
movement 

S3 Extension 2.5 N/m 93 0.00054 ASTM 
music 
wire 

0.01 Variation of the joint 
stiffness 

S4 Extension 10 N/m 122 0.00082 ASTM 
music 
wire 

0.01 Variation of the joint 
stiffness 
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Spring 
number 

Type of the 
spring 

Stiffness 
(N/m) 

No of 
turns 

Wire 
diameter 

(m) 

Material Mean 
diameter 

(m) 

Function 

S5 Compression 103 N/m 8 0.0005 ASTM 
music 
wire 

0.01 Generation of the 
opposite force to 

open the lock 
S6 Compression 515 N/m 20 .001 ASTM 

music 
wire 

0.01 Generation of the 
force to maintain the 
unlocked condition 

S7 Torsional 0.63 
Nm/rad 

5 .002 ASTM 
music 
wire 

0.005 Switching between 
assistive force based 

region to resistive 
one 

S8 Torsional 0.63 
Nm/rad 

5 .002 ASTM 
music 
wire 

0.005 Switching between 
assistive force based 

region to resistive 
one 

 

3.9 Working model of the elbow exoskeleton 

A working prototype has been developed to establish the working principle of the 

exoskeleton. The 3D model has been designed in SolidworksTM platform (shown in 

Appendix V) and all customized mechanical components have been manufactured 

using 3D printer (Manna and Dubey 2019a). All rotational and sliding contacts 

have been designed with a bearing to reduce the frictional loss. ABS (Acrylonitrile 

butadiene styrene) is used as the structural material for its hardness and 

lightweight. The supporting structure of the exoskeleton and its arm holder are 

shown in Figure 3.27 and Figure 3.28. Figure 3.29 shows how user is going to wear 

the exoskeleton. Different phases of exoskeleton for generating modes of exercise 

are shown from Figure 3.30 to Figure 3.34 with the developed prototype. The 

specifications of the manufactured model are shown in Table 3.3. 

Table 3.3. Specification of the proposed exoskeleton 

Material ABS (Acrylonitrile butadiene styrene) 
Upper arm dimension 0.35 m x 0.15 m x 0.17 m (± 0.04 m) 
Forearm dimension 0.40 m x 0.02 m x 0.06 m (± 0.04 m) 
Mass of the structure 1.8 kg 
Motor specification Model-DFROBOT ZYTD520 

Operating voltage-12V DC 
RPM-50 RPM 
Maximum torque-5 Nm 
Mass-0.210 kg 
Power – 5 W 

Gear material Nylon-101 
Spring material ASTM A228 
Linear Ball Bearing Model- Bosch Rexroth Linear Ball Bearing R060204010 
Axial Ball bearing HCH 62022 
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Figure 3.27. Supporting structure 

 

Figure 3.28. Arm holder 

 

Figure 3.29. Prototype of the elbow exoskeleton 
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Flexion 

 

Extension 

Figure 3.30. Motor controlled elbow joint motion in first operating region 
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a. Locked condition 

 

b. Unlocked condition 

Figure 3.31. Pre and post locking condition for switching from motor controlled to 

assistive mode 
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Flexion 

 

Extension 

Figure 3.32. Spring assisted joint motion in the second operating region 
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a. Starting position of assistive mode     

    

b. End position of assistive mode 

 

Figure 3.33. Mechanism of the exoskeleton for generating variable assistance 
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Flexion 

 

Extension 

Figure 3.34. Spring assisted resistive mode in the third operating region 
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3.10 Cost estimation 

The cost of making this exoskeleton includes the manufacturing cost of all 3D 

printed components and purchasing cost of the mechanical and electronic 

components used. The price list of all components used to make this exoskeleton is 

shown in Table 3.4. The estimated total cost is assumed to be £886. 

Table 3.4. Price list of components 

Manufactured items 
Item no Components Cost (£) 
1 60 components manufactured from 3D printers 

Material: ABS (Acrylonitrile butadiene styrene) 
600 

2 Solid rods, Material: Teflon, aluminium 10 
3 Universal joint, Material: Bruss 10 
4 Flange, Material: Bruss 5 
5 10 Springs, Material: ASTM A228 10 
6 2 Gears, Material: Nylon 101 5 
7 Screw, Material: cast iron 10 
8 Rivet joint, Material: Bruss 5 
9 Assembling cost 123 

Purchased items 
Item no Components Market price 

Mechanical components 
1 Screw set 10 
2 Linear ball bearing, Model: R060204010 10 
3 Axial Ball bearing, Model: HCH 62022 10 

Electronic components 
1 DC motor, Model: ZYTD520 14 
2 Arduino Uno board 12 
3 Arduino compatible motor driver, Model: 

DFR0225:V2 
19 

4 A reflective optical sensor Model: GP2Y0A41SK0F 6 
5 4 KΩ potentiometer 2 
6 12v Battery 15 
7 Electronic connectors 10 
 Total 886 
 

3.11 Concluding remarks 

 
An innovative mechanism of the elbow exoskeleton has been developed which can 

accommodate three modes of exercises that could potentially deliver different 

stages of post-stroke rehabilitation. In this design, we have attempted to achieve 

the different types of joint movements (external force based, active and passive) at 
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mechanical level so that the device can be fine-tuned to user’s requirements. Full 

design details of the elbow exoskeleton have been presented together with 

parametric relations for component selection (springs and motor specification), 

however, these design parameters can be tailored to suit any user-specific 

requirements. A prototype device has been developed to prove the principle. The 

present prototype can deliver the joint torque up to 10 Nm. For most exoskeletons, 

the motor torque is varied to generate variable joint torque depending on the 

signal from user’s body whereas in this exoskeleton the position of the nut-slider 

can produce different exercise modes either under motor control or in assistive or 

resistive modes. The mechanism can change the amount of assistive and resistive 

force by simply changing the position of the nut-slider.  The developed exoskeleton 

provides a mechanism based solution which removes the dependency of 

biosensor. The exoskeleton is operated using a single motor. The exoskeleton is 

operated using a single motor. If the joint range go beyond 135o, the switching 

mechanism between motor controlled mode and assistive mode works as safety 

tool and transfer the joint control from motor to spring force. In assistive and 

resistive rehabilitation, since springs are used to provide the required forces 

without using any extra energy sources, this reduces the power consumption as 

well as the size of the energy source. Such an arrangement in a single structure 

offers flexibility to users to select a particular type of exercise. The cost of the 

exoskeleton is also under affordable range (£886) which can make it a potential 

solution for post-stroke patients in future. 
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Chapter 4   Control strategy of the developed exoskeleton 

The developed exoskeleton can provide three types of joint movement (external 

control, assistive force and resistive force) by changing its configuration. It 

depends on two parameters; one is the structural parameters (dimension of the 

mechanical components, stiffness of springs, motor torque) which decide the 

working range of mechanical parts. The other is joint parameters which decide the 

mode of exercise and its outcome. Before considering the technical specification 

and dependency on joint parameters, it is important to know how different modes 

of exercises can be generated using the designed exoskeleton. After identifying the 

design specifications of the developed elbow exoskeleton, a combined three stage 

exercise module has been incorporated using a position-based control. To remove 

the dependency of muscle-based biosensor (discussed in chapter 3), different 

mechanisms have been used in the exoskeleton to generate variable assistive as 

well as resistive force. 

The ability of a human joint can be evaluated based on its joint angle, angular 

velocity and joint torque because those three parameters show its reachable 

points, frequency of movement and weight lifting capacity. Therefore, these three 

joint parameters are considered in this exoskeleton to control the mode of exercise 

and can be used to evaluate the post-stroke recovery stage (acute, mid and last 

stage). The recovery index (𝑅𝐼𝑡) is an iterative process which can be evaluated by 

measuring the difference between the present and past health, quantifies the joint 

condition based on the joint angle (β), angular velocity of the joint (ω) and change 

in load carrying capacity (𝐿𝑚).                 

𝑅𝐼𝑡 =
𝐻𝐼𝑡 −𝐻𝐼𝑡−1

𝑇
  [𝐻𝐼𝑡 → 𝑓(𝛽,𝜔, 𝐿𝑚)]                                                                               4. 1 

T = Time over a period of testing 

ω =
𝛽(𝑡) − 𝛽(𝑡 − 1)

𝑡
                                                                                                                 4. 2 

t = Time to complete one rotation 

𝐿𝑚 = 𝑃𝑙(𝑡) − 𝑃𝑙(𝑡 − 1)                                                                                                              4. 3 

 [Pl = Load carrying capacity of the joint]
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The threshold conditions (E1, E2 and E3) of each recovery stage can be determined based on prior information set by the 

physiotherapist. Each of the threshold condition consists of a specific value of three joint parameters. Users can switch from one 

mode of exercise to another if they cross the threshold (Manna and Dubey 2019b). The control algorithm will automatically put the 

nut slider in a specific position required for that exercise, as shown in Figure 4.1. 

 

 

 

Figure 4.1. Switching of exercise modes based on recovery index
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4.1 Motor controlled exercise in acute stage 

Considering spasticity and joint stiffness, it is not suitable to provide a full range of 

motion to the affected joint at the starting phase. The range and velocity of the 

joint movement should be increased gradually. An oscillating motion generated by 

the motor by rotating it in clockwise and anticlockwise direction results in a 

reciprocating motion by the nut slider (x) on the leadscrew. As both leadscrew 

based sliders (nut slider and concentric slider) act as a single attachment in the 

first operating region, it controls flexion-extension of elbow joint (Figure 4.2). 

If the number of rotations (n, θ) in the motor is increased, the rotation angle (β) of 

elbow will be simultaneously increased whilst maintaining the movement of the 

nut slider in the first region. On the other hand, different rpm of the motor will 

indirectly change the angular velocity of elbow. As the motion is based on 

leadscrew, the load is fixed in this mode of exercise. 

 

Figure 4.2. Flexion/extension of the elbow joint in motor-controlled exercise 

Where n = number of turns in the motor, θ = motor angle, 𝜃̇ = angular velocity of 

the motor, V = velocity of the nut slider, ω = angular velocity of the elbow 

movement, f = frequency of the movement. 

 

In the first mode, the region covered by the electric motor (0 ≤ 𝑥 ≤ 𝑥1) is 

equivalent to the full range of motion by elbow joint. Continuous joint movement 

with different range and frequency in the acute stage may create a positive effect 
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on patients to activate their joint and help them to initiate joint movement. 

However, both angular range and velocity should not be varied simultaneously. 

First users are habituated with joint movement up to full range using the 

exoskeleton, after that the same joint can be rotated with different velocity in an 

incremental manner. In this exercise mode, the number of repetitions (n1 and n2) 

for each stage as well as the incremental step size of rotation (θ1) and angular 

velocity (𝜃2̇) can be determined by physiotherapist to maintain a steady 

rehabilitation process (Figure 4.3). 

 

Figure 4.3.  Joint parameters in motor controlled mode 

4.2 Assistive mode for mid stage 

Patient’s effort is the most important factor in rehabilitation. The lock is opened at 

the starting of second operating region hence the nut slider and concentric slider 

are detached from each other. In the mid stage, users can rotate elbow joint 

themselves and the assistive force is provided by an extension spring (S2) in this 

exoskeleton. The assistive force can be increased if the nut slider is pushed back to 

the end of this region.  

The percentage of user’s participation in exercise can be defined as the recovery 

rate of the user. Higher the percentage of participation better is the recovery rate 
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(Figure 4.4). Normally, the assistive spring force should be kept lower than the 

desired joint torque so that users endeavour to achieve it by giving more labour, 

thus they will practice gaining more strength at their joint. Based on the recovery 

status, the position of the nut slider should come forward to engage with less 

assistive force to encourage users to put more efforts. Theoretically, the position of 

the nut slider should be increased for giving more assistive force to users if they 

are unable to move their joints. However, this strategy is applicable at the 

beginning when users are initiating active joint movements, later the assistive 

force is decreased when users can move their joints easily, just to motivate them to 

put extra effort. 

 

Figure 4.4. Proposed path of recovery with assistive force 

We have proposed the Load sharing capacity of a user 

𝑃𝑙 =
𝜏𝑝

𝜏𝑙
× 100                                                                                                                                4.4 

 [𝜏𝑙 = Total torque, 𝜏𝑝 = Joint torque from user] 

 

During the assistive mode, the decrement of the distance travelled by the nut slider 

will be inversely proportional to the difference between the desired torque (𝜏𝐷) 

and the present joint torque provided by the user (𝜏𝑝) as shown in Figure 4.5. 

∆𝑥 ∝
1

(𝜏𝐷−𝜏𝑝)
                                                                                                                                  4.5 

Δx = Change of displacement in the nut slider  
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Figure 4.5.  Parameters of assistive mode 

4.3 Resistive mode for last stage 

In the first two stages of active joint movements, no extra load is applied to the 

joint just to improve the muscle function so that users would be able to do their 

normal joint movement. In this mode, a variable resistive force is applied to elbow 

joint in terms of changing its joint stiffness. This mode of exercise is analogous to 

the exercise with variable load where the difficulty level in therapy is increased 

with time. As per the mechanism design, the joint stiffness is increased by moving 

the nut slider backward to the end of the third region. 

The required joint torque of elbow increases with the joint stiffness.  

Therefore, 𝜏𝑙  ∝  𝐾
′             4.6 

Where τl = Required joint torque to overcome the stiffness and K’ = Joint stiffness 

As the total amount of torque is carried out by user,  

therefore  𝜏𝑙 = 𝜏𝑝             4.7 

 

Figure 4.6. Proposed path of recovery with resistive force 
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In the second stage, the external assistive force is decreased with time if users are 

able to carry out joint movement, however, in this phase, the external resistive 

force is increased with time if users can rotate their joints with the existing 

stiffness (Figure 4.6). If users can overcome the resistive force by engaging with 

more joint torque, it shows the sign of recovery. In this mode of exercise, the 

increment of the distance (∆𝑥) traveled by the nut slider is proportional to the 

difference between the desired torque (𝜏𝐷) and the present joint torque (𝜏𝑝) as 

shown in Figure 4.7. 

Therefore ∆𝑥 ∝ (τD − τp)                                                       4.8 

 

Figure 4.7. Parameters in resistive mode 

4.4 Computation of elbow joint parameters 

Mode of exercise in this exoskeleton is determined by three joint parameters: 

torque, angle and velocity. 

4.4.1 Computation of joint torque 

4.4.1.1 Joint torque in motor controlled mode 

In the first region, the required motor torque to actuate elbow joint is equivalent to 

the torque needed to overcome the frictional force created between the leadscrew 

and the nut slider. Due to the slider-crank mechanism, the elbow joint is actuated 

by pulling the connecting link (Figure 4.8). 
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Figure 4.8. Slider crank mechanism during electric motor control 

The required tension (T) for lifting up the mass of the forearm is given by 

𝑇′ =
𝑀𝑔𝐿1 cos 𝛽

𝑟 cos(𝛼 − 𝛽)
                                                                                                                     4. 9 

Where, M = Mass of the forearm and the supporting link 

L1 = Distance from the elbow joint to the centre of gravity of forearm and the 

supporting link 

β = Elbow joint angle 

α = Angle made by the connecting link and nut slider 

r = Length of the crank 

g = Acceleration due to gravity 

 

Figure 4.9. Frictional model of the leadscrew 

From the frictional model of the leadscrew (Figure 4.9), it can be shown 

tan 𝛿 =
𝑝

𝜋𝑑1
                                                                                                                               4. 10 

Where p = Pitch of the leadscrew 
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πd1 = circumference of the leadscrew 

δ = Lead angle of the leadscrew 

In Figure 4.9, P is the effort applied to the screw to lift the load. Taking the force 

equilibrium in the frictional model,  

It shows,  𝑃 cos 𝛿 = 𝑊 cos 𝛿 +𝑊1 sin 𝛿 + 𝐹                                4.11 

Where Tcosα = W and Tsinα = W1 [taken from Figure 4.8] 

Frictional force (F) during motion is  

𝐹 = 𝜇𝑅𝑁 = 𝜇(𝑊 sin 𝛿 −𝑊1 cos 𝛿 − 𝑃 sin 𝛿)  [µ=Coefficient of friction]                   4.12 

After substituting the value of F and µ = tan  [ = friction angle)] in Eq. (4.11), It 

has been derived 

𝑃 = 𝑊 +𝑊1
(sin 𝛿 − 𝜇 cos 𝛿)

(cos 𝛿 + 𝜇 sin 𝛿)
                                                                                              4. 13 

Substituting µ = tan  [ = friction angle] in Eq. (4.13), 

𝑃 = 𝑊 +𝑊1 tan(𝛿 − 𝜑)                                             4. 14 

After substituting the value of W and W1, Torque (τ) required for overcoming the 

friction of leadscrew is   

𝜏 = 𝑃 ×
𝑑1
2
=
𝑇(cos𝛼 + sin 𝛼 tan(𝛿 − 𝜑))𝑑1

2
                                                                  4. 15 

Putting the value of T from Eq. (4.9), the final equation of required motor torque 

(τ) for the exoskeleton is 

𝜏 =
𝑀𝑔𝐿1 cos 𝛽 (cos 𝛼 + sin 𝛼 tan(𝛿 − 𝜑))𝑑1

2𝑟 cos(𝛼 − 𝛽)
                                                                4. 16 

The relation between α and β can be derived from Eq. (4.29) where 

𝛼 =  cos−1 (
𝑑 − 𝑟 sin 𝛽

𝑙
)                                                                                                         4. 17 

The mass of the forearm can be varied for different users. A range of the forearm 

mass (1 kg to 3 kg) has been considered and the required motor torque level has 

been evaluated as shown in Figure 4.10. 
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Figure 4.10. Motor torque for different forearm mass 

If the motor is connected to elbow joint, the required motor torque (τj) is 𝜏𝑗 =

𝑀𝑔𝐿1 cos β                                    4.18 

Figure 4.11 shows that the required motor torque of the exoskeleton is reduced 

almost two times compared to the joint based motor actuation for 1 kg of forearm 

mass. Therefore, the exoskeleton can provide joint torque up to 10 Nm due to the 

mechanical advantage as the motor torque is 5 Nm. 

 

Figure 4.11. Comparison of the motor torque in two frameworks 

In the next two modes (assistive and resistive), activities are performed by users 

hence the joint torque of users depends on their muscle strength. The value of the 

joint stiffness is almost constant for the first two modes (motor controlled and 

assistive) because the nut slider does not affect those two extension springs (S3 

and S4) which are mainly responsible for changing the joint stiffness. However, in 
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resistive mode, the joint stiffness is significantly changed because it increases the 

contact force around the elbow joint by stretching S3 and S4. 

As shown in section 3.8, the joint stiffness is given by Eq. (3.10) 

𝐾′ =
2𝑟1{(𝐾4 − 𝐾3)𝑥 − (𝐾3𝑥′𝑠3 − 𝐾4𝑥′𝑠4)} −

𝐾2𝑟(𝑥𝑠2 − 𝑥′𝑠2) cos(𝛼 − 𝛽)
sin α

𝛽

+ 2𝑟1
2(𝐾4 +𝐾3) 

4.4.1.2 Joint torque in assistive mode 

In this mode, the required joint torque is reduced by the spring force (S2) which 

can be enhanced by moving the nut slider in this region (x1<x≤x2) as shown in 

Figure 3.18. 

As per the mechanism,  ∆𝐹𝐴 = ∆𝑓𝑠2                                               4.19 

Due to the spring force (𝑓𝑠2), there is a reduction of joint torque which is given by 

∆𝜏 =
𝐾2𝑟(𝑥𝑠2 − 𝑥

′
𝑠2) cos(𝛼 − 𝛽)

sin α
                                                                                       4. 20 

In this mode, the nut slider moves between x1 and x2, therefore the maximum value 

of 𝑥𝑠2 can also be varied simultaneously. As a result, the joint torque is reduced 

more due to higher spring force. 

∆𝜏 = maximum when 𝑥 = 𝑥2 

          = mimimum when 𝑥 = 𝑥1  

Taking the Eq. (3.10), the joint stiffness in assistive mode (𝐾′𝐴) becomes  

𝐾′𝐴 =
𝐴 − 𝑟𝐾2(𝑥𝑠2 − 𝑥′𝑠2)

𝛽
+ 𝐵                                                                                            4. 21 

Where A and B are constant 

A = 2𝑟1{(𝐾4 − 𝐾3)𝑥 − (𝐾4𝑥′𝑠4 − 𝐾3𝑥′𝑠3)}                                 4.22 

B = 2𝑟1
2(𝐾4 + 𝐾3)                                    4.23 

The resultant joint torque of user in assistive mode (𝜏𝐴) is 

= (𝑀𝑔𝐿1 𝑐𝑜𝑠 𝛽) − (
𝐾2𝑟(𝑥𝑠2 − 𝑥

′
𝑠2) cos(𝛼 − 𝛽)

sin α
) + 𝐾′𝐴𝛽                                           4. 24 

4.4.1.3 Joint torque in resistive mode 

In resistive mode, the nut slider is in the third operating region (x2<x≤x3) therefore, 

the value of assistive force is fixed and the displacement of both extension springs 

(S3 and S4) are changed. 
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Taking the Eq. (3.10), the joint stiffness (𝐾′𝑅) in resistive mode becomes 

       𝐾′𝑅 =
2𝑟1{(𝐾4 − 𝐾3)𝑥 − 𝐶} − 𝑟𝐾2(𝑥𝑠2 − 𝑥′𝑠2)

𝛽
+ 𝐵                                                4. 25 

where C is constant 

𝐶 = (𝐾3𝑥
′
𝑠3 −𝐾4𝑥

′
𝑠4)                                   4.26 

The resultant joint torque of user in resistive mode (𝜏𝑅) is 

= (𝑀𝑔𝐿1 𝑐𝑜𝑠 𝛽) − (
𝐾2𝑟(𝑥𝑠2 − 𝑥

′
𝑠2) cos(𝛼 − 𝛽)

sin α
) + 𝐾′𝑅𝛽                                          4. 27 

4.4.2 Computation of joint range and angular velocity 

4.4.2.1 Motor controlled mode 

In electric motor controlled mode, elbow joint’s range and velocity are controlled 

by the rotation angle and speed of the motor. Both leadscrew based sliders (nut 

slider and concentric slider) are considered as a single slider as shown in Figure 

4.12. 

 

Figure 4.12. Joint angle computation in motor controlled mode 

From Figure 4.12, 

BE = BC + CE,  

𝑙 𝑠𝑖𝑛 𝛼 = 𝑥 + 𝑟 𝑐𝑜𝑠 𝛽                                     4.28  

AF = AB − FB 

𝑙 𝑐𝑜𝑠 𝛼 = 𝑑 − 𝑟 𝑠𝑖𝑛 𝛽                                     4.29 

Where x = Position of the nut slider and β = Elbow joint angle 

Taking the square of both Eqs. (4.28) & (4.29) and adding them, it shows 

𝑙2𝑠𝑖𝑛2𝛼 + 𝑙2𝑐𝑜𝑠2𝛼 = (𝑥 + 𝑟 𝑐𝑜𝑠 𝛽)2 + (𝑑 − 𝑟 𝑠𝑖𝑛 𝛽)2     
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2𝑑𝑟 𝑠𝑖𝑛 𝛽 = 𝑥2 + 2𝑥𝑟 𝑐𝑜𝑠 𝛽 + 𝜎                                   4.30 

Where 𝜎 = 𝑟2 + 𝑑2 − 𝑙2  and the value of 𝜎 is constant since r, d and l are solid 

links 

Squaring both the sides of Eq. (4.30), it has been derived 

(𝑥2𝑟2 + 𝑑2𝑟2) 𝑐𝑜𝑠2 𝛽 + (𝑥3𝑟 + 𝑥𝑟𝜎) 𝑐𝑜𝑠 𝛽 + ∁= 0      [ Where ∁=
𝑥4+2𝑥2𝜎+𝜎2−4𝑑2𝑟2

4
 ] 

The relation between β and x can be derived as  

𝛽 = 𝑐𝑜𝑠−1 (
−(𝑥3𝑟 + 𝑥𝑟𝜎) ± √(𝑥3𝑟 + 𝑥𝑟𝜎)2 − 4(𝑥2𝑟2 + 𝑑2𝑟2)∁

2(𝑥2𝑟2 + 𝑑2𝑟2)
)                          4. 31 

The linear relationship between the displacement covered by the nut slider (x) and 

motor rotation (n, θ) is shown as Eq. (3.1) as 𝑥 = 𝜃𝑒  where 𝑒 =
𝑛𝐿

2𝜋𝑁
        

Substituting the value of x,  𝜎 and ∁ in Eq. (4.31), it shows 

β = 𝑐𝑜𝑠−1

(

 
 
 −(𝜃

3𝑒3𝑟 + 𝜃𝑒𝑟𝑐) ± √
(𝜃3𝑒3𝑟 + 𝜃𝑒𝑟𝑐)2 − (𝜃2𝑒2𝑟2 + 𝑑2𝑟2)

(𝜃4𝑒4 + 2𝜃2𝑒2𝑐 + 𝑐2 − 4𝑑2𝑟2)

2(𝜃2𝑒2𝑟2 + 𝑑2𝑟2)

)

 
 
 

                         4. 32 

As shown in Figure 4.14, the Cartesian coordinates of the distal end of forearm 

supporting link are derived as G (X, Y, Z) = (𝐿 cos β / cos 𝛾, 𝐿 cos 𝛽 tan γ, 𝐿 sin 𝛽) 

where 𝛽 = 𝑓(𝑛, 𝜃) and 𝛾 is the rotation in the transverse plane. Lateral movement 

of the exoskeleton has been improved due to the universal joint (Figure 4.14); the 

normal revolute joint can only provide a fixed planner rotation but universal joint 

reduces that constraint by allowing a slight lateral movement across the sagittal 

plane. The joint flexibility is zero at 90o due to singularity. 

      

Figure 4.13. Cartesian coordinates of the distal end of forearm 
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Figure 4.14. Workspace covered by the elbow joint 

In this mechanism, the required number of motor rotations is 15 (clockwise & 

anticlockwise) in the first region for translating the nut slider in the range of 0 to 

0.18 m which can generate a rotation angle of 1350 (flexion & extension) at elbow 

joint, shown in Figure 4.15 for different rpm of the motor.  

 

a. Position of the nut slider for different rpm of the motor 

 

b. Variation of the elbow angle for different rpm of the motor 

Figure 4.15. Elbow joint motion in motor controlled mode 
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Therefore, the angular velocity of elbow in this mode is  

𝜃̇  → 𝑓(𝛽̇)                                     4.33 

4.4.2.2 Assistive mode 

The unlocking condition allows the concentric slider to move freely on the 

leadscrew in this region. As the concentric slider is connected to the elbow joint 

using the connecting link, therefore the position of the concentric slider (xs2) varies 

as per elbow joint angle (β) which is given by Eq. (4.34). 

𝛽 = 𝑐𝑜𝑠−1 (
−(𝑥𝑠2

3𝑟 + 𝑥𝑠2𝑟𝜎) ± √(𝑥𝑠2
3𝑟 + 𝑥𝑠2𝑟𝜎)

2 − 4(𝑥𝑠2
2𝑟2 + 𝑑2𝑟2)∁

2(𝑥𝑠2
2𝑟2 + 𝑑2𝑟2)

)                     4. 34 

Therefore angular joint velocity in assistive mode (𝜔𝐴) becomes 

𝜔𝐴 =
𝑃𝑈
𝜏𝐴
= 𝛽𝐴̇                                                                                                                            4. 35 

The value of PU is depending on the user’s effort 

And 𝜏𝐴 is derived from Eq. 4.24 

Angular joint velocity of user is increased in flexion because the required joint 

torque is reduced due to the addition of higher assistive force to the user’s effort. 

The same assistive force opposes the joint freefall during extension. Therefore, 

angular joint velocity is decreased during extension. 

4.4.2.3 Resistive mode 

In resistive mode, more resistive force increases the required joint torque in both 

flexion and extension hence angular joint velocity is decreased. 

Therefore angular joint velocity (𝜔𝑅) becomes 

𝜔𝑅 =
𝑃𝑈
𝜏𝑅
= 𝛽𝑅̇                                                                                                                           4. 36 

𝜏𝑅 is derived from Eq. 4.27 

4.5 Computation of forearm motion 

4.5.1 Motor controlled mode 

In motor controlled mode, the angle made by the half circular gear (Figure 4.16) is 

given by 

𝜃 =
𝑁1 × Rotation angle made by motor

𝑁2
                                                                         4. 37 
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N1:N2 = Gear ratio between small gear and half circular gear 

4.5.2 User controlled mode 

 

Figure 4.16. Spring arrangement of the arm holder 

As shown in Figure 4.16, 

𝛼 = tan−1
𝑙

2𝑟
                                                                                                                             4. 38 

l = Length of the rectangular slider  

r = Radius of the second circular channel in half-circular gear 

The free length of both compression springs (S9 and S10) is the same as the arc 

covered by angle 2βmax where βmax is the maximum angle of the half-circular gear 

on each side. Therefore in rest condition, both springs are compressed by an angle 

(βmax + α).  

When user twists the rectangular slider by an angle β, the force provided by S9, 

𝑓𝑠9 = 𝐾9
2𝜋𝑟

360
(𝛽𝑚𝑎𝑥 − 𝛽 + 𝛼)                                                                                                4. 39 

Force provided by S10, 

𝑓𝑠10 = 𝐾10
2𝜋𝑟

360
(𝛽𝑚𝑎𝑥 + 𝛽 + 𝛼)                                                                                            4. 40 

The required joint torque of a user to move the specific angle (β) in the clockwise 

direction is given by 
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𝜏 = 𝑟(𝑓𝑠10 − 𝑓𝑠9) = 𝐾9
𝜋𝑟2𝛽

90
                                                                                                 4. 41 

To cover 110o, there should be a space where user can reach up to 55o in clockwise 

and anticlockwise rotation from the rest position. 

Therefore, the length of the half circular ring is 

4𝜋𝑟𝛽𝑚𝑎𝑥
360

=
4 × 3.14 × 0.04 × 110

360
= 0.141 m 

In normal condition, the equal and opposite force from S9 and S10 balance each 

other to keep the forearm in stable condition. The stiffness of S9 and S10 used in 

this mechanism is 200 N/m. As it is a twisting movement, there will be no impact 

of forearm mass on the spring. In user-initiated joint movement, user requires the 

same but opposite torque as per clockwise or anticlockwise rotation (Figure 4.17). 

 

Figure 4.17. Required torque of a user in twisting forearm motion 

4.6 Electronic circuit for monitoring joint parameters 

All components are interfaced with Arduino Uno board (Operating voltage: 5 V, 

RAM: 2 KB, Clock Speed: 16 MHz) for collecting the joint parameters and 

controlling exercise (Figure 4.18). A DC motor (Model: ZYTD520, mass: 0.210 kg, 

Power: 5W) is used for moving the nut slider on the leadscrew. The motor is 

operated at 12V and it can provide maximum torque up to 5 Nm. Arduino Uno 

board consists of ATmega328P microcontroller for data processing. A 4 KΩ 

potentiometer is used for measuring the elbow joint angle (β) in terms of change in 
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resistance. The cost of making the controlling circuit is minimized by computing a 

lot of joint parameters indirectly from the outcome of one sensor instead of using 

another physical sensor (Manna and Dubey 2019b). The joint angular velocity (ω) 

can be calculated based on the differentiation of joint angle (β) with reference to 

the timeframe. Joint frequency of elbow is evaluated from the relation between 

joint velocity and frequency (shown in Figure 4.17). A current sensor module (GY-

471) is used to measure the motor current during rotation. It has a MAX471 

current amplifier which can measure current up to ±3 A. The output of the current 

sensor is 1 V/A. The position of the concentric slider (xs2) is measured from the 

relationship between β and xs2 (Eq. (4.34)). A reflective optical sensor (Model: 

GP2Y0A41SK0F, (Operating voltage: 5 V, mass: 0.003 kg)) is used to measure the 

position of the nut slider (x). There are other non-contact types of displacement 

sensors such as inductive, proximity or ultrasonic, however, considering the cost 

and linearity, the optical sensor is selected. The range of the optical sensor is 4 to 

30 mm. The joint torque is evaluated from other parameters such as from 

computed joint torque, assistive torque and joint stiffness. All these joint 

parameters depend on the position of the nut slider (x), concentric slider (xs2) and 

measured joint angle (β), as shown in Eqs. (4.24) and (4.27). All sensors’ output 

pins are connected to the analogue inputs of the Arduino board from pin A0 to A1. 

The DC motor is connected to Arduino using an Arduino compatible motor driver 

(Model: DFR0225: V2, Operating voltage: 12 V, mass: 0.080 kg). It consists of an 

L298 to enhance the current level for driving the motor. The maximum speed of 

the DC motor is 50 rpm, however, due to the facility of PWM signal, the speed of 

the motor can be controlled. The microcontroller transfers the sensor data to a PC 

based system to monitor the joint parameters using a developed GUI. If those joint 

parameters cross a particular limit set for a recovery mode (EI, E2 and E3), the 

microcontroller sends a command to the motor to change the position of nut slider 

for changing the exercise mode. Detailed technical specifications of all electronic 

components used in the exoskeleton are shown in Appendix III. 
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4.7 Graphical user interface for operating different rehabilitation modes 

A user-friendly graphical user interface (GUI) is designed in MATLAB platform for 

communicating between the controller board (Arduino) and the exoskeleton. 

Arduino board constantly collects all sensors data and transmitted to the PC 
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through serial communication (Figure 4.19). Users can visualize the real time 

sensor value using the developed GUI (Figure 4.20). The GUI has been made 

simpler by connecting the available serial port to Arduino and fix the Baudrate to a 

specific value (9600 baud). 9600 Baudrate is used as the standard data transfer 

rate between microcontroller and PC in order to avoid any data loss. Arduino reads 

the equivalent voltage of those sensors through its inbuilt Analog to digital 

converter. These sensor values are calibrated from their datasheet in relation to 

the voltage output. It comprises two control modes; sensor-based control and 

manual control. Selection of one option will deactivate the other option. 

 

Figure 4.19. Steps for collecting sensor data using serial commutation 
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Figure 4.20. Developed graphical user interface 

4.7.1 Sensor based control 

In sensor based control (Figure 4.21), exercises are automatically executed to 

users as soon as users select the sensor based control on the GUI and the control is 

taken over by Arduino where the mode of exercise is controlled by the 

microcontroller. As discussed before, those specific joint values of boundary 

condition are stored into the controller, it changes the number of motor rotations 

to place the nut slider in a position providing specific exercise mode. 

 

Figure 4.21. Window for sensor based control 
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4.7.2 Manual control 

In manual mode, users can select a particular exercise manually. The manual mode 

can be performed in two ways. In first option, any of the three exercises modes can 

be selected from a popup menu and in other option, the position of the nut slider 

can be changed to select a specific joint movement (Figure 4.22). In electric motor 

controlled manual mode, users can generate three types of joint motion using GUI.  

• Orthopaedic lessons: There are some specific joint movements which are 

recommended by the physiotherapist. Those joint movements are programmed 

in memory. Those movements are updated with time.  

• Isolateral exercises: Isolateral exercises are the standard motions of any 

human joint. In this exoskeleton, elbow flexion-extension and pronation-

supination are performed with variable angle and speed.  

• Activity of daily living: In this configuration, the elbow joint actuates to do 

some household activities to improve the joint control. 

In manual controlled assistive and resistive modes, users are allowed to move 

their joint with a variable assistive or resistive force. Therefore no command will 

be sent to the controller to deliver any movement. Joint parameters are monitored 

and recorded during movements.  

 

Figure 4.22. Window for Manual control 

Flowchart of the working principle of GUI providing sensor based control and 

manual control is shown in Figure 4.23. 
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4.8 Mode of exercise based on joint parameters 

In this exoskeleton, the variation of the position of nut slider changes the joint 

angle in the first region, adjusts the amount of assistive force in the second region 
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and the level of resistive force in the third region. The exoskeleton has been tested 

with a healthy subject (participant #5) of approximately 1 kg of forearm mass to 

evaluate the operational validity of the design. After wearing the exoskeleton, the 

user rotates the elbow joint in three different modes using normal strength. The 

joint angle is measured from the potentiometer, angular joint velocity and torque 

are derived from the mathematical model shown in Eq. (4.24) and Eq. (4.25). The 

main aim of the experiment is to analyse the working principle of the exoskeleton, 

whether the device can facilitate three types of exercise. 

➢ In the electric motor-controlled mode, electric motor provides the required 

torque to move the user’s right elbow. 

➢ In assistive mode, the user used his normal strength to rotate the elbow 

joint (same effort for different positions of the nut slider). 

➢ In resistive mode, the user used his normal strength to rotate the elbow 

joint (same effort for different positions of the nut slider). 

The starting position is the rest position where elbow is in full extended state 

(making an angle of 180o between upperarm and forearm). In the final position, 

elbow rotates up to its maximum limit identical to full flexion state where the angle 

between upper arm and forearm is 45o as shown in Figure 4.24. 

 

Figure 4.24. Measurement of elbow joint rotation 

In all modes, the maximum range of elbow joint angle is the same because the 

subject can move to full anatomical limit whether actuated by the motor or by 

itself. The motor torque (derived from the frictional model of the leadscrew as per 

Eq. (4.16)) and the reading of the current sensor are following the similar pattern 

as shown in Figure 4.25. Ideally, the current sensor reading should be zero when 
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the joint angle is 90o but the motor needs a minimum current for functioning and 

maintaining the joint at 90o. The output of the current sensor is measured in terms 

of voltage appeared across the output resistance. 

 

 

Figure 4.25. Motor torque and the voltage output of the current sensor 

Figure 4.26a shows the joint angle made by the user for variable assistive spring 

force at the starting position (0.181 m) and ending position (0.20 m) of nut-slider 

position in assistive force-based region. It clearly shows that time required for 

completing a full cycle of joint movement (flexion and extension) is decreased due 

to the addition of more assistive force along with the linear movement of the nut 

slider.  Figure 4.26b shows the variation of joint velocity in the assistive region (Eq. 

(4.34)). Depending on the measurement of joint angle from the potentiometer, 

joint angular velocity is calculated by differentiating the joint angle. It has been 

found that the maximum joint velocity of flexion (ωFA) is higher than extension 

(ωEA) in assistive mode because the spring force helps the subject to reach quicker 

(Figure 4.26b). In this mode, the user’s effort can be reduced by the spring force 

(Eq. (4.24)), therefore the required joint torque for moving the joint is also 

reduced. In assistive mode, shifting of the nut slider from 0.181 m to 0.20 m 

produces more assistive force, therefore, joint velocity is increased and the 
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maximum joint torque of the healthy subject is decreased from 1.175 Nm to 1.138 

Nm (torque variation 0.037 Nm) (Figure 4.26c).  

 

a. Variation of joint angle at different nut slider position 

  

b. Variation of joint velocity at different nut slider position 

 

c. Reduction of joint torque (τl) in assistive mode of rehabilitation 

Figure 4.26. Joint parameters of the exoskeleton in assistive mode 
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Figure 4.27a shows the variable joint angle for variable resistive force by the user 

at the starting position (0.201 m) and ending position (0.24 m) of nut-slider 

position in resistive force-based region. Because of adding more resistive force due 

to linear movement of the nut slider, the joint stiffness is increased, therefore, the 

time period of joint movement (flexion and extension) is also increased. The 

angular joint velocity is computed in the same way by differentiating the measured 

joint angle. Movement of the nut slider from 0.201 m to 0.24 m increases resistive 

force which reduces the angular joint velocity ((Eq. (4.35))) and increases the 

required joint torque ((Eq. (4.25))). Figure 4.27b shows the increment of angular 

joint velocity (ωR) and Figure 4.27c shows that the maximum value of joint torque 

is increased from 1.175 Nm to 1.232 Nm (torque variation 0.057 Nm) due to the 

addition of more resistive force. At the beginning of resistive mode (x = 0.201 m), 

the extension spring (S2) returns to its previous condition hence the joint torque of 

the user is same as the starting period of assistive mode (x = 0.181 m). 

 
a. Variation of joint angle at different nut slider position 

 
b. Variation of joint velocity at different nut slider position 

Joint parameters of the exoskeleton in resistive mode  
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c. Enhancement of required joint torque (τl) at different nut slider position  

Figure 4.27. Joint parameters of the exoskeleton in resistive mode 

The joint torque of individual user can be varied, so is the range and velocity 

because these joint parameters depend on their individual effort. In this 

exoskeleton, the switching of exercise modes is decided as per some predefined 

joint values. Joint velocity of the movement can be measured in terms of joint 

frequency (a full clockwise and anticlockwise rotation). Figure 4.28 shows the 

region-wise variation of joint parameters and switching condition (Manna and 

Dubey 2019b). Due to the reciprocating linear displacement of the nut slider 

between 0 and 0.18 m, the rotation of elbow joint is controlled by the fixed value of 

motor speed which can be changed based on the requirement. This part of the 

region can be used for the post-stroke patients enduring in their early stage where 

their strength is too low to start the joint movement. Consequently, the 

exoskeleton needs full hold on user’s joint movement. The switching region 

between motor controlled and assistive mode is sufficiently small (approximately 

0.001m) without interrupting the operation of the exoskeleton. In this region, the 

control of joint movement is transferred from motor to user. The user can start the 

joint movement in assistive mode with their normal strength. That’s why the 

middle region is configured to provide support to users. In the beginning, 

minimum assistive force is involved with the user’s joint movement when the nut 

slider is positioned at 0.181 m. As it moves back up to 0.20 m, the assistive force 

increases, and joint torque of the user is gradually decreased (from 1.175 Nm to 

1.138 Nm). In this exoskeleton, the boundary condition of the starting and ending 

phase of the assistive region is configured as per the joint frequency level of 1-2 
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Hz. In normal condition, the user can move its joint at 1 Hz which can be improved 

with time. User will be promoted to the last mode of exercise (resistive mode) if 

they are able to cross the frequency limit of 2 Hz. As discussed in the design 

section, the last region is used to enable the user to do joint movements with 

enhanced joint stiffness which may be needed in the last stage of recovery. The 

switching region between assistive and resistive mode is also approximately 0.001 

m. As the nut slider translates backwards in this region from 0.201 m to 0.24 m, 

the required joint torque increases from 1.175 Nm to 1.232 Nm however the joint 

frequency decreases due to more resistive force. The switching value of joint 

torque is decided as per the forearm mass of the user and the springs used in the 

exoskeleton.  

 

Figure 4.28. Switching of exercise modes for different joint parameters 

4.9 Concluding remarks 

The sensor model for measuring and controlling the joint parameters of the 

exoskeleton is developed. After analysing the results, it is shown that the joint 
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movement related to three stages of rehabilitation are feasible with the developed 

exoskeleton. The mechanical requirements related to actuation system of the 

exoskeleton are different depending on the situation whether the exoskeleton 

provides the exercise or user itself controls rehabilitation. In motor controlled 

mode, the joint angle and speed of the joint movement can be increased with time 

by changing the parameter of motor rotation. The mechanism of the exoskeleton 

can change the amount of assistive and resistive force as per the user’s need. 

However, all these modes of exercises can be controlled by changing the region of 

operation. The aim of assistive and resistive rehabilitation is to improve the joint 

effort either by decreasing the assistive force or increasing the resistive force over 

time. The switching of rehabilitation mode is automatically happened due to the 

stiffness property of few springs in the exoskeleton. It is also possible to change 

the rehabilitation mode by just changing the position of the nut slider unlike 

torque control of the joint based motor; therefore, the device is mechanically 

tuneable to users need. The developed prototype is functional and the size and 

weight of the system can be further reduced with suitable materials. The paper 

describes a control therapy by integrating three types of exercises in a single 

exoskeleton. Three joint parameters: joint angle, angular velocity and joint torque 

are incorporated into the exoskeleton. Based on the requirements of users, any 

exercise mode can be chosen. In the developed prototype, the joint frequency of 

switching between motor control and assistive mode is fixed at 1 Hz whereas the 

boundary value between assistive mode and resistive mode is fixed at 2 Hz. Also 

the joint angle, velocity and static torque of the exoskeleton in different mode are 

decided based on a specific user of 1 kg forearm weight and mechanical property 

of springs. However, those switching parameters can be modified for different 

users as recommended by physiotherapist. 
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Chapter 5   Measurement accuracy of the exoskeleton 

The performance of the exoskeleton is covered using three investigations. 

Measurement accuracy of the exoskeleton is analysed through a comparative study 

of joint parameters between the exoskeleton and Kinect sensor considering Kinect 

sensor data as the reference. Repeatability of joint measurement by exoskeleton is 

evaluated by computing the correlation coefficient between two consecutive 

measured joint angles and standard deviation of the error. Also, post-experiment 

survey from participants was included to satisfy the wearability of the exoskeleton. 

5.1 Comparison of joint parameters with Kinect sensor 

It is necessary to determine the measurement accuracy of the exoskeleton for 

delivering the specific mode of exercise based on the condition of joint parameters. 

Therefore, a comparative study is performed between the sensor data of 

exoskeleton and Kinect sensor considering Kinect sensor data as the reference. 

Two healthy subjects (#1 and #2) are selected for this experiment and they turned 

their elbow joint in front of Kinect camera wearing the elbow exoskeleton (Figure 

5.1). Subjects can only initiate elbow rotation when they can initiate free 

movements wearing the exoskeleton. As the first exercise mode of the exoskeleton 

is controlled by motor, therefore users can rotate joint in assistive mode.  

 
Subject #1 

 
Subject #2 

Figure 5.1. Elbow rotation of user wearing exoskeleton in front of Kinect 
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The joint angle is measured using the exoskeleton and other joint parameters are 

calculated from the mathematical model. On the other hand, those joint 

parameters are also recorded by Kinect sensor using the developed motion 

capturing method. For getting dynamic elbow joint torque, movement of forearm 

is considered as one DOF manipulator. The amount of assistive spring force and 

joint stiffness of exoskeleton have been ignored in this assessment.  

The whole setup is designed around a basketball game in which the movement of 

the ball is controlled by the user’s hand position in 3D space and user can drop the 

ball in basket using voice control. Kinect sensor basically tracks human body joint 

based on two-stage process: first compute a depth map, then infer body position. 

Together by combining this data, it reflects the joint vector of user. In this 

environment, many software tools are combined in a single platform such as 

Unity3D, Microsoft visual studio, Microsoft SDK (Kinect V2) and MATLAB (Figure 

5.2). The setup helps in guiding users to do exercises where user is persuaded to 

put their effort.  

 

Figure 5.2. Structure of the Kinect sensor setup 
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The joint parameters are simultaneously recorded during movements. The 

environment has been designed in Unity Game engine where the position of arm 

joints is tracked using the Kinect sensor. The position of the ball (considered as a 

game object in unity) is synchronized with the movement of the hand using 

available API of Kinect. The voice control algorithm is implemented in this game 

using Windows speech reorganization technique (under Windows Speech library). 

Also, to implement a real feel of joint movement, an avatar is installed into the 

game platform. A male character pack ‘FCG_Male_Char_Adam_Rig’ from unity free 

asset store is downloaded and imported into the scenario. The arm movement of 

the avatar is also synchronized with the user’s motion by putting the same Kinect 

based body tracking algorithm into it, therefore the behaviour of basketball 

movement and avatar motion are the same. All motions, measurement of joint 

vectors and reorganization of voice command are programmed in C# (shown in 

Appendix IV) through Microsoft visual studio. Microsoft XBOX-one is used which is 

compatible with Kinect V2 and it has direct plug-in interface available within 

Unity3D. The joint vectors and angles are measured and recorded using Windows 

SDK 2.0 interface with reference to the timestamp data. The recorded data can be 

further analysed to generate some useful information about joint parameters 

(velocity and torque). Rest of the analysis is performed in MATLAB based on the 

recorded data. In this system, Kinect’s reference frame is used as the main 

coordinate system. Reaching time from the rest position to the goal position is 

calculated using the difference of the starting time to the ending time taken from 

timestamp data. The joint velocity and acceleration can be calculated from the 

differentiation of joint angle with respect to timestamp data. To reduce the noise in 

the calculation of joint parameters, a low pass filter is used to smoothen the data. 

Joint torque of the user is calculated from the information of segment mass of user, 

distance of centre of gravity and joint angle. Microsoft XBOX one needs a specific 

Xbox Kinect adaptor for connecting it to a personal computer (Figure 5.3). It used 

USB 3.0 cable for interfacing. The working condition of Kinect is verified by a red 

LED on it. If it is on, it means Kinect sensor is working fine.  
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Figure 5.3. Connection between personal computer and Kinect 

The distance between users and Kinect is 1.5 m and sensor is placed at 1.05 m 

from ground level (Figure 5.4). The game is tested on healthy subjects to see 

the operational validity of exoskeleton while playing the game. 

.  

Figure 5.4. The Kinect sensor set-up 

Joint angle of elbow, interactive communications between game engine and 

avatar appear on the game screen. After completing each stage, some 

motivating words and winning points will appear on the screen. The whole 

environment is programmed in such a way that gravity force is applied to each 

gameobject. After hearing the ‘drop’ word from the user, the holding contact 
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between human hand and ball become zero, therefore it releases the ball. In 

this way, user can basket the ball from the top of the basket. There are two 

baskets in the game as shown in Figure 5.5. The basket on left side is allocated 

for left arm movement and the basket on right side is for the right arm. 

 

a. Starting of the game 

 

 

b. Ending of the game 

Figure 5.5. Working setup of the game 

5.2.1 Measurement of joint parameters using Kinect sensor 

As, the 3D joint vectors (Figure 5.6) of hand, elbow and shoulder are recorded 

using Kinect sensor with respect to the timestamp data, all necessary joint 

parameters can be computed from the recorded data. 
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Figure 5.6. Kinematic model of human arm 

Joint positions 

Positions of shoulder joint (X1, Y1, Z1), elbow joint (X2, Y2, Z2), and the distal end of 

hand (X3, Y3, Z3) of right arm of user are measured using Kinect SDK body tracking 

interface (Figure 5.6). The built-in API of Kinect provides the position vector with 

respect to the position of Kinect sensor (considered as reference (0, 0, 0) point).  

Joint angle measurement 

From Figure 5.6,    𝑎⃗ = [(X2-X1), (Y2-Y1), (Z2-Z1)]                                                        5.1 

            𝑏⃗⃗ = [(X2-X3), (Y2-Y2), (Z2-Z3)]                                                    5.2 

cos 𝜃2 =
𝑎. 𝑏

(|𝑎||𝑏|)
                                                                                                                         5. 3 

sin 𝜃2 =
|𝑎 x 𝑏|

(|𝑎||𝑏|)
                                                                                                                         5. 4 

Therefore, the calculated elbow joint angle becomes 

𝜃2 = tan
−1
|𝑎 x 𝑏|

𝑎. 𝑏
                                                                                                                       5. 5 

Reaching time 

Tk = Timestamp data (end time (T2) – start time (T1))                                       5.6 

Joint torque 

Movement of elbow joint can be considered as one DOF manipulator where normal 

rigid body dynamics can be applied. To compute the dynamic joint torque of elbow 
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joint, static parameters like mass of each arm segments and dynamic parameters 

such as joint angle, velocity and acceleration should be taken into account. The 

length of forearm is computed from the difference between Kinect based joint 

vectors. The hand is considered as a part of forearm. There is no direct method of 

measuring the centre of mass of each arm segment as well as the mass of each arm 

segments, therefore these are estimated based on the ratio between the segment 

and total body as per biomechanics rule (Winter 1990). 

So the length of forearm 

                                    𝐿2 = √(𝑋2 − 𝑋3)2 + (𝑌2 − 𝑌3)2 + (𝑍2 − 𝑍3)2                                 5.7 

The distance from elbow to the centre of mass of forearm (l2) = 0.682 × 𝐿2  

Mass of forearm (m2) = 0.022 ×𝑊  

W = Body mass of the user (kg) 

In human arm, each arm segments are considered as a point mass. Therefore  

and inertia of forearm with respect to the centre of mass is 

I2 = 𝑚2(𝐿2 × 0.468)
2 kg.m2 

where (𝐿2 × 0.468)  = Radius of gyration with respect to the centre of mass 

 

As per Euler-Lagrange formulation of one DOF manipulator,  

joint torque of elbow is 𝜏𝑒𝑙𝑏𝑜𝑤 = [𝑚2𝑙2
2 + 𝐼2]𝛼2̈ +𝑚2𝑔𝑙2 cos 𝛼2                              5.8 

Where 𝛼2 = (180 − 𝜃2) 

For measuring the length of forearm segment from exoskeleton is considered as 

0.254× 𝐻 Where H=total height 

Mass of forearm is same for both measurements: exoskeleton and Kinect whereas 

the values of forearm length and joint parameters are different (Table 5.1). 

Table 5.1. Comparison of arm parameters of two healthy subjects 

Method Subjects Forearm 
mass 
(kg) 

Forearm 
length 

(m) 

Length of 
centre of mass 
from proximal 

end (m) 

Radius of 
gyration with 
respect to the 
centre of mass 

(m) 
Exoskeleton #1 1.738 0.40 0.28 0.19 

#2 1.32 0.44 0.30 0.21 
Kinect 

 
#1 1.738 0.37 0.25 0.17 
#2 1.32 0.40 0.273 0.19 
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Joint torque is computed based on the mathematical model as per the Eq. (5.8), 

shown in Figure 5.8 for both subjects. The frictional force and muscle stiffness 

have been ignored in the formulation of joint torque. 

As the measured joint parameters from Kinect sensor are considered as reference, 

measurement error in the exoskeleton is calculated as per Eq. (5.9). 

Error in measurement (%) 

= |
Measurement(Kinect) − Measurement(Exoskeleton)

Measurement(Kinect)
|  ×  100                          5. 9 

The comparison between the sensor data of exoskeleton and Kinect measurement 

is shown in Figure 5.7 and Figure 5.8. 

 

Subject 1 

 

Subject 2 

Figure 5.7. Comparison of the joint angle measured by Kinect and exoskeleton 
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Subject 1 

 
Subject 2 

Figure 5.8. Comparison of the joint torque measured by Kinect and exoskeleton 

Figure 5.7 shows that the mean error in the joint angle is within 5.18% for subject 

1 and 1.66% for subject 2. Therefore, it proves that the exoskeleton can also 

measure joint angle quite accurately. The comparison of joint torque from both 

measurements is shown in Figure 5.8. The mean error in joint torque is also within 

an acceptable range for both subjects: 8.48% for subject 1 and 7.93% for subject 2. 

5.2 Repeatability of joint measurement by the exoskeleton 

Three healthy participants (#3, #4 and #5) have participated in the repeatability 

test where they rotated their elbow joint in three different modes wearing the 

exoskeleton, as shown in Figure 5.9, Figure 5.10 and Figure 5.11. The participants 

completed two full cycles of flexion-extension at the same frequency. 
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Figure 5.9. Repetitive measurement of participant #3 in three modes 

Motor controlled mode 

Joint frequency 0.06 Hz 

Min joint angle: 0.223 

degree 

Max joint angle: 98.869 

degree 

Assistive mode 

(Nut-slider position 

0.19 m) 

Joint frequency 0.1 Hz 

Min joint angle: 5 

degree 

Max joint angle: 90 

degree 

Resistive mode 

(Nut-slider position 

0.22 m) 

Joint frequency 0.08 Hz 

Min joint angle: 3.608 

degree 

Max joint angle: 93.608 

degree 
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Figure 5.10. Repetitive measurement of participant #4 in three modes 

Motor-controlled mode 

Joint frequency 0.06 Hz 

Min joint angle: 10.543 

degree 

Max joint angle: 90.45 

degree 

Assistive mode 

(Nut-slider position 

0.19 m) 

Joint frequency 0.09 Hz 

Min joint angle: 15 

degree 

Max joint angle: 

129.167 degree 

Resistive mode  

(Nut-slider position 

0.22 m) 

Joint frequency 0.09 Hz 

Min joint angle: 20 

degree 

Max joint angle: 130 

degree 
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Figure 5.11. Repetitive measurement of participant #5 in three modes 

To measure the repeatability, the correlation coefficient between the two 

successive measurements is computed (shown in Figure 5.12, Figure 5.13 and 

Figure 5.14). To validate the test-retest reliability and margin of error, the absolute 

Motor-controlled mode 

Joint frequency 0.06 Hz 

Min joint angle: 15.181 

degree 

Max joint angle: 94.095 

degree 

Resistive mode 

(Nut-slider position 

0.22 m) 

Joint frequency 0.07 Hz 

Min joint angle: 5 

degree 

Max joint angle: 115 

degree 

Assistive mode 

(Nut-slider position 

0.19 m) 

Joint frequency 0.08 Hz 

Min joint angle: 25 

degree 

Max joint angle: 115 

degree 
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error between two repeated test results are computed to get SD of error. Standard 

deviation (SD) is multiplied by 1.96 to show a range in which the true 

measurement lies. 

 

a. Motor controlled mode 

 

b. Assistive mode 

 
c. Resistive mode 

Figure 5.12. Comparison of joint angle in three modes for participant #3 
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a. Motor controlled mode 

 

b. Assistive mode 

 

c. Resistive mode 

Figure 5.13. Comparison of joint angle in three modes for participant #4 
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a. Motor controlled mode 

 

b. Assistive mode 

 

c. Resistive mode 

Figure 5.14. Comparison of joint angle in three modes for participant #5 
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Participants performed joint movement under motor-controlled mode when the 

position of the nut-slider is between 0 and 0.18 m. However, the positions of the 

nut slider for assistive mode and resistive mode are fixed at 0.19 m and 0.22 m 

respectively. Joint frequency of participants is almost fixed for each exercise mode. 

Participant 3 rotates his elbow joint at 0.06 Hz, 0.1 Hz and 0.08 Hz for motor -

controlled mode, assistive mode and resistive mode respectively. Participant 4 

rotates his elbow joint at 0.06 Hz, 0.09 Hz and 0.09 Hz for motor -controlled mode, 

assistive mode and resistive mode respectively. Participant 5 rotates his elbow 

joint at 0.06 Hz, 0.08 Hz and 0.07 Hz for motor -controlled mode, assistive mode 

and resistive mode respectively. Ranges of joint angle (minimum and maximum) of 

three participants are shown in Table 5.2 for three different modes. 

Table 5.2. Range of joint angle for three participants 

 Minimum joint angle Maximum joint angle 

Participants Motor 

controlled 

mode 

Assisitve 

mode 

Resisitve 

mode 

Motor 

controlled 

mode 

Assisitve 

mode 

Resisitve 

mode 

#3 0.223 5 3.608 98.869 90 93.608 

#4 10.43 15 20 90.45 129.167 130 

#5 1.181 25 5 94.095 115 115 

 

The correlation coefficient of two consecutive rotation cycles is calculated and 

shown in Table 5.3. The value of correlation coefficient comes in the range from 

0.99367 to 0.99961 for all three modes. As per Cronbach's alpha-internal 

consistency-table, if the correlation coefficient is 0.7 or above, it defines a high 

correlation and if the correlation coefficient is 0.9 or above, it defines an excellent 

correlation. From the above results, it has been proved that there is a strong 

correlation between two consecutive rotation cycles which indirectly shows high 

repeatability of the measurement. Also, if we investigate the correlation coefficient 

values (Table 5.3), it has been found out that the value of correlation coefficient for 

motor-controlled mode is higher than assistive and resistive mode because 

participants under motor based joint movement are fully under control of 

motorized mechanism. In case of assistive and resistive mode, participants rotate 

their joint themselves, therefore, it is difficult to maintain the symmetry between 

two consecutive rotation cycles, so, the correlation coefficient is reduced due to the 

delay in joint rotation. Also, the SD of absolute error between two consecutive joint 



Measurement accuracy of the exoskeleton 

 

161 
 

angles is computed and shown in Table 5.3. it is then multiplied by 1.96 to get the 

95% confidence interval which gives a range in which the true measurement lies 

and the margin of error. The maximum value of the margin of error is also in an 

acceptable range which is 8.897. 

Table 5.3. Calculation of Correlation coefficient and 1.96*SD 

 Correlation coefficient 1.96*SD (Error in jont angle) 

Subjects Motor 

controlled 

mode 

Assisitve 

mode 

Resisitve 

mode 

Motor 

controlled 

mode 

Assisitve 

mode 

Resisitve 

mode 

Subject 3 0.99961 0.99636 0.99835 1.72 6.145 3.644 

Subject 4 0.99955 0.99459 0.99894 1.474 7.933 3.566 

Subject 5 0.99950 0.99300 0.99367 1.556 8.897 5.988 

 

5.3 Wearability and usability of the exoskeleton 

At the end of the experiment, participants filled up a small survey of two questions 

related to the wearability and ease of using the exoskeleton. Users response will be 

recorded on a scale from 1 to 5 where 1 will be considered as strongly disagree 

and 5 will be considered as strongly agree. Those feedback points have been used 

to evaluate the usefulness of the device.  

The questions of the post-experiment survey are given as attached. 

Q1. Did you feel the exoskeleton is wearable? 

Strongly agree Agree Neutral  Disagree Strongly disagree 

     

Q2. Did you find it easy to use the exoskeleton? 

Strongly agree Agree Neutral  Disagree Strongly disagree 

     

 

Maximum point for a section will be 5 (Strongly agree). 

As the number of participants is 5, the user satisfaction ratio is calculated as 

=
(𝐒𝐮𝐦𝐦𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐨𝐭𝐚𝐥 𝐩𝐢𝐧𝐭𝐬)

𝟓 × 𝐍𝐨 𝐨𝐟 𝐩𝐚𝐫𝐭𝐢𝐜𝐢𝐩𝐚𝐧𝐭𝐬
× 𝟏𝟎𝟎                                                  5. 10 
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The exoskeleton has been used by five users. One user for using the exoskeleton to 

prove the conceptual design, two users for the comparative study between 

exoskeleton and Kinect based joint measurement and three users for repeatability 

test, therefore, their opinions are recorded after using the exoskeleton, shown in 

Table 5.4. 

Table 5.4. Recording of wearability and ease of use score 

Participants 
number 

Scale received 
(wearability) 

Scale received 
(ease of use) 

#1 4 4 
#2 4 4 
#3 3 3 
#4 4 5 
#5 4 4 

 

User satisfaction ratio of wearability is 

18

5 × 5
× 100 = 76% 

User satisfaction ratio of ease of using the exoskeleton is  

20

5 × 5
× 100 = 80% 

The user satisfaction ratio for wearability and ease of using the exoskeleton are 

76% and 80% respectively for five users. Therefore, it may be considered for using 

the exoskeleton for delivering different types of exercise in future.  

5.4 Concluding remarks 

In this chapter, the performance of the exoskeleton is evaluated by conducting 

three investigations. 

• The measurement accuracy of the exoskeleton is demonstrated through a 

comparative study of joint parameters between the exoskeleton and Kinect sensor 

considering Kinect sensor data as reference. The mean measurement error of joint 

angle and toque was calculated and that were: 5.18 % for participant 1 and 1.66 % 

for participant 2 (for joint angle); 8.48% for participant 1 and 7.93% for 

participant 2 (for joint torque). It was found that the mean error of measurements 

was in a considerable range. 
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• The repeatability of joint measurement from exoskeleton is analysed by 

computing the correlation coefficient between two consecutive measured joint 

angles and standard deviation of the error. After calculating the correlation 

coefficient between two consecutive joint rotation, it was found to be greater than 

0.99 which proved a high correlation and repeatability. Also, the value 1.96*SD of 

error was 8.897 which proved that the margin of error was in an acceptable range. 

• Post-trial survey from participants was included to satisfy the wearability 

and ease of using the exoskeleton. All five users filled up a small survey and scale it 

from 1 to 5 (strongly disagree to strongly agree) for evaluation wearability and 

ease of using of the exoskeleton. The results were quite effective as the Wearability 

score was 76% and score of Ease of use was 80% which proved that the 

exoskeleton is wearable by users as we kept the satisfaction range 75% as the 

desired level. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and future scope 

 

164 
 

Chapter 6   Conclusions and future scope 

After analyzing the joint movements required in different stages of the post-stroke 

condition and consulting various published works (Proietti et al. 2016),(Pineda-

Rico et al. 2016),(Chonnaparamutt and Supsi 2016), the pathway of posts-stroke 

rehabilitation was categorized into three distinct phases; acute, mid-stage and last 

stage. The specific needs for multi-stages are external force-based control in the 

acute stage, assistive force-based exercise in the midway of recovery and resistive 

force based exercise in the last stage. These are well reported requirements so, in 

acute stage, external force is applied during rehabilitation because patients are 

unable to move their joints themselves. Assistive force is helpful at mid stage to 

support such patients. To enhance muscle strength and joint torque, more 

resistance is provided to meet the multi-stage rehabilitation requirements. 

Exercises provided by physiotherapist results in many functional and skill-based 

problems such as costly therapy due to the lack of time and shortage of therapist; 

discoordination in the exercise module due to the fatigue of therapist. To 

overcome these problems, it is required to configure the exoskeleton in a way so 

that it can provide three modes of exercises as per the recovery status of patients. 

After investigating several actuators and actuation systems used in the existing 

exoskeletons (Manna and Dubey 2018), many limitations were identified such as 

lack of multistage exercises in a single model, dependency on biosensor, stationary 

structure and the ability to provide only a specific type of exercise. Therefore, the 

main aim of this research was to build an exoskeleton model that may offer 

different modes of exercise using a standalone system for providing post-stroke 

rehabilitation at all stages. 

The key research question is what kind of mechanism can be designed 

that can provide three modes of exercises (external force, assistive force and 

resistive force) and is also portable and wearable in a standalone system? 

  

The solutions presented from my research address some of these possibilities. A 

metric of user’s requirement (Table 1.1) was formed for using the exoskeleton in 

post-stroke rehabilitation. Based on the metric shown in Table 1.1 and calculated 

anthropometric parameters of five healthy subjects, a product design specification 
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(PDS) sheet was developed where probable solutions were categorized into 

qualitative and quantitative solutions, shown in Table 1.4 with ideal, target and 

achieved values. Table 2.7 shows a brief summary of existing solutions available 

for the user’s requirements mentioned in PDS. Combining the existing solutions 

and my own research, an innovative mechanism of exoskeleton was developed to 

achieve all the required features. 

The structural formation of the exoskeleton is based on the anthropometric 

parameters of five healthy users and the length of upperarm and forearm 

supporting structure can be varied to fit with different users. This hardware-based 

exoskeleton has the potential to offer better outcomes than the existing 

exoskeletons. It not only offers all three modes of exercises in a single structure 

but also preserves portability and safety of users. The developed exoskeleton 

incorporates the benefits of motor control and passive actuation in a single model. 

The cost of providing post-stroke therapy can be reduced as the production cost of 

the prototype was quite low (£ 886) which can be further reduced using suitable 

material and mass production. The mathematical model of the mechanism was 

analyzed for different configurations to know the motor torque and stiffness 

requirements for springs. The mass of exoskeleton is 1.8 kg. The exoskeleton offers 

three modes of exercises in such a way that the relationship between the recovery 

rate and the mode of exercise is directly associated. Two hardware-based 

switching mechanism is introduced in the exoskeleton to move between different 

modes of exercise. The boundary condition of the recovery index for switching 

from one mode of exercise to another was determined by the specific values of 

three joint parameters angle, velocity and torque. If users can cross the boundary, 

the switching mechanism will be activated and the mode of exercise will be 

transferred from one to another.  

 

To validate its mechanism and proposed methodology, this exoskeleton was tested 

with five healthy subjects. These experiments proved its working principle, 

measured accuracy and repeatability. Also, feedback from participants was 

collected to assess the wearability and usability of the exoskeleton. The process of 

doing the experiment is explained in the participant information sheet (shown in 

Appendix I).  
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 As described in the participant information sheet 

 

 

Detailed experimental analysis: 

• In the first experiment, one healthy user used the exoskeleton in three 

different modes (at different positions of the operating region) where he was 

asked to move his right arm. Joint parameters from each mode were recorded for 

all three modes. Through this experiment, the design principle of the exoskeleton 

was proved, whether the mechanism can provide variable assistive or resistive 

torque and if yes, the range of assistive and resistive torque. 

▪ In the first mode (electric motor-controlled mode), the participant was 

asked to keep his arm idle so that electric motor can support fully to rotate 

his elbow joint. The maximum joint torque of the exoskeleton was 10 Nm.  

▪ In assistive mode, the participant was asked to use his normal strength to 

rotate his elbow (same effort for different positions of the nut slider). The 

position of nut slider was moved from 0.181 m to 0.20 m to vary the 

assistive force. The assistive torque was varied up to 0.037 Nm. 

▪ In resistive mode, the participant was asked to use his normal strength to 

rotate his elbow (same effort for different positions of the nut slider). The 

position of nut slider was moved from 0.201 m to 0.24 m to vary the 

resistive force. The resistive torque was varied up to 0.057 Nm. 

 

The experiment consists of the elbow joint movement by healthy users in front of 

Kinect sensor after wearing the exoskeleton. They can only participate in the 

experiment after agreeing with the participant information sheet and signed the 

participant agreement form. Users are asked to move their right arm in three 

different modes and their elbow joint angle is recorded by the exoskeleton and Kinect 

sensor. 

• In the first mode (electric motor-controlled mode), users are asked to keep 

their arm idle so that electric motor can rotate the elbow joint. 

• In assistive mode, users are asked to use their normal strength to rotate their 

elbow joint. 

• In resistive mode, users are asked to use their normal strength to rotate their 

elbow joint. 

A small post-experiment survey is conducted to prove the wearability and usability of 

the exoskeleton. It consists of two questions and users can give answers using a scale 

from 1 to 5 (strongly disagree to strongly agree). 
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• In the next experiment, two healthy users rotated their elbow joint in front 

of Kinect camera wearing the elbow exoskeleton in assistive mode.  Therefore, a 

comparative study was performed between the sensor data of exoskeleton and 

Kinect sensor considering Kinect sensor data as reference. Mean measurement 

error in joint angle was: 5.18 % for participant 1 and 1.66% for participant 2. Mean 

measurement error in joint torque was: 8.48% for participant 1 and 7.93% for 

participant 2. The mean error of measurements was in a considerable range which 

proved that exoskeleton can measure the joint parameters quite accurately. 

 

• In the last experiment, the exoskeleton was used by three healthy subjects 

who rotated their elbow joint in three modes at fixed operating points and joint 

parameters from each mode were recorded for consecutive two rotations (a 

complete cycle of flexion and extension). Joint frequency of participants was 

almost fixed for each exercise mode. Therefore, the repeatability of measurements 

was verified by calculating the correlation coefficient between two consecutive 

joint measurements and standard deviation (SD) of error. SD was multiplied by 

1.96 to show a range in which the true measurement lies. The correlation 

coefficient was greater than 0.99 which showed a high correlation between 

consecutive joint measurements and 1.96*SD of error was 8.897, proved that the 

margin of error was in an acceptable range. 

 

• At the end of the experiment, all five users were asked to fill up a small 

survey.  Users gave answers using a scale from 1 to 5 (strongly disagree to strongly 

agree). The opinion polls from 5 healthy users were; Wearability ≥ 76% and Ease 

of use ≥ 80% which proved that the exoskeleton is wearable by users as we kept 

the satisfaction range 75% as the desired level. This test helped us to prove the 

efficiency of the developed exoskeleton and this may lead to finding a better 

robotic solution for providing post-stroke rehabilitation. 
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Table 6.1 shows the achieved design solutions using appropriate mechanism, actuator and material. 

Table 6.1. Archived design solutions 

Property Sl. 

No. 

Solutions Achieved value Design specification 

Structural 

property 

1 Integration of three types of 

exercises (external control, 

assistive force and resistive 

force) in a single system 

Features have been 

implemented 

• The operating region of the exoskeleton is divided 

into three specific regions to provide specific 

exercise. 

• The whole operating region is 0.24 m where the 

motor controlled joint movement is delivered within 

0.18 m. Therefore, assistive and resistive force by 

the exoskeleton is delivered within 0.181 to 0.20 m 

and 0.201 to 0.24 m respectively. 

2 Exoskeleton can provide 

variable assistive and 

resistive torque 

Variation of 

assistive torque: 

0.037 Nm 

Variation of 

resistive torque: 

0.057 Nm 

• The exoskeleton has two operation regions 

consisting of spring-based mechanism for delivering 

assistive and resistive force to user’s experience 

during exercise. 

• The assistive torque can be varied up to 0.037 Nm 

by changing the displacement of a compression 

spring. 

• The resistive torque can be varied up to 0.057 Nm 

by using the stiffness of two extension springs. 

• The joint measurements were collected after it was 

used by a healthy user for validating the mechanism. 

3 Production cost of 

exoskeleton is affordable for 

public 

£886 • The cost of components (mechanical, electrical, 

electronic) and manufacturing the whole system 

have been included. 
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Property Sl. 
No. 

Solutions Achieved value Design specification 

Structural 

property 

4 Consistent and repeatable 

exercise module 

Mean 

measurement 

errors of joint 

angle:  

5.18 % for 

participant 1 and 

1.66% for 

participant 2 

Mean 

measurement 

errors of joint 

torque: 

8.48% for 

participant 1 and 

7.93% for 

participant 2 

Correlation 

coefficient ≥ 0.99 

(High correlation 

between joint 

measurement) 

1.96*SD of error 

=8.897 (Margin of 

error is in an 

acceptable range) 

• The exoskeleton was used by two healthy users in 

front of the Kinect sensor to validate the 

measurement accuracy of the exoskeleton. 

• The measured and computed joint parameters from 

the exoskeleton and Kinect sensor are compared by 

considering Kinect sensor value as reference. The 

mean error of joint angle and torque from both 

healthy subjects are in the considerable range which 

proves that exoskeleton can measure the joint 

parameters quite accurately. 

• The exoskeleton was used by three healthy users for 

two rotation cycles and the correlation coefficient 

between two consecutive measured joint angles was 

computed. 

• Also, the repeatability of joint measurement is 

calculated by the error between two consecutive 

measured joint angles and SD of error, in the end, it 

was multiplied by 1.96 to get the margin of error i.e. 

the range within which the true measurement lies. 
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Property Sl. 
No. 

Solutions Achieved value Design specification 

Structural 

property 

5 Motor can provide required 

joint torque 

10 Nm • A specific DC motor has been selected to provide 

maximum stall torque up to 5 Nm which can 

generate maximum joint torque up to 10 Nm due to 

mechanical advantage. 

6 Enhances torque to weight 

ratio 

Required joint 

torque is reduced 

twice compared to 

joint based 

actuation 

• Gear is engaged to the motor to reduce its speed. 

The gear ratio used here is 1:1.5. 

• The torque to weight ratio of the exoskeleton is 

enhanced using a leadscrew-based slider crank 

mechanism instead of joint-based actuation. 

Mathematically it was proved that the required joint 

torque of the exoskeleton is reduced two times 

compared to joint based actuation where motor is 

directly connected at the joint. 

7 Weight of the exoskeleton is 

lighter 

1.8 kg • ABS is used as the structural material for the 

exoskeleton as it is lighter in weight and hard in 

strength. 

• The structural materials of the gear and springs are 

nylon 101 and ASTM respectively. 
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Property Sl. 
No. 

Solutions Achieved value Design specification 

Structural 

property 

8 Smaller energy source for 

operation 

Feature has been 

implemented 

• The energy consumption is also reduced so as the 

battery size by using a hybrid model of electric 

motor and springs in the actuation mechanism. 

Electric motor is used to control the joint in the first 

mode whereas, in rest of the two modes, joint 

motions are supported by the stiffness of the springs 

for providing assistive or resistive force.  

• Spring-based mechanism is also used for switching 

between different operating regions instead of using 

electromagnetic switch, brakes or clutches. 

• The exoskeleton model used a single motor (5 W) 

for delivering all kinds of functions. The enhanced 

torque to weight ratio decreases energy 

consumption.  

9 Design should follow the 

biomechanical structure and 

anthropometric data of 

human arm 

Elbow joint: 1 DOF 

Upperarm length: 

0.35 ±0.04 m 

Forearm length: 

0.40 ±0.04 m 

• The mean anthropometric data of five healthy users 

are considered to design the framework of the 

exoskeleton. 

10 Opinion of users after using 

the exoskeleton 

Opinion poll from 5 

healthy users = 

Wearability ≥ 76% 

Ease of use ≥ 80% 

• The exoskeleton was used by five healthy users for 

different purpose. 

• At the end of the experiment, a small survey is taken 

from users related to wearability and ease of using 

the exoskeleton. Users gave answers using a scale 

from 1 to 5 (strongly disagree to strongly agree). 
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Property Sl. 
No. 

Solutions Achieved value Design specification 

Structural 

property 

11 Exoskeleton can reach 

maximum joint angle 

135o • The actuation mechanism of the exoskeleton is 

based on leadscrew-based slider-crank mechanism 

which allows users to rotate up to 135o. 

12 Using of passive energy 

source for joint actuation 

Feature has been 

implemented 

• The exoskeleton uses spring-based mechanism to 

generate variable assistive force and spring-based 

antagonistic setup to vary joint stiffness to generate 

variable resistive force. 

• A compression spring (246.5 N/m) is connected at 

the exoskeleton to give assistance to users. 

• Two extension springs (2.5 N/m and 10 N/m) are 

set up in an antagonistic way to vary the joint 

stiffness, which indirectly changes the resistance 

during the joint movement. 

13 Using of spring-actuated 

mechanism for switching 

between exercise 

Feature has been 

implemented 

• A passive switching mechanism is developed where 

stiffness of springs is used to switch between 

different operating regions.  

14 Using of universal joint 

instead of revolute 

Feature has been 

implemented 

• The exoskeleton has used a universal joint model for 

elbow for providing a flexibility in transverse plane. 

• The universal joint allows the active movement of 

elbow joint up to 135o in sagittal place and passive 

movement up to ±5o in the transverse plane. 

Control 

property 

15 Compensation of joint 

misalignment during 

rotation 

Feature has been 

implemented 

• Forearm supporting structure of the exoskeleton 

has a spring-based linear passive joint to balance the 

joint misalignment between the centre of rotation 

for elbow and exoskeleton. 
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Property Sl. 
No. 

Solutions Achieved value Design specification 

Control 

property 

16 Should have both control 

scheme: automatic and 

manual 

Feature has been 

implemented 

• This feature is achieved by developing a GUI in 

MATLAB having two options; automatic and manual 

where users can select one of those options. 

17 Mode of exercises can be 

switched easily based on 

joint condition 

Feature has been 

implemented 

 

 

• Mode of exercises can be controlled by a novel 

mechanism which can change the amount of 

assistive and resistive force as per user’s need. 

• The exoskeleton can be controlled by the post-

stroke recovery stage which is determined based on 

joint parameters; angle, velocity and torque (no 

biosensor is used). 

18 Develop the control strategy 

using joint parameters 

without using biosensor 

Feature has been 

implemented 

• User joint’ range, velocity and torque used as 

feedback parameters in the exoskeleton.  The 

threshold conditions (E1, E2 and E3) of each 

recovery stage can be determined based on the 

specific value of three joint parameters. Users can 

switch from one mode of exercise to another if they 

cross the threshold. The exoskeleton automatically 

changes the configuration of the exoskeleton to 

provide the specific exercise. User can be promoted 

from external force-based exercise to assistive mode 

if they can rotate their elbow joint up to 135o, self-

movement at 1 Hz and joint torque up to 1.175 Nm 

whereas the conditions for crossing the resistive 

mode are reachable joint angle - 135o, joint 

frequency at 2 Hz and joint torque up to 1.232 Nm. 
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Property Sl. 
No. 

Solutions Achieved value Design specification 

Control 

property 

19 Control mechanism will 

allow users to put their 

effort to do joint movement 

Feature has been 

implemented 

• The control algorithm will keep the assistive spring 

power lower than the ideal joint torque with the 

goal that users endeavour to move. 

• Also, the exoskeleton controls all types assistive and 

resistive force using hardware-based mechanism, 

therefore, can be manually manoeuvred. 

Safety 

property 

20 Mechanical constraint to 

restrict the joint movement 

beyond the anatomical limit 

Feature has been 

implemented 

• Spring-based switching mechanism is used in the 

exoskeleton as a safety tool to restrict joint 

movement. When joint rotates up to the maximum 

anatomical range (135o) in motor-controlled mode, 

mode of exercise will be transferred from motor-

controlled to user-controlled mode. 

21 Software control to restrict 

the joint movement beyond 

the anatomical limit 

Feature has been 

implemented 

• The control algorithm of the exoskeleton is 

programmed to limit the number of rotations in 

motor to control joint movement up to the 

anatomical range. 
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Limitations and Future scope 

In this research project, there was no involvement of patients and medical experts, 

therefore opinions from stroke patients (for checking if they accept it) and medical 

experts are purely literature based. This will be considered in any future 

development of the exoskeleton. The user’s requirement for designing the 

exoskeleton and the design specifications were determined solely based on 

literature survey. All types of design features mentioned in the metric (Table 1.1) 

and PDS (Table 1.4) were collected from research articles.  The cost-effectiveness 

and wearability of the developed exoskeleton can be improved by clinical trials of 

the exoskeleton with stroke patients. 

• The cost of manufacturing the prototype was £886 which can be further 

reduced using mass manufacturing facility. Future research will involve cost-

optimization of each components to make the exoskeleton affordable. 

• The wearability of the exoskeleton was analyzed based on a post-

experiment survey with limited questionnaires. Future research would include 

more neurological and psychological questions in the user’s survey to judge the 

viability of the device. 

• The developed prototype can be further modified to make it a compact and 

user-friendly system. The current prototype can be miniaturized and the size can 

be reduced with the appropriate use of structural materials such as a composite of 

carbon fibre or stainless steel. The structural material used in the developed 

prototype is acrylonitrile butadiene styrene (ABS). By using these materials, the 

size of each component of the exoskeleton structure can be smaller to exhibit the 

same function. The spring parameters can be changed to offer a wide range of 

assistive and resistive forces for different users. 

• The final arm model is also conceptualized for delivering exercises to 

shoulder, elbow and wrist joint using the same hardware based mechanism 

approach which is shown in Appendix II (page no: 215). 

• Currently, three joint parameters (joint angle, velocity and torque) are used 

in order to control the rehabilitation modes of the exoskeleton. More joint 

parameters can be incorporated into the control system to make it a robust system 

such that it may allow the exoskeleton to monitor patient’s joint spasticity and 



Conclusions and future scope 

 

176 
 

pain. The control of the exoskeleton can be made more adaptive since it can help to 

change the mode of exercises, level of difficulty depending on the patient’s 

requirement. Usually in early stage, post-stroke patients suffer from joint 

spasticity. Sometimes due to abnormal involuntary movement, muscle becomes 

stiff and patients may feel joint pain during exercises. Therefore, a feedforward 

control (Figure 6.1) can be implemented where these three joint parameters are 

used for feedback control and the additional parameters like spasticity and pain 

can be considered as disturbances. As a result, the control algorithm can improve 

the performance of the exoskeleton over simple feedback control because it will 

consider major disturbances before giving the final control output.  

 

Figure 6.1. Controller with unmeasured disturbances 

• Further research on Kinect-based therapy will make those exercises more 

acceptable and clinically useful for patients. More intriguing features (Table 6.2) 

can be added to the platform to enhance patient engagement in exercises. Also, 

more attributes like joint stiffness, jerk, spasticity and other useful rehabilitation 

information (Table 6.3) can be extracted from Kinect sensor to evaluate patient's 

recovery rate. 

Table 6.2. Future user-friendly features of the game 

Useful user-interface Advantages 

New type of interesting 
and simple game suitable 
for post-stroke patients 

These types of game can create more interest 
among the post-stroke patients to drive them 
back to the exercises. 
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Useful user-interface Advantages 
Adding a gif or video file 
showing the standard way 
of doing exercise 

This type of interface will help patients to follow 
the correct way of practising exercises during 
post-stroke rehabilitation. 

Comparison of measured 
joint parameters with 
stored standard database 

If a medical database is stored in the game 
platform based on the demographic parameters of 
patients, the measured data can be compared 
with that standard data for a specific user. It will 
generate a clinical report showing the recovery 
rate of the patient based on the comparison. 

Online connection to the 
expert 

During exercises, this facility can help patients to 
seek online help from the physiotherapist sitting 
at a remote clinic. 

Group based game 
activities 

The majority of post-stroke patients are usually in 
old age group (≥60) who are more interested in 
group based activities rather than alone. If the 
game window can show the performance scores 
of all the people involved in a group exercise, it 
will motivate each other during exercises and also 
create a competitive environment among them. 

Design of clinical scale 
based on Kinect based 
joint parameters 

Based on the Kinect based joint measurement, a 
standard clinical scale can be developed for 
measuring the recovery rate of patients. 

Table 6.3. Other useful joint attributes 

Joint parameters Measurement using Kinect sensor 

Jerk It can be measured from the sudden change of joint torque 
over time. 

Stiffness It can be measured from joint torque and rotation angle. 
Spasticity It can be measured from muscle contraction which 

depends on the stiffness or tightness of muscles. 
 

• Based on this research, it was shown that Kinect sensor can measure the 

activity of joint movement with a minimum error of margin. In future, Kinect based 

joint parameters can be used for controlling the rehabilitation modes of the 

exoskeleton instead of using physical sensors (Figure 6.2). It can also be used solo 

for guiding rehabilitation exercise at advanced stages of recovery without using 

any exoskeleton. It will create a contactless system and self-motivating. 
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Figure 6.2. A compact exoskeleton model with Kinect based exercises
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Participant Information Sheet 
 

The title of the research project 

Elbow Exoskeleton Mechanism for Multistage Post-Stroke Rehabilitation 

 

Invitation to take part 

You are being invited to take part in a research project. Before you decide it is important for 

you to understand why the research is being done and what it will involve. Please take time to 

read the following information carefully and discuss it with others if you wish. Ask us if there is 

anything that is not clear or if you would like more information. Take time to decide whether 

or not you wish to take part. 

 

Who is organising/funding the research? 

This research is being funded by Bournemouth University. 

 

What is the purpose of the project? 
 

The purpose of this project is to design a structural framework of exoskeleton for providing 

three different types of exercise: external force, assistive force and resistive force using a 

mechanical model which could be a potential solution for providing post-stroke rehabilitation 

in future. 
 

As per the report of Stroke Association UK, there are about 1.2 million stroke survivors in the 

UK. The annual health and social costs of caring for disabled stroke patients are estimated to 

be more than £5 billion in the UK. People who suffered from stroke, part of their body may be 

paralysed. Arm disability is very common when the sufferer is not able to conduct their 

activities of daily living. In the initial phases of paralysis, they have been provided with physical 

movement by physiotherapists to regain the lost arm functions.  Such physical movements are 

varied over time for early recovery. However, there is always inadequate therapy and lack of 

trained staff to provide a wide range of arm movement.  

My research provides a design concept for developing a support system (called Exoskeleton) 

that can be mounted on the arm to facilitate therapy. The device operates in three modes 

(external force, assistive force and resistive force) as required by physiotherapist. To validate 

the mechanism and proposed methodology, we would like to test this device with healthy 

subjects (maximum five participants). The main motive of the experiment is to prove the 

design principle of the developed exoskeleton.  

At the end of the experiment, users will be asked to fill up a small survey of two questions 

related to the wearability and ease of using the exoskeleton.  

 

 

Why have I been chosen? 
 

You have been approached to take part in this study as an adult volunteer without any medical 

complicacy. The maximum number of participants is five. 

You are eligible to participate in this study only if you are 

1. above 18 years old. 
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2. Should not have any medical history for the last 5 years (stroke, Parkinson, 

neurological disorder, fatal accident, brain damage) 

3. Should not have any problem with arm movement 

4. Should not have any injury on both arms 

 

Do I have to take part? 
 

It is up to you to decide whether or not to take part. If you do decide to take part, you will be 

given this information sheet to keep and be asked to sign a participant agreement form.  We 

want you to understand what participation involves, before you make a decision on whether 

to participate.  

If you or any family member have an on-going relationship with BU or the research team, e.g. 

as a member of staff, as student or other service user, your decision on whether to take part 

(or continue to take part) will not affect this relationship in any way.  

 

Can I change my mind about taking part? 

Yes, you can stop participating in study activities at any time and without giving a reason.   

 

If I change my mind, what happens to my information?  

After you decide to withdraw from the study, we will not collect any further information from 

or about you.   

As regards information we have already collected before this point, your rights to access, 

change or move that information are limited.  This is because we need to manage your 

information in specific ways in order for the research to be reliable and accurate.  Further 

explanation about this is in the Personal Information section below. 

 

What would taking part involve?  

Before the experiment 

• You will be asked to relax. 

• Once you are relaxed and ready, the test will start which will take approximately 5 

minutes. 

 

During the experiment 

• You will be given a Participant Information Sheet (this form) about the study. 

• You will be given the consent form to be agreed with the terms and condition of the 

experiment. 

• Once you are agreed, you will be invited to take part in an experiment where the joint 

movement of your right arm will be recorded using an exoskeleton (Figure 1 a & b) and Kinect 

sensor (Microsoft XBOX, Figure 2). 

 

Once ready 

• You will wear the developed elbow exoskeleton on your right arm and be standing in 

front of the Kinect sensor (Microsoft XBOX), as shown in Figure 2. 

• You will be asked to move your right arm in three conditions: data from each mode of 

exercise will be recorded three times. 
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1. In the first mode (electric motor-controlled mode), you will be asked to keep your arm 

idle so that electric motor will support fully to rotate your elbow joint. 

2. In assistive mode, you will be asked to use your normal strength to rotate your elbow. 

3. In resistive mode, you will be asked to use your normal strength to rotate your elbow. 

 

A typical experiment will consist of about 20 minutes of joint movements. The experiments 

will be performed by experienced university researchers. 

 

 
a) Elbow exoskeleton 

 

  
b) Shoulder-based holder 

Figure1. Developed prototype of the exoskeleton 
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Figure 2. Joint movement of user wearing the exoskeleton in front of Kinect sensor 

 

 

After the experiment 

The exoskeleton will be detached from your body and you will be asked to answer two simple 

questions related to the use of exoskeleton and then you are free to go. 

 

How long will the questionnaire/online survey take to complete? 

It will take maximum 2-3 mins to answer both questions. 

 

What are the advantages and possible disadvantages or risks of taking part? 

Whilst there are no immediate benefits for those people participating in the project, it is 

hoped that this work will provide a long term benefit to post-stroke patients once the 

efficiency of the developed exoskeleton is proven. 

There is a very low risk in the experiment since no physical sensor will be attached to your 

body and the mechanism is supported by electromechanical safety features (mechanical safety 

switch and software-controlled protection). The electronic circuit of the developed 

exoskeleton is driven by battery, so no AC power is involved. The Kinect sensor is connected to 

the laptop for monitoring joint movement without making any physical contact. You can 

withdraw at any time if feeling uncomfortable. 

 

What type of information will be sought from me and why is the collection of this 

information relevant for achieving the research project’s objectives? 
 

The data collected are not going to be of a sensitive nature. 

During the test, we will collect two types of data; static parameters (weight, height) and 

dynamic parameters (elbow joint angle of right arm during movement). The small survey 

consisting of two questions which are based on the wearability and usability of the 

Exoskeleton 

Kinect sensor 

Laptop 

Shoulder-based holder 
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exoskeleton. Users can give answers using a scale from 1 to 5 (strongly disagree to strongly 

agree). 

In the beginning, we need user’s biomechanics data (weight, height) to design the framework 

of the structure. During the experiment, we need to measure the joint parameters to prove its 

working principle. Finally, we need their feedback to evaluate the usefulness of the device. 

This test will help us to prove the efficiency of the developed device and this may lead to 

finding a better robotic solution to provide post-stroke rehabilitation. Your participation is very 

important in analysing the proof of concept of the developed exoskeleton. 

 

 

Will I be recorded, and how will the recorded media be used? 

The picture and/or video recordings of your activities made during this research will be used 

only for analysis and the transcription of the recording(s) for illustration in conference 

presentations and lectures. No other use will be made of them without your written 

permission, and no one outside the project will be allowed access to the original recordings. 

We will not collect any identifiable or sensitive information from participants and the 

participants will be made anonymised by assigning a participant number. In recorded pictures 

or videos, the face of the participant or any body part which is recognizable will be blurred or 

removed so that the person participating in the experiment will not be identifiable. 

 

How will my information be managed? 

Bournemouth University (BU) is the organisation with overall responsibility for this study and 

the Data Controller of your personal information, which means that we are responsible for 

looking after your information and using it appropriately.   Research is a task that we perform 

in the public interest, as part of our core function as a university.    

 

Undertaking this research study involves collecting and/or generating information about you.   

We manage research data strictly in accordance with:  

 

• Ethical requirements;  and  

• Current data protection laws.  These control use of information about identifiable 
individuals, but do not apply to anonymous research data: “anonymous” means that 
we have either removed or not collected any pieces of data or links to other data 
which identify a specific person as the subject or source of a research result.    

 

BU’s Research Participant Privacy Notice sets out more information about how we fulfil our 

responsibilities as a data controller and about your rights as an individual under the data 

protection legislation.  We ask you to read this Notice so that you can fully understand the 

basis on which we will process your personal information.  

 

Research data will be used only for the purposes of the study or related uses identified in the 

Privacy Notice or this Information Sheet.  To safeguard your rights in relation to your personal 

information, we will use the minimum personally-identifiable information possible and control 

access to that data as described below.  
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Publication 

You will not be able to be identified in any external reports or publications about the research 

means your information will only be included in these materials in an anonymous form. 

 

Research results will be published in academic articles (conferences and journals). 

 

Security and access controls 

BU will hold the information we collect about you in hard copy in a secure location and on a 

BU password protected secure network where held electronically. 

 

Further use of your information 

The information collected about you may be used in an anonymous form to support other 

research projects in the future and access to it in this form will not be restricted.  It will not be 

possible for you to be identified from this data.  To enable this use, anonymised data will be 

added to BU’s Data Repository: this is a central location where data is stored, which is 

accessible to the public. 

 

Keeping your information if you withdraw from the study 

If you withdraw from active participation in the study we will keep information which we have 

already collected from or about you, if this has on-going relevance or value to the study.  This 

may include your personal identifiable information.   As explained above, your legal rights to 

access, change, delete or move this information are limited as we need to manage your 

information in specific ways in order for the research to be reliable and accurate.  However if 

you have concerns about how this will affect you personally, you can raise these with the 

research team when you withdraw from the study.  

 

You can find out more about your rights in relation to your data and how to raise queries or 

complaints in our Privacy Notice.  

 

Retention of research data  

 

Project governance documentation, including copies of signed  participant agreements: we 

keep this documentation for a long period after completion of the research, so that we have 

records of how we conducted the research and who took part.  The only personal information 

in this documentation will be your name and signature, and we will not be able to link this to 

any anonymised research results.   

 

Research results:  

As described above, during the course of the study we will anonymise the information we have 

collected information about you as an individual.  This means that we will not hold your 

personal information in identifiable form after we have completed the research activities.  

 

You can find more specific information about retention periods for personal information in our 

Privacy Notice.  

 

https://research.bournemouth.ac.uk/research-environment/research-data-management/
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We keep anonymised research data indefinitely, so that it can be used for other research as 

described above. 

 

 

Contact for further information  
 

If you have any questions or would like further information, please contact  

Prof. Venky Dubey by email on VDubey@bournmeouth.ac.uk or by phone on 01202 965986 or 

by post to: 

 

Prof. Venky Dubey 

Faculty of Science and Technology  

Bournemouth University 

BH12 5BB 

 

In case of complaints 

Any concerns about the study should be directed to Prof. Venky Dubey.  If your concern has 

not been answered by Prof. Venky Dubey, you should contact Professor Tiantian Zhang, 

Deputy Dean - Research & Professional Practice, Faculty of Science and Technology, 

Bournemouth University by email to researchgovernance@bournemouth.ac.uk.  

 
 

Finally 
 

If you decide to take part, you will be given a copy of the information sheet and a signed 

participant agreement form to keep. 

 

Thank you for considering taking part in this research project. 

 

 

 

 

 

 

 

 

 

 

 

mailto:researchgovernance@bournemouth.ac.uk


 
 

209 
 

Participant Agreement Form 
 

Full title of project: Elbow Exoskeleton Mechanism for Multistage Post-Stroke Rehabilitation 

Name, position and contact details of researcher: Soumya Kanti Manna, Postgraduate 

researcher, Department of Design & Engineering, Faculty of Science & Technology, 

Bournemouth University 

Email: smanna@bournemouth.ac.uk 

Name, position and contact details of supervisor: Prof. Venky Dubey, Faculty of Science & 

Technology, Bournemouth University 

Email: VDubey@bournmeouth.ac.uk 

To be completed prior to data collection activity  

Section A: Agreement to participate in the study 

 

You should only agree to participate in the study if you agree with all of the statements in this 

table and accept that participating will involve the listed activities.   

 Initial box 
to agree  

I consent to take part in the project on the basis set out above (Section A)  
 

Section B: The following parts of the study are optional  

 

You can decide about each of these activities separately.  Even if you do not agree to any of 

these activities you can still take part in the study. If you do not wish to give permission for an 

activity, do not initial the box next to it.  

I have read and understood the Participant Information Sheet ( STAFF_PGR & v 6) and 
have been given access to the BU Research Participant Privacy Notice which sets out how 
we collect and use personal  information 
(https://www1.bournemouth.ac.uk/about/governance/access-information/data-
protection-privacy). 

I have had an opportunity to ask questions. 

I understand that my participation is voluntary.  I can stop participating in research 
activities at any time without giving a reason and I am free to decline to answer any 
particular question(s). 

I agree that BU researchers may access information my medical records as described in 
the Participant Information Sheet 

I understand that, if I withdraw from the study, I will also be able to withdraw my data 
from further use in the study except where my data has been anonymised (as I cannot be 
identified) or it will be harmful to the project to have my data removed. 
 

I understand that my data may be used in an anonymised form by the research team to 
support other research projects in the future, including future publications, reports or 
presentations. 

https://www1.bournemouth.ac.uk/discover/faculties/faculty-science-technology/our-departments/department-computing-informatics/our-research
mailto:smanna@bournmeouth.ac.uk
https://intranetsp.bournemouth.ac.uk/documentsrep/Research%20Participant%20Privacy%20Notice.pdf
https://www1.bournemouth.ac.uk/about/governance/access-information/data-protection-privacy
https://www1.bournemouth.ac.uk/about/governance/access-information/data-protection-privacy
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 Initial 
boxes to 
agree 

 I agree to being filmed during the Project.  

 I agree to being photographed during the Project.  

 I agree for my photograph to be included in research outputs. 
 

 

 I agree to being featured in any film which will be made as part of this 
research Project and may be broadcast publicly or shown to third parties. 
 

 

I confirm my agreement to take part in the project on the basis set out above.  
•  

 
 

 

Name of participant  
(BLOCK CAPITALS) 

 Date  
(dd/mm/yyyy) 

 

 
 
  

  
 

 

Name of researcher  
(BLOCK CAPITALS) 

 Date  
(dd/mm/yyyy) 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signature 

 

Signature 
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Post experiment survey 

 

Full title of project: Elbow Exoskeleton Mechanism for Multistage Post-Stroke Rehabilitation 

Name, position and contact details of researcher: Soumya Kanti Manna, Postgraduate 

researcher, Department of Design & Engineering, Faculty of Science & Technology, 

Bournemouth University. Email: smanna@bournemouth.ac.uk  

 

Participant no.-------- 

Did you feel the exoskeleton is wearable? 

Strongly agree Agree Neutral  Disagree Strongly disagree 

     

 

Did you find it easy to use the exoskeleton? 

Strongly agree Agree Neutral  Disagree Strongly disagree 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www1.bournemouth.ac.uk/discover/faculties/faculty-science-technology/our-departments/department-computing-informatics/our-research
mailto:smanna@bournemouth.ac.uk
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Appendix II : Solidworks models of exoskeleton 
 

 

Model 1 

 

Model 2 
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Model 3 

 

Model 4 
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Model 5 

 

 

Model 6 
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Model 7 

 

 

Model 8 
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Model 9 

 

 

 

 

Proposed full arm exoskeleton model 
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Appendix III : Datasheets 

1. Arduino board 

• Technical Specification 
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• Schematic diagram 

 

 



 
 

219 
 

2. Microcontroller (Atmega328P) 

• Technical Specification 
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3. DC motor (ZYTD520) 

• Technical Specification 
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4. Current sensor (GY -471) 

• Technical Specification 
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5. Potentiometer (4.7 KΩ) 

• Technical Specification 
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6. Optical sensor (GP2Y0A41SK0F) 

• Technical Specification 
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227 
 

7. Motor driver (DFR0225:V2) 

• Technical Specification 
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Appendix IV : Programs 
 

1. Unity game engine platform 

 

C# programs 

• Program for audio-visual feedback 

Angledetect.cs 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using Windows.Kinect; 
using UnityEngine.UI; 
 
public class Angledetect : MonoBehaviour { 
 
 public GameObject BodySrcManager; 
 public BodySourceManager bodyManager; 
 private Body[] bodies; 
 public float multiplier=10f; 
 public Text myText; 
 public Text myText2; 
 public float degree=0.0f; 
 
 
 public UnityEngine.AudioSource audio1; 
 public UnityEngine.AudioSource audio2; 
 public UnityEngine.AudioSource audio3; 
 
 
 // Use this for initialization 
 void Start () { 
  if (BodySrcManager == null) { 
   Debug.Log ("Assisgn Game Objct with Body Source Manager"); 
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  }  
  else { 
   bodyManager = BodySrcManager.GetComponent<BodySourceManager> (); 
  } 
   
 } 
  
 // Update is called once per frame 
 void Update () { 
  if (bodyManager == null) { 
   return; 
  } 
  bodies = bodyManager.GetData (); 
  if (bodies == null) { 
   return; 
  } 
  foreach (var body in bodies) { 
   if (body == null) { 
    continue; 
   } 
   if (body.IsTracked) { 
    Vector3 shouldertoelbow = new Vector3 (body.Joints 
[JointType.ElbowRight].Position.X - body.Joints [JointType.ShoulderRight].Position.X, body.Joints 
[JointType.ElbowRight].Position.Y - body.Joints [JointType.ShoulderRight].Position.Y, body.Joints 
[JointType.ElbowRight].Position.Z - body.Joints [JointType.ShoulderRight].Position.Z); 
    Vector3 elbowtowrist = new Vector3 (body.Joints 
[JointType.ElbowRight].Position.X - body.Joints [JointType.WristRight].Position.X, body.Joints 
[JointType.ElbowRight].Position.Y - body.Joints [JointType.WristRight].Position.Y, body.Joints 
[JointType.ElbowRight].Position.Z - body.Joints [JointType.WristRight].Position.Z); 
    shouldertoelbow.Normalize (); 
    elbowtowrist.Normalize (); 
 
    Vector3 crossProduct = Vector3.Cross (shouldertoelbow, 
elbowtowrist); 
    float crossProductLength = crossProduct.z; 
    float dotProduct = Vector3.Dot (shouldertoelbow, elbowtowrist); 
    float segmenAngle = Mathf.Atan2 (crossProductLength, dotProduct); 
    float segmentAngle = Mathf.Abs (segmenAngle); 
 
    float degree = segmentAngle * (180 / Mathf.PI); 
 
 
    myText.text = degree.ToString (); 
 
 
 
 
 
    if (degree >= 100) { 
     audio1.mute = false; 
     audio2.mute = true; 
     audio3.mute = true; 
     if (!audio1.playOnAwake) { 
      audio1.playOnAwake = true; 
      audio1.Play(); 
      audio1.loop = true; 
      
      audio2.mute = true; 
      audio3.mute = true; 
     } 
     myText2.text = ("Come on! you can do it"); 
    } 
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    else if (degree >=70 && degree < 100) { 
 
     audio1.mute = true; 
     audio2.mute = false; 
     audio3.mute = true; 
     if (!audio2.playOnAwake) { 
      audio2.playOnAwake = true; 
      audio2.Play (); 
      audio2.loop = true; 
      
       
      audio1.mute = true; 
      audio3.mute = true; 
     } 
     myText2.text = ("Almost reached"); 
 
    } 
 
    else { 
     audio1.mute = true; 
     audio2.mute = true; 
     audio3.mute = false; 
     if (!audio3.playOnAwake) { 
      audio3.playOnAwake = true; 
      audio3.Play (); 
      audio3.loop = true; 
      
     
 
      audio1.mute = true; 
      audio2.mute = true; 
      } 
      myText2.text = ("you have done it"); 
      
 
    } 
    
   } 
 } 
} 
} 

 

• Program for synchronizing right hand movement with ball 

DetectJoints.cs 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using Windows.Kinect; 
using System.IO; 
 
public class DetectJoints : MonoBehaviour { 
 
 
 public GameObject BodySrcManager; 
 //public JointType TrackedJoint; 
 public BodySourceManager bodyManager; 
 private Body[] bodies; 
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 public float multiplier=10f; 
 // Use this for initialization 
 void Start () { 
  if (BodySrcManager == null) { 
   Debug.Log ("Assisgn Game Objct with Body Source Manager"); 
  }  
  else { 
   bodyManager = BodySrcManager.GetComponent<BodySourceManager> (); 
  } 
 } 
  
 // Update is called once per frame 
 void Update () { 
  if (bodyManager == null) { 
   return; 
  } 
  bodies = bodyManager.GetData (); 
  if (bodies == null) { 
   return; 
  } 
  List<double> xList = new List<double> (); 
  List<double> yList = new List<double> (); 
  List<double> zList = new List<double> (); 
  foreach (var body in bodies) { 
   if (body == null) { 
    continue; 
   } 
   if (body.IsTracked) { 
    var pos = body.Joints[JointType.HandRight].Position; 
    float x = pos.X * multiplier; 
    float y = pos.Y * multiplier; 
    float z = pos.Z * multiplier; 
    gameObject.transform.position = new Vector3 (x, y, z); 
 
   } 
   
  } 
 
 } 
} 

 

• Program for resetting new scene in game platform 

GameController.cs 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using UnityEngine.SceneManagement; 
 
public class GameController : MonoBehaviour { 
 
 private Scene scene; 
 public GameObject Sphere; 
 public bool holdingBall = true; 
 //public float resetTimer = 5f; 
 // Use this for initialization 
 void Start () { 
  scene = SceneManager.GetActiveScene (); 
 } 
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 // Update is called once per frame 
 void Update () { 
 
  if (holdingBall == false) { 
   SceneManager.LoadScene ("Gestures"); 
   } 
   
  } 
 
} 

 

• Program for showing particle system after scoring 

ScoreArea.cs 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using UnityEngine.UI; 
 
public class ScoreArea : MonoBehaviour { 
 
 public GameObject effectObject; 
 public Text myText1; 
 
 
 void Start(){ 
  effectObject.SetActive (false); 
 } 
 // Use this for initialization 
 void OnTriggerEnter (Collider otherCollider){ 
  if (otherCollider.GetComponent<SphereCollider> () != null) { 
   effectObject.SetActive (true); 
   myText1.text = ("Hurray! You have scored"); 
  } 
 } 
} 

 

• Program for calculating joint angle from joint vectors 

voiceControl.cs 

using System.Collections; 
using System.Collections.Generic; 
using System; 
using System.Linq; 
using UnityEngine; 
using UnityEngine.Windows.Speech; 
using Windows.Kinect; 
using UnityEngine.UI; 
using System.IO; 
 
public class voiceControl : MonoBehaviour { 
 
 
 //public UnityEngine.AudioSource _audio; 
 



 
 

235 
 

 private Dictionary<string, Action> keywordActions = new Dictionary<string, Action> (); 
 private KeywordRecognizer keywordRecognizer; 
 public GameObject BodySrcManager; 
 public BodySourceManager bodyManager; 
 private Body[] bodies; 
 public float multiplier=10f; 
 public float degree=0.0f; 
 public GameObject Sphere; 
 //public float ballThrowingForce = 5f; 
 public bool holdingBall = true; 
 public Text myText7; 
 public Text myText13; 
 
 //public Text myText2; 
 
 // Use this for initialization 
 void Start () { 
 
  //_audio = gameObject.GetComponent<UnityEngine.AudioSource> (); 
 
  keywordActions.Add("Drop", Drop); 
  keywordRecognizer = new KeywordRecognizer (keywordActions.Keys.ToArray ()); 
  keywordRecognizer.OnPhraseRecognized += OnKeywordsRecognized; 
  keywordRecognizer.Start (); 
 
  Sphere.GetComponent<Rigidbody> ().useGravity = false; 
  if (BodySrcManager == null) { 
   Debug.Log ("Assisgn Game Objct with Body Source Manager"); 
  }  
  else { 
   bodyManager = BodySrcManager.GetComponent<BodySourceManager> (); 
  } 
 } 
 
 private void Drop() 
 { 
  holdingBall = false; 
  Sphere.GetComponent<Rigidbody> ().useGravity = true; 
 } 
 
 private void OnKeywordsRecognized(PhraseRecognizedEventArgs args){ 
  Debug.Log ("Keyword: " + args.text); 
  keywordActions [args.text].Invoke (); 
   } 
 // Update is called once per frame 
 void Update () { 
  if (bodyManager == null) { 
   return; 
  } 
  bodies = bodyManager.GetData (); 
  if (bodies == null) { 
   return; 
  } 
 
  foreach (var body in bodies) { 
   if (body == null) { 
    continue; 
   } 
   if (body.IsTracked) { 
    var pos2 = body.Joints [JointType.Neck].Position; 
    var pos1 = body.Joints [JointType.ShoulderRight].Position; 
    var pos0 = body.Joints [JointType.ElbowRight].Position; 
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    var pos = body.Joints [JointType.HandRight].Position; 
 
    float x2 = pos2.X * multiplier; 
    float y2 = pos2.Y * multiplier; 
    float z2 = pos2.Z * multiplier; 
 
    float x1 = pos1.X * multiplier; 
    float y1 = pos1.Y * multiplier; 
    float z1 = pos1.Z * multiplier; 
 
    float x0 = pos0.X * multiplier; 
    float y0 = pos0.Y * multiplier; 
    float z0 = pos0.Z * multiplier; 
 
    float x = pos.X * multiplier; 
    float y = pos.Y * multiplier; 
    float z = pos.Z * multiplier; 
 
                float mag1; 
                float mag2; 
 
 
    //double length = Mathf.Sqrt (Mathf.Pow ()); 
 
    gameObject.transform.position = new Vector3 (x, y, z); 
 
                //myText4.text = x.ToString (); 
                //myText5.text = y.ToString (); 
                //myText6.text = z.ToString (); 
     
 
    Vector3 shouldertoelbow = new Vector3 (body.Joints 
[JointType.ElbowRight].Position.X - body.Joints [JointType.ShoulderRight].Position.X, body.Joints 
[JointType.ElbowRight].Position.Y - body.Joints [JointType.ShoulderRight].Position.Y, body.Joints 
[JointType.ElbowRight].Position.Z - body.Joints [JointType.ShoulderRight].Position.Z); 
    Vector3 elbowtowrist = new Vector3 (body.Joints 
[JointType.ElbowRight].Position.X - body.Joints [JointType.WristRight].Position.X, body.Joints 
[JointType.ElbowRight].Position.Y - body.Joints [JointType.WristRight].Position.Y, body.Joints 
[JointType.ElbowRight].Position.Z - body.Joints [JointType.WristRight].Position.Z); 
                mag1 = shouldertoelbow.magnitude; 
                mag2 = elbowtowrist.magnitude; 
                shouldertoelbow.Normalize (); 
    elbowtowrist.Normalize (); 
 
    Vector3 crossProduct = Vector3.Cross (shouldertoelbow, 
elbowtowrist); 
    float crossProductLength = crossProduct.z; 
    float dotProduct = Vector3.Dot (shouldertoelbow, elbowtowrist); 
    float segmenAngle = Mathf.Atan2(crossProductLength, dotProduct); 
    float segmentAngle = Mathf.Abs (segmenAngle); 
 
 
    float degree = segmentAngle * (180 / Mathf.PI); 
 
    float rad = degree * Mathf.Deg2Rad; 
 
    double torque = 1 * 9.81 * 0.1*(Mathf.Cos(rad)); 
 
    float rad1 = 180 - degree; 
 
    int point = (int)rad1*100/140; 
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    Vector3 necktoshoulder = new Vector3 (body.Joints 
[JointType.ShoulderRight].Position.X - body.Joints [JointType.Neck].Position.X, body.Joints 
[JointType.ShoulderRight].Position.Y - body.Joints [JointType.Neck].Position.Y, body.Joints 
[JointType.ShoulderRight].Position.Z - body.Joints [JointType.Neck].Position.Z); 
    Vector3 elbowtoshoulder = new Vector3 (body.Joints 
[JointType.ShoulderRight].Position.X - body.Joints [JointType.ElbowRight].Position.X, body.Joints 
[JointType.ShoulderRight].Position.Y - body.Joints [JointType.ElbowRight].Position.Y, body.Joints 
[JointType.ShoulderRight].Position.Z - body.Joints [JointType.ElbowRight].Position.Z); 
    necktoshoulder.Normalize (); 
    elbowtoshoulder.Normalize (); 
 
    Vector3 crossProduct1 = Vector3.Cross (necktoshoulder, 
elbowtoshoulder); 
    float crossProductLength1 = crossProduct1.z; 
    float dotProduct1 = Vector3.Dot (necktoshoulder, elbowtoshoulder); 
    float segmenAngle1 = Mathf.Atan2 (crossProductLength1, 
dotProduct1); 
    float segmentAngle1 = Mathf.Abs (segmenAngle1); 
 
    float degree1 = segmentAngle1 * (180 / Mathf.PI); 
 
    myText13.text = degree1.ToString (); 
    //float torque = Convert.ToSingle (tor); 
 
    myText7.text = point.ToString (); 
 
    DateTime baseDate = new DateTime(1970, 1, 1); 
    TimeSpan span = DateTime.Now - baseDate; 
 
 
     using (StreamWriter w = File.AppendText("D://test.csv")) 
    { 
     w.WriteLine (span.TotalMilliseconds + "," + x + "," + y + "," + 
z + "," + x0 + "," + y0 + "," + z0 +"," + x1 + "," + y1 + "," + z1 +"," + x2 + "," + y2 + "," + z2 +',' + degree1 + ',' + 
degree + ','+ mag1 + ',' + mag2); 
    } 
    /*StartCoroutine (DownloadTheAudio ()); 
 
    if (degree >= 0) { 
     myText2.text = ("Come on! you can do it"); 
    }  
 
    if (degree >= 90) { 
     myText2.text = ("Almost reached"); 
 
    } 
 
    if (degree >= 130) { 
     myText2.text = ("you have done it"); 
 
 
    }*/ 
 
   } 
  } 
 } 
 
 /*IEnumerator DownloadTheAudio () 
 { 
  string url="http://translate.google.com/translate_tts?ie=UTF-
8&total=1&idx=0&textlen=32&client=tw-ob&q="+myText2.text+"&tl=En-gb"; 
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  WWW www = new WWW (url); 
  yield return www; 
 
  _audio.clip = www.GetAudioClip (false, true, AudioType.MPEG); 
  _audio.Play (); 
 }*/ 
 
 
} 

 

2. Matlab program for calculating joint parameters from excel file 

f1 ='testfile.xlsx'; 
  
xx=xlsread(f1,'A:A'); 
x=xlsread(f1,'B:B'); 
y=xlsread(f1,'C:C'); 
z=xlsread(f1,'D:D'); 
  
x0=xlsread(f1,'E:E'); 
y0=xlsread(f1,'F:F'); 
z0=xlsread(f1,'G:G'); 
  
x1=xlsread(f1,'H:H'); 
y1=xlsread(f1,'I:I'); 
z1=xlsread(f1,'J:J'); 
  
x2=xlsread(f1,'K:K'); 
y2=xlsread(f1,'L:L'); 
z2=xlsread(f1,'M:M'); 
  
  
degree1 = xlsread(f1,'N:N'); 
degree2 = xlsread(f1,'O:O'); 
%tor = xlsread(f1,'P:P'); 
  
reatime = (xx(size(xx,1),1)-xx(1,1))/1000; 
  
xxdis = zeros(size(xx,1),1); 
vell1 = zeros(size(xx,1)-1,1); 
vell2 = zeros(size(xx,1)-1,1); 
acce11 = zeros(size(xx,1)-1,1); 
acce22 = zeros(size(xx,1)-1,1); 
theta1= 180-degree1; 
theta2= 180-degree2; 
alpha1 = theta1*0.0174533; 
alpha2 = theta2*0.0174533; 
  
i = 1; 
  
for a = 1:1:size(xx,1) 
  
    xxdis(i,1) = (xx(i,1)-xx(1,1))/1000; 
    i=i+1; 
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end 
  
for a = 1:1:size(xx,1)-1 
      
    vell1(a,1)= (theta1(a+1,1)-theta1(a,1))./(xxdis(a+1,1)-xxdis(a,1)); 
    vell2(a,1)= (theta2(a+1,1)-theta2(a,1))./(xxdis(a+1,1)-xxdis(a,1)); 
      
end 
vell1a=vell1'; 
vell1b=[zeros(1,1),vell1a]; 
vell1c=vell1b'; 
vel1=smooth(vell1c,'moving',10); 
  
vell2a=vell2'; 
vell2b=[zeros(1,1),vell2a]; 
vell2c=vell2b'; 
vel2=smooth(vell2c,'moving',10); 
  
  
for a = 1:1:size(xx,1)-1 
      
    acce11(a,1)= (vel1(a+1,1)-vel1(a,1))./(xxdis(a+1,1)-xxdis(a,1)); 
    acce22(a,1)= (vel2(a+1,1)-vel2(a,1))./(xxdis(a+1,1)-xxdis(a,1)); 
      
end 
  
  
acce11a=acce11'; 
acce11b=[zeros(1,1),acce11a]; 
acce11c=acce11b'; 
a1=smooth(acce11c,'moving',10); 
  
  
acce22a=acce22'; 
acce22b=[zeros(1,1),acce22a]; 
acce22c=acce22b'; 
a2=smooth(acce22c,'moving',10); 
  
torque1 = 
(m1.*l1.^2+I1+m2.*(L1.^2+l2.^2+2.*L1.*l2.*cosd(alpha2))+I2).*a1+(m2.*(l2.^2+L1.*l2.*cosd(alpha
2))+I2).*a2-
(m2.*L1.*l2.*sind(alpha2).*(2.*vel1.*vel2+vel2.^2))+(m1.*g.*l1.*cosd(alpha1))+(m2.*g.*(L1.*cosd(
alpha1)+l2.*cosd(alpha1+alpha2)));   
torque2 = 
(m2.*(l2.^2+L1.*l2.*cosd(alpha2))+I2).*a1+(m2.*l2.^2+I2).*a2+(m2.*L1.*l2.*sind(alpha2).*vel1.^2
)+(m2.*g.*l2.*cosd(alpha1+alpha2)); 
  
figure(1); 
plot3(x,z,y,'*'); 
hold on 
plot3(x0,z0,y0,'*'); 
hold on 
line ([x x0],[z z0],[y y0]); 
hold on 
line ([x1 x0],[z1 z0],[y1 y0]); 
hold on 
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line ([x1 x2],[z1 z2],[y1 y2]); 
hold on 
for a=1:1:size(xx) 
L1=line([x0(a,1) x(a,1)],[z0(a,1) z(a,1)],[y0(a,1) y(a,1)]); 
hold on 
L2=line([x0(a,1) x1(a,1)],[z0(a,1) z1(a,1)],[y0(a,1) y1(a,1)]); 
hold on 
L3=line([x2(a,1) x1(a,1)],[z2(a,1) z1(a,1)],[y2(a,1) y1(a,1)]); 
hold on 
  
set(L1,'color','r') 
set(L2,'color','b') 
set(L2,'color','b') 
hold on 
end 
xlabel('X position'); 
ylabel('Y position'); 
zlabel('Z position'); 
grid on; 
  
  
figure(2); 
ss1=plot(xxdis,degree1); 
la1='Shoulder joint'; 
hold on 
ss2=plot(time,degree2); 
la2='Elbow joint'; 
xlabel('Time (sec)'); 
ylabel('Joint angle (degree)'); 
legend([ss1;ss2], la1, la2); 
grid on; 
  
  
figure(3); 
ss3=plot(xxdis,vel1); 
la3='Shoulder joint'; 
hold on 
ss4=plot(time,vel2); 
xlabel('Time (sec)'); 
la4='Elbow joint'; 
ylabel('Joint velocity (rad/sec)'); 
legend([ss3;ss4], la3, la4); 
grid on; 
  
figure(4); 
ss5=plot(xxdis,a1); 
la5='Shoulder joint'; 
hold on 
ss6=plot(xxdis,a2); 
xlabel('Time (sec)'); 
la6='Elbow joint'; 
ylabel('Joint acceleration (rad/sec^2)'); 
legend([ss5;ss6], la5, la6); 
grid on; 
  
figure(5); 
ss7=plot(xxdis,torque1); 
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la7='Shoulder joint'; 
hold on 
ss8=plot(xxdis,torque2); 
la8='Elbow joint'; 
xlabel('Time (sec)'); 
ylabel('Joint torque (Nm)'); 
legend([ss7;ss8], la7, la8); 
grid on; 
 
 
3. Arduino program for communicating between Arduino board and GUI 

int E1 = 5;   

int M1 = 4;  

int E2 = 6;                       

int M2 = 7;    

//int recb=0; 

int value=200; 

#define kPin_Photocell A0 

#define kPin_Photocell1 A1 

#define kPin_Photocell2 A2 

 

void setup() 

{ 

pinMode(M1, OUTPUT);    

pinMode(M2, OUTPUT); 

Serial.begin(9600); 

} 

 

void loop() 

{ 

int value = analogRead(kPin_Photocell); 

int value1 = analogRead(kPin_Photocell1); 

int value2 = analogRead(kPin_Photocell2); 

Serial.print(value);  

Serial.print(','); 

Serial.print(value1);  

Serial.print(',');  
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Serial.println(value2); 

if (Serial.available()) 

  { 

    char recb = Serial.read(); 

if (recb=='a') 

    { 

       digitalWrite(M1,HIGH);    

    digitalWrite(M2, HIGH);        

    analogWrite(E1, value);    

    analogWrite(E2, value);    

    //delay(30);  

  

    } 

    else if(recb=='b') 

    { 

    digitalWrite(M1,LOW);    

    digitalWrite(M2,LOW);        

    analogWrite(E1, value);   

    analogWrite(E2, value); 

    } 

    else if (recb=='N') 

    { 

      digitalWrite(M1,HIGH); 

      analogWrite(E1, LOW); 

      } 

    } 

} 

 

4. Matlab program for GUI 

• GUIDE for GUI 
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function varargout = GUIsensor(varargin) 
% GUISENSOR MATLAB code for GUIsensor.fig 
%      GUISENSOR, by itself, creates a new GUISENSOR or raises the existing 
%      singleton*. 
% 
%      H = GUISENSOR returns the handle to a new GUISENSOR or the handle to 
%      the existing singleton*. 
% 
%      GUISENSOR('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in GUISENSOR.M with the given input arguments. 
% 
%      GUISENSOR('Property','Value',...) creates a new GUISENSOR or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before GUIsensor_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to GUIsensor_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help GUIsensor 
  
% Last Modified by GUIDE v2.5 12-Feb-2018 19:26:53 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @GUIsensor_OpeningFcn, ... 
                   'gui_OutputFcn',  @GUIsensor_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
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end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin(Manna and Dubey)); 
else 
    gui_mainfcn(gui_State, varargin(Manna and Dubey)); 
end 
  
  
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before GUIsensor is made visible. 
function GUIsensor_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to GUIsensor (see VARARGIN) 
  
% Choose default command line output for GUIsensor 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
  
  
% UIWAIT makes GUIsensor wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = GUIsensor_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global s flag1 g q g1 q1 x; 
flag1=1; 
char c; 
s=serial('COM4','BaudRate',9600); 
fopen(s); 
filtvalue=0.5; 
tr=10; 
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x=0; 
g=zeros(x,3); 
q=zeros(1,3); 
aa0=zeros(50,1); 
 aa1=zeros(50,1); 
 aa2=zeros(50,1); 
  
 g1=zeros(x,1); 
 q1=zeros(1,1); 
  
  
 newv=0; 
 newv1=0; 
 newv2=0; 
  
 i=0; 
 while tr>5 
     if flag1==1 
         x=x+1; 
      tmp =fscanf(s,'%d,%d,%d'); 
  
     bb=tmp(1); 
     bb1=tmp(2); 
     bb2=tmp(3); 
     cc1=(bb-62)/3.52; 
      
  
     newv=(1-filtvalue)*newv+filtvalue*cc1; 
     newv1=(1-filtvalue)*newv1+filtvalue*bb1; 
     newv2=(1-filtvalue)*newv2+filtvalue*bb2; 
      
       
     aa0=[aa0(2:end);newv]; 
     aa1=[aa1(2:end);newv1]; 
     aa2=[aa2(2:end);newv2]; 
      
  
axes(handles.axes1); 
set(handles.text12,'string',cc1); 
plot(aa0,'r');ylim([0 1000]); 
  
axes(handles.axes2); 
set(handles.text14,'string',tmp(2)); 
plot(aa1,'r');ylim([200 400]); 
  
  
axes(handles.axes3); 
set(handles.text16,'string',tmp(3)); 
plot(aa2,'r');ylim([0 1000]); 
  
  
q=tmp(1:3)'; 
g(x,:)=q; 
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q1=cc1'; 
g1(x,:)=q1; 
drawnow; 
c = (bb2/40); 
set(handles.text22,'string',c); 
%set(handles.text42,'string',tmp(3)); 
if (c >= 0 && c <= 18) 
    i=0; 
if (tmp(1)>0 && i==0) 
     
     set(handles.text18,'string','Acute'); 
     set(handles.text20,'string','Passive'); 
     set(handles.text19,'string','Level 1'); 
     fwrite(s,'a'); 
     i=i+1; 
end      
if (tmp(1)>200 && i==1) 
     
    set(handles.text19,'string','Level 2'); 
    i=i+1; 
end 
     
if (tmp(1)>400 && i==2) 
     
    set(handles.text19,'string','Level 3'); 
    i=i+1; 
end 
  
if (tmp(1)>600 && i==3) 
     
    set(handles.text19,'string','Level 4'); 
    i=i+1; 
end 
  
if (tmp(1)>800 && i==4) 
     
    set(handles.text19,'string','Level 5'); 
    i=i+1; 
end 
end 
  
if (c > 18 && c <= 22) 
    i=0; 
if (tmp(1)>0 && i==0) 
     
    set(handles.text18,'string','Mid-level'); 
    set(handles.text19,'string','Level 1'); 
    set(handles.text20,'string','Assistive active'); 
    fwrite(s,'b'); 
     i=i+1; 
end      
if (tmp(1)>200 && i==1) 
     
    set(handles.text19,'string','Level 2'); 
    i=i+1; 
end 
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if (tmp(1)>400 && i==2) 
     
    set(handles.text19,'string','Level 3'); 
    i=i+1; 
end 
  
if (tmp(1)>600 && i==3) 
     
    set(handles.text19,'string','Level 4'); 
    i=i+1; 
end 
  
if (tmp(1)>800 && i==4) 
     
    set(handles.text19,'string','Level 5'); 
    i=i+1; 
end 
end    
  
  
if (c > 22 && c <= 25) 
 i=0;    
if (tmp(1)>0 && i==0) 
     
    set(handles.text18,'string','Cronic'); 
    set(handles.text19,'string','Level 1'); 
    set(handles.text20,'string','Resisitive active'); 
    fwrite(s,'c');  
     i=i+1; 
end      
if (tmp(1)>200 && i==1) 
     
    set(handles.text19,'string','Level 2'); 
    i=i+1; 
end 
     
if (tmp(1)>400 && i==2) 
     
    set(handles.text19,'string','Level 3'); 
    i=i+1; 
end 
  
if (tmp(1)>600 && i==3) 
     
    set(handles.text19,'string','Level 4'); 
    i=i+1; 
end 
  
if (tmp(1)>800 && i==4) 
     
    set(handles.text19,'string','Level 5'); 
    i=i+1; 
end     
end 



 
 

248 
 

      
set(handles.text41,'string',i); 
  
  
     else  
        break; 
    end 
 end 
  
                    
  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global s flag1 
flag1=0; 
fwrite(s,'c'); 
fclose(s); 
  
  
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global s flag1 
flag1=0; 
fwrite(s,'c'); 
fclose(s); 
  
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global s flag1; 
flag1=1; 
  
s=serial('COM4','BaudRate',9600); 
fopen(s); 
filtvalue=0.5; 
tr=10; 
aa0=zeros(50,1); 
 aa1=zeros(50,1); 
 aa2=zeros(50,1); 
  
 newv=0; 
 newv1=0; 
 newv2=0; 
  
 while tr>5 
     if flag1==1 
      tmp =fscanf(s,'%d,%d,%d'); 
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     bb=tmp(1); 
     bb1=tmp(2); 
     bb2=tmp(3); 
  
  
     newv=(1-filtvalue)*newv+filtvalue*bb; 
     newv1=(1-filtvalue)*newv1+filtvalue*bb1; 
     newv2=(1-filtvalue)*newv2+filtvalue*bb2; 
  
       
     aa0=[aa0(2:end);newv]; 
     aa1=[aa1(2:end);newv1]; 
     aa2=[aa2(2:end);newv2]; 
  
  
axes(handles.axes1); 
set(handles.text30,'string',tmp(1)); 
plot(aa0,'r');ylim([0 1000]); 
  
axes(handles.axes2); 
set(handles.text32,'string',tmp(2)); 
plot(aa1,'r');ylim([0 1000]); 
  
  
axes(handles.axes3); 
set(handles.text34,'string',tmp(3)); 
plot(aa2,'r');ylim([0 1000]); 
  
drawnow; 
  
     else  
        break; 
    end 
 end 
  
  
  
     
  
  
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
  
  
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
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% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu1 
  
  
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in radiobutton2. 
function radiobutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton2 
set(handles.uipanel1,'visible','off'); 
set(handles.uipanel2,'visible','on'); 
  
  
% --- Executes on button press in radiobutton1. 
function radiobutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of radiobutton1 
  
set(handles.uipanel2,'visible','off'); 
set(handles.uipanel1,'visible','on'); 
  
  
  function str = getCurrentPopupString(hh) 
%# getCurrentPopupString returns the currently selected string in the popupmenu with handle hh 
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%# could test input here 
if ~ishandle(hh) || strcmp(get(hh,'Type'),'popupmenu') 
error('getCurrentPopupString needs a handle to a popupmenu as input') 
end 
  
%# get the string - do it the readable way 
list = get(hh,'String'); 
val = get(hh,'Value'); 
if iscell(list) 
   str = list{val}; 
else 
   str = list(val,:); 
end 
    
  
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes on button press in pushbutton7. 
function pushbutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global s flag1 
flag1=0; 
fwrite(s,'c'); 
fclose(s); 
  
  
% --- Executes on button press in pushbutton8. 
function pushbutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global s flag1; 
flag1=1; 
  
str = getCurrentPopupString(handles.popupmenu1); 
if str == 'Passive' 
     set(handles.text36,'string','Acute'); 
    fwrite(s,'x'); 
end 
if str == 'Assistive Active' 
    set(handles.text36,'string','Mid-level');     
    fwrite(s,'y'); 
end         
   if str == 'Resistive Active' 
       set(handles.text36,'string','Cronic');        
       fwrite(s,'z'); 
             
   end 
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% --- Executes on button press in pushbutton9. 
function pushbutton9_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global g g1; 
  
% [filename1, path]=uiputfile('.xlsx','Save the sensor value as'); 
  
xlswrite('filename1',g,1); 
xlswrite('filename1',g1,1,'D1'); 
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Appendix V : Solidwoks components 
Base structure 

 

Nut slider 
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Leadscrew 

 

Solid rod 

 

Supporting rod 
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Concentric slider 

 

 

Structure of elbow joint 
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Forearm supporting link 

 

 

Second part of base structure 

 

Claw type jaws of locking mechanism 
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Part of locking mechanism 

 

 

Part of locking mechanism 

 

 

Part of locking mechanism 
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Connecting link 

 

Part of elbow joint 

 

Pulley connected at elbow joint 
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Concentric ring at the junction between S5 and S6 

 

Part of forearm supporting structure 

 

Part of forearm supporting structure 
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Half circular gear for forearm twisting motion 

 

 

 

 

Part of switching mechanism between motor control and assistive mode 

 

Part of switching mechanism between motor control and assistive mode 
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Part of switching mechanism between motor control and assistive mode 

 

 

Slider for changing variable joint stiffness 

 

 

Spindle of elbow joint 
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Universal joint at elbow joint 

 

 

 

Gear between motor and leadscrew 

 

Gear between motor and leadscrew 
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Supporting structure for forearm twisting motion 

 

Slider for forearm twisting motion 

 

Part of shoulder supporting structure 

 



 
 

264 
 

Part of shoulder supporting structure 

 

Part of shoulder supporting structure 

 

Part of shoulder supporting structure 
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Holder between shoulder supporting structure and exoskeleton 

 

Holder for distal end of exoskeleton 

 

 


