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Abstract

The exponential growth of volume, variety and velocity of data is raising the need for

investigations of automated or semi-automated ways to extract useful patterns from the

data. It requires deep expert knowledge and extensive computational resources to find

the most appropriate mapping of learning methods for a given problem. It becomes a

challenge in the presence of numerous configurations of learning algorithms on massive

amounts of data. So there is a need for an intelligent recommendation engine that

can advise what is the best learning algorithm for a dataset. The techniques that are

commonly used by experts are based on a trial and error approach evaluating and com-

paring a number of possible solutions against each other, using their prior experience on

a specific domain, etc. The trial and error approach combined with the expert’s prior

knowledge, though computationally and time expensive, have been often shown to work

for stationary problems where the processing is usually performed off-line. However,

this approach would not normally be feasible to apply on non-stationary problems

where streams of data are continuously arriving. Furthermore, in a non-stationary

environment the manual analysis of data and testing of various methods every time

when there is a change in the underlying data distribution would be very difficult or

simply infeasible. In that scenario and within an on-line predictive system, there are

several tasks where Meta-learning can be used to effectively facilitate best recommen-

dations including: 1) pre-processing steps, 2) learning algorithms or their combination,

3) adaptivity mechanisms and their parameters, 4) recurring concept extraction, and

5) concept drift detection. However, while conceptually very attractive and promising,

the Meta-learning leads to several challenges with the appropriate representation of the

problem at a meta-level being one of the key ones.

The goal of this review and our research is, therefore, to investigate Meta-learning

in general and the associated challenges in the context of automating the building,

deployment and adaptation of multi-level and multi-component predictive system that

evolve over time.
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Chapter 1

Introduction

One of the major challenges in Machine Learning (ML) is to predict when one algorithm is more

appropriate than another to solve a learning problem (Prudencio et al., 2011). Traditionally, es-

timating the performance of algorithms has involved intensive trial-and-error process which often

demands massive execution time and memory together with the advise of experts that are not

always easy to acquire (Giraud-Carrier et al., 2004). Meta-level Learning (MLL) has been iden-

tified as a potential solution to this problem Lemke et al., 2013a. It uses examples from various

domains to produce a machine learning model, known as a Meta-learner, which is responsible for

associating the characteristics of a problem with the most appropriate candidate algorithms found

to have worked best on previously solved similar problems. The knowledge which is used by a

Meta-learner is acquired from previously solved problems, where each problem is characterized by

several features, known as Meta-features (MFs). MFs are combined with performance measures of

learning algorithms to build a Meta-knowledge (MK) database. Learning at the base-level gathers

experience within a specific problem, while MLL is concerned with accumulating experience over

several learning problems (Giraud-Carrier 2008).

MLL started to appear in the machine learning literature in the 1980’s and was referred to by

different names like dynamic bias selection (Rendell et al., 1987), algorithm recommender (Brazdil

et al., 2008), etc. Sometimes MLL is also used with a reference to ensemble methods (Duch et

al., 2011) which can cause some confusion. So, in order to get a comprehensive view of exactly

what MLL is, a number of definitions have been proposed in various studies. Vilalta and Drissi

(2002a) and Vanschoren (2011) define MLL as the understanding of how learning itself can become

flexible according to the domain or task and how it tends to adapt its behaviour to perform better.

Giraud-Carrier (2008) describes it as the understanding of the interaction between mechanism of

learning and concrete context in which that mechanism is applicable. Brazdil et al. (2008) view on

MLL is that it is the study of methods that exploit Meta-knowledge to obtain efficient models and

solutions by adapting the learning algorithms, while MK is a combination of characteristics and

performance measures of Examples of Datasets (EoD). To some extent this definition is followed

in this research as well.

Extracting MFs from a dataset plays a vital role in the MLL task. Several MF generation

approaches are available to extract a variety of information from previously solved problems. The
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INTRODUCTION

most commonly used approaches are descriptive (or simple), statistical, information theoretic,

landmarking and model-based. The Descriptive, Statistical and Information-Theoretic (DSIT)

features are easy to extract from the dataset as compared to the other approaches. Most of

them have been proposed in the same period of time and are often used together in most of the

studies. These approaches are used to assess similarity of a new dataset to previously analysed

datasets (Bensusan et al., 2000). Landmarking is the most recent approach that tries to relate the

performance of candidate algorithms to the performance obtained by simpler and computationally

more efficient learners (Pfahringer et al., 2000). The Model-based approach attempts to capture

the characteristics of a problem from the structural shape and size of a model induced from the

dataset (Peng et al., 2002). The decision tree models are mostly used in this approach, where

properties are extracted from the tree, such as tree depth, shape, nodes per feature, etc. (Giraud-

Carrier, 2008).

The MF extraction approaches listed above are used in several implementations of decision-

support systems for algorithm selection. One of the initial studies to address the practice of MLL

was Machine Learning Toolbox (MLT) project by Graner et al. (1994). The project was a kind of

expert system for algorithm selection which gathered user inputs through a set of questions about

the data, the domain and user preferences. Although its knowledge-base was built through expert-

driven knowledge engineering rather than via MLL, it still stood out as the first automatic tool that

systematically relates application domain and dataset characteristics. In the same period, King

et al. (1995) contributed with statistical and information theoretic measures based approach for

classification tasks, known as Statistical and Logical learning (StatLog). A large number of MFs

were used in StatLog together with a broad class of candidate models for the algorithm selection

task. The project produced a thorough empirical analysis of various classifiers and learning mod-

els using different performance measures. StatLog was followed by various other implementations

with some refinement in MF set, input datasets, Base-level Learning (BLL) and MLL algorithms.

An EU funded research project Meta-Learning Assistant (METAL) had a key objective to facil-

itate a selection of the best suited classification algorithm for a data-mining task (Berrer et al.,

2000). METAL introduced new relevant MFs and ranked various classifiers using statistical and

information theoretic approaches. A ranking mechanism was also proposed by exploiting the ratio

of accuracy and training time. An agent-based architecture for distributed Data Mining, Meta-

learning Architecture (METALA), was proposed in (Botia et al., 2001). Its aim was the automatic

selection of an algorithm that performs best from a pool of available algorithms by automatically

carrying out experiments with each learner and task to induce a Meta-model for algorithm se-

lection. The Intelligent Discovery Assistant (IDA) provided a knowledge discovery ontology that

defined the existing techniques and their properties (Bernstein and Provost, 2001). IDA used three

algorithmic steps of the knowledge discovery process, which included: 1) pre-processing, 2) data

modelling, and 3) post-processing. It generated all valid processes and then a heuristic ranker

could be applied to compute user-specified goals which were initially gathered as input. Later,

Bernstein et al. (2005) research focused on extending Bernstein and Provost (2001) approach by

leveraging the interaction between ontology to extract deep knowledge and case-based reasoning
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for MLL. One of the recent contributions to MLL practice was made by Mierswa et al. (2006)

under Pattern Recognition Engineering (PaREn) project. A Landmarking operator was one of the

outcomes of this project which was later embedded in RapidMiner. These systems are described

in more detail in Section 2.4.4.

While there has been a lot of interest in MLL approaches and significant progress has been

made, there are a number of outstanding issues which will be explained and some of which will

be addressed. The main challenge of this work is a research on MLL strategies and approaches

in the context of adaptive multi-level, multi-component predictive systems. This problem leads to

several research challenges and questions which are discussed in detail in Chapter 3.

1.1 The review context and the INFER project summary

The research described in this report is closely related to and was conducted within the framework

of the recently completed INFER1 project. INFER stands for Computational Intelligence Platform

for Evolving and Robust Predictive Systems and was a project funded by the European Commission

within the Marie Curie Industry-Academia Partnerships & Pathways (IAPP) programme with a

runtime from July 2010 until June 2014.

INFER project’s research programme and partnership focused on pervasively adaptive software

systems for the development of an open, modular software platform for predictive modelling appli-

cable in different industries and a next generation of adaptive soft sensors for on-line prediction,

monitoring and control in the process industry.

The main project goals were achieved by pursuing the following objectives within three over-

lapping research and partnership programme areas:

1. Area: Computational Intelligence – Objective 1: Research and development of advanced

mechanisms for adaptation, increased robustness and complexity management of highly flexible,

multi-component, multi-level evolving predictive systems.

2. Area: Software Engineering – Objective 2: Development of professionally coded INFER

software platform for robust predictive systems building and intelligent data analysis.

3. Area: Process Industry / Control Engineering – Objective 3: Development of self-adapting

and monitoring soft sensors for process industry.

When the project was starting in 2010, there were several freely accessible general purpose data

mining and intelligent data analysis software packages and libraries on the market which could be

used to develop predictive models, but one of their main drawbacks was that advanced knowledge

of how to select and configure available algorithms was required. A number of commercial data

mining/predictive modelling software packages were also available. These tools attempted to au-

tomate some steps of the modelling process (e.g. data pre-processing, handling of missing values

or even model complexity selection) thus reducing required expertise of the user. Most of them

were however either front-ends for a single data mining/machine learning technique or they were

specialised tools designed specifically for use by a single industry. All these tools had one thing

1http://infer.eu/
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in common – generated models were static and the lack of full adaptability implied the need for

their periodic manual tuning or redesign.

The main innovation of the INFER project was therefore the creation and investigation of

a novel type of environment in which the ‘fittest’ predictive model for whatever purpose would

emerge – either autonomously or by user high-level goal-related assistance and feedback. In this

environment, the development of predictive systems would be supported by a variety of automation

mechanisms, which would take away as much of the model development burden from the user as

possible. Once applied, the predictive system should be able to exploit any available feedback for

its performance monitoring and adaptation.

There were (and still are) a lot of fundamental research questions related to the automation

of data driven predictive models building, ensuring their robust behaviour and development of

integrated adaptive/learning algorithms and approaches working on different time scales from real

time adaptation to life long learning and optimisation. All of these questions provided the main

thrust of advanced research conducted in the project and resulted in contributions to a large

number (over 70) of high impact publications in top journals and international conferences. While

all of the papers can be accessed via the project website (http://www.infer.eu) some of the key

ones related to this review are listed below for easy access and reference. We split the publications

using a set of distinct areas of interest and investigation and combine both the the older ones

which led to the conception of the project in the first place and some which resulted from running

the project. These are: i. complex adaptive systems and architectures (Gabrys et al., 2005; Ruta

and Gabrys, 2007; Kadlec and Gabrys, 2009a; Zliobaite et al., 2012); ii. classifier and predictor

ensembles (Ruta and Gabrys, 2002; Gabrys, 2002; Gabrys, 2004; Ruta and Gabrys, 2005; Gabrys

and Ruta, 2006; Ruta and Gabrys, 2007; Riedel and Gabrys, 2007b; Budka and Gabrys, 2010b;

Eastwood and Gabrys, 2012); iii. multi-level and multi-component predictors (Ruta and Gabrys,

2002; Riedel and Gabrys, 2005a; Riedel and Gabrys, 2005b; Riedel and Gabrys, 2007a; Riedel

and Gabrys, 2009; Tsakonas and Gabrys, 2012; Lemke et al., 2013b; Tsakonas and Gabrys, 2013);

iv. meta-learning (Lemke and Gabrys, 2010a; Lemke and Gabrys, 2010b; Lemke et al., 2013a, v.

learning and adaptation in changing environments (Sahel et al., 2007; Kadlec et al., 2011; Tsakonas

and Gabrys, 2011; Bakirov and Gabrys, 2013; Gama et al., 2014; Zliobaite and Gabrys, 2014); vi.

representative data sampling and predictive model evaluation (Budka and Gabrys, 2010a; Budka

et al., 2011; Budka and Gabrys, 2013); vii. adaptive soft sensors (Kadlec and Gabrys, 2008a;

Kadlec and Gabrys, 2008b; Kadlec and Gabrys, 2008d; Kadlec et al., 2009; Kadlec and Gabrys,

2009b; Kadlec and Gabrys, 2009c; Kadlec and Gabrys, 2010; Kadlec and Gabrys, 2011; Kadlec

et al., 2011; Budka et al., 2014) and viii. other application areas (Lemke and Gabrys, 2008; Lemke

et al., 2009; Stahl et al., 2013; Salvador et al., 2014).

A variety of application areas and contexts have been used to illustrate the performance of

developed approaches and/or to understand the mechanisms governing their behaviour. One of

the key applications considered and tackled was that of adaptive soft sensors needed in the process

industry.
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The INFER software platform, developed with the creation of highly flexible, multi-component,

multi-level evolving predictive systems in mind, supports parallel training, validation and execution

of multiple predictive models, with each of them potentially being in a different state. Moreover,

various optimization tasks can also be run in the background, taking advantage of idle compu-

tational resources. The predictive models running within the INFER platform are inherently

adaptive. This means that they constantly evolve towards more optimal solutions as new data

arrives. The importance of this feature stems from the fact, that real data is seldom stationary

– it often undergoes various changes, which affect the relationships between inputs and outputs,

rendering fixed predictive models unusable. A distinguishing feature of the INFER software is

an intelligent automation of the predictive model building process, allowing non-experts to create

well-performing and robust predictive systems with a minimal effort. At the same time, the system

offers full flexibility for the expert users in terms of the choice, parameterisation and operation of

the predictive methods as well as efficient integration of domain knowledge. While there is still

a substantial development effort required before a viable commercial software product could be

delivered the strong foundations have been created and it is our intention to build on them in the

future.

More information on the INFER2 project and its outcomes can be found following the link in

the footnote.

The rest of the report is structured as follows. The next chapter covers the existing research in

MLL area, including some important components of an MLL system. Those components include:

1. the sources of existing and ways of automatic generation of datasets, 2. Meta-feature gener-

ation and selection using various approaches, and 3. base-level learning algorithms performance

measures, such as accuracy, execution time, etc. This is followed by sections discussing existing

Meta-learning systems in the context of their applicability to the supervised and unsupervised

algorithms. The last section of Chapter 2 illustrates the adaptive mechanisms aspect in detail.

Based on the conclusions and recommendations extracted from the literature review, Chapter 3 de-

scribes research challenges of this work in the context of multi-component and multi-level adaptive

systems. And finally the summary is provided in Chapter 4.

2http://infer.eu/
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Chapter 2

Existing Research

A lot research has been conducted on automating Machine Learning (ML) algorithm selection in

the last three decades. The focus of many of those studies is on various components of Meta-level

Learning (MLL). Because of our particular interest in MLL, the scope of this literature review

is confined to areas that are directly related to the MLL research. The high-level overview of

the components which are discussed in this chapter is shown in Figure 2.1. The first section is

discussing ways of gathering real-world datasets and techniques to create synthetic datasets which

are known as Examples of Datasets (EoD). These EoD are used to generate Meta-features (MFs)

and associated performance measures which are discussed in Sections 2.2 and 2.3 respectively. MF

are combined with performance measures to build Meta-knowledge (MK) dataset which becomes

the input of MLL. The last section illustrates adaptive mechanisms in the context of MLL which

are an important aspect of our research focus.

Repository of Datasets

Meta-knowledgePerformance Measures

Meta-features generation 

and Selection

Meta-level 

Learning Adaptive Mechanisms

Figure 2.1: Scope of existing research review

2.1 Repository of Datasets

A repository of datasets representing various problems is one of the key components of the entire

MLL system. As Vanschoren (2011) states, there is no lack of experiments being done, but the
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datasets and information obtained often remains in the people’s heads and labs. This section ex-

plores the sources of real-world datasets that are used in the existing studies to build MK database.

However, real-world datasets are usually hard to obtain but artificially generated datasets would be

a possible solution of this problem. In the following subsections, studies that are dealing with the

real-world data, those which elaborate the techniques to generate artificial datasets, and published

resources are discussed.

2.1.1 Real-world Datasets

The real-world datasets can be difficult to find and gather in the desired format. An effort has

been made to extract useful sources of data from various studies. Table 2.1 presents datasets that

are used in different researches for MLL purpose. Most of them are gathered from UCI Machine

Learning Repository (UCI) (Bache and Lichman, 2013).

Table 2.1: Real-world datasets used in various studies

Research Work Datasets Sources Dataset Filters
King et al. (1995) 12 Satellite image, Hand written digits,

Karhunen-Loeve digits, Vehicle silhouettes,
Segment data, Credit risk, Belgian data,
Shuttle control, Diabetes, Heart disease,
German credit, Head injury (King, 1995)

Lindner and Studer
(1999)

80 UCI and DaimlerChrysler

Sohn (1999) 19 Satellite image, Hand written digits,
Karhunen-Loeve digits, Vehicle silhouettes,
Segment data, Credit risk, Belgian data,
Shuttle control, Diabetes, Heart disease,
German credit, Head injury (King, 1995)
and 7 other datasets used in StatLog project

Three datasets of Stat-
Log having cost in-
formation involved in
misclassification

Berrer et al. (2000) 58 Meta-Learning Assistant (METAL) project
datasets

38 datasets with no
missing values

Soares et al. (2001) 45 UCI and DaimlerChrysler Dataset with more
than 1000 instances

Bernstein and
Provost (2001)

15 Balance Scale, Breast Cancer, Heart dis-
ease, Heart disease - compressed glyph vi-
sualization, German Credit Data, Diabetes,
Vehicle silhouettes, Horse colic, Ionosphere,
Vowel, Sonar, Anneal, Australian credit
data, Sick, Segment data (Bache and Lich-
man, 2013)

Todorovski et al.
(2002)

65 UCI and METAL project datasets 38 datasets with no
missing values

Brazdil et al. (2003) 53 UCI and DaimlerChrysler Datasets with more
than 100 instances

7
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Bernstein et al.
(2005)

23 Balance Scale, Heart disease, Heart disease,
Heart disease - compressed glyph visualiza-
tion, German Credit Data, Diabetes, Vehi-
cle silhouettes, Ionosphere, Vowel, Anneal,
Australian credit data, Sick, Segment data,
Robot Moves, DNA, Gene, Adult 10, Hy-
pothyroid, Waveform, Page blocks, Optical
digits, Insurance, Letter, Adult (Bache and
Lichman, 2013)

Peng et al. (2002) 47 UCI
Kopf and Iglezakis
(2002)

78 UCI Dataset with less than
1066 instances and the
number of attributes
ranged from 4 to 69

Prudencio and Lud-
ermir (2004)

I: 99
Time-
series
(TS) and
II: 645

I: Time-series Data Library1 and II: M3
competition2

I: Stationary data and
II: Yearly data

Prudencio and Lud-
ermir (2008)

50 WEKA project3 On average datasets
contain 4,392 instances
and 14 features

Wang et al. (2009) 46 and 5 Time Series Data-mining Archive4 and Time
Series Data Library5

Kadlec and Gabrys
(2009a)

3 Thermal oxidiser, Industry drier, and Cata-
lyst activation datasets of process industry

On-line prediction
datasets

Lemke and Gabrys
(2010a)

2 con-
sisting of
111 TS

NN36 - Monthly business with 52-126 obser-
vations and NN56- daily cash machine with-
drawals with 735 observations in each series

NN5 including some
missing values

Abdelmessih et al.
(2010)

90 UCI Datasets with more
than 100 instances

Duch et al. (2011) 5 and 2 Leukemia, Heart, Wisconsin, Spam, and
Ionosphere are real-world datasets gathered
from UCI and two synthetic datasets parity
and monks

Rossi et al. (2014) 2 Travel Time Prediction (TTP) consists of
24,975 instances and Electricity Demand
Prediction (EDP) consists of 27,888 in-
stances

Warden (2011) wrote a concise handbook that covers the most useful sources of publicly avail-

able datasets. A lot of new sources of free and publicly available data that have emerged over the

last few years are discussed. Apart from discussing data-sources, methods to get datasets in bulk

from those sources are also discussed in detail. Table 2.2 presents most of the sources from the

author’s book.
1http://datamarket.com/data/list/?q=provider:tsdl
2http://forecasters.org/resources/time-series-data/m3-competition
3Machine Learning Group at University of Waikato http://www.cs.waikato.ac.nz/ml/weka
4http://www.cs.ucr.edu/~eamonn/time_series_data
5http://datamarket.com/data/list/?q=provider:tsdl
6Neural Network forecasting competition
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Table 2.2: List of publicly available Data Repositories

Source Description Datasets Industry
AnalcatData Datasets that are used by Jeffrey S. Simonoff

in his book Analyzing Categorical Data, pub-
lished in July 2003

83 Cross-industry

Amazon Web Ser-
vices

A centralized repository of public datasets Astronomy, Biol-
ogy, Chemistry,
Climate, Economics,
Geographic and
Mathematics

Bioassay data Virtual screening of bioassay (active/inactive
compounds) data by Amanda Schierz

21 Life Sciences

Canada Open
Data

Canadian government and geospatial data Government &
Geospatial

Datacatalogs List of the most comprehensive open data cat-
alogs

data.gov.uk Data of UK central government departments,
other public sector bodies and local authori-
ties

9616 Government and
Public Sector

data.london.gov.uk Data of UK central government departments,
other public sector bodies and local authori-
ties

563 Government and
Public sector

Data.gov/Education Educational high-value datasets 70,897 Cross-industry
ELENA Non-stationary streaming data of flight arrival

and departure details for all the commercial
flights within the USA

13 features
and 116
million
instances

Aviation

KDD Cup Annual Data Mining and Knowledge Discov-
ery competition datasets

cross-industry

National Govern-
ment Statistical
Web Sites
Open Data Census
US Census Bureau

Assesses the state of open data around the
world

Government and
Public sector

OpenData from
Socrata

Freely available datasets 10,000 Business, Education,
Government, Social
and Entertainment

Open Source
Sports

Many sports databases, including Baseball,
Football, Basketball and Hockey

Entertainment

UCI A collection of databases, domain theories,
and data generators that are used by the ML
community for the empirical analysis of learn-
ing algorithms

199 Physical Sciences,
Computer Science &
Engineering, Social
Sciences, Business
and Game

Yahoo Sandbox
datasets

Language, graph, ratings, advertising and
marketing, competition, computing systems
and image datasets

Cross-industry

9
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2.1.2 Synthetic Datasets

MFs are used as predictors in an MLL system. Typically, many MFs are extracted from a dataset,

thereby leading to a high-dimensional sparsely populated feature space which has always been a

challenge for learning algorithms. Hence, to overcome this problem sufficient number of datasets

is required which may not be possible only from the repositories of the real-world datasets as they

can be hard to obtain. So, artificially generated datasets might help in solving this issue. Rendell

and Cho (1990) work on systematic artificial data generation is considered as one of the initial

efforts in this regard.

Bensusan and Giraud-Carrier (2000) used 320 artificially generated boolean datasets with 5 to

12 features in each one. These artificial datasets were benchmarked on 16 UCI and DaimlerChrysler

real-world datasets. Similarly Pfahringer et al. (2000) generated 222 datasets, each containing

20 numeric and nominal features having 1K to 10K instances classified between 2 to 5 classes.

Additionally 18 real-world UCI problems were used to evaluate the proposed approach.

Soares (2009) proposed a method to generate a large number of datasets by transforming the

existing datasets, known as datasetoids. An artificial dataset was generated against each symbolic

attribute of a given dataset, obtained by switching the selected attribute with the target variable.

This method was used on 64 datasets gathered from the UCI repository and it generated a total

of 983 datasetoids. At the end potential anomalies related to the artificial datasets were also

discussed as well as their proposed solutions were presented. Those identified anomalies were: 1)

the new target variable having missing values, 2) the target variable being very skewed, and/or

3) the corresponding target variable being completely unrelated to the remaining features. One

very simple solution proposed for these problems was to simply discard the datasetoids which

showed any of the above mentioned properties. This method produced promising results, therefore

enabling the generation of new datasets which could solve the scarce datasets problems.

Wang et al. (2009) used both synthetic and real-world Time Series (TS) from diverse domains

for MLL based forecasting method selection study. The details of real-world datasets are given

in Table 2.1 while remaining synthetic datasets were generated using statistical simulation to

facilitate the detailed analysis of forecasting association with data characteristics. A total of 264

artificial datasets were generated to exhibit a number of different characteristics including, for

instance, perfect and strong trend, perfect seasonalityor certain type and level of noise. The data

was transformed into a sample of 1000 instances for each of the original TSs while it was unchanged

for the number of data-points smaller than 1000.

Soares et al. (2009) generated 160 artificial datasets to obtain a wide range of cluster structures.

There were two methods used to generate datasets: 1) a standard cluster model using Gaussian

multi-variate normal distributions, and 2) Ellipsoid cluster generator. There were three parameters

selected for both techniques including: i) the number of clusters which were the same for both

cases (2, 4, 8, 16), ii) dimensions (2, 20 for Gaussian, and 50, 100 for Ellipsoid), and iii) the size

of each cluster for both techniques were the same (uniformity in [10, 100] for 2 and 4 clusters
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case and [5, 50] for 8 and 16 clusters case). For each of the 8 combinations of cluster number and

dimension, 10 different instances were generated, giving 80 datasets in each method.

Duch et al. (2011) used two artificially generated datasets out of a total of seven whereas

the remaining five were the real-world problems. One artificially generated dataset had binary

features, named as Parity, whereas the other one with nominal features was known as Monks.

These support features are computed using Quality of Projected Clusters (QPC) projection.

Reif et al. (2012a) presented a novel data generator approach for numerical features and classifi-

cation datasets that could be used as input dataset for MLL which represented an entirely different

approach from Soares (2009). The proposed system was able to generate datasets using genetic

programming with customized parameters. In the proposed setting MLL could be supported in

two different ways: 1) the MFs space could be filled in a more controlled way and the discovered

”empty areas” could be populated rather than generating random datasets, and 2) thoroughly

investigating MFs based on their descriptive power which could be useful for certain MLL prob-

lems and generating datasets with MFs allowed more controlled experiments that might lead to a

significant utilization of particular MFs. Since the dataset was generating multiple MFs therefore

this task was treated as multi-objective optimization problem. The proposed system was able to

incorporate a variable set of arbitrary MFs. The user was able to build a custom set of MFs simply

by providing the functions that compute the MFs.

2.1.3 Datasets from Published Research

Another source of EoD are the published ML studies. As ML has been one of the most active

research areas in the last few decades where several experimentations have been conducted, these

experiments become a very useful way of gathering EoD representing various domains. The addi-

tional benefit that usually comes with most of the datasets used in existing ML benchmarking and

experimental studies is the relative ranking and predictive performance data for the evaluated ML

algorithms. It is of particular interest as the ML algorithms performance data is used and needed

as as a target variable in the context of an MLL system. It is very time, memory and processor

consuming task to compute performance measures for massive amount of datasets and numerous

configurations of learning algorithms.

Usually, presumably due to space limitations on publications, researches publish only the final

results with minimal details. However, in the context of MLL, relying on such minimal informa-

tion leads to several problems, for example, in most of the instances researches only report the

best algorithm, usually report limited number and detail of experimentations, mostly skip detailed

configurations of the algorithms, etc. Vanschoren et al. (2014) introduced a novel platform for

ML research known as OpenML. ML researchers can share datasets, algorithms, their configura-

tions, and experiment setups on this platform which other researchers can use to compare results.

OpenML framework is one of the possible solutions for most of the mentioned concerns which

resolves two key challenges of MLL systems: i) gathering a large number of datasets from different

domains, and ii) performances of the tested ML algorithms on these datasets.

11
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2.1.4 Discussion and Summary

An ML system relies on a good training dataset to build a reliable and well performing predictive

model. Similarly, at the Meta-level, the MK dataset is used as a training-set of MLL, and the

quality of this MK dataset is dependent on sufficient number and quality of EoD from different

domains. These EoD are used to generate MFs which act as predictors and the estimated predictive

performance evaluated ML algorithms for these EoD are used as the target variable in the MK

dataset. However gathering sufficient number of real-world datasets is quite difficult. The real-

world datasets which are used in various studies for experimentations are listed in Table 2.1. Most

of the studies gathered datasets from the UCI with different filtering options and the remaining

few studies gathered datasets from different data-mining competitions. In most cases the number

of EoD that are used to build MK has been very low. However, as identified and shown in Table 2.2

there are various sources from which a relatively large (and quickly growing) number of real-world

datasets representing different domains could be beneficially used in the future though they have

not been used so far.

Some MLL researches resolved the problem of the number and quality of available datasets

by building their MK datasets using artificially generated EoD. They have adopted two different

approaches to generate these synthetic datasets: 1) by transforming real-world datasets; and 2) by

utilizing statistical and genetic programming approaches. Bensusan and Giraud-Carrier (2000),

Pfahringer et al. (2000), Soares (2009) and Wang et al. (2009) proposed different feature trans-

formation approaches to generate different combinations of datasets from the limited number of

real-world datasets. The statistical and genetic programming approaches were proposed by Soares

et al. (2009) and Duch et al. (2011) for MLL systems. In some of the approaches statistical func-

tions with a threshold (or cut-off) values are used to generate data while others used optimization

techniques. Reif et al. (2012a) proposed an intelligent technique which does not generate random

data, but fill the MFs in a more controlled way by discovering and populating the empty areas

within the real-world datasets.

Combining all the proposed approaches iteratively could offer a potential solution to the dataset

scarcity; i.e., initially gathering the existing available real-world problems, then transforming those

datasets by generating several others and finally applying various other techniques to generate

artificial datasets independently (see Figure 2.2). Although this solution could be useful if the

purpose would be only gathering a large number of EoD, in the context of the MLL research the

predictive performance data for numerous learning algorithms and their configurations is needed

and not normally readily available. Considering all three necessary components of an MLL system,

gathering datasets from published experimental evaluations and benchmarking of ML algorithms

would seem to be more attractive, however, there are a lot of challenges with such data related to

reporting only the best learning algorithms, publishing limited information of experimentations,

availability of datasets used in the research, lack of detailed configurations of evaluated learning

algorithms, etc. OpenML platform has attempted to address most of these issues focusing on the

consistency and completeness of the gathered information but as it is in a preliminary stage of
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development it currently lacks sufficiently large number of problems from different domains and

sufficiently robust and comprehensive number of machine learning algorithms tested for each of

the datasets to be very useful in its current form.

Dataset (DS) N

Dataset (DS) 1

Real-world 

Datasets

Transformed Datasets

Transformations of real-
world datasets

Artificial Datasets

Generating Artificial 
Datasets

Figure 2.2: Phase-wise collection of Examples of Datasets
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2.2 Meta-features Generation and Selection

One of the primary applications of Meta-level Learning (MLL) is to recommend the best learning

algorithm or to rank various ML algorithms for a new problem without the need for executing

and evaluating these learning algorithms on the problem at hand. The role of such systems is to

identify previously solved similar problems, and with the assumption that the previously found

best algorithms will also work best on the new problem, make appropriate recommendations.

As directly comparing large and complex datasets is normally infeasible, the similarity between

different problems/datasets is carried out using a number of so called Meta-features (MFs) offering

a simplified representation of the problems/datasets. There are three most commonly used MF

generation approaches which allow to induce a mapping between the characteristics of a problem

and the best performing learning algorithms for the problem. These approaches are discussed in

the following sections.

2.2.1 Descriptive, Statistical and Information-Theoretic Approach

The Descriptive, Statistical and Information-Theoretic (DSIT) approach is the simplest and the

most commonly used MF generation approach that extracts a number of DSIT based MF values

directly from a dataset representing an ML problem. The DSIT based MFs and the related MLL

approaches primarily based on such MFs are reviewed below.

Rendell et al. (1987) proposed Variable-bias Management System (VBMS) that was one of the

earliest efforts towards data characterization. Only two descriptive MFs, namely: the number of

training instances and the number of features, were used to select the best among three symbolic

learning algorithms. Later Rendell and Cho (1990) enhanced the existing system by adding useful

MFs of complexity based on shape, size and structure. Statistical and Logical learning (StatLog)

project by King et al. (1995) further extended VBMS MFs by considering a larger number of

dataset characteristics. A problem was described in the context of its descriptive and statistical

properties. Several characteristics of a problem spanning from simple (descriptive) to more complex

(statistical) ones were generated and later used by various studies. These characteristics were used

to investigate why certain algorithms perform better on a particular problem as well as to produce

thorough empirical analysis of the learning algorithms.

Sohn (1999) initially used most of the datasets and MFs that were used in StatLog project

which were later on enhanced with information-theoretic MFs. Furthermore, three new descriptive

features were added by transforming the existing MFs, for example in the form of ratios. These

MFs were used to rank several classification algorithms with considerably better performance as

compared to the previous studies. It was also claimed that the classification error and execution-

time are important response variables to choose a suitable classification algorithm for a problem.

In the same year Lindner and Studer (1999) proposed an extensive list of DSIT based MFs

of a problem under the name of Dataset Characterization Tool (DCT). The authors distin-

guished three categories of dataset characteristics, namely simple, statistical and information-

theory based measures. The descriptive MFs have been used to extract general characteristics
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of the dataset, whereas statistical characteristics were mainly extracted from numeric attributes,

while information-theoretic based measures from nominal attributes. A Case-based Reasoning

(CBR) approach to select the most suitable algorithm for a given problem was also proposed.

Reif et al. (2012b) presented a novel approach of generating informative MFs by simply av-

eraging over all attributes of the source datasets. They proposed a two-fold approach. In the

first fold DSIT based MFs are generated using the previously introduced traditional approach.

The second fold is used to describe the differences over datasets that are not accessible using the

typically used mean of MFs that have been computed in the first fold. This approach preserves

more information of such MFs while producing a feature vector with a fixed size. An additional

level of MFs selection is proposed to automatically select the most useful MFs out of the initially

generated ones. All MFs that are used in the above studies are shown in Figure 2.3.

2.2.2 Landmarking Approach

Another technique of MF generation is Landmarking which characterizes a dataset using the

performance of a set of simple learners. Its main goal is to identify areas in the input space where

each of the simple learners can be regarded as an expert (Vilalta and Drissi, 2002a).

The basic idea behind Landmarking is to use the estimated performance of a learning algorithm

on a given task for discovering additional information about its nature. A landmark learner or

landmarker is defined as the learning mechanism whose performance is used to describe a problem

(Bensusan and Giraud-Carrier, 2000). Landmarkers posses a key property that their execution

time is always shorter than the Base-learner’s time, otherwise this approach would bring no benefit.

In the remaining parts of this section, various studies dealing with Landmarking approaches are

discussed in detail.

One of the earliest studies on Landmarking was conducted by (Bensusan and Giraud-Carrier,

2000). This approach is claimed to be simpler, more intuitive and effective than the DSIT measures.

A set of 7 landmarkers were trained on 10 different sets of equal size. Each dataset was then

described by a vector of MFs (see Landmarkers branch of Figure 2.3), which are the error rates of

the 7 landmarkers, and labelled by the target learners (see Table 2.3) which produce the highest

accuracy. Several experimentations have been performed to compare landmarking approach with

DSIT. In the first experiment Landmarking was compared with 6 information-theoretic DCT

features of Lindner and Studer (1999) (see information-theoretic MFs section of Figure 2.3). In

most of the cases of this experiment landmarking outperformed the DSIT based approach. In

another experiment the ability of landmarking to describe a problem and discriminate between

two areas of expertise are highlighted. In most of the cases C5.0 Adaptive Boosting (C5.0 boost)

(Quinlan, 1998) landmarker performed best. The last experiment benchmarked 16 real-world

datasets from the UCI Machine Learning Repository (UCI) (Bache and Lichman, 2013) and the

DaimlerChrysler where again the landmarking approach resulted in the best overall performance.

Pfahringer et al. (2000) also evaluated a landmarking approach while comparing it with the

DSIT MF generation approach - DCT. They performed three types of experiments, namely: 1)
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Artificial rule list and sets generation; 2) Selecting learning models; and 3) Comparing the land-

marking with the information-theoretic approach. These experiments were almost the same as

performed by Bensusan and Giraud-Carrier (2000), and the target learners (see Table 2.3) were

the same as used in Meta-Learning Assistant (METAL) project. In the first experiment the set of

landmarkers consisted of a Linear Discriminant Analysis (LDA), Naive Bayes and C5.0 Decision

Tree (C5.0 tree) learners, while the base-learners performance relative to each other was predicted

using C5.0 boost, LDA, and Rule Learner (Ripper). In addition to 3 landmarkers, 5 descriptive

MFs (shown in the descriptive approach in Figure 2.3) have also been extracted from 216 datasets.

The Ripper was found to be the top performer in this experimentation. For selecting the best

learning model experiment, authors tried to investigate the capability of landmarking in deciding

whether a learner involving multiple learning algorithms performs better than the other candidate

algorithms. Here only C4.5 Decision Tree algorithm (C4.5) was used as a Meta-learner trained

with 222 artificial boolean datasets and tested with 18 UCI problems (Bache and Lichman, 2013).

Even though the landmarking accuracy was higher it did not have a significant effect on the overall

performance of a system whose ultimate goal is to accurately select the best learning model. In the

last experiment, the landmarking approach was compared with the DSIT and also the combination

of both approaches. 320 artificially generated binary datasets were produced where the combined

approach performed best for all 10 Meta-learners followed by the landmarking with significant

difference as compared to DCT approach.

Soares et al. (2001) sample-based landmarkers used estimates of the performance of algorithms

on a small sample of the data and then had been used as the predictors of the performance of those

algorithms on the entire dataset. Additionally, a relative landmarker addressed the inability of

the earlier landmarker to assess relative performance of algorithms. This sampling-based relative

landmarking approach was later compared with the DSIT DCT MFs (Lindner and Studer, 1999)

as done by most of the landmarking studies. The ten algorithms, listed in Table 2.3, wer used on

45 datasets, with more than 1000 instances, mostly gathered from the UCI (Bache and Lichman,

2013) and the DaimlerChrysler repositories. These datasets have been ranked by the Nearest-

Neighbour using Adjusted Ratio of Ratios (ARR) measure. To observe the performance of the

ranking method, the authors varied the value of k from 1 to 25. In comparison with other studies

reported in the literature, the sample-based relative landmarking approach showed improvements

in the algorithm ranking task as compared with the traditional DCT measures.

Kopf and Iglezakis (2002) proposed a new approach for assessing the quality of case bases

constructed using landmarking and DCT based MFs. The meta-learner was based on case-base

reasoning approach using the quality assessed cases. Tasks were described by their similarity, con-

sistency,incoherency, uniqueness and minimality. A brief overview of necessary requirements for

the implementation of the case-based properties has also been provided in their study. A compre-

hensive experimentation was performed to compare variants of DCT DSIT approach, landmarking

and their combinations. MFs were constructed for the experiments from the UCI datasets (see

Table 2.1) which contained up to 25% missing values. Error rates for ten different classification

algorithms from the METAL project were determined for different subsets of data characteristics
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mentioned in Table 2.3 and restricted to three Base-learners that are shown in Figure 2.3. The em-

pirical results show the proposed approach in combination with DSIT, and landmarking approaches

as a promising one though not significantly different from previous meta-learning studies.

Abdelmessih et al. (2010) presented an overview of a landmarking operator and its evaluation.

This landmarking operator was developed as part of an open-source RapidMiner data-mining tool.

As mentioned repeatedly in the above studies, landmarkers selection is a critical process and the

two basic criteria to select a landmarker were suggested in this study to be: 1) a landmarker has

to be simple and require minimum execution (processing) time; and 2) it has to be simpler than

the target learner(s). Following these conditions, RapidMiner provided the landmarkers shown in

Figure 2.3 and the target algorithms, for which the accuracy was predicted (see Table 2.3). For the

evaluation of these landmarkers, 90 datasets from the UCI (Bache and Lichman, 2013) and other

sources were collected with at least 100 samples in each. By following the existing studies, the

landmarking operator has been compared with the DSIT MFs of StatLog (King et al., 1995) and

DCT (Lindner and Studer, 1999), where landmarking resulted in 5.1-8.3% overall performance

improvement in all cases.

Table 2.3: Target Learners used in various studies
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C5.0 tree 4 4

C5.0 Rule Induction (C5.0 rules) 4

C5.0 boost 4

Naive Bayes classifier (NB) 4 4

Instance-based Learning (IBL) 4

Multi-layer Perceptron (MLP) 4 4

Radial-basis Function (RBF) 4

LDA 4

Ripper 4

Linear Discriminant Trees (Ltree) 4

k-Nearest Neighbour (k-NN) 4

Random Forests (RF) 4

One Rule Learner (OneR) 4

Support Vector Machines (SVM) 4

Total Target Learners 10 7
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2.2.3 Model-based Approach

Model-based MF generation is another effort towards task characterization in MLL domain. In this

approach the dataset is represented in a data structure that can incorporate the complexity and

performance of the induced hypothesis. Later the representation can serve as a basis to explain the

reasons behind the performance of the learning algorithm Giraud-Carrier (2008). Several research

works utilizing the Model-based approach are discussed below.

Bensusan et al. (2000) study was an initial effort towards model-based approach. The authors

proposed to capture the information directly from the induced decision trees for characterizing

the learning complexity. Figure 2.3 lists the 10 descriptors computed from induced decision trees.

Using these MFs, a task representation and algorithm to store and compare two different tree struc-

tures has been explained in detail with examples. The authors also elaborated on the motivation

of using the induced decision trees directly rather than the predefined properties used in decision

tree based MFs that made explicit properties implicit in the tree structure. Finally, higher-order

MLL approach was generalized by proposing data structures to characterize other algorithms. A

tree like structure was used for Decision Trees (DT) in this work, sets were proposed for rule sets

and graphs for Neural Networks (NNs).

Peng et al. (2002) effort was towards improving the dataset characterization by capturing

structural shape and size of the decision tree induced from the dataset. For that purpose 15 features

were proposed, known as DecT and shown in Figure 2.3, which do not overlap with Bensusan et al.

(2000). These measures were used to rank 10 learning algorithms in various experiments. In the

first experiment DCT (Lindner and Studer, 1999) DSIT MFs and 5 landmarkers (Worst Nodes

Learner, Average Nodes Learner, NB, and LDA) were compared with DecT. The results proved the

performance enhancement of the proposed approach. In another experiment DecT measures were

compared with the same DCT measures and landmarkers to rank the learning algorithms based on

the accuracy and time where again DecT performed better. The last experiment was performed

to select MFs by reducing the number of features to 25, 15 and 8 respectively. The k-Nearest

Neighbour algorithm, with various values of k between 1 to 40, was used to select k datasets for

ranking the performance of learning algorithms. The results suggested that the proposed feature

selection did not significantly influence the performance of either DecT or even DCT. Overall,

DecT outperformed the other approaches.

Neuro-cognitive inspired mechanism was proposed by Duch et al. (2011) to analyse learning

based transformations that generate useful hidden features for MLL. The types of transformations

include restricted random projections, optimization using projection pursuit methods, similarity

and general kernel-based features, conditionally defined features, and features derived from partial

successes of various learning algorithms. The binary features were extracted from DT and rule-

based algorithms, continuous features were discovered by projection pursuit, linear SVM and

simple projections. NB was used to calculate posterior probabilities along these lines while k-

NN and kernel methods were used to find similarity-based features. The proposed approach also
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evaluated and illustrated Multi-dimensional Scaling (MDS) mappings and Principal Component

Analysis (PCA), Independent Component Analysis (ICA), Quality of Projected Clusters (QPC),

SVM projections in the original, one-, and two-dimensional space. Various real-world and synthetic

datasets (details can be found in Table 2.1) were used for visualization and to analyse the kind

of structures they create. The classification accuracies for each dataset were predicted using five

classifiers including NB, k-NN, Separability Split Value Tree (SSV), Linear and Gaussian kernel

SVM in the original, one- and two-dimensional spaces. The results showed an overall significant

improvement almost in all five algorithms as compared to the existing approach also proposed by

the authors.

2.2.4 Discussion and Summary

There are three common MF generation approaches proposed in the reviewed publications for

MLL: 1) DSIT, 2) Landmarking, and 3) Model-based. The DSIT MFs approach was introduced at

the early stage of MLL development where Rendell et al. (1987) proposed two descriptive features

for VBMS. Later on Rendell and Cho (1990) added more descriptive features to the original list.

The statistical MFs were introduced by King et al. (1995), and Sohn (1999) proposed information-

theoretic features combined with some existing descriptives to represent a problem at a Meta-level.

Finally, Lindner and Studer (1999) proposed an extensive list of DSIT MFs, known as DCT. The

DCT measures became a benchmarked approach to represent a problem using the DSIT approach.

These measures were later used in several studies for experimentation, e.g. Berrer et al. (2000),

Giraud-Carrier (2005), etc., and compared with other MF approaches.

Landmarking and Model-based approaches are more recent ones and have been outperforming

the DSIT in almost all the comparative studies. The earliest study on landmarking was con-

ducted by Bensusan and Giraud-Carrier (2000) where the approach was claimed to be simpler,

more intuitive and efficient than DSIT. The proposed approach was compared with and outper-

formed information-theoretic measures of DCT with a significant difference. Though one common

deficiency that is observed in several MLL studies is the use of smaller number of Examples of

Datasets (EoD) for experimentations which raised a question on the significance of the reported

results. Pfahringer et al. (2000) used a different set of landmarkers but the same target learners

as Bensusan and Giraud-Carrier (2000). This work can be considered to offer improvements to

the previous one in two aspects: 1) huge number of synthetic datasets were used; and 2) some

descriptive MFs were combined with the landmarkers. This approach was also compared with

DCT features where landmarking showed significant improvement in the results. Similarly Soares

et al. (2001), Kopf and Iglezakis (2002) and Abdelmessih et al. (2010) used different sets of target

learners, landmarkers, number of dataset examples, and compared their approaches with a differ-

ent set of DSIT measures. All of them reported improved results of the landmarking approach

over the DSIT.

7Tabular representation of the visualization can be seen in Appendix A)
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Figure 2.3: Meta-features used in various studies7

Bensusan et al. (2000) approach to characterizing the learning complexity by directly inducing

MFs from the model is the earliest work towards model-based approach. In this work 10 descriptors

(MFs) were computed from the induced decision trees which can be seen in Figure 2.3. Peng

et al. (2002) effort was towards improving this characterization by focusing on structural shape

and size of the decision tree induced from the datasets. The other dimension of this work was to

compare the proposed model-based approach with DCT, DSIT and landmarking measures. Various

experimentations were performed with variations of MFs and landmarkers where the model-based
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approach consistently performed better. A problem with these Meta-level problem representations

is that they can not easily accommodate non-stationary environments. Most of the effort has been

dedicated to the stationary environment, even though there are some recent studies addressing

MFs for a dynamically changing environment, i.e. Rossi et al. (2014), but these are not mature

enough to represent the entire domain. Although Rossi et al. (2014) used traditional MF that are

used to characterize stationary data, only those MFs were computed that characterize individual

variables. Moreover, there are separate features computed for training and selection windows.

Their reliability is highly dependant on the number and quality of examples, thus the larger the

number of examples in a window, the potentially higher the reliability of the problem representation

at the Meta-level. However, in a rapidly changing environment there is often a very limited number

of examples between consecutive concept changes. Hence there is an unaddressed need for novel

MFs and approaches which can cope with small data samples.

From the above studies it can be observed that combining significant MFs from different feature

generation approaches might be useful as shown in Figure 2.4.

Examples of Datasets)

Descriptive, Statistical and 

Information Theoretic Landmarking Model-based

Meta-model

Pre-processing

Meta-feature approaches 
Combination

Figure 2.4: Combining Significant Meta-features from various approaches
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2.3 Base-level Learning

In the context of Meta-level Learning (MLL), Base-level Learning (BLL) algorithms are used to

build predictive models on input datasets and for MLL purposes are used to compute a set of per-

formance measures, i.e, accuracy, execution-time, etc. These performance measures are combined

together with their respective Meta-features (MFs) in the Meta-knowledge (MK) database. A

Meta-learner uses these performances as a target variable. The remaining sections discuss several

studies concerned with the roles and characteristics of individual and combined BLL algorithms

utilised within the MLL context.

Brazdil et al. (2003) proposed an MLL based approach to rank candidate algorithms where

k-Nearest Neighbour (k-NN) was used to identify the datasets that were most similar to the

query dataset. The pool of candidate algorithms contained an ensemble method, namely C5.0

Adaptive Boosting (C5.0 boost), which performed well for 19 out of 53 datasets in the presence of

9 other algorithms. The performance of ensemble methods were ranked with individual learning

algorithms. In general, several researches used C5.0 boost ensemble method with other individual

algorithms and found it to be the top performing method.

The applicability of MLL on a Time-series (TS) task was demonstrated by Lemke and Gabrys

(2010a). Several individual and combination of forecasting algorithms were used to investigate

which model works best in which situation. In the experiments 5 forecasting combination methods

were used including 1) simple average where all available forecasts are averaged, 2) simple average

with trimming which do not take the worst performing 20% models into account, 3) variance-based

method where weights for a linear combination of forecasts are determined using past forecasting

performance, 4) out-performance method which determines weights based on the number of times

a method performed best in the past, and 5) variance-based pooling which first groups past forecast

performance into 2-3 clusters and then takes their average to obtain the final forecast. The results

of these experiments showed that the forecast combination methods perform better than individual

models which are listed in Table 2.4. Further discussion of this work can be found in Chapter 2.4.4.

Menahem et al. (2011) proposed a new MLL based ensemble scheme for one-class problems

know as TUPSO. The TUPSO combined one-class Base-classifiers via a Meta-classifier to pro-

duce a single prediction. The BLL component generates predictions of classifiers which are used

to extract aggregated MFs as well as one-class accuracy and f-score estimates. The one-class

performance evaluator computed each Base-classifier on only positively labelled instances using

4 algorithms including: 1) global density estimation, 2) peer group analysis, 3) Support Vector

Machines (SVM), and 4) attribute distribution function approximation (ADIFA) on 53 distinct

datasets (details can be seen in Table 2.1). There are 15 aggregated MFs computed from the

predictions of Base-classifiers that are clustered into four groups: 1) summation-based (votes, pre-

dictions, weighted predictions, power and log of weighted predictions), 2) variance-based (votes,

predictions, and weighted), 3) histogram-based, and 4) representation-length. In an empirical eval-

uation an ensemble method, Fixed-rule, produced worse classification accuracy when compared to

MLL based ensembles - TUPSO.
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Table 2.4: Base-level learning strategies used in different studies

Research Work
Sampling
Strategy

Base-learners
Performance
Measure

King et al. (1995) 9-fold Cross-
Validation (CV)
for datasets
with less than
2500 instances

k-NN, Radial-basis Function (RBF), Den-
sity Estimation, Classification and Regres-
sion Trees (CART), Inductive CART (IND-
CART), Back-propagation, NewID, C4.5 De-
cision Tree algorithm (C4.5), CN2 Induc-
tion Algorithm (CN2), Quadratic Classifier
(Quadra), Cal5, AC2, Smooth Multiple Addi-
tive Regression Technique (SMART), Logis-
tic Regression, Fisher’s Linear Discriminant
(FLD), ITrule, Causal Structure for Induc-
tive Learning (CASTLE), Naive Bayes classi-
fier (NB)

Misclassification
error, Run-
time speed

Bensusan and
Giraud-Carrier
(2000)

stratified 10-fold
CV

NB, Multi-layer Perceptron (MLP), RBF,
C5.0 Decision Tree (C5.0 tree), C5.0 Rule In-
duction (C5.0 rules), C5.0 boost, Instance-
based Learning (IBL), Linear Discriminant
Analysis (LDA), Rule Learner (Ripper), Lin-
ear Discriminant Trees (Ltree)

Pfahringer et al.
(2000)

10-fold CV NB, MLP, RBF, C5.0 tree, C5.0 rules, C5.0
boost, IBL, LDA, Ripper, Ltree

Mean Absolute
Error (MAE)

Soares et al. (2001) NB, MLP, RBF, C5.0 tree, C5.0 rules, C5.0
boost, IBL, LDA, Ripper, Ltree

Peng et al. (2002) 10-fold CV C5.0 tree, C5.0 rules, C5.0 boost, Ltree, LDA,
NB, IBL, MLP, RBF, Ripper

Mean Squared
Error (MSE),
Run-time
speed

Todorovski et al.
(2002)

10-fold CV C5.0 tree, C5.0 rules, C5.0 boost, Ltree, Rip-
per, NB, k-NN 8, LDA

MSE and
Spearman’s
Rank Corre-
lation Coeffi-
cient (SRCC)

Kopf and Iglezakis
(2002)

10-fold CV NB, MLP, RBF, C5.0 tree, C5.0 rules, C5.0
boost, IBL, LDA, Ripper, Ltree

Brazdil et al.
(2003)

10-fold CV C5.0 tree, C5.0 rules, C5.0 boost, Ltree, IBL,
Ripper, LDA, NB, MLP, RBF

Adjusted Ra-
tio of Ratios
(ARR)

Prudencio and Lu-
dermir (2004)

I: Train and test
and II: train,
test and validate

I: J.48 and II: MLP MAE

Giraud-Carrier
(2005)

10-fold CV NB, MLP, RBF, C5.0 tree, C5.0 rules, C5.0
boost, IBL, LDA, Ripper, Ltree

Guerra et al.
(2008)

10-fold CV MLP8 Normalized
MSE

Wang et al. (2009) 80% Training
and 20% testing
partition

Exponential Smoothing (ES), Auto-regressive
Integrated Moving Average (ARIMA), Ran-
dom Walk (RW), Neural Network (NN)

Kadlec and Gabrys
(2009a)

Leave-one-out
CV

Multiple Linear Regression (MLR), MLP,
RBF, Lazy-learning

MSE and
SRCC

8k=1
8hidden nodes = 1, 2, 3, 8, 16, 32
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Lemke and Gabrys
(2010a)

10-fold CV ARIMA, Structural model, Iterated (single
exponential smoothing, Taylor smoothing,
theta, NN, elman NN), Direct (regression,
theta Moving Average (MA), single exponen-
tial smoothing, Taylor smoothing, NN)

Symmetric
Mean Ab-
solute Per-
centage Error
(SMAPE)

Abdelmessih et al.
(2010)

10-fold CV NB, k-NN, MLP, C5.0 tree, Random Forests
(RF), One Rule Learner (OneR), SVM

Root Mean
Squared Error
(RMSE)

Rossi et al. (2012) Training and
testing

RF, SVM, CART, Projection Pursuit Regres-
sion (PPR)

Normalized
MSE

Rossi et al. (2014) Training and
testing

RF, SVM, CART, PPR, Multivariate Adap-
tive Regression Splines (MARS)

Normalized
MSE

2.3.1 Discussion and Summary

The MK database usually consists of MFs and performance measures (target) of different learning

algorithms which are predicted accuracies for Examples of Datasets (EoD). These predictive values

are computed, in the context of MLL, through BLL. The predictive accuracies of learning algo-

rithms are used a basis for identifying the best algorithm from the pool of methods, their ranking,

and/or combination. Another level of complexity is introduced by the different parametrizations

of the algorithms which were overlooked by several studies where only default configurations were

considered. Furthermore, most of them selected only the best algorithm from the pool to minimize

the representation complexity of MK dataset, therefore very few of them stored information about

the ranking and relative performance of evalutaed BLLs. Table 2.4 shows different learning strate-

gies, Base-learners and performance measures that various MLL studies used at the Base-level.

It can be observed that the 10-fold cross validation strategy, MAE accuracy measure and few

learning algorithms have become a norm to use at the Base-level. The same Base-level learning

strategies are used in some MLL studies for TS with different ARIMA and exponential smoothing

algorithms. Another common deficiency that can be observed from various studies is related to

the granularity of information that is being stored in MK database.

Table 2.5 summarises and groups the reviewed studies according to the four dominant perfor-

mance measures which were used as the target variable for an MLL system.

Table 2.5: Different Performance Measures that are used in MLL studies

Performance Mea-
sure(s)

Description Research Work

Best learning algo-
rithm

The performance measure only contains of
the classification accuracy of best learning
algorithm for each single dataset

Utgoff (1984); Graner et al.
(1994); King et al. (1995);
Bensusan et al. (2000)

Ranking of learning al-
gorithms

To predict a ranked list of learning algo-
rithms in a pool which are sorted based on
a performance measure, e.g. classification
accuracy, run-time, etc.

King et al. (1995); Brazdil
et al. (2003); Vilalta et al.
(2004)
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Quantitative Predic-
tion Reif (2012)

To directly predict the performance of the
target learning algorithm in an appropri-
ate unit, i.e., by training separate regres-
sion model for each target algorithm

Gama and Brazdil (1995);
Sohn (1999); Kopf and Igleza-
kis (2002); Bensusan and
Kalousis (2001); Reif (2012)

Predicting Parameters The MLL target variable could be one pa-
rameter value or a set of values

Soares et al. (2004); Soares
and Brazdil (2006); Kadlec
and Gabrys (2009a); Lemke
and Gabrys (2010a)
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2.4 Meta-learning

The Meta-knowledge (MK) induced for the Meta-level Learning (MLL) purposes provides a means

for making informed decisions in relation to which algorithms are likely to perform best/well for

a given problem (Giraud-Carrier, 2008). This section presents the history of the most promising

decision-support systems for algorithm selection, followed by a review of the applicability of MLL

to the supervised and unsupervised learning algorithms.

2.4.1 Existing Systems

Based on the reviewed literature, Utgoff (1984) can be considered as the earliest effort towards

developing MLL systems where a system named Shift To A Better Bias (STABB) was proposed. It

was a demonstration that a learner’s bias could be adjusted dynamically. Later this work became

an initial point of reference and was enhanced in several studies. One of them was Variable-bias

Management System (VBMS) by Rendell et al. (1987), where a relatively simple MLL system was

proposed. VBMS selected the best among three symbolic learning algorithms as a function of only

two dataset characteristics, namely, the number of training instances and the number of features.

As mentioned in one of the previous sections, this was then further improved in Rendell and Cho

(1990).

Machine Learning Toolbox (MLT) project by Graner et al. (1994) was one of the initial attempts

to address the applications of MLL. MLT produced a toolbox consisting of 10 symbolic learning

algorithms for classification. The part of MLT project that provides assistance with the algorithm

selection is known as a Consultant. The Consultant was based on a stand-alone expert system

which maintained a knowledge-base that considered the experiences acquired from the evaluation

of learning algorithms. Considerable insight into many important Machine Learning (ML) issues

was gained which had been translated into rules that formed the basis of Consultant-2. Consultant-

2 was also an expert system for algorithm selection which gathered user inputs through a set of

questions about the data, the domain and user preferences. Based on the user response relevant

rules led to either additional questions or, eventually, a classification algorithm recommendation.

Although its knowledge base had been built through an expert-driven knowledge engineering rather

than via MLL it still stands out as the first automatic tool that systematically related application

domain and dataset characteristics to the most suitable classification algorithms. Additionally

Consultant-3 provided advice and help on the combination of learning algorithms. It is also

able to perform self-experimentation to determine the effectiveness of an algorithm on a learning

problem.

In Statistical and Logical learning (StatLog) project King et al. (1995) presented the results of

comprehensive experiments on classification algorithms. The project was an extension of VBMS

by considering a larger number of Meta-features (MFs), together with a broad class of candidate

models for algorithms selection. Its aim was to compare several symbolic learning algorithms on

twelve large real-world classification tasks. Some MLL algorithms were used for model selection

task where statistical measures, e.g., skewness, kurtosis and covariance, that produced higher

26



EXISTING RESEARCH Meta-learning

accuracy were reported. Additionally, a thorough empirical analysis of 16 classifiers on 12 large real-

world datasets and learning models using accuracy and execution time measures of performance

were produced. There is no single algorithm that performed best in the experimentation phase.

Symbolic algorithms resulted in the best performance for datasets with extreme distributions, i.e.,

where a distribution was far from normal (i.e., specifically with skew > 1 and kurtosis > 7), and the

worst in the scenarios where the data was evenly distributed. In contrast, the Nearest Neighbour

algorithm was found to be accurate for datasets containing evenly distributed in terms of scale

and importance of the features.

The Meta-Learning Assistant (METAL) project was developed to facilitate selection of the best

suited classification algorithm for a data-mining task (Berrer et al., 2000). It guides the user in two

ways: 1) in discovering new and relevant MFs; and 2) in a selection or ranking of classifiers using an

MLL process. The main deliverable of this project was the Data Mining Advisor (DMA), a Web-

based MLL system for the automatic selection of classification learning algorithms (Giraud-Carrier,

2005). The DMA returned a list of ten algorithms that were ranked according to how well they

met the stated goals in terms of accuracy and training time. It implemented ranking mechanisms

by exploiting the ratio of accuracy and training time. The choice of an algorithm ranking, rather

than selecting the best-in-class, was motivated by a desire to give as much information as possible

and as a consequence a number of algorithms could be subsequently executed on the dataset.

The Meta-learning Architecture (METALA), developed by Botia et al. (2001), was an agent-

based architecture for distributed Data Mining, supported by MLL. The system supported an

arbitrary number of algorithms and tasks, and automatically selected an algorithm that appeared

best from the pool of available algorithms. Like in the case of DMA, each task was characterized by

Descriptive, Statistical and Information-Theoretic (DSIT) features relevant to its usage, including

the type of input data it required, the type of model it induced, and how well it handled noise. It

had been designed to automatically carry out experiments with each learner and task, and induce

a Meta-model for an algorithm selection. As new tasks and learning algorithms were added to the

system, corresponding experiments were performed and the Meta-model was updated.

The Intelligent Discovery Assistant (IDA) provided a Knowledge Discovery (KD) ontology that

defined the existing techniques and their properties (Bernstein and Provost, 2001). It supported

three algorithmic steps of the KD process, including preprocessing, data modelling and post-

processing. The approach used in this system was the systematic enumeration of valid data-

mining processes so that potentially fruitful options were not overlooked, and effective ranking of

these valid processes based on user-defined preferences e.g., prediction accuracy, execution speed,

etc. IDA systematically searched for an operation whose pre-conditions have been met and whose

indicators were consistent with the user-defined preferences. Similarly, its post-conditions searched

for an operation and the process terminated once the goal had been reached. Once all valid

KD processes had been generated, a heuristic ranker was applied to return user-specified goals.

Bernstein et al. (2005) research had focused on extending the IDA approach by leveraging the

interaction between ontologies to extract deep knowledge and case-based reasoning for MLL. The
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system also used procedural information in the form of rules fired by an expert system. The case-

base was built around 53 features to describe cases and the ontology came from human experts.

Mierswa et al. (2006) developed a landmarking operator in RapidMiner as part of Pattern

Recognition Engineering (PaREn) project, which was an open source system for data mining. This

operator extracted landmarking features from a given dataset by applying seven fast computable

classifiers on it (shown in Figure 2.3).

Table 2.6: Existing Meta-learning Systems

Research
Work

Name Approach Contributions Limitations

Utgoff (1984) STABB Statistical Initial effort towards MLL Limited to altering only
one kind of learner’s bias
with fixed order of choices

Rendell et al.
(1987)

VBMS Descriptive Biases are dynamically lo-
cated and adjusted ac-
cording to problem char-
acteristics and prior expe-
rience

VBMS is a relatively
simple MLL system that
learns to select the best
among three symbolic
learning algorithms as
a function of only two
dataset characteristics

Rendell and
Cho (1990)

Empirical
Learning as
a Function
of Concept
Character

DSIT Complex MFs based on
shape, size and concen-
tration, and artificial data
generation is used

These complex MFs are
expensive to compute

Graner et al.
(1994)

MLT Rule-based An expert system for
algorithm selection by
gathering user input
through questions and
trigger relevant rules
while the knowledge-
base was built through
expert-driven knowledge
engineering

Its knowledge base was
built through expert-
driven knowledge en-
gineering rather than
MLL

King et al.
(1995)

StatLog Statistical A thorough empirical
analysis of learning al-
gorithms and models is
produced by comparing
several symbolic learning
algorithms on twelve
real-world classification
tasks

For a given dataset, al-
gorithms were character-
ized only as applicable or
non-applicable, i.e., they
do not provide a way to
rank the algorithms; fur-
thermore, that characteri-
zation was based on a sim-
ple comparison of accura-
cies regardless of any sta-
tistical significance test

Berrer et al.
(2000) and
Giraud-Carrier
(2005)

METAL -
DMA

DSIT and
Landmark-
ing

Discovers new and rele-
vant MFs and algorithm
ranking in terms of accu-
racy and execution time

The outcome of the pre-
diction model is only the
best classifier for the new
dataset. It does not sup-
port multi-operator work-
flows
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Botia et al.
(2001)

METALA Model-based Agent-based architecture
for distributed data-
mining, automatically
carry out experiments
and induce a Meta-model
for algorithm selection,
it provides architectural
mechanisms necessary to
scale the DMA

DMA’s MFs are used to
represent a problem, no
contribution to introduce
new features

Bernstein and
Provost (2001)

IDA Model-based Its goal is to rank pre-
processing, modelling and
post-processing steps that
are both valid and consis-
tent with the user-defined
preferences

The data should be al-
ready pre-processed con-
siderably by the user for
IDA to model it and evalu-
ating the resulting models

Bernstein et al.
(2005)

IDA - An
Ontology-
based Ap-
proach

Model-based Extending IDA approach
by leveraging the interac-
tion between ontology for
deep knowledge and Case-
Based Reasoning for MLL

The case-based is built on
fixed 53 features and the
system is still in the early
stages of implementation

Mierswa et al.
(2006)

PaREn Landmarking A Landmarking operator
for MLL developed in
RapidMiner

Very limited Examples
of Datasets (EoD) (from
UCI Machine Learning
Repository (UCI)) are
used to build MK

eLICO (2012) e-Laboratory
for Inter-
disciplinary
Collabora-
tive Research
(e-LICO)

Model-based An e-Laboratory for inter-
disciplinary collaborative
research in data-mining
and data-intensive science

Meta-learning component
is using RapidMiner’s
landmarking system
which is built on only 90
UCI datasets

e-LICO was a project for data-mining and data-intensive science (eLICO, 2012). This project

comprised of three layers: 1) e-Science, 2) Application, and 3) Data-mining. The e-Science and

data-mining layers formed a generic environment that was adapted to different scientific domains

by customizing the application layer. The architecture of e-LICO project was shown in Figure 2.5.

The e-Science layer was built on an open-source e-science infrastructure that supported content

creation through collaboration at multiple scales in dynamic virtual communities. The Taverna9,

open-source data-mining and predictive analysis solution (RapidAnalytics) and RapidMiner (Mier-

swa et al., 2006) components had been used to design and enact data-analysis workflows. The sys-

tem also provided a variety of general-purpose and application-specific services and a broad tool-kit

in designing and sharing such workflows with data-miners all over the word using myExperiment

portal. The IDA (Bernstein and Provost, 2001) exposed MLL capabilities by automatically creating

processes tailored for the specification of input data and a modelling task. The RapidMiner’s DMA

component helped to design processes by recommending operators that fitted well with the existing

operators in a process. The data-mining layer provided comprehensive multimedia data-mining

9A suite of tools used to design and execute scientific workflows and experimentation. http://www.taverna.org.uk
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Figure 2.5: e-LICO project architecture

tools that were augmented with preprocessing and learning algorithms developed specifically to

meet challenges of data-intensive, knowledge rich sciences. The knowledge-driven data-mining

assistant relied on a data-mining ontology and knowledge-base to propose ranked workflows for

a given task. The application layer initially came as an empty shell which had to be built by

the domain user from different components of the system. At the application layer, e-LICO was

showcased in two application domains: 1) a systems biology, and 2) a video recommendation task.

2.4.2 Regression and Classification Problems

This section covers and discusses different aspects of MLL that is used for regression and classifi-

cation tasks in different systems.

Todorovski et al. (2002) addressed a novel approach of predictive clustering trees to rank

classification algorithms using dataset properties. The approach was to illustrate ML algorithms

ranking where the relative performance of the algorithms had to be predicted from a given dataset’s

MFs. For that purpose the performance of eight Base-level algorithms, mentioned in Table 2.4,

has been measured on 65 classification tasks gathered from the UCI repository and the METAL

project. Furthermore, DSIT dataset characteristics from StatLog and Dataset Characterization

Tool (DCT) were combined to create an MK dataset consisting of 33 MFs. The properties of

individual attributes were aggregated using average, minimum or maximum functions. The land-

marking approach was used in this study with 7 simple and fast learners, shown in Figure 2.3, to

investigate the ranking task performance. The proposed dataset characterization approach with
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clustering tree outperformed with a significant margin the DCT and the histogram approach which

used a grained aggregation of DCT properties.

Vilalta and Drissi (2002a) presented four approaches to MLL consisting of learning from Base-

learners; 1) Stacked generalization, 2) Boosting, 3) Landmarking, and 4) Meta-decision trees.

The information collected from the performance of Base-level Learning (BLL) algorithms was

incorporated into the MLL process. Stacked generalization was considered a form of MLL where

each set of Base-learners were trained on a dataset and the original feature representation was then

extended with the predictions of the Base-learners. These predictions were received by successive

layers as inputs and the output was passed on to the next layer. A single (Meta-)learner at the

topmost layer computed the final prediction. Boosting was another approach that was considered

as a form of MLL. It generated a set of Base-learners by generating variants of the training set using

sampling with replacement technique under a weighted distribution. This distribution is modified

for every new variant by assigning more weights to the incorrectly classified examples using the

most recent hypothesis. Boosting took the predictions of each hypothesis over the original training

set to progressively improve the classification of those examples for which the last hypothesis failed.

In the last proposed approach, the Base-learners consisted of a combination of several inductive

models induced from Meta-decision trees. A decision tree was built where each internal node

represented a MF that predicted a class probability for a given example by a set of models whereas

the leaf nodes corresponded to a predictive model. Given a new example, the Meta-decision tree

selected the most suitable model to predict the target value. Todorovski and Dvzeroski, 2003 used

the same approach for MLL discussed in this section.

An instance-based learning algorithm, k-Nearest Neighbour (k-NN), was used to identify the

datasets that were most similar to the one at hand by Brazdil et al. (2003). The candidate Base-

learning algorithms were not ranked but selected based on a multi-criteria aggregated measure

that took accuracy and time into account. The proposed methodology had been evaluated using

various experiments and analysis at the Base- and Meta-level learning. The Meta-data used in

this study was obtained from METAL project which contained estimates of accuracy and time for

10 algorithms (listed in Table 2.4) on 53 datasets, using 10-fold Cross-Validation (CV). The k-NN

algorithm was used at the Meta-level to select the best candidate algorithm for a new dataset. For

two values of the number of neighbours, 1 and 5, the k-NN showed a significant improvement in

the results, particularly with k=1, as compared to the trial-and-error approach.

Two MLL approaches were investigated to select models for Time-series (TS) forecasting by

Prudencio and Ludermir (2004) in different case studies. In the first case study, a single BLL

algorithm was used to select models to forecast stationary TS. The base-level and meta-level

learning algorithms and configurations are given in Table 2.4 and Table 2.7 for both case studies

while details of datasets and MFs are listed in Table 2.1 and Figure 2.3 respectively. In another

case study a more recent and sophisticated approach - NOEMON (Kadlec and Gabrys, 2009a)

was used to rank three models of the M3-Competition. In both case studies the experiments

revealed significant results by taking into account the quality of algorithm selection and forecasting

algorithm performance aspects of the selected models.
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Active MLL method, in combination with Uncertainty Sampling and outlier detection, had

been proposed by Prudencio and Ludermir (2008) to support the selection of informative and

anomaly-free Meta-examples for MLL. Some experiments were performed in a case study where

Multi-layer Perceptron (MLP) was used to predict the accuracies of 50 regression problems at

the Base-level learning (the details can be seen in Table 2.1) and k-NN10 at the Meta-level. The

MFs used in the case study consisted of 10 simple and statistical measures which can be seen

in Figure 2.3. The results of experiments revealed that the proposed approach was significantly

better than the previous work on Active MLL. Also the Uncertainty Sampling method increased

the performance when the outliers were eliminated from the MK which affected 5% of the data.

Guerra et al. (2008) used Support Vector Machines (SVM), with different kernel functions, as

a Meta-regresor to predict the performance of a candidate algorithm, MLP, based on descriptive

and statistical features of the learning tasks. For experimentation purposes the input datasets and

MFs used in this study were the same as those in the Prudencio and Ludermir (2008) work. The

MLP was used as a base-learner to compute the normalized Mean Squared Error (MSE) which

was averaged over 10 training runs. Table 2.4 contains details of the learning strategy which were

used at the base-level. At the meta-level, SVM with different kernel functions (listed in Table 2.7)

were applied to predict the normalized MSE and Mean Absolute Correlation Coefficient (CORR)

between the predicted and the actual target values of the MLP. Later the performance of the Meta-

regressor (SVM) was compared with three different benchmarked regression algorithms which were

used in the previous work including Linear Regression, k-NN11 and M5 algorithm (Decision Trees

(DT) Quinlan (1992)). The experiments revealed that the SVM with Radial-basis Function (RBF)

kernel (particularly with γ=0.1) obtained better performance as a Meta-regressor when compared

to the mentioned benchmark algorithms.

Kadlec and Gabrys (2009a) proposed a generic architecture for the development of on-line

evolving predictive systems. The architecture defined an environment that links four classes tech-

niques from the ML area: 1) ensemble methods, 2) local learning, 3) meta-level learning, and 4)

adaptability and also the interaction between them. The Meta-level learning is discussed in this

section whereas adaptability aspects of this paper are discussed in Sections 2.5.1 respectively.

The Meta-level Learning module of Kadlec and Gabrys (2009a) architecture was responsible

for high-level learning, control and decision making. Meta-level was the most complex but least

diverse top layer of the architecture. In this study a Meta-learner was defined as building a high-

level global knowledge of the models which were incrementally grown by applying the eveloving

architecture to various tasks. The main goal of Meta-level layer was to optimise the predictions in

terms of the global performance function which was achieved by 1) controlling the population at

lower levels to cover unexplored parts of the input space, 2) looking for relations between algorithm

configurations of the paths and the achieved performance, and 3) adapting the combinations in

order to reflect the current state of the data. In general this layer was used to learn the dependency

between the pool of learning algorithms and the performance at various levels. Several experiments

10k = 1, 3, 5, 7, 9 and 11 nearest neighbours
11k=1
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had been performed using three real-world datasets from the process industry where adaptive and

static techniques were compared. The automated data pre-processing and model selection took a

lot of the model development effort away from the user.

An empirical study on rule induction based forecasting method selection for univariate TS was

conducted by Wang et al. (2009). The study aimed to identify characteristics of a univariate TS

and evaluated the performance of four popular forecasting methods (listed in Table 2.4) using

a large collection of datasets listed in Table 2.1. These two components are integrated in an

MLL framework which automatically discovers the relations between forecasting methods and

data characteristics (shown in Figure 2.3). Furthermore, C4.5 decision tree learning technique

was used to generate quantitative rules of MFs and categorical rules were constructed using an

unsupervised clustering approach.

Lemke and Gabrys (2010a) investigated applicability of MLL for TS prediction and identified

an extensive set of MFs that were used to describe the nature of TS. The feature pool consisted

of general statistical, frequency spectrum, autocorrelation, and behaviour of forecasting methods

(diversity) measures (see Figure 2.4). These measures were extracted for two sets of datasets from

popular TS competitions, see Table 2.1 for details, and the target was to predict the next 18

observations for NN312 and 56 for NN512. Using these datasets empirical experiments had been

performed that had provided the basis for further MLL analysis. Extensive list of simple (seasonal),

complex (Auto-regressive Integrated Moving Average (ARIMA)), structural and computational

intelligence (Feed-forward Neural Network (NN)), and forecast combination methods were used

for experimentation which can be seen in Table 2.4. From the pool of individual algorithms

NN and Moving Average (MA) performed quite well for NN3 series while for NN5 the Symmetric

Mean Absolute Percentage Error (SMAPE) in general was quite high where a combination method

variance-based pooling out-performed all the individual and combination algorithms. At the end

three experiments were performed to explore MFs using decision trees, comparing various MLL

approaches (details are given in Table 2.7), and simulating NN5 on zoomed ranking method and

on its combination. The conclusion of this study was that the ranking-based combination of

forecasting methods clearly outperformed the individual methods in all experiments.

2.4.3 Clustering

This section discusses the use of MLL in the context of unsupervised learning.

De-Souto et al. (2008) presented a novel framework that applied an MLL approach to clustering

algorithms, which was one of the initial efforts towards unsupervised algorithms. The proposed

architecture was very similar to the MLL approach used to rank regression and classification

algorithms. It extracted features of input examples from available datasets and associated them

to the performance of the candidate algorithms in clustering that data to construct MK database.

The MK database was used as an input dataset for the Meta-level learning and generated a Meta-

model which was used in the selection or ranking of the candidate algorithms at a test mode.

12Neural Network forecasting competition, http://www.neural-forecasting-competition.com
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Some implementation issues were also addressed which included: 1) the selection of datasets; 2)

the selection of candidate clustering algorithms; and 3) the selection of the set of MFs that can

better represent the problem at the Meta-level. In order to evaluate the framework, a case study

using cancer gene expression microarray datasets was conducted. Seven candidate algorithms,

listed in Table 2.7, and eight descriptive and statistical MFs were extracted, namely, log10 of the

number of examples and a ratio of the totalnumber of examples divided by the total number of

features, a multi-variant normality, a percentage of outliers, a percentage of missing values, the

skewness of Hotelling T 2-test, a Chip - type of microarray, and a percentage of features that were

kept after applying the selection filter. Also, a regression SVM algorithm was used as the Meta-

learner. The results were compared with the default ranking, where the average performance was

suggested for all datasets. The mean and standard deviation of the Spearman’s Rank Correlation

Coefficient (SRCC) correlation for both rankings generated by the proposed approach was found

to be significantly higher than the default one.

Soares et al. (2009) employed the De-Souto et al. (2008) framework in the ranking task of

candidate clustering algorithms in a range of artificial clustering problems with two different sets

of MFs. The first set had five MFs that were calculated using univariate statistics: quartiles,

skewness and kurtosis, in order to summarize the multivariate nature of the datasets. This set

included Coefficient of Variation (CoV), CoV of second and third quartiles, CoV of skewness and

kurtosis while the other set had the same first four MFs as presented in De-Souto et al. (2008).

In this paper three new candidate clustering algorithms were applied on each learning task that

are listed in Table 2.7 and two Meta-learners were used, i.e., Support Vector Regression (SVR)

and MLP. The methodology was evaluated using 160 artificially generated datasets, whose details

are discussed in Section 2.1.4. Both Meta-learners were applied to the two sets of MFs separately

and then compared with the default ranking method. The rankings predicted by the SVR and

MLP methods were found to be significantly higher correlated than the default ranking. However,

there was no significant difference between the correlation values of MLP and SVR methods for

both Meta-datasets. Finally the authors had also highlighted the selection of MFs in the context

of unsupervised MLL as an important issue that could be subjected to further analysis.

2.4.4 Discussion and Summary

There have been several MLL systems developed since the beginning of this area. Almost all the

systems are developed for algorithm recommendations for the classification and regression tasks.

Three main MF generation approaches were used in these systems which are listed in Table 2.6,

where DSIT approach is found to be the most widely used. A landmarking based algorithm

recommendation system is available as part of the RapidMiner, a commonly used open-source

data-mining software. It was part of PaREn project and the landmarking functionality is available

as an operator in the software. One of the most recent and large-scale projects related to MLL

was e-LICO, the purpose of which was to solve data-mining and data-intensive problems. This

project used MLL for algorithm recommendation by leveraging the existing systems, i.e., IDA and
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RapidMiner’s DMA component proposed by (Bernstein and Provost, 2001). Limitations of those

systems are discussed in Table 2.6.

Apart from the existing software systems and tools there have been several studies where MLL

was used specifically for regresion, forecasting, classification or clustering tasks. Several MF based

problem representations have been proposed for the regression and classification tasks. Most of the

comparisons in those studies focused on different MF approaches, selection of candidate algorithms

and different sets of Meta-Learners. The problem representation using MFs has received the most

attention, with landmarking and model-based approaches frequently compared with DCT DSIT

features, and outperforming the DSIT approach in all reported studies with a significant difference.

Not much effort has been dedicated to the model-based approach in the last few years as the

landmarking with additional DSIT features have been considered as an overall better approach.

The landmarking has also been proposed to solve problems other than algorithm recommendations,

e.g., Kadlec and Gabrys (2009a) used landmarking approach for a recurrent concept extraction.

Various studies investigated the applicability of MLL for TS problems including Prudencio and

Ludermir (2004), Wang et al. (2009), and Lemke and Gabrys (2010a). Prudencio and Ludermir

(2004) proposed descriptive and statistical features to represent a TS task to rank various seasonal

and ARIMA models. Later on Lemke and Gabrys (2010a) used an extensive list of MF covering

statistical, frequency spectrum, autocorrelation, and diversity measures for a TS prediction task.

The pool of TS algorithms contained seasonal, ARIMA, structure and computational intelligence,

and forecasting combination methods. The features used in this study to represent TS task at the

Meta-level were better as compared to the previous studies.

There have been few studies which applied the MLL to clustering algorithms. De-Souto et al.

(2008) effort was the initial step in investigating the knowledge representation for unsupervised

problems. Landmarking was used to rank several unsupervised candidate algorithms, as listed

in Table 2.7, combined with eight descriptive and statistical MFs which were used to represent

unsupervised problems at the Meta-level. Most of them were the same as used in several regression

and classification problem representations. Soares et al. (2009) employed De-Souto et al. (2008)

framework by enhancing the list of landmarkers and proposed two different MF representations

of an unsupervised task. One of the MFs list consisted of features proposed by De-Souto et al.

(2008). The results showed an improvement of the proposed approach over the default base-line,

but no significant difference was observed between the two different representations of the unsu-

pervised problems. Finally, the authors had also highlighted the selection of MFs in the context

of unsupervised MLL as an important issue that could be subjected to further analysis. All the

existing MLL studies discussed in this section have only considered and were applied within sta-

tionary environments. Additionally these systems have the same issue which were discussed in the

previous sections that the MK dataset did not have sufficient number of Meta-examples (MEs).

35



EXISTING RESEARCH Meta-learning

Table 2.7: Meta-level learning strategy used in various studies

Research Work Learning Strategy Meta-learners Performance
Sohn (1999) DSIT approach Disc, QDisc, LoGID, k-NN, Back-

propagation, Learning Vector
Quantization (LVQ), Kohonen,
RBF, Inductive CART (IN-
DCART), C4.5 Decision Tree
algorithm (C4.5), Bayesian Trees

Disc algorithm
ranked as top per-
forming algorithm

Lindner and
Studer (1999)

Numeric, Symbolic
and Mixed features
characterization

Naive Bayes classifier (NB), MLP,
RBF, CN2 Induction Algorithm
(CN2), Iterative Dichotomiser 3
(ID3), MC4, T2, Winnow, Oblique
Classifier-1 (OC1), One Rule
Learner (OneR), Rule Learner
(Ripper), Instance-based Learn-
ing (IBL)13, C5.0 Decision Tree
(C5.0 tree), Naive Bayes/Decision-
Tree (NBT), Lazy Decision Trees
(LazyDT), Parallel Exemplar-
Based Learning System (PEBLS)

Numeric and mixed
features character-
ization performed
better

Bensusan and
Giraud-Carrier
(2000)

Landmarking ap-
proach compared
with Information-
Theoretic character-
ization

NB, k-NN14, Elite-Nearest Neigh-
bour (e-NN), Decision Nodes
Learner (Decision Nodes), Worst
Nodes Learner, Randomly Chosen
Nodes Learner (Randomly Cho-
sen Nodes), Linear Discriminant
Analysis (LDA)

Landmarking (C5.0
Rule Induction
(C5.0 rules)) ap-
proach outper-
formed Information-
Theoretic

Pfahringer et al.
(2000)

Landmarking ap-
proach compared
with DSIT charac-
terization

C5.0 tree, Ripper, Linear Discrimi-
nant Trees (Ltree)

Landmarking (C5.0
Adaptive Boosting
(C5.0 boost)) per-
formed better than
others

Peng et al. (2002) Model-based ap-
proach compared
with Landmarking
and DSIT character-
ization

k-NN Model-based ap-
proach outperformed
the remaining two

Prudencio and
Ludermir (2004)

Descriptive and Sta-
tistical approach

I: Simple Exponential Smoothing
(ES) and Time-delay NN and II:
Random Walk (RW), Holt’s lin-
ear ES (HL), Auto-regressive (AR),
NOEMON

I: Simple ES and
II: NOEMON per-
formed better

De-Souto et al.
(2008)

Landmarking ap-
proach to rank
unsupervised learn-
ing algorithms

Single Linkage (SL), Complete
Linkage (CL), Average Linkage
(AL), k-Means (k-M), Mixture
Models (M), Spectral Clustering
(SP), Shared Nearest Neighbours
(SNN)

The proposed ap-
proach outperformed
the default ranking

Guerra et al.
(2008)

Descriptive and Sta-
tistical approach

SVM with linear, quadratic, and
RBF (γ=0.1, 0.05, 0.01) functions

Normalized MSE
and CORR between
predicted and target
values

130-4
14k=1
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Soares et al.
(2009)

Landmarking ap-
proach to rank
unsupervised learn-
ing algorithms

SL, CL, AL, k-M, M, SNN, Far-
thest First (FF), DB-Scan (DBS),
X-Means (XM)

The proposed ap-
proach outperformed
the default ranking

Wang et al. (2009) Statistical approach
on TS

ES, ARIMA, RW, NN

Lemke and
Gabrys (2010a)

Statistical approach
on TS

NN, DT, SVM, Zoomed ranking
(best method and combination)

The proposed ap-
proach showed su-
periority over simple
model selection ap-
proaches

Abdelmessih et al.
(2010)

Landmarking ap-
proach compared
with Descriptive,
DSIT characteriza-
tion

NB, k-NN, MLP, OneR, Random
Forests (RF)

Landmarking ap-
proach (k-NN)
outperformed others

Rossi et al. (2012) DSIT RF MetaStream outper-
formed default and
ensemble approaches

Rossi et al. (2014) DSIT RF, NB, k-NN MetaStream outper-
formed default and
ensemble approaches
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2.5 Adaptive Mechanisms

The Machine Learning (ML) and heuristic search algorithms require tuning of their parameters

for a good performance. It can be achieved through off-line sensitivity analysis by testing different

parameters to determine their best value in a stationary environment (Sikora, 2008). However,

the optimal set of values for the parameters keep changing over time in non-stationary environ-

ments because of the change in the underlying data distribution where off-line sensitivity analysis

becomes ineffective. In a dynamically changing environments domain Meta-level Learning (MLL)

mechanism is considered to be one of the most effective techniques to learn the optimal set of

parameters (Sikora, 2008). The rest of this section discusses various techniques of acquiring and

exploiting Meta-knowledge (MK) in non-stationary environments, that have been proposed in the

context of the existing predictive systems.

One of the earliest efforts employing an MLL based approach to achieve adaptivity in a non-

stationary environment was presented by Widmer (1997). MLL was applied in time-varying envi-

ronments for the purpose of selecting the most appropriate learning algorithm. For a traditional

two-level learning model different types of attributes were defined at the Base- and Meta-level.

The predictive attributes were used to induce models at the Base-level on raw examples from

datasets if there existed a significant correlation between the predictors and the observed class

distribution. On the other hand contextual attributes were employed to identify the current con-

cept associated with the data and systematic changes in their values which indicated a concept

drift. These attributes were identified using an MLL approach which was proposed in Widmer

(1997). This allowed a learning algorithm to select the examples that had the same context as

the training data and newly arrived examples. These conceptual clues helped in adapting the

systems faster by filtering the historical instances used for training that had the same context as

the newly arrived instances. The proposed technique was evaluated by comparing two operational

systems at the Meta-level that differed in the underlying learning algorithm as well as their way

of processing contextual information including METAL(B) that used a Bayesian classifier and

METAL(IB) that was based on an instance-based learning. The instance-based learner was used

in four variants which included: 1) context relevant instance selection; 2) instance weighting; 3)

feature weighting; and 4) combination of instance and feature weighting. The general conclusion of

numerous experiments that were performed using real-world and synthetic datasets was that MLL

produced quite significant improvement over the existing approaches for changing environments.

Additionally, from the results it could be observed that the METAL(B) approach proved to be

effective in domains (datasets) with high noise rates and several irrelevant attributes whereas the

instance-based approach showed higher accuracy for the remaining domains.

Klinkenberg (2005) proposed an MLL framework for automatically selecting the most promising

algorithm and its parametrization at each step in time where the data was arriving in batches. For

each batch a set of Meta-features (MFs) (as listed in Table 2.9) were extracted directly from the

raw data which was used in the Base-level Learning (BLL) to create a Meta-example. A number

of Meta-examples were used to induce a Meta-learner whenever a new batch became available,
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which in turn, helped in predicting the best learning algorithm and the best set of instances at a

given time point. The MFs used in this work were more relevant to the problem under analysis.

Furthermore, this work also investigated the aspects used to speed-up the algorithm selection

process using the proposed MLL approach without losing the gained reduction in the error rate.

The proposed drifting concept approaches, i.e., adaptive time window and batch selection strategy,

were evaluated by comparing them with three non-adaptive mechanisms: 1) full memory; 2) no

memory; and 3) fixed size window. The experiments were performed using two real-world problems:

1) information filtering of unstructured business news data; and 2) predicting business cycle from

economics domain. For business news dataset both adaptive techniques outperformed trivial non-

adaptive approaches. Two evaluations were performed for the business cycle dataset where the

data was split into 5 and 15 equally sized batches where the fixed size window approach performed

slightly better than the adaptive techniques.

Sikora (2008) proposed an MLL mechanism to learn the optimal parameters while the learning

algorithm was trying to learn its target concept in a non-stationary environment. MLL was used

to tune a temperature (τ) parameter of the Softmax Reinforcement Learning (RL) algorithm using

a Boltzmann distribution. Moreover, the time-weighted method had been used where the action

value estimates were the sample average of prior rewards. The Softmax algorithm became a random

search for a higher τ value, whereas for a low value it approached a greedy search. The effectiveness

of the proposed MLL algorithm was evaluated by dynamically learning the optimal value of τ

using two case-studies: 1) k-Armed bandit - the classic RL problem, and 2) bidding strategy -

stylized e-procurement problem. In the k-Armed bandit problem the variable k was defined as

actions available to an agent and each action returned a reward from a different distribution.

In this work (k=) 10 actions (1,...,10) were available to an agent where each action returned a

reward using a Normal distribution. The effectiveness of MLL in a non-stationary environment

was tested by rotating the reward distributions among the 10 actions. The algorithm was tested

with three different temperature parameter values of 5, 50 and 500 for both stationary and dynamic

environments. For the stationary environment the performance of τ=5 approached the best action

with a maximum average reward. As the environment became more and more dynamic these

awards kept falling. In contrast, the performance of the MLL algorithm returned better rewards

in both environments as well as responded faster to the changes in the environment. The bidding

problem was analysed as a 2 player symmetric game (2 homogeneous sellers) with n actions, where

n was the variable cost (price) range split into equally sized bands. One of the sellers was modelled

using the Softmax RL algorithm while the other one was supposed to be using different learning

algorithms, i.e., ε-greedy - a genetic algorithm proposed by Goldberg (1989). The same three values

of τ were used for both stationary and dynamic environments, where the stationary environment

produced best result for the lowest value of temperature. However, no single value of temperature

did best in the dynamic environment, while MLL algorithm approached the best reward for both

environments. Furthermore it was observed from the experiments that the best value of τ was

achieved from MLL approach in all the scenarios.
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Kadlec and Gabrys (2009a) architecture supports a life-long learning by providing several

adaptation mechanisms across computational path level (preprocessing methods followed by indi-

vidual base-level algorithms), path combination level (combination of base-level algorithms) and

a Meta-level hierarchical structure. There were four adaptation loops defined across various lev-

els of hierarchy including self-adaptation capability of the computational and combination layer,

where as the remaining two loops connected Meta-level layer to the lower layers. These feedback

loops helped the proposed architecture to keep validity of the models in changing environments.

It could be achieved by switching particular modules to the incremental mode. The computa-

tional path level adaptation loop consisted of the predictions feedback which were compared to

the actual (target) values. Whereas at the path combination level the combinations were repre-

sented in the same way as in the computational path, which was a benefit of this representation

that and meant that similar adaptation mechanisms could be applied at different levels. In the

case of weighted combinations, the contribution of particular computation paths were dynamically

changed to the final prediction by modifying the weights. A Meta-level adaptation had influence

on the dynamic behaviour of the entire architecture. At this level the performance measures were

gathered from all levels of the architecture together with the global performance. It allowed to

analyse the performance achieved across various levels and also to estimate the influence of the

changes at different states of the model. Several experiments demonstrated that the variety of

adaptation mechanisms applied at different levels may have a significant effect on the performance

of the models. One of the key contribution of the proposed architecture, was the opening of a large

space for future research that could focus on the interaction between different techniques, dynamic

behaviour, implementation of novel adaptation techniques and meta-level methods.

A comprehensive framework, design problems, taxonomy of adaptive learning, and different

areas of learning under concept drift were presented by Zliobaite (2010). The proposed framework

was used to analyse the problem of training set formation where two areas, i.e., 1) incremental

learning; and 2) causes of concept drift were discussed. The incremental learning explained the

difference between concept drift and periodic seasonality with examples while the causes of concept

drift were elaborated on using Bayesian decision theory, where three causes were highlighted that

might change over time. There were four design sub-problems and techniques addressed within the

framework that needed to be solved: 1) future assumptions about source and target instances; 2)

structural change types or configuration patterns of data over time; 3) identified four key learner

adaptivity areas, and 4) model selection which was further categorized into two different groups.

The taxonomy of concept drift learners was categorized as an evolving learner where four methods

wer proposed and the methods that determined how the models or instances were to be changed at

a given time were grouped separately under a triggering concept. At the end three major research

areas were outlined: 1) time context; 2) transfer learning by gaining knowledge from similar type

of past problems; and 3) models which have properties of adaptation incorporated into learners.

Also several dimensions which are relevant to the applications implementing concept drift were

defined. Figure 2.6 presents all the key areas and available solutions of learning under concept

drift.
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Concept Drifting

Framework and Terminology

Design Problems

Taxonomy of Adaptive Learning

Research Areas

Dimensions relevant to the applications facing Concept Drift

Incremental Learning with Concept Drifting

Causes of Concept Drifting

Future Assumptions about source and target instances

Structural Change Types or Configuration Patterns of data

Learner Adaptivity areas

Model Selection groups

Evolving Learners

Learners with Triggers

Time context

Knowledge Transfer

Model Adaptivity

Speed of learning and output
Classification or prediction accuracy
Costs of mistakes
True labels
Adversary activities

Concept Drifting
Periodic Seasonality

Class priors change over time
Posteriors of class memberships change
Distributions of classes change

Assuming no change found in source instances
Estimating source based on future targets
Predicting the change

Sudden Drift
Gradual Drift
Reoccurrence Drift

Base-learners
Parameterization of Learners
Adaptive training-set formation
Fusion rules of the Ensembles

Adaptivity by trigger or active change detector
Adaptivity by evolution

Adaptive (classifier) Ensemble
Instance Weighting
Feature Space
Base model specific

Change detectors (sudden drift technique)
Training windows
Adaptive Sampling (instance selection)

Incremental learning
Data stream mining
Spatio - temporal data mining
Dynamic Bayesian Networks
Time-Series ARIMA model

Case-based Reasoning (Lazy learning)
Transfer or Inductive learning
Learning from multiple sources
Active learning

Artificial immune system
Adaptive reasoning theory
Evolutionary computing
Ubiquitous knowledge discovery

Figure 2.6: Learning under Concept Drifting (Zliobaite, 2010)

An MLL approach for periodic and automatic algorithm selection for time-changing data,

named Meta-Stream, was presented by Rossi et al. (2012). A Meta-classifier was periodically

applied to predict the best learning algorithm for a new unlabelled chunk of data. General DSIT

MFs of Travel Time Prediction (TTP) problem were extracted from the historical and new data

(see Figure 2.3) and mapped together with their predictive performance computed from different

models to induce the Meta-classifier. Experiments were performed to compare the performance of

the MetaStream to the default trial-and-error approach for both static and dynamically updating

strategies at the Meta- and Base-levels. Moreover, the Base-level MetaStream and Default results

were compared with the dynamic Ensemble approach. The learning strategy adopted at the Base-

level can be seen in Table 2.4, also the training window (ω) of 1000 instances with a step size (λ) of
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1 was used at this level. The Meta-level learning strategy was presented in Table 2.7. The Meta-

examples (MEs) labelled as tie were investigated separately by keeping and discarding them from

the training and test sets. The empirical results showed that the MetaStream outperformed the

baseline and ensemble approaches with a significant margin in most of the cases for both stationary

and dynamic environments. In general, the two pairs of algorithms, e.g., Random Forests (RF)-

Classification and Regression Trees (CART) and Support Vector Machines (SVM)-CART were

found to be the best algorithms for TTP problem. Finally, the authors also realized that the

MFs should be related to the non-stationary data problem rather than characteristics which were

extracted for the traditional MLL problems.

Rossi et al. (2014) extended their original work (Rossi et al., 2012) in two main directions:

1) instead of selecting only a single algorithm, a combination of multiple regressors could be

selected, when the average of the predictions performed better than the individual; and 2) more

comprehensive experimental evaluation was performed by adding another real-world problem -

Electricity Demand Prediction (EDP) (see Table 2.1). Furthermore the list of MFs extracted from

the data was also enhanced in this work, as listed in Table 2.8. The characteristics were extracted

separately from the training and evaluation windows because the training window had target

information available from where supervised characteristics could be extracted, i.e., information

about the relationship between the predictive and target variables. The pool of Base- and Meta-

level algorithms with their configurations are listed in Table 2.4 and Table 2.7 respectively. The

experimental results showed that for TTP dataset the pair of regressors, regardless of the presence

of tie resolution strategy, outperformed the default and ensemble based approaches. However, in

case of EDP, the MetaStream clearly outperformed the default, but was worse than the ensemble

which could lead to a conclusion that the observations made for pairs of regressors were also valid

for multi-regressors. Moreover, slightly higher error rate was recorded for RF Meta-learner of the

MetaStream than the default but was lower than the ensemble approach for the TTP dataset,

whereas for the EDP dataset the MetaStream outperformed the default but was worse than the

ensemble. These results showed that the MetaStream was able to select the best algorithm more

accurately than the baseline trial-and-error and ensemble-based approaches in a time-changing

environment.

Table 2.8: Meta-features used in MetaStream to characterize the data

Meta-features Training window Selection window
Average, Variance, Minimum, Maximum and Median of
continuous features

4 4

Average, Variance, Minimum, Maximum and Median of the
target

4

Correlation between numeric features 4

Correlation of numeric attributes to the target 4

Possibility of existence of outliers in numeric features 4

Possibility of existence of outliers in the target 4

Dispersion gain 4

Skewness of numeric features 4

Kurtosis of numeric features 4
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2.5.1 Discussion and Summary

This section covered the adaptability mechanisms of a number of existing systems using MLL

approaches. In these studies the main focus was put on the applicability of MLL particularly in

the context of non-stationary environments. MLL can be beneficial in such a case by minimizing

the processing time that is consumed to periodically train the model, extracting recurring concepts,

automatically detecting concept drift and estimating dynamic adaptive window size, which in turn

can generate accurate predictions in dynamic environments. However, applying MLL to support

an adaptive mechanism is a recent and emerging area. As a result most of the research use the

same MFs for a time-varying environment as for the stationary environments. If MLL is introduced

in a system then the overall performance of such a system becomes dependent on an appropriate

representation of the problem at the Meta-level in the form of extracted, informative MFs. The

drawback of using a set of MFs which are usually used in a stationary environment is that the

entire target dataset should be available at once when MLL is applied to find the best algorithm

for that dataset. This is not normally the case for streaming data and unavailability of target

variables makes calculation of some useful MFs impossible.

Widmer (1997)’s work on applying MLL for non-stationary environments is considered to

be the earliest effort. It addressed two key areas in the context of dynamic environments: 1)

dynamic tracking of changes; and 2) extraction of recurring concepts. The problem representation

in Widmer (1997) was quite general as very few predictive and contextual MFs were extracted.

However, neither of the two proposed MLL approaches performed better then the default for several

domains. Klinkenberg (2005) used different BLL algorithms which were automatically selected at

the Meta-level. Additionally the Meta-level approach for adaptive time window and recurring

concept extraction for the target concept were part of the research. The research was one of the

initial efforts to represent an adaptivity problem with the relevant MFs rather than using general

features which were usually productive for the stationary environment. Although these features (as

listed in Table 2.9) were not sufficiently expressive to represent a non-stationary environment at

the Meta-level, they were still better than general features (used to represent stationary problems)

as evidenced by the experiments which showed a significant improvement.

Sikora (2008) proposed a reinforcement learning approach to address the automatic algorithm

recommendation problem using MLL in a non-stationary environment. The focus of the research

was to find the optimal value of the Softmax algorithm’s parameter τ where it would recommend

the best algorithm for the target concept at the Meta-level. The same deficiency was observed

in this work that the non-stationary problem representation was not addressed in sufficient detail

and focus was only on the algorithm recommendation using MFs which were proposed for static

data. Kadlec and Gabrys (2009a) proposed a life-long learning architecture that provided several

adaptation mechanisms across a pool of candidate learning algorithms and their combinations.

The dynamic behaviour of the entire architecture was analysed at the Meta-level where the global

performances as well as information from both pools could be analysed to estimate the influence
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of the changes at different levels of the model. The decrease in prediction ability of a local model

below a certain level was considered as a new concept which led to building a new receptive field.

The landmarking approach was quite simple and effective to detect concept drift, and based on

that, periodically train a new local predictor. The effectiveness of MLL for the two mentioned

areas was supported by improved results recorded from two case-studies.

Rossi et al. (2012) approach was quite similar to Klinkenberg (2005) where periodic algorithm

selection for a time-changing data was proposed. Similarly to various other studies the authors

computed the Descriptive, Statistical and Information-Theoretic (DSIT) MFs. Even though the

Meta-level approach performed better than the Base-level, there was no comparison shown with

the other MLL systems from where it could be concluded that even the general representation

of the problem could work for a non-stationary environment. The problem representation using

general MFs was a drawback of this effort which was subsequently attempted to rectify in Rossi

et al. (2014). The authors computed separate MFs for historical and incoming data. As the target

variable was not available in the incoming data the unsupervised features were computed for the

data available in the evaluation window. The performance of the proposed approach was better

than the BLL and worse than an ensemble based approach but despite this it was considered to

be a good effort towards representing a time-varying problem at the Meta-level. In almost all

the studies that are discussed in this section MLL outperformed the BLL methods. However, a

common drawback has been observed in the problem representation area at the Meta-level for

time-varying data. Most of the work used general MFs whereas only some tried to focus on this

area by proposing some features for the non-stationary data.

Table 2.9: Adaptive mechanisms used in previous studies

Research Work Adaptivity mecha-
nisms addressed

Meta-features/Parameters

Widmer (1997) Recurring concept ex-
traction

window size=100 and significance level=0.01

Klinkenberg
(2005)

Recurring concept ex-
traction, adaptive time
window, periodic algo-
rithm selection

No. of batches used for training at the previous batch
No. of non-interrupted most recent training batches
Most successful learner on the previous batch
Most successful learner overall on all batches seen so far

Kadlec and Gabrys
(2009a)

Concept drift detec-
tion and Periodic algo-
rithm selection

Landmarking

Rossi et al. (2012) Periodic algorithm se-
lection

ML: ω=1000, λ=1, η=0
MLL: ω=300, γ=25, λ=1, η= 0

Rossi et al. (2014) Periodic algorithm
selection (with more
relevant representation
of the non-stationary
problem)

TTP dataset:
ML: ω=1000, λ=1, η=2
MLL: ω=300, γ=24, λ=1, η=0

EDP dataset:
ML: ω=672, λ=336, η=0
MLL: ω=300, γ=25, λ=1, η=0
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Chapter 3

Research Challenges

The goal of Meta-level Learning (MLL) is to analyse and recommend the best methods and tech-

niques for a problem on the basis of previously solved problems and without or with minimal

intervention of human experts (Duch et al., 2011). The existing approach of analysing the prob-

lem and selecting the best learning algorithm is to apply a wide range of algorithms, with many

possible parametrizations, on a problem simultaneously and then select an algorithm from a ranked

list based on performance estimates like accuracy, execution-time, etc. Also choosing the best al-

gorithm for a specific problem in an ever increasing number of models and their almost infinite

configurations is a challenging task. Even with sophisticated and parallel learning algorithms, the

computational power in terms of the execution-time, memory, and the overall human effort are

still one of the biggest limitations. Every task leads to new challenges and demands dedicated

effort for detailed analysis and modelling.

The main theme of this work is research on MLL strategies and approaches in the context

of adaptive multi-level, multi-component predictive systems for time-varying environments. In

these systems there are multiple areas where MLL can be used to efficiently recommend the

most appropriate methods and techniques. Therefore three areas of an evolving predictive systems

dealing with streaming data have been identified where the applicability of MLL can be an effective

and efficient approach. These are listed below:

1. Learning A Path Recommendation:

A learning path includes pre-processing steps, learning algorithms or their combination and

adaptivity mechanism parameters. These three components are interlinked with each other

where MLL recommends the learning algorithm or their combinations preceded by optimised

pre-processing steps from a pool of available methods. The adaptivity mechanism parameters

are the additional parameters which are linked with the algorithm’s configuration. Figure 3.1

shows the complex learning path recommender.

i. Pre-processing Steps Recommendation:

MLL can be applied to find the most appropriate combination of pre-processing steps.

Since in time-varying environment trying various pre-processing methods and techniques

to find the best combination for a concept will make the entire system ineffective. Instead
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Figure 3.1: Learning Path Recommendation

of spending time on testing various methods on every concept drift detection MLL can help

to instantly recommend the best pre-processing steps from the methods under observations.

ii. Algorithm or Combination Recommendation:

Finding the optimal algorithm for a dataset is a traditional application of MLL (Giraud-

Carrier, 2008). Automatic discovery of the optimal algorithm can be beneficial for both

stationary and particularly non-stationary environments where it can help in minimizing the

processing time which is usually spent on the rigorous testing of various learning algorithms

with their different parametrizations. MLL can recommend the best learning algorithm, its

parametrization, and their combination instantly from the pool of available learners.

iii. Adaptivity Mechanism Parameters:

The adaptive mechanism with static parameters, i.e., training and evaluation window size,

step size, and delay, would be ineffective for the dynamic environments where the under-

lying distribution of incoming data keeps changing. These parameters can be bound with

learning algorithm configuration. The most appropriate set of adaptivity parameters can

be extracted at the Meta-level based on the best learning algorithm selected for the current

concept.

2. Recurring Concepts Extraction:

In a non-stationary environment the underlying distribution of the incoming data keeps chang-

ing which in turn can make even the most recent historical concept ineffective to retrain the

model for the current concept. Using MLL the historical batches (concepts) of data could be

extracted from the Meta-knowledge (MK) which in turn can be used as a training-set for the

current data. This process can be named as Reverse Knowledge Extraction where Meta-features
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(MFs) of the current concept can be used to extract the Meta-examples (MEs) of relevant con-

cepts from MK datasets. These MEs could ultimately lead to extracting the model whose

underlying distribution follows the concept which is currently under observation. This model

can be retrained to incorporate a new concept in the existing model.

3. Concept Drift Detection:

In an adaptive mechanism retraining of a model is usually triggered by a change detection

process. MLL can help in automatically identifying a drift to maximize the efficiency of the

system. MLL can help to automatically detect the concept drift and trigger the algorithm

retraining process instantly. For instance, the MFs of incoming data can be computed as well

as cumulated on arrival of every batch and simultaneously compared with the set of MEs, from

MK dataset, whose learning algorithm (used as a target variable in the MK) is used to score the

current batches of data. The concept drift can be detected at the Meta-level if the ME of the

current concept does not match with the cluster of MEs whose learning algorithm is currently

selected.

The scope of this research is limited to the representation of MK in non-stationary environments

which falls under the algorithm or the combination recommendation tasks. The applicability of

MLL in these areas leads to several research questions which are listed below.

1. Gathering examples of datasets to build a static Meta-knowledge database:

i. The time-changing environments require dynamic MK databases which must be updated

with the MFs of different batches of data having different distribution. A dynamic MK

database keeps on growing with the ME of new concepts. Apart from the dynamically

growing database which will gradually build-up, a static MK database may be required

at least for the initial phase of the system. When do the benefits of a static database

outweigh the costs of maintaining it? Furthermore what are the alternative techniques

of utilizing MLL without having prior knowledge particularly for the initial phase of the

system.

ii. Building-up a static MK database would raise another research challenge of what strat-

egy should be adopted to generate synthetic MEs, i.e., either by directly transforming

the existing MEs which are generated by limited real-world datasets or by generating

artificial examples of datasets?

2. A Base-level Learning strategy to compute performance measures of Meta-examples:

i. Base-level Learning (BLL) is used to build predictive models using examples of datasets

to compute a set of performance measures which are mapped with their respective

MEs. What strategy would be adopted to select the best learning algorithm and its

parametrization for an ME at the Base-level, i.e., level of granularity of algorithm

parametrization, algorithm ranking or combination, model validation and performance

measures?
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3. Feature generation and selection to represent a problem at the Meta-level:

i. Would the traditional MF generation approaches, which are usually specialized for the

algorithm recommendation task, be adequate to represent three new proposed areas of

the system at the Meta-level or based on the complexity of the new problems a different

representation would be required?

ii. In a non-stationary environment the target variable would not be available at the time

of algorithm selection at the Meta-level. It will restrict computing some important MFs,

e.g., correlation between the target and the predictive variables. What would be the

impact of the absence of these significant features on the performance of MLL and in

a later stage how the MK database could be updated when the target variable will be

known?

4. Representation and storage of dynamically growing complex Meta-Knowledge database:

i. What level of granularity would be required for the appropriate representation of a

problem? For instance, the target variable of the MEs would be only the best learning

algorithm, ranking, algorithm parametrization or their combination?

ii. What type of performance measures will be stored in the MK database for three different

areas, e.g., accuracy, run-time speed? For instance, the run-time speed measure might be

useful particularly for a non-stationary environment which would help to identify both

an accurate as well as efficient learning algorithm.

5. Meta-level Learning strategy for algorithm recommendation:

i. What strategies and algorithms would be used at the Meta-level to efficiently search the

target objectives of the mentioned three areas from the MK database?

ii. If MLL process recommends a different learning algorithm and its parametrization for

the target concept then what would be the strategy of replacing the current algorithm

and how this change would impact the overall performance of the system?
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Chapter 4

Summary

This literature review and identification of key research challenges have been focused on the de-

tailed study of existing Meta-level Learning (MLL) concepts and systems for both stationary and

non-stationary environments. We are particularly interested in fully automating the process of

building, deployment and maintenance of potentially complex multi-component, multi-level evolv-

ing predictive systems operating in continously changing environments, as described in some of

our previous publications and those resulting from the INFER project.

The review of the existing research has been structured into the coverage of five key components

of an MLL system: (i) Available real and synthetic datasets for modelling at the Meta-level; (ii)

Meta-features generation and selection approaches; (iii) Base-level learners as an input to the Meta-

learning; (iv) Meta-learning; (v) Meta-learning based adaptive mechanisms for non-stationary

environments.

There are various methods to gather Examples of Datasets (EoD) discussed though all of

them have some limitations. Similarly several Meta-feature generation techniques are reviewed

from previous work though the majority of them have been introduced in the context of and are

suitable for a stationary MLL system. Hence the applicability and effectiveness of such Meta-

features for non-stationary environments remains an open research question. A consistently and

systematically evaluated performance of base-models on EoDs forms a critical part of a reliable

input data (i.e. label or target variable) for the MLL. Collecting such performance data is the

most time and processor intensive task especially if numerous configurations and parametrisations

of base-learners are to be adequately taken into account. Such reliable collection of previously

solved problems with thorough benchmarking of base-learners suitable for MLL do not currently

exist and remain an open challenge.

A number of previously proposed MLL systems have been discussed in detail which included

the application of MLL to both supervised and unsupervised learning problems. The development

and evolution of the MLL field in the last three decades has been discussed and various systems

have been compared with the previous ones. However, there are very few systems that have been

targeted towards and can deal with non-stationary problems which is our main area of interest.

It is only in the last five years that non-stationary MLL have been receiving some interest. The

primary focus has been on the problem representation of a streaming data at the Meta-level.
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SUMMARY

There are multiple roles for Meta-learning in the scope of INFER project and the developed

automated and autonomous predictive modelling system and approaches working in continuously

changing environments which we are intending to explore in our continuing research in this area.
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Appendix A

Meta-features

Table A.1: Meta-features used in various studies
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Descriptive Meta-features
Number of Classes (k) 4 4 4 4 4

Frequency of most common class 4 4

Number of Features (p) 41 4 4 4

Total Instances (N) 4 4 4 4 4 4 4 4

Dataset Dimentionality 4

Number of Training instances (r) 41 4 4 42

Number of Test instances (t) 4 4 4

Sampling Distribution 4 4

Number of Binary Features (b) 4 4 4

Number of Numeric features (n) 4 4 4 4

Number of Nominal features (s) 4 4 4 4

Proportion of binary features (b/p) 4

Proportion of nominal features (s/p) 4 4 4

Span of nominal values 4

Average of nominal values 4 4

Training instances to features ratio
(N/p)

4 42

Proportion of training instances
(r/N)

4

Statistical Meta-features
Relative probability of missing values 4 4 4

Instances with missing values 4 4

Proportion of features with outliers 4 4 4

Mean Skewness (SKEW) 4 4 4 4 43 4

Mean Kurtosis (KURT) 4 4 4 4 43 4

Average 4

Variance 4

Minimum 4

Maximum 4

Median 4

Correlation between predictor and
target

4

Standard Deviation (StdDev) of the
class distribution

4 44 4

Homogeneity of Covariances (S/D
Ratio)

4 4 4

1only these two features are used in Rendell et al. (1987), they are also part of Rendell and Cho (1990)
2Log
3of series
4of de-trended series
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META-FEATURES

Canonical Correlation (CANCOR) 4 4 4 4

Number of Discriminant Functions
(DiscFunc)

4

Mean Absolute Correlation Coeffi-
cient (CORR)

4 4

Relative proportion of largest Eigen-
value (FRACT)

4 4 4

Wilks’lambda Distribution
(Wlambda)

4

Default Accuracy 4

coefficient of variation (COEF-VAR) 4

absolute value of the SKEW and
KURT coefficient

4 4

Time-series (TS) mean absolute
values of first 5 auto-correlations
(Mean-CORR)

4

TS test of significant auto-
correlations (TAC)

4

TS significance of the 1, 2, and 3
Auto-correlation (TAC-1,2,3)

4

TS test of Turning Points for ran-
domness

4

TS first coefficient of auto-
correlation (AC1)

4

TS type 4

TS trend 4 4 45

TS turning point 46 4

TS Durbin-Watson statistic of regres-
sion residual (DW)

4

TS step changes 4

TS predictability measure 4

TS non-linearity measure 4

TS largest Lyapunov exponent 4 4

TS 3 largest power spectrum frequen-
cies

4

TS maximum value of power spec-
trum

4 4

TS number of peaks > 60% 4

TS auto-correlations at lags 1 and 2 4

TS partial auto-correlations at lags 1
and 2

4

TS seasonality Measure 4 4

TS mean Symmetric Mean Absolute
Percentage Error (SMAPE) - mean
deviated SMAPE

4

TS mean SMAPE / mean deviated
SMAPE

4

TS mean of correlation coefficient 4

TS StdDev of correlation coefficient 4

TS methods in top performing cluster 4

TS distance top performing cluster to
second best

4

TS Serial CORR Box-Pierce statistic 47

TS Non-linear autoregressive struc-
ture

48

TS Self-similarity (Long-range De-
pendence

4

TS Periodicity (frequency) 4

Min. of CORR between predictors
and target

4

Max. of CORR between predictors
and target

4

Mean of CORR between predictors
and target

4

StdDev of absolute value of CORR
between predictors and target

4

Min. of CORR between pairs of pre-
dictors

4

Max. of CORR between pairs of pre-
dictors

4

Mean of CORR between pairs of pre-
dictor

4

StdDev of absolute value of CORR
between pairs of predictors

4

Information Theoretic Meta-features
Entropy of Classes (HC) 4 4 4 4

Entropy of nominal features 4 4 4

Joint Entropy of Classes (HCX) 4 4 4

Average Mutual Information between
Class and Nominal Features (MCX)

4 4 4 4

Class Entropy to Mutual information
ratio

4 4 4

Noise to Signal Ratio (NoiseRaio) 4 4 4

Dispersion Gain 4

5StdDev of series / StdDev of de-trended series
6ratio
7of raw and trend/seasonally adjusted
8of raw and trend/seasonally adjusted
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META-FEATURES

Landmarkers
Decision Nodes Learner (Decision
Nodes)

4 4 4

Worst Nodes Learner (Worst Nodes) 4 4

Randomly Chosen Nodes Learner
(Randomly Chosen Nodes)

4 4 4

Naive Bayes classifier (NB) 4 4 4 4

k-Nearest Neighbour (k-NN) 49 410 4 410 4 410 4

Elite-Nearest Neighbour (e-NN) 4

Linear Discriminant Analysis (LDA) 4 4 4 4

C5.0 Decision Tree (C5.0 tree) 4 4

C5.0 Adaptive Boosting (C5.0 boost) 4 4

C5.0 Rule Induction (C5.0 rules) 4 4 4

Rule Learner (Ripper) 4

Linear Discriminant Trees (Ltree) 4 4

Average Nodes Learner (Average
Nodes)

4

Model-based Meta-features
Nodes per attribute 4

Nodes per instance 4

Average leaf corroboration 4

Average gain-ratio difference 4

Maximum depth 4

No. of repeated nodes 4

Shape 4

Homogeneity 4

Imbalance 4

Internal symmetry 4

No. of Nodes in each level - width 4

No. of levels - Height 4

No. of nodes in the tree 4

No. of leaves in the tree 4

Maximum no. of nodes at one level 4

Mean of the no. of nodes 4

StdDev of the no. of nodes 4

Length of the Shortest branch 4

Length of the Longest branch 4

Mean of the branch length 4

StdDev of the branch length 4

Minimum occurrence of Features 4

Maximum occurrence of Features 4

Mean of the no. of occurrences of
Features

4

StdDev of no. of occurrences of Fea-
tures

4

Weight sum of dataset
Minimum weight sum of dataset
Average weight sum of dataset
StdDev weight sum of dataset
No. neighbours for dataset
Minimum No. neighbours for dataset
Maximum No. neighbours for
dataset
Average No. neighbours for dataset
StdDev of No. neighbours for dataset
Principal Component Analysis
(PCA) 95%

4

PCA skewness 4

PCA kurtosis 4

Total Meta-features 9 13 19 25 10 14 8 7 15 3 7 11 10 9 23 7 10 22

9k = 3 used only in Giraud-Carrier (2005)
10k = 1
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Glossary of Terms

A

AL Average Linkage. 36, 37

ARIMA Auto-regressive Integrated Moving Average. 23, 24, 33, 35, 37

ARR Adjusted Ratio of Ratios. 16, 23

Average Nodes Average Nodes Learner. 54

B

b Number of Binary Features. 52

BLL Base-level Learning. 2, 22, 24, 31, 38, 43, 44, 48

C

C4.5 C4.5 Decision Tree algorithm. 16, 23, 36

C5.0 boost C5.0 Adaptive Boosting. 15–17, 22, 23, 36, 54

C5.0 rules C5.0 Rule Induction. 17, 23, 36, 54

C5.0 tree C5.0 Decision Tree. 16, 17, 23, 24, 36, 54

CANCOR Canonical Correlation. 53

CART Classification and Regression Trees. 23, 24, 42

CASTLE Causal Structure for Inductive Learning. 23

CBR Case-based Reasoning. 15

CL Complete Linkage. 36, 37

CN2 CN2 Induction Algorithm. 23, 36

CORR Mean Absolute Correlation Coefficient. 32, 36, 53

CoV Coefficient of Variation. 34
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Glossary of Terms Glossary of Terms

CV Cross-Validation. 23, 24, 31

D

DBS DB-Scan. 37

DCT Dataset Characterization Tool. 14–20, 30, 31, 35

Decision Nodes Decision Nodes Learner. 36, 54

DiscFunc Number of Discriminant Functions. 53

DMA Data Mining Advisor. 27–29, 35

DSIT Descriptive, Statistical and Information-Theoretic. 2, 14–20, 27, 28, 30, 34–37, 44

DT Decision Trees. 18, 32, 37

DW Durbin-Watson statistic of regression residual. 53

E

e-LICO e-Laboratory for Interdisciplinary Collaborative Research. 29, 30, 34

e-NN Elite-Nearest Neighbour. 36, 54

EoD Examples of Datasets. 1, 6, 11, 12, 19, 24, 29, 50

ES Exponential Smoothing. 23, 36, 37

F

FF Farthest First. 37

FLD Fisher’s Linear Discriminant. 23

FRACT Relative proportion of largest Eigenvalue. 53

H

HC Entropy of Classes. 53

HCX Joint Entropy of Classes. 53

I

IBL Instance-based Learning. 17, 23, 36

ICA Independent Component Analysis. 19
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Glossary of Terms Glossary of Terms

ID3 Iterative Dichotomiser 3. 36

IDA Intelligent Discovery Assistant. 2, 27, 29, 34

INDCART Inductive CART. 23, 36

K

k Number of Classes. 52

KD Knowledge Discovery. 27

k-M k-Means. 36, 37

k-NN k-Nearest Neighbour. 17–19, 22–24, 31, 32, 36, 37, 54

KURT Kurtosis. 52, 53

L

LazyDT Lazy Decision Trees. 36

LDA Linear Discriminant Analysis. 16–18, 23, 36, 54

Ltree Linear Discriminant Trees. 17, 23, 36, 54

LVQ Learning Vector Quantization. 36

M

M Mixture Models. 36, 37

MA Moving Average. 24, 33

MAE Mean Absolute Error. 23, 24

MARS Multivariate Adaptive Regression Splines. 24

MCX Average Mutual Information between Class and Nominal Features. 53

MDS Multi-dimensional Scaling. 19

ME Meta-example. 35, 42, 48, 49

METAL Meta-Learning Assistant. 2, 7, 16, 27, 28, 30, 31

METALA Meta-learning Architecture. 2, 27, 29

MF Meta-feature. 1, 2, 6, 10–12, 14–22, 24, 26–35, 38, 39, 41–44, 47–49

MK Meta-knowledge. 1, 6, 7, 12, 22, 24, 26, 29, 30, 32, 33, 35, 38, 47–49
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Glossary of Terms Glossary of Terms

ML Machine Learning. 1, 6, 9, 11, 12, 26, 30, 32, 38, 44

MLL Meta-level Learning. 1–3, 5–7, 10–12, 14, 18, 19, 22, 24–35, 38, 39, 41–44, 46–50

MLP Multi-layer Perceptron. 17, 23, 24, 32, 34, 36, 37

MLR Multiple Linear Regression. 23

MLT Machine Learning Toolbox. 2, 26, 28

MSE Mean Squared Error. 23, 24, 32, 36

N

N Total Instances. 52

n Number of Numeric features. 52

NB Naive Bayes classifier. 17–19, 23, 24, 36, 37, 54

NBT Naive Bayes/Decision-Tree. 36

NN Neural Network. 18, 23, 24, 33, 36, 37

NoiseRaio Noise to Signal Ratio. 53

O

OC1 Oblique Classifier-1. 36

OneR One Rule Learner. 17, 24, 36, 37

P

p Number of Features. 52

PaREn Pattern Recognition Engineering. 3, 28, 29, 34

PCA Principal Component Analysis. 19, 54

PEBLS Parallel Exemplar-Based Learning System. 36

PPR Projection Pursuit Regression. 24

Q

QPC Quality of Projected Clusters. 11, 19

Quadra Quadratic Classifier. 23
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Glossary of Terms Glossary of Terms

R

r Number of Training instances. 52

Randomly Chosen Nodes Randomly Chosen Nodes Learner. 36, 54

RapidAnalytics open-source data-mining and predictive analysis solution. 29

RBF Radial-basis Function. 17, 23, 32, 36

RF Random Forests. 17, 24, 37, 42

Ripper Rule Learner. 16, 17, 23, 36, 54

RL Reinforcement Learning. 39

RMSE Root Mean Squared Error. 24

RW Random Walk. 23, 36, 37

S

s Number of Nominal features. 52

S/D Ratio Homogeneity of Covariances. 52

SKEW Skewness. 52, 53

SL Single Linkage. 36, 37

SMAPE Symmetric Mean Absolute Percentage Error. 24, 33, 53

SMART Smooth Multiple Additive Regression Technique. 23

SNN Shared Nearest Neighbours. 36, 37

SP Spectral Clustering. 36

SRCC Spearman’s Rank Correlation Coefficient. 23, 34

STABB Shift To A Better Bias. 26, 28

StatLog Statistical and Logical learning. 2, 14, 17, 26, 28, 30

StdDev Standard Deviation. 52–54

SVM Support Vector Machines. 17–19, 22, 24, 32, 34, 36, 37, 42

SVR Support Vector Regression. 34

T
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Glossary of Terms

t Number of Test instances. 52

TS Time-series. 8, 10, 22, 24, 31, 33, 35, 37, 53

U

UCI UCI Machine Learning Repository. 7–10, 12, 15–17, 29, 30

V

VBMS Variable-bias Management System. 14, 19, 26, 28

W

Wlambda Wilks’lambda Distribution. 53

Worst Nodes Worst Nodes Learner. 54

X

XM X-Means. 37
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Widmer, Gerhard (June 1997). “Tracking Context Changes through Meta-Learning”. In: Journal
of Machine Learning 27.3, pp. 259–286.

70



REFERENCES

Williams, Ronald J. (1992). “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine Learning (9), pp. 41–49.

Wolpert, David (2001). “The supervised learning no-free-lunch Theorems”. In: Proceedings of the
6th Online World Conference on Soft Computing in Industrial Applications, pp. 25–42.

Yosinski, Jason, Jeff Clune, Yoshua Bengio, and Hod Lipson (2014). “How Transferable Are Fea-
tures in Deep Neural Networks?” In: Proceedings of the 27th International Conference on Neural
Information Processing Systems (NIPS). Vol. 2. Cambridge, MA, USA: MIT Press, pp. 3320–
3328.

Zliobaite, Indre (2010). “Learning under Concept Drift: An Overview”. In: Computing Research
Repository (CoRR) abs/1010.4784.

Zliobaite, Indre, Albert Bifet, Mohamed Gaber, Bogdan Gabrys, Joao Gama, Leandro Minku, and
Katarzyna Musial (2012). “Next challenges for adaptive learning systems”. In: ACM SIGKDD
Explorations Newsletter 14.1, pp. 48–55.

Zliobaite, Indre and Bogdan Gabrys (2014). “Adaptive preprocessing for streaming data”. In: IEEE
Transactions on Knowledge and Data Engineering 26.2, pp. 309–321.

71


	Abstract
	Acknowledgements
	Introduction
	The review context and the INFER project summary

	Existing Research
	Repository of Datasets
	Real-world Datasets
	Synthetic Datasets
	Datasets from Published Research
	Discussion and Summary

	Meta-features Generation and Selection
	Descriptive, Statistical and Information-Theoretic Approach
	Landmarking Approach
	Model-based Approach
	Discussion and Summary

	Base-level Learning
	Discussion and Summary

	Meta-learning
	Existing Systems
	Regression and Classification Problems
	Clustering
	Discussion and Summary

	Adaptive Mechanisms
	Discussion and Summary


	Research Challenges
	Summary
	Meta-features
	List of Symbols, Nomenclature, Abbreviations
	Glossary of Terms
	References

