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ABSTRACT Image classification systems are known to be vulnerable to adversarial attacks, which are
imperceptibly perturbed but lead to spectacularly disgraceful classification. Adversarial training is one of the
most effective defenses for improving the robustness of classifiers. We introduce an enhanced adversarial
training approach in this work. Motivated by human’s consistently accurate perception of surroundings,
we explore the artificial attention of deep neural networks in the context of adversarial classification.
We begin with an empirical analysis of how the attention of artificial systems will change as the model
undergoes adversarial attacks. Observation is that the class-specific attention gets diverted and subsequently
induces wrong prediction. To that end, we propose a regularizer encouraging the consistency in the
artificial attention on the clean image and its adversarial counterpart. Our method shows improved empirical
robustness over the state-of-the-art, secures 55.74% adversarial accuracy on CIFAR-10 with perturbation
budget of 8/255 under the challenging untargeted attack in white-box settings. Further evaluations on
CIFAR-100 also show our potential for a desirable boost in adversarial robustness for deep neural networks.
Code and trained models of our work are available at: https://github.com/lizhuorong/Towards-Adversarial-
Robustness-via-Feature-matching

INDEX TERMS Bio-inspired explanations, deep learning, defense, adversarial attack, learning
representations.

I. INTRODUCTION
Whereas deep neural networks perform a variety of computer
vision tasks with superior accuracies, their performance spec-
tacularly degrades under ubiquitous threat of the adversarial
attacks [1]. In the context of image classification, adversar-
ial attacks are crafted from natural image with impercep-
tible perturbation to induce erroneous predictions [2]–[4].
Even worse, the attacked classifier outputs the incorrect
prediction with surprisingly high confidence. Serious con-
cerns are raised when the deep neural networks are applied
to real-world applications, especially on reliability and
security systems [5]–[8]. This problem has garnered enor-
mous attention and encourages high activity on defense
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methods [9]–[13], which can be roughly categorized into
three catalogs: using network add-on, changing network
architecture and adversarial training [14]. Among them,
adversarial training offers the state-of-the-art robustness.
In this paper, we focus on exploring an enhanced adversarial
training method.

While deep neural networks are fragile to such subtle per-
turbations, we humans are still able tomake correct prediction
on these deceiving images. Motivated by the outstanding
reliability and efficiency of human brain, we device a method
learning from how the brain classifies. To effectively defend
the adversarial attack, we first investigate what happens
to the victim models as they undergo attacks. We lever-
age a bio-inspired technique, Class Activation Mapping
(CAM) [15], [16], for our empirical analysis. Motivation is
that, being statistically demonstrated highly correlative with
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human attention [17], CAM clearly indicates the discrim-
inative regions used by the network to recognize classes.
As shown in Fig.1, the class activation maps of original
images (see Fig.1(a) and (c)) are highly class-discriminative,
with visual explanation exclusively highlight the regions of
‘‘barracouta’’ and ‘‘green lizard’’ separately. When apply
adversarial perturbations to the original images, though they
are too subtle to detect (see Fig.1(e) and (g)), the alternations
on class activation maps are substantial. Fig.1(f) shows that
the that the attention of the network on the true object, ‘‘bar-
racouta’’, has been diverted to other objects and thus making
wrong prediction, ‘‘sea snake’’. Also, in Fig.1(h), the region
of interest, i.e. where the class-specific features of ‘‘green
lizard’’ lie, is dispersed over the background under attacks,
leading to a misclassification as ‘‘common newt’’.

FIGURE 1. Imperceptible perturbation in pixel space can result in
significant alteration on class activation maps. Here shows the class
activation maps in the penultimate layer of VGG16 corresponding to
natural images (top) and adversarial images (bottom) respectively. The
adversarial images are generated by PGD [18] with perturbation budget
8/255. The adversarial examples are incorrectly predicted as ‘‘sea snake’’
and ‘‘common newt’’, while the true labels are ‘‘barracouta’’ and ‘‘green
lizard’’. Note that red indicates regions with high score for the class.

The empirical study above shows that, though the perturba-
tion is subtle in pixel space, it can be easily detected through
the significant attention shift in feature space. Note that a
robust classifier is supposed to be insensitive to adversarial
noise thus holding the original prediction. Through the lens
of class activation maps, the original class-discriminative
attention will stay where it was with unchanged confidence.
Building on this intuition, we introduce a regularization term
to penalize the alternations on class activation maps, so that it
becomes difficult to induce the wrong prediction by adding an
adversarial noise. In the framework of achieving robustness
by feature matching, we also investigate alternative feature
matching operations.

Model trained by the proposed method substantially
improves the state-of-the-art adversarial robustness under a
wide range of strong attacks in white-box settings, on stan-
dard benchmark dataset CIFAR-10 and even the challenging
CIFAR-100.

To summarize, our main contributions are as below:
1) We present an enhanced defense which encourages the

consistency in class-discriminative feature between the
clean image and its adversarial counterpart bymatching

the class activation maps. We also provide a variants
of feature matching operations to seek the defense that
exhibits the best robustness.

2) We achieve new state-of-the-art adversarial accuracy
on CIFAR-10 with perturbation budget of 8/255 under
untargeted attack in the highly challenging white-box
settings. Specifically, we get 51.54%, 55.74% and
52.95% adversarial accuracy under strong attacks
named C&W(30), PGD (7) and PGD (20), separately.

3) For further evaluation on the much challenging dataset,
we implement several baselines from the literature
on CIFAR-100 and conduct comparisons on it. Our
method exceeds the state-of-the-art methods under a
wide range of attacks.

II. BACKGROUND AND RELATED WORK
Consider a standard classification task. Given an example
x ∈ Rd and the corresponding label y ∈ [k] that drawn from
an underlying data distribution D, as well as the predefined
loss function L, e.g., the widely used cross-entropy loss in
image classification task. The goal is to find parameters θ
that minimize the population risk E(x,y)∼D[L(x; y, θ)], which
is also known as the Empirical Risk Minimization (ERM).

Though models that trained by ERM work well on the
holdout test data, they degrade spectacularly under the adver-
sarial attacks due to the induced distribution shift [2], [9].
Many efforts have been devoted to securing the model against
adversarial examples [10], [18]–[21]. As one of the most
strongest defenses, adversarial training effectively alleviates
the issues raised by the distribution shift. It adapts the ERM
paradigm to adversarial images, towards improving robust-
ness. In practice, the adversarial examples are crafted from
the original training data on-the-fly and fed into the model as
inputs during training. Thereby, the distribution shift can be
effectively rectified.

There has been significant progress in developing stronger
adversarial training methods. A notable method has been
proposed by Madry et al. [18], which casts the defense
into an optimization task and solves it reliably. Specifically,
it seeks the parameter δ∗ that optimizes the following mini-
max problem:

min
θ
E(x,y)∼D[max

δ∈S
L(x; y, θ)] (1)

where δ is the perturbation that subjects to lp-norm budget
as ‖δ‖p ≤ ε and S is the set of allowed perturbations.
Whereas the inner maximization corresponds to the gener-
ation of attacks, the outer optimization is to defend against
these attacks via minimizing the loss induced by the adver-
sarial attacks. Madry et al. [18] also suggests that universal
robustness can be developed through adopting the first-order
adversary, projected gradient descent (PGD) attack, for adver-
sarial training. For simplicity, we abbreviate this method to
AT-PGD hereafter for simplicity. The resulting models of
AT-PGD achieved the first empirical robustness on popu-
lar CIFAR-10 dataset and thus being one of the most pop-
ular baselines on adversarial training. While it effectively
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FIGURE 2. Examples of the paired class-specific feature maps on the coupled clean-adversarial images across various DNNs. From left to right, clean
images with true classes ‘‘bee’’, ‘‘lionfish’’, ‘‘bull mastiff’’ and ‘‘lab coat’’, are crafted into adversarial images to induce incorrect prediction, namely
‘‘sulphur butterfly’’, ‘‘whiptail’’, ‘‘panthera tigris’’ and ‘‘box turtle’’. Though the patterns of attention shift might be distinct, the discrepancy of feature
maps induced by the adversarial perturbations can be consistently observed across different types of DNNs.

improves the robustness over the previous method, it disre-
gards the connections between the natural examples and the
corresponding perturbed versions [22].

Building on AT-PGD [18], Kannan et al. [23] recently
propose Adversarial Logit Pairing (ALP), which improves
the performance by an extra constraint. Specifically, apart
from the same predicted class enforced by AT-PGD [18], they
also encourage the similarity in the logits vector between the
natural examples and the corresponding crafted versions:

min
θ
E(x,y)∼D[L(x; y, θ)+ λD(f (x; θ ), f (x + δ∗; θ ))] (2)

The first term guarantees the performance on natural
examples while the additional term is designed to guide
the matching of the logits vector f (x; θ ) and f (x + δ∗; θ ).
Here, λ is a hyperparameter and D is a measure for distance,
e.g., `2 loss. They suggest that the logit paring is benefi-
cial as it utilizes the inter-correlation of the example pair.
Nevertheless, ALP has not been verified under the untar-
geted attacks in the literature. Engstrom et al. [24] suggests
that models in [23] are only trained to defend against tar-
geted attacks (e.g. with intentional classes or random target
classes), thus being weaker than the ones trained to resistant
against untargeted attacks.

Concurrent to our work, Ref. [25] frames the adversar-
ial training as feature denoising, which highlights scaling
the adversarial training to ImageNet, requiring modifica-
tion to the network architecture with additional denoising
blocks. As shown in Fig.2, attention shifts can be consis-
tently induced by adversarial perturbations across various
Deep Neural Networks (DNNs). Motivated by this observa-
tion, we alternatively elaborate our method to be appliable
to any pretrained backbone models. The main difference

between ourwork and feature distillation firstly introduced by
Hinton et al. [26] is that we keep the same network archi-
tecture in training and further apply the distilled knowledge
as a defense. Orthogonal to our work, Zhang and Wang [22]
introduces Optimal Transport solver to improve robustness
over the Kullback-Leibler (KL) or Jesen-Shannon (JS) based
methods. In addition, model ensemble [11], [27] and unsuper-
vised scheme [22], [28] also enable the robustness improve-
ment. It might be possible to achieve further improvement by
appropriately integrate these techniques in future work, but it
is beyond the scope of this paper.

In this work, we present a regularization technique to
enhance the defense against universal adversarial attacks.
Motivated by the success of AT-PGD [18], we use it as
the underlying basis for our approach. In contrast to it,
we take advantage of the inter-relationship between the orig-
inal sample and its counterpart in addition to the shared label.
This draws our method closely related to the state-of-the-art
method, ALP [23], which uses logits vector as the feature
and highlighted the logits pairing for the defense against
targeted attacks. Our method mainly differs in two perspec-
tives, the choice of feature for matching and the attacks we
defend against. As for the feature for matching, we adopt the
gradient-weighted class activation of the penultimate layers
as meaningful feature. It enables the fully preservation of
the spatial and class-discriminative information that crucial
for training a good classifier, as justified in extensive com-
parative experiments in Sec.IV. With respect to the attacks,
we aim at defensing against untargeted attacks rather than
targeted attacks that used in ALP, as suggested in [24] that
a defense robust to untargeted attacks is stronger than the one
only robust to targeted attacks.
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III. PROPOSED METHOD
A. FEATURE MATCHING
In this work, we propose to leverage a feature matching oper-
ation in the form of an additional regularizer to the standard
adversarial training.

1) LAYERS TO SELECT
Prior work [23] proposes to match the logits vector, that is,
the activation after the fully connected layer. Alternatively,
we encourage the consistency in the penultimate layer (i.e.,
the nearest convolution layer to the fully connected layer,
which is also named pre-dense layer) to suppress the alter-
ation in class prediction. Our motivation for the selected layer
is that, the spatial information can be retained in convolution
layers, while will get lost in the dense layer, as all these
spatial features will be flattened to output a vector of logits.
In addition, higher-level visual components can be captured
as the layer goes deeper [29], [30]. Therefore, the last con-
volution layer is expected to be considerably expressive.
We provide quantitative experiments in Sec-IV.D to justify
our layer selection for feature matching.

2) FEATURES FOR MATCHING
However, the naïve implement by directly matching the fea-
ture maps in penultimate layer between the images is not
effective, as the spatial structure maintained in higher lay-
ers might be not class-specific. A simple alternative to the
single-layer scheme is matching the feature maps of multi-
layers. By means of comparative experiments, we found that
it still suffers from this problem at a reduced level, which
will be presented in Sec.IV-D.We speculate the comparability
of these two schemes is that, the increment information of
multilayers over one deepest layer are those preserved in the
shallower layers, e.g., colors and details of images. These
features might be important for image reconstruction but not
significantly beneficial for our purpose. In addition, the per-
turbation in feature space is easy to observe but difficult
to measure [25], which poses anther challenge for feature
matching.

To address above issues, we propose to leverage a much
class-discriminative and easier quantitated feature for our
feature matching. As a robust classifier is supposed to be
insensitive to noise and will remain the original predictions.
Our institution is that, the class-specific attention, which
corresponds to the region of interest, will stay where it was
with confidence. Leveraging the visual explanations of neural
networks [15], [16], we use the combination of k feature
maps in penultimate layer A followed by the Global Average
Pooling g and ReLU activation as the features to match:

ϕcCAM = ReLU (
∑
k

g(
∂yc

∂Ak
)) (3)

where the gradients ( ∂y
c

∂Ak ) are back propagated by the true
class c. Gradients are set to zero for all categories except
the ground-true class, on purpose of class discrimination.

ReLU activations used here is to only highlight the features
with positive impact on the attention [16]. Therefore, we can
encourage the similarity in truly meaningful embedding of
the paired examples by the suppression of the attention shift
induced by perturbations.

Note that we do not use the CAM technique [15] and its
extension [16] in an exact way as in the literature. Concretely,
we deprecate the normalization when apply the class-specific
attention to adversarial feature matching. This is because the
the normalization to [0,1] in CAM is for visualization pur-
poses, but it will lead to inessential scaling that undesirably
undermines the feature mapping.

3) FEATURE DISTANCE
As recommended by Johnson et al. [31], we adopt the feature
reconstruction loss as a measure for our matching operation.
The feature distance between two images x and x̂ is defined
as the distance between representation ϕj(·) of images in layer
of the network:

Dϕ,jfeat (x, x̂) =
1

CjHjWj
‖ϕj(x), ϕj(x̂)‖22 (4)

where Cj × Hj ×Wj is the shape of feature map of layer j.

4) ADVERSARIAL FEATURE MATCHING
Given a clean image x, the proposed adversarial fea-
ture matching is implemented by minimizing the distance
between the class-specific activation of the original image x
and the corresponding adversarial image:

DCAM (ϕcCAM (θ, x), ϕcCAM (θ, x + δ∗)) (5)

B. ADVERSARIAL TRAINING WITH FEATURE MATCHING
REGULARIZER
Trained by the cross-entropy loss only, standard classifiers
might be able to fit the training distribution, but it is prone
to have undesirable behavior off the data manifold. ALP [23]
achieves better robustness by using adversarial examples as
additional input, which guides better behaviors on a larger
region. ALP further enforces a loss term for better under-
standing of data.

Our empirical analysis above suggests that the
class-specific activation can well represent the imperceptible
and offensive perturbation in the form of attention shift in the
feature space (see Fig.1). Therefore, we exploit the feature
matching operation as a regularizer for enhanced adversarial
training, with the total loss function as follow:

min
θ
E(x,y)∼D[L(x; y, θ, δ∗)+ λ1DCAM (ϕcCAM (θ, x),

ϕcCAM (θ, x + δ∗))+ λ2Lnorm] (6)

Here the first term refers to Eq.(2) as the experiments show
that our regularizer works better when used in conjunc-
tion with Eq.(2) than with Eq.(1). The second term signi-
fies the proposed regularizer, and the last term Lnorm =
‖ϕcCAM (θ, x)‖2+‖ϕcCAM (θ, x+δ∗)‖2 is the `2 norm decay that
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widely used in image processing tasks [32]. Coefficients λ1
and λ2 are weights for the trade-off among loss terms.
We compare all the variants described above in Sec.IV-D,

with results showing that our method attains substantial
outperformance over the baseline models. We hypothesize
that the proposed regularization works well as it essentially
provides an extra prior to guide the model towards better
representation of data.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTS SETTINGS
Following common protocols [18] for evaluating the adver-
sarial training models, we consider the untargeted attacks,
since a defense robust to untargeted adversarial attacks is
stronger than the one only robust to targeted attacks [24].
In this work, we perform the evaluation under the white-box
settings, where the adversary has access to the parameters of
model that to be attacked.

We perform extensive experiments on two benchmark
datasets, CIFAR-10 and CIFAR-100 [33]. The former is
widely used in adversarial training literature [18], [22],
[34], [35] and the latter is more challenging as the num-
ber of training images per class is only one-tenth of that
in CIFAR-10. The baseline methods we compare against
are: (1) standard training with clean images only (Stan-
dard), (2) the min-max optimization based adversarial train-
ing (AT-PGD) [18], which is one of the most robust defense
approach, and the adversarial logit pairing (ALP) [23], which
is currently the state-of-the-art adversarial training technique.

To be comparable with baselines, we train the models
against the `∞-bounded adversaries, which are generated
by the PGD optimization with size of 2 for 7 steps, and
the total perturbation budget ε = 8. Data augmentations
including random flips, crops and per image normalization
are employed. We adopt the wider variant of ResNet as the
network architecture, which is with larger capacity than the
original one and benefits a lot especially when the adversaries
are imperceptible.

As for evaluation, in order to have a close measurement
of the true robustness, we test all the models against a vari-
ety of threat models, including FGSM [4], C&W [36], and
PGD attacks in white-box settings. The metric we measure
is the adversarial accuracy, i.e., the percentage of correctly
classified images on the test set that are perturbed by the
threat model. Constrained by the expensive computation cost,
we limit to compare all models on the first 1K test images.

B. EVALUATING THE EMPIRICAL ROBUSTNESS
1) RESISTANCE FOR DIFFERENT UNTARGETED ATTACKS
CIFAR-10 consists of 50K training images and 10K test
images in 10 classes. To be comparable, we follow the same
hyperparameters settings as the widely used baselines [18].
Details can be found in our experiment settings. We sum-
marize the adversarial classification accuracy on the original
images (Clean) and various attacks in Table 1. It shows that

TABLE 1. Classification accuracy on CIFAR-10. Best results under each
attack are in bold to show the best performance while lowest bound for
each method is underlined, depicting the most threatening attack [40].
The proposed method performs the best under a wide range of
challenging untargeted attacks.

Standard model fails under adversarial attacks. AT-PGD and
ALP significantly improves the robustness over Standard
model by achieving 45.87% and 46.28% accuracy separately
under the 20-step PGD attack. Model trained with the pro-
posed method achieves desirable outperformance with clear
margins under the storng attacks, e.g., C&W attack and PGD
attacks. When applied weaker attack, e.g. one step FGSM,
our method is still able to tie with the state-of-the-art. Note
that we get decrease of accuracy on clean images, but this is
also observed in all existing defense models [34], [37] due
to an inherent trade-off between the robustness to adversarial
attacks and its standard accuracy [38]. This is caused by the
fragile correlation between the learned features of the classi-
fier and the label [39]. To achieve almost perfect performance,
standard classifiers tend to take advantage of any feature that
useful for classification, even the feature that can only provide
weak information. However, the paradigm of adversarially
trained model is different as it mitigates adversarial examples
by rejecting these non-robust features, which are only slightly
correlated to label and easily manipulated. Therefore, when
the defended model applies on clean images, the standard
classification performance will inevitably degrade as some
features have been discarded. Nevertheless, we believe such
slight dip will be outweighed by the considerable gains in
adversarial robustness.

CIFAR-100 is of the same number of training images
and also the test images as CIFAR-10, but it belongs to
100 classes. Much less image per class makes it more chal-
lenging than CIFAR-10, which can be illustrated by the lower
accuracies in Table 2 as compared to Table 1. Our method still
outperforms the baselines no matter under weak attacks or

TABLE 2. Classification accuracy comparison under different untargeted
attacks on CIFAR100. The proposed method performs the best under a
wide range of untargeted attacks.
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FIGURE 3. Comparison of loss surface for different models in the vicinity of natural examples 1248 (top) and 1430 (bottom) of CIFAR-10 validation set,
with the true label of ‘‘automobile’’ and ‘‘horse’’ respectively. The loss is represented by z-axis, which is varying with the adversarial perturbation
(da = sign(∇x f (x))) and the Rademacher vector (dr ∼Rademacher(0.5) ).

strong attacks, which further demonstrates the effectiveness
of the proposed method.

Fig.3 plots the loss landscapes of different models as
another comparison. The loss surface of the undefended
model that trained by the standard cross-entropy loss only,
is highly bumpy, see Fig.3 (a).While AT-PGD gets lower loss,
the loss surface is still highly non-linear. In other words, ALP
might be able to improve the robustness, but it still suffers the
same problem at a reduced level. Noticeably, Fig.3 (d) shows
the substantial improvement by the proposed method, achiev-
ing further loss reduction and flattened landscape.

2) RESISTANCE FOR ATTACKS OF DIFFERENT STRENGTH
We further evaluate the resistance of our method against
attacks of different strengths. Madry et al. [18] suggests that
being robust against PGD implies resistance against many
other first order attacks. Therefore, we set PGD as the adver-
sary in this experiment and vary the iterations of it, indi-
cating different strengths of attacks. Fig.4 shows the model

FIGURE 4. Model robustness under PGD attacks with different iterations.
(a) Results from 1 to 100 iterations. (b) Zooms in the results
within 10 iteration. Models are trained with attacks with perturbation
budget of 8/255 and attack iteration of 7. Results show that the proposed
model is secured under a wide range of strength of threat.

robustness under PGD attacks that with different strength.
It can be observed that except for the failure of the undefended
Standard model at an early iteration, all defended models
can sustain a stable accuracy along with increasing attack
iterations. Note that the proposed method consistently out-
performs all the baselines by a clear margin after the attack
convergence. It suggests that the proposed model is fairly
strong against the attacks across a wide range of iterations.

C. QUALITATIVE EVALUATION
In addition to the quantitative evaluation above, we also
conduct the qualitative analysis by visualizing the latent
representation. Our insight is that a robust model can push
the cluster of adversarial examples closer to the true class,
so that the adversarial images and their clean counterparts
will be clustered together as they belong to the same true
class. Fig.5 visualizes the penultimate fully connected layer
of the proposed model and the baseline models. Unsurpris-
ingly, the undefended model (a) perfectly groups all the
clean images into the same cluster. However, it separates the
adversarial examples into distinct groups that far away from
the clean images. In other words, the standard trained model
misclassifies almost all the adversarial images into false class.
This observation is consistent with the results of Standard
in Table 1. Though AT-PGD and ALP can draw the adver-
sarial examples and clean images closer, but several distinct
clusters can still be observed in Fig.5(b) and (c). On the con-
trary, our method draws all the adversarial examples closer
without distinct clusters. In other words, the proposed defense
is strong enough that it is difficult to generate adversarial
examples to fool the models trained with our method.

We further present the separation of clean and adver-
sarial images to illustrate how the images are tempted
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FIGURE 5. t-SNE visualizations of latent representation under adversarial attacks. Adversarial examples are crafted from 1000 clean test images of
CIFAR-10. Clean images are denoted by dots while the adversarial examples are represented by colored triangles. Among them, triangle that towards the
right denotes the correctly classified adversarial examples, and the other ones denote the misclassified images. Noticeable is that the undefended
model (see (a)) separates the adversarial examples into distinct groups with clear margins. (b) AT-PGD and (c) ALP are more robust than (a) Standard but
are still less than ideal, as clusters can still be distinguished. In contrast, the proposed model (d) gathers all the samples together as they actually belong
to the same class, demonstrating its robustness and superiority over the baselines.

FIGURE 6. The separation of adversarial images from the natural samples. 200 random images sampled from ‘‘airplane’’ and ‘‘cat’’ of CIFAR-10 are
denoted by green and blue dots separately. Adversarial examples crafted from the natural images but misclassified into false class are denoted by red
triangles. It is shown that for (a) standard classifier, the adversarial images are far from the true cluster. (b) AT-PGD and (c) ALP show improved
robustness with less mistakenly classified images when compared with (a). Notice that the proposed method (d) further mitigates the malicious example
by drawing them closer to the true class ‘‘cat’’.

FIGURE 7. Comparison of loss surface for different feature matching operations around data points 1248 (top) and 1430 (bottom) of CIFAR-10 validation
set: (a) Standard; (b) multilayers; (c) single layer, and (d) proposed method. The notations are the same as Fig.3.

into the neighbored class after being attacked. Fig.6 shows
that the robustness of classifier has been greatly improved
through defense training, as the quantity of misclassified

adversarial examples (red triangles) are obviously reduced
in Fig.6(b)-(d). Note that a robust classifier is supposed to
not only alleviate misclassification but draw the adversarial
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FIGURE 8. Robustness of different layers for attention-based feature
matching. The conv4_3 layer achieves slightly better adversarial accuracy
(see solid line in pink) than the proposed layer, nevertheless, its
performance spectacularly degrades on standard classification (see solid
line in blue). Note that while others layer can well perform on either
standard or adversarial classification task, the proposed penultimate
layer is able to yield better performance than average on both scenes.

images from false class back to the true one (cluster of blue
dots), as shown in Fig.6(d). Thus, our method is able to better
resistant to adversarial perturbations by reject adversarial
examples that lie on the edge of the false cluster, which corre-
sponding to delusive images that much difficult to recognize.

D. DESIGN CHOICES
1) VARIANTS OF FEATURE MATCHING OPERATIONS
Next, we evaluate the variants of feature matching operations
described above by comparing the loss surface around the test
data points. As shown in Fig.7, each of the feature matching
operations ((b)-(d)) is useful, as the loss gets reduced and
the surface becomes smoother when compared with the stan-
dard model. This suggests that feature matching is a sensible
design principle for defending against adversarial attacks. It is
noticeable that the proposed method yields much more flatter
landscapes and lower losses, which empirically demonstrates
the potential of matching the class-specific activation for
improving the adversarial robustness.

2) CHOICE OF LAYER
Quantitative experiments have been conducted to validate
our choice of layer. We set the preferred layer for feature
matching by the experiment on how the adversarial accuracy
changes as the layer varies. Results reported in Fig.8 and
Table 3 demonstrate that the penultimate layer is effective for
attention-based feature matching, while other convolutional
layers are less than ideal.

TABLE 3. Robustness of different layers for attention-based feature
matching.

3) CHOICE OF PARAMETER VALUES
Parameter λ1 is the weight of the proposed regularizer, serv-
ing as a controller on the strength of feature matching oper-
ation when applying to adversarial training. Notable gains

FIGURE 9. Classification accuracy on natural images and adversarial
examples under different settings of parameter λ1. Setting λ1 = 0
corresponds to adversarial training without our regularizer, while
different positive values reflect varied strength of regularization.
We recommend λ1 = 10 for a well balance of standard classification
performance and adversarial accuracy.

of accuracy on adversarial examples can be achieved by
simply setting the parameter λ1 positive, as shown in Fig.9,
suggesting that the proposed regularizer is essential to an
enhanced defense. We also observed that lower accuracy
on clean images accompanies higher adversarial accuracy.
Reason is that a provable trade-off exists between standard
training and adversarial training [38]. Therefore, we suggest
that setting λ1 = 10 for a well balance of standard classifica-
tion performance and adversarial accuracy.

V. CONCLUSION AND FUTURE WORK
In this work, we first perform an empirical analysis to better
understand the adversarial attack. It suggests that, whereas
adversarial perturbations are restricted to be subtle at pixel
level, alternations of the representation at high-level are not
hidden. Motivated by this observation, we then present a
regularizer that leverages the class activation mapping tech-
nique for featuring matching. Extensive empirical experi-
ments show that model trained by the proposed regularization
term distinguish itself from the baseline methods on the
benchmark datasets CIFAR-10 and CIFAR-100.We also con-
duct comparative experiments on alternative featurematching
operations. The outperformance of the proposed method over
other variants suggests that suppression of attention shift
enables effective defense against the adversarial examples.
Overall, the inspiration drawn from human attention on the
adversarial defense has desirably advanced the state-of-the-
art techniques. This provides us a broad view on future work
that the integration of bio-inspired mechanism into artificial
intelligence methodologies has great potential to yield further
improvements.

One of the limitations to our work is that the proposed
method has not been scaled to and verified on the more chal-
lenging benchmark datasets (e.g., ImageNet) or real-world
scenario, due to the prohibitively high computational cost of
adversarial training. With more available hardware in future
we might get closer to the true robustness. Note that the tech-
nique we use for generating the attention map is applicable
to any CNN-based classifiers, and the attack we employ for
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adversarial training is universal. In other words, our method
is independent of network architecture and attacks. Thereby,
it is conceivable that our approach could be used in con-
junction with sufficiently expressive networks and stronger
attacks in future to develop even better defense.
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