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Abstract
Background: Deep learning methods have become popular for their high‑performance rate in the 
classification and detection of events in computer vision tasks. Transfer learning paradigm is widely 
adopted to apply pretrained convolutional neural network (CNN) on medical domains overcoming 
the problem of the scarcity of public datasets. Some investigations to assess transfer learning 
knowledge inference abilities in the context of mammogram screening and possible combinations 
with unsupervised techniques are in progress. Methods: We propose a novel technique for the 
detection of suspicious regions in mammograms that consist of the combination of two approaches 
based on scale invariant feature transform (SIFT) keypoints and transfer learning with pretrained 
CNNs such as PyramidNet and AlexNet fine‑tuned on digital mammograms generated by different 
mammography devices. Preprocessing, feature extraction, and selection steps characterize the 
SIFT‑based method, while the deep learning network validates the candidate suspicious regions 
detected by the SIFT method. Results: The experiments conducted on both mini‑MIAS dataset and 
our new public dataset Suspicious Region Detection on Mammogram from PP (SuReMaPP) of 384 
digital mammograms exhibit high performances compared to several state‑of‑the‑art methods. Our 
solution reaches 98% of sensitivity and 90% of specificity on SuReMaPP and 94% of sensitivity and 
91% of specificity on mini‑MIAS. Conclusions: The experimental sessions conducted so far prompt 
us to further investigate the powerfulness of transfer learning over different CNNs and possible 
combinations with unsupervised techniques. Transfer learning performances’ accuracy may decrease 
when the training and testing images come out from mammography devices with different properties.

Keywords: Classification, computer‑assisted image processing, computing methodologies, deep 
learning, digital mammography
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Introduction
Among global female population, breast 
cancer is the most commonly diagnosed 
cancer and the leading cause of cancer 
death.[1] The scientific community made 
a lot of efforts over the last decades 
to improve the diagnostic accuracy 
of breast cancer in women. Reading 
mammograms is a time‑demanding and 
tiring job; about 30% of cancers are 
missed on mammograms (false negatives), 
but recent tests and studies showed that 
computer‑aided diagnosis (CAD) software 
for mammography allows for increase in 
radiologist sensitivity.[2,3] The risk of dying 
from breast cancer has dropped by >20%, 
according to International Agency for 

Research on Cancer scientific papers, 
in areas where screening mammograms 
programs have been conducted, and 
by as much as 40% among women 
who undergo screening mammograms 
regularly.[4] The objective of CAD systems 
is to draw radiologist attention to possible 
abnormalities in mammography, reducing 
the number of false positives and false 
negatives; according to latest scientific 
studies, computer‑aided detection of 
breast cancer can improve the detection 
rate from 4.7% to 19.5% compared to 
radiologists.[5] It is observed that breast 
cancer is characterized with mass showing 
irregular appearance, linear spicules, and 
blurred boundaries. On the other side, benign 
masses usually have a well‑circumscribed 
border. The Breast Imaging Reporting and 
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Data System showed that descriptors such as shape, size, 
and margins are useful to characterize the abnormalities or 
masses present in breast cancer.[6] Moreover, according to 
scientific studies, masses are mainly grouped with respect to 
their size: small size (3–15 mm), middle size (15–30 mm), 
and large size (30–50 mm).[7] The scientific community put 
a lot of effort into biomedical imaging tasks which showed 
alternating results; several approaches for suspicious region 
detection have been proposed.[8‑12]

Image features such as interest keypoints, local and edge 
descriptors, intensity, perimeter, area, geometrical shape, 
compactness, and orientation are often used to perform 
mammogram patch classification.[13‑15] Ali and Hamed[16] 
give a the state‑of‑the‑art survey for early breast cancer 
detection on mammograms. Min et al.[17] used features such 
as area, perimeter, circularity, and density to characterize 
the shape of a mass. Texture features are widely adopted 
to detect clustered micro‑calcification in digitized 
mammograms.[18] In a study,[19] the authors adopted Gabor 
filters to detect architectural distortions and abnormalities in 
mammograms. Anitha and Dinesh[20] automatically detected 
and segmented the suspicious mass regions of mammogram 
using a modified transition rule named maximal cell 
strength updation in cellular automata. Tingting et al.[21] 
used Kernel principal component analysis to improve the 
discriminating power of each single feature extracted 
from the image. A team of researchers[22] discriminated 
fatty from dense mammograms by using correlation‑based 
feature selection and sequential minimal optimization. 
In a study,[23] the authors quantified and estimate the size 
of abnormalities in mammograms with Scale Invariant 
Feature Transform (SIFT). Aize et al.[24] proposed a robust 
information clustering algorithm incorporating spatial 
information for breast mass detection. Kai et al.[25] used a 
combination of adaptive global thresholding segmentation 
and adaptive local thresholding segmentation on a 
multiresolution representation of the original mammogram. 
Pereira et al.[26] achieved good results in terms of 
segmentation and detection of suspicious regions on 
mammograms by using a combination of wavelet analysis 
and genetic algorithms.  Sampaio et al.[27] adopted cellular 
neural network (CelNN) and support vector machine (SVM) 
as tools for the detection of masses on mammograms. 
A method for mass enhancement using piece‑wise 
linear operator in combination with wavelet processing 
from mammographic images is proposed by Vikhe and 
Thool.[28] A group of researchers proposed a method 
based on Dual‑Stage Adaptive Thresholding (DuSAT).[29] 
In greater detail, they detected suspicious mass region by 
using global histogram and local window thresholding 
method. The global thresholding is done based on the 
histogram peak analysis of the entire image, and the 
threshold is obtained by maximizing the proposed threshold 
selection criteria. The topic of the detection of suspicious 
regions in mammograms has been widely addressed by 

the biomedical community[30] on several application areas 
such as neuro, retinal, pulmonary, digital pathology, breast, 
cardiac, abdominal, and musculoskeletal. A lot of water 
passed under the bridge since Berkman et al.[31] proposed 
convolutional neural networks (CNNs) to classify regions 
of interest in mammograms. Since then, much of progress 
has been done in the matter of hardware throughput 
computation, making deep learning methods[32] (which 
are very resource demanding) more accessible. Because 
of the aforementioned reason, a growing number of 
biomedical imaging methods recently addressed the 
detection of suspicious regions in mammograms using 
deep learning solutions. Accordingly, we give a brief list 
of different state‑of‑the‑art methods as follows. Pengcheng 
et al.[33] employed CNNs to build a classifier for detecting 
and localizing the abnormalities in digital mammography; 
they reported VGGNet results achieving the best accuracy 
up to 92.53% in patch classification. Some scientists[34] 
assessed the performance of several CNN architectures over 
Digital Database for Screening Mammography (DDSM) 
dataset for the task of mass classification. In the recent 
study by Tsochatzidis et al.,[35] the authors addressed the 
CNN evaluation on mammograms with two different 
training scenarios where pretrained weights and random 
fashion weights are adopted to train the nets. Jung et al.[36] 
proposed a mass detection on mammograms based on a 
deep learning object detector called RetinaNet with good 
results. The method by Cai et al.[37] is focused on the 
study of calcification clusters as early sign of cancer; 
they characterized calcification with descriptors obtained 
from deep learning and handcrafted descriptors. Richa 
et al.[38] showed comparisons between different CNN 
architectures such as VGG16, ResNet50, and IcenptionV3 
for the purpose of mass detection in mammograms. Thijs 
et al.[39] presented a comparison between CNN and a CAD 
system on a large mammograms dataset. Arfan[40] used 
the combination of CNN and SVM to detect suspicious 
regions in mammograms. Wang et al.[41] dealt with the 
discrimination of breast cancer with microcalcifications. 
Michiel et al.[42] applied unsupervised deep learning to 
address Breast Density Segmentation and Mammographic 
Risk Scoring evaluation. Yamashita et al.[43] provided an 
extensive survey on the CNNs applications over different 
tasks in radiology.

Ribli et al.[44] proposed a CAD system based on Faster 
R‑CNN, which allows for the detection and classification 
of malignant or benign lesions on a mammogram in a 
fully automatic way. A limitation of Ribli et al.’s method 
is the small size of the publicly available dataset. Tavakoli 
et al.[45] came up with a new method based on CNNs and 
a decision scheme (CNNs + DS). In greater detail, the 
authors first used a preprocessing block around each pixel 
that, then, is fed into a trained CNN to determine whether 
the pixel belongs to normal or abnormal tissues on images 
from the Mini‑MIAS dataset.[46] A classifier based on the 
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combination of cascade of deep learning and random 
forest is proposed by Dhungel et al.[47] First, a multi‑scale 
deep belief network selects suspicious regions, which are 
processed by a cascade of deep CNNs (DCNN). Only those 
regions which are detected by this deep learning analysis 
go through a two‑level cascade of random forest classifiers. 
The resulting regions are then combined using connected 
component analysis. As well as, Ribli et al. and Dunghet 
et al. conducted their experiments over both DDSM[48] 
and Inbreast[49] datasets. Akila et al.[50] recently proposed a 
method called MA‑CNN (Multiscale All CNN) to classify 
normal, benignant, and malignant tissue (cancerous) over 
the Mini‑MIAS dataset. Dhungel et al.[51] also proposed 
a deep learning technique based on a two‑step training 
process which employs the learning of a regressor that 
is function of the values of handcrafted features from 
the Inbreast dataset. The previous steps are followed by 
a fine‑tuning stage that learns the breast mass classifier. 
Arevalo et al.[52] developed a method comprising two main 
stages: the first one is a preprocessing to enhance image 
details, whereas the second one is a supervised training for 
learning both the features and the breast imaging lesion 
classifier from Breast Cancer Digital Repository.[53] In the 
study by Teare et al.,[54] the authors provided a solution to 
detect suspicious regions on images from DDSM based on 
the use of genetic search of image enhancement methods 
and a Dual DCNNs. Huynh et al.[55] compared SVM based 
on image features extracted by a CNN and their prior 
computer‑extracted tumor features, aiming to discriminate 
benign from malignant breast lesions.

They processed images from a University of Chicago 
Medical Center Dataset. Levy et al.[56] focused their efforts 
on using transfer learning and techniques such as data 
augmentation and preprocessing to overcome the training 
data limitations in DDSM. Agarwal et al.[57] compared 
the widely adopted CNNs such as VGG16, ResNet50, 
and InceptionV3 over DDSM and showed Inception V3 
overcoming the other networks.

Much progress has been made over the last decades, 
as reported in the current section. A list of several 
state‑of‑the‑art methods is also reported in Table 1.

Remarkably, some methods can reach out to high accuracy 
levels (using different reported results) over the task of 
the detection of suspicious regions on mammograms. 
On the other side, we want to point out that most of the 
scientific literature methods focus on the mentioned 
task over mammograms belonging to datasets with very 
similar properties, such as of spatial resolution and 
image dimensions. Because of the above reasons, we 
focus our work over two datasets equipped with pictures 
having dissimilar properties. We want to stress out the 
performances of transfer learning over the detection task.

In our method, we consider as suspicious all those regions 
that include abnormalities such as calcification, well‑defined 

and circumscribed masses, spiculated masses, ill‑defined 
masses, architectural distortion, and asymmetries. The 
main contributions of our paper can be summed up as it 
follows: a new solution for the detection of suspicious 
regions in mammogram images using the integration of a 
new SIFT‑based approach and a deep learning technique 
with transfer learning; an experimental investigation on 
the transfer learning paradigm ability to predict suspicious 
region models from different mammograms; a comparison 
with some state‑of‑the‑art methods over Mini‑MIAS; and, 
the last but not the least, the sharing of our own new public 
mammogram dataset called[58] Suspicious Region Detection 
on Mammogram from PP (SuReMaPP) hand‑labeled by 
three expert radiologists.

Materials and Methods
In this section, first we give, in order, the overall 
architecture of our integrated solution, a more detailed 
description of the two techniques that compose the 
integrated solution. Before moving to the description of 
each technique, we want to point out that the objectives of 
our work are mainly three as follows:
• To provide a new solution to detect suspicious regions 

based on the integration of a SIFT‑based algorithm and 
transfer learning

• To investigate the prediction power of transfer learning 
method in biomedical imaging comparing two CNN 
architectures fine‑tuned over two different datasets

• To provide a new publicly available and hand‑labelled 
mammogram dataset (SuReMaPP).

Suspicious Region Detection on Mammogram from PP

SuReMaPP consists of 343 mammograms hand‑labeled 
by expert radiologists dealing with the identification of 
suspicious regions such as abnormalities (benignant and 
malignant) and calcifications.

SuReMaPP contains mammograms with standard bilateral 
craniocaudal and mediolateral oblique views. The spatial 
resolution depends on the mammography device used, in 
order, GIOTTO IMAGE SDL/W and FUJIFILM FCR 
PROFECT CS. The former generates images with a spatial 
resolution of 3584 × 2816 pixels; it is equipped with a 
detector size of 24 cm × 30 cm. The pixel size is 85 µm.

The latter generates images with a spatial resolution 
of 5928 × 4728; it is provided with a detector of size 
24 × 30 cm. The pixel size is 50 µm.

We want to share SuReMaPP dataset with the scientific 
community to be used as “Gold Standard” for biomedical 
imaging methods and algorithms. The images are accessible 
through the link.[58]

The 343 images from SuReMaPP involve a number 
145 patients; 100 mammograms are related to 25 patients 
and include negative cases (no suspicious regions in them); 
the remaining 243 mammograms are with positive cases 
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Contd...

Table 1: A list of some state‑of‑the‑art methods
Author Method Dataset Reported results Pros and cons
Cao et al. Spatial clustering[24] Mini‑MIAS Sensitivity 88.7% The method is based on a RIC algorithm. 

It would be interesting to assess the 
performance over other datasets either

Ribli et al. Faster R‑CNN[44] INbreast AUC 0.85, sensitivity 90%, 
and 0.14 false‑positive 
marks per image

It sets the state‑of‑the‑art classification 
performance on INbreast. The size of the 
publicly available dataset is small

Hu et al. Adaptive 
thresholding[25]

Mini‑MIAS Sensitivity 91.8% The global and local thresholds are chosen 
adaptively without artificial intelligence. 
Tests over mammograms with different 
spatial resolutions are missing

Huynh et al. Transfer learning from 
deep convolutional 
neural networks[55]

Dataset from the 
University of Chicago 
Medical Center. 219 
digital mammograms 
and 607 ROIs

AUC 0.86 and true positive 
and false‑positive fractions

The article shows performances of several 
architectures
The results are reported only on their own 
dataset

Xi et al. Deep convolutional 
neural networks[33]

DDSM dataset Accuracy 95% The authors investigated the powerfulness 
of some state‑of‑the‑art CNNs

Pereira et al. Multilevel 
thresholding[26]

Mini‑MIAS Sensitivity 90% The method runs both detection and 
segmentation tasks. The detection accuracy 
rate is high, while segmentation performs a 
bit lower

Dunghel 
et al.

Combination of cascade 
of deep learning and 
random forest[47]

DDSM and INbreast True positive rate of 
0.96±0.03 at 1.2 false 
positive per image on 
INbreast. True positive rate 
of 0.75 at 4.8 false positive 
per image on DDSM

The method achieves very good 
performances on both datasets. The 
computational burden of the method seems 
to be quite expensive (the execution time is 
almost 20 s)

Tavakoli 
et al.

CNNs and a decision 
scheme[45]

Mini‑MIAS Sensitivity 93.33% ROIs in the proposed method are not 
rescaled to preserve the quality of the image

Burçin et al. Havrda and Charvat 
entropy and Otsu N 
thresholding[73]

Mini‑MIAS Sensitivity 90.2% The method detects abnormalities from 
mammograms using an unsupervised 
approach. A check of the robustness of the 
features extracted over another dataset is 
missing

Akila Agnes 
et al.

Multiscale all 
convolutional neural 
network[50]

Mini‑MIAS Sensitivity 96% and 0.99 
AUC

The method exhaustively exploits the 
powerfulness of CNN over Mini‑MIAS 
reaching out impressive performances

Sampaio 
et al.

Cellular neural 
network[27]

Mini‑MIAS Sensitivity 90.9% The method allows for detecting and 
segmenting suspicious regions even though 
the latter task has some drawbacks (10% of 
masses were lost)

Levy and 
Jain

Deep convolutional 
neural networks[56]

DDSM Accuracy 92.9%, precision 
92.4%, recall 93.4%

Preprocessing, data augmentation, and 
transfer learning steps are run to obtain 
state‑of‑the‑art performances

Vikhe and 
Thool

Wavelet processing and 
adaptive thresholding[28]

Mini‑MIAS and 
DDSM

Sensitivity 91% The method runs suspicious region 
detection on two subsets of the existing 
databases reaching out more or less the 
same accuracy levels

Anitha et al. WPAT, Dual‑Stage 
adaptive thresholding[29]

Mini‑MIAS Sensitivty 93% The method relies upon dual‑stage adaptive 
thresholding which is, at the same time, 
dependent on pectoral muscle removal step

Teare et al. Genetic search of 
image enhancement 
methods and a dual 
deep convolutional 
neural networks[68]

DDSM and ZMDS Specificity 91% Specificity 
80%

False‑color enhancement technique to 
mammography images and utilizing a dual 
deep CNN engine. Some details on the 
reliability of the whole system are missing
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Figure 1: A patch sample from Suspicious Region Detection on Mammogram 
from PP (a) and a sample of patches generated with data augmentation (b)
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(both malign and benign suspicious areas) of 120 patients 
(2–3 views per case).

Patients whose mammograms are in SuReMaPP are aged 
41–62 years. Both SuReMaPP undergo data augmentation 
to increase the number of patches for the fine‑tuning step 
in transfer learning. More details will be given in the next 
section.

Data augmentation

Data augmentation[59] is a well‑suited technique for 
reducing overfitting; there exist several methods for data 
augmentation; we adopt geometric transforms to increase 
the size of the original images from SuReMaPP. We extract 
patches from both Mini‑MIAS and our dataset to be used 
with CNNs (PyramidNet and AlexNet). The first layers of 
the PyramidNet and AlexNet CCNs are, in order, designed 
with a spatial of 224 × 224 and 227 × 227 pixels. We want 
to point out that transfer learning needs many images for 
fine‑tuning the CNN over a specific image category. The 
data augmentation we use generates image transforms such 
as translations, horizontal reflections, and crop.

Furthermore, the standard approach for data augmentation 
suggests to extract random patches (and their horizontal 
reflections) from the original images and train the network 
on these extracted patches. A reasonable requirement 
regarding the data augmentation technique is that the 
number of images per category has to be well balanced. 
Although the extraction of nonsuspicious patches from the 
mammographies with no labeled regions is a straightforward 
process, the extraction of patches with suspicious regions 
is neither a straightforward nor an immediate step. Our 
algorithm starts the extraction of patches from the centroids 
of regions labelled by the radiologists [the blue dot in 
Figure 1a] using a partially overlapped window‑sized 224 
x 224 pixels (or 227 by 227). In greater detail, a given 
window centred on the centroid of a labelled suspicious 
region is further divided into 16 sub‑blocks. The red 
vertices [Figure 1a] will be in turn, the centres of the 
new patches used for the data augmentation. For a given 
mammogram, the window centered on the centroid of the 
suspicious region is uniformly divided into 16 sub‑blocks 
whose red vertices [Figure 1a] will be, in turn, the centers 
of all the patches with a suspicious region. This algorithm 
allows us to extract from 9 to 17 patches per mammogram 
depending on the size and the coordinates of the suspicious 

region in the image (we do not include the patches that 
partially fall outside the mammogram). In addition to the 
translation, we also applied horizontal reflection to increase 
the size of the dataset [an example of data augmentation is 
in Figure 1b].

The Mini‑MIAS dataset consists of 322 images, digitized 
at 50‑µ pixel edge, with different sized suspicious regions: 
small regions with radium lower than 28 pixels; medium 
regions with radium larger than 28 pixels and lower 
than 57 pixels; and large regions with radium larger than 
57 pixels.

The SuReMaPP dataset is composed of 343 mammograms 
with high spatial resolutions depending on the 
mammography device (in order, the first device generates 
mammogram with a spatial resolution of 3584 × 2816 
pixels and the second one makes mammograms with a 
spatial resolution of 5928 × 4728).

To respect the proportions of the region of interest 
of the mammograms, we decide to extract patches 
with the following spatial resolutions: 448 × 448 pixels 
for the mammograms with an original spatial resolution 
of 3584 × 2816; 774 × 774 pixels for the mammograms 
whose original spatial resolution is 5928 × 4728. Then, 
the patches are resized to the spatial resolutions of the first 
layers of the CNNs (224 × 224 or 227 × 227).

We extract a total of 3206 patches from Mini‑MIAS and 
4914 patches from SuReMaPP. The data are well balanced 

Table 1: Contd...
Author Method Dataset Reported results Pros and cons
Jaffar DuSAT, deep 

convolutional neural 
network with support 
vector machine[40]

Mini‑MIAS, DDSM Sensitivity 93.25% Performances over two different datasets 
are very similar. Comparisons over 
high‑resolution images are missing

CNNs–Convolutional neural networks, WPAT–Wavelet processing and adaptive thresholding, DuSAT–Dual‑stage adaptive thresholding, 
DDSM–Digital Database for Screening Mammography, MIAS–Medical image analysis, RIC–Robust information clustering, AUC–Area 
under the curve, ROIs–Regions of Interest, ZMDS–Zebra Mammography Dataset
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Figure 2: The histogram of a sample from the Suspicious Region Detection 
on Mammogram from PP dataset is given (two main modalities can be 
observed)
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the nonparametric kernel‑smoothing distribution described 
in Eq. 2, K is a nonnegative function (the kernel function) 
and h > 0 is a smoothing parameter called the bandwidth 
that controls the smoothness of the resulting probability 
density curve. In our method, h is set 0.337 which best 
approximates a standard normal distribution of data.[60]

After all pixel values from an input mammogram [Figure 
4a] are converted in double data type, then the image 
histogram is analyzed. It is observed in Figure 4b that 
the mentioned histogram specifications allow in order 
for obtaining an image with lower dynamic gray‑level 
range [upper row in Figure 4b] and an image with higher 
dynamic gray‑level range from the original mammogram 
image [lower row in Figure 4b]. When the histogram 
specifications are applied, we move forward to image 
inspection with SIFT local keypoints and descriptors. SIFT 
keypoints are extracted on both two versions of the image 
considering different aspects that will be described below. 
We deliberately discard the keypoints having negative 
Laplacian values because of points located close to the 
edge of the breast.
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The extraction of SIFT[61] is mainly characterized by two 
parameters: the peak threshold and the edge threshold. The 
edge threshold allows eliminating peaks of the Difference 
of Gaussians (DoG) scale space with small curvature. The 
peak threshold parameter filters out the peaks of the DoG 
space scale, showing low absolute values. Both settings, as 
suggested by the scientific literature,[61,62] are needed to be 
set experimentally for the specific task of interest. In order, 
we set 0.01 as the value of the peak threshold and five as 
the value of the edge threshold.

We set the number of octaves to four and the number of 
scale levels to five as suggested to be the optimal values 
for the SIFT algorithm.[61]

We also select the keypoints with radius parameter larger 
than 3 mm and lower than 50 mm, as scientific literature[7] 
suggests that regions with size smaller than 3 mm or 
>50 mm not being significant for diagnosis [Figure 4c].

Furthermore, a validation step based on Euclidean distance 
set to 50 is needed on both the mammogram to establish 
the spatial coherence between the matching points between 
two specified versions of the mammogram.

The intersections between pairs of keypoints which pass 
through the above‑mentioned steps detect candidate 
suspicious regions.

with an approximately equal number of patches along with 
suspicious and nonsuspicious areas.

Scale invariant feature transform‑based technique

For a given mammogram [Figure 1a], all pixel values are 
converted in double data type, then the image histogram 
is analyzed. Two main modalities are usually shown 
in the histogram of mammograms [Figure 2]; the first 
one is related to the background black pixels [the first 
peak of the histogram in Figure 2], which can be filtered 
out for our purpose because we are only interested in 
patches containing breast profile, and the second one [see 
the second peak of the histogram as shown in Figure 2] 
contains information about the foreground pixels that 
describe the pixel intensity for each breast profile region. 
We simply discard all pixels belonging to the first modality 
of the histogram. It is well known that SIFT descriptors 
are extracted along boundaries, edges, spikes. and, more 
generally. the local maxima of Laplacian of Gaussian 
across different scales of the same image.[14] We want SIFT 
keypoints to be extracted on both image details (borders, 
edges, and spikes) and structural components; to address 
this matter, we decide to treat two different versions of the 
mammogram, a version with lower gray levels dynamic 
range image and a version with higher gray levels dynamic 
range. The image with high dynamic range in the histogram 
will show a lot more of details and edges than the one 
with low dynamic range in the histogram, which in turn 
will highlight the structural component of the image. We 
transform the image using two histogram‑fitting functions: 
the logistic fitting function [Figure 3a] and a nonparametric 
kernel‑smoothing distribution [Figure 3b]. The logistic 
distribution, described as in Eq. 1, is used for growth 
models and in logistic regression. The logistic distribution 
equation is characterized by mean (µ) and sigma (σ) 
parameters of the pixel gray levels. As far as it concerns, 
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Figure 3: The logistic function (a) and the nonparametric kernel‑smoothing distribution (b) are used as fitting functions of the histogram for the Breast 
profile regions. These functions are, then, used to generate two new versions of the given mammogram
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As we are interested in assessing the effectiveness of this 
unsupervised approach, we test it over a subset of 200 
images of our own public dataset SuReMaPP, which will 
be further described in the next sections. The SIFT‑based 
technique returns keypoints, which should be located in 
suspicious regions. Providing that the datasets we employed 
in this study have been manually labeled by radiologists, we 
have knowledge of where the suspicious regions are in the 

images. Therefore, after the running of the technique over 
data, we evaluate this method by counting the number of true 
positive and false positives. For the sake of clarity, keypoints 
returned by the SIFT‑based method which fall within 
suspicious regions in the image are considered true positive, 
whereas keypoints falling within nonsuspicious regions are 
considered false positives. The experimental results show 
85% of specificity in spite of a nonnegligible average number 

Figure 4: The overall working scheme of the Scale Invariant Feature Transform based module is represented with respect to all the steps which it is made 
of: (a) the input image is specified into two new mammograms (b) using the logistic function and the nonparametric kernel‑smoothing distribution [Figure 2]; 
Scale invariant feature transform keypoints are extracted on both the mammogram versions considering the radius parameter and discarding those 
keypoints with negative Laplacian (c), then the intersection between all the keypoints extracted on both mammogram versions is performed as a sort of 
result integration (d)

d
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Figure 5: The overall scheme of the deep learning technique we adopt for our purpose: employment of pretrained convolutional neural networks, transfer 
learning, data augmentation, regularization, and fine‑tuning on biomedical data
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of false positives per image (10 keypoints are on the average 
detected in nonsuspicious regions per image). We count the 
number of keypoints and compare the locations with respect 
to our own dataset SuReMaPP to be used as gold standard. 
The output of the SIFT‑based technique is a set of SIFT 
keypoints that identify the candidate suspicious regions. To 
make the output of the SIFT‑based method compliant with 
transfer learning, we extract square patches centered on the 
keypoints. Therefore, the square patches are the candidate 
suspicious regions to be validated by the transfer learning 
module described in the next section.

Here, we want to remark that the first module of the novel 
technique is an unsupervised method, and the parameter 
tuning for the extraction of SIFT keypoints does not have 
any impact on the second module, which is a supervised 
deep learning technique.

Transfer learning

Transfer learning[63] provides a framework to leverage the 
already‑existing and trained network in a related domain 
over a new task domain. In our case, we want to reuse two 
CNNs such as AlexNet[64] and PyramidNet[65] pretrained 
over ImageNet[66] to be fine‑tuned over biomedical data 
as depicted in the overall scheme in Figure 5. In practical 
terms, we retrieve the pretrained versions of AlexNet 
and PyramidNet, and then we apply the transfer learning 
paradigm with data augmentation, regularization, and 
fine‑tuning on the mammogram domain. AlexNet and 
PyramidNet, which are the adopted CNNs for our purpose, 
are designed with different architectures; this is of related 
interest for our study because we want to investigate the 
performance of transfer learning in mammogram domain 
by analyzing the impact of the network depth on the 
classification task.

CNN is a hierarchical architecture made up of several kernel 
filters, which allow for extracting local features from images. 
A standard CNN architecture is equipped with convolutional, 
pooling, and fully connected layers. Each structure needs 
to abide by some rules and constraints given by their 
layers’ size (to mention one of the essential properties), the 
number of layers, pooling, stride, and hyper‑parameters, 
which characterize the overall structure of the CNN stack. 
Researchers such as Zhang et al.,[67] Ioffee et al.,[68] Zhang 
et al.[69] gave in order, their contributions over utilizations 
of Deep Learning, CNN features off‑the‑shelf, Stochastic 
gradient descent algorithm, Accelerating Deep Networks. 
They represent the theoretical basis for the application of Deep 
Learning approaches over the biomedical domain. A feature 
map of a CNN is the result of the filtering of an input image. 
For each layer of the CNN stack, the corresponding feature 
map shows the partial output of the network.[70]

Because a feature map is the result of spatial filtering of an 
input matrix and a kernel filter, it needs to stick to filtering 
rules. It means that as long as convolutional filters increase 
their dimension with stride and pooling size, it comes out 
as a decrease of the size of feature maps. The latter one is 
the conventional method of stacking several convolutional 
filters. As a side effect, this approach tends to sharply 
downsample the input images along with the layers of 
CNN toward the output layer.[65]

AlexNet, as well as the most of CNN architectures, 
approaches the classification task with stride and pooling 
which sharply down sample their input loading the 
computational burden over the first layers in the network. 
The innovation brought by the PyramidNet architecture 
is to increase the feature maps, gradually distributing the 
computational burden across all network units.[65]
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Figure 7: The training accuracy rates of PyramidNet on Mini‑MIAS are shown 
with respect to different number of epochs and Mini‑BatchFigure 6: The training accuracy rates of AlexNET on Mini‑MIAS are shown 

with respect to different number of epochs and Mini‑Batch

Figure 9: The training accuracy rates of PyramidNet on Suspicious Region 
Detection on Mammogram from PP are shown with respect to different 
number of epochs and histogram specifications

Figure 8: The training accuracy rates of AlexNET on Suspicious Region 
Detection on Mammogram from PP are shown with respect to different 
number of epochs and histogram specifications
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Zooming in the CNN architectures, AlexNet consists 
of five convolutional layers, max‑pooling, dropout, and 
three fully connected layers counting nearly 60 million 
parameters to be tuned during training. AlexNet is trained 
on a subset of ImageNet[66] data, made of 1.5 million 
annotated images falling within nearly 1000 categories. 
The PyramidNet version we choose to carry out the 
experiments is the one pretrained on ImageNet; it consists 
of 272 layers and 62.1 million parameters, and the network 
includes convolutional, max‑pooling, dropout layers. Other 
than AlexNet, residual units, batch normalization, and 
different positions for rectified linear unit (ReLU) are used 
in PyramidNet for the purpose of improving the knowledge 
inference abilities with deeper stack. Although it is deeply 
and finely described in their reference papers,[64,65] we 
want to remind that the ReLU is used for the nonlinearity 
functions, while the dropout layers allow for addressing 
the problem of overfitting on training data. The key idea 
of dropout[71] technique is to randomly drop units from 
the neural network during training to avoid co‑adapting. 
During training, dropout samples form an exponential 
number of thinned networks. The effect of all the thinned 
networks is approximated with using a single unthinned 
network with smaller weights. The dropout technique 

allows for decreasing the error by a 4%. Each output 
neuron is modeled by using ReLU rather than the standard 
hyperbolic tangent because of its velocity. After applying 
ReLU for modeling each neuron of the networks, then the 
neuron output ai

x, y is normalized by using local response 
normalization as follows:
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In the next sections, some more details about the 
experimental configuration of transfer learning in our case 
study are given.

Results
This section is focused on the analysis and the assessment 
of our method performances on different datasets such 
as Mini‑MIAS and SuReMaPP as mentioned in the 
previous sections. The analysis is conducted by looking 
at all the steps required to design the full stack made up 
of SIFT‑based and deep learning modules. In the next 
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Figure 10: The overall scheme of our novel technique which consists 
of the integration of a scale invariant feature transform-based method 
and a deep learning module with transfer learning: input (mammogram 
image); histogram specifications (logistic function and nonparametric 
kernel‑smoothing distribution); scale invariant feature transform‑Based 
method which extract keypoints on candidate suspicious regions; 
PyramidNet fine‑tuned over mammogram images (specified with the same 
histogram specification as in scale invariant feature transform‑based 
method); Mechanism of voting using Softmax function
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subsections, we describe the fine‑tuning of CNNs over 
the histogram specified images from both Mini‑MIAS and 
SuReMaPP and the tests conducted with the integration 
of the SIFT and transfer learning modules. We also 
analyze the pros and cons of our method by evaluating its 
performances with respect to other state‑of‑the‑art methods 
based on different features and principles such as the ones 
mentioned in various studies.[24‑29,40,72]

Fine‑tuning of convolutional neural network

In this section, we give you details concerning the 
fine‑tuning of PyramidNet and AlexNet to show which 
architecture is the more suitable for this purpose. First, 
we want to point out that we run two training sessions 
for both PyramidNet and AlexNet to fine‑tune them over 
the mammogram domain using, in order, a subset of 
SuReMaPP and a subset of Mini‑MIAS. In greater detail, 
we used a subset of three‑fourth of the dataset as training 
set, while one‑fourth is used as a test set. The performance 
rates you can see in Figures 6‑9 are referred to the 
so‑called validation accuracy, that is, the classification 
accuracy of the model over a subset of the training set 
(called validation set).

Training sessions are carried out using publicly available 
versions of AlexNet and PyramidNet, which are pretrained 
on the ImageNet dataset.[66] Weights of a pretrained model 
are preinitialized, that is a different way than as it was 
trained from scratch.

The fine‑tuning configuration of AlexNet is as it follows. 
The iteration number of the fine‑tuning is set to 104. The 
learning rate is 10−3. The momentum parameter is set as 
0.9, and weight decay is set to 5 × 10−4. All parameters 
apart from the above mentioned are set to the default 
configuration of AlexNet.

As far as it concerns PyramidNet, weight decay is applied 
to all weights and biases instead of just the weights of 
the convolution layers. The networks are trained using 
backpropagation by stochastic gradient descent over 
ImageNet. The initial learning rate is set to 10−3. The 
weight decay is set to 10−4, and the momentum parameter 
is set to 0.9. The filter parameters are set using msra.[73]

As noticeable from Figures 6‑9, PyramidNet outperforms 
AlexNet on both the datasets during the fine‑tuning phase as 
shown in the plots in Figures 6‑9. The best performances are 
achieved by PyramidNet with the following configurations:
1. Fifty epochs and Mini‑Batch 50 across the experiments 

conducted on Mini‑MIAS
2. Sixty epochs and the histogram specification with the 

nonparametric kernel‑smoothing distribution across the 
experiments conducted over SuReMaPP.

Table 2: 5‑fold cross validation performance of 
PyramidNet over 4916 patches from SuReMaPP

Fold test Suspicious (%) Nonsuspicious (%)
True False True False

1st fold 461 (93.8) 30 (6.2) 458 (93) 34 (7)
2nd fold 463 (94.2) 28 (5.8) 464 (94.3) 28 (5.7)
3rd fold 465 (94.7) 26 (5.3) 467 (94.9) 25 (5.1)
4th fold 466 (94.9) 25 (5.1) 469 (95.3) 23 (4.7)
5th fold 466 (94.9) 25 (5.1) 471 (95.7) 21 (4.3)
Average (%) 94.5±0.48 5.5±0.48 94.64±1.05 5.36±1.05
We have a total number of 4916 patches from SuReMaPP. To apply  
5‑fold cross‑validation, we split up the whole dataset into five subsets 
counting 983 patches. The remaining amount of patches are used 
as the training set over the category suspicious and non‑suspicious 
regions. The process aims to detect the capabilities of the model to 
infer knowledge over the classification task. We repeat the steps 
on each of the five subsets. The results for each of the 5 groups are 
described in each table row using the true positives and false positives. 
The average percentage in the bottom row gives us a measure of the 
knowledge inference of the Deep Learning Model
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Figure 11: Blue grids above are with the same size (224 × 224) of the input 
layer of PyramidNet. The red circle spots the suspicious region detected by 
the radiologists (a). A patch (yellow square) centered on a keypoint (green 
dot) that does not intercept any suspicious region (b) is a false positive (FP). 
A patch (yellow square) centered on a keypoint that intercepts the suspicious 
region (c) is a true positive (TP). In the last case (d), we count the blue dotted 
patch containing the suspicious region as a false negative (the system was 
able to detect only a false positive, see the yellow square)
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The performance analysis of the fine‑tuning [Figures 6‑9] 
prompts us to proceed by collecting our experiments using 
only PyramidNet as the CNN of our integrated solution. 
Figures 6 and 7 show the training accuracy of AlexNet and 
PyramidNet fine‑tuned on Mini‑MIAS dataset with respect 
to the size of Mini‑Batch and the number of epochs. 
Mini‑Batch is mainly based on the principle of running 
the training over image subset groups rather than over the 
entire dataset to extract the accuracy trend of the training 
step, it is widely used to save time during the training 
phase in deep learning methods.

Other than in Figures 6 and 7, in Figures 8 and 9, we 
focus our attention on the impact of the two histogram 
specifications on PyramidNet and AlexNet trained over 
SuReMaPP dataset. On the average, PyramidNet outperforms 
AlexNet in training accuracy over our own dataset.

A 5‑fold cross‑validation step is applied as a statistical 
method to estimate the skill of the deep learning model.

We compare our model abilities as described in Table 2. 
As mentioned above we adopt the 5‑fold cross validation 
as a means to assess the discrimantion skills of a machine 
learning method. Following the standard steps, we first 
shuffle the whole dataset randomly. Then we split the 

images into 5 groups. For each group we take the group 
itself as a hold‑out group or test‑set. 

The remaining groups represent the training set, we fit a 
model on the current training set and retain the performance 
score of the model. 

To assess the discrimination capabilities of the model over 
our data we repeat the steps above using all five groups as 
hold‑out and the remaining four as training set. 

More specifically, we have a total number of 4916 patches 
from SuReMaPP. To apply a 5‑fold cross validation 
we split up the whole dataset into 5 subsets counting 
983 patches, the remaining number of patches are used 
as training set over the category suspicious and non‑
suspicious regions. The process aims to detect the 
capabilities of the model to infer knowledge over the 
classification task. We repeat the steps on each of the 5 
subsets. The results of the 5‑fold cross validation are in 
Table 2. For each fold test, the total number of patches 
of the training set is 3933. In Table 2, we test the training 
set over the hold‑out set of patches. The average correct 
detections for suspicious and nonsuspicious patches 
are, respectively, 94.5% and 94.64%, whereas the false 
detection for the two classes are 5.5% and 5.36%, 
respectively. We want to stress out that the best parameter 
configuration achieved during the fine‑tuning step is set 
to be used over the test images to assess the performance 
of the model over new pictures. No further parameter is 
changed during the experimental sessions over the test‑set.

Integrated solution results

In our method, a patch is considered suspicious only when is 
detected by the SIFT‑based method and then by the transfer 
learning technique. As it can be observed [Figure 10] in 
the overall scheme, a mammogram is given as input to 
two histogram specifications, then the SIFT‑based method 
is applied to detect the suspicious patches from both the 
versions of the mammogram; the SIFT‑based method 
returns pairs of keypoints that fall within suspicious 
regions to be validated by the deep learning module. 
Therefore, our deep learning module is composed by two 
PyramidNet stacks, in order, fine‑tuned with the transfer 
learning paradigm on mammograms processed with the 
two histogram specifications described as in the SIFT‑based 
technique section.

In this section, we want to give measurements about the 
performance of our integrated solution by using statistical 
metrics such as accuracy and sensitivity as defined in 
Eqs. 5–7. We counted the number of false positives, false 
negatives, and true positives to give an objective measure 
of the performance of the method we propose.

For the sake of clarity, we give a graphical description in 
Figure 11 of what we consider as a true positive, a false 
positive, and a false negative.
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Figure 12: A comparison between different fine‑tuning data combination is 
given with respect to sensitivity and specificity metrics

Figure 13: The proposed method is compared with spatial clustering[24] (SC), 
adaptive thresholding[25] (AT), multilevel thresholding[26] (MT), Havrda 
and Charvat entropy and Otsu N thresholding[73] (HC), cellular neural 
network[27] (CelNN), wavelet processing and adaptive thresholding[28] (WPAT), 
dual-stage adaptive thresholding[29] (DuSAT), deep convolutional neural 
network with support vector machine[40] (DCNN_SVM), convolutional neural 
networks and a decision scheme[45] (convolutional neural networks + DS), 
multiscale all convolutional neural Network[50] (M All convolutional neural 
network) and our proposed method
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All the experiments have been conducted on both 
mini‑MIAS and SuReMaPP. As said in the previous 
sections, we need to work with a patch size of 224 × 224 
pixels from the mammograms. Hence, we extract a number 
of 3206 patches from Mini‑MIAS dataset and 4914 patches 
from our new dataset that fit the size requirements to work 
with PyramidNet (224 × 224 pixels).

As described in Figure 10, the output of each CNN is a 
probability value given by the Softmax Activation function (it 
forces the output of the network to represent the probability the 
input falls into each of the classes). In order, we conduct several 
experiments by using different bottom and upper threshold 
values (for each of the CNNs) applied to the Softmax function. 
For each experiment, a given patch is considered suspicious 
only when the output of the Softmax function is larger than 
the given upper threshold value, and conversely, a patch is not 
considered suspicious when the Softmax Activation function 
shows values lower than the given bottom threshold. During our 
experimental sessions, we set 30% as bottom threshold value 
and 70%, 95%, and 99% as upper probability threshold values. 
The best performances of our method are registered with 30% 
and 95% as lower and upper threshold values, respectively. It 
is necessary to highlight that our deep learning module consists 
of two PyramidNet CNNs fine‑tuned on mammograms (related 
to the histogram specifications previously mentioned); a patch 
is voted as suspicious by the deep learning module only when 
both Softmax outputs are larger than the given upper threshold.

Metrics such as sensitivity and accuracy (Eqs. 5–7) are 
given to evaluate the effectiveness of our integrated 
solution.

True positivesSensitivity =
True positives + False negatives

 (5)

True negativesSpecificity =
True negatives + False positives

 (6)

True positives +True negativesAccuracy =
True positives +True negatives
False positives + False negatives

+  (7)

The integration of the results obtained by our novel 
proposed solution dramatically reduces the number of false 
positives with respect to the results obtained only with 
the SIFT‑based method rising from 85% up to 90% of 
specificity.

A further investigation is necessary to evaluate and assess 
the level of abstraction from data achieved by transfer 
learning. For this purpose, we conduct several experiments 
with respect to different combinations in fine‑tuning and 
test‑set images. As briefly mentioned in the previous section, 
all images in a dataset, both Mini‑MIAS and SuReMaPP, 
have been organized as it follows: 75% of the dataset is 
used as fine‑tuning set, and the rest 25% is used as test set. 
A list of all experimental case studies is given below:
• Both fine‑tuning and test are conducted by using 

only images belonging to SuReMaPP dataset 
[Figures 8, 9 and 12]

• Both fine‑tuning and test are conducted by using 
SuReMaPP and Mini‑MIAS datasets [Figure 12]

• Both the fine‑tuning and test are conducted by using 
Mini‑MIAS dataset [Figures 6, 9 and 12];

Considering the list above, we want to analyze the level 
of abstraction of transfer learning with different solutions. 
For our purposes, we want to point out that the images 
coming from SuReMaPP have quite different sizes (see 
dataset and data augmentation sections). Furthermore, other 
than SuReMaPP, the Mini‑MIAS images have undergone 
resampling before to be digitized; this is a limit case study.

[Downloaded free from http://www.jmssjournal.net on Friday, July 3, 2020, IP: 10.232.74.26]



Bruno, et al.: Screening with SIFT and deep learning

170 Journal of Medical Signals & Sensors | Volume 10 | Issue 3 | July-September 2020

We notice [Figure 12] that our novel solution achieves high 
sensitivity and specificity values; it means that transfer 
learning allows to predict high‑level information through 
different layers in the PyramidNet stack.

As proof of the effectiveness of our novel solution, we 
compare our method against several state‑of‑the‑art methods 
using Mini‑MIAS as public gold standard [Figure 13].

We assess the performance of our method on Mini‑MIAS with 
respect to some state‑of‑the‑art methods, which are mainly 
based on spatial clustering,[24] adaptive thresholding (AT),[25] 
multilevel thresholding,[26] Havrda and Charvat entropy and 
Otsu N thresholding,[72], CelNN,[27] wavelet processing and 
adaptive thresholding[28], DuSAT,[29] DCNN with SVM,[40] 
CNNs + DS,[45] and multiscale All CNN[50] (M All CNN). 
Because only sensitivity and false‑positive number per image 
are available from other methods, we compare our method by 
looking at sensitivity values as shown in plot in Figure 12. 
Our method achieves a higher sensitivity than most of the 
comparison methods while keeping a low number of false 
positives per image. Our method has been implemented 
and integrated with Caffe’s[74] deep learning framework 
developed by Berkeley AI Research and by community 
contributors. Caffe’s deep neural networks which we worked 
through are implemented with C++ language. We also used 
some MATLAB and Python functions, which we interfaced 
with Caffe framework. All experiments are performed on a 
computer with a Core i7 950 3.06 GHz processor, 24 GB of 
RAM, and four GTX 580 graphics cards.

Discussion
The integrated solution we propose for detecting suspicious 
regions on mammograms reaches high rates of sensitivity and 
specificity on two very different datasets. Despite the histogram 
specifications and the preprocessing applied in SIFT‑based 
module allow for reaching up to 85% of specificity, this rate 
cannot be compared with the state‑of‑the‑art methods. We use 
the 85% specificity rate of the first module as reference for 
two main reasons: (1) we want to improve the performance 

rate when combined with PyramidNet and (2) we want 
to investigate the inference abilities of transfer learning 
when adopted over two different types of images and CNN 
architectures. It is noticed from the experimental sessions 
that PyramidNet outperforms AlexNet in all the experimental 
comparisons on the mammogram images we process. This 
may be explained because of the way PyramidNet increases 
the feature maps gradually instead of increasing them sharply 
at unit with downsampling as in AlexNet. Furthermore, it is 
necessary to mention that we treat high‑resolution images 
coming out from two mammogram devices as in SuReMaPP 
and medium‑resolution images generated in Mini‑MIAS. It 
is observed [Figures 12 and 13] that the performance of the 
proposed solution decreases when PyramidNet is fine‑tuned 
on both Mini‑MIAS and SuReMaPP images, while it keeps 
ranking high when PyramidNet is fine‑tuned only on each 
dataset. A further discussion about the overall performance 
with respect to the images used, however, should be conducted 
and some interesting aspects need to be highlighted: despite 
the images of SuReMaPP dataset have been generated by two 
different mammographs (as described in the Dataset section), 
the integrated solution achieves very high percentages of 
sensitivity and specificity as shown in Figure 12; the integrated 
solution also achieves good results also in case of fine‑tuning 
and testing on Mini‑MIAS dataset [Figure 12]. As shown by 
the experimental results, the integration of the SIFT‑based 
method and transfer learning comes out to be a good and valid 
tool in the CAD perspective [Figure 14].

Conclusions
Our findings suggest that transfer learning paradigm has 
very powerful ability to infer knowledge from biomedical 
data reaching good performances in suspicious region 
detection on mammogram.

Comparisons between the experimental results also show 
that transfer learning performances slightly drop when the 
fine‑tuning dataset consists of images with quite different 
size and spatial resolution (it contains both low/middle and 
high spatial resolution).

The results of our novel solution show how much deep 
learning helps increasing the performance of the SIFT‑based 
method in such a good combination [Figure 14].

Our method outperforms many state‑of‑the‑art techniques 
for suspicious region detection in mammograms [Figure 13] 
based on different approaches such as machine learning, 
clustering, classification, wavelet, and AT. Even when 
compared with a deep learning method[40] based on CNN 
and SVM, our method gets high sensitivity rates.

However, all the considerations above suggest further 
investigations on the ability of transfer learning and its 
relations to the acquiring device and spatial resolution. In 
this respect, the experiments we have conducted so far tell 
us that transfer learning can be used as a good validation 
tool to reduce the number of false positives of other 

Figure 14: The most important steps of our solution are resumed with 
green keypoints (b) (scale invariant feature transform‑based module) and 
red keypoints (c) (validated by transfer learning module) overlaid on a 
mammogram. Only the smaller red circles in the integrated results (c) turn 
out to be true positives

cba
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methods on different kinds of mammograms (acquired 
with different devices), but it is noticeable that if we 
want to achieve high sensitivity rates, it is recommended 
to fine‑tune the CNN on a single dataset provided with a 
single acquiring device or with similar acquiring devices.

A common problem in biomedical imaging community is 
the lack of public dataset with huge amount of biomedical 
data to be used for scientific purpose. In this perspective, 
an experimental setup with tens of thousands of labeled 
images might be used as dataset for the training from 
scratch of several deep learning architectures to be 
compared. In that case, some interesting answers could 
be expected about the knowledge inference upper limit 
of deep learning techniques. Furthermore, comparing two 
different deep learning approaches such as CNNs with 
transfer learning paradigm and CNNs trained from scratch 
would make possible to find a good trade‑off between 
computational resources and detection accuracy.

In future works, we will be investigating the effectiveness 
of semantic segmentation with fully connected neural 
networks and comparing their performances against an 
integrated solution like the one we propose in this article.
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