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ABSTRACT In the first seconds of observation of an image, several visual attention processes are involved
in the identification of the visual targets that pop-out from the scene to our eyes. Saliency is the quality that
makes certain regions of an image stand out from the visual field and grab our attention. Saliency detection
models, inspired by visual cortex mechanisms, employ both colour and luminance features. Furthermore,
both locations of pixels and presence of objects influence the Visual Attention processes. In this paper,
we propose a new saliencymethod based on the combination of the distribution of interest points in the image
withmultiscale analysis, a centre bias module and amachine learning approach.We use perceptually uniform
colour spaces to study how colour impacts on the extraction of saliency. To investigate eye-movements and
assess the performances of saliency methods over object-based images, we conduct experimental sessions
on our dataset ETTO (Eye Tracking Through Objects). Experiments show our approach to be accurate in
the detection of saliency concerning state-of-the-art methods and accessible eye-movement datasets. The
performances over object-based images are excellent and consistent on generic pictures. Besides, our work
reveals interesting findings on some relationships between saliency and perceptually uniform colour spaces.

INDEX TERMS Eye-movements, interest points, saliency map, visual attention.

I. INTRODUCTION
The human visual process starts outside the brain with the
projection of the light onto the retina. The retina is a thin
layer of neural tissue including the rods and cones, which are
responsible for dim light and daylight vision. Thanks to the
overall architecture of our visual system, we can transmit and
receive up to 10 billion bits of information per second [1].
Therefore, the lack of storage capacity of our brain concern-
ing the huge amount of information going from our eyes
towards the cerebral cortex to be processed at much higher
levels. However, due to the limits of our brain, we cannot
simultaneously perform complex analysis on all the input
visual information [1]. For a given scene, the detection of the
most critical visual subset occurs as one of the most important
tasks of the Human Visual System (HVS). When a person
performs any visual task (watching TV, driving a car) the
eyes flick rapidly from place to place to inspect the visual
scene. While observing a scene, saccadic eye movements
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allow for the central part of the vision (fovea) to fall upon the
region of interest of a picture. Vision is not uniform across
our field of view, and acuity decreases with eccentricity as
shown in [2]. Scientific researches also show physiological
evidence proving that human brain employs visual attention
to select regions from images to serialize the perception of
objects [3]. Theeuwes [4] discussed evidence regarding the
endogenous (goal-oriented) and exogenous (stimulus-driven)
control of attention in visual tasks for observers searching for
a particular visual feature such as colour, shape, or brightness.

Attention can be described as the allocation of cognitive
resources to information, and it can be divided into five types
constituting a hierarchical model:
• Focused attention
• Sustained attention
• Selective attention
• Alternating attention
• Divided attention.
We focused exclusively on selective attention as defined in

the scientific literature [1], [5] as ‘‘the ability to selectively
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maintain the behavioural or cognitive resource on specific
stimuli while ignoring the distracting or competing stimuli’’.

As shown in [6], there is an intimate connection between
visual attention and eye movements. That is the reason why
investigations on the salient areas of images have become a
critical topic in scientific research.

Snowden et al. [2] state that visual attention is mainly
guided by two factors: bottom-up and top-down factors.
Bottom-up factors are stimulus-driven, derived from the
regions of interest that pop out from the visual scene to our
eyes. Top-Down factors are more relevant to specific rules,
assigned visual tasks and behavioural based goals. Regions of
interest that catch human attention are highly discriminating
to the centre-surround principle. Visual Saliency aims to
imitate the behaviour of HVS by predicting the fixation points
of the most critical regions of an image from a perceptual
point of view. Visual Saliency is a multidisciplinary branch
of research; it lies on the progress achieved by different sci-
ences such as Psychology, Neurobiology, Computer Science,
Artificial Intelligence, Medicine [7]. In our work, we reveal
the most salient subset of an image by setting up the corre-
sponding saliency map. A saliency map is a grayscale map
with each pixel falling in the dynamic range [0, 255]. The
higher the intensity value, the more salient the location in the
visual scene.

As well as visual attention approaches, visual saliency
methods can be grouped into three main approaches by con-
sidering the visual feature and the visual attention process
involved within the extraction of the saliency map: bottom-
up, top-down, hybrid.

Visual Saliency bottom-up methods are stimulus-driven,
characterized by the so-called ‘‘visual pop-out’’ saliency.
In these approaches, the exogenous attention is involved
with the visual saliency. The centre-surround operation [8]
and graph-based activation maps [9] are examples of
implemented exogenous attention processes. These methods
exploit low-level features of the images such as contrast,
texture, colour, intensity to give rise to saliency maps.

Visual saliency top-down methods are based on high-level
visual tasks such as text, object, face detection. In the
top-down approach [10], a predefined task is given by the
object category to be detected.

Hybrid methods are conceived to work on two levels:
bottom-up and top-down. The former allows extracting a
noisy saliency map, the latter filters out noisy regions in
saliency maps created by the bottom-up layer.

We have recently concentrated our efforts on studying
the performance of several visual saliency approaches about
the task of the object attention. We gathered a collection of
eye-fixation point maps for different object images under the
name of ETTO (Eye Tracking Through Objects) [11], which
is described in greater detail in the eye-tracking datasets
section. Visual selective attention includes, among others,
location-based and object-based attention [12]). Still, we are
interested in studying the different performances of saliency
methods for both object-based and generic image datasets.

We aim to analyze visual saliency performance regarding how
visual attention processes select features that are part of an
object. Several experiments conducted over the years showed
observers prefer to make an eye movement towards the other
end of the same fixated object rather than to an equidistant
end of a different object. In fewer words, that is a preference
to make eye shifts within the same object rather than between
objects [13]. In [14] some researchers dealt with the analysis
of those processes which determine whether or not an object
in our environment captures our attention.

As revealed by findings and researches over the last
decade [15]–[17], the relations between low-level features of
the image and visual attention processes need to be further
inspected. For this purpose, our investigations addressed the
roles played by colour and scale features in detecting the
visual saliency of a given image. In this regard, it is well
known from the scientific literature that colour plays an
essential role in the extraction of saliency maps and more
generally on the overall visual attention processes [18]. Sev-
eral investigations have also been conducted over the last
decades on the bottom-up visual attention processes concern-
ing the impact of colour, contrast, texture and multiscale local
keypoints on the generation of an early saliency map on the
visual cortex V1 [19]. Many past studies have emphasized the
importance of borders in colour and luminance surface repre-
sentations in the early visual cortex V1 [20]. Models inspired
by the above aspects aim to mimic V1’s simple cell mecha-
nisms by computing centre-surround differences with distinct
colour and luminance opponency. Both CIE L*a*b* and CIE
L*u*v* colour spaces employ the opponent colour encoding.
Euclidean distances are used to provide the spaces with a
colour-difference formula for evaluating colour differences in
perceptual relevant units [21]. As revealed by Sharma et al.
in [22], while CIE L*a*b* colour space lacks some sensitivity
over monochromatic dark regions close to black, CIE L*u*v*
colour space is shown to bemore sensitive.Wewant to extract
saliency maps from images following those attentional prin-
ciples representing the neuronal activities in V1 towards those
areas in the brain responsible for the eye movements. In this
regard, we set up a saliency extraction method which is based
on the multiscale analysis of keypoint density maps over CIE
L*u*v* colour space. Thenwe combine the saliencymaps out
of each channel into the final saliency map with polynomial
regression trained over 100 images randomly picked up from
five different eye-tracking datasets.

It is observed that most of the recent saliency detection
methods are based on deep learning approaches. They achieve
high accuracy levels in detecting saliency maps but need
high-performance systems for training and testing steps as
well as a considerable number of images and the corre-
sponding eye-fixation data. We want to point out that, other
than deep learning methods, we just need only a subset of
eye-fixation point data to train our architecture. We do not
need any optimization step because the so-called bottom-
up attention processes inspire our technique. Our contribu-
tions in this work are as follows: a new saliency method
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based on the multiscale analysis of keypoint density maps
over CIE L*u*v* colour space; an extended analysis of the
colour impact on the saliency extraction; a comparison study
between our method and popular methods in the state-of-the-
art on different eye-tracking datasets; a study case showing
relationships between saliency and colour on object-based
and generic image datasets.

II. RELATED WORKS
In this section, we want to report a list of state-of-the-art
methods which are focused on visual saliency and taking
into account both perceptual and computational sides. Fur-
thermore, we provide the paper with a subsection focused
on eye-tracking datasets we employed to conduct our exper-
imental sessions.

A. RELATED TECHNIQUES
In the first section of this paper we report saliency methods to
be divided into three main groups because of the inspirational
visual attention principles: bottom-up, top-down, hybrid [23].
Nowadays, a further classification of saliency techniques can
be observed in the scientific literature concerning differ-
ent image processing, computer vision and artificial intel-
ligence approaches. In this regard, most of the approaches
in the topic of visual saliency can be divide into traditional
approaches-based and deep learning based saliency detection
methods.

1) TRADITIONAL APPROACHES-BASED SALIENCY
DETECTION
The traditional approaches-based Saliency Detection meth-
ods are meant to be all methods whose computation
mechanisms fall within the following models, Bayesian mod-
els [24], Cognitive models [25], Decision theoretic
models [26], Spectral analysis models [27], Graphical
models [28], Information theorymodels [29], Learning-based
models (supervised learning and unsupervised learning)
[30], [31]. The grouping of methods as above was first
proposed in [32] and categorises saliency extraction tech-
niques into seven groups. Itti et al. [8] proposed a bottom-up
approach based on multi-scale analysis of the image. First,
multi-scale image features are used to create a topographical
saliency map. Then, a dynamical neural network selects the
attended salient locations. The principle of centre-surround
difference is adopted by Koch and Ullman [33] for the
parallel extraction of different feature maps. Harel et al. [9]
proposed a saliency method (well known as GBVS) based
on a biologically plausible graph-based model. The leading
models of visual saliency may be organized into three stages:
extraction, activation, normalization. Wang et al. [34] sur-
veyed the corresponding literature on the low-level meth-
ods for visual saliency. It is needed to mention the studies
conducted by Bruce and Tsotsos [35] on the saliency,
visual attention and visual search processes. A practical
method for visual saliency detection based on multi-scale
and multi-channel mean has been proposed in [36].

The method applies a two-step approach based on the image
decomposition and reconstruction with the wavelet trans-
form. Then a bicubic interpolation algorithm is applied
to narrow the filtered image in multi-scale. The saliency
values are the distances between the narrowed images and
the means of their channels. We employed interest points
such as SIFT keypoints to extract saliency maps and texture
scale [37]–[40]. [41] proposed a low-resolution saliency
estimate based on random colour sampling. The technique
presented in [42] integrate two saliency maps computed with
object proposals and motion-dominated methods, to obtain a
spatio-temporal saliency map. A saliency detection method
based on a Kalman filter is proposed in [43], inspired
by biological phenomena such as the visual surprise and
the saccadic eye movement [44]. By adopting the same
approach proposed in [8], each features channel is individ-
ually represented with a generated saliency map by using the
Kalman filter. All of them are then combined in a final map.
Kalinin et al. [45] approached the problem of localization
of the most informative regions in images checking the
similarity of those regions with the response of foveal filters.
In cognitive top-down approaches like those proposed
in [10] and [46], the visual attention process is considered
task-dependent. The observer’s will and expectations play a
critical role in determining why a point is fixed rather than
others. Yang andYang [47] performed saliency detectionwith
a top-down model that jointly learns a Conditional Random
Field (CRF) and a visual dictionary. Kanan et al. [48] adopted
the SUN framework to detect the salient regions of an image
by using global features and top-down components.

Generally, hybrid systems for saliency use the combina-
tion of bottom-up and top-down stimuli. In many hybrid
approaches [49], a top-down layer is used to refine noisy
maps extracted by bottom-up layers. A well known state-
of-the-art hybrid approach was proposed by Judd et al. [30]
in addition to a database [50] of eye-tracking data from
15 viewers. Low, middle and high-level features of the
eye-tracking data have been used to train a model of
saliency. Eye-tracking methodology is widely used for
tasks such as Human-Computer Interaction [51], advertis-
ing evaluation [52] and different applications [53]–[55].
Generally speaking, saliency approaches are based on sev-
eral properties, features and notions belonging to psychol-
ogy, computer vision, neuroscience, biology and medicine.
Yu et al. [56] used a paradigm based on the Gestalt grouping
cues for object-based saliency detection. Chang et al. [57]
proposed a method based on a graphical model of the rela-
tionships between saliency and objectness. Some methods
such as in [58] and [59] approach the object detection using
image descriptors and the relative orientation of the cam-
era. Pflüger et al. [60] managed to build a method based
on the optimisation of rectangle features with Adaboost to
simulate eye-movements when one looks at visual artworks.
Krejtz et al. [61] focused their efforts on quantifying the
eye movement transitions between different areas of inter-
est using Shannon’s entropy and Markov chains. Toet [62]
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reported a comparative study that evaluates the performances
of 13 state-of-the-art saliency models; and a new metric is
also proposed and compared with previous models.

2) DEEP NEURAL NETWORK BASED SALIENCY TECHNIQUES
Over the last few years, because of their success in recog-
nition and classification tasks, many researchers approached
visual saliency by adopting deep learning techniques [63]
and [64]. Deep learning methods allow extracting simple and
complex structures in large datasets using the backpropaga-
tion algorithm to tune the representation parameters of deep
neural networks. For the reasons mentioned above, visual
saliency models can be learned using DCNNs (Deep Convo-
lutional Neural Networks). For instance, Li and Yu [65] intro-
duced a neural network architecture, containing a CNN with
fully connected layers responsible for the feature extraction
at different scales. Das et al. [66] tried to answer the question:
do humans and deep networks look at the same regions?
For this purpose, they conducted a qualitative and quantita-
tive comparison of the maps generated with the state-of-the-
art attention-based models and a task-independent saliency
baseline. A fully convolutional neural network was adopted
to extract the most salient regions in the method proposed
by Kruthiventi et al. [67]. Zhao et al. [68] offered a survey
on deep learning methods for object detection using visual
saliency approaches. Obeso et al. [69] used a saliency-driven
approach to predict visual attention in images and use it to
train a Deep Convolutional Neural Network. Huang et al. [70]
proposed a method based on the adaptation of deep
neural networks. Apart from the fully convolutional neu-
ral networks, generative adversarial networks are used by
Pan et al. [71] to predict visual saliency. Other than
in [67] and [71], Liu and Han [72] adopted a different deep
learning paradigm called long-term recurrent convolutional
network for the saliency detection. Cornia et al. [73] pro-
posed a saliency map method based on deep learning tech-
nique achieving excellent results for the accuracy metrics.
The saliency prediction incorporates a network focusing on
appropriate locations of the image to refine saliency features.
Klein and Frintrop [74] employed the centre-surround dif-
ference as a means to detect saliency maps from pictures.
Kümmerer et al. [75] proposed the so-called DeepGaze
model to predict where people look in images. Other
than other saliency models that use deep learning tech-
niques, the authors did not employ additional fine-tuning,
the saliency extraction relies on a transfer learning over
the last layers of the network stack. They also [76] gave a
detailed description of the high and low-level contributions
to fixation points during the visual attention processes, which
are necessary to build up a model for the visual saliency.
Niu et al. [77] explored the connections of visual salience
and emotional salience on eye movement behaviour to eval-
uate their influence on gaze allocation in scene viewing.
Liu et al. [78] proposed a pixel-wise contextual attention net-
work (PiCANet) which learns to attend to informative context
locations for each pixel selectively. PiCANet has also been

incorporated with the U-Net architecture to detect salient
objects. A saliency detection framework using multi-cue
and high-level differences is proposed in [79]. In greater
detail, visual information is grouped into multi-cues vectors
to discard the non-salient regions and highlight the salient
area. Zeng et al. [80] proposed a unified framework to train
saliency detection models with diverse weak supervision
sources to overcome issues characterizing saliency maps
achieved with a single weak supervision source. Other very
popular methods in [81], [82] and [83] are based on unsuper-
vised approaches. Eye Movement predictions in 360 Degree
Images has emerged lately as a new hot topic in the field of
visual saliency, Zhu et al. [84] employ spherical harmonics to
extract features at different frequency bands and orientations
to detect the rare components in the frequency and colour
domain. Some 2D visual saliency approaches and methods
can be integrated to explore and predict head and eye move-
ment for 360 degree images [85].

B. EYE-TRACKING DATASETS
Eye-tracking technology offers a direct measure of visual
attention by recording two kinds of eye movement, fixations
and saccades [86]. Eye-tracking is widely used in many dif-
ferent tasks such as the analysis of user behaviour in mar-
keting, advertising effectiveness evaluation, neuroscience,
human-computer interaction, gaming, medicine, visualiza-
tion research and other related disciplines [87], [88]. Fixa-
tions indicate where the observer looks, while saccades are
movements between two fixations. Saccades and fixations
together form the scan path whose data are used to show
which regions of an image catch the observer attention.
Scan paths can also be considered as key to estimations of
cognitive processes during the so-called ‘‘free viewing’’ and
task-oriented observations [89].

Eye-tracking technology has improved through the years
with the introduction of more accurate instruments and more
reliable equipment. Eye-tracking methods can be grouped
into four generations [86]:

• First generation - Eye-in-head measurement of the
eye consisting of techniques such as scleral contact
lens/search coil, electro-oculography

• Second generation - Photo and video-oculography
• Third generation - Analog video-based combined
pupil/corneal reflection

• Fourth generation - Digital video-based combined
pupil/corneal reflection, augmented by computer vision
techniques and digital signal processors (DSPs).

The eye-trackers of the fourth generation that have recently
appeared on the market make use of digital optics.

Eye-tracking technology improved its performance in
usability, accuracy, and speed by equipping trackers with
on-chip Digital Signal Processors (DSPs).

Some recent progress in the eye-tracking technology
allowed scientific researchers to collect large quantities of
eye-gaze data for different purposes.
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Bappy et al. [90] collected a dataset named EyeCrowd by
recording the eye movements of 16 subjects watching images
with various levels of crowd. Judd et al. [30] created the MIT
dataset, composed of 1003 landscape and portrait images and
the corresponding fixation point maps, collected during a free
viewing session.

Some recent datasets, such as those collected in [91]
and [92], are respectively focused on domains like visual
saliency in low-resolution images and web pages.

Ramanathan et al. [93] focused on the eye-tracking of face,
portrait, nude, action, affect-variant groups giving rise to a
dataset composed of 99 fixation point maps. The datasets
above are collected during free viewing sessions, that is,
the subjects were not assigned any specific visual task when
watching. On the other hand, task-driven eye-tracking data
are found in [94].

A very popular fixation point dataset containing
2000 images from 20 different categories has been proposed
by [95]. Some research groups focused their efforts on gath-
ering eye-movement data from cohort of people affected by
some cognitive disorders such as ASD (Authism Spectrum
Disorder) [96]–[98].

Along with new topics as the prediction of head and
eye-movements in 360-degree images and the recent emerg-
ing augmented reality (AR) saliency technique, new data
have been gathered to assess the effectiveness of saliency
approaches [85], [99].

In our previous work [40] we used an eye-tracker to record
the gaze path of 24 observers while viewing each image from
a subset of OPED (Object Pose Estimation Database) [100],
[101]. It gave rise to a new dataset provided with fixation
point maps we made publicly available under the name of
ETTO (Eye Tracking Through Objects) [11]. The primary
purpose of ETTO is to investigate the relationships between
saliency and object visual attention processes. Each image
was shown at full resolution for three seconds, separated by
one second of viewing a grey screen (we adopted the same
experimental approach as in [30]). The database collected
in [100], [101] consists of several images with single objects
in the foreground and a homogeneous coloured background
region. Still, any dataset with a single main object (target)
and a limited number of distractors in each image would have
been appropriate as well. During the experimental session,
viewers sat at a distance of 70 cm from a 22-inch computer
screen with a resolution of 1920 x 1080 pixels. ETTO has
been used here to assess the effectiveness of saliencymethods
based on different computational and perceptual approaches
concerning the object attention process. Here ETTO is also
used to assess the perceptually uniform space colours as CIE
L*a*b* and CIE L*u*v*.

III. METHODS
In this section, we report our findings and studies with
some methodological novelties based on colour features and
new multiscale inspection. Here we would like to highlight
that we develop methods for the extraction of saliency with

pattern recognition and image processing techniques taking
into account biologically inspired principles. The interest
points we mentioned in the introduction section are extracted
near spikes, borders, edges, contours of objects in the image
and go under the name of keypoints. We take inspiration by
the bottom-up visual attention processes about the impact
of colour, contrast, texture and multiscale local keypoints
on the generation of an early saliency map on the visual
cortexV1. In the next two subsectionswe give amore detailed
description of the most important steps of our proposed
method, that is, the extraction of KDMs (Keypoint Density
Maps), the Training of Polynomial Regression and extraction
of Saliency Maps.

A. EXTRACTION OF KEYPOINT DENSITY MAPS
The overall architecture of our new proposed saliency extrac-
tion is based on the extension of our Keypoint Density Maps
(KDMs) [37], [39], [40]. Our method projects KDMs onto
a more biologically inspired multiscale architecture. Fur-
thermore, we combine it with a centre bias module and a
polynomial regression (see Fig. 1). The saliency map is then
extracted using CIE L*a*b* and CIE L*u*v* space colour to
assess the impact of colour on visual saliency.

We start this section by describing the full scheme behind
KDMs as we already proposed [39]. The Keypoint Density
Map KDMc,k is built by counting the number of keypoints
inside a sliding window of varying size k = 1, 2, . . . , kmax in
each colour channel c. Given that mc,k is the ‘‘mode’’ that is
themost frequent value inKDMc,k , we define themode vector
MVc = [mc,1, . . . ,mc,kmax] for all the KDMs computed for
channel c.

In the past, to improve the effectiveness of our algo-
rithm, we added colour information [40] from two colour
spaces such as HSV, and CIE L*a*b*. Experimental evidence
showed several drawbacks of HSV. We did not notice the
improvements we expected by adding HSV colour infor-
mation. Scientists noticed that HSV is not biologically
inspired and does not take into account the colour opponent
process [102].

The higher performance achieved through the use of
CIE L*a*b* space prompted us to undertake a more
in-depth investigation on perceptually uniform colour spaces
(CIE L*a*b*, CIE L*u*v*) to assess the effectiveness of their
employments in the eye-movement predictions and spot any
differences among them in their contribution to the visual
saliency detection.

In this work, we compare the performances of SIFT and
SURF keypoint detectors when extracting saliency maps
with KDMs method. Furthermore, we adopted two perceptu-
ally uniform colour spaces (CIE L*a*b* and CIE L*u*v*).
We also improved the KDM generation and smoothing by
adding a circular mask to the sliding window, and a Gaussian
filter in place of the arithmetic mean filter. A multi-scale
approach was implemented and will be explained below. As a
consequence, in the following equations c can be considered
as taking values in either {L, u∗, v∗} or {L, a∗, b∗}.
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FIGURE 1. Processing steps of our algorithm for an image in the ETTO data set.

Local keypoints are extracted on each channel of the colour
space, then KDMs are computed as a measurement of the
spatial distribution of keypoints over the entire image.

KDM algorithm needs a scale factor to work: this parame-
ter is a function of the size of the image [40].

The spatial distribution of keypoints gives a measure of the
behaviour of texture inside the image. Texture allows to read
the response of the image concerning several features such as
contrast, scale, orientation, edges, object boundaries. Accord-
ing to our method, we extract salient regions by emphasizing
rare events in textured areas. One of the basic concepts is that
the spatial distribution of keypoints inside an image allows for
describing texture variations all over the image. In our previ-
ous works, we applied this principle by using SIFT keypoints
only on grayscale images (the standard SIFT algorithm [103]
is suitable for grayscale images only). Encouraging results
prompted us to approach a method including colour informa-
tion because of its importance in cognitive terms. As men-
tioned above, in our previous release [40] we tried to use
HSV space colour, which did not allow us to achieve the
expected result improvements in both effectiveness and accu-
racy. We focused on the extraction of saliency maps by using
KDMs in all the three channels of two perceptually uniform
colour spaces: CIE L*a*b* and CIE L*u*v*.

We extended the KDMs, used to detect the texture scale
in regular and near regular textures, to the extraction of the
saliency maps of an image by applying them to all of the
three colour channels. We remark that the spatial distribu-
tion of keypoints inside images can be used in the texture

variation description. Levels of the image roughness in both
fine and coarse-textured regions can be very different. In a
fine-textured area, it is expected to find a more significant
number of keypoints than in coarse regions. Here we use
keypoint density maps to identify the most salient areas. Once
the keypoints are extracted in each colour channel c, four
KDMs at different scales k are calculated for each channel
by selecting a ‘‘main’’ scale factor, as in (1); the other three
k are selected by simply subtracting 1, 2, 3 to the main
k value. If k = 1 is reached before computing all the four
maps, no more maps are calculated for that channel.

k = 2
⌊
log2

(
min (M , N )

4

)⌋
(1)

Here, M and N are the image dimensions.

B. POLYNOMIAL REGRESSION AND SALIENCY MAP
For each KDM, a Saliency Map SMc,k is computed at each
scale k for each colour channel c by taking the point-wise
difference between the KDMc, k and its mode value
MVc[k] ≡ mc,k .

SMc,k (x, y) =
∣∣KDMc,k (x, y)−MVc[k]

∣∣ (2)

Each SM obtained using (2) is multiplied with a centre bias
map (Fig. 1); we call SM cb

c,k the SM at scale k for each channel
c after the application of the centre bias.

Inspired by the fact that human gaze patterns follow a
normal distribution in the natural viewing condition [104]
we combined the saliency maps out of the keypoint density
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maps by using polynomial regression in the 2D subspace.
In order, the twelve saliency maps (3 channels×4 scales) are
passed to a third-degree polynomial without mixed terms to
perform pixel-by-pixel multi-channel and multi-scale fusion,
as shown in (3).

SM (x, y) = a0 +
∑
c

4∑
k=1

3∑
l=1

ac,k,l
[
SM cb

c,k (x, y)
]l

(3)

We also added a global centre bias to tackle the human-gaze
centre bias, that is, a simple Gaussian blob centred in the
middle, as described by [30].

IV. EXPERIMENTAL RESULTS
In this section, we compare our saliency methods to both
traditional and more modern techniques based on deep learn-
ing, using our dataset and generic image data sets. We show
the performance of our approach with various image types
enclosed in generic data sets, as emotional photos, land-
scapes, hand-drawn sketches, etc. The visual attention data
sets we used for this study, all accompanied by eye-tracked
fixation locations, are the following:
• ETTO (Eye-Tracking Through Objects - our data
set) [40]

• MIT1003 [30]
• MIT CAT2000 (limited to the fixation maps of only
18 users) [95]

• FIGRIM Fixation Dataset [105]
• EyeCrowd [106].
The saliency algorithms used for comparison are the

following:
• Our new multi-scale CIE L*u*v* SURF-based method
• Our legacy CIE L*a*b* SIFT-based method [40]
• Itti-Koch-Niebur [8]
• GBVS [9]
• ConvLSTM-based Saliency Attentive Model with a
VGG-16 network (SAM-VGG) [73]

• ConvLSTM-based Saliency Attentive Model with a
ResNet-50 network (SAM-ResNet) [73]

• Ensembles of Deep Networks (eDN) [31].
We also report the performance of a fixed centred Gaus-
sian distribution as a baseline and choose Normalized scan
path Saliency (NSS) as our comparison metric. NSS is well
balanced and binarization-independent [1]; we report other
metrics [107] to show the improvements and the effectiveness
of our method better.

The Itti-Koch-Niebur algorithm we chose for compar-
ison is an enhanced version released with the GBVS
Toolbox [108], which also contains the official GBVS code.
The reference implementations of ConvLSTM-based and
eDN models have been downloaded respectively from [109]
and [110]. All the algorithms reported above have been used
with their default parameters. As explained in the previous
section, the main scale factor k in our method is computed
according to equation (1), while the coefficients of the poly-
nomial in equation (3) are learned through the regression.

The whole algorithm has been implemented in MathWorks
MATLAB, the polyfitn toolbox [111] has been used to per-
form the regression and evaluate the polynomial. All the
saliency maps have been calculated on an Intel Core i7-4770
computer with four cores (8 threads) and 16 GB of RAM
without the use of GPU computing. On average, the execution
time required to calculate the saliency map of a 1920× 1080
RGB image is 15.4071 s. The algorithm runs as a single
thread without any GPU assistance, and it could be speeded
up taking advantage of faster mathematical libraries, multi-
processing and GPU computation).

Our main research goal was not to create a robust saliency
detector. Rather, we were aimed at investigating the impact of
perceptually uniform colour spaces such as CIE L*a*b* and
CIE L*u*v* on the extraction of saliency maps. So we delib-
erately stressed ourmethod using both a small training set and
reduced computational power. We used all the five ground
truth data sets composed of real fixation maps already pre-
sented in this section. Our training set is made by 100 images
that is 20 randomly selected samples from each data set, while
tests have been carried out on the entire data sets. A 10-fold
cross-validation was used for training, and the best model
has been selected. During training, the multi-scale maps have
been pre-weighted with a centre bias map and scaled to the
same spatial resolution (512 x 512) before passing them as
an input to the polynomial. The only hyper-parameter in our
regression model is the degree of the polynomial. We adopted
a greedy approach in this respect, trying degrees from 3 to 5.
As it was expected, both degree 4 and 5 produced overfitting,
and we resorted to a third degree polynomial.

As reported in Tables 1, 2, 3, 4, 5, our method always got
excellent NSS results when compared to traditional unsu-
pervised methods on MIT1003, CAT2000 and EyeCrowd
datasets, and exceeded Ensembles of Deep Networks’ NSS
on the same datasets; comparable results as the other saliency
methods have been achieved on ETTO dataset.

We measured the performance of our legacy algorithm on
the sample dataset in both CIE L*a*b* and CIE L*u*v*
spaces, with and without circular masking and Gaussian fil-
tering. Our method on CIE L*u*v* colour space + circu-
lar masking + Gaussian filtering (see Fig. 2) reached the
best results; therefore subsequent improvements were only
tested on this method. More in detail, the CIE L*u*v* +
SURF + centre bias algorithm performed equally or bet-
ter than other variations on the sample dataset because it
manages to detect salient features with a fewer number of
keypoints (Fig. 2).

The performances of ‘‘mixed’’ methods (CIE L*a*b* +
SURF and CIE L*u*v* + SIFT) have not been reported in
the tables because they were always lower than those of the
method mentioned above.

In the light of the results obtained in our experi-
ments, we recall some concepts from the scientific litera-
ture concerning CIE L*a*b* and CIE L*u*v* colour. It is
well-known [22] that CIE L*a*b* mainly focuses on differ-
ences and common perceptual descriptors of colours.
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FIGURE 2. Performance graphs of different versions of our saliency model on the sample dataset.

TABLE 1. Results in various metrics on ETTO dataset.

TABLE 2. Results in various metrics on MIT1003 dataset.

TABLE 3. Results in various metrics on CAT2000 dataset.

CIE L*a*b* is considered to deal with perceptual colour
differences from a numerical perspective. Some follow-ups
in colourimetry occurred on CIE L*a*b* shortcomings that
mainly affects the colour description in the dark regions of
colour space.

In this regard, Sharma and Rodríguez-Pardo [22] had
already focused their attention on what they called the
dark side of CIE L*a*b*, which means to highlight some
of the CIE L*a*b* limitations over the perception of
colour. Sharma and Rodríguez-Pardo [22] conducted some
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TABLE 4. Results in various metrics on EyeCrowd dataset.

TABLE 5. Results in various metrics on FIGRIM dataset.

experiments showing that for low lightness values (L*), cor-
responding to dark colour regions, perceptual differences are
well represented by the CIE L*a*b* colour space. Chroma
values turned out not to be computed as different even when
wider bandwidths are subtracted from the Lightness values
exhibiting inconsistent behaviour from a perceptual perspec-
tive. It would suggest the colour space might not to be reliable
for the representation of the HVS perception of colourful
regions in some cases. On the other hand, the CIE L*u*v*
colour space seems not to suffer from the problems noticed
in [22]. Colour differences in the perceptual domain between
CIE L*a*b* and CIE L*u*v* are shown in [22] analyzing the
take-off angle. It is defined as the angle comprised between
the Lightness axis and the direction of a small monochro-
matic stimulus. CIE L*a*b* dark side is shown by take-off
angles approaching 90-degrees for wavelengths in the region
from 400 to 450 nm. Conversely, CIE L*u*v* performs
better when close to black, with none of the take-off angles
approaching 90-degrees. The reader who may be interested
in the mathematical treatment is remanded to the original
cited article in [22]. The mentioned shortcoming of CIE
L*a*b* might be a reasonable explanation for the better per-
formances of the CIE L*u*v* colour space along the edges
and boundaries of single objects on a dark background like
those in ETTO.

We ran many trials and experiments within our research
using different kinds of images. Some of the pictures include
centred objects surrounded by dark regions (ETTO dataset).
We highlight that our technique is a bottom-up visual saliency
approach. It runs better on object images because it tends to
reproduce the bottom-up attentional mechanisms. The men-
tioned mechanism postulated in [3], is designed to respond
to areas of high contrast and will frequently select image

regions that correspond to objects. Good evidence of this can
be found in the experimental results shown in Fig. 3 and
Fig. 4. The sample images for the best and worst saliency
maps per each dataset are shown. The best results of our
method are achieved over images with a single object in the
foreground or when a single visual instance sticks out from
the background. On the other side, all images with multiple
visual instances (see Fig. 4) or more than one object in the
foreground do better suit supervisedmethods. However, it can
be observed from tables 1, 2, 3, 4, 5 and in Fig. 2 that our
method’s overall performances are consistent all over several
datasets and different principle-based approaches.

V. DISCUSSION
In this paper, we reported our findings and research on
visual saliency, introducing some methodological novelties
concerning our previous works. We also studied the impact of
perceptually uniform colour spaces such as CIE L*a*b* and
CIE L*u*v* in the extraction of saliency maps. We tackled
visual saliency using some biologically inspired principles
like the difference centre-surround, the multiscale analysis
and the human-gaze centre bias. Inspired by human gaze
patterns following a normal distribution in the natural viewing
condition, we also used polynomial regression in the 2D
subspace to combine the saliency maps obtained at differ-
ent scales. As it is observed in tables 1, 2, 3, 4 and 5 we
compared the performance of our proposed method against
several state-of-the-art methods, which are based on different
approaches and principles. Since it is also our interest to study
the different performances of saliency methods over sev-
eral eye-tracking datasets, we collected several experiments
from the most popular datasets such as MIT1003, CAT2000,
EyeCrowd, FIGRIM, as well as our dataset, ETTO. It is
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FIGURE 3. Best results per data set. First row: original images; second row: fixation maps; third row: our saliency maps. (a) ETTO:
MouseTrapBlack__Curve_030_Rot_010_fhd.png, (b) MIT1003: i2281902585.jpeg, (c) CAT2000: Object\017.jpg, (d) EyeCrowd: 498.jpg,
(e) FIGRIM: sun_bcunorujjxrvnqkx.jpg.

FIGURE 4. Worst results per data set. First row: original images; second row: fixation maps; third row: our saliency maps. (a) ETTO:
AutoFuseBlack__Curve_030_Rot_000_fhd.png, (b) MIT1003: i2278136983.jpeg, (c) CAT2000: Noisy\127.jpg, (d) EyeCrowd: 236.jpg,
(e) FIGRIM: sun_aokgqlnxzonxwzlk.jpg.

worth to mention that ETTO is a collection of fixation
points on images where single objects are in the foreground.
The above-mentioned step brought us to evaluate differences
among many state-of-the-art methods comparing saliency
maps and fixation points. Besides, the experiments with sev-
eral saliency methods on ETTO images allowed us to high-
light the differences among different approaches concerning
the object attention process. To show how accurate is the
detection of the most important regions from a perceptual

viewpoint, we used a method based on pattern recognition
and image processing techniques. We compared the results
of our approach applied to the datasets mentioned above
and against the most popular methods belonging to different
classes (deep learning, bottom-up, supervised, unsupervised).
Some other considerations can be drawn by looking at the
experimental results. Our method overcomes our previous
work on all datasets we used; it reaches the best perfor-
mances over ETTO, which contains object images with a dark
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background. We guess the reason behind the best perfor-
mances over ETTO is highly related to the impact of CIE
L*u*v* space colour on the saliency extraction. It seems to
be more robust, especially in cases of dark coloured regions
(like ETTO images). Our experiments confirm some short-
comings of the CIE L*a*b* colour space in those image
regions with low lightness values (L*), which correspond
to dark background regions. Those regions are observed not
to be well represented in the saliency maps in terms of
perceptual differences. A further investigation of the tem-
poral range of the eye-movements and their correlations to
the different saliency approaches would allow for a better
understanding of some necessary details. It mostly concerns
the impact of some visual features from the images in the first
100milliseconds of observation. The refinement of our exper-
iments and comparisons along the temporal range might be
useful to map the visual features of the images to the pro-
cesses of visual attention both the exogenous and endoge-
nous ones. Moving on to the artificial intelligence perspec-
tive of our work, we want to mention that only two deep
learning methods (SAM-VGG and SAM-ResNet) outper-
form our method over the more generic image datasets (see
tables 2, 3, 4, 5). All othermethods’ performances such as Itti-
Koch-Niebur, eDN, GBVS and our previous method’s release
are lower than or equal to our current proposed method.
Other than deep learning methods, we do not need thousands
of eye-fixation point data to train our architecture and any
optimization step. As a matter of facts, our technique is
mainly inspired by the so-called bottom-up attention pro-
cesses aiming to reproduce the attentional principles repre-
senting the neuronal activities in V1 towards those areas in
the brain responsible for the eye movements. Our method
is comparable to the Deep Learning ones on images with
single objects in the foreground. We guess this aspect might
deserve some more in-depth investigations to establish fur-
ther connections between our approach and the object visual
attention-related processes. Last, we believe it is still worth to
investigate cues for visual saliency detection improvements in
spite of the excellent accuracy achieved by many state-of-the-
art methods. We want to focus on techniques which provide a
well-balanced trade-off between overall good detection accu-
racy and acceptable hardware requirements. We have been
working on the re-implementation of our novel method in
Python, taking advantage of GPU computation frameworks
like CUDA (supported by OpenCV). We expect the code
rewrite to speed-up the algorithm’s execution. That would
make it feasible for on-the-fly intra-frame video saliency
extraction when used in conjunction with state-of-the-art
inter-frame saliency extraction techniques.
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