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Abstract 
 
 
Endemic species have a higher risk of extinction due to habitat destruction, introduction of 
invasive species, pollution, or overexploitation. Mus cypriacus was first described in 2006 
and is one of the two endemic rodents from Cyprus. It diverged from Mus macedonicus 0.53 
million years ago, probably during the Mindel glaciation. Nowadays, M. cypriacus is mostly 
found in areas with vast cultivation at moderate altitudes (300-900 metres). Although, it could 
share habitat with Mus musculus domesticus, it is almost absent from urban areas or in 
areas with massive anthropogenic pressure. Even though M. cypriacus has been described 
to be of least concerned in the IUCN red list, there is lack of information on its ecology and 
demography, as well as a poor understanding of its genetic population structure.  
 
Using the mitochondrial D-loop, single nucleotide polymorphisms and microsatellite data, I 
investigated the genetic diversity of M. cypriacus, the genetic structure of different M. 
cypriacus populations and tested for possible hybridisation between M. m. domesticus and 
M. cypriacus. 
 
As expected, M. cypriacus was found to be closely related to M. macedonicus using 

mitochondrial DNA. No phylogeographic pattern was found for M. cypriacus on Cyprus with 

all the markers tested (mitochondrial D-loop, microsatellites and SNPs). The level of genetic 

diversity of M. cypriacus was comparable to the one found in M. m. domesticus (e.g. average 

number of alleles per loci 2.8 for M. m. domesticus and 2.5 for M. cypriacus, based on the 

SNPs). No genetic signature of hybridisation between M. m. domesticus and M. cypriacus 

was detected. 

 
Overall, the data suggested that M. cypriacus is comprised of a single stable panmictic 

population. However, due to the small sample size, more research is needed to confirm 

these results. Furthermore, only little is known on the population size, population trends and 

the distribution of this species. Future work needs to estimate population sizes, provide a 

detailed species distribution map and be complemented with mark-release-recapture work 

to better understand the dispersal of the species.  
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1. Introduction  

 

1.1 Threats to endemic species 

Human activity is considered one of the primary causes of environmental change, altering 

various ecological systems at a global level (Brooks et al., 2006; Pysek et al., 2010; 

Strassburg et al., 2012). It has been predicted that up to 50% of species will be extinct in 

the next 50 years (Koh et al., 2004; Thomas et al., 2004) due to human mediated climate 

change and destruction which has also been termed the “Anthropocene” (Crutzen, 2002; 

Zalasiewicz et al. 2011). The destruction of natural habitat has led to population declines 

and species extinctions (Burlakova et al., 2011; Ceballos et al., 2015). For example, in the 

islands of Oceania, 1800 species of birds are predicted to go extinct in ~2000 years due to 

human colonization (Steadman, 2006). Such destruction is not only limited to terrestrial 

systems, for example, marine ecosystems, such as estuaries, coral reefs, and coastal and 

oceanic fish communities are rapidly losing populations and species (Worm et al., 2006).  

In 2004, the IUCN (International Union for Conservation of Nature) Red List reported that 

7266 animal species are threatened with extinction (Baillie et al., 2004). The various reasons 

for the decline and in particular the multiple threats to biodiversity including habitat 

destruction, invasive species, pollution, population and overexploitation (Baillie et al., 2004; 

Frankham et al., 2010; Primack, 2014). Worldwide, many species are threatened by one, 

several or all these factors, with endemic species being particularly vulnerable to these 

threats. According to Purvis et al. (2000) and Wilson et al. (2006), the percentage of 

extinction in a geographical place depends not on its total number of species but mostly on 

the presence of endemic species. According to different studies, endemic species have a 

higher risk of extinction (Vié et al., 2008). For example, in the island of Madagascar, 100% 

of the lemurs, 99% of the frogs and 92% of plant species are endemic species (Vences et 

al., 2009). However, nearly 80% of the land has been threatened by human activity, putting 

almost half of the species at risk of extinction (Myers et al., 2000). A further threat to endemic 

species is invasive species. Alteration of environments and dispersal of invasive species by 

human activity have influenced the geographical and taxonomic trend of biological invasions 

at a global level (Gillespie et al., 2007; Wilson et al., 2009).  

Cosmopolitan species have wide ranging distributions covering almost all continents 

(Fenchel and Finlay, 2004), whereas endemic species are distributed into a specific and 

particular area (Pimm et al., 2014). Depending on their range of distribution, endemic 

species are named differently: continental endemic, regional endemic, national endemic, 

provincial endemic or local endemic (Primack, 2006). In remote islands, the majority of 

species are local endemic (Amori et al., 2008; IŞIK, 2011; Irl et al., 2017). The Hawaiian 

Islands make the perfect case study as more than 90% of plants and land birds are unique 

to the archipelago (Chen and He, 2009). However, endemic species can also be found in 

continental areas (Stebbins, 1942). Such is the case of the flowering plants fynbos in South 

Africa, where almost 70% are endemic (Hall, and Veldhuis, 1985; Rebelo, and Siegfried, 

1990).  

Endemic species are often vulnerable to extinction because they have a narrow geographic 

range (Bennett et al., 2007; IŞIK, 2011) and fewer and smaller populations (Diethart et al., 

2004; IŞIK, 2011). To protect biodiversity, it is essential to identify those species most 
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vulnerable to extinction (Malcolm et al., 2006). In order to facilitate this, the IUCN has 

established a number of conservation categories which can be used to determine the 

conservation status and need of a species. For example, species categorised as critically 

endangered (CR), endangered (EN), and vulnerable (VU) are considered to be threatened 

with extinction.  

 

1.2 Hybridisation as a threat to endemic species 

Hybridisation can occur between species that are not fully reproductively isolated and can 

in some cases lead to the formation of hybrid zones (Bouchemousse et al., 2016). 

Hybridisation is determined as the interbreeding of individuals from two distinct species, 

which have one or even more distinct heritable traits (Harrison, & Larson, 2014; Taylor et 

al., 2015). Hybridisation affects biodiversity in various ways, including the introgression of 

genetic variation within a new species, to the origin of novel hybrid species (Brennan et al., 

2014). Hybridisation has been reported in mostly all taxa (Pastorini et al., 2009), and plays 

a fundamental role in the process of speciation (Dierking et al., 2014). It decelerates or 

reverses differentiation; expedites speciation thanks to introgression or in the case of plants, 

leads to near-immediate speciation through allopolyploidisation (Abbott et al., 2013).  

Hybridisation can also lead to extinction, and it has been proved that the introduction of 

invasive species can cause hybridisation with natives leading to the decline or extinction of 

parental species (Todesco et al., 2016). The literature has both examples of hybrid vigour 

(where hybrids are fitter compared to their parents (Gröning and Hochkirch, 2008) and 

outbreeding depression and consequent loss of locally adapted genotypes to the invasive 

species (Allendorf et al., 2001; Perry et al. 2002; Muhlfeld et al. 2009). Endemic species can 

often have incomplete reproductive barrier to closely related species due to them evolving 

in the absence of such close relatives. As a result, the introduction of closely related species 

can lead to hybridisation with endemic species. Where the hybrids are fitter, these can lead 

to the decline and even the extinction of pure endemic species. Thus, hybridisation can be 

a serious threat to endemic species.  

 

1.3 Cyprus and its endemic fauna and flora 

Cyprus is the third largest island of oceanic origin located in the Eastern part of the 

Mediterranean basin. It emerged from the sea around twenty million years ago 

(Hadjisterkotis, 2001, Kryštufek and Vohralík, 2001). It was connected with mainland only 

during the Messinian salinity crisis, and therefore, it has been isolated for more than 5.3 

million years (Kryštufek and Vohralík, 2001). 

During late Pleistocene, Cyprus was home for pygmy hippopotamus (Phanourios minutus) 

and pygmy elephant (Elephas cypriotes); however, the human population caused of the final 

extinctions of the two endemic species (Hadjisterkotis et al., 2000; Marra, 2005). In the 

Neolithic and Chalcolithic ages, Cyprus started to host new mammals: the Mesopotamian 

deer (Dama dama mesopotanica), the European deer (Dama dama), the common deer 

(Cervus elephus), the ferret (Mustela nivalis), the wildcat (Felis Silvestris), the fox (Vulpes 

vulpes), the mufflon (Ovis gmelini ophion), the hare (Lepus europaeus) and various mice 
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species. However, many of these species did not survive to present times (Hadjisterkotis, 

2001; Gippoliti and Amori, 2004).  

Even if it has been considered a biodiversity hot-spot area, little was known regarding the 

mammalian fauna (Kryštufek and Vohralík, 2001). The first book regarding the mammals of 

Cyprus was written by Unger and Kotschy (1865), reporting only 8 species; however, some 

species were confused with close relatives (e.g. Erinaceus europaeus and Hemiechinus 

auritus; Lepus timidus and Lepus europaeus). In 1879, Pipistrellus kuhlii and Rattus rattus 

were added to the list of mammals of Cyprus by Günther. In 1903, the native spiny mouse 

Acomys nesiotes was added by Bate D. 

Almost 40% of the land is covered by forests, along with garigue and maquis vegetations. 

Cyprus hosts numerous endemic species, due to its long-time of isolation (Hadjikyriakou 

and Hadjisterkotis, 2002). One hundred twenty-eight species of plants are known to be 

endemic to Cyprus (Tsintedes and Kourtellarides 1998). More than 350 species of birds can 

be found on Cyprus, most of them are migratory, and about ten species are endemic 

(Whaley and Dawes, 2003). The Cyprus whip snake (Dolichophis cypriensis) and the 

troodos lizard (Phoenicolacerta troodica) are the only endemic reptiles. Thirty mammal 

species (Kryštufek and Vohralík, 2001), 25 amphibian and reptile species, 11 lizard species 

(4 of which are endemic) (Baier et al., 2009) 2 turtle species (McGowan et al., 2001), 250 

fish species and about 6000 insects (Violaris et al., 2009), have been counted in Cyprus. 

Over the years, more species have been added to its list of species, including numerous 

species of bats, shrew, the Cypriot mouse, the house mouse, owl pellets, deer (Kryštufek 

and Vohralík, 2001). 

Cyprus has a Mediterranean climate, with hot and dry summers, and rainy and mild winter. 

However, due to climate change there has been an increase in temperature and a decrease 

of rainfall resulting in the desertification of the environment (Tsangari et al., 2016). There is 

also a shortage of water, and, inside the forest, spring water increased its evaporation 

(Hadjinicolaou et al., 2011). All those issues are leading to a lack of food, which 

consequently forces the animals to leave their natural habitat inside the forest, and go in 

areas where there are domestic sheep and goats (which can be a source of transmittable 

diseases) (Hadjisterkotis, 2001). Further threats to biodiversity in Cyprus are due to high 

development efforts in hotel building, luxury apartments, villas and golf club, abolishing or 

altering natural environment mostly near the sea (Hadjimitsis, 2010; Zachariadis, 2012; 

Welz, 2015). Other issues for the island are the extensive fires, which destroy broad areas 

of the forest and agricultural land (Ciesla et al., 2004). Lastly, the introduction of alien 

species of plants and animals is also taking place in Cyprus, putting at risk the ecosystems 

and the extinction of native species. For example, in 1990, five wild boars (Sus scrofa) were 

introduced in Cyprus from Greece for game farming (Hadjikyriakou and Hadjisterkotis, 

2002). However, in 1995 they were released into the wild. In 1995, 60-90 individuals were 

estimated to be present in the forest, and nowadays the number is not known; according to 

the Red List of Threatened Species, wild boar threatened 19 taxa.  

 

1.4 Description of Mus cypriacus 

The Cypriot mouse, Mus cypriacus, is endemic to Cyprus. It diverged from Mus 

macedonicus 0.53 million years ago, probably during the Mindel glaciation (Cucchi et al. 
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2006, Macholán et al 2007). Before being recognized as M. cypriacus, it was reported as 

Mus spicilegus “South” (Orsini et al., 1983), M. spretoides (Bonhomme et al., 1984; Auffray 

et al., 1990), M. abbotti (Cheylan, 1991), and M. macedonicus (Harrison & Bates, 1991; 

Kryštufek & Vohralík, 2001; Musser & Carleton, 2005). Only in 2004, the Cypriot mouse was 

recognized as an independent phylogenetic lineage by Bonhomme et al.  Mus cypriacus 

was only described in 2006 by Cucchi et al., based on a comparative analysis with other 

mouse species from Europe, using both D-Loop mitochondrial sequences, cranial and 

dental morphometry.  

Mus spp. fossil, dated back to the Pleistocene, were found along with fossils of large 

endemic mammals in Cape Pyla (Reese, 1999; Kryštufek and Vohralík, 2001); M. cypriacus, 

was the only small mammal endemic of Cyprus (Kryštufek and Vohralík 2009; Cucchi et al., 

2012), with the exception for dwarfs hippos (Phanourios minutus) and elephants (Elephas 

cypriotes) as well as by a genet (Genetta cf. plesictoides). Nowadays, three of the small 

mammals’ species on Cyprus are endemic, M. cypriacus, A. nesiotes and Crocidura cypria 

(Kryštufek et al., 2009). 

M. cypriacus is morphologically similar to M. macedonicus; however, Mus cypriacus is, on 

average, larger and has relatively longer tail, but ranges overlap. It has been noticed that the 

tail of the Cypriot mouse is mostly longer than head and body (Macholán et al., 2007). The 

upper part of the body is frequently brown, the belly is greyish-cream or greyish-buff; the feet 

are white and ears are brown; regarding the tail, it varied for each individual, grey brown, 

greyish or buff-grey above, pale grey to greyish- white below (Figure 1; Kryštufek et al., 2009). 

 

Nowadays, M. cypriacus has mostly been found in areas with vast cultivation at moderate 

altitudes, 300-900 metres up to 1605 meters (Macholán et al., 2007). However, it has also 

been found in areas near rivers, where lives sympatrically with the M. m. domesticus (IUCN 

2019). It is almost absent in urbans areas or in area with a massive anthropogenic pressure 

(Cucchi et al., 2006; Kryštufek et al., 2009). The species has been listed as Least Concern 

on the IUCN list (Amori, 2017). However, the IUCN report has identified that there is a need 

to increase research in its population size, distribution trends, life history, ecology, and 

threats.  

Figure 1 – Skins of Mus cypriacus from Paramytha, Limassol, 
in dorsal and ventral view (Kryštufek et al., 2009) 
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1.5 Invasive Mus species on Cyprus 

Cyprus is considered the first island of the Mediterranean colonised by the house mouse, 

M. m. domesticus (Cucchi et al. 2002). The house mouse originated in a geographic area 

which encompassed west central Asia and the northern Indian subcontinent (Hardouin et al. 

2015, Boursot et al. 1993). The house mouse ancestry split into three different sub-species 

(M. m. domesticus, M. m. musculus, M. m. castaneus) around 0.9 million years ago (Boursot 

et al. 1993). M. m. castaneus is found in East Asia, M. m. musculus in Asia and Eastern 

Europe and M. m. domesticus in Western Europe (Boursot et al. 1993). M. m. domesticus 

and M. cypriacus co-occur in Cyprus since the Neolithic and have been found sharing the 

same habitat (Cucchi et al., 2006; Kryštufek et al., 2009; IUCN 2019). 

 

1.6 Hybridisation between Mus species 

In Europe there are 6 Mus groups: M. spretus (endemic to the Mediterranean area  an also 

present in South West Europe and Northern Africa), M. macedonicus (in south Balkans, Asia 

Minor, the Caucasus and in the Middle East), M. spicilegus (seen in Slovakia, Hungary, 

Serbia, Bulgaria, Moldova, and Ukraine), M. m. musculus (Eastern Europe) , M. m. 

domesticus (Western Europe) and Mus cypriacus (endemic to Cyprus) (Cucchi et al., 2005). 

Hybridisation incompatibilities have been well reported between M. m. domesticus and M. 

m. musculus (e.g. Turner and Harr 2014), yet those two species are not entirely genetically 

isolated and can hybridise. In Europe, there is a hybrid zone (located between Bulgaria to 

Denmark) between M. m. domesticus and M. m. musculus (Sage et al., 1986; Boursot et al., 

1993). In Japan, M. m. musculus and M. m. castaneus have hybridised producing a new 

species of the house mouse: M. m. molossinus (Yonekawa et al., 1998). Furthermore, Mus 

spretus, Mus spicilegus and Mus macedonicus, even if considered sympatric with the M. 

musculus domesticus subspecies, have been reported to produce hybrids in natural 

environment (Guenet & Bonhomme, 2003). 

Hybridisation between M. m. domesticus and M. spretus has also been reported mainly for 

the immunity to the pesticide warfarin. It has been discovered that M. m. domesticus from 

Spain and Germany have the whole or partial vkorc1 gene of M. spretus providing them 

protection to warfarin (Song et al. 2011). 

 

1.7 Conservation genetics  

Conservation efforts must always encompass the genetic health of populations (Deem et 

al., 2001). Molecular markers have extensively been used in conservation genetics 

(Schlötterer, 2004; Schwartz et al., 2007; Beebee, 2018). Different markers provide different 

information on the genetic history and health of the studied populations. The molecular 

markers used in this study are reviewed below: 

  

▪ Mitochondrial DNA 

Mitochondrial DNA (mtDNA) is a widely used genetic marker thanks to its maternal 

inheritance and high abundance in cells, which make it easy to DNA extract and amplify 
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(Heggenes et al., 2016). MtDNA is a haploid molecule (Baker 2000), has vast intragenomic 

variability, and, depending on the region that is used, high substitution rates (Heggenes et 

al., 2016). It has a high mutation rate, compare to nuclear markers, because of lack of 

repairing mechanisms, and only some regions of the D-Loop accumulate free mutations 

(Wanga et al., 2015). Thanks to those factors, it is considered a suitable maker to study the 

origin and the evolution of species and it is also used as a marker for phylogenetic analysis, 

genetic variation and relatedness among species (Silva et al., 2009; Lakra et al., 2010; 

Borrel et al., 2012). Mitochondrial control regions or D-loop (from the name “displacement 

loop”) is known as a non-coding control region; and its structure is formed when a DNA 

double helix is invaded by a single-stranded DNA or RNA molecule, which creates a region 

of base pairing with one of the polynucleotides of the helix (Reyes et al., 2004; Gupta et al., 

2015). The D-loop is particularly essential due to the high presence of mutations at a nearly 

neutral rate; furthermore, it contains transcription and replication elements which act as a 

detector for cellular DNA damage (Greider, 1999). The other two widely used mtDNA 

markers are the protein-coding cytochrome b (cytb) and cytochrome c oxidase subunit 1 

(COI) regions (Ursenbacher et al. 2006; Kvie et al. 2013). 

During the early 1960s, the molecular clock hypothesis was firstly introduced; with the 

assumption that substitutions (which are those mutations that do not undergo through the 

repair processes and results in permanent changes in a DNA sequence) happen at a 

constant rate (Brown, 2002; Bromham, 2009). In mammals, the molecular clock for mtDNA 

is faster than that for the nuclear DNA because of the nucleus DNA repair mechanism which 

are absent in mitochondria (Birky et al.,1989; Bromham and Penny, 2003). Therefore, 

mtDNA has a rapid evolutionary rate and can be used to detect events that happened at a 

longer time scale (Nabholz et al., 2008).  

 

▪ Restriction site associated DNA (RAD) Sequencing 

Next-Generation Sequencing (NGS) has revolutionised molecular biology (Ekblom and 

Galindo 2011). In particular, NGS has the ability to produce gigabases of genetic data easily 

and at reasonably low cost (Hudson, 2008). Restriction site associated DNA (RAD) 

sequencing is one of the NGS based approach (Davey et al. 2013). 

Restriction site associated DNA sequencing (RADseq) is a reduced representation genome 

sequencing strategy, created to examine anywhere from 0.1 to 10% of a selected genome. 

RADseq works by first fragmenting the target genome using restriction enzyme (Arnold et 

al., 2013). After digestion, a series of molecular processing steps modify the DNA into a 

fragment library proper for sequencing on an NGS platform. The use of restriction enzyme 

to cut the DNA into fragments and the use of molecular identifiers to link sequence reads to 

particular individuals (Baird et al., 2008). RADseq generates thousands of single nucleotide 

polymorphisms (SNPs) from any organisms (Hoffman et al., 2014). Mutation rate for SNP 

markers is significantly lower than for microsatellites (Kronholm et al., 2010), and they evolve 

in a manner described by mutation models, such as the infinite sites model (Vignal et al., 

2002; Morin et al., 2004). RADseq can be used to carry out studies in conservation biology, 

phylogenetic and phylogeography (McCormack et al. 2013). RADseq usually generates 

thousands to tens of thousands of single nucleotide polymorphisms (SNPs) makers (Davey 

et al., 2013), which allow to identify genetic signatures with better outcome compare to 
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microsatellites markers and mitochondrial genes (Emerson et al., 2010). Even if RADseq is 

considered an ideal strategy for conservation genetics studies, the markers that are 

generated during the analysis must be carefully treated, in order to separate high quality 

markers from the possibly biased (Davey et al., 2012). Allele dropout and null alleles can be 

caused by the presence of polymorphisms in restriction sites (Arnold et al., 2013; Gautier et 

al., 2013); PCR duplicates, that can cause genotyping errors, deviating allele frequency and 

lead to false positive alleles (Andrews et al., 2014); errors in the sequence and/or shorter 

length fragment can cause fewer loci (Andrews et al., 2016); and lastly, study of expected 

and observed heterozygosity can be truly complicated when a low coverage and a high 

percentage of missing values is identified (Hodel et al., 2017). However, many of those flaws 

can be controlled or filtered with bioinformatics pipelines (Davey et al., 2012). In conclusion, 

for this research, RADseq has been used to test the level of genome-wide heterozygosity 

for M. cypriacus as well as FST, linkage disequilibrium, and population genetics and structure 

of M. cypriacus and M. m. domesticus. 

 

▪ Microsatellites 

Microsatellites markers, simple sequence repeats (SSRs) or short tandem repeats (STRs), 

are widely used for testing genetic diversity and population genetic structure (Bhargava & 

Fuentes, 2010; Guichoux et al., 2011; Putman & Carbone, 2014). Microsatellites are regions 

of noncoding DNA with many simple identifiable alleles. The alleles are distinguished by the 

number of times a short sequence of nucleotides is repeated. Short tandem DNA repeats 

units are usually 2-6 base pairs length that are randomly distributed in the nuclear genome 

(Bhargava & Fuentes, 2010). The numbers of repeats evolve over time (Guichoux et al., 

2011). 

Lots of user-friendly software are available for investigating population genetic analysis 

using microsatellites; furthermore, microsatellites are easy and low-cost to implement thanks 

to the vast abundance of primers available from previous studies (Sunnucks, 2000; Väli et 

al., 2008; DeFaveri et al., 2013).  

Microsatellites are considered selectively neutral as they do not influence phenotypic 

expression, therefore, they are ideal markers for population analysis; meaning that they can 

give genetic signatures without being influenced by natural selection (Silvertown and 

Charlesworth, 2001). Microsatellites can be highly polymorphic even in small populations, 

because of the numerous amounts of mutation due to slippage during DNA replication 

(Schlötterer, 2000; Navascués and Emerson, 2005). Microsatellites markers are commonly 

used to detect population genetic structure or parentage analyses (Fischer et al., 2000; 

Ouborg et al., 2010), as well as hybridisation and introgression (Randi, 2008; Trigo et al., 

2013; McIntosh et al., 2014), (Lexer et al., 2007), parentage analysis (Jones and Ardren, 

2003), and population demography (Sakaguchi et al.,2013). However, there are some 

possible issues using microsatellites (Hoffman & Amos, 2005), such as large allele dropout 

(Miller et al., 2002; Johnson and Haydon, 2006), null alleles (Callen et al., 1993; Pemberton 

et al., 1995; Dakin and Avise, 2004), homoplasy (Grimaldi & Crouau-Roy, 1997; Estoup et 

al., 2002) and unclear mutational mechanisms (Ellegren, 2004; Selkoe and Toonen, 2006). 

Both nuclear microsatellite loci and mitochondrial DNA sequences represent rapidly 

evolving DNA sequences that are informational for answer questions relative to population 
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level (Vignal et al., 2002). Despite this, the high information content, produced by high 

mutation rate, can cause several limitations on subsequent data analysis (Morin, et al., 

2004). The much higher mutation rate of microsatellites, estimated to be as high as 1 × 10−5 

Kruglyak et al., 1998) when compared to the 1 × 10−9 for SNPs (Martinez-Arias et al., 2001) 

can be a cause of concern, particularly when studying for linkage disequilibrium and 

association (Vignal et al., 2002). For this research, microsatellites have been used to test 

the level of heterozygosity for M. cypriacus as well as FST, linkage disequilibrium, and 

population genetics and structure of M. cypriacus and M. m. domesticus, in order to compare 

them with  the results obtained from the RASseq. And lastly, microsatellites have also been 

used to detect genetic signature of recent bottlenecks in M. cypriacus. 

  



19 
 

2. Aims, objectives, and study design 

 

2.1 Aims and objectives 

Little is known regarding the environmental threats faced by Mus cypriacus. However, as an 

endemic species, it most probably faced with habitat destruction, invasive species, pollution, 

population size and overexploitation.  

The aim of this study was to characterise the genetic diversity of M. cypriacus in Cyprus in 

order to investigate the genetic health of its populations, determine population connectivity 

and investigate potential hybridisation with the invasive house mouse M. m. domesticus 

using three different markers. To achieve this, two specific objectives were addressed.  

 

 

 

O1: investigate the genetic diversity and structure of M. cypriacus in Cyprus using the 

mitochondrial D‐loop, RADseq and microsatellites. 

O2: Infer possible hybridisation between M. m. domesticus and M. cypriacus, using 

microsatellites and RADseq, as it can be considered as a threat for endemic species. 

 

 

Figure 2 – Mus musculus domesticus and Mus cypriacus in Cyprus – the map above shows the 
distribution of the samples collected for this research in Cyprus. The M. m. domesticus are represented by 

the orange circles and the turquoise circles markers represent M. cypriacus  
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2.2 Study Design  

 

Three different molecular markers were used to investigate the population genetics and 

conservation of the endemic M. cypriacus (figure 3). 

(1) The phylogeny of the Cypriot mouse was inferred using mitochondrial D-loop data. An 

analysis of phylogenetic inference and phylogenetic network was conducted  

(2) The population structure and a possible hybridization were analysed with both RADseq 

and microsatellites. The results obtained from the two markers were compared.  

(3) Lastly, the population demography of M. cypriacus was analysed using mitochondrial 

D-loop, to run the mismatch distribution, and microsatellite loci to run the bottleneck 

analysis.  

 

  

Figure 3 – Study design – The above flow chart illustrates all the procedures that have been used to 
investigate the genetic health of M. cypriacus populations, determine population connectivity and investigate 

potential hybridisation with M. m. domesticus using three different markers. 
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3. Materials and Methods 

 

3.1 Sampling:  

A total of 13 samples of Mus cypriacus were collected for the study as by caught while 

sampling for Acomys nesiotes in 2015 from 3 locations across the island (Figure 4). M. 

cypriacus samples were compared to 41 samples of Mus musculus domesticus (Figure 4). 

Overall, a total of 54 samples were collected from 39 localities across Cyprus (Figure 4), 

sampling scheme is described in Garcia-Rodriguez et al. 2018. All the samples were 

collected following local regulations for field collection of small mammals. 

 

 
 Figure 4 – Mus musculus domesticus and Mus cypriacus in Cyprus – the map above shows the 

distribution of the two species in Cyprus. The M. m. domesticus are represented by the orange circles and 
the turquoise markers represent M. cypriacus. The size of the circles represents the number of samples 
caught in a specific locus. The smallest circles show only one sample, and they increase in sizes if more 

than one sample has been found. 
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3.2 Mitochondrial D-loop – Phylogenetic analysis 

A phylogenetic reconstruction was performed using a total of 54 Mitochondrial D-loop (= 

control region). Three Mus musculus domesticus from Cyprus (García-Rodríguez et al., 

2018), 13 Mus cypriacus, 2 Mus spretus (GenBank: MK089345, MK089344), 2 Mus 

musculus castaneus (GenBank: AB649628, AB649629), 2 Mus musculus musculus 

(GenBank: KR866365, KR866364), 2 Mus macedonicus (GenBank: AF506193, AF506192), 

and 27 sequences retrieved from Genbank of Mus cypriacus (EU106194- EU106281). One 

sequences of Rattus rattus (Genebank: HQ334447) and two sequences of Rattus 

norvegicus (Genebank: X04733, X04734) were used as outgroup. Overall, 54 sequences 

were firstly trimmed to the same size (809 bp) after visual inspection, using BioEdit v.7.0.4 

software (Hall, 1999). 

Out of the 54 sequenced analyses, 41 haplotypes were found and therefore, were used to 

construct the final phylogenetic tree. Phylogenetic analysis was performed using MrBayes 

3.2 (Ronquist et al., 2012) with MCMC = 2 000 000. The first 25% trees were rejected as 

burn-in, with the remaining trees being used to create the consensus tree. The Bayesian 

inference uses the Markov chain Monte Carlo (MCMC) algorithm, which forms a posterior 

distribution [an accumulation of approximately 1000 phylogenetic trees that illustrates the 

unsureness regarding the evolutionary relationships within a set of sequences (Lanfear et 

al., 2016)]. The MCMC algorithm examines the space of all the plausible phylogenetic trees, 

systematically registering the trees it comes across (Aberer et al. 2014; Bouckaert et al. 

2014) 

Phylogenetic networks were created using the software PopART (Population Analysis with 

Reticulate Trees), evaluated with the median-joining option (Leigh and Bryant, 2015).  

 

3.3 Mitochondrial D-loop – Population Demography 

Out of the 40 sequences analysed (13 samples of Mus cypriacus and 27 sequences of Mus 

cypriacus retrieved from Macholán et al., 2007), 29 haplotypes were found. Genetic diversity 

indexes (haplotype number and estimation of nucleotide polymorphism) were calculated 

using DNAsp (Librado and Rozas 2009). Two standard neutrality tests, Tajima”s D (Tajima, 

1989) and Fu”s FS (Fu, 1997), were also tested using DNAsp to test for potential deviation 

from selection neutrality and/or recent population expansion or decline (Librado and Rozas 

2009). Tajima”s (1989) D test compute the discrdance between the estimate of theta from 

various segregatin sites and from avarage pair-wise sequence diverence. The negative 

value can be interprete as a signal of purifying selection or as demographic expansion. Fu’s 

(1997) calculates the possibility of observing a certain number of haplotypes, given particular 

value of theta. The test works by evalueting the discordance in values of theta derived from 

number of haplotypes and average pair-wise sequence divergence. Same for the Tajima’s 

D test, negative value can be interprete as a signal of purifying selection or as demographic 

expansion. Differences in theta summary statistics, based on different population genetic 

analysis, will detect demographic changes. Demographic changes, in fact, can be identify 

thanks to the distribution of the allelic frequencies. The mismatch distribution is a frequency 

graph of pair-wise differences between haplotypes. 
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Mismatch distribution was calculated with DNAsp (Librado and Rozas 2009). The observed 

values were compered against the expected from the population expansion model with 

parameters estimated using the generalized nonlinear least-squares approach of Schneider 

& Excoffier (1999) using Arlequin software v. 3.5.2.2 (Excoffier and Lischer et al., 2010). The 

population growth-decline analysis is based on  three parameters: Theta Initial θ0 (theta 

before the population Growth or Decline), Theta Final θ1 (theta after the population Growth 

or Decline), and τ (Tau) is the date of the Growth or Decline measured in units of mutational 

time (Rogers and Harpending 1992). 
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3.4 RAD Library Preparation 

Two sets of run of RADseq libraries for the 54 samples (13 samples of M. cypriacus and 41 

samples of M. m. domesticus, Figure 5) were prepared following the protocol of Etter et al. 

(2011). This protocol is to make reduced complexity genomic libraries that are individually 

labelled and pooled for sequencing on an Illumina MiSeq based on modified ddRAD 

protocols (Peterson et al. 2012). The library construction is based on an efficient combined 

restriction digest/adaptor ligation. In this case, the restriction enzymes Csp6I (which cleaves 

5”- G^TAC -3”sites) and PstI (which cleaves 5”- CTGCA^G -3” sites) were chosen to digest 

genomic DNA. 

 

 

 

  

Figure 5 – Mus musculus domesticus and Mus cypriacus in Cyprus RADseq– the map above shows 
the distribution of the two species in Cyprus. The M. m. domesticus are represented by the orange circles 

and the turquoise markers represent M. cypriacus. The size of the circles represents the number of samples 
caught in a specific locus. The smallest circles show only one sample, and they increase in sizes if more 

than one sample has been found. 
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3.5 Bioinformatics and Quality Filtering  

 

 
 

 

RADseq data quality was checked using FASTQC version 0.11.8  

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Data analysis was conducted using 

Stacks software (Catchen et al., 2013 b). During the first analysis, only one set of run of 

RADseq was considered, to investigate the data and the various parameters (Figure 6).  

After, a secondary sequencing was run, during which the two sets of run of RADseq were 

merged, with the final aim to obtain a larger number of SNPs and robust loci (Figure 6). 

At the beginning of the analysis, the denovo_map pipeline was taken in consideration to 

execute the Stack pipeline. The program works by executing the Stacks pipeline by running 

each of the Stacks components individually (Catchen et al. 2013). Different parameters were 

Figure 6 – Bioinformatics and quality filtering pipeline– A flowchart of the pipeline followed for the 
bioinformatics and quality filtering. First, reads quality was checked with FASTQC. Then, the two sets of runs 
were merged. The next stages were done using Stacks pipelines. First denovo_map pipeline was considered 

and tested. However, due to an error, ref_map.pl pipeline was used to conduct the analysis. A standard 
alignment program that incorporates Burrows-Wheeler algorithm, BWA, was used to align the sequences 

against a reference genome. In the next stage, the genotypes program was executed, gstacks programme, 
to generate loci by combining single- or paired- end reads that have been aligned against the reference 

genome and sorted. Then, the populations program (population) tabulates the state of loci within and among 
populations, calculates population genetics statistics and exports to a number of additional, useful formats. 

Last, VCFtools was used to filter SNPs that were evaluated at different individual-coverage levels. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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used for this analysis: “-M 4” [number of mismatches allowed between stacks within 

individuals (for ustacks)], “-n 2” [number of mismatches allowed between stacks between 

individuals (for cstacks)], “-T 15” (the number of threads/CPUs to use) and “-X” [additional 

options for specific pipeline components (in this case “ustacks : -m 3”)]. As mention 

previously, the denovo_map programme performs several stages: ustacks, cstacks, 

sstacks, tsv2ban, gstacks and populations. 

Due to an error revealed during the first analysis (denovo_map pipeline) related to different 

sequence lengths detected, data analysis was conducted using ref_map.pl pipeline on 

Stacks software (Catchen et al., 2013 b). During this analysis, the samples were aligned 

against a reference genome of the Mus musculus domesticus (GenBank: KV417259), using 

a standard alignment program known as Burrows-Wheeler Aligner, (BWA) [(Figure 6) Carver 

et al., 2010]. BWA is a software package for mapping short low-divergent sequences against 

a reference genome and consists of three algorithms: BWA-backtrack, BWA-SW and BWA-

MEM. It works by first constructing the FM-index for the reference genome and then, the 

chosen aligned algorithm is invoked with a -sub-command. For this research, the BWA-MEM 

algorithm was chosen. It first seeds alignments with maximal exact matches (MEMs) and 

then extending seeds with the affine-gap Smith-Waterman algorithm (SW).  

Once the RADseq were aligned against the reference genome, using the ref_map pipeline 

and a defined population map, the gstacks module was used (Figure 6). The program 

generates loci by combining single- or paired- end reads that have been aligned against the 

reference genome and sorted (Catchen et al. 2013 b.).  When ref_map analysis is run, the 

gstacks is the first program executed and will generate loci by combining single- or paired- 

end reads that have been aligned against the reference genome and sorted (Catchen et al. 

2013 b.).  

After, the population module was used to call genotypes, calculate population statistics, F-

statistics (Figure 6). During this analysis, different parameters were tested to investigate 

changes in the number of SNPs. 1: the -r value-, which consists of the minimum percentage 

of individuals in a population required to process a locus for that population. 2: the use -

write_single_snp- restrict data analysis to only the first SNP per locus, to avoid linkage 

between markers. 3: the presence of a population map (which consists of the prefix of each 

sample in the analysis in the first column, followed by an integer or string in the second 

column indicating the population). Furthermore, the population program can export data 

directly for a vast variety of analysis program (Catchen et al. 2013 b.). During this research, 

the script produced genotype output in multiple formats, i.e., STRUCTURE-format file and 

GENEPOP-format file (Catchen et al., 2013 a.; Larson et al., 2014; Munshi-South et al., 

2016; Stobie et al., 2019). 

Various combinations of -r (0, 0.25,0.50, 0.66, 0.75) parameters were tested along with the 

presence or absence of a defined population map, to investigate changes in the number of 

SNPs obtained, and in the percentage of missing values among samples (Table 1). When 

25% of individuals in the population were required to process a locus for that population (r 

=0.25), 8889 SNPs were reported, with a total of 80.17% of missing data. After, 50% of 

individuals in the population were required to process a locus for that population (r =0.50), 

showing 443 SNPs, with a total of 62.16 % of missing data. Lastly, 65% of individuals in the 

population were required to process a locus for that population (r =0.65), reporting a total of 

158 SNPs with a total of 43.71% of missing data.  
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During the final analysis of the population module, the -max-obs-het 0.5- specifies a 

maximum observed heterozygosity required processing a nucleotide site and locus was 

added as a parameter, along with -r value equals to 0.25, reporting a total of 5323 SNPs. 

 

 

Table 1– Analysis of «r» value, which help filtering data- corresponds to the minimum percentage of 

individuals in a population required to process a locus for that population. The data were analysed without a 

defined population map and with a defined population map, considering 0%, 25%, 50%, 65% and 75% of 

individuals at each site. The variant sites remained after filtrations correspond to the SNPs. 

 

VCFtools (http://vcftoools.sourceforge.net/) software was then used to filter SNPs that were 

evaluated at different individual-coverage levels (Figure 6) with “--max-missing” as a 

parameter, for both species together. For this study, missing data tested weret 85% (“--max-

missing 0.85”), 80% (“--max-missing 0.80”), and 75% (“--max-missing 0.75”)  

 

A set of specific M. cypriacus SNPs was also obtained excluding individuals with more than 

75% of missing data (“--max-missing 0.75” parameter).  

 

3.6 RADseq analysis  

The heterozygosity and the mean number of alleles per locus were calculated using 

GENETIX 4.03 (Belkhir et al., 2004). Populations pairwise FST and linkage disequilibrium 

were calculated with Arlequin software v. 3.5.2.2 (Excoffier and Lischer, 2010), for the both 

M. cypriacus and M. m. domesticus together and for M. cypriacus individually. 

"r" value  0 0.25 0.50 0.65 0.75 

WITHOUT DEF. POP.      

Loci 605012 9820 458 187 132 

Variant sites remained after 
filtration  

16382 534 127 76 56 

      

WITH DEF. POP.MAP. 
(1dataset) 

     

Loci N/A 23953 2541 N/A N/A 

Variant sites remained after 
filtration  

N/A 3747 228 N/A N/A 

      

WITH DEF. POP.MAP. 
(2datasets) 

     

Loci N/A 49072 7652 1642 N/A 

Variant sites remained after 
filtration  

N/A 8890 443 158 N/A 

http://vcftoools.sourceforge.net/
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The average number of alleles and absolute number of private alleles were calculated with 

a rarefaction method for each population, using the HP-Rare 1.1 software (Kalinowski, 

2005).  

Population genetic structure was investigated using STRUCTURE (Pritchard et al., 2000). 

STRUCTURE is a software package for using multi-locus genotype data. Its functionality 

consists of the investigation of the presence of different populations, allocating individuals 

to populations, studying hybrid zones and estimating population allele frequencies in 

circumstances where individuals are admixed (Pritchard et al., 2000; Rosenberg, 2004; Earl 

& VonHoldt, 2012). The tested K values ranging from 1 to 7, based on a previous study done 

by García-Rodríguez et al. (2018), and each K was run 10 times. The number of burn-in 

steps was set to 10,000 and Markov Chain Monte-Carlo (MCMC) was set to 100,000. ΔK 

was estimated using the Evanno method (Evanno, et al. 2005) implemented in 

STRUCTURE HARVESTER (Earl and vonHoldt, 2012) to obtain the most likely value of K. 

All structure results were joined together among replicates using CLUMPP 1.1.2 (Jakobsson 

& Rosenberg, 2007) and summarized graphically using DISTRUCT1.1 (Rosenberg 2004). 

Multivariate analysis type FCA (factorial correspondence analysis) was performed using the 

function AFC-3D in Genetix (Belkhir et al., 2004). 

Population structure of M. cypriacus only was also tested using K from 1 to 4. Ten 

STRUCTURE runs per K value were executed, with a length of burn-in steps to 10,000 and 

MCMC steps was set to 100,000.  

ΔK was estimated using the Evanno method (Evanno, et al. 2005) implemented in 

STRUCTURE HARVESTER (Earl and vonHoldt, 2012) to obtain the most likely value of K. 

All structure results were joined together among replicates using CLUMPP 1.1.2 (Jakobsson 

& Rosenberg, 2007) and summarized graphically using DISTRUCT1.1 (Rosenberg 2004). 

Population genetic structure was then further exanimated using Discriminant Analyses of 

Principal Component (DAPC) which was performed using the R-package “adegenet” 

(Jombart et al., 2010). The function find.clusters was used to identify the optimal number of 

clusters (K) that maximises the variation between groups (Jombart et al., 2010). The BIC 

(Bayesian Information Criterion) scores were analysed to determine the optimal number of 

clusters. Principal components (PC) were used as predictors for existing clusters, for 

discriminant analysis in the individuals studied. 

 

3.7 Microsatellite Analysis 

15 microsatellites loci from 36 samples of M. m. domesticus (García-Rodríguez et al. 2018) 

and 13 samples of M. cypriacus were used to compare with RAD sequencing results ,  

Structure analysis was performed for the 15 microsatellites using STRUCTURE (Pritchard 

et al., 2000). K values were tested from 1 to 7, with 10 replicates for each of several values 

of K, with a length of the burn-in steps of 10,000 and MCMC steps was set to 100,000.  

Structure analysis was also conducted looking only at M. cypriacus (using 16 microsatellites 

specific to M. cypriacus only), testing K values from 1 to 4, and executed 10 STRUCTURE 

runs per K value, with a burn-in steps of 10,000 and MCMC steps was set to 100,000.  
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To identify the more probable K, ΔK was estimated using the Evanno method (Evanno, et 

al. 2005) from STRUCTURE HARVESTER (Earl and vonHoldt, 2012). All structure results 

were joined together among replicates using CLUMPP 1.1.2 (Jakobsson & Rosenberg, 

2007) and summarised graphically using DISTRUCT1.1 (Rosenberg 2004). 

Also, in this case, Discriminant Analyses of Principal Component (DAPC) was performed 

using the R-package “adegenet” (Jombart et al., 2010), to identify the optimal number of 

clusters (K) that maximises the variation between groups. 

The heterozygosity and the mean number of alleles per locus were calculated using 

GENETIX 4.03 (Belkhir et al., 2004). Populations pairwise FST and linkage disequilibrium 

was calculated with Arlequin software v. 3.5.2.2 (Excoffier and Lischer, 2010), for the two 

species and for M. cypriacus. 

 

3.8 Microsatellite Analysis - Population Demography 

The average number of alleles and absolute number of private alleles were calculated with 

a rarefaction method for each population, using the HP-Rare 1.1 software (Kalinowski, 

2005). Furthermore, to detect genetic signature of recent bottlenecks in M. cypriacus, the 

software BOTTLENECK v.1.2.02 was used (Piry et al., 1995). Two models were used during 

this analysis: the stepwise mutation model (SMM) and the two-phase model (TPM), with 

95% of the mutation single-step and variance of 12 (Piry et al., 1995). 
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4. Results 

 

4.1 Phylogenetic Inference & Population Demography 

A final alignment of 41 haplogroups (809 bp) of the 54 sequences [3 Mus musculus 

domesticus from Cyprus (García-Rodríguez et al., 2018), 13 Mus cypriacus, 2 Mus spretus 

(GenBank: MK089345, MK089344), 2 Mus musculus castaneus (GenBank: AB649628, 

AB649629), 2 Mus musculus musculus (GenBank: KR866365, KR866364), 2 Mus 

macedonicus (GenBank: AF506193, AF506192), and 27 sequences retrieved from 

Genbank of Mus cypriacus (EU106194- EU106281). One sequences of Rattus rattus 

(Genebank: HQ334447) and two sequences of Rattus norvegicus (Genebank: X04733, 

X04734) were used as outgroup] was used to calculate a bayesian tree (Figure 3).  

Our samples did cluster with previous published M. cypriacus sequences from Macholan et 

al (2007). As expected, M. cypriacus was found to be closely related to M. macedonicus. 

(Figure 7). Interestingly, no phylogeographic pattern was found. In fact, the pattern revealed 

by the Bayesian tree (Figure 7) appears random, as the haplotypes from different regions of 

Cyprus (Figure 8) are mixed.  

 



31 
 

 
Figure 7 – The Bayesian tree -the D-loop of Mus musculus domesticus from Cyprus, Mus cypriacus, Mus spretus, Mus musculus castaneus,  

Mus musculus musculus, Mus macedonicus, were used and sequences of Rattus rattus and Rattus norvegicus were used as outgroups 
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A phylogenetic network was drawn using M. cypriacus samples from the present study and 

from Macholán et al. (2007) – see Figure 9). A total of 40 samples representing 29 

haplotypes were used (Figure 9 and 10) and no phylogeography signal was found. 

A second network was also calculated using only samples from this study (Figure 11). Out 

of 13 samples, 9 haplotypes were found. No phylogeography signal was found which is 

unexpected as samples from Cape Greco (west) – see Figure 12) and Limassol (east of the 

island) were used.  

 

  

 

Figure 8 – Distribution of Mus cypriacus in Cyprus –The green icons correspond to the samples caught 
in the West part of the island (this study), the red icons are the samples caught in the West part of the island 
from Macholán et al. (2007), the yellow are the samples caught from the East part of the island (this study) 

and the blue are the samples caught in the East part of the island from Macholán et al. (2007) 
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Figure 10 – Distribution of Mus cypriacus in Cyprus –The green icons correspond to the samples caught 
in the West part of the island (this study), the red icons are the samples caught in the West part of the island 
from Macholán et al. (2007), the yellow are the samples caught from the East part of the island (this study) 

and the blue are the samples caught in the East part of the island from Macholán et al. (2007) 

 

Figure 9 – Phylogenetic network of Mus cypriacus samples from this study and Macholán et al. 
(2007). The size of the circles corresponds to the number of samples. 

The green circles correspond to the samples caught in the West part of the island for this research, 
the red circles are the samples caught in the West part of the island from Macholán et al. (2007), 

the yellow are the samples caught from the East part of the island for this research and the blue are the 
samples caught in the East part of the island from Macholán et al. (2007) (see Figure 10) 
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Figure 12 – Distribution of Mus cypriacus in Cyprus from this study only –The green icons 
correspond to the samples caught in the West part of the island. The yellow are the samples caught 

from the East part of the island  

Figure 11 – Phylogenetic network of Mus cypriacus samples from this study. 
The size of the circles corresponds to the number of samples. 

The green circles correspond to the samples caught in the West part of the island, 
while the yellow are the samples caught from the East part of the island (see Figure 10) 
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The overall haplotype diversity (h) and nucleotide (π) diversity was found to be 0.979 (h) 

and 0.007 (π). Tajima’s D and Fu’s Fs neutrality tests were negative (D= - 0.768;P > 0.10 

and Fs= - 18.966; P > 0.10) indicating absence of selection. The mismatch distribution of 

the D-loop sequences showed an unimodal distribution (Figure 13), a bell-shaped 

distribution of substitution differences between pairs of haplotypes, which is an indication of 

population expension (Rogers and Hamperding, 1992) or through an expantion with high 

levels of migration (Excoffier, 2004). The confidence of intervals around all the three variable 

was esistemated using Arlequin software v. 3.5.2.2 (Excoffier and Lischer et al., 2010) using 

a parametric bootstrap with 100 or 1000 replicates. Approximate times of population 

expansion τ (in 1/2 u units, where u is the mutation rate for the whole sequence) was 7.196 

and population sizes before the expansion (θ0) and at present (θ1) were found to be 2.184 

(θ0) and 89.128 (θ1). 

 

 
 

 

  

Figure 13 – Mismatch distribution- for the 40 samples of Mus cypriacus. 
The expected distribution under a model of population expansion is given as a continuous line, and the 

observed distribution is given as a dashed line based on the population expansion function with parameters 
estimated using a generalized nonlinear least-squares approach.  
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4.2 SNP discovery and filtration  

During the initial stage of the analysis (the denovo_map pipeline), the programme revealed 

two major warning: 1. Difference sequence lengths detected, this will interfere with Stacks 

algorithms, and 2. Input reads contained 140 uncalled nucleotides. Because of the first error 

mention above, gstacks aborted. Therefore, samples were aligned against a reference 

genome of the Mus musculus domesticus (GenBank: KV417259), using a standard 

alignment program known as Burrows-Wheeler Aligner, BWA. It generated a total of 

33013948 BAM (Binary Alignment/ Map) records. When ref_map analysis is run, the gstacks 

is the first program execute. It kept 8811676 primary alignments (27.6%), of which 3807298 

reverse reads, it skipped 2207709 primary alignments with insufficient mapping qualities 

(6.9%), it skipped 16493486 excessively soft-clipped primary alignments (51.6%), it skipped 

4430525 unmapped reads (13.9%), and it also skipped some suboptimal 

(secondary/supplementary) alignment records. Overall, per sample, read 600253.6 

records/sample (180374-2854755), it kept 10.0%-43.0% of these. The programme built 

992687 loci, comprising 5004378 forward reads and 2535276 matching paired-end reads; 

the mean insert length was 238.6 (sd: 102.3). It removed 2469102 unpaired (forward) reads 

(49.3%); and kept 2535276 read pairs in 687276 loci. It then removed 152205 read pairs 

whose insert length had already been seen in the same sample as putative PCR duplicates 

(6.0%); and kept 2383071 read pairs. A total of 687276 genotyped loci were left at the end 

of gstacks analysis; with an effective per-sample coverage of mean=1.0x, stdev=0.0x, 

min=1.0x, max=1.1x, and a mean number of sites per locus: 244.3. After, the population 

programme was run, it removed 638204 loci that did not pass sample/population constraints 

from 687276 loci. It kept 49072 loci, composed of 9481355 sites; 35545 of those sites were 

filtered, and a total of 5325 variant sites remained. Overall, 9454366 genomic sites, of which 

20951 were covered by multiple loci (0.2%). The mean genotyped sites per locus: 192.07bp 

(stderr 0.17).  

Population summary statistics were as follow: 

1. A “13.908” samples per locus for M. m. domesticus; pi: 0.25512; 

all/variant/polymorphic sites: 4811577/4833/3499; private alleles: 853 

2. A “5.0605” samples per locus for M. cypriacus; pi: 0.11427; all/variant/polymorphic 

sites: 8077699/2775/736; private alleles: 148 

Population pair divergence statistics were between 1-2: mean Fst: 0.69117; mean Phi_st: 

0.76146; mean Fst': 0.75418 

A final number of 5323 SNPs were then filtered with VCFtools allowing 25% of missing data. 

46 common loci were found in M. m. domesticus and M. cypriacus. The same procedure 

was then done also within species and 71 loci out of 5323 SNPs were kept for M. cypriacus, 

with 25% of missing values.  

 

4.3 Population genetics of M. cypriacus and M. m. domesticus - RADseq 

A total of 46 SNPs were analysed using STRUCTURE (Pritchard et al., 2000) for the 54 

samples. The 46 loci were tested for linkage disequilibrium and none was detected (Figure 

1.a supplementary material). Overall, for 41 M. m. domesticus the mean of expected and 

observed heterozygosity for 46 loci were 0.52 and 1.00 respectively (Table 1.a 
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supplementary material), and the average number of alleles per locus was 2.844; while, for 

13 M. cypriacus the mean of expected and observed heterozygosity for 46 loci were 

respectively 0.533 and 1.000 (Table 1.a supplementary material), and the average number 

of alleles per locus was 2.522.  

Using the Evanno method (Evanno, et al. 2005) – Figure 2.a supplementary material) and 

investigating the convergence of the run using CLUMPP (Jakobsson & Rosenberg, 2007), 

K=2 was found to be the best model. The 54 individuals were correctly assigned to their 

species, identifying 13 samples of M. cypriacus and 41 M. m. domesticus (Figure 14). No 

admixture between species was found. 

 

 

 

The Correspondence Analysis (CA) was performed using Genetix (Belkhir et al., 2004; 

(Figure 15). Axis 1 described 20.15% of the variation and is explained by the species 

membership (M. m. domesticus in yellow in Figure 15 and M. cypriacus in blue in Figure 15).  

  

Figure 14 – STRUCTURE analysis of RADseq - STRUCTURE analysis of K=2 for a total of 46 SNPs in 
common for the two species. The red bars are for 13 samples of M. cypriacus and the green bars represent 

41 samples of M. m. domesticus. 
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4.4 Population genetics of M. cypriacus and M. m domesticus – Microsatellites. 

A total of 15 microsatellites were analysed using STRUCTURE (Pritchard et al., 2000) for 

the 49 samples. The 15 loci were tested for linkage disequilibrium (LD; Figure 3a 

supplementary material) and no locus was found to be linked, M. m. domesticus expected 

and observed heterozygosity was calculated to be 0.826 and 0.756 respectively, and the 

average number of alleles per locus was 11.733. M. cypriacus the mean of expected and 

observed heterozygosity for 15 loci were respectively 0.828 and 0.705, and the average 

number of alleles per locus was 10.266. 

Using the Evanno method (Evanno, et al. 2005) – Figure 4.a supplementary material) and 

investigating the convergence of the run using CLUMPP (Jakobsson & Rosenberg, 2007), 

K=2 was selected as the best model. The 49 individuals were correctly assigned to their 

species, identifying 13 samples of M. cypriacus and 36 M. m. domesticus. No admixture 

between species was found (Figure 16).  

 

Figure 15 – Correspondence Analysis RADseq - Spatial representation of the tridimensional 
factorial correspondence analysis carried out with GENETIX (Belkhir et al., 2004), every square 
representing an individual. The blue squares represent the 13 Mus cypriacus, while the yellow 

squares are the Mus musculus domesticus 
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The Correspondence Analysis (CA) illustrates the position of individual genotypes projected 

onto a 3D space (Figure 17). It is possible to observe the two species, M. m. domesticus 

and M. cypriacus, well separated; with the first axis explaining the variation at 6,99%, 4,84% 

of the variation is explain by axis 2 and 4,54 % of the variation is explain by axis 3. Overall, 

no admixture between the two species was found.  

 

 

  

Figure 16 – STRUCTURE analysis of msat -The STRUCTURE analysis is K=2 for a total of 15 
microsatellites in common for the two species. It is represented by 2 different colours, where the green bars 

are for the 36 M. m. domesticus samples and the other are for the 13 M. cypriacus samples. 

 

Figure 17 – Correspondence Analysis msat - Spatial representation of the tridimensional factorial 
correspondence analysis carried out with GENETIX every square representing an individual. The yellow 

squares represent the 13 M. cypriacus, while the blue squares are the 36 M. m. domesticus 
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4.5 Population Structure – M. cypriacus  

Population analysis was performed for Mus cypriacus only using 71 SNPs obtained from the 

RADseq and 16 microsatellites. 

Heterozygosity as well as mean numbers of alleles (Table 2) were calculated among M. 

cypriacus, respectively for SNPs and microsatellites. The samples were divided into two 

populations Cape Greco (East) and Limassol (West), for both markers (Figure 18). 

 

Markers N Hexp Hobs N. of loci Average n. of 

alleles per locus 

SNPs- Limassol 7 0.542 1.000 71 2.493 

SNPs- Cape Greco 6 0.532 1.000 71 2.366 

Msat- Limassol 7 0.803 0.706 16 7.250 

Msat- Cape Greco 6 0.754 0.741 16 6.375 

 

Table 2 – Table reporting the two types of markers (Markers), number of samples (N), expected and 

observed heterozygosity based on the type of markers (Hexp and Hobs respectively), number of loci per 

makers (N. of loci),and the average number of alleles per locus (Average n. of alleles per locus). 
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Population genetic structure of 13 M. cypriacus samples was investigated using 

STRUCTURE (Pritchard et al., 2000) – Figure 5.a and Figure 6.a supplementary material) 

and DAPC analysis (Jombart et al., 2010) in order to identify a possible population structure. 

No population subdivisions were found when using both analyses for both markers. 

Populations pairwise FST between Limassol (West) and Cape Greco (East) is low (FST = 

0.022) for the SNPs; while, FST within M. cypriacus samples from West and East for the 

microsatellites was 0.032 and the inbreeding coefficient for all the samples was 0.157 (Table 

2.a supplementary material). 

The population demography was investigated further using BOTTLENECK (Piry et al. 1999). 

Results can be found in Figure 19. No recent genetic population bottleneck has been 

detected related to heterozygote excess; most probably due to a population expansion or 
introduction of rare alleles (Luikart and Cornuet, 1998). 

 

Figure 18 – Distribution of Mus cypriacus in Cyprus from this study only –The green icons 
correspond to the samples caught in the West part of the island. The yellow are the samples 

caught from the East part of the island  
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Figure 19 – Bottleneck - Distribution of allele frequencies expected for loci for Mus cypriacus. Blue bars 
represent the proportion of alleles expected in each of 10 allele frequency classes. The mean 

heterozygosity expected for random sample of loci having the illustrated distribution is 0.80 
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5. Discussion 

 

This study has investigated the genetic population structure of the Cypriot mouse Mus 

cypriacus and potential hybridisation with the house mouse Mus musculus domesticus using 

3 types of genetic markers. No population genetic structure was evident in this study for M. 

cypriacus even though three different genetic makers (Mitochondrial D-loop, SNP and 

microsatellites) were used. There was no evidence of a recent genetic bottleneck for the 

species. No genetic signature of hybridisation between M. m. domesticus and M. cypriacus 

was found.  

 

5.1 Genetic diversity 

Interestingly, high genetic diversity (when compared to M. m. domesticus) was detected for 

M. cypriacus with all the markers studied. This result was surprising as island populations 

often have a lower genetic diversity compared to their mainland counterparts mostly due to 

founder effects (Jones et al., 2004; Miller et al., 2011; Hardouin et al., 2010; Hardouin et al., 

2018). Indeed, the level of genetic diversity of M. cypriacus was comparable to the one found 

in M. m. domesticus (e.g. average number of alleles per loci found to be 2.8 for M. m. 

domesticus and 2.5 for M. cypriacus). This result is unexpected as it has been shown the 

colonization pattern of house mouse on Cyprus is complex and the result of several human 

introductions (Garcia- Rodriguez et al. 2018). The level of genetic diversity of M. cypriacus 

were found high with both SNPs data and microsatellites, HO = 1.000 and na = 2.522 for the 

RADseq and, HO = 0.828 and na = 10.266 for the microsatellite loci. Other rodent species 

have shown high or similar level of genetic and allelic diversity on islands when compared 

to the mainland populations. For example, the Coues' rice rat (Oryzomys couesi cozumelae) 

from Cozumel Island, Mexico was found to have a genetic diversity similar to the mainland 

species (O. couesi) (Vega et al., 2007). Same was observed for the insular Oryzomys 

argentatus from the Florida Keys (USA) and mainland O. palustris natator from the 

Everglades (USA) - Wang et al., 2005).  According Frankham, (1997) the levels of genetic 

and allelic diversity has been associated to island sizes, as well as other factors. In fact, 

larger islands can normally host and support higher population size; and, on the other side, 

events like inbreeding, genetic bottlenecks and higher extinction rates are normally 

associated to smaller islands with smaller population size. Endemic island species normally 

have low levels of genetic diversity (Frankham 1997), which compromises their adaptability 

and evolutionary potential, making island species more vulnerable to extinction (Frankham 

1998). Cyprus is the third largest island of oceanic origin located in the Eastern part of the 

Mediterranean basin, with an area of 9,251 km2 (Kryštufek and Vohralík, 2001). It was 

connected to mainland only during the Messinian salinity crisis, and therefore, it has been 

isolated for more than 5.3 million years (Kryštufek and Vohralík, 2001). M. cypriacus 

diverged c. 430 000–610 000 years ago (coalescent ≈ 490 000 years ago) from Mus 

macedonicus and 830 000–1.2 million years ago (coalescent ≈ 780 000 years ago) from 

Mus spicilegus. Hence, this split dates earlier than the beginning of the first glacial period. 

The hypothesis that a southward and westward expansion of this ancestor which then 

colonized Cyprus, accidentally crossed a deep marine strait that separated the island even 

during the minimum sea levels. A subsequent divergence between the island and mainland 
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populations giving rise to M. cypriacus and M. macedonicus 400 000–600 000 years ago. 

Mus cypriacus fossil remains, dating back to the Pleistocene (Reese, 1999; Kryštufek and 

Vohralík, 2001). Those factors could encourage adequately high population size of M. 

cypriacus as to avoid substantial levels of inbreeding or genetic drift; however, they might 

allow high level of heterozygosity and the presence of rare alleles. 

 

5.2 Population structure and possible hybridisation 

No population structure in M. cypriacus was found on the island even though samples were 

collected 121 km apart (distance between Cape Greco and Limassol). The geographical 

distributions of small rodents are influenced by phylogenetic affinities of species, interactions 

and environmental factors (Vazquez et al., 2000).  Unfortunately, little information is 

available on the dispersal ability and transport mechanisms of M. cypriacus. According to 

Eble et al. (2009), the recognition of endemic species subpopulations can be counterintuitive 

and can also lead to an increase of range-wide panmixia. Furthermore, it has been proved 

that endemic species can manifest more genetic diversity within a limited geographical area 

compared to their mainland counterparts, even if they exhibit lower dispersal ability 

(Bohonak 1999; Siegel et al. 2003; Shanks et al. 2003). Our population structure analysis, 

in fact, indicates an absence of population structure. According to Macholán et al., (2007), 

the lack of geographical structure and the absence of connection between geographical and 

genetic distances could have been generated by sufficiently high gene flow among 

populations within the island. Most probably, M. cypriacus started an exponential population 

growth approximately 100000 years ago (Macholán et al., 2007). Indeed, according to 

García‐Rodríguez et al. (2018), the house mouse in Cyprus also revealed little population 

structure on the island, potentially due to the high levels of transportation, and mice, within 

farms and agricultural settings on Cyprus. However, we did not find M. cypriacus in farms, 

therefore it is not possible to assume any conclusions in regard to that.  

The mismatch distribution for M. cypriacus suggested a recent population expansion. 

Indeed, the coalescence analysis rejects the null hypothesis of a stable population, which is 

in agreement with the results obtained by Macholán et al., (2007). Both Fu’s (1997), Fs tests 

and Tajima’s (1989), D were not significant across all M. cypriacus. Generally, statistics 

based on haplotype frequency (e.g., Fs) are more powerful at detecting recent and moderate 

bottlenecks, whereas tests that rely on frequency spectrum of mutations (e.g., D) are best 

at detecting old and severe bottlenecks (Depaulis et al. 2003). Invasive species, predators, 

and competitors, as well as anthropogenic events, can affect the number of individuals within 

a population, leading in reductions of population size and genetic bottleneck (Frankham, 

1997, Frankham, 1998). Cyprus is a hotspot area, and all the before mentioned factors are 

present in the island, being threats for the Cypriote mouse. However, no recent genetic 

population bottleneck has been detected related to heterozygote excess; most probably due 

to a population expansion (Luikart and Cornuet, 1998). 

Nevertheless, invasive species usually pose a threat to native island endemics (Mellink et 

al., 2002, Vázquez-Domínguez et al., 2004). On Cyprus, M. m. domesticus and the domestic 

cat Felis silvestris arrived c. 8,000 years B.C (Vigne et al., 2004; Vigne et al., 2012; García-

Rodríguez et al., 2018), as Acomys nesiotes (Barome et al., 2001). The black rat R. rattus 

arrived in the island during the roman period (McCormick, 2003), and the Norway rat Rattus 
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norvegicus arrived later (Musser and Carleton, 2005). The genus Rattus are considered 

strong competitors of indigenous species (Harper and Cabrera, 2010), they are also known 

to kill mice (Karli, 1956; Bridgman et al., 2013) and other animals, such as seabirds (Stapp, 

2002). Furthermore, Frynta et al., (2006) showed that M. cypriacus tend to avoid the smell 

of domestic cats, but it does not recognize the smell of the R. norvegicus as competitor. 

Those introduced species might influence M. cypriacus populations, however, it seems this 

has not been shown on its genetic diversity.  

Introgressive hybridisation between wild and domestic mouse species have been described 

in Northern Africa (Song et al. 2011) however on Cyprus no sign of introgression between 

M. m. domesticus and M. cypriacus was found even though they were found to share the 

same habitat in one of our sampling sites in Xylophagou (Figure 2). The M. cypriacus 

specimen as well as the other seven M. m. domesticus species were found in an abandoned 

quarry close to houses and fields and thus contact between the two species is possible, at 

least for this site.  

 

5.3 Units for conservation 

The results collected in the present study suggested that M. cypriacus population is 

panmictic on Cyprus. This result is unexpected as M. cypriacus is mostly found in cultivation 

terraces with vineyard, grassy fields, and bushes (Cucchi et al., 2006) and absent in areas 

with intense anthropogenic pressure, such as farms or humans’ abodes, where instead the 

M. m. domesticus has been found to be abundant (Cucchi 2005 and present study). During 

the last few decades, the number of tourists increased on Cyprus (Saveriades, 2000) with 

high development efforts in hotel building, luxury apartments, villas and golf clubs, abolishing 

or altering natural environment mostly near the sea (Hadjimitsis, 2010; Zachariadis, 2012; 

Welz, 2015). The results of our genetic analysis suggest that this increase in urbanisation 

has not affected the dispersion of M. cypriacus. The Cypriot mouse maintains high levels of 

genetic and allelic diversity. Furthermore, the results obtained by the population structure of 

the Cypriot mouse indicate that individuals are not completely isolated. However, those 

factors of environment alterations might intensify isolation of groups and potentially lead to 

extinction (Neuwald, 2010). 

 

5.4 Limitations for the analysis of M. cypriacus  

The main limitation of our study is the low sample size which was 13 individuals. In order to 

have a better understanding of the population and its potential conservation, more 

populations need to be sampled across the island. Due to this low sample size, the initial 

results indicating a genetically healthy population must be considered with caution especially 

in light of the high development experiences in  Cyprus that has led to various conservation 

issues, such as habitat perturbation, urbanisation and introduction of exotic species. A large 

number of samples or a large number of loci are suggested for the calculation of genetic 

statistic, mainly when diploid markers, such as microsatellites are used (Toro et al. 2002, 

Kalinowski 2005). However, when studying threatened and endangered species, obtaining 

a large number of samples could result in a real challenge, because of their dispersal 

capacity or found in remote areas (Pruett and Winker, 2008). According to Smith and Wang 



46 
 

(2014), different population studies can still be obtained without biases in small samples 

(above 10 and 20 individuals in well-differentiated and poorly differentiated populations), 

such as measures of expected heterozygosity, differentiation and population structure. 

Furthermore, Pruett and Winker (2008) stated that when the nuclear genetic diversity of a 

species is not known, the samples size should include a minimum of 20 individuals, ideally 

30.  

Species distribution is crucial for monitoring threatened and endangered species (Gaston, 

1996; Kumar and Stohlgren, 2009). However, the distribution data available for those 

vulnerable species are often insufficient, making it extremely difficult to analyses habitat 

modelling (Ferrier et al., 2002; Engler et al., 2004). There are a variety of species distribution 

modelling methods, that allow scientist to predict species distribution (Guisan and 

Zimmermann, 2000; Guisan and Thuiller, 2005; Elith et al., 2006; Wisz et al., 2008). 

However, most of those methods are sensitive to the small sample size, and the outcome is 

an inaccurate prediction of habitat distribution of the species studied (Wisz et al., 2008). The 

Cypriote mouse has only been described recently (Cucchi et al. 2006; Bonhomme et al., 

2004), and only little is known on the population size, population trends and distribution of 

the species. Mus cypriacus was found mainly in the Troodos region between 300 and 900 

meters a.s.l. It is mostly found in habitat comprises abandoned cultivation terraces with 

vineyard, grassy fields, and bushes such as Mastic trees, Terebinths Thorny Broom and 

Thorny Gorse (Cucchi et al. 2006). Further studies with a brother number of samples are 

essential to understand better the distribution and the dynamics of the Cypriote mouse.  

 

Lastly but not least, another significant limitation for this study was related to low library 

quality. The genomic libraries constructed are individually labelled and pooled for 

sequencing on an Illumina MiSeq based on modified ddRAD protocols (Peterson et al. 

2012). The library construction was based on an efficient combined restriction digest/adaptor 

ligation. Two restriction enzymes were used digest genomic DNA: Csp6I (which cleaves 5’- 

G^TAC -3’sites) and PstI (which cleaves 5’- CTGCA^G -3’ sites). The reaction conditions 

permit that sticky end adapters and T4 ligase are added to the reaction such that adaptors 

are ligated to the restriction sites. Importantly, the adaptors do not reconstitute the restriction 

sites. 

SNP markers generated must be carefully treated, in order to separate high-quality markers 

from the possibly biased (Davey et al., 2012). There are several potential sources of error 

that could affect RADseq generated data such as PCR duplicates and allele dropout 

(Kimberly et al., 2016). Furthermore, high levels of DNA degradation have been proved to 

decrease the potential SNPs data drastically and ultimately eliminate the usefulness of the 

ddRADseq approach (Graham et al., 2015); “the potential SNPs available for population 

decreased on average by approximately 96.5%per individual in 96-h treatment.” However, 

due to short lengths methods for analysing RADseq, sometimes require mapping 

sequencing reads to a whole sequence genome from the same or the closer species (Li et 

al., 2008). For this analysis, a final number of 5323 SNPs were filtered with VCFtools, leaving 

the number of SNPs called at 75% of individuals, keeping 46 robust loci in common for M. 

cypriacus and M. m. domesticus. The same procedure was then done also within species, 

and 71 loci out of 5323 SNPs were kept for M. cypriacus, with 25% of missing values. There 

was a considerable reduction of potential SNPs after filtration, and a small number of loci 
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were left available for this analysis. However, the results obtained with the available 

microsatellites loci were the same compared to the results obtained from the SNPs.  
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6. Conclusion and future work 
 

The Cypriot mouse is one the three surviving palaeoendemic mammal species found on 

Mediterranean islands and therefore of conservation interest (Gippoliti and Amori 2006). The 

species has only been described recently (Cucchi et al. 2006; Bonhomme et al., 2004) which 

might explain the lack of knowledge on M. cypriacus. This study is the first to date to 

investigate the population structure of the Cypriot mouse using nuclear markers. The data 

suggests that the species is comprised of a single and demographically stable panmictic 

population. Due to the small sample size, however, more research is needed to confirm 

these results. Furthermore, only little is known on the population size, population trends and 

the distribution of this species. Future work needs to estimate population sizes, provide a 

detailed distribution map and be complemented with mark-release-recapture work to better 

understand the dispersal of the species. This work will allow a determination of the factors 

that are contributing to the apparent genetic health of the population as well as identify any 

potential threats to it.  
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Appendices 
 

 

LOCUS POPULATION    

 

M. m. 
domesticus 

M. 
cypriacus 

18510:49   

H exp. 0.5277 0.5000 

H obs. 1 1 

 
  

19331:6:   

H exp. 0.5293 0.5000 

H obs. 1 1 

 
  

40473:3:   

H exp. 0.5135 0.5000 

H obs. 1 1 

 
  

57594:48   

H exp. 0.5000 0.5000 

H obs. 1 1 

 
  

76131:6:   

H exp. 0.5000 0.5744 

H obs. 1 1 

 
  

87856:3:   

Figure 1.a – Linkage Disequilibrium RADseq – a total of 46 loci in common between M. m. domesticus 
and M. cypriacus were used to look at the linkage disequilibrium. The number of linked loci (x axis) are 
reported in the graph above respectively for each species at specific locus (y axis). The green bars are 

for M. m. domesticus and the orange bars are for the M. cypriacus 

0

1

2

3

4

5

6

7

8

9
Lo

ci 1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

LD

M. m. domesticus M. cypriacus



66 
 

H exp. 0.5000 0.5612 

H obs. 1 1 

 
  

87894:22   

H exp. 0.5000 0.7041 

H obs. 1 1 

 
  

110544:9   

H exp. 0.5413 0.5355 

H obs. 1 1 

 
  

121222:2   

H exp. 0.5256 0.5382 

H obs. 1 1 

 
  

189487:4   

H exp. 0.5256 0.5000 

H obs. 1 1 

 
  

192571:1   

H exp. 0.5460 0.5382 

H obs. 1 1 

 
  

215754:9   

H exp. 0.5143 0.5000 

H obs. 1 1 

 
  

341731:1   

H exp. 0.5278 0.5000 

H obs. 1 1 

 
  

354424:5   

H exp. 0.5000 0.6488 

H obs. 1 1 

 
  

363626:3   

H exp. 0.5382 0.5000 

H obs. 1 1 

 
  

381065:4   

H exp. 0.6169 0.5000 

H obs. 1 1 

 
  

446302:1   

H exp. 0.5571 0.5000 

H obs. 1 1 
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548063:9   

H exp. 0.5243 0.5355 

H obs. 1 1 

 
  

570989:9   

H exp. 0.5000 0.5744 

H obs. 1 1 

 
  

586085:3   

H exp. 0.5000 0.5000 

H obs. 1 1 

 
  

609303:4   

H exp. 0.5256 0.5000 

H obs. 1 1 

 
  

621561:6   

H exp. 0.5382 0.5000 

H obs. 1 1 

 
  

621587:6   

H exp. 0.5269 0.5000 

H obs. 1 1 

 
  

688196:1   

H exp. 0.5000 0.6600 

H obs. 1 1 

 
  

852088:6   

H exp. 0.5135 0.5000 

H obs. 1 1 

 
  

925079:4   

H exp. 0.5464 0.5710 

H obs. 1 1 

 
  

925341:1   

H exp. 0.5249 0.5000 

H obs. 1 1 

 
  

986650:6   

H exp. 0.5238 0.5864 

H obs. 1 1 

 
  

987240:5   

H exp. 0.5000 0.5000 

H obs. 1 1 
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987396:7   

H exp. 0.5547 0.5000 

H obs. 1 1 

 
  

987400:3   

H exp. 0.5000 0.5355 

H obs. 1 1 

 
  

987450:1   

H exp. 0.5128 0.5000 

H obs. 1 1 

 
  

987469:1   

H exp. 0.5506 0.5000 

H obs. 1 1 

 
  

987494:1   

H exp. 0.6050 0.5694 

H obs. 1 1 

 
  

987496:2   

H exp. 0.5172 0.5355 

H obs. 1 1 

 
  

987520:1   

H exp. 0.5238 0.5000 

H obs. 1 1 

 
  

988653:1   

H exp. 0.5000 0.5000 

H obs. 1 1 

 
  

988901:3   

H exp. 0.5262 0.5000 

H obs. 1 1 

 
  

989624:1   

H exp. 0.6012 0.6094 

H obs. 1 1 

 
  

990511:3   

H exp. 0.5143 0.5000 

H obs. 1 1 

 
  

991164:8   

H exp. 0.5000 0.6172 
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H obs. 1 1 

 
  

991167:2   

H exp. 0.6275 0.5000 

H obs. 1 1 

 
  

991450:1   

H exp. 0.5256 0.5651 

H obs. 1 1 

 
  

991934:3   

H exp. 0.5119 ------ 

H obs. 1 0.0000 

 
  

992004:6   

H exp. 0.5166 0.5000 

H obs. 1 1 

 
  

992155:2   

H exp. 0.6071 ------ 

H obs. 1 0.0000 
 

Table 1.a – Table reporting expected and observed heterozygosity for each locus, 
respectively for 41 M. m. domesticus 

 

  

 

Figure 2.a – Delta K RADseq all-  shows only the uppermost clustering level, not necessarily the actual 
number of subpopulations. In this case, K= 2 is the most recommended 
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Figure 3.a – Linkage Disequilibrium msat – a total of 15 microsatellite loci in common between 
M. m. domesticus and M. cypriacus were used to look at the linkage disequilibrium. The number of linked 

loci (x axis) are reported in the graph above respectively for each species at specific locus (y axis).  
The green bars are for M. m. domesticus and the orange bars are for the M. cypriacus 

Figure 4.a – Delta K msat all- shows only the uppermost clustering level, not necessarily the actual 
number of subpopulations. In this case, K= 2 is the most recommended 
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Figure 5.a – Delta K RADseq M. cypriacus- shows only the uppermost 
clustering level, not necessarily the actual number of subpopulations 

Figure 6.a – Delta K msat M. cypriacus- shows only the uppermost clustering 
level, not necessarily the actual number of subpopulations 
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LocName     Ho     Hs     Ht    Dst   Dst”    Ht”    Fst   Fst”    Fis 

Chr02_  0.690  0.920  0.939  0.019  0.038  0.958  0.020  0.040  0.250 
Chr09_  0.548  0.895  0.918  0.023  0.045  0.940  0.025  0.048  0.388 

Chr11_  0.583  0.925  0.928  0.003  0.006  0.931  0.003  0.006  0.369 
Chr08_  0.690  0.898  0.937  0.039  0.078  0.976  0.042  0.080  0.231 

Chr16_  0.443  0.857  0.857  0.000  0.000  0.857  0.000  0.000  0.483 
Chr18_  0.929  0.893  0.896  0.003  0.006  0.899  0.003  0.006 -0.040 

Chr19_  0.833  0.862  0.898  0.036  0.073  0.935  0.040  0.078  0.033 
Chr04_  0.667  0.917  0.910 -0.007 -0.014  0.903 -0.008 -0.015  0.273 

Chr13_  0.833  0.900  0.908  0.008  0.017  0.917  0.009  0.018  0.074 
Chr17_  0.417  0.675  0.671 -0.004 -0.008  0.667 -0.006 -0.013  0.383 

Chr03_  0.762  0.776  0.781  0.005  0.010  0.786  0.006  0.013  0.018 
Chr05_  0.857  0.668  0.679  0.011  0.022  0.690  0.016  0.032 -0.283 

Chr05_  0.657  0.829  0.890  0.060  0.121  0.950  0.068  0.127  0.207 

Chr07_  0.845  0.865  0.870  0.005  0.010  0.875  0.006  0.011  0.023 

Chr14_  0.833  0.926  0.915 -0.011 -0.021  0.905 -0.012 -0.023  0.100 
Chr15_  1.000  0.933  0.948  0.016  0.032  0.964  0.017  0.033 -0.072 

Overall  0.724  0.859  0.872  0.013  0.026  0.885  0.015  0.029  0.157 
 

Table 2.a – Table reporting expected and observed heterozygosity based on the type of markers, 
Populations pairwise FST and the inbreeding coefficient for the microsatellites loci of M. cypriacus. 


