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Abstract 

 

This research aims to reveal new knowledge about the factors that affect the 

hydrodynamics, dissolved oxygen (DO) and aeration performance of a wastewater 

oxidation ditch. The literature is reviewed on the Computational Fluid Dynamics 

(CFD) modelling of wastewater aeration tanks. This study develops a CFD model of 

an aerated oxidation ditch, by taking into account two-phase gas-liquid flow, inter-

phase oxygen mass transfer and dissolved oxygen. The main contributions to 

knowledge are the effect of bubble size distribution (BSD) and biochemical oxygen 

demand (BOD) distribution on the DO distribution. Species transport modelling 

predicts the BOD and DO distribution in the ditch. De-oxygenation of local dissolved 

oxygen by BOD is modelled by an oxygen sink that depends on the local BOD 

concentration. This is a novel approach to flow modelling for the prediction of the DO 

distribution. The local BOD concentration in the ditch may depend on either the local 

DO concentration or the local residence time. The numerical residence time 

distribution (RTD), heterogeneous flow pattern and DO distribution indicate that the 

flow behaviour in the ditch is non-ideal. Dissolved oxygen is affected by BOD 

distribution, bubble size, BSD, mechanical surface aeration and temperature. There 

is good agreement between the numerical simulation and both the observation of 

flow pattern and the measurement of mean DO. The BSD predicts a mean bubble 

size of around 2 mm, which is also the bubble size that best agrees with the 

measurements of DO. This study identifies that the BOD distribution and the BSD 

are key parameters that affect the DO distribution and improve the accuracy of the 

agreement with experimental data. In decreasing order of aeration performance are 

the air membrane diffuser, Fuch air jet aerator, Kessener brush surface aerator and 

Maguire hydro-jet aerator. 
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1. Introduction 

 

 

1.1 Background   

 

The research is about the computational fluid dynamics (CFD) modelling of dissolved 

oxygen (DO) in an aerated oxidation ditch in activated sludge wastewater treatment. 

The aeration bioreactor needs sufficient oxygen to allow the aerobic bacteria to 

reduce the biochemical oxygen demand (BOD) of the wastewater. Therefore an 

aeration system is always needed in the bioreactor (Metcalf et al, 2003). Aeration 

(Rosso et al, 2008) is usually the largest energy cost (45 - 90 %) in a waste water 

treatment plant (WWTP). Therefore reducing the energy consumption of aeration is 

usually the best step to minimise the total energy cost of a WWTP.      

CFD is the numerical simulation of fluid flow, heat transfer, fluid turbulence, multi-

phase components of droplets, bubbles and particles, species transport and 

chemical and biochemical reaction (Ranade, 2002). Developments in multiphase 

flow research have seen a steady growth in the CFD modelling of water and 

wastewater treatment for disinfection, dissolved air flotation, the activated sludge 

bioreactor, primary and secondary sedimentation and anaerobic digestion (Samstag 

et al, 2016). CFD simulation can be used to predict the multiphase flow pattern and 

the multi-component distribution of dissolved oxygen (DO) in an aeration tank. It can 

be used to investigate how aeration design affects the hydrodynamics, oxygen 

transfer and aeration efficiency (Brannock, 2003). It enables process design 

improvements for aeration technology (Karpinska et al, 2010). 
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1.2 Motivation 

 

The long term motivation of the project is to reduce the considerable energy 

consumption of aeration in activated sludge treatment. Wessex Water invest in new 

state of the art oxidation ditches that enable better understanding of aeration 

treatment, and may lead to more efficient processing and significant cost reduction. 

However, these designs could have a detrimental effect, due to their curved 

geometry, shallow depth and different aeration devices. There is insufficient research 

and simulation and experimental data to support these designs.  

The project therefore develops computational fluid dynamics (CFD) models to 

provide detailed understanding of the effects of aeration systems on aeration 

performance in Wessex Water's oxidation ditches at Potterne WWTP in Wiltshire, 

England. The project studies the factors that affect the hydrodynamics, dissolved 

oxygen (DO) and aeration performance. The numerical flow pattern and dissolved 

oxygen distribution is evaluated tangibly by comparison between computation and 

on-site measurement. CFD simulations are also used to evaluate the designs of 

different types of aeration devices. These CFD models can be used in the future by 

Wessex Water for more detailed design and energy costing of the aeration devices.  
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1.3 Aims and objectives  

 

The research hypothesis is that accurate flow modelling can help reveal the core 

factors that relate to dissolved oxygen in an aeration tank. The newly developed 

numerical models are able to handle complex multi-phase and multi-component fluid 

phenomena and make the prediction of dissolved oxygen more accurate. CFD 

models predominantly only consider a uniform bubble size and a uniform 

biochemical oxygen demand (BOD) concentration. Determining the effects of bubble 

size, bubble size distribution (BSD), BOD distribution and other parameters on 

dissolved oxygen can help reveal new knowledge. CFD simulation used for aeration 

design retrofitting can improve the aeration performance and lead to energy savings.  

 

Aims  

 Reveal the core factors that relate to dissolved oxygen in an oxidation ditch. 

 Develop new knowledge about the effects of bubble size, BSD, BOD 

distribution and aeration design on the hydrodynamics and dissolved oxygen. 

    

Objectives 

 Develop knowledge about the hydrodynamics and dissolved oxygen 

distribution of an oxidation ditch.  

 Reveal new knowledge about the effects of parameters on the hydrodynamics 

and dissolved oxygen distribution in an oxidation ditch.   

 Determine the level of accuracy of fluid simulation by validation with 

experimental data.    

 Determine if there is better accuracy of prediction of the dissolved oxygen 

distribution, when comparing BSD with a uniform bubble size. 

 Determine if there is better accuracy of prediction of the dissolved oxygen 

distribution, when comparing BOD distribution with a uniform BOD. 

 Reveal new knowledge about the effects of aeration system design on the 

hydrodynamics and aeration performance of an oxidation ditch. 
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1.4 Contribution to knowledge    

  

Here is a summary of the main contributions to knowledge of this research. 

 

 Dissolved oxygen can be affected by BOD distribution, temperature, surface 

aeration, mean bubble size, bubble size distribution and transport properties.  

  

 Decreasing bubble size increases the total interfacial bubble surface area 

which causes an increase in oxygen mass transfer and dissolved oxygen.   

 

 The bubble size distribution when compared to a mean bubble size does 

improve the accuracy of the dissolved oxygen, in terms of better agreement 

with the measurements of the mean dissolved oxygen in the ditch. 

 

 The bubble size distribution predicts a mean bubble size of 1.9 mm. The best 

agreement with the measurements of dissolved oxygen is a bubble size of        

2 mm, suggesting this is the probable mean bubble size. 

 

 The BOD distribution when compared to a mean BOD does improve the 

accuracy of the prediction of dissolved oxygen, in terms of better agreement 

with the measurements of the variation of dissolved oxygen in the ditch.     

  

 There is good agreement between the numerical and physical observations of 

flow behaviour and between the numerical and measurements of mean DO.   

 

 In decreasing order of aeration effectiveness are the membrane diffuser, Fuch 

air jet aerator, Kessener brush surface aerator and Maguire hydro-jet aerator. 

 

 It is recommended that the flow booster, Maguire jet aerator and membrane 

diffusers are relocated to reduce the flow disturbance between the aerators. 
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1.5  Thesis structure   

 

In Chapter 2 the literature is reviewed about the CFD modelling of aeration tanks in 

activated sludge treatment. Numerical models, design applications and experimental 

validation are reviewed and the new opportunities for research are identified.  

In Chapter 3 single-phase flow simulations and the standard two equation k-epsilon 

turbulence model predict the water velocity distribution in two full-scale operational 

wastewater oxidation ditches. The commercial CFD software ANSYS-CFX is used 

for all CFD modelling. The rigid lid symmetry plane boundary condition models the 

water surface. The multiple reference frame (MRF) mixer model predicts the 

rotational mechanical solid-liquid interaction of the brush surface aerators. The 

momentum source model (MSM) predicts the flow dispersion of the flow booster.  

In Chapter 4 the Euler-Euler multi-fluid flow model predicts the two-phase gas-liquid 

flow velocity distribution and the volume fraction distribution. A uniform mean bubble 

size of 4 mm is an average value taken from the CFD studies in the literature. The 

suspended solids are ignored due to the complexity of modelling a three phase fluid 

system. The gas-liquid flow degassing plane boundary condition models the water 

surface. The residence time distribution (RTD) is predicted using a species transport 

equation of a passive tracer that is transported by the multi-phase flow pattern. A 

mesh independency and convergence study is conducted for a range of mesh sizes, 

that is also based on the multi-phase flow pattern.  

In Chapter 5 species transport simulation predicts the biochemical oxygen demand 

(BOD) distribution and dissolved oxygen (DO) concentration distribution, that are 

transported by the multi-phase flow pattern. The effect of BOD distribution on the DO 

distribution is studied. The local BOD concentration can either be solely dependent 

on the local DO concentration or the local residence time. The DO distribution is 

predicted by an oxygen mass transport equation, with source terms for aeration and 

a sink term for the oxygen consumption by BOD. There are two approaches:           

(1) uniform BOD and homogeneous oxygen sink, (2) BOD distribution and 

heterogeneous oxygen sink.   
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In Chapter 6 a parameter study is conducted to see the effects of parameters on the 

dissolved oxygen distribution. The parameters are the BOD distribution, seasonal 

temperature, oxygen transfer rate (OTR) of surface aeration, bubble diameter, 

bubble size distribution (BSD) and species transport properties. To predict the BSD 

there are bubble break-up and coalescence models in the multiple size group 

(MUSIG) model. They are coupled to the multi-fluid multi-phase model by using 

population balance modelling (PBM).   

In Chapter 7 experimental validation of the CFD simulation is conducted. The 

physical observation of the flow pattern is conducted on two full-scale operational 

ditches at Potterne WWTP and compared to the numerical multi-phase flow pattern. 

The dissolved oxygen concentration measurements in the ditches using a portable 

DO meter are compared to species transport simulation of the dissolved oxygen.    

In Chapter 8 the performances of different types of aerators are evaluated. Design 

recommendations are given for the retrofitting of the aerators to improve the 

hydrodynamic and aeration performance of the ditch. In Chapter 9 the conclusions 

of this study are presented and recommendations given for possible future study. In 

Chapters 3 to 8, where the CFD results are presented in figures, they are mostly 

shown on a plane that is near to the water surface. Where the location is different it 

is identified in the figure caption. 
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2. Literature review 

 

2.1 Introduction 

Aeration occurs in many water and wastewater treatment processes. Major 

advances in aeration technology came as a result of the activated sludge process 

(Arden and Lockett, 1914; Martin, 1927). Sludge suspension in the aeration 

bioreactor containing the purifying bacterial flora is called 'activated sludge'. 

Dissolved oxygen (DO) is one of the most important wastewater quality parameters 

in an activated sludge treatment process (Figure 2.1). Dissolved oxygen in the 

aeration bioreactor allows aerobic bacteria to remove the biochemical oxygen 

demand (BOD) of the wastewater. Due to the low rate of oxygen mass transfer from 

the gas to the liquid phase and the low solubility of oxygen in water, sufficient 

dissolved oxygen cannot be achieved naturally. Therefore an aeration system is 

always needed in the bioreactor (Metcalf et al, 2003). Reducing the energy usage of 

aeration is usually the best way to minimise the energy cost of a wastewater 

treatment plant (WWTP) (Figure 2.2). Aeration is usually the largest energy cost 

(Figure 2.3), as much as 45 - 90 % of the total energy requirements of a WWTP 

(Wasner et al, 1978; Rosso et al, 2008; US Water Environment Federation, 2009).  

Activated sludge biological treatment in which wastewater is brought into contact 

with bacterial floc in the presence of oxygen is termed 'aeration'. The objective of 

aeration is to increase dissolved oxygen and remove substances by chemical and 

biological oxidation (Thakre et al, 2008). Aeration also provides mixing to ensure 

close contact between bacterial cells (biomass), polluting chemicals and wastewater 

(Degremont, 2007). The activated sludge process (Figure 2.1) usually includes 

biological treatment in an aeration tank, where there is a device for supplying oxygen 

to the biomass. There is also a mixing device to provide optimal contact between 

bacterial cells and nutrient, prevent solids deposits, and promote homogeneous 

distribution (Degremont, 2007). Distinct aerobic, anaerobic and anoxic regions in the 

bioreactor are for the removal of phosphorus and nitrogen (nutrients) and for better 

effluent quality. Simultaneous nitrification and denitrification may occur in different 

parts of the same tank. Aeration systems include oxidation ditches, anaerobic 

systems and biological nutrient removal (Mueller et al, 2002). 
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Figure 2.1 Activated sludge treatment process (Degremont, 2007)    

 

 

Figure 2.2 Wastewater treatment plant with oxidation ditches (Karpinska, 2013)  

 

Wastewater is treated in three stages in Figure 2.1 (Metcalf et al, 2003). A typical 

WWTP with oxidation ditches is shown in Figure 2.2 (Karpinska, 2013). Primary 

treatment consists of screens, a grit chamber and a radial primary settler. Secondary 

treatment involves the activated sludge process, consisting of an oxidation ditch and 

a radial secondary clarifier. Tertiary treatment involves the final effluent that is 

disinfected and discharged into the receiving surface water (Karpinska, 2013). 

Secondary sedimentation is the separation of biological floc from the interstitial 

liquor. There is a recirculation stream where a large part of the sludge from the 

bottom of the secondary sedimentation tank is fed back into the aeration tank to 

support microorganisms in the biological floc (Degremont, 2007).   

secondary sedimentation tanks 
oxidation ditches 

primary clarifier basins 

sludge treatment 

primary treatment secondary treatment tertiary treatment 
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Figure 2.3 Energy requirements of aeration (Rosso et al, 2008)            

  

Aeration bioreactors are complex physical-chemical-biological systems with          

gas-liquid-solid multi-phase flow. Aeration tank and aeration system design have an 

influence on the hydrodynamics, oxygen transfer and biological treatment (Jin et al, 

2004). Hydrodynamic and hydraulic characteristics depend on the reactor geometry, 

physical properties and the aeration performance (Orhon et al, 1989). Important 

multiphase parameters are the gas-liquid interfacial area and the gas holdup (volume 

fraction of air), which affect the inter-phase mass and momentum transfer. They 

depend on the physical properties and the fluid flow regime (Jin et al, 2004). 

Reactor modelling combines the hydrodynamics, inter-phase transfer processes and 

chemical kinetics, which are often coupled presenting a challenge (Ranade, 2002). 

The first step is hydrodynamics then transfer processes and then kinetics. Two 

different methods are used to model hydrodynamics. The first is hydraulic modelling 

often called systemic modelling (Levenspiel, 1998). It describes flow behaviour as a 

network of connected elementary reactors (plug flow and perfect mixed). Hydraulic 

modelling enables the global prediction of oxygen consumption, pollutant removal 

and biomass growth and decay. However, hydraulic models are empirical and 

heuristic, and neglect the detailed local component distribution within the reactor. 
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Computational fluid dynamics (CFD) is the mathematical solution of fluid flow by 

computer based simulation. It is the analysis of fluid flow, heat transfer, fluid 

turbulence, multi-phase components of droplets, bubbles and particles, species 

transport and chemical and biochemical reaction (Ranade, 2002). The fundamental 

Reynolds Averaged Navier-Stokes equations (RANS) of fluid flow are spatially 

discretised by using a geometric computational grid (equations 2.49 and 2.50).    

CFD modelling is a powerful tool for predicting the local fluid behaviour within an 

aeration tank (Karpinska and Bridgeman, 2016). CFD models enable the prediction 

of the flow field, coupled with mass and heat transfer and chemical reactions, and 

the local distribution of components such as dissolved oxygen (Karpinska et al, 

2010; Le Moullec et al, 2011). CFD can be used for reactor design to predict the 

effect of the hydrodynamics on aeration performance (Brannock, 2003).  

CFD has found application with chemical engineers mainly for reactor design 

(Ranade, 2002). Recent developments in multiphase flow research have seen a 

steady growth in the application of CFD towards wastewater treatment, with a focus 

on the pumping station, grit chamber, flow splitter, disinfection tank, dissolved air 

flotation, activated sludge bioreactor, primary and secondary sedimentation tank and 

anaerobic digestor (Karpinska and Bridgeman, 2015; Samstag et al, 2016). 
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2.2 Aeration design and fluid dynamics  

 

 

2.2.1 Aeration bioreactor    

  

Airlift, stirred and bubble columns are some of the designs of aeration bioreactors                 

(Figure 2.4). Airlift reactors (ALR) are used in biochemical fermentation and in 

biological wastewater treatment, for example for the nitrification and denitrication of 

wastewater (Van Benthum et al, 1999). The main advantage is the liquid circulation 

has low shear stress on the particles where the biofilm grows (Van Baten et al, 

2003). It has no moving parts, requires limited energy and has good mass and heat 

transfer (Mudde and Van den Akker, 2001). Air flow oxygenates the biomass and 

circulates the solid particles (Oey et al, 2001). Three phase airlift suspension 

reactors known as 'Circox' in wastewater treatment (Heijnen et al, 1997) are an 

alternative to slurry bubble column suspension reactors. In biofilm airlift suspension 

(BAS) reactors the solids phase consists of sand, which provides a large surface 

area, where biofilm is able to grow from the microorganisms.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Reactor types (Jin et al, 2004) 

aerated stirred reactor (ASR) 

(AST(BCR) 

air-lift reactor (ALR) 
bubble column reactor (BCR) 

((((BCR(BCR(BCR) 



12 
 

Activated sludge reactors are mostly cross-flow in which the water flow is horizontal 

and the gas flow is vertical. The channel reactor with sparger aeration is one of the 

oldest systems and is well adapted to larger WWTPs (Figures 2.5, 2.6, 2.7). Due to 

its cuboid geometry there are concentration gradients for dissolved oxygen and 

nutrients (Dudley, 1995; Metcalf et al, 2003). CFD simulation of a channel reactor 

predicts hydrodynamics, oxygen mass transfer and biokinetic reactions (Le Moullec 

et al, 2008a (Figure 2.5); Le Moullec et al, 2008b (Figure 2.6)).  

  

 

 

 

Figure 2.5 Channel with full floor coverage aeration (Le Moullec et al, 2008a) 

 

 

 

Figure 2.6 Channel with centrally distributed aeration (Le Moullec et al, 2008b) 
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The oxidation ditch (OD) is a modified activated sludge biological treatment process 

that utilises long solid retention times to remove biodegradable organics (Burrows et 

al, 2001; Yang et al, 2010). Typical oxidation ditches consist of a single or 

multichannel configuration within a ring, oval or horseshoe-shaped basin. Flow to the 

aeration ditch is aerated and mixed with return sludge from a secondary clarifier. 

Horizontally or vertically mounted aerators provide flow circulation, oxygen transfer 

and aeration in the ditch. The mixing process entrains oxygen into the mixed liquor 

for microbial growth. Aeration sharply increases the dissolved oxygen (DO) 

concentration, but DO decreases as the biomass uptakes the oxygen, as mixed 

liquor travels through the ditch. Solids are maintained in suspension as the mixed 

liquor circulates around the ditch. The oxidation ditch effluent is settled in a separate 

secondary clarifier (USEPA, 2000). 

 

The oxidation ditch (OD) is a type of closed-loop open channel. Wastewater is driven 

by the impellers of the surface aerators and the fluid circulates within a 'racetrack'.  

Due to its curved geometry, shallow depth and local aeration sources, there are 

concentration gradients for dissolved oxygen and nutrients. There are design 

variations with anaerobic and anoxic zones and with mechanical mixers. They can 

be physically extended to facultative aerated lagoons. Channel reactors and closed-

loop reactors have depths of up to a few meters. The air-lift oxidation ditch (ALOD) is 

much deeper (Xu et al, 2010). 

 

These aeration tanks are called 'oxidation ditches’ (Potier et al, 2005) when the 

aerators are horizontally oriented (Figure 2.7 and Figure 2.8 (Pereira et al, 2012)). 

They are called 'carrousels' when the aerators are vertically oriented (Figure 2.7). 

The Carrousel oxidation ditch is a closed looped channel, with a central dividing wall 

and a vertical rotating surface aerator at one or both ends of this wall. The mixed 

liquor in the Carrousel is oxygenated by low-speed vertical shaft aerators, to ensure 

proper mixing, and to generate the horizontal velocity and turbulence to mitigate 

against sludge settling. Aeration is concentrated at one vertical point in a carrousel, 

instead of being distributed over the length of an oxidation ditch. The mixed liquor is 

rich in oxygen as it flows out of the aeration zone, but low in oxygen as it returns 

back to the aeration zone (Koot and Zeper, 1972). 
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Figure 2.7    Aeration tank design (Potier et al, 2005) 

 

 

 

 

Figure 2.8    Oxidation ditch with horizontal surface aerators (Pereira et al, 2012)     

 

The Orbal oxidation ditch is a special type of OD (Figure 2.7) which is subdivided 

into orbal concentric channels (Daigger and Littleton, 2000). Residence times are 

long and with increasing numbers of subdivisions the behaviour approaches that of 

the ideal plug flow regime (Drews et al, 1972, 1973). Dissolved oxygen 

concentrations are high downstream of the surface aerator and gradually decrease 

along the channel (Mandt and Bell, 1984; Metcalf et al, 2003; Guo et al, 2013).   

oxidation ditch 

secondary 

sedimentation tank 

channel 

oxidation ditch 

carrousel 

orbal 
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The oxidation ditch was first developed in the Netherlands in 1959 (Pasveer, 1962). 

The first generation of oxidation ditch operates aeration and precipitation. The 

second generation has vertical surface aeration, nitrification and de-nitrification. The 

third generation has phosphorus and nitrogen removal. The fourth generation is the 

circulation ditch that improves efficiency and reduces plant labour (Wang et al, 

2019). The ditch is commonly used in new WWTPs due to its high BOD, phosphorus 

and nitrogen removal, up to 75-95% (Benefield & Randall, 1980). By the late 1970s 

and mid 1980s in Europe, over 2,000 municipal WWTPs were using Pasveer 

horizontal aeration, with over 200 Carrousel vertical aeration systems (Mueller et al, 

2002). In the USA alone, by the year 2000, ODs found application in more than 

9,200 municipal WWTPs (USEPA, 2000). In China, the most commonly used 

technology is the OD in 32.1 % of WWTPs (Yang et al, 2008). Different reactor types 

are the Pasveers and Carrousels (Koot and Zeper, 1972; Potier et al, 2005), Orbal, 

total barrier oxidation ditch and jet aeration channel (Mandt and Bell, 1984).   

 

  

2.2.2 Aeration technology 

 

These are the types of aeration systems in aeration bioreactors (Thakre et al, 2008). 

 Mechanical surface aeration is the transfer of oxygen to water by mechanical 

devices, to cause entrainment of atmospheric oxygen into the bulk liquid by 

surface agitation and mixing (Mueller et al, 2002). Surface aerators shear the 

water surface producing a spray of fine droplets that land on the surface.         

 

 Diffusion aeration is the injection of air under pressure below a liquid surface 

(Mueller et al, 2002). This method releases smaller air bubbles at depth which 

rise and interact with the water surface. Diffusers are nozzles or porous 

surfaces that are usually located near the tank bottom. 

 

 Jet aeration is a subset of diffusion aeration and produces small bubbles due 

to hydraulic shear (Mueller et al, 2002; Metcalf et al, 2003). It releases at 

depth a high velocity jet of water that is saturated with air or a high velocity jet 

of pure air. Jet nozzles can be near the tank bottom or at the mid water depth.  
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Early investigators were aware of the effect of bubble size, diffuser placement, flow 

circulation and gas flow rate on the oxygen transfer efficiency (OTE) (Martin, 1927).   

Mechanical aerators are widely used in WWTPs because of their better efficiency, 

operation and maintenance (Rao, 1999). They are divided into vertical axis or 

horizontal axis types (Thakre et al, 2008). Both of these are further subdivided into 

surface and submerged aerators. Surface mechanical aerators are often designed 

upon the original Kessener brush aerators, which has a cylinder with attached 

bristles. The bristles (or plastic bars or blades) are semi-submerged and the cylinder 

is rapidly rotated. Energy is transmitted through the top layer of the liquid and water 

is dispersed as small droplets (Thakre et al, 2008). Submerged horizontal axis 

aerators are similar except that they use disks or paddles (Metcalf et al, 2003).  

 

Diffusion aeration systems blow compressed air into water at depth. Gas diffusers 

are categorised according to their bubble size (Degremont, 2007). Coarse bubble 

devices (bubble diameter > 6 mm) inject gas directly using vertical pressurised pipes 

and large orifices. Medium-bubble devices (4 to 5 mm) have smaller orifice 

openings. Fine-bubble devices (< 3 mm) use porous or finely perforated elastic 

membranes. Fine pore diffusers save at least half of the power of coarse bubble 

systems (Stenstrom and Rosso, 2010). Gas diffusers can also be categorised by          

(1) porous, (2) non-porous, (3) hybrid: jet, sparge turbine and U-tube (Karpinska, 

2013). Due to its power efficiency, fine pore diffusion aeration with full floor coverage 

has become popular (Mueller et al, 2002). Another type uses jet aeration, where 

energy demand is mostly for pumping and air delivery. The energy from the jet keeps 

the solids in suspension and creates flow circulation (Karpinska et al, 2010). A more 

detailed history of aeration systems is in the literature (Karpinska, 2013). 

 

2.2.3 Aeration energy requirement 

The oxygen transfer rate (OTR) is the mass of oxygen transfer per unit time and a 

key process design variable (equation 2.11). Another variable is the oxygen transfer 

per unit of oxygen supply. It is expressed as the oxygen transfer efficiency (OTE) 

and is equal to OTR divided by the oxygen supply rate (equation 2.12). The mass of 

oxygen transfer per unit of power input is the most important efficiency parameter. It 

is expressed as the aeration efficiency (AE) and is equal to the OTR divided by the 
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power input (equation 2.13). Since aeration systems are competitively bid on the 

basis of oxygen transfer per unit of power then the power requirement is important. 

The types of power are mechanical for rotors, air blowers and water pumps and 

conveyance for the motion of water. Conveyance relates to the effect of the device 

on the transport of water (Stenstrom and Rosso, 2010). The energy requirement of a 

device depends on its power, air and water supply. The device can therefore be 

evaluated by using process variables (OTR, OTE and AE). These variables can be 

determined by a CFD simulation that is able to predict the water velocity and 

dissolved oxygen in the aeration tank (Stenstrom and Rosso, 2010). 

 

2.2.4 Hydraulics 

 

Efficiency of the aeration bioreactor depends also on the liquid residence time 

distribution (Potier et al, 2005). There are two contrasting types of theoretical 

hydraulic behaviour: plug flow and completely mixed (Kjellstrand, 2006). Ideal plug 

flow is characterised by the fluid particles passing through the tank and discharged in 

the same sequence. Particles remain in the tank for a time equal to the theoretical 

detention or residence time (equation 2.46). This type of flow is approximated by 

long tanks or pipes with a high length-to-width ratio. These are known as plug flow 

reactors (PFR), with a one dimensional approximation of the material and energy 

balances (Levenspiel, 1998; Ranade, 2002; Metcalf et al, 2003). Velocity is uniform 

over all the planes normal to the flow direction. There is no mixing in the direction of 

flow. Therefore there is a maximum variation of concentration from the reactor inlet 

to the outlet (Ranade, 2002). On the contrary the most ideal reactor is one that is 

completely mixed with a zero dimensional equation (Ranade et al, 2002). There are 

no concentration gradients and composition is equal all over the tank. The effluent 

has the same composition as the influent and fluid inside the tank. Completely mixed 

reactors are known as continuous stirred tank reactors, CSTRs (Levenspiel, 1998; 

Ranade, 2002; Metcalf et al, 2003). 
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The actual behaviour of an aeration tank is non-ideal and falls somewhere between 

plug flow and completely mixed (Ranade, 2002). It is important to characterise the 

hydraulic behaviour of an aeration tank by its residence time distribution (Koot and 

Zeper, 1972; Kjellstrand, 2006). In real tanks there are various hydraulic 

phenomena. Short circuiting is where the incoming flow takes a short cut through the 

fluid domain. Short circuiting has a lower residence time than the theoretical mean 

residence time of the tank (equation 2.46). Dead fluid zones are regions of the tank 

where flow is stagnant. Typically the region near a corner may act as a dead volume. 

With dead zones the active reactor volume is smaller than expected, and therefore 

the residence time is also reduced (Ranade, 2002; Kjellstrand, 2006).   

 

 

2.2.5 Hydrodynamics   
 
 
The hydrodynamics in an aeration tank is complex, due to multiphase (gas-liquid-

solid) flow, and interaction between nano, micro and macro-scale components, such 

as the sludge flocs and gas bubbles (Karpinska et al, 2015). The movement of 

bubbles influences the dissolved oxygen distribution (Hu et al, 2013). There is also a 

high mixed liquor suspended solids concentration (MLSS) (Degremont, 2007). 

However, some investigators incorrectly simplify by regarding the mixed liquor as 

single phase water flow (Chen and Feng, 2014).   

In an oxidation ditch oxygen is supplied to maintain the dissolved oxygen during the 

biological aerobic process (Fayolle et al, 2007). The mathematical model that does 

not take the gas phase into consideration cannot reasonably simulate oxygen mass 

transfer between the gas and liquid wastewater. Activated sludge comprises of a 

strongly hydrated solids phase and has different physical properties to pure water 

(Dammel and Schroder, 1991; Grijspeerdt and Verstraete, 1997; Schmid et al, 2003; 

Sears et al, 2006; Jin et al, 2014). An oxidation ditch includes transfer of oxygen 

from gas to liquid phase (equation 2.5), carbon oxidation and nitrification and 

denitrification (equations 2.47 and 2.48) in liquid and solid phases (Lei and Ni, 2014). 
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Dissolved oxygen changes with the distance from the aerator. Therefore there may 

be aerobic (free oxygen), anaerobic (absence of oxygen) and anoxic (oxygen from a 

chemical compound) zones in a reactor. Wastewater is purified after a long 

residence time in a ditch which make them different to other types of aeration tanks. 

Biological processes are reasonably well understood and are modelled using 

specialist software such as BioWin (Henze et al, 2000). However, the hydrodynamics 

is poorly understood. In oxidation ditches, mechanical surface aerators, submerged 

jet aerators and mixing devices promote unidirectional flow, with average velocities 

ranging from 0.25 - 0.40 m/s (Abusam et al, 2002; Metcalf et al, 2003). The velocity 

needs to be sufficient to maintain biomass suspension and create suitable 

turbulence (Wu et al, 2012; Fouad and Morsy, 2014). When water velocity is too low 

sludge can deposit to the bottom. Sludge settling not only decreases the working 

volume which causes flow short circuiting, but can also lead to a higher energy cost 

(Wu et al, 2012). Treatment efficiency also depends on the homogenisation of the 

flow pattern, mixed liquor, dissolved oxygen and chemical nutrients in the reactor. 

The mixing efficiency depends on the hydraulics and operation of the aeration and 

mixing devices (Karpinska et al, 2010). Oxidation ditches occupy large areas of land, 

consume substantial energy and produce uneven sludge deposits (Yang et al, 2011). 

Ditches have a bend geometry and relative shallow depth, and therefore their 

velocity distribution is heterogeneous and non-ideal. Because treatment efficiency 

depends on the hydrodynamics, ditch design cannot be successful unless there is 

good knowledge of the fluid behaviour (Littleton et al, 2007a; Yang et al, 2010).   

 

 

Surface aeration 

 

In some oxidation ditches the surface aerator may produce the most oxygenation. 

Hydrodynamic effects are caused by the interaction of the surface solid rotor with the 

water, which creates circulation in one dominant direction around the ditch (Thakre 

et al, 2008). Oxygen transfer into the water (equation 2.14) is caused by the gas-

water interface, surface water re-aeration and the air entrainment (McWhirter et al, 

1995). Water ripples and surges form due to natural motion of the water surface. 

Surface aerators shear the liquid into small droplets, which are spread in a turbulent 

plume and then land and mix with the liquid. Air bubbles are introduced into the 



20 
 

mass of water. Surface aerators pump in a circulatory pattern, which means there is 

usually a dissolved oxygen gradient. Typical flow and dissolved oxygen patterns in a 

low speed vertical shaft surface aerator in a Carrousel oxidation ditch are shown in 

Figure 2.9 (Huang et al, 2009; Stenstrom and Rosso, 2010). Horizontal shaft 

aerators called brushes or rotors (Figure 2.10: Stenstrom and Rosso, 2010) find 

many applications in oxidation ditches. They provide aeration as well as imparting a 

circulation velocity. Their power input can be controlled by the submergence depth of 

the rotor (Stenstrom and Rosso, 2010). Furthermore, more knowledge is required of 

how the flow is affected by the submerged mixing impeller (Zhang et al, 2016).     

 

 

 

 

Figure 2.9 Vertical shaft surface aerator profile (Stenstrom and Rosso, 2010) 

 

 

Figure 2.10  Horizontal shaft surface aerator profile (Stenstrom and Rosso, 2010) 
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Diffusion aeration 

Coarse bubble diffusers when installed in simple rows create spiral flow patterns.   

Water velocities can be as high as 2 m/s near the water surface (Stenstrom and 

Rosso, 2010). Diffusers are placed as uniformly as possible across the floor.   

Submerged diffusers release bubbles at depth, producing a free turbulent bubble 

plume that rises to the water surface through buoyancy. The ascending bubble 

plume entrains the water, causes vertical circulation and lateral surface spreading. 

Oxygen transfers into the water through the surface interfaces of the individual 

bubbles. Oxygen transfer also occurs at the water surface due to the fluid turbulence 

that is caused by the bubble plume and the flow circulation (De Moyer et al, 2003). 

 

Bubble coalescence and breakup 

Many natural systems consist of populations (Nopens et al, 2015) of individual 

entities (flocs, bubbles, bacterial cells), which have specific properties (size, density). 

Individual entities interact with one another (coalescence and flocculation). One key 

assumption in almost all CFD models of aeration tanks in the literature is a single 

mean bubble size. This assumption is unrealistic since the total bubble interfacial 

area drives the oxygen mass transfer between the phases (Nopens et al, 2015). In 

reality the bubble size is spatially distributed (Figure 2.11) due to coalescence and 

breakup (Nopens et al, 2015). Another factor is the decrease of hydrostatic pressure 

from the bottom to the top of the reactor that increases the bubble size. Another 

factor is the increase in fluid viscosity that is caused by the presence of suspended 

solids, which promotes bubble coalescence (Nopens et al, 2015). Fluid viscosity is 

also affected by temperature (Degremont, 2007). Typical mechanisms of breakup 

and coalescence (Wang et al, 2011) are shown in Figure 2.12 and in equation 2.38. 

 

 

Figure 2.11  Bubble size variation (Nopens et al, 2015)  
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Figure 2.12  Bubble breakup and coalescence (Wang et al, 2011) 

 

 

Particle flocculation / aggregation and breakup 

 

Agglomeration via flocculation of fine particles and colloids into larger particles is a 

proven method of removing impurities in WWTPs. Flocculation is the transformation 

of smaller destabilised particles into larger aggregates or flocs, which are 

subsequently removed by sedimentation or flotation (Degremont, 2007). For flocs in 

their initial growth phase, the formation process is a balance between the rate of 

collision induced aggregation and the rate of breakage that is caused by fluid shear 

(Bridgeman, 2009). Floc size may be considered a balance between the 

hydrodynamic forces that are exerted on a floc and the floc strength. Typical 

mechanisms for aggregation and breakup (Nopens et al, 2015) are in Figure 2.13.  

 

 

 

Figure 2.13  Particle aggregation and breakup (Nopens et al, 2015) 
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2.3 Theory 

 

CFD modelling of an aeration tank includes inter-phase oxygen mass transfer 

(equations 2.1 to 2.10), oxygen transfer of the aeration system (equations 2.11 to 

2.14), inter-phase momentum transfer (equations 2.15 to 2.33), settling velocity of 

suspended solids (equations 2.34 to 2.37), bubble breakup and coalescence 

(equations 2.38 to 2.40), residence time distribution (equations 2.41 to 2.46), 

biological kinetics (equations 2.47 and 2.48), fluid flow (equations 2.49 and 2.50) and 

fluid turbulence (equations 2.51 to 2.53). 

 

2.3.1 Inter-phase oxygen mass transfer  

 

Oxygen mass transfer is based on Fick's classic two film theory (Lewis and Whitman, 

1924; Metcalf et al, 2003) that considers the interface between films of two phases: 

gas and liquid. The passage of gaseous phase through the interface occurs slowly 

due to molecular (mass) diffusion. In the case of gases of low solubility such as 

oxygen, the resistance of the gas film can be neglected, and therefore the entire 

resistance is due to the liquid film. It is assumed the concentration in the bulk liquid 

phase and the partial pressure in the bulk gas phase are uniform and completely 

mixed. Fick’s first law of molecular diffusion for mass transfer (Degremont, 2007):  

       
  

  
                                                      2.1)  

 

where, r denotes the mass transfer rate per unit interfacial area per unit time 

(kg/m2s), Dm (diffusivity) represents the mass diffusion coefficient (m2/s),  ∂C/∂x is 

the concentration gradient and x is the distance (m). 

For oxygen transfer into water, the film mass transfer coefficients and concentration 

gradients are expressed in each phase for the bulk values to the interface values.  

 oxygen layer:                                                                                                                2.2)   

water layer:                                                                                                                     2.3                                                            
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where KG denotes the gas film mass transfer coefficient (m/s), PG is the partial 

pressure of oxygen in the bulk gas phase (Pa), Pi is the partial pressure of oxygen at 

the interface (Pa), CS is the oxygen concentration in water (mg/l), KL is the liquid film 

mass transfer coefficient (m/s), and Ct is the oxygen concentration in the bulk liquid 

phase (mg/l). Furthermore, A is the area through which mass is transferred (m2),      

V denotes volume (m3) and A/V denotes specific interfacial area, a (m-1),      

(equation 2.7). After rearrangement the volumetric oxygen mass transfer coefficient:  

    
 

      
                                                 (2.4    

 

CFD studies often use the general transport equation for the concentration of oxygen 

scalar in two phase flow (Fayolle et al, 2007) and the interfacial mass transfer of 

oxygen between the air phase (gas bubble) and the water phase (liquid): 

    

            
                                                          (2.5                                                                

 

where Lk is the interfacial transfer of oxygen concentration between two phases, 

(kg/m3s). KL is the local mass transfer coefficient, m/s. The term 'a' is the bubble 

interfacial area, m−1. The product of these two terms KLa is the oxygen mass transfer 

coefficient, s-1.  Other terms are CL, which is the DO concentration in water, (kg/m3), 

and CL* which is the saturation DO concentration in water at temperature T, (kg/m3). 

The term Lk therefore includes the bubble interfacial area term, a.     

The oxygen mass transfer coefficient (KLa) is used to quantify interfacial (inter-

phase) mass transfer between the gas and liquid phases (units of s-1). It is also used 

in equation 2.14 in this study to determine how much oxygen is transferred to the 

water from the surface brush aerators (units of h-1). The local mass transfer 

coefficient KL depends on locally distributed quantities predicted by multi-phase flow 

modelling and is therefore a spatially distributed term (equation 2.6). These 

distributed quantities are the local relative velocity between phases (air and water 

velocity), the volume fraction of air (gas holdup) and the bubble diameter. 

 



25 
 

Oxygen mass transfer coefficient from air to water phase is mostly modelled in CFD 

studies of aeration tanks using Higbie's film penetration theory (Higbie, 1935; Cockx 

et al, 2001; Fayolle et al, 2007; Le Moullec et al, 2010b; Terashima et al, 2016):  

           
         

  
   
    

  
                                    (2.6)                               

 

where Do is the standard mass diffusivity of oxygen in the water phase (1.97×10−9 

m2/s at 20 ◦C), db is the bubble diameter (m),  g is the gas volume fraction and           

ug and ul are the respective gas and liquid phase velocities (m/s). 

The interfacial area, a is the ratio of total surface area of bubbles to liquid volume. 

Spherical bubbles with bubble diameter db, have the following interfacial area (m-1):         

    
 

  
  

  

    
   

    

  
                                          2.7)   

 

Oxygen mass transfer is increased by the higher area of interface between the liquid 

volume and air, lower thickness of interfacial film and the higher driving force for the 

oxygen concentration difference (Degremont, 2007). This is the difference between 

dissolved oxygen (DO) concentration and saturation DO concentration (Degremont, 

2007). A low DO concentration has a higher oxygen transfer driving force. There are 

physical limits to oxygen mass transfer such as bubble size. Bubble size also 

depends on the orifice size of the diffusion aerator. Smaller bubbles can be produced 

by a porous surface membrane diffuser. The oxygen mass transfer coefficient 

(equation 2.6) depends on the wastewater quality (suspended solids, chemicals), the 

aeration system and the reactor geometry (Degremont, 2007). There are numerous 

CFD studies that model a fixed mean bubble diameter (Cockx et al, 2001). Oxygen 

mass transfer is extensively described in the literature (Gillot and Heduit, 2000).  
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The influence of temperature on KLa: 

                
                                             2.8)                                                            

 

where KLaT is the KLa coefficient at temperature T (s-1), KLa20 is the KLa coefficient at 

the standard temperature of 20 ºC (s-1), and θ is the temperature coefficient.   

Dissolved organics, soaps, surfactants and other contaminants in wastewater have a 

significant impact on the KLa (Degremont, 2007). An experimentally measured 

parameter -   factor - accounts for the reduction in oxygen transfer rate by impurities:  

   
     

     
                                                   2.9)   

 

The   factor is the most uncertain of oxygen transfer parameters. Typically,   is 0.6 

to 1.2 in mechanical aeration and 0.4 to 0.8 in diffusion aeration (Metcalf et al, 2003). 

The mass transfer coefficients of wastewater and tap water are KLaww and KLatw. 

The activated sludge models (ASM) consider activated sludge to be soluble in the 

liquid phase. However, an activated sludge floc has different properties to water. It is 

better to treat the floc at least as a separate pseudo solid phase (Lei and Ni, 2014), 

with oxygen mass transfer (equation 2.10) between the gas and liquid phases 

modified in terms of the solids concentration (Mena et al, 2011). Therefore, a pseudo 

three-phase CFD simulation of a ditch (Lei and Ni, 2014) models the oxygen mass 

transfer rate,   from the gas to the liquid phase as follows (Kulkarni, 2007): 

                                                      2.10)                                                                

 

where, KLaL is the mass transfer coefficient (s-1), So(s) is saturation DO concentration 

in clean water (g/m3), So is DO concentration in liquid phase (g/m3),   is the ratio of 

saturation DO in wastewater between the suspended solids and the clean water. 
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Oxygen transfer rate of aeration system 

The oxygen transfer rate (OTR) is the oxygenation capability of an aeration system 

(Stenstrom and Rosso, 2010). It represents the mass of oxygen that is transferred 

per hour into deoxygenated water: 

                                                        2.11)    

where, KLa is the overall mass transfer coefficient (h-1), V is the tank volume (m3),         

Cs is the oxygen saturation concentration in water (kg/m3). 

The oxygen transfer efficiency (OTE) is used to define diffusion aeration (Stenstrom 

and Rosso, 2010): 

      
   

   
                                              (2.12     

where wO2 is the oxygen supply rate (kgO2/h). 

Coarse bubbles have an efficiency of only 4 - 6 %, medium bubbles 5 - 10 %, while 

fine bubbles 15 - 30 % (Degremont, 2007). Although not strictly an efficiency, 

another criteria (Stenstrom and Rosso, 2010) is the aeration efficiency (AE), which is 

the oxygen transfer rate (OTR) (kgO2/h) per unit power consumed (kW): 

     
   

 
                                                    2.13)     

where, AE is aeration efficiency in clean water (kgO2
.kW/h), P is power input (kW). 

 

OTR of surface aerator 

The oxygen transfer rate of spray water in air is the main oxygen transfer process in 

high-speed surface aerators (McWhirter et al, 1995; Huang et al, 2009): 

 

                                                             2.14)                             

where OTRsp is the oxygen transfer rate of spray water (mg/h), V is tank volume 

(m3), Q is spray water flow rate (L/h), E is aeration efficiency of spray water in air 

(dimensionless), CDS is saturation concentration of DO at the wet-bulb temperature 

of air (mg/L), and C0 is the initial DO concentration in the aeration tank (≈ 0). 
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2.3.2 Inter-phase momentum transfer - drag force   

The gas-liquid flow of bubbles is characterised by the relative motion between 

phases that is affected by an inter-phase drag force (Ishi and Zuber, 1979; Joshi, 

2001; Ranade, 2002). Aeration is quantified in terms of the air volume fraction and 

modelled by the interfacial momentum transfer between the gas bubbles and water. 

Bubble diameter is an input to the bubble drag coefficient to calculate interfacial 

momentum transfer (Talvy et al, 2007). Early analytical work on bubble drag (Moore, 

1965) expresses the drag coefficient Cd of spherical bubbles in pure liquids:  

                       
    

      
                             (2.15)    

 

where Reb is the bubble Reynolds number (dimensionless) (Moore, 1965):  

               
  

  
                                           2.16)    

 

where,  l is liquid water density (kg/m3), db is bubble diameter (m), Vr is relative 

velocity between liquid and gas phases (m/s) and µl is viscosity of water (kg/ms). 

 
The drag coefficient of spherical bubbles in a CFD model of a gas-liquid air-lift 

reactor (Talvy et al, 2007) uses this expression of Karamanev and Nikolov, 1992: 

 

for Re < 135  

       
  

  
                          

     

                
              2.17     

 

for Re > 135 

                                                             2.18)                                                                  

 

This is quite similar to the correlation for the low bubble Reynolds number (Schiller 

and Naumann, 1935):  

     
  

  
                                                  (2.19  
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The Ishii and Zuber drag law uses the concept of a mixture viscosity that can also 

include bubble shape distortion. It can be used for densely populated bubbles in the 

oxidation ditch at Potterne WWTP in this project (Ishi and Zuber, 1979). It differs 

from Schiller and Naumann (equation 2.19) by its expression in the viscous flow 

regime, and its use of the mixture Reynolds number Rem that is based on the mixture 

viscosity µm. The mixture Reynolds number Rem of spherical bubbles in liquids             

(Ishi and Zuber, 1979): 

 

              
           

   
                                              (2.20                                                           

 

where,  l is liquid water density (kg/m3), db is bubble diameter (m), ug is velocity of 

gas phase (m/s), ul is velocity of liquid phase (m/s), µm is mixture viscosity (kg/ms). 

 

The Reynolds bubble number is split into fluid regimes (Ishi and Zuber, 1979): 

 

Stokes (laminar) regime (low Rem): 

      
  

    
                                                          (2.21)                                                         

 

Viscous (transitional) regime (medium Rem): 

 

         
  

    
              

                              (2.22     

 

Newtons (turbulent) regime (high Rem):  

                                                        (2.23)                                                              

 

The gas-liquid CFD model of a channel reactor (Le Moullec et al, 2008b) uses this 

correlation for the drag coefficient of a spherical bubble (Jamialahmadi et al, 1994): 

     
 

 
  
     

  
  
    

   
 
                                                   (2.24         

where,  l is water density (kg/m3),  g is air bubble density (kg/m3), db is bubble 

diameter (m), u  is the terminal vertical bubble velocity (m/s). 
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This is the most used drag force equation (Van Baten et al, 2003; Zhang et al, 2012):  

 

     
 

 
   

          

    
                                                 (2.25                                          

 

In the CFD simulation of an aeration tank a three phase (gas, liquid, solid) flow 

modelling approach can also be considered. The same form of equation (as 2.25) 

calculates the momentum exchange between the liquid and gas phase in an air-lift 

reactor (Van Baten et al, 2003) and in an EGSB reactor (Wang et al, 2009): 

         
 

 
  
  

  
                                             2.26                      

 

Similarly, momentum exchange between liquid and solid phase (Wang et al, 2009): 

         
 

 
  
  

  
                                             2.27                      

 

where, ML,G is the inter-phase momentum exchange between liquid and gas (N/m3),  

ML,S is the inter-phase momentum exchange between liquid and solid phase (N/m3),              

ϵG is the gas hold up or gas volume fraction, ϵS is solid volume fraction, db is bubble 

diameter (m), ds is particle diameter (m). 

 

When considering the solid phase, the drag coefficient that is exerted by the solid 

phase on the liquid phase CDLS (Wen and Yu, 1966) in a three phase CFD model of 

an EGSB reactor (Wang et al, 2009): 

         
  

   
                     

             
                   (2.28                          

 

where λs is the solid volume fraction. The Reynolds number between the solid and 

liquid phases:  

 

            
        

  
                                         (2.29                                                           

 

where,  l is liquid water density (kg/m3), ds is particle diameter (m), us - ul is velocity 

difference between solid and liquid phases (m/s), µl is viscosity of water (kg/ms). 
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CFD modelling of bubbly flow in an aeration tank predominantly assumes there is a 

spherical bubble shape for modelling simplification. In reality the natural population 

of bubbles has a variety of distorted bubble shapes (Nopens et al, 2015) that is 

rarely modelled. The bubble eccentricity assumes that there is an ellipsoidal bubble 

shape, with a circular horizontal projected area of diameter b, and a vertical smaller 

axis c. The eccentricity is defined as E = c/b. Bubble shape distortion may therefore 

be modelled using the eccentricity (Talvy et al, 2007): 

 

               
                                                     (2.30                                                             

 

Direct numerical simulation (DNS) is used to predict the distortion of bubble shape 

and the volume of an individual bubble in a channel reactor (Wang and Zhao, 2009). 

The characterisation of the bubble diameter is taken from the determined bubble 

volume of a non-spherical bubble:   

   

       
    

 
  

 
                                                     (2.31)                                                               

 
where Db is equivalent non-spherical bubble diameter (m), Vb is bubble volume (m3). 

 

The Eötvos number correlation (Eo)is adapted to the drag coefficient of bubbles in a 

gas-liquid CFD simulation of an oxidation ditch (Fayolle et al, 2007). It also takes into 

account an ellipsoidal bubble shape. Therefore, for a bubble size of 4.0 mm the drag 

coefficient is 0.98 (Clift et al, 1978) or 0.44 (Schiller and Naumann, 1935). γ is the 

surface tension of the bubble (N/m2) = 0.07 N/m2. 

 

The bubble drag coefficient when it is dependent only on the Eötvos number, Eo 

(Clift et al, 1978):  

 

     
 

 
                                                      (2.32     

  

    
                 

   

   
                                   (2.33      
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2.3.3 Suspended solids particle settling 

 

When the solids phase is also being considered then the settling of the suspended 

solids is very important. Discrete settling only occurs at very low suspended solids 

concentrations, when there is negligible inter-particle interaction. The settling velocity 

of discrete individual particles (Sears et al, 2006) depends on the particle density, 

porosity, permeability and shape (Ganczarczyk, 1994). Particle settling is derived by 

equating the gravitational and frictional drag forces:  

 

     
 

 
 

        

    
 

          

  
                                              (2.34                                                         

 

where, v is the terminal settling velocity of the floc (m/s),  w is water density (kg/m3), 

 p is primary particle density (kg/m3), d is floc diameter (m), µw is water viscosity 

(kg/ms). For laminar flow CD is drag coefficient = 24 / Re; Re = v d  w / µw. 

 

In aeration tanks there are usually high particle populations and there is flocculation 

by the contact between particles to form larger particles. Therefore, as well as 

discrete settling, there is also flocculent, hindered and compressive settling. This is 

modelled using relationships (equations 2.35 to 2.37) between the settling velocity 

and the mixed liquor suspended solids concentration (MLSS) (Vesilind, 1968, Patry 

and Takacs, 1992). The relative velocity (slip velocity) is the vertical velocity of the 

sludge phase that is relative to the vertical velocity of the water phase. For a solid-

liquid CFD model of a ditch (Xie et al, 2014), a double exponential sedimentation 

velocity function is used (Takács et al, 1991): 

 

                        
                          (2.35                  

where, Vs is solids settling velocity (m/s), Vo is terminal settling velocity of a discrete 

particle (m/s), V1 is velocity of liquid phase (m/s), V2 is velocity of solid phase (m/s),  

X is MLSS concentration (mg/l), k1 is constant for flocculent settling, k2 is constant for 

hindered settling. To calculate the settling constants, experimental settling data is 

collected for wastewater samples at different suspended solids concentrations (Xie 

et al, 2014). This model describes discrete, flocculent and hindered settling. 
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A single exponential solids settling velocity model is used in a solid-liquid CFD model 

of a channel reactor (Brannock, 2003) to model hindered settling (Vesilind, 1968): 

 

        
                                                     2.36)                          

 

The Vesilind model is used because it has a better fit with experimental data, in 

comparison to the Takács model for a particular study (Brannock, 2003). 

   

Another type of solids settling velocity model is used (Rasmussen and Larsen,1996) 

in the solid-liquid CFD model of an oxidation ditch (Jensen et al, 2006): 

 

          
                                             2.37)     

 

where Ws is the settling velocity (m/s), W0 is the maximum settling velocity (m/s),          

C is the suspended solids concentration (kg/m3), G is turbulent velocity gradient (s-1), 

β is empirical constant (m3/kg), γ is empirical constant (s), λ is minimum compressive 

settling velocity (m/s).  

 

Sedimentation in this model is a function of sludge concentration and fluid turbulence 

(equation 2.37). Settling constants are found by fitting the model to solids settling 

experiments conducted on the particular wastewater (Rasmussen and Larsen, 

1996). The properties of the sludge floc for a three-phase CFD model of a ditch (Lei 

and Ni, 2014), give a solids density from 1010 to 1060 g/ml (Dammel and Schroeder, 

1991), dynamic viscosity from 3.8 to 11.0 mPa.s (Jin et al, 2004) and floc diameter of 

a spherical particle from 0.05 to 0.5 mm (Grijspeerdt and Verstraete, 1997). 
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2.3.4 Bubble breakup and coalescence 

Bubbles break up and coalesce due to their interactions with turbulent eddies, which 

produces a bubble size distribution (BSD). These effects are included in some gas-

liquid CFD simulations of aeration tanks (Dhanasekharan et al, 2005; Karpinska and 

Bridgeman, 2017; Climent et al, 2019) by solving a population balance model (PBM). 

The system is considered two-phase and uses the Euler-Euler multi-fluid model. 

Mass and momentum balance equations are solved for each phase (equations 4.1 

and 4.2). The coupling between the phases is achieved through the inter-phase 

mass and momentum exchange terms. The gas phase is composed of i discrete 

bubble sizes and the discretised PBM equations are solved for the bubble number 

density, along with the birth and death terms of breakup and coalescence (Figure 

2.12). The equation for the i th bubble class fraction fi :  

             

  
                                                      (2.38                                     

 

                                                       (2.39)       

 

where fi is the ratio of the total volume of bubbles of class i to the total volume of 

bubbles in all classes, Bbr is the birth rate due to breakup, Dbr is death rate due to 

breakup, Bco is birth rate due to coalescence, Dco is death rate due to coalescence.  

 

Turbulent eddies increase the surface energy of the bubbles through deformation. 

Breakup occurs if the increase in surface energy reaches a critical value. Breakup 

causes the change from one size to another (Luo and Svendsen, 1996). Bubble 

coalescence is modelled by the bubble collisions, due to turbulence, buoyancy and 

laminar shear. Coalescence rate is a product of collision frequency and coalescence 

probability (Luo and Svendsen, 1996). Coupling between breakup and coalescence 

and the CFD model is through the bubble drag term, which is based on the Sauter 

mean bubble diameter. Interfacial bubble-liquid area, a, is used to calculate the mass 

transfer coefficient KL (Higbie, 1935) and obtained from a bubble size distribution: 

                                                      (2.40     

 
where,  i is the volume fraction of phase i,  di is the bubble diameter of phase i (m). 
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2.3.5 Residence time distribution 

 

The residence time distribution (RTD) describes the non-ideal fluid behaviour in the 

reactor (Danckwerts, 1953; Nauman, 2007; Gresch et al, 2010). It can be found from 

an experimental tracer test or a numerical equation. A trace is an inert substance 

introduced at the entrance of the reactor as a pulse or step. The tracer concentration 

is measured in the effluent and this evolution of concentration in time (graph) can be 

interpreted by using hydraulic parameters. The RTD from an experimental tracer test 

(Danckwerts, 1953; Nauman, 2007) can be used to validate an RTD predicted by a 

CFD simulation. An ideal plug flow tank has an RTD with infinite trace concentration 

in the effluent, exactly at the mean hydraulic residence time of the tank (equation 

2.46). The RTD of a completely mixed tank has an exit age curve that starts at the 

maximum tracer concentration at time zero and gradually decays over time.   

 

The gas-liquid CFD model of a channel reactor (Le Moullec et al, 2008b) calculates 

the RTD tracer concentration by using a particle trajectory CFD model (Nauman, 

2007). This equation is quite similar to the previous drag force equation (2.25):  

   

  
      

 

 
     

   

      
                                            (2.41)                             

where, up  is the velocity of the particle (m/s), ul  is velocity of liquid water (m/s), Cd is 

drag coefficient of particle,  l is density of liquid water (kg/m3),  p is density of particle 

(kg/m3), dp is particle diameter (m). 

  

Another approach to calculate the RTD tracer concentration uses a species transport 

equation of a passive tracer, which has the same physical properties as the liquid 

water phase (Le Moullec et al, 2008b). The transport equation for the concentration 

of a tracer scalar Ctr in turbulent flow:  

 

  
                                               

   

    
                   (2.42                       

where, Ctr is the concentration of the tracer (kg/m3), Ul is statistical average velocity 

(m/s), Dm is mass diffusivity (m2/s), µt is turbulent viscosity (kg/ms);                                        

Sct is turbulent Schmidt number (dimensionless). On the left side of the equation are 

the convection terms and on the right side is the molecular and turbulent diffusion. 
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The RTD graph represents the tracer concentration versus time, in terms of the 

dimensionless temporal variable ti = t/to on the x-axis, and the dimensionless 

concentration variable C' = C/Co  on the y-axis (Brannock, 2003): 

 

     
 

  
                                                         2.43)                                         

 where, 

 

    
  

 
        

                                           2.44)    

 

     
 

  
                                                       2.45)    

 

where, 

    
 

 
                                                        (2.46)                                                                    

 

where C' is the predicted dimensionless concentration of tracer, t' is the predicted 

dimensionless time, Co is the mean concentration of tracer in the tank (kg/m3), C is 

the predicted tracer concentration (kg/m3), Mt is mass of tracer injected (kg), to is the 

hydraulic mean residence time (s), V is tank fluid volume, Q is volumetric flow rate 

(m3/s). The mass balance of tracer in the tank is described by equation 2.44. The 

theoretical or hydraulic (equation 2.46) residence time (HRT) is the mean residence 

time of a tank, which has volume V (m3) and flow rate, Q (m3/s), and is equal to V/Q 

(Danckwerts, 1953; Levenspiel, 1998; Nauman, 2007). 
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2.3.6 Biological kinetic models 

 

In wastewater nitrogen is mainly present in organic and ammonia form. Nitrification 

occurs in aeration tanks that are designed to remove nitrogen. Nitrification is when 

ammonia nitrogen (NH4
+) is oxidised into nitrite (NO2

-) and then into nitrate (NO3
-) by 

a chemical oxidation reaction (Degremont, 2007) by oxidising bacteria (autotrophs). 

 

   
             

                                      2.47)                                           

 

Denitrification occurs when denitrifying bacteria (heterotrophs) reduce the nitrate to a 

lower oxidation state to form nitrogen. Nitrate (NO3
-) is reduced to nitrite (NO2

-), 

nitrous oxide (NO), di-nitrogen oxide (N2O) and nitrogen (N2) (Degremont, 2007): 

 

   
     

                                                         (2.48)  

 

 

The most common biological kinetic models (Henze et al, 2000) - the Activated 

Sludge Models (ASM) were introduced in 1982 by the International Association of 

Water Pollution Research and Control (IAWPRC) and developed by the International 

Water Association (IWA). The ASM models describe the main biological reactor 

functions of oxygen and energy consumption, biomass production and pollutant 

removal (Le Moullec et al, 2011). The ASM models can predict the nitrogen, 

phosphorus, phosphorus accumulating organisms (PAOs), chemical oxygen demand 

(COD) and biomass (Seco et al, 2020). The first model known as the Activated 

Sludge Model No. 1 (ASM1) was mainly used for nitrogen removal. In 1995 the 

group published the Activated Sludge Model No. 2 (ASM2), that is mainly used for 

nitrogen and phosphorus removal. The ASM2d model was established after ASM2 to 

be able to incorporate de-nitrification and denitrifying PAOs. In 1998 the group 

published the ASM3 model that considers chemical oxygen demand and a two-step 

model for nitrification and de-nitrification (Henze et al, 2000). Another modified ASM1 

model is the BNRM-1 model that is used for biomass flocs (Seco et al, 2004).   
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The ASM1 model (Henze et al, 1987) is used for biochemistry in a channel reactor 

(Makinia and Wells, 1999; Le Moullec et al, 2011). A one dimensional equation is 

solved for biomass and carbon oxidation in a ditch (Stamou, 1994). The ASM1 

model is extended (Stamou et al, 1999) to include carbon oxidation, nitrification and 

de-nitrification. The ASM1 model is used to predict dissolved oxygen, nitrogen and 

COD (Lesage et al, 2003). It is used for dissolved oxygen in a ditch using a 

compartmental hydraulic model (Alaya et al, 2010). It is used for nitrogen, 

phosphorus and COD removal in a ditch (Wang et al, 2019). The ASM1 model can 

be used for gas-liquid (Le Moullec et al, 2010b), solid-liquid (Brannock, 2003) and 

gas-liquid-solid flow (Lei and Ni, 2014). The benchmark simulation layout (BSM1) 

model based on ASM1 is an anoxic/aerobic compartmental hydraulic model used for 

nitrogen removal in a channel reactor (Du et al, 2018). The ASM1 (Le Moullec et al, 

2011) and ASM2 models (Littleton et al, 2007b) are summarised in the literature.   

The activated sludge models are incorporated into simulation software (Table 2.1).    

 

Table 2.1 Activated sludge modelling software 

Software Website reference 

BioWin http://envirosim.com/products/biowin  

GPS-X http://www.hydromantis.com  

Aquasim http://www.eawag.ch/de/abteilung/siam/software  

Sumo http://www.dynamita.com  

WEST https://www.mikepoweredbydhi.com/products/west 

DESASS http://calagua.webs.upv.es 

STOAT http://www.wrcplc.co.uk/ps-stoat 

 

These software are not appropriate for computational fluid dynamics. They are used 

to predict reactor functions of oxygen and energy consumption, biomass production 

and pollutant removal (Le Moullec et al, 2011). Activated Sludge Digestion model 

(ASDM) (Batstone et al, 2002) is used for anaerobic digestion and implemented in 

the software BioWin. The Sumo, Mantis2 and Mantis3 models are incorporated into 

respective Sumo and GPS-X software. The BNRM  (Seco et al, 2004) and BNRM2 

models (Barat et al, 2013) are implemented in the software DESASS (Ferrer et al, 

2008). Some commercial models such as BioWin (Dorofeev et al, 2017), Sumo or 

GPS-X have also incorporated recent model extensions. Nitrogen, phosphorus and 

COD removal in a ditch is modelled using STOAT software (Wang et al, 2019).   

http://envirosim.com/products/biowin
http://www.hydromantis.com/
http://www.eawag.ch/de/abteilung/siam/software
http://www.dynamita.com/
https://www.mikepoweredbydhi.com/products/west
http://calagua.webs.upv.es/
http://www.wrcplc.co.uk/ps-stoat
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2.4 CFD modelling  

  

2.4.1 Introduction 

 

Computational Fluid Dynamics (CFD) can be used to predict the flow and dissolved 

oxygen distributions in an aeration tank (Samstag et al, 2016; Wicklein et al, 2016). 

More work is recommended by investigators in this field (Karpinska and Bridgeman, 

2016). For natural bubble and particle size distributions, bubble coalescence and 

breakup and particle flocculation and breakup models are required (equations 2.38 

to 2.40). Population balance models (PBM) are used to predict the bubble size 

distribution (BSD) or the particle size distribution (PSD). If the biokinetics or the 

biochemical oxygen demand (BOD) on the dissolved oxygen is modelled there are 

also source and sink terms in the species transport equation (Wicklein et al, 2016). 

The change in bubble size can also be caused by the hydrodynamic pressure 

difference. For particulate flows the suspended solids settling velocity in the direction 

of gravity is also introduced (equations 2.34 to 2.37). 

  

There are different modelling approaches for gas-liquid (bubbly) and solid-liquid         

(particulate) flow in an aeration tank. To predict the flow pattern without considering 

the effects of bubbles or particles, then a single-phase water flow model is sufficient 

(equations 2.49 and 2.50). When predicting the free water surface in an aeration 

tank the volume of fluid (VOF) model is used but sparingly. When predicting the 

dispersion of bubbles or solid particles the Eulerian-Eulerian multi-fluid model is most 

commonly used (equations 4.1 and 4.2). When predicting the dissolved oxygen 

distribution, the species transport modelling is the approach (equation 5.1).  

Dissolved oxygen is dispersed in the tank by the multi-phase flow pattern.   
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2.4.2 Flow and turbulence modelling 

 

The Reynolds Averaged Navier-Stokes (RANS) equations of fluid flow consist of a 

continuity equation of conservation of mass, three momentum conservation 

equations and an energy conservation equation (Launder and Spalding, 1974). In 

the RANS, the flow patterns are obtained from the solution of the nonlinear partial 

differential equations. The balance of a mass conservation equation may be 

expressed in general form (Karpinska and Bridgeman, 2016):  

 

       

   
                                                              (2.49) 

 

and momentum conservation equation (Karpinska and Bridgeman, 2016):  

  
 

  
        

 

  
         

 

  
             

    

  
  

 

  
  

   

  
       

 
   

 

  
   

   

  
                 

 

  
   

   

  
                   

                     

                   (2.50) 

Fluid motion is inherently turbulent: irregular, fluctuating, three dimensional, 

rotational, intermittent, unsteady, disordered and dissipative (Ranade, 2002). There 

are rotational flow structures known as turbulent eddies with a wide range of length 

and time scales. The fundamental Reynolds averaged Navier-Stokes (RANS) 

equations (Launder and Spalding, 1974) model the effects of turbulence on the 

mean flow properties, for the whole range of turbulent scales (Launder and Spalding, 

1974). Turbulent flow is usually decomposed into mean and fluctuating components. 

However, the governing momentum conservation equation of fluid flow (2.50) does 

not represent a closed equation system. This is because the Reynolds stresses 

                         
 
                          that are in three dimensions and for the mean and 

fluctuating components of turbulent flow provide too many variables for the equation 

to solve. Therefore, it requires a turbulence closure model to be able to solve the 

Reynolds stresses (Launder and Spalding, 1974). It is not the purpose to assess 

turbulence models in detail which can be found in the literature (Rodi, 1993; Wilcox, 

1998; Pope, 2001).    
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The principal turbulence models are: 

 

 Two equation eddy viscosity k-ε (k-epsilon) models: standard, realizable, 

renormalized group (RNG). 

 Two equation eddy viscosity k-ω (k-omega) models: standard and shear 

stress transport (SST).                   

 Six equation Reynolds Stress Model (RSM) and four equation Algebraic 

Stress Model (ASM).  

 

When turbulence is homogeneous and isotropic then the relationships between the 

average and fluctuating flow can be deduced. In particular, the kinetic energy that 

sustains turbulence is extracted from the average flow and dissipated by the viscous 

motions of the smallest turbulent fluctuations. The features of all two-equation 

models is they assume isotropic turbulence (Launder and Spalding, 1974; Rodi, 

1993). Two equation models (i.e. k-ε and k-ω) solve two additional transport 

equations for the turbulence quantities: velocity scale turbulent kinetic energy, k, 

turbulence length scale eddy dissipation rate, ε (epsilon), and specific frequency, ω 

(omega) (Pope, 2001). The turbulent viscosity is a function of these terms. From the 

two-equation models, the standard k-ε turbulence model has found the broadest 

applicability due to its robustness, low computational cost and reasonable accuracy.  

 

The standard two equation k-ε model is used most often for the CFD models of 

aeration tanks (equations 2.51 to 2.53). A comprehensive description of the standard  

k-ε, Renormalized Group (RNG) k-ε and realizable k-ε models are in the literature 

(Launder and Spalding, 1974; Rodi, 1993; Menter, 1994). The second most widely 

used two-equation model, introduced by Wilcox, is the k-ω model, where turbulent 

viscosity is a function of k and ω (Wilcox, 1998). The standard k-ω model uses 

enhanced wall treatment to solve the low Reynolds number flows in the viscous 

near-wall layer. The SST k-ω model with a modified turbulent viscosity is considered 

to be the most accurate two-equation eddy viscosity model. A wider discussion on 

the standard and SST k-ω models is in the literature (Menter, 1994; Wilcox, 1998). 
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The Reynolds stress model (RSM) (Launder and Spalding, 1974) is a more 

elaborate and complex turbulence model referred to as second order closure. RANS 

equations are closed by solving transport equations for Reynolds stresses together 

with an equation for the dissipation rate, yielding seven additional transport 

equations. It takes longer to compute than the two equation turbulence models. 

Another turbulence model with fewer equations in this class is the Algebraic Stress 

Model (ASM).   

 

The large eddy simulation (LES) is an alternative approach, where large, three-

dimensional unsteady scale eddy motions are directly and explicitly solved in a time-

dependent simulation, using space-filtered Navier Stokes equations. LES is one of 

the most computationally expensive models and requires a more refined grid to 

resolve the eddies in the boundary layer (Pope, 2001). Direct numerical simulation 

(DNS) is the explicit solution of the whole range of turbulent time and length scales, 

from the small Kolmogorov scales to the large motion scales that transport most of 

the kinetic energy (Launder and Spalding, 1974; Ranade, 2002). As a result the 

computational cost of DNS is high, even at low Reynolds numbers making it 

impractical for use in industrial aeration tanks. This is illustrated by a study of a 

deformable bubble shape in a channel reactor. The high computational cost allows 

for only one bubble to be modelled using DNS in this study (Wang and Zhao, 2009). 

 

The standard two equation k-ε (k-epsilon) model is the predominant turbulence 

model for single and multi-phase flow in an oxidation ditch (Cockx et al, 2001; Glover 

et al, 2006; Jensen et al, 2006; Fayolle et al, 2007; Bhuyar et al, 2009; Yang et al, 

2011; Wu et al, 2012; Karpinska, 2013; Lei and Ni, 2014; Samstag and Wicklein, 

2014; Norouzi-Firouz, 2018; Zhang et al, 2019), air-lift reactor (Cockx et al, 2001; 

Mudde and Van den Akker, 2001; Oey et al, 2001; Van Baten et al, 2003; 

Dhanasekharan et al, 2005; Talvy et al, 2007; Fan et al, 2010; Xu et al, 2010; Zhang 

et al, 2012) and channel reactor (Kjellstrand, 2006; Le Moullec et al, 2008b; Huang 

et al, 2009; Hu et al, 2010; Le Moullec et al, 2010a; Le Moullec et al, 2010b; Gresch 

et al, 2011; Le Moullec et al, 2011; Hu et al, 2013; Terashima et al, 2016; Karpinska 

and Bridgeman, 2017). 
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The realizable two equation k-ε turbulence model is used for a ditch (Guo et al, 2013; 

De Gussem et al, 2014; Liu et al, 2014). The Reynolds normalisation group (RNG) 

two equation k-ε model is used for a ditch (Wei et al, 2006a; Zhang et al, 2016). The 

standard k-ω model is used for a ditch (Karpinska, 2013) and channel reactor 

(Elshaw et al, 2016). The shear stress transport (SST) model is used for a channel 

reactor (Karpinska and Bridgeman, 2017; Karpinska and Bridgeman, 2018; Hreiz et 

al, 2019) and a ditch (Climent et al, 2019; Höhne and Mamedov, 2020). RSM is used 

for ditch (Karpinska, 2013) and channel reactor (Le Moullec et al, 2008b). LES is 

used for ditch (Karpinska et al, 2015) and DNS for channel (Wang and Zhou, 2009).  

For single-phase flow the turbulence models are compared: RANS with the standard 

k-ε model and unsteady RANS (URANS) with LES. The LES gives better accuracy 

but much higher computational cost in a ditch (Karpinska et al, 2010; Karpinska et al, 

2015). The effect of the turbulence models (standard k-ε, standard  k-ω, RSM) on 

the power requirements of hydrojets in a ditch are assessed. LES yields a slightly 

higher power than k-ε but lower than k-ω (Karpinska, 2013). Comparison is made 

between the standard k-ε model and the shear stress transport (SST) k-ω model for 

bubbly flow in a channel reactor (Karpinska and Bridgeman, 2017). The standard k-ε 

model has the lowest computational cost and the RSM highest but with better 

accuracy for single-phase flow in a ditch (Huang et al, 2013). The RSM and standard 

k-ε model are compared for bubbly flow in a channel. The computational time is only 

60% higher for the RSM but it has better accuracy (Le Moullec et al, 2008b). 

  

The standard two-equation k-ε (k-epsilon) turbulence model solves additional 

transport equations for two turbulence quantities: turbulent kinetic energy, k, and 

turbulent dissipation rate, ε (Pope, 2000):       
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                        (2.52) 

where G is the turbulence generation term, C1 and C2 are turbulent constants, σk and 

σε are the turbulent Schmidt numbers, Cµ = 0.09. 
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The eddy or turbulent viscosity, µt is computed as a function of k and ε in the two 

equation standard k-ε model (Launder and Spalding, 1974): 

 

         
  

 
                                                    (2.53) 

  

In the Boussinesq hypothesis the unknown Reynolds stresses in the momentum 

equation (equation 2.50) are therefore solved by predicting the turbulent kinetic 

energy, k, (equation 2.51), the turbulent dissipation rate, ε (equation 2.52) and the 

turbulent viscosity, μt (equation 2.53).   

 

 

2.4.3 Computational grid based modelling   

   

In their general form, the Reynolds Averaged Navier-Stokes (RANS) equations 

(equations 2.49 and 2.50) cannot be solved analytically. For the solution of the 

RANS equations, the flow domain is discretised by a computational mesh to define 

the locations where the equations are solved (Launder and Spalding, 1974). This 

provides hydrodynamic information at a finite number of discrete locations within the 

flow domain. Most CFD models use the finite volume method, as this allows for an 

unstructured computational mesh. However the finite difference and finite element 

methods are also used in wastewater treatment (Wicklein et al, 2016). 

  

The computational mesh is based on the geometry of the flow domain, with a refined 

mesh near to the boundaries to capture the flow in the boundary layer (Launder and 

Spalding, 1974; Rodi, 1993; Wilcox, 1998; Pope, 2001; Ranade, 2002). Mesh 

generation is accomplished using mesh-generating software, that allows for 

definition of the model geometry, grid cell property variability (size, skewness, aspect 

ratio, orthogonality) and it provides tools for evaluating grid quality. There are three 

types of mesh: fully structured (hexahedral cell), unstructured (normally tetrahedral 

but can be hexahedral) and hybrid (polyhedral). Unstructured and hybrid grids are 

the most commonly used for complicated geometry, such as for aeration devices in 

an oxidation ditch. They allow the greatest flexibility in defining the fluid domain 

geometry and are much faster to construct than structured meshes (Ranade, 2002). 
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However, structured meshes are numerically more accurate, because the grid lines 

are better aligned to the boundary surfaces, which better captures boundary layer 

flow. There is also less numerical diffusion due to lower cell skewness and better 

grid line orthogonality (Launder and Spalding, 1974; Pope, 2001; Ranade, 2002). 

  

Unstructured tetrahedral meshes are used for oxidation ditches (Jensen et al, 2006; 

Fayolle et al, 2007; Bhuyar et al, 2009; Fan et al, 2010; Yang et al, 2010; Yang et al, 

2011; Lei et al, 2014; Xie et al, 2014; Zhang et al, 2016; Li et al, 2017; Norouzi-

Firouz, 2018; Xu et al, 2018; Climent et al, 2019; Zhang et al, 2019) and an air-lift 

reactor (Zhang et al, 2012). Unstructured hexahedral meshes are used for oxidation 

ditches (Liu et al, 2014; Karpinska et al, 2015; Wei et al, 2016a; Wei et al, 2016b) 

and channel reactors (Terashima et al, 2016; Karpinska and Bridgeman, 2017). 

 

Structured hexahedral meshes are used in CFD studies of air-lift reactors (Oey et al, 

2001; Dhanasekharan et al, 2005) and channel reactors (Le Moullec et al, 2008b; Le 

Moullec et al, 2010a; Le Moullec et al, 2010b; Le Moullec et al, 2011; Gresch et al, 

2011; Sánchez et al, 2018; Hreiz et al, 2019). Hybrid meshes are used for CFD 

studies of oxidation ditches (Huang et al, 2013; Karpinska, 2013; Chen and Feng, 

2014; Samstag and Wicklein, 2014), channel reactors (Brannock, 2003; Hu et al, 

2010; Hu et al, 2013) and a sequencing batch reactor (Samstag et al, 2012).   

 

Mesh independence and convergence analysis is recommended to verify the flow 

solution is not dependent upon the number or spatial variation of cells. When the 

flow solution no longer changes significantly there is a grid independent solution. A 

grid with a fewer numbers of cells and a grid independent solution will save 

considerable computational cost, when solving the equations of fluid flow (Launder 

and Spalding, 1974). Mesh independence studies are conducted for oxidation 

ditches (Huang et al, 2013; Karpinska, 2013; Lei and Ni, 2014; Xie et al, 2014; 

Karpinska et al, 2015; Zhang et al, 2016; Norouzi-Firouz, 2018; Xu et al, 2018; 

Climent et al, 2019; Zhang et al, 2019), air-lift reactor (Zhang et al, 2012) and 

channel reactors (Brannock, 2003; Le Moullec et al, 2008b; Le Moullec et al, 2010b; 

Terashima et al, 2016; Karpinska and Bridgeman, 2017; Sánchez et al, 2018; 

Karpinska and Bridgeman, 2018; Hreiz et al, 2019). 
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The finite difference numerical method (Launder and Spalding, 1974; Wilcox, 1998; 

Pope 2000; Ranade, 2002) interpolates the computed cell centre values of the flow 

variables onto the computational mesh. This is to enable variables to be predicted at 

discrete locations in the flow domain. Because of the consideration of numerical 

accuracy in the CFD study in this thesis, the finite difference numerical method, 

structured hexahedral mesh and second order numerical discretisation are used and 

a grid convergence study conducted. The residuals of the equations are a measure 

of how closely each finite difference equation is balanced given the current state of 

the solution (Figures 3.10, 4.1 and 5.1). The residuals in the program ANSYS-CFX 

are normalised (Ansys, 2017). The normalised residual is the sum of the imbalance 

in the equations for all cells in the domain divided by the sum of the quantity at the 

grid node. A typical hexahedral computational cell surrounding a grid node has four 

neighbouring nodes in the surrounding cells. The quantity that is interpolated might 

be any dependent variable (u velocity, turbulent kinetic energy). The finite difference 

coefficients combine convection and diffusion through the control volume that 

surrounds the grid node that is of interest (Anderson and Wendt, 1995).     

 

In ANSYS-CFX the conservative first order numerical differencing scheme for all the 

equations keeps the computation stable (Ansys, 2017). However, it is less accurate 

than a higher order scheme as it is numerically diffuse (Ranade, 2002). The first 

order 'upwind' scheme uses the upwind cell centre value and interpolates it to the 

face centre. A simple approximation to the value at the cell centre is by linear 

interpolation between the two nearest nodes, which is considered to be first order 

discretisation. The grid spacing however needs to be small enough to limit the 

numerical diffusion of a first order numerical scheme (Anderson and Wendt, 1995).    

 

For first-order accuracy, the face quantities are identical to the cell quantities and the 

face value is equal to the cell centre value in the upstream cell. For second-order 

accuracy, the higher order accuracy at the cell faces is through a Taylor series 

expansion that evaluates the value at the cell face from the solution obtained at the 

cell centre (Ansys, 2017). For second order accuracy three nodal values are used in 

the interpolation: one downstream and two upstream. For a hybrid scheme that is 

between first and second order accuracy, the Taylor series truncation error is only 

first order. Hybrid is thus less accurate than a second order scheme (Ranade, 2002). 
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2.4.4 Boundary conditions 

 

Inlets and outlets 

 

The inlet of gas from a submerged air sparger is modelled with a velocity inlet 

boundary in a channel reactor, with a volume fraction of 1 for the gas phase (Le 

Moullec et al, 2008b). The velocity inlet boundary condition is assigned for the air 

inlet of a diffuser in a channel reactor (Terashima et al, 2016). The air inlet is 

modelled by an inlet velocity and a gas fraction in an air-lift reactor (Mudde and Van 

den Akker, 2001). The velocity inlet boundary condition models the gas inlet from a 

sparger in an air-lift reactor (Zhang et al, 2016). The inlet is modelled with a flux 

boundary in a ditch. The outlet is described by an opening boundary at atmospheric 

pressure and is a free outlet (Jensen et al, 2006). An EGSB reactor inlet is modelled 

with a velocity inlet boundary condition and outlet is a pressure outlet boundary 

(Wang et al, 2010). A submerged aerator sparger in a sequencing batch reactor is 

modelled with an inlet air mass flow rate (Diez et al, 2007). At the inlet boundary of a 

channel reactor, the velocity distribution is according to velocity measurements and 

the outflow is defined by an average static pressure. The geometry of grid diffusers 

is simplified by the diffusers imprinted on the tank floor (Gresch et al, 2011). Grid 

modules of bubble diffusers in an oxidation ditch are not individually modelled, but 

the entire grid is simplified by a single boundary surface (Fayolle et al, 2007). 

 

Water surface 

For the water surface that is planar and steady, a rigid lid approximation may be 

used, with no shear stress applied at the plane. However, if the flow is gradually or 

rapidly variable, a free water surface model may be required (Wicklein et al, 2016). 

The water surface is considered flat, horizontal and rigid by many investigators of 

ditches (Jensen et al, 2006; Fayolle et al, 2007; Bhuyar et al, 2009; Yang et al, 2011; 

Wu et al, 2012; Guo et al, 2013; Huang et al, 2013; Chen and Feng, 2014; Lei and 

Ni, 2014; Karpinska et al, 2015; Zhang et al, 2016; Norouzi-Firouz, 2018; Climent et 

al, 2019), air-lift ditches (Fan et al, 2010; Xu et al, 2010), air-lift reactors (Mudde and 

Van den Akker, 2001; Oey et al, 2001; Van Baten et al, 2003) and channel reactors 

(Brannock, 2003; Le Moullec et al, 2008b; Huang et al, 2009; Hu et al, 2010; Gresch 

et al, 2011; Hu et al, 2013; Terashima et al, 2016; Karpinska and Bridgeman, 2017). 
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The centrifugal force from a surface aerator causes the water surface to be uneven. 

However, this is considered negligible compared to the few metres of water depth. 

This is the reason why a free water surface is often not modelled (Guo et al, 2013). 

The water surface can be considered fixed and rigid, and uses the ‘‘degassing’’ 

boundary condition where gas escapes at the interface. The degassing boundary 

condition eliminates the need of an extra multi-phase model and is therefore more 

computationally efficient (Talvy et al, 2007). Alternatively, an outlet boundary can be 

used for the gas phase and a rigid lid symmetry boundary for the liquid phase 

(Fayolle et al, 2007; Le Moullec et al, 2008b).    

 

Alternatively the water surface may be considered to be deformable. In this case the 

flow domain includes a region above the water surface that contains gaseous air. A 

fixed planar water surface is found to have a larger pressure drop in an airlift reactor 

and a larger liquid velocity when compared to a free surface model (Talvy et al, 

2007). To predict the free surface between two fluids (air and water) in a ditch the 

volume of fluid (VOF) multi-phase flow model is preferred (Liu et al, 2014; Wei et al, 

2016a; Wei et al, 2016b; Xu et al, 2018) although used sparingly. Another type of 

free surface tracking model (Brackbill et al, 1992) used in a ditch predicts the water 

surface shape for bubbly flow (Climent et al, 2019). Oxygen transfer from the air 

above the water surface into the water is considered negligible, when compared to 

the oxygen transfer through the bubble surfaces (Fayolle at al, 2007; Hu et al, 2010). 

 

Mixer and surface aerator models 

 

The simplest mixer model is the momentum source model (MSM), where the thrust 

force from the mixing impeller produces a momentum source (Brannock, 2003). Next 

in complexity is the fan boundary condition that predicts the tangential velocity (De 

Gussem et al, 2014). The moving wall model (MWM) is used for the surface aerators 

(Xie et al, 2014). The multiple reference frame (MRF) model constructs the impeller 

geometry which increases the complexity (Brannock, 2003). The propeller resides in 

one fluid zone and the vessel in another. The most complex is the sliding mesh (SM) 

model where the propeller is actually rotated. This divides the fluid domain into two 

zones where the propeller resides and for the rest of the tank. This advanced 

method is accurate but it is computationally expensive (Brannock, 2003). 
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Momentum source model (MSM) 

The momentum source corresponds to a mixing impeller in a ditch (Fayolle et al, 

2007). Momentum sources are assigned to sub domains for mixing impellers in a 

ditch (Jensen et al, 2006). The hydrojet in a ditch produces a jet stream of water that 

is saturated with air and this is modelled using a momentum source (Karpinska et al, 

2015). Surface disc aerators are modelled with momentum sources (Littleton et al, 

2007a). The momentum source is used for flow around a surface aerator in a ditch 

(Huang et al, 2013) and for mixing propellers in a ditch (Climent et al, 2019). 

 

Fan model 

In a fan model a cylindrical moving zone is created for each rotating impeller. The 

momentum and energy by axial thrust is passed onto the ditch (Wu et al, 2012). The 

fan model for submerged mixing impellers in a ditch and the pressure difference 

across the impellers is calculated by the disc area and the flow velocity (Yang et al, 

2011). The fan model considers the mixing impellers as cylindrical volumes, with a 

fixed velocity in the ditch (De Gussem et al, 2014; Lei and Ni, 2014; Xie et al, 2014). 

 

Moving wall model (MWM) 

The moving wall model is used for surface disc aerators in a ditch. The moving zone 

is formed by the sidewalls, outer wall, and surface of the surface aerator. Fluid in 

each moving zone gets the velocity and momentum from the moving wall (Yang et 

al, 2011; Wu et al, 2012). Flow in a ditch can be agitated by the rotation of surface 

blades and the disc surface aerators use the moving wall model (Lei and Ni, 2014). 

Only the submerged part of the volume of the surface aerator is created with a 

constant velocity boundary condition (Bhuyar et al, 2009). Due to the large numbers 

of disc aerators in a ditch, the moving wall model is used instead of the sliding mesh 

model in order to save computational cost (Chen and Feng, 2014). 

 

Multiple reference frame (MRF) 

Ditches with rotating umbrella surface aerators use the MRF model (Fan et al, 2010; 

Norouzi-Firouz, 2018). A submerged mixing impeller in a ditch uses the MRF model 

to initialise the flow field and a sliding mesh model for flow computation (Wei et al, 

2016a; Wei et al, 2016b). A submerged mixing impeller in a ditch uses the rotating 
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frame of reference (RFR) model (Samstag and Wicklein, 2014). Mixing impellers in a 

channel reactor use the MRF model (Karpinska and Bridgeman, 2017).  

 

Sliding mesh model (SMM) 

For a sliding mesh model the fluid domain is divided into two parts: the inner-rotating 

part, and the outer-stationary part that is defined by an interface (Zhang et al, 2016). 

Different approaches for modelling a surface impeller in a ditch are compared: the 

momentum source (MSM), moving reference frame (MRF) and sliding mesh (SM). 

The accuracy of the momentum source is better than MRF and near to SM. 

Moreover, momentum source is easier to use than MRF and SM (Huang et al, 2013). 

 

2.4.5 Single-phase flow modelling 

 

The main aim of single-phase flow simulation is to predict the flow pattern of the 

liquid water in an aeration tank. The modelling assumptions of single-phase flow are:  

 Inter-phase drag forces of bubbles and particles are negligible. 

 Density effects of suspended solids are negligible.   

 There is no inter-phase oxygen mass transfer. 

CFD simulation of an oxidation ditch can be computationally expensive (Karpinska et 

al, 2010) due to complex hydrodynamics, interactions between phases (activated 

sludge flocks and air bubbles) and oxygen mass transfer. For a single phase flow 

simulation there are fewer equations to solve (RANS and turbulence - equations     

2.49 to 2.53). The pure liquid water enables easier setup of an experimental 

laboratory (Littleton et al, 2007a; Karpinska, 2013; Karpinska, 2015). Using real 

wastewater in a laboratory means that the fluid contains suspended solids. 

Laboratory data from clean water can be used to validate water velocity distributions 

from single-phase CFD simulations (Karpinska, 2013). Moreover, it can be used to 

evaluate the energy costs of design systems, for example hydrojets (Karpinska et al, 

2010). Single-phase flow modelling can also be the first step towards a more 

comprehensive multi-phase flow modelling study (Karpinska, 2015). Moreover, solid-

liquid flow modelling of an aeration tank may be conducted after a single-phase flow 

modelling study (Kjellstrand, 2006; Samstag et al, 2012; Zhang et al, 2016).   
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Single-phase CFD simulations can predict the water velocity distributions in ditches 

(Littleton et al, 2007a; Littleton et al, 2007b; Bhuyar et al, 2009; Karpinska et al, 

2010, Yang et al, 2010; Yang et al, 2011; Wu et al, 2012; Guo et al, 2013; Huang et 

al, 2013; Karpinska, 2013; De Gussem et al, 2014; Karpinska et al, 2015; Zhang et 

al, 2016) and in channel reactors (Kjellstrand, 2006; Huang et al, 2009; Elshaw et al, 

2016). In an oxidation ditch the mixed liquor suspended solids concentration (MLSS) 

ranges from 3,000 - 5,000 mg/l, the density of activated sludge from 1000 - 1200 

kg/m3 (Dammel & Schroeder, 1991; Sears et al, 2006; Fan et al, 2010). Pure liquid 

water is therefore not considered to be an accurate fluid for real dirty wastewater.    

 

2.4.6 Multi-phase flow modelling 

 

Momentum exchange between phases is significant in gas-liquid and solid-liquid 

flow. Gas-liquid flow around bubbles is characterized by the relative motion between 

phases that produces local pressure and shear stress gradients (Joshi, 2001). The 

surface tension coefficient models the interface behaviour between the phases. 

Knowledge of the rise velocity of bubbles in water can accurately predict the gas-

liquid inter-phase drag force (Moore, 1965; Wallis, 1974; Ishi and Zuber, 1979; 

Karamanev, 1994). For suspended solids concentrations there is particle flocculation 

and density driven flow (Samstag et al, 2016). Knowledge of the settling velocity of 

particles can accurately predict the solid-liquid inter-phase drag force (Schiller and 

Nauman, 1935; Vesilind, 1968, Takacs and Patry, 1991). 

 

The second Eulerian approach in wastewater multi-phase flow modelling is the 

Eulerian-algebraic (slip mixture or algebraic slip) model for two or more phases, that 

are treated as interpenetrating continua. The phases are treated as a single 

continuous phase. Single differential equation is solved for the continuity and 

momentum of the mixture and the model tracks the motion of each phase. This 

single fluid approach can model phases at different velocities by the concept of the 

slip or drift velocity (Ranade, 2002; Karpinska and Bridgeman, 2016). It is 

computationally more efficient than the Euler-Euler multi-fluid model due to fewer 

equations to solve, which is one of the main reasons for its use. For phases that are 

moving with the same velocity the mixture approach models homogeneous 
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multiphase flow (Manninen et al, 1996; Wicklein and Samstag, 2009). Similar type of 

model is the 'drift flux' model, which also utilises the inter-phase slip velocity. In gas-

liquid flow the slip velocity is equal to the relative rise velocity of the bubbles in the 

water (Ishi and Zuber, 1979). In solid-liquid flow the slip velocity is equal to the 

relative settling velocity of particles in the water (Takacs and Patry, 1991). The 

mixture model relies upon the input of bubble and particle sizes. Additional empirical 

functions for the relationship between the settling velocity and the mixed liquor 

suspended solids concentration (MLSS) can be used to model hindered and 

compressive settling in wastewater treatment (Wicklein et al, 2016). 

 

The third Eulerian approach is the full Eulerian-Eulerian or multi-fluid model. Phases 

are treated as separate and interpenetrating continuum, hence the phasic volume 

fractions. The sum of the volume fractions in each phase is equal to unity. Each 

phase is governed by a separate set of continuity and momentum conservation 

equations (Simonin, 1990; Joshi, 2001; Ranade, 2002) - equations 4.1 and 4.2. The 

multi-fluid model is thought to be preferable for wastewater bubbly flow due to its 

considerable use in the literature for aeration tanks. The multi-fluid model is used 

where there are a large number of bubbles in an aeration tank (Talvy et al, 2007). It 

can also incorporate a range of bubble properties by linking it to coalescence and 

break-up models, through the inter-phase momentum drag term (equations 2.38 to 

2.40), unlike the algebraic slip mixture model. There is an increased computational 

cost due to the number of equations in the multi-fluid model (Simonin, 1990). 

 

The alternative is the Eulerian-Lagrangian multi-phase model (Sokolichin et al, 

1997). The governing phase (fluid) is treated as a continuum (Eulerian) and solved 

by the RANS equations. It tracks a large number of particles, using random-walk 

Lagrangian trajectory calculations, for the disperse phase through the continuous 

flow field. Particles or bubbles exchange momentum, mass, and energy with the fluid 

phase. Trajectories of bubbles (equation 2.41) are solved by integrating the force 

balance on a single component (Ranade, 2002). One limitation for aeration is that 

the large number of bubbles tracked have a high computational cost (Ranade, 2002) 

making this model less popular (Karpinska and Bridgeman, 2016). For example, in 

an aeration tank of 1m3 and global gas hold-up of 1% there are about 700,000 
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bubbles (Fayolle et al, 2007). Its other limitation is its poor accuracy in predicting the 

air volume fraction distribution (Karpinska and Bridgeman, 2016).    

       

The Euler-Euler multi-fluid model is the most common multi-phase model for bubbly 

flow (Karpinska and Bridgeman, 2016). It is used for gas-liquid flow in ditches 

(Glover et al, 2006; Fayolle et al, 2007; Climent et al, 2019; Höhne and Mamedov, 

2020), air-lift reactors (Cockx et al, 1997; Do-Quang et al, 1998; Mudde and Van den 

Akker, 2001; Oey et al, 2001; Van Baten et al, 2003; Dhanasekharan et al, 2005; 

Talvy et al, 2007; Zhang et al, 2012) and channel reactors (Hu et al, 2010; Le 

Moullec et al, 2010a; Le Moullec et al, 2010b; Gresch et al, 2011; Le Moullec et al, 

2011; Terashima et al, 2016; Karpinska and Bridgeman, 2017; Sánchez et al, 2018; 

Karpinska and Bridgeman, 2018; Hreiz et al, 2019), expanded granular sludge bed 

(EGSB) reactor (Wang et al, 2009; Wang et al, 2010) and sequencing batch reactor 

(SBR) (Diez et al, 2007). The multi fluid model is the most common multi-phase flow 

model for solid-liquid flow in a ditch (Jensen et al, 2006; Fan et al, 2010; Norouzi-

Firouz, 2018) and EGSB (Wang et al, 2009; Wang et al, 2010). The ASMM and drift 

flux models are used for solid-liquid flow in a ditch (Chen and Feng, 2014; Xie et al, 

2014; Zhang et al, 2019), air-lift reactor (Oey et al, 2001; Talvy et al, 2005) and 

channel reactor (Brannock, 2003). They have also been used for bubbly flow in a 

ditch (Xu et al, 2010; Chen and Feng, 2014) and air-lift reactor (Talvy et al, 2005).  

 

 

Bubble size 

 

The bubble size is an important parameter in inter-phase oxygen mass transfer 

(equation 2.5), as it influences the interfacial gas-liquid area (equation 2.7). In the 

drag coefficient the ellipsoidal bubble shape may also be considered using the 

Eötvos number (Fayolle et al, 2007) or eccentricity (Talvy et al, 2007). The effect of 

hydrostatic pressure may be considered by measurement of bubble size and water 

depth (Fayolle et al, 2006). The fixed mean bubble size is often used in CFD models, 

mostly from measurements; in oxidation ditches (Lei and Ni, 2014 (2.6 mm); Höhne 

and Mamedov, 2020 (3 mm)), air-lift reactors (Do Quanq et al, 1998 (3.5 mm); 

Mudde and Van den Akker, 2001 (3 mm); Van Baten et al, 2003 (5 mm); Talvy et al, 
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2005 (2.7 to 4.3 mm); Talvy et al, 2007 (3.4 mm); Zhang et al, 2012 (5 mm)) and 

channel reactors (Le Moullec et al, 2010b (4 mm); Gresch et al, 2011 (3.5 mm); 

Hreiz et al, 2019 (1 and 4 mm)). Bubble size is also calculated from measurements 

of mass transfer coefficients for membrane, fine-pore and coarse bubble diffusers to 

give respective sizes of 3 mm, 5 - 6 mm and 7 - 8 mm (Terashima et al, 2016).   

Multiphase flow models which incorporate bubble size distribution (BSD) or particle 

size distribution (PSD) require population balance modelling (PBM) (Bridgeman, 

2009). These models predict particle-particle (agglomeration/flocculation) and 

bubble-bubble (coalescence) interaction. PBM with bubble breakup and coalescence 

models (Prince and Blanch, 1990) are coupled to the multi-fluid model in an air-lift 

reactor (Dhanasekharan et al, 2005) and ditch (Climent et al, 2019). Other 

coalescence and breakage models (Ishii and Kim, 2001) are used for a channel 

reactor (Karpinska and Bridgeman, 2017; Karpinska and Bridgeman, 2018). Air 

bubbles are modelled as a polydisperse phase using the multiple size group 

(MUSIG) model (Lo, 1998). Discretisation of the full bubble size range is in distinct 

classes. A free surface tracking model (Brackbill et al, 1992) is used in a ditch for 

predicting the three dimensional shape of a bubble plume (Climent et al, 2019). 

Numerous studies model bubbly flow in aeration tanks but mostly without suspended 

solids and with a simplified fixed mean bubble diameter (Cockx et al, 2001). It is 

suggested that the influence of BSD and oxygen mass diffusivity on the oxygen 

transfer in an aeration tank should be investigated further (Le Moullec et al, 2010b).  

 

 

Water surface  

 

The Volume of Fluid (VOF) model is a single-fluid approach based on surface 

tracking, that solves the momentum equation of the continuous phase, while the 

disperse phase follows closure conditions for the volume fraction (Ranade, 2002). 

The VOF model is used to predict the water surface shape in a ditch (Lui et al, 2014) 

for determining the impeller depth (Wei et al, 2016a; Xu et al, 2018) and for baffle 

design (Wei et al, 2016b). It is computationally more expensive and its accuracy 

evaluation requires comparison with measurement of water levels. Another free 

surface tracking model (Brackbill et al, 1992) is used in a ditch to predict the water 
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surface shape (Climent et al, 2019). An alternative is the Level Set method where 

two fluids can be treated as a single fluid and the properties of phases are 

distinguished by the level set function. The level set method is able to simulate 

surface bubble deformation (Wang and Zhao, 2009). However, the water surface is 

often still considered to be flat, rigid and planar in many CFD studies. Investigators 

state that surface aerators and submerged jet aerators and air diffusers cause water 

surface deformation but this is negligible compared to the overall ditch depth (Fan et 

al, 2010; Guo et al, 2013). However, expansion in an air-lift reactor means that a 

rigid boundary condition predicts larger water velocities than when using a free 

boundary condition (Talvy et al, 2007). An uneven water surface may also exist in an 

air-lift oxidation ditch (Fan et al, 2010; Xu et al, 2010).       

 

Suspended solids 

The suspended solids distribution is modelled in a ditch by using the algebraic slip 

mixture model (Chen and Feng, 2014). The multi-fluid model is used for solid-liquid 

flow in an ALOD (Ishi and Zuber, 1979). It is assumed the solid particles are rigid 

spheres and the interactions between particles are negligible. The simulated density 

of activated sludge in this model is 1150 kg/m3 (Fan et al, 2010). Sludge in an 

aeration tank is considered two-phase using the multi-fluid model (Xie et al, 2014; 

Norouzi-Firouz, 2018). The slip velocity is defined as the velocity of the sludge phase 

that is relative to the velocity of the water phase, where both are in the vertical 

direction. A double exponential settling velocity relationship with respect to the MLSS 

concentration (Takacs et al, 1991) can represent the slip velocity distribution 

(equation 2.35). Settling velocity column experiments on the wastewater are 

conducted. The settling velocity is also modelled (equation 2.37) as a function of 

MLSS and turbulence (Rasmussen and Larsen, 1996). This model is calibrated with 

settling velocity column experiments (Jensen et al, 2006). The drift flux mixture 

model is used for solid-liquid flow in a channel reactor (Brannock, 2003). An 

expression for hindered settling (Vesilind, 1968) is fitted with settling velocity 

experimental data on real wastewater (equation 2.36). The two-phase suspended 

solids distribution in an oxidation ditch is simulated using the algebraic slip mixture 

model (Zhang et al, 2019). The density of the activated sludge is modelled as 1050 

kg/m3
. The double exponential settling velocity relationship is used (Xie et al, 2014). 
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Three phase flow (gas-liquid-solid) 

 

A three phase flow model (Le Moullec et al, 2010b) considers the oxygen transfer 

from the gas to the liquid phase (equation 2.5), the oxygen transfer from the liquid to 

the flocs, and the biological reactions. Two fluid phases can have activated sludge 

as the continuous phase and air as the disperse phase with a bubble diameter. 

Activated sludge has also been simplified with a uniform viscosity (Bokil and Bewtra, 

1972) and uniform suspended solids concentration, while only predicting the bubble 

distribution (Gresch et al, 2011; Terashima et al, 2016). Pseudo three-phase 

modelling of a ditch considers the sewage water, activated sludge, and air as 

respective liquid, pseudo-solid, and gas phases (Lei and Ni, 2014). The density of 

activated sludge ranges from 1010 to 1060 kg/m3 (Dammel and Schroeder, 1991). 

Activated sludge floc is a separate pseudo-solid phase (Lei and Ni, 2014), with the 

oxygen mass transfer between the gas and liquid phases (equation 2.10), modified 

in terms of the suspended solids concentration (Mena et al, 2011). Wastewater, 

activated sludge and gas in a ditch may represent the activated sludge as a pseudo-

solid phase (Li et al, 2017). Full three phase flow simulation of a channel reactor (Hu 

et al, 2013) considers the main phase as liquid. Bubbles and solid particles are 

treated as separate dilute disperse phases. There are separate drag forces modelled 

between the liquid and gas and between the liquid and solid (Schiller and Naumann, 

1935) - equation 2.19. The multi-fluid three-phase flow model of an EGSB reactor 

treats the wastewater as a primary phase with the same properties as water and the 

gas and sludge granules as the secondary phases. Sludge granules have a diameter 

of 1 mm with a density of 1460 kg/m3 (Wang et al, 2009). Three phase flow in an air-

lift reactor uses the drift flux model of Zuber and Findlay, 1965 (Talvy et al, 2005) 

and in an SGBR uses the multi-fluid model (Diez et al, 2007). There is a continuous 

liquid phase and there are two disperse phases modelled (bubbles and particles). 

Activated sludge may be considered as spherical particles with a uniform density of 

1050 kg/m3, diameter of 2 mm and viscosity of 0.00102 kg/ms (Talvy et al, 2005).       
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2.4.7 Species transport modelling 

Wastewater is liquid water that contains dissolved species. Species are different 

materials that share a common phase (liquid, gas, solid). The first Eulerian approach 

is the species transport model. The governing equations of fluid motion of the 

primary phase are solved and the other species follow the convective flow and are 

modelled as species or scalars. The mass transport equation predicts the local mass 

fraction concentration of a species. It accounts for the advection and diffusion of the 

species (Ranade, 2002) - equation 5.1. Transported species may be treated as a 

scalar (e.g. density, viscosity, temperature, dissolved oxygen, BOD). A species can 

either be coupled to the momentum equation as an equation of state or treated as a 

passive property that is transported by the fluid (Ranade et al, 2002). It may even 

include a chemical reaction. Wastewater flows are mostly turbulent, so turbulent 

diffusion dominates molecular (mass) diffusion. Species transport can be 

computationally efficient, when there is a limited number of additional equations for 

different chemicals in the system (Ranade, 2002).  

 

The spatial distribution of oxygen in an aeration tank considers the mass transport of 

oxygen in the air phase, the interfacial mass transfer of oxygen from the air to water 

phase, the mass transport of oxygen in the water phase, and the dissolution of 

oxygen into the water, which produces the dissolved oxygen in the water phase 

(Karpinska et al, 2016). Species transport simulation can predict the oxygen mass 

transport in an aeration tank (Karpinska et al, 2016). To predict the dissolved oxygen 

(DO) distribution in an oxidation ditch (Littleton et al, 2007a; Yang et al, 2011; Guo et 

al, 2013; Karpinska et al, 2016), the oxygen transport equation includes oxygen 

sources for aeration devices and an oxygen sink for the oxygen consumption by 

biochemical oxygen demand (BOD). Oxygen consumption by BOD may be assumed 

to be homogeneous throughout the ditch (Littleton et al, 2007a). Therefore, the effect 

of BOD on the DO is usually modelled in the literature by a uniform BOD. However, 

in real WWTPs there is usually found to be a BOD distribution in an aeration tank, 

which is not accounted for in the CFD models in the literature - equations 5.1 to 5.9. 

Therefore, it is recommended by investigators that the effect of the BOD distribution 

on the DO distribution in the aeration tank should be investigated (Ghawi, 2014; 

Karpinska et al, 2016; Karpinska and Bridgeman, 2018). 
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2.4.8 CFD Software 

 

Commercial CFD software uses the latest advances in turbulence and multi-phase 

flow modelling. They have sophisticated software for grid generation and for the 

graphical visualisation of results. There are built-in mechanical mixer tools. With 

user-defined functions experimental data can be used to calibrate the models. The 

most commonly used CFD software is ANSYSTM, which includes FLUENTTM and 

CFXTM and the latter is used in this study. ANSYSTM can be used for structures, 

electronics, automotive, turbo-machinery, chemical, oil and gas, food, drink, built 

environment, sports, renewable energy, water and the natural environment 

(https://www.ansys.com/)   

 

Commercial CFD programs are also used for wastewater aeration tanks (Wicklein 

and Samstag, 2009). ANSYSTM is used for single phase, gas-liquid and solid-liquid 

flow in an aeration tank (Brannock, 2003; Van Baten et al, 2003; Dhanasekharan et 

al, 2005; Jensen et al, 2006; Diez et al, 2007; Fayolle et al, 2007; Littleton et al, 

2007a; Littleton et al, 2007b; Talvy et al, 2007; Le Moullec et al, 2008b; Bhuyar et al, 

2009; Huang et al, 2009; Wang et al, 2009; Fan et al, 2010; Karpinska et al, 2010; 

Le Moullec et al, 2010a; Le Moullec et al, 2010b; Wang et al, 2010; Yang et al, 2010; 

Gresch et al, 2011; Le Moullec et al, 2011; Yang et al, 2011; Samstag et al, 2012; 

Wu et al, 2012; Zhang et al, 2012; Guo et al, 2013; Karpinska et al, 2013; Chen and 

Feng, 2014; De Gussem et al, 2014; Lei and Ni, 2014; Liu et al, 2014; Samstag et al, 

2014; Xie et al, 2014; Karpinska et al 2015; Elshaw et al, 2016; Terashima et al, 

2016; Wei et al, 2016a; Wei et al, 2016b; Zhang et al, 2016; Li et al, 2017; Karpinska 

and Bridgeman, 2018; Xu et al, 2018). ASTRIDTM software is used for gas-liquid flow 

in an aeration tank (Cockx et al, 1997; Do Quang et al, 1998; Cockx et al, 2001). 

DISSIMTM software is used for gas-liquid and solid-liquid flow in an aeration tank 

(Oey et al, 2001). COMSOLTM software is used for single-phase in an aeration tank 

(Kjellstrand, 2006).     

 

 

https://www.ansys.com/en-gb
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2.5 Experimental validation 

  

2.5.1 Residence time distribution 

 

Tracer experiments consist of an inert substance introduced at the influent (inlet) of a 

reactor as a pulse. The tracer concentration is measured in the effluent (outlet) and 

this evolution of concentration in time is the residence time distribution (RTD) of the 

fluid in the reactor. It measures a key feature of hydraulic performance of a reactor. 

Comparison between an RTD graph from a tracer test (Danckwerts, 1953; Nauman, 

2007) and a numerical RTD may be used to validate a CFD simulation.   

 

The most commonly used tracer for experiments in aeration tanks is a chemical salt, 

where its concentration is detected by a conductivity probe or by sample 

measurements (De Clerq et al, 1999; Brannock, 2003; Olivet et al, 2005; Potier et al, 

2005; Kjellstrand, 2006; Talvy et al, 2007; Le Moullec et al, 2008a; Gresch et al, 

2010; Karpinska et al; 2010; Karpinska, 2013; Climent et al, 2019). Other commonly 

used tracers in aeration tanks are fluorescent dyes (e.g. Rhodamine), that are 

detected by an ultra-violet fluorometer (Burrows et al, 1999; Burrows et al, 2001; 

Makinia and Wells, 2005; Zima et al, 2008; Zima et al, 2009; Samstag and Wicklein, 

2014). An example of a tracer test is to inject a pulse of salt solution at the inlet, and 

monitor its concentration with a conductivity probe at the outlet (Potier et al, 2005) or 

to measure samples by a fluorescent spectrophotometer (Climent et al, 2019). 

 

Numerical RTDs can be calculated using these mathematical models: 

 

● Euler-Lagrangian particle tracking equation models the particle concentration 

 of a passive particle that does not affect the hydrodynamics (equation 2.41).  

● Species transport equation models the scalar concentration of a passive 

 chemical tracer that does not affect the hydrodynamics (equation 2.42). 

  

Model parameters for numerical RTDs can be adjusted for their calibration with 

experimental RTD data. Species transport is sensitive to the mass diffusivity of the 

species tracer and the numerical diffusion of grid discretisation (Ranade, 2002). 
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Euler-Lagrangian particle tracking is used to calculate the numerical RTD to validate 

a CFD simulation (Le Moullec et al, 2008b). An accurate statistical RTD is deduced 

from a sufficient number of injected particles. Particles are approximate perfect 

tracers of the background fluid. Their diameter is very small (10-6 m) and they have 

the same properties as water (Le Moullec et al, 2008b; Karpinska et al; 2010).    

 

Tracer experiments provide RTD data to validate CFD studies of ditches (Jensen et 

al, 2006; Karpinska, 2013), air-lift reactor (Talvy et al, 2007), channel reactors 

(Brannock, 2003; Kjellstrand, 2006; Ghawi, 2014; Karpinska and Bridgeman, 2018) 

and SBR (Samstag and Wicklein, 2014), by injecting a low concentration of passive 

chemical tracer that does not affect the hydrodynamics. Numerical RTDs using 

species transport are used to validate CFD simulation of an air-lift reactor (Talvy et 

al, 2007) and channel reactors (Brannock, 2003; Le Moullec et al, 2008b; Ghawi, 

2014; Karpinska and Bridgeman, 2018; Hreiz et al, 2019). Numerical RTDs using the 

particle tracking method are used to validate CFD simulations of ditches (Karpinska 

et al, 2010; Karpinska, 2013) and a channel reactor (Le Moullec et al, 2008b). 

 

2.5.2 Single-phase flow 

 

In a single-phase CFD study (Karpinska et al, 2013) the water velocity in a pilot scale 

ditch is measured using Acoustic Doppler Velocimetry (ADV). Dissolved oxygen 

concentrations are measured with a DO probe; COD using a COD Cell Test and 

spectrophotometric method; NH4-N using an Ammonium Cell Test and NO3-N 

measured using a Nitrate Cell Test. Velocities in another full-scale Carrousel ditch 

are measured by a portable propeller current meter (Yang et al, 2010). Laser 

Doppler Velocimetry (LDV) and ADV are proposed for better accuracy. In another 

study, a current velocity meter measures the velocities in a pilot-scale Orbal ditch. 

Velocity and DO in a full-scale Orbal ditch are measured using a portable velocity 

meter and a portable DO meter. Single-phase flow velocities in both tanks agree with 

the measurements (Littleton et al, 2007a).   
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Velocities in a Carrousel ditch are measured using a propeller current meter (Zhang 

et al, 2016) and are in agreement with a single-phase CFD simulation. Water velocity 

is measured with a Doppler velocimeter in another Carrousel ditch and is in good 

agreement with a single-phase CFD simulation (De Gussem et al, 2014). Single-

phase simulation of a full-scale surface aerated channel reactor is validated (Huang 

et al, 2009). The flow rate of spray water from a surface aerator is measured with a 

flow meter and measurements of DO with a meter. The mass transfer coefficient of 

surface aeration is measured using the unsteady-state oxygen absorption method. In 

another study surface aeration is modelled using a single-phase flow model (Huang 

et al, 2013). Velocity measurements using an ultrasonic Doppler instrument are in 

agreement. Measurements of DO with a meter are taken in a ditch and compared to 

the predictions of a compartmental hydraulic model (Alaya et al, 2010).   

 
Velocity measurements use a probe in a full-scale channel reactor (Elshaw et al, 

2016). There is agreement with single phase simulation. Velocities are measured 

using Particle Image Velocimetry (PIV) in another channel reactor (Ghawi, 2014). 

Comparison of power and flow number indicate that the single-phase simulation is 

accurate. Single-phase simulation of a full-scale ditch shows good agreement 

between the oxygen mass transfer coefficient of a surface aerator and experimental 

measurements (Bhuyar et al, 2009). The deoxygenating procedure is a non-steady-

state re-aeration test (Thakre et al, 2009).   

 

 

2.5.3 Gas-liquid flow 

 

LDV measurements of velocities in a bench-scale channel reactor with clear water 

are in agreement with a gas-liquid flow simulation. Modelled void fractions show 

good agreement with optical probe measurements. A double optical probe measures 

the bubble size for input to a CFD model (Le Moullec et al, 2008b). Gas-liquid flow 

simulation agrees with measured DO in another bench-scale channel reactor (Le 

Moullec et al, 2010b). Nitrate is measured using ionic chromatography; ammonium 

and soluble CODs by standard HACH protocols and DO with a probe. The mass 

transfer coefficient is determined by an experimental method of Le Bonté et al, 2005.    

 



62 
 

Gas-liquid simulation is validated with a measured mass transfer coefficient in a 

laboratory airlift reactor (Cockx et al, 2001). Bubble size is measured and is uniform 

in the CFD model. CFD simulation is also validated with velocity (PIV) and gas 

fraction measurements (Cockx et al, 1997). In another study the effect of hydrostatic 

pressure on bubble size is considered by measurements of the bubble size and 

water depth. Moreover, bubble sizes are measured from camera images obtained by 

an immersed camera within a bubble plume. The diameter of spherical bubbles has 

the same volume as ellipsoidal bubble shapes observed by a camera within a plume 

(Fayolle et al, 2006). In another study, gas-liquid simulation of a ditch is validated 

with measurements of velocity, bubble size, gas hold-up and oxygen transfer 

coefficient. Velocities are measured with a flow meter and is well predicted by the 

CFD simulation. There is good agreement with experimental gas hold-up profiles in a 

pilot scale tank (Fayolle et al, 2007). In another study, gas-liquid simulation of an 

airlift reactor is validated with experimental data of the velocity and gas volume 

fraction. The bubble size is visualised by a video camera. The velocity field is 

measured using PIV (Talvy et al, 2007). In another study, a mean numerical bubble 

size is compared to a bubble size distribution for gas-liquid flow simulation of a 

laboratory channel reactor. It is validated with velocity measurements using PIV 

(Karpinka and Bridgeman, 2017). Gas-liquid flow simulation is validated with 

measurements of water velocity in a ditch by using Acoustic Doppler Velocimetry 

(Climent et al, 2019).    

 

Gas-liquid flow simulates velocities and gas hold up profiles in an air-lift oxidation 

ditch (ALOD) and is compared to experimental data (Xu et al, 2010). Particle Doppler 

Anemometry (PDA) measures velocities in a lab-scale ALOD. DO is measured by a 

probe; COD by a COD reactor; BOD5 by a BOD meter and animal and vegetable oils 

(AVO) and mineral oils (MO) by infrared spectrophotometer. Total phosphorus (TP) 

is determined by a phosphate analyser; ammonia-nitrogen (NH4-N) and nitrite-

nitrogen (NO2-N) is by using a UV spectrophotometer. Nitrate-nitrogen (NO3-N) and 

total nitrogen (TN) are measured by an UV spectrophotometer.   

 

Gas-liquid flow simulates a channel reactor (Terashima et al, 2016). The oxygen 

mass transfer coefficient is compared with measurements and uses a calibrated 

modelled bubble size. Gas-liquid simulation agrees with lab-scale PIV 
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measurements in another channel reactor (Hu et al, 2010). There is good agreement 

between CFD and lab-scale experiments in another air-lift reactor (Van Baten et al, 

2003). Gas-liquid simulation of another airlift reactor is compared to experimental 

data for the overall gas fraction and confirmed by LDA velocity data (Mudde and Van 

den Akker, 2001). The computationally expensive DNS method studies the shape of 

a single bubble in a channel reactor (Wang and Zhao, 2009). High-speed camera 

bubble images are in agreement with the DNS simulation. In another study a key 

factor that influences oxygen mass transfer (Dhanasekharan et al, 2005) is the 

bubble size distribution (BSD). The gas holdup and mass transfer coefficients are 

compared to experimental data in an air lift reactor. In another study there is good 

agreement between the numerical and measured velocities (ADV) in a channel 

reactor, using a gas-liquid simulation that incorporates BSD (Karpinska and 

Bridgeman, 2018). The numerical and measured velocity profiles and the average 

gas hold up in an oxidation ditch, when using a gas-liquid volume of fluid (VOF) 

model are in good agreement (Xu et al, 2018).  

  

 

2.5.4 Solid-liquid flow 

 

Velocities are measured using a propeller flow-meter in a  Carrousel ditch. Solids 

concentrations are measured using a portable suspended solids analyser. The solid-

liquid flow simulation is found to be more accurate than a single-phase simulation. 

Measurements from settling cylinder experiments model the actual settling behaviour 

of the suspended solids of the wastewater (Xie et al, 2014). PDA measures the 

velocities in an ALOD. The particle diameter distribution is measured using a laser 

particle analyser. Solid-liquid simulation is consistent with velocity measurements 

that are made by PDA (Fan et al, 2010). Solid-liquid simulation of a channel reactor 

is validated with measurements of flow velocities by using ADV (Brannock, 2003). 

Suspended solids modelling incorporates solids settling that is calibrated to solids 

profile field data (Samstag et al, 2012). The evaluation of mixing devices in a SBR 

and a ditch use field testing to calibrate solid-liquid simulation. Grab samples are 

measured for the total suspended solids (TSS) (Samstag and Wicklein, 2014). 
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2.5.5 Three phase flow (gas-liquid-solid) 

 

Pseudo three-phase flow simulation of a ditch is experimentally validated (Lei and Ni, 

2014). Measurements of MLSS, DO, COD, ammonia nitrogen, and nitrate are 

obtained from a pilot-scale Carrousel ditch. ADV is used to measure the flow 

velocities. Ammonia, nitrogen and nitrate concentrations are measured using 

spectrophotometry. DO is measured using an oxygen probe. Agreement with 

measured data suggests there is accuracy for pseudo three-phase flow modelling, 

carbon oxidation, nitrification and de-nitrification (Lei and Ni, 2014). For a pseudo 

three-phase flow simulation of a ditch, there is good agreement with measured 

velocities and suspended solids concentrations. Moreover, an artificial neural 

network (ANN) that is trained on the results of a pseudo three-phase flow model 

agrees with the measurements of ammonia, nitrogen, nitrate, DO and COD (Li et al, 

2017). Three phase flow simulation of a channel reactor agrees with velocity 

measurements obtained by PIV (Hu et al, 2013). Solid-liquid and gas-liquid flow 

simulation of a ditch are in agreement with velocity measurements made by ADV 

(Chen and Feng, 2014).  Three phase flow simulation of a EGSB reactor is validated 

experimentally. Comparison between measurements by PIV and simulated velocities 

are in good agreement (Wang et al, 2009). Three-phase flow simulation of an airlift 

reactor uses input measurements of bubble diameter. Solids volume fractions are in 

agreement with measurements (Talvy et al, 2005). For an SBR reactor three phase 

flow simulation is validated with measured velocities by using PIV (Diez et al, 2007). 
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2.6 CFD application to aeration design 

 

CFD simulations are used in the development and optimisation of the design of 

aeration tanks, aeration devices and mixing impellers (Karpinska and Bridgeman, 

2016). The criteria for improved design is the uniformity of the flow pattern, dissolved 

oxygen and suspended solids distribution, increasing DO concentration, increasing 

the residence time of the tank and reducing the energy consumption of aeration.  

 

A ditch experiences short-circuiting of the influent towards the effluent which reduces 

the residence time. The inlet and outlets are positioned at opposite ends of the ditch 

and this increases residence time. Positioning the inlet and outlet centrally splits the 

flow equally by the central wall and increases residence time (Jensen et al, 2006). 

 

In a channel reactor, corrective measures are studied to deal with the high velocity of 

the inlet flow: inlet damper wall, mixer, baffles. To quantify the improvement of the 

hydraulics there is a comparison of residence times. The hydraulics of the baffles is 

verified with an experimental RTD tracer test (Kjellstrand, 2006).  

 

In a channel reactor modifications are made to baffles and mixers. When the flow is 

closer to plug flow (uniform flow) there is a greater removal of the pollutants. An even 

distribution of mixers and baffles along the length of the reactor induces several 

small well mixed zones in series (Brannock, 2003). 

 

The mixing impellers with optimal impeller radius in a ditch make the flow distribution 

more uniform, maximise the velocity greater than 0.3 m/s and reduce return flow (Liu 

et al, 2014). Guiding baffles downwards at an angle and just downstream of the 

surface aerators increase the bottom tank velocity, make the vertical velocity 

distribution more uniform, which helps prevent sludge deposits and increases 

residence time. Baffles guide DO into the ditch bottom, which increases the mixture 

time between oxygen and water and the oxygen mass transfer (Wei et al, 2016a). 

The optimum submergence depth of impellers maximises the velocities greater than 

0.3 m/s and makes the vertical velocity distribution more uniform (Wei et al, 2016b). 

An optimal depth of a submerged impeller is beneficial for minimising sludge 

deposition in an oxidation ditch by maintaining sufficient velocity (Xu et al, 2018). 
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By adjusting the position, rotating speed and number of submerged propellers, the 

problems of sludge deposits and low velocity in the bend of a ditch are improved.  

With three propellers operating simultaneously the flow distribution is homogeneous, 

and velocities in almost every section are higher than 0.15 m/s (Zhang et al, 2016). 

 

A ditch consists of surface aerators and submerged impellers. The uniformity of the 

flow field and DO distribution has a relationship with the energy consumption and 

process efficiency. Changes to operation involve turning on and off selected surface 

aerators and impellers (Yang et al, 2011). In a further study, the distribution of 

suspended solids is made more uniform by the same strategy (Xie et al, 2014).   

 

An oxidation ditch has vertical axis surface aerators at the ends of the central wall. 

Suspended solids are dispersed more evenly with a higher surface aerator speed. 

The effect of aerator speed on velocity is more significant in the middle depth of the 

ditch. Propellers at the bottom prevent sludge settling (Fan et al, 2010). 

 

Six different configurations of mechanical surface aerators are evaluated in an 

oxidation ditch. The curved blade rotor type is the best with an oxygen transfer 

coefficient (KLa) of 11.50 h-1, at a rotational speed of 60 rpm. In order of 

effectiveness, cage fin rotor is 4.33 h-1, cage rope wound rotor is 3.78 h-1, and the 

Kessener brush rotor is the worst at 2.94 h-1 (Thakre et al, 2008; Bhuyer et al, 2009).  

 

An oxidation ditch consists of two treatment lanes in parallel, similar to an orbal ditch. 

There is a gap in the channel, so flow can pass between the inner inlet channel and 

outer outlet channel. The best design to reduce this flow stream is by considering the 

optimum location of the mixing propellers (Climent et al, 2019).  

 

A new type of aeration tank design called an air lift oxidation ditch (ALOD) with 

aerators at the bottom is designed. The idea comes from combining an airlift reactor 

with a fluidised bed. The new design allows the depth of a ditch to be increased. The 

influence of the location of the clapboards, distance between the clapboards and 

surface and the aerator array are considered (Xu et al, 2010). 
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Development of a new aeration method for oxidation ditches, consists of an external 

unit, and a pressurized aeration chamber (PAC) with slot jet agitators (hydrojets). 

When compared to conventional membrane diffusers that are agitated with slow 

speed mixers, the new aeration system provides higher oxygen transfer efficiencies 

(OTE) and a significant reduction in energy consumption (Karpinska, 2013). 

 

Different diffuser types are studied in a channel reactor. The oxygen mass transfer 

coefficients are measured and fitted using a calibrated mean bubble size in the CFD 

model. Coarse-bubble, fine-pore, and slitted membrane diffusers have respective 

bubble sizes of 7-8 mm, 5-6 mm, and 3 mm (Terashima et al, 2016). In a channel 

reactor the spatial distribution of diffusers determines the flow field (Gresch et al, 

2011). In an orbal ditch there are grids of fine bubble diffusers in a circular pattern. 

When diffusers are spaced out, increasing the air flow rate reduces the oxygen 

transfer efficiency and there is vertical movement of liquid caused by the bubble 

plume. Including a horizontal velocity neutralises this spiral flow (Gillot and Heduit, 

2000). This evidences the superiority of total floor coverage over diffusers placed on 

separate grids. Configurations which induce spiral flow (separate grids, small 

aerated areas) result in lower oxygenation performance (Gillot et al, 2005). In a 

channel reactor by arranging the membrane aerators in a ‘full floor coverage’ 

configuration, it provides better homogeneity of flow and gas fraction distribution and 

higher average gas fraction. This is when compared to the same membrane diffusers 

located on one side, two sides and centrally in the channel (Hreiz et al, 2019).  Fixed 

floor fine bubble diffusers have a significant energy saving when compared to 

mechanical surface aerators in an oxidation ditch (Höhne and Mamedov, 2020). 

 

The energy consumption of surface aerators in an orbal ditch is determined. The 

efficiency of the aerators is determined by the oxygen transfer efficiency (OTE) 

(oxygen transfer rate (OTR) divided by mechanical power). Process monitoring is 

conducted of the oxygen uptake rate, DO, velocity and shaft power (Qiu et al, 2018).  

 

The aeration performance caused by inorganic scaling of different types of fine-pore 

membrane diffusers are studied in a pilot scale aeration tank. To increase the anti-

scaling performance, the surface potential and roughness of the material and the 

optimum thickness of the membrane are found to be important (Wang et al, 2020).  
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2.7 Summary  

 

CFD modelling can be used to predict the multi-phase flow pattern and multi-

component distribution of dissolved oxygen in an aeration tank (Karpinska et al, 

2010; Le Moullec et al, 2011). It can investigate how aeration design affects the 

hydrodynamics and aeration performance (Brannock, 2003). CFD is a more powerful 

modelling tool than hydraulic modelling (Karpinska and Bridgeman, 2016). It is used 

for disinfection, dissolved air flotation, primary and secondary sedimentation, 

aeration and anaerobic digestion (Wicklein et al, 2016). CFD models of aeration 

tanks are still in need of further improvement (Karpinska and Bridgeman, 2016).  

Single-phase flow models can be an initial step before multi-phase flow because the 

interactions between phases (flocks and bubbles) can be complex and 

computationally expensive (Karpinska, 2015). Water as a model fluid also enables 

the easier setup of an experimental laboratory to validate a CFD simulation 

(Karpinska, 2015). The standard two equation k-ε (k-epsilon) turbulence model is the 

predominant turbulence model used for flow in an aeration tank. The residence time 

distribution (RTD) describes the non-ideal fluid behaviour in an aeration tank, which 

is between ideal plug flow and fully mixed (Gresch et al, 2010). The RTD can be 

found from an experimental tracer test or a numerical equation. The RTD can be 

interpreted by hydraulic parameters to determine the hydraulic efficiency of the tank. 

The Euler-Euler (E-E) multi-fluid model is the most common multi-phase model       

used for the large numbers of bubbles and particles in an aeration tank (Talvy et al, 

2007). The multi-fluid model can also be used to predict the bubble size distribution 

(BSD) and particle size distribution (PSD), by coupling its drag term to coalescence 

and flocculation models (Simonin, 1990). The simpler Euler-algebraic slip mixture 

model is more computationally efficient, but it is limited to a single bubble and 

particle size. The Euler-Lagrangian multi-phase model is not used for an aeration 

tank, because of its expense in tracking a large number of bubbles or particles and 

its poor accuracy in predicting multi-phase component distributions (Wicklein and 

Samstag, 2009). To model the shape of the water surface the volume of fluid (VOF) 

surface tracking method is preferred but used sparingly (Xu et al, 2018).   
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Bubble size is an important parameter as it influences the interfacial gas-liquid 

surface area. In the bubble drag coefficient the ellipsoidal bubble shape may be 

taken into account (Fayolle et al, 2007). Another factor that influences the bubble 

size is the hydrostatic water pressure (Fayolle et al, 2007). Another factor is the 

increase in fluid viscosity from the solid particles, which promotes bubble 

coalescence (Nopens et al, 2015). Bubble size is spatially distributed by coalescence 

and particle size is spatially distributed by flocculation (Nopens et al, 2015).   

Numerous CFD studies simulate bubbly flow, but often without any suspended solids 

and ignoring bubble coalescence (Cockx et al, 2001). A uniform mean bubble size, in 

the range of 2 to 5 mm, is often modelled and may be taken from experimental 

measurements (Lei and Ni, 2014). Multiphase flow models that incorporate BSD or 

PSD require a population balance model (PBM) to describe the population changes 

(Bridgeman, 2009). PBM with bubble coalescence may be coupled to the multi-fluid 

model (Dhanasekharan et al, 2005; Karpinska and Bridgeman, 2018; Climent et al, 

2019). Polydisperse air bubbles are modelled (Climent et al, 2019) using the multiple 

size group (MUSIG) Model (Lo, 1998). Alternatively, a free surface tracking model 

(Brackbill et al, 1992) is used to predict the three dimensional shape of a bubble 

plume (Climent et al, 2019). It is important to progress even further than these 

studies and consider the influence of BSD on the inter-phase oxygen mass transfer 

and dissolved oxygen (DO) distribution in the tank (Karpinska and Bridgeman, 2016). 

When predicting the suspended solids distribution, a two-phase solid-liquid flow 

model may be used (Xie et al, 2014). Discrete, flocculent, hindered and compressive 

settling occur because of a high particle concentration (Takács et al, 1991). The 

settling velocity relationship with respect to the mixed liquor suspended solids 

(MLSS) concentration models the slip (settling) velocity between the liquid and solid 

phases (Xie et al, 2014). Three phase flow is able to consider the oxygen transfer 

from the gas to liquid phase, transfer from the liquid to flocs and biological reactions 

(Le Moullec et al, 2010b). The "pseudo" three phase approach simplifies two of the 

phases (solid-liquid) as activated sludge in a single continuous phase and the 

bubbles as a disperse phase (Terashima et al, 2016). Full three phase flow models 

have the main phase as liquid and the bubbles and particles as disperse phases (Hu 

et al, 2013). Wastewater can be modelled as pure water and the sludge flocs as 

spherical particles with uniform diameter, density and viscosity (Wang et al, 2009).   
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Species transport modelling is able to predict the dissolved oxygen (DO) 

concentration and the inter-phase oxygen mass transfer (Karpinska et al, 2016). 

Oxygen transfer from atmospheric air through the water surface is considered 

negligible, in comparison to the total transfer through the bubble surfaces (Hu et al, 

2010). The oxygen species equation can predict the oxygen mass transfer for 

mechanical surface aeration (Huang et al, 2009). Aeration and oxygen consumption 

by biochemical oxygen demand (BOD) are modelled respectively by using source 

and sink terms in the oxygen species transport equation (Yang et al, 2011; Wicklein 

et al, 2016). The oxygen consumption by BOD in an aeration tank is often simplified 

as being homogeneous (Littleton et al, 2007a). However, there is normally a BOD 

distribution in an aeration tank, which the current CFD models fail to address. It is 

therefore recommended that the BOD distribution is not ignored. BOD distribution 

should be modelled as a heterogenous sink term in the oxygen transport equation in 

order to predict the DO distribution (Ghawi, 2014; Karpinska and Bridgeman, 2018).    

 

The gaps in research are with regards to the gas-liquid flow simulation of the bubble 

size distribution (BSD), species transport simulation of the biochemical oxygen 

demand (BOD) distribution, gas-liquid flow simulation of the free water surface and 

three phase (gas-liquid-solid) flow simulation. The main benefits are to improve the 

accuracy of the DO distribution and to improve the understanding of CFD modelling. 

This can also help reveal new knowledge about factors that affect DO distribution.  

 

The bubble size distribution (BSD) can be predicted using the multi-fluid model and 

coupled to population balance modelling (PBM). Bubble coalescence and breakup 

models in the multiple size group (MUSIG) model may be used. The BSD can be 

helpful in determining the real physical bubble size range and comparing this to 

measurements. It can also be helpful in understanding how aeration devices produce 

different bubble sizes. The bubble size distribution in an aeration tank has rarely 

been modelled in the literature. The biochemical oxygen demand (BOD) distribution 

can be predicted by species transport modelling. The BOD distribution can then be 

used to determine the DO distribution by modelling it as a heterogeneous oxygen 

sink term. This approach considers how the distribution of oxygen demand from the 

biomass affects the distribution of dissolved oxygen in an aeration tank. The BOD 

distribution in an aeration tank has not been modelled in the literature.   
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Disturbance of the water surface can be due to the fluid dynamic effects of different 

types of aerators. However, the unevenness of the surface is often considered 

negligible, in comparison to the few metres of water depth, and therefore the free 

water surface is often neglected. To predict the free water surface between two fluids 

(air and water), the single fluid surface tracking volume of fluid (VOF) model may be 

used. Three phase flow modelling is the most challenging issue. Bubbly and 

particulate flow can utilise the multi-fluid model, which is best suited for the large 

numbers of bubbles and particles. The main phase is the liquid to represent the 

wastewater and the bubbles and particles are disperse phases. Bubbles and 

particles can be simplified with uniform properties and considered to be spherical. 

Particle settling should considers discrete, flocculent, hindered and compressive 

settling. Bubble coalescence and particle flocculation should also be considered.    

 

Comparison between the numerical RTD and experimental tracer test may be used 

to validate a CFD simulation. Velocity measurement can utilise a portable current 

meter or use advanced velocimetry. Measurements can be taken of in-tank 

concentrations of dissolved oxygen (DO), chemical oxygen demand (COD), mixed 

liquor suspended solids (MLSS), biochemical oxygen demand (BOD), ammonia, 

nitrite, total nitrogen, total phosphorus and phosphate. Measurements can also be 

taken of the gas-liquid mass transfer coefficient and the bubble size. These two 

parameters are intrinsically related. Measurements can be taken in a full-scale 

aeration tank in a WWTP or in a physical laboratory scale model of an aeration tank.  

 

CFD simulation is used in the development and design optimisation of the aeration 

devices. The criteria for improving the design of an aeration device is to improve the 

uniformity of the flow pattern, DO distribution and suspended solids distribution, 

increase the residence time of the tank and reduce the energy consumption. Some 

of the design recommendations found in the literature are with regards to the location 

of the influent and effluent weir, the design of the inlet damper wall, location and 

design of baffling, design of mixing impeller in terms of radius, submergence depth, 

position, number and rotating speed; operation of surface aerator and mixing 

impeller, oxygen transfer rate of surface aerator, diffuser design that produces 

different bubble sizes, grid diffuser spacing and some novel designs such as the air-

lift oxidation ditch and the submerged hydro-jet aerator.     
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3. Numerical model of single-phase flow 

 

3.1 Introduction 

 

CFD simulation of an oxidation ditch can be computationally expensive due to the 

multiple phases and oxygen mass transfer (Karpinska et al, 2010). In an oxidation 

ditch the mixed liquor suspended solids (MLSS) concentration ranges from 3,000 - 

5,000 mg/l (Dammel & Schroeder, 1991; Sears et al, 2006; Fan et al, 2010). Single-

phase flow modelling is therefore not accurate enough to predict real fluid behaviour. 

However, it can be useful for understanding major flow characteristics and a first 

step towards more complex multi-phase and multi-component flow modelling 

(Karpinska, 2015). There are fewer equations to solve for single-phase flow (RANS 

and turbulence) and it is more computationally efficient (equations 2.49 to 2.53).  

 

Single-phase flow simulations can predict water velocity distributions in ditches 

(Littleton et al, 2007a; Littleton et al, 2007b; Bhuyar et al, 2009; Karpinska et al, 

2010, Yang et al, 2010; Yang et al, 2011; Wu et al, 2012; Guo et al, 2013; Huang et 

al, 2013; Karpinska, 2013; De Gussem et al, 2014; Karpinska et al, 2015; Zhang et 

al, 2016). The standard two equation k-ε model is the predominant turbulence model 

for single-phase flow in ditches (Bhuyar et al, 2009; Karpinska et al, 2010; Yang et 

al, 2011; Wu et al, 2012; Huang et al, 2013; Karpinska, 2013; Karpinska et al, 2015).                

  

In this chapter a single-phase flow model and standard two equation k-ε turbulence 

model are used to predict water velocity distributions in two full-scale operational 

oxidation ditches (OD1 and OD2) at Potterne WWTP. This chapter considers 

geometric modelling, computational meshing and single-phase flow modelling.   
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3.2 Theory 

 

3.2.1 Flow and turbulence equations 

 

The Reynolds Averaged Navier-Stokes (RANS) equations consist of a continuity 

equation for conservation of mass, three momentum conservation equations and an 

energy conservation equation (Launder and Spalding, 1974). The mass and 

momentum conservation equations are given in equations 2.49 and 2.50 (Karpinska 

and Bridgeman, 2016). The standard two-equation k-ε (k-epsilon) turbulence model 

is used to solve additional transport equations for two turbulence quantities that are 

given in equations 2.51 and 2.52: the turbulent kinetic energy, k, and the turbulent 

eddy dissipation rate, ε (Pope, 2000). The equation for the turbulent viscosity is 

given in equation 2.53.   

For the multiple reference frame (MRF) model of the rotating surface aerators, the 

MRF model is a rotating reference frame model. Therefore, the Navier Stokes 

equations in the sub domain that represents the rotating aerator is represented in 

relative velocity form. Consider a coordinate system which is rotating steadily with 

angular velocity   ω          relative to a stationary (inertial) reference frame. The rotating 

system is located by a position vector        . The fluid velocities can be transformed 

from the stationary frame to the rotating frame: 

 

                                                                                         (3.1) 

 

                                                                                (3.2) 

 

In the above equations,                is the relative velocity (viewed from the rotating 

frame),          is the absolute velocity (viewed from the stationary frame), and             is the 

"whirl" velocity (due to the moving frame). 
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3.2.2 Boundary conditions 

 

The equations to solve the inlet conditions for k and ε in the standard two equation   

k-ε (k-epsilon) model are as follows (Launder and Spalding, 1974; Rodi, 1993) : 

 

                
                                                (3.3) 

 

     
    
   

     
                                                    (3.4)  

where Cp1 = 0.002, Cp2 = 0.3, uinl is inlet velocity (m/s), D is hydraulic diameter (m).  

 

On the wall boundaries, conditions relate to dependent variables in the viscous sub 

layer by a logarithmic wall function. The tangential velocity at the grid node p, up next 

to the wall, follows the log law of the wall   

 

  

  
   

 

 
       

                                                                (3.5) 

 

where the dimensionless wall distance: 

  
        

    
  

 
                                        

                                                                (3.6) 

where K is the von Karman constant, yp is distance to wall (m), u* is friction velocity 

(m/s), v is kinematic fluid viscosity (m2/s). 

 

The rate of production of turbulence near the wall is equal to its rate of dissipation, 

which gives a single boundary condition (Launder and Spalding, 1974; Rodi, 1993): 

 

   
  
   

  
   

       
                                                       (3.7)  
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3.2.3 Surface aerators 

The multiple reference frame (MRF) model of a solid rotor determines the solid-liquid 

interaction between the rotating drum and the water fluid. The model predicts the 

tangential velocity of the fluid near the drum of the surface aerators. To calculate the 

tangential velocity, Vt of the rotating drums of the surface aerators: 

     
  

  
                                                       (3.8) 

                                                              (3.9) 

 

where, Vt is tangential velocity (m/s) = 2.20 m/s, Va is angular velocity (rad/s),           

Dradius is drum radius = 0.3 m, Drotsp is drum rotational speed = 70 rpm.   

 

3.2.4 Flow booster 

The momentum source model (MSM) predicts the average velocity that is produced 

by the rotating mixing impeller in the flow booster. For the propeller in the flow 

booster, Vp is the fluid velocity = 2.66 m/s (equation 3.12), and Sp is the fluid 

momentum source = 28405 kg/m2s2 (equation 3.14):  

                       
       

                                      (3.10) 

 

           
                                                      (3.11) 

 

      
   

       
                                                    (3.12) 

 

    
         

   
                                            (3.13) 

 

                                                   (3.14) 

where Prt is the propeller reaction thrust = 1680 N (kg m/s2),   is water density 

(kg/m3), Prr is propeller radius = 0.275 m, Pra is propeller area = 0.237 m2,                              

Prv is propeller volume = 0.059 m3 , Sm is fluid mass source (kg/m3s).    
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3.3 Numerical methods 

 

3.3.1 Geometric modelling 

 

Maguire jet aerator in OD1 

The Maguire jet aerator in OD1 is shown in Figure 3.1, with two horizontal orientated 

outflow water jet nozzles near the tank bottom. Water is pre-aerated until it is 

saturated with air and then pumped into the aerator. The submerged flow stream of 

aerated water through the nozzles enables the aeration of the water.   

 

Figure 3.1 Maguire jet aerator in OD1 

 

Brush surface aerators in OD1 

The four surface aerators in OD1 are designed upon the Kessener brush aerators 

which have a cylinder with bristles. They are located in two sets of pairs across the 

width of the channel, as shown in Figure 3.2. The semi-submerged bristles attached 

to the rapidly rotating cylinder make contact with the top layer of the water to create 

flow circulation around the ditch. They enable aeration through the water surface.   

 

Figure 3.2 Surface brush aerators in OD1 
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Grid membrane diffuser aerators in OD1 and OD2 

The grid diffusion aeration system in both ditches (Figure 3.3) injects air under 

pressure into the water through multiple membrane porous surfaces. The diffusers 

are tubular membrane porous surfaces located near the bottom of the tank. In each 

grid diffuser there are 32 tubular membrane surfaces, where smaller air bubbles are 

released into the water. The rising bubble plume enables aeration of the water. 

 

Figure 3.3 Grid membrane diffusers in OD1 and OD2 

 

Fuch jet aerators in OD2 

The three operational Fuch jet aerators in OD2 are categorised as fine bubble depth 

aeration devices, with an air jet coming from the downward angled direction of flow. 

There is intake of air through a hollow shaft, and a high velocity jet of pure air. The 

jet enters the water at mid depth and enables the aeration of the water (Figure 3.4).  

 

Figure 3.4 Fuch jet aerators in OD2 
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Flow booster in OD2 

The aim of the flow booster in OD2 is to provide a fluid momentum source that 

provides an additional local flow stream without any additional fluid mass. Fluid 

enters the volume surrounding the rotating propeller (Figure 3.5). This creates a 

momentum source and a horizontal flow stream at the mid depth of the ditch. The 

flow booster does not aerate the water. 

 

Figure 3.5 Propeller in flow booster in OD2 

 

The geometries of the two oxidation ditches are the same including the influent and 

effluent weirs. However, the geometries of the aeration devices in each ditch differ 

due to their designs and locations. Three dimensional geometries of OD1 and OD2 

are modelled using Computer Aided Design (CAD) software Rhino CAD. To mesh 

the whole geometry using a structured hexahedral mesh, the geometry of each ditch 

is divided into multiple fluid volumes using poly-surfaces (multi-block geometry 

method). Grid diffusion aerators, jet aerators, brush aerators and the flow booster 

are each modelled by individual fully enclosed poly-surfaces. The geometry of OD1 

and its devices is composed of 24 poly-surfaces and shown in Figure 3.6. The 

geometry of OD2 and its devices is composed of 19 poly-surfaces and shown in 

Figure 3.7.  
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In Figure 3.6 of OD1 the influent is on an outer curved segment edge at the top right, 

and effluent is on the right end on an outer curved segment edge. The Maguire jet 

aerator is modelled as two narrow cuboids (flow nozzles) on the left of Figure 3.6 

(inlet is horizontal and left oriented). The grid structure of the diffusion aerator is 

greatly simplified by a single geometric cuboid and a single inlet. The grid diffuser 

aerator is shown on the left as a square geometry and the inlet is oriented upwards. 

The inlet area of the grid diffuser aerator is equal to the total surface area of all the 

open pores in the tubular porous membrane surfaces in Figure 3.3. Four rotating 

brush surface aerators are each partial cylinders with their top surface flush with the 

water surface. Only the volume of the brush aerator that is submerged is modelled. 

The water depth of the ditch is 1.8 m, its full length is 65 m, and its width is 21 m. 

The geometric co-ordinate directions are x, along the ditch length, y along the ditch 

width and z, along the ditch depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Geometry of oxidation ditch 1 
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In Figure 3.7 of OD2 the influent is on an outer curved segment at the bottom right, 

and the effluent is at the right end on an outer curved segment. The submerged 

inlets from the Fuch jet aerators are oriented diagonally down, along the major axis 

of the ditch and aligned with the straight sided walls. Grid diffuser aerators are each 

greatly simplified by a single inlet oriented upwards. The inlet of the flow booster is 

oriented horizontal towards the left and aligned with the straight sided wall. Three 

Fuch jet aerators, three diffuser aerators and one flow booster are each modelled 

with geometric cuboids. In both ditches the entire top surface is considered to be the 

water surface, the outer surfaces are the solid outer walls and the solid floor, and the 

central wall has a curved section at both ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Geometry of oxidation ditch 2 
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3.3.2 Computational meshing 

The finite difference numerical method (Launder and Spalding, 1974; Wilcox, 1998; 

Pope 2000; Ranade, 2002) is used to interpolate the computed cell centre values of 

the flow variables onto the computational mesh. This is to enable variables to be 

predicted at discrete locations in the ditch. The meshing strategy is to use a fully 

structured hexahedral mesh rather than an unstructured mesh. A second order 

numerical grid discretisation scheme is used to improve the spatial accuracy (section 

2.4.3). Structured meshes are more numerically accurate because grid lines are 

better aligned to boundary surfaces, which better capture the flow in the boundary 

layer. There is also less numerical diffusion due to lower cell skewness and better 

orthogonality of grid lines. The cells with highest skewness are near the sharp bends 

and curved surfaces of the oxidation ditch. The structured hexahedral mesh has 

fewer computational cells than an unstructured mesh and is therefore faster to solve. 

But it requires a longer development time, as the mesh is composed of multiple small 

meshes. Smaller meshes are each a single fluid volume that surround a single 

aeration device. Grid interfaces between smaller meshes are fluid-fluid boundaries. 

In the moving reference frame (MRF) model of the rotating surface aerators in OD1, 

the computational nodes between the brush aerators and surrounding fluid need to 

be matching. There are 13 mesh blocks in OD1 and 12 in OD2.     

The total number of cells in OD1 and OD2 are 396268 and 452239 and are shown in 

Figures 3.8 and 3.9. All cells in OD1 are hexahedrons. Only 0.3% of the cells in OD2 

are tetrahedrons, prisms and pyramids. In the mesh independency and convergence 

study in the next chapter, in OD1 the meshes range from 206 to 698 thousand cells, 

and in OD2 from 235 to 648 thousand cells. A mesh independency study has also 

been conducted for single-phase flow simulation but it is not presented in the thesis.     

The mesh surrounding each of the four surface aerators (top left) and the grid 

diffuser aerator (middle left) in OD1 are shown in Figure 3.8. The mesh surrounding 

the Maguire jet aerator in OD1 is shown in the bottom left of Figure 3.8. The 

triangular section of OD1 is shown in the right of Figure 3.8. The mesh surrounding 

the Fuch jet aerators in OD2 is shown in two locations in Figure 3.9. The mesh 

surrounding one of the grid diffuser aerators in OD2 is shown in the top right, and 

flow booster is shown in the middle right of Figure 3.9. 
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Figure 3.8 Computational mesh of oxidation ditch 1 
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Figure 3.9 Computational mesh of oxidation ditch 2 
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3.3.3 Single-phase flow boundary conditions 

The flow domain is bounded by the inlet flow over the influent weir, exit flow over the 

effluent weir, the entire top surface represents the water surface, and solid 

boundaries represent outer walls, solid floor and central wall. Boundary conditions of 

the ditches differ only in terms of aeration systems. The Maguire jet aerator produces 

an additional stream of water and the surface aerators and flow booster only create 

additional flow circulation. These can be simulated using single-phase flow equations 

(2.49 and 2.50). However, the diffuser aerator and Fuch jet aerator produce a stream 

of pure air and are therefore simulated by multi-phase flow equations (4.1 and 4.2). 

  

The water surface covers the entire top surface area of the ditches. Disturbance can 

be caused by shear wind forces, variable influent flow rate, centrifugal force of a 

rotating mechanical surface aerator, rising bubble plume and flow re-circulation from 

the submerged diffuser, jet aerator and flow booster (Wicklein et al, 2016). This 

unevenness is considered negligible by investigators, compared to the few metres of 

water depth, and therefore the free water surface is often neglected (Guo et al, 

2013). In this study it is similarly modelled using a rigid lid 'symmetry' boundary 

condition, fixed at a water depth of 1.8 m, with no shear stress applied at the plane. 

 

The influent flow stream to both ditches is a velocity inlet boundary condition, with 

inlet depth equal to the measured height of water over the influent weir. An inlet 

velocity of 0.247 m/s is modelled at the influent weir. The effluent flow stream from 

both ditches is an outlet pressure boundary condition, with outlet depth also equal to 

the measured height of water. The Maguire jet aerator in OD1 is modelled with an 

inlet velocity boundary condition with an inlet velocity of 3.5 m/s. This creates fluid 

mass and the flow rate over the effluent weir in OD1 is greater than in OD2. The 

variation of influent flow to the ditches at Potterne WWTP is both diurnal (24 hours) 

and annual (365 days). For all CFD simulation in this study the mean annual inlet 

flow rate is used. To determine if there is any effect of the inlet flow rate, the single-

phase flow pattern is also simulated at 10% and 300 % of the mean annual flow rate. 

 

The multiple reference frame (MRF) mixer model (rotor-stator) in ANSYS has the 

rotating surface aerator residing in one fluid zone and the ditch volume residing in 
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another (Brannock, 2003). MRF calculates the solid-liquid interaction force between 

the surface aerator and the water. This produces a directional momentum source 

without a fluid mass source. The rotational speed of the surface aerator is 70 rpm. 

The maximum tangential velocity from the rotational drum of the aerator is predicted 

by MRF to be 2.20 m/s (equations 3.8 and 3.9). This is the correct velocity based on 

a cylindrical drum with diameter and rotational speed. The momentum source model 

(MSM) in ANSYS of the rotating impeller in the booster in OD2 calculates the 

impeller area and flow velocity from its reaction thrust (equations 3.10 to 3.14). This 

produces a horizontal directional momentum source without a fluid mass source. The 

correct average velocity from the booster is predicted by MSM to be 2.66 m/s. There 

is no air from the booster and therefore it can be simulated by single-phase flow. 

 

3.3.4 Numerical convergence    

To decrease the duration of a simulation it is assumed there is no heat transfer. The 

water surface is also simplified by a rigid lid symmetry boundary plane. Simulations 

are also solved iteratively to steady-state. Second order grid discretisation is 

undertaken for better accuracy. Convergence is achieved when all equations have 

reached a convergence criteria of 10-6. The rate of convergence is fast and achieved 

between 1500 and 5000 iterations. The duration of simulations is between 4 and 12 

hours for 396268 and 452239 mesh cells in OD1 and OD2. Computer hardware is a 

2.50 GHz processor (8 CPUs) with 16 GB RAM. Simulations are speeded up by 

parallel processing. Convergence residuals are in Figure 3.10 (case S4 in OD1). 

 

 

 

 

 

 

 

 

Figure 3.10  Numerical residuals of case S4 

Iterations Iterations 

 

              pressure                       velocity in w direction    

  velocity in u direction                              turbulent kinetic energy 

  velocity in v direction                              turbulent eddy dissipation 
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3.4  Results and discussion 

 

The simulation cases for single-phase flow in each oxidation ditch at Potterne are 

shown in Table 3.1. The Potterne wastewater treatment plant is near Devizes, 

Wiltshire in the South West of England and the treatment plant is operated by 

Wessex Water. The mean annual temperature at Potterne WWTP is 13 ○C. 

Therefore for ambient conditions at 13 ○C and 1 atm pressure, the mean annual 

density of water is 999.4 kg/m3 and mean annual viscosity of water is 0.0012 kg/ms. 

 

Table 3.1 Single-phase flow simulations 

 

Case Ditch Devices No Description Model 

S1 1&2 none 0 - - 

S2 & S4 1 Maguire jet aerator 1 hydro-jet   - 

S3 & S4 1 surface aerator 4 rotating drum   MRF 

S5 2 flow booster 1  propeller   MSM 

 

Case S1 simulates OD1 and OD2 with no aeration devices. Case S2 simulates OD1 

with a Maguire jet aerator only. Case S3 simulates OD1 with brush surface aerators 

only. Case S4 simulates OD1 with Maguire jet aerator and surface aerators. Case 

S5 simulates the other ditch OD2 with a submerged flow booster. Note that the full 

operational conditions at Potterne WWTP includes all of the devices operating (i.e. 

Maguire, surface, diffuser, booster, Fuch). Operational conditions require the use of 

multi-phase flow simulation to account for aeration conditions and this is undertaken 

in the next chapter. Results are shown on a horizontal plane near to the water 

surface unless otherwise specified. The geometric co-ordinate directions are               

x, along the ditch length, y along the ditch width and z, along the ditch depth. Note 

the naming convention for the different case simulations in the next few chapters (S1 

to S5 - single phase flow, M1 to M9 - multi-phase flow, O1 to O9 - dissolved oxygen). 
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Case S1 No devices in OD1 and OD2 

 

The first case is single-phase flow in OD1 and OD2 when there are no devices. 

There is an inlet velocity of 0.247 m/s at the influent weir.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11  Water velocity in OD2 with no devices 
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Figure 3.11 shows the velocity vectors in OD2 without any devices and near the 

water surface (5 mm below). The influent over the weir (top right) comes in at an 

angle to the major longitudinal axis of OD2. Flow from the influent reaches the 

opposing wall of OD2 and there is a large zone of flow recirculation. Flow circulates 

in a clockwise direction around OD1 and in an anti-clockwise direction around OD2 

in an almost plug flow regime (Figure 3.11). There is a second zone of recirculation 

at the far end of the ditch from the influent. There is longitudinal recirculation further 

downstream in the ditch. Direct flow short circuiting from the influent to effluent weir 

reduces the residence time of fluid in the ditch. In Figure 3.12 the velocity contours 

are shown in OD1 near to the water surface, and in OD2 at high, mid and low water 

depths. The flow patterns in OD1 and OD2 are the same when there are no devices 

in the ditch (Figure 3.12).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12  Water velocity in both ditches with no devices  

(from top to bottom) OD1: surface; OD2: surface, mid depth, bottom 
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Case S2 Maguire jet aerator only in OD1 

 

The second case is single-phase flow in OD1 with only a Maguire jet aerator. There 

is an inlet velocity of 3.5 m/s from two horizontal water jet nozzles in the aerator.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13  Water velocity in OD1 with Maguire jet aerator 
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Figure 3.13 shows the velocity vectors near to the water surface in OD1. The water 

jet from the Maguire aerator reverses the flow direction in the ditch to anti-clockwise. 

Flow reversal is an intention of design of the jet aerator to mitigate against short-

circuiting of the influent towards the effluent weir. There is significant return flow that 

is aligned with the walls and caused by the jet in Figure 3.13. There is flow 

recirculation at the far end of the ditch from the influent weir and in the downstream 

section of the ditch. The Maguire jet aerator increases the total flow throughput in the 

ditch and therefore increases the average flow velocities. Figure 3.14 shows there is 

some vertical flow recirculation that is caused by the jet aerator.   

 

 

Figure 3.14  Water velocity in OD1 caused by Maguire jet aerator 
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Case S3 Rotating surface aerators only in OD1 

 

The third case is the single-phase flow in OD1, when there is only rotation of the 

brush surface aerators in the ditch. The brush aerators are rotating at 70 rpm, and 

the MRF mixer model correctly predicts a tangential velocity of 2.20 m/s at the 

outside edge of the rotating drums of the aerators (equations 3.8 and 3.9).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15  Water velocity in OD1 with surface aerators only 
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Figure 3.15 shows that the main effects of surface aeration are to reverse the flow 

direction in the ditch to anti-clockwise and to increase the average flow velocities. 

Reversal of flow is an intention of design to mitigate against short-circuiting of the 

influent towards the effluent. The rotating aerators create two velocity plumes near 

the water surface which are asymmetrical, due to the flow recirculation near the ditch 

walls in Figure 3.15. Just downstream of the rotating aerators the flow pattern is fairly 

uniform. Figure 3.16 shows the curved velocity profiles from the rotating aerators that 

are correctly simulated by the MRF mixer model. Figure 3.16 shows there to be 

higher velocities near the water surface and some return flow near the tank floor.     

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16  Water velocity in OD1 caused by surface aerators 

- (top) isometric; (bottom) side view 
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Case S4 Jet aeration and surface aeration in OD1  

 

The fourth case is single-phase flow in OD1, with the combination of the rotation of 

the brush surface aerators and the water jet (hydro-jet) from the Maguire aerator.    

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17  Water velocity vectors in OD1 with surface and jet aeration 
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The hydro-jet from the Maguire aerator and the surface rotation of the drums in the 

brush surface aerator reverse the flow direction in the ditch to anti-clockwise in 

Figure 3.17, which is an intention of design to mitigate against flow short-circuiting. 

Combination of the two types of aerators causes even stronger flow nearer to and 

aligned to the curved wall at the far end from the influent. This is because the 

induced flow from the surface aerators is in the same direction as the jet aerator in 

Figure 3.18. The flow plumes from the surface aerators are now much more 

asymmetrical (elongated nearer the outside wall of the ditch), which is caused by the 

pull of the strong flow stream of the Maguire jet aerator.   

 

 

 

Figure 3.18  Water velocity contours in OD1 with surface and jet aeration 

- (top) surface, (bottom) mid depth   
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Case S5 Flow booster in OD2 

 

The fifth case is single-phase flow in the other oxidation ditch, OD2, with a flow 

booster located at the mid water depth. The booster is modelled with a directional 

horizontal momentum source. The booster is composed of a rotating impeller that 

provides extra flow circulation, but does not provide more flow rate, as intended.      

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19  Water velocity in OD2 with flow booster - mid depth 
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Figure 3.19 shows there is a significant fluid plume in OD2 caused by the flow 

booster. Fluid momentum from the booster is significant in maintaining the velocity 

magnitude for a considerable distance downstream in the ditch. The overall flow 

direction in OD2 is reversed by the booster to clockwise, an intention of design, to 

mitigate against the flow short-circuiting between the influent and effluent weir flows. 

There is considerable undesirable flow recirculation that is caused by the flow stream 

from the booster. Spatial expansion of the flow plume is shown more clearly in 

Figure 3.20. The flow plume is hindered by the boosters ineffective position 

upstream of a solid blockage, shown in the top of Figure 3.20. The increase in flow 

velocities in OD2 is significant in Figure 3.21 with a booster. Figure 3.21 also shows 

the overall differences in flow patterns for each of the cases simulated in ditch OD1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20  Water velocity in OD2 caused by flow booster 
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Figure 3.21  Water velocity in OD1 and OD2 - different cases 

OD1 - surface (top left down): no aerators, jet, surface, jet and surface;                

OD2 - mid depth (top right down) no booster, with booster 
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Table 3.2 Mean water velocity for single-phase flow   

 

 

 

Table 3.2 shows the mean water flow velocities in ditches OD1 and OD2 for single-

phase flow simulation with the inclusion of different devices. The rotating surface 

aerators in OD1, Maguire jet aerator in OD1 and flow booster in OD2 provide extra 

flow circulation. Therefore there is an increase in the average water velocity in the 

ditch for each of the devices (Table 3.2). The largest increase in mean water velocity 

is with the flow booster in OD2 (14:1). The rotating surface aerators increase the 

mean water velocity in OD1, with a factor of about 2:1, which is not as high as 

adding a fluid mass source from the Maguire jet aerator, with a factor of about 6:1.                    

For the analysis of the effect of the inlet flow rate over the weir, in Case S1 (no 

devices), there is no significant difference in flow pattern for 10% of the mean 

influent flow, mean flow and 300 % of mean flow. At 300%, there is a slightly more 

direct flow path between the influent and effluent weirs. At 300 %, the influent plume 

extends slightly past the central wall. For Case S4 (Maguire jet aerator and surface 

aerators in OD1), at 10%, the surface aerator closest to the influent has slightly 

higher velocities near the outlet wall, but this does not affect the downstream flow 

pattern. At 300%, the influent plume is no longer suppressed and this influences the 

flow pattern of the nearest surface aerator, but further downstream it has little effect. 

For Case S5 (flow booster in OD2), there is no significant difference between flow 

patterns. At 300 %, there is a slightly more direct flow path between the influent and 

flow booster. Therefore, the flow streams of the booster, Fuch jet aerator and 

Maguire jet aerator have a much more significant impact on the flow pattern than the 

flow stream of the influent flow over the weir. 

Case Ditch Devices 
Effluent 

flow (m3/s) 

Mean ditch 

velocity (m/s) 

S1 1&2 none 0.0429 0.0114 

S2 1 Maguire jet aerator only 0.1835 0.0663 

S3 1 surface aerators only 0.0429 0.0268 

S4 1 jet + surface 0.1835 0.1147 

S5 2 flow booster 0.0429 0.1613 
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3.5 Summary 

 

For single-phase flow simulation when there are no aeration devices or flow booster, 

the flow patterns are the same in the two ditches at Potterne WWTP. Without any 

devices, the flow circulates around OD1 in a clockwise direction and in OD2 in an 

anticlockwise direction due to the influent stream coming over the weir. Without any 

devices the flow in both ditches is mostly in the plug flow regime. With a Maguire jet 

aerator in OD1 there is an additional mass flow rate from the aerator which increases 

the average velocities in the ditch. The Maguire jet aerator also reverses the flow 

direction in OD1 to anticlockwise. The jet of water from the Maguire aerator causes 

increased localised flow in the ditch and return flow that is aligned with the walls.    

The brush surface aerators reverse the flow direction in OD1 to anti-clockwise and 

increase average flow velocities. Surface aerators create velocity plumes near the 

water surface, which are asymmetrical due to flow recirculation. Surface aerators 

increase the average flow velocity in OD1 by about 2:1. This is less than the Maguire 

jet aerator with about a 6:1 increase, due to the increase in mass flow rate in OD1. 

The combination of the Maguire jet aerator and surface aerators in OD1 cause even 

stronger flow that is aligned with the curved wall, due to the flow circulation from the 

surface aerator in the same direction as the jet aerator. The flow plumes from the 

surface aerators are asymmetric caused by the jet stream of the Maguire jet aerator.   

The overall flow direction in OD2 is reversed by the flow booster to clockwise. The 

booster creates a significant flow stream that is maintained for a considerable 

distance downstream, which causes considerable flow recirculation. This stream is 

however hindered by the boosters ineffective position upstream of a solid blockage. 

There is a significant increase in average flow velocities in OD2 caused by the 

booster by 14:1. Flow streams of the booster, Fuch jet aerator and Maguire jet 

aerator have a much greater effect on flow pattern than the influent weir flow stream. 
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The benefits from the single-phase flow study for ditch design are as follows. The 

mixing efficiency of an oxidation ditch depends on the hydraulics and operation of 

the devices. The Maguire jet aerator, surface aerators and flow booster each 

produce a dominant flow direction in the ditch, which reduces the flow short circuiting 

of the influent to the effluent weir. For each of the devices, this is confirmed by an 

increase in residence time (Chapter 4) and therefore improvement in the hydraulic 

efficiency of the ditch. Each of the devices also increase the velocity in the ditch. 

When the water velocity is too low activated sludge can deposit to the bottom, which 

decreases the working volume and causes flow short circuiting, that can lead to 

higher energy consumption. Moreover, when the water velocity is too low it is not 

able to sufficiently transport dissolved oxygen around the ditch. The benefit of the 

surface aerators is to uniformly disperse the flow near the water surface.  

The drawbacks from the single-phase flow study for ditch design are as follows. The 

aeration performance of a ditch depends on the homogenisation of the flow pattern, 

because this will improve the homogenisation of the dissolved oxygen (DO) 

distribution. The ditches have a bend geometry and relative shallow depth and 

therefore their velocity distribution is heterogeneous. The surface aerators are more 

effective near the water surface and therefore produce a heterogeneous vertical flow 

distribution. The Maguire jet aerator produces zones of undesirable flow 

recirculation. It also produces flow disturbance that causes the flow plumes of the 

surface aerators to be asymmetric. The booster has a strong flow stream that 

produces zones of undesirable flow recirculation. The ineffective position of the 

booster upstream of a blockage also produces undesirable fluid turbulence. 
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4. Numerical model of multi-phase flow 

 

4.1 Introduction 

 

The momentum exchange between the gas and liquid phases is significant in an 

aeration tank (Karpinska and Bridgeman, 2016). Bubble size is an important 

parameter in inter-phase momentum exchange, as it influences the interfacial gas-

liquid area (Fayolle et al, 2007). A fixed mean bubble size is often used in CFD 

models (Xu et al, 2010; Gresch et al, 2011; Zhang et al, 2012; Lei and Ni, 2014; 

Terashima et al, 2016). Factors that influence bubble size and shape are hydrostatic 

pressure and bubble breakup and coalescence (Fayolle et al, 2007). These factors 

are ignored in the gas-liquid flow modelling in this chapter. Suspended solids are 

also ignored due to the increased complexity of modelling three phase flow.    

 

The Euler-Euler (E-E) multi-fluid model is the most accurate multi-phase flow model 

for the large numbers of bubbles in aeration tanks (Talvy et al, 2007). It is the most 

commonly used multi-phase flow model for an aeration tank (Karpinska and 

Bridgeman, 2016), and specifically for ditches (Do-Quang et al, 1998; Glover et al, 

2006; Fayolle et al, 2007). The standard two equation k-ε (k-epsilon) model is the 

predominant turbulence model for gas-liquid flow in a ditch (Cockx et al, 2001; 

Glover et al, 2006; Fayolle et al, 2007; Xu et al, 2010; Lei and Ni, 2014). Efficiency of 

a ditch also depends on the liquid residence time distribution (RTD) (Potier et al, 

2005). Numerical RTDs of aeration tanks can be predicted by using models for 

particle tracking (Karpinska et al, 2010; Karpinska, 2013) or species transport 

(Brannock, 2003; Talvy et al, 2007; Le Moullec et al, 2008b; Ghawi, 2014; Karpinska 

and Bridgeman, 2018).    

 

In this chapter the multi-fluid model predicts water and air velocity distributions and 

volume fractions of air in two oxidation ditches (OD1 and OD2). A fixed mean bubble 

size of 4 mm is used as an averaged value from the literature. A mesh independence 

study is undertaken. Species transport modelling is used to predict numerical RTDs.   
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4.2 Theory 

 

4.2.1 Multi-phase flow equations 

 

The Euler-Euler (E-E) multi-fluid model is a multi-phase flow model, where mass 

continuity and momentum equations (4.1 and 4.2) are solved separately for each 

phase (Simonin, 1990; Ranade, 2002). Each phase is governed by a set of continuity 

and momentum conservation equations, which have similar structures for all phases. 

Thus considering an n-phase system, the mass conservation equation for phase q, 

in a simplified partial differential form is as follows (Joshi, 2001; Ratkovich, 2010):   

  

  
                                                       

        (4.1) 

 

where  q is density, the term  q  q is the effective density of phase q,          denotes its 

velocity,      and      are the mass transfer mechanisms from phase p to q and from 

q to p. Generalised momentum conservation equation for phase q (Ratkovich, 2010): 

  

  
                                                                                                                                                  

(4.2) 

where p is the pressure shared by all phases, µq denotes shear viscosity of phase q, 

and           is the sum of interfacial forces between the continuous and disperse phases. 

 

4.2.2 Bubble drag force   

 

The gas-liquid flow around bubbles is characterised by the relative motion between 

phases, which is affected by the inter-phase drag force (Ishi and Zuber, 1979; Joshi, 

2001; Ranade, 2002). Bubble diameter is an input to the bubble drag force (Talvy et 

al, 2007). The Ishii and Zuber drag law uses the concept of mixture viscosity, that 

can include bubble shape distortion (Ishi and Zuber, 1979). Densely distributed fluid 

particles (high numbers of bubbles) are modelled using the Ishii-Zuber drag model 

(equation 2.22). It differs from the Schiller-Naumann (Schiller and Naumann, 1935) 

drag model (equation 2.19) by its expression in the viscous flow regime, and its use 

of the mixture Reynolds number, Rem that is based on the mixture viscosity, µm.  
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4.2.3 Turbulent dispersion force 

Consider the turbulent continuous phase that is interacting with the disperse phase. 

Bubbles get carried by turbulent eddies from regions of high to low bubble 

concentrations (Burns et al, 2004). For non-uniform bubble motion, the interfacial 

forces may need to account for drag and non-drag forces (if significant) such as the 

virtual mass force, lateral lift force and wall lubrication force. These forces may be 

neglected in our study (Karpinska and Bridgeman, 2016). However, the turbulent 

dispersion force (equation 4.3) does take into account the dispersion of bubbles that 

is caused by the turbulent eddies. Inhomogeneous turbulence is modelled using the 

two equation k-ε (k-epsilon) model for the water phase and the disperse phase zero 

equation model for the bubble phase. For turbulence transfer between the phases, 

the enhanced eddy viscosity model (Sato et al, 1981) uses a simple algebraic 

relationship between the disperse phase and the continuous phase kinematic eddy 

viscosities (
   

   
 in equation 4.3). The Favre averaged drag model is tested in this 

study for turbulent dispersion (Burns et al, 2004). The turbulent dispersion force by 

the time averaging of the fluctuating component of the inter-phase drag force: 

  
                  

   

   
  
   

  
  

   

  
                                       (4.3) 

where Cd is drag force coefficient, Ctd is turbulent dispersion force coefficient and 

taken to be 1. Vtl is kinematic eddy viscosity of liquid phase (m2/s), σ l is the turbulent 

Schmidt number for the liquid phase volume fraction and taken to be 1.     

 

4.2.4 Oxygen transfer rate of surface aerators 

To calculate the oxygen transfer rate (OTRsp) of the spray water in air from the brush 

surface aerators (McWhirter et al, 1995; Huang et al, 2009): 

                                                         (4.4) 

          
 

 
                 

  

         
  

 
                             (4.5) 

where OTRsp is the oxygen transfer rate of spray water (mg/h), KLa is overall mass 

transfer coefficient (h-1) of oxygen transfer from gas (air) to liquid (water), V is tank 

volume = 2000 m3, Q = spray water flow rate (l/h), E is aeration efficiency of spray 

water in air, CDS is saturation concentration of dissolved oxygen (DO) at the wet-bulb 

temperature of air (mg/l) and Co is the initial DO concentration in the aeration tank.  
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The saturation concentration (CDS) of dissolved oxygen in water (Degremont, 2007) 

at the mean annual temperature of 13 ○C is 10.5 mg/l (0.0105 kg/m3). Physical 

measurements of DO at the influent to the ditches using a portable DO meter are 

0.08 mg/l in OD1 and 0.04 mg/l in OD2. To simplify one can assume that the initial 

DO in the aeration tank is   0 mg/l. However, no physical measurement is taken of 

the overall mass transfer coefficient, KLa of the surface aerators at Potterne WWTP.  

In the literature, measurements are taken of a horizontal shaft rotating aerator with 

curved blades (CBR) at a range of rotational speeds 42 - 60 rpm (Bhuyer et al, 

2009). Comparison between literature KLa values of different types of surface 

aerators at 70 rpm (brush rotor = 3 h-1, cage rope wound rotor (CRWR) =  4 h-1, cage 

fin rotor (CFR) = 4.5 h-1 , CBR = 14 h-1; Thakre et al, 2008, Bhuyer et al, 2009). 

Therefore, a value of 3 h-1 is used for the brush surface aerators in OD1.  

The total air mass flux value of 0.0175 kg/s is used for OTRsp in the whole of ditch 

OD1 (equation 4.5). Mass inlets representing surface aerators may be set to a 

source of DO (Yang et al, 2011). The oxygen mass flux (kg O2/s) may be equal to 

the aeration capacity of a brush surface aerator (Stamou et al, 1999). Therefore, for 

each of the four brush surface aerators in OD1 a source of 0.0044 kg/s of air is used 

for the boundary, where the rotating drum makes contact with the water.   

 

4.3 Numerical methods 

 

4.3.1 Multi-phase flow boundary conditions 

The water surface is considered fixed and planar and uses the ‘‘degassing’’ 

boundary condition. This allows air to be released from the water surface from rising 

bubbles and is therefore an air sink for the bubbles departing the ditch. It does not 

allow water to exit through the surface by agitation, diffusion or evaporation. It 

eliminates the need of a multi-phase model for a free water surface and is 

computationally efficient (Talvy et al, 2007). Air coming in from the atmospheric air is 

considered negligible in comparison to the air coming in through the bubble surfaces 

(Fayolle at al, 2007; Hu et al, 2010). In a multi-phase flow model, air is modelled at 

the boundaries of the air sources: influent weir, surface aeration, Maguire jet aerator, 
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diffuser aerator and Fuch jet aerator. The Maguire jet aerator has a horizontal jet 

flow stream of saturated aerated water. The diffuser aerator has a vertical stream of 

pure air. The Fuch jet aerator has a downward angled jet flow stream of pure air.    

The influent stream over the weir has a velocity inlet boundary condition (0.247 m/s). 

Air content in the influent is defined by a very low volume fraction of air in water 

equivalent to the DO measurements of 0.08 mg/l in OD1 and 0.04 mg/l in OD2. The 

Maguire jet aerator has an inlet velocity boundary condition (3.5 m/s). The 

assumption is that the water in the Maguire jet stream is fully saturated with air. The 

saturation DO concentration at 13 ○C is 10.5 mg/l (Degremont, 2007). An equivalent 

volume fraction of air of 0.036 is at the inlet of the Maguire jet aerator. Grid diffusers 

are modelled as a single surface, equivalent to the total surface area of all the pores 

on the porous membrane tubes in a single grid. An inlet velocity boundary condition 

(0.01 m/s) of air is modelled. The flow stream from the diffuser is pure air and has a 

volume fraction of air of 1. The Fuch jet aerators have an inlet velocity boundary 

condition of air of 21 m/s. The flow stream from the Fuch jet aerator is pure air and 

has a volume fraction of air of 1. The air source from the surface aerators is through 

the rotating drum surface that in contact with the water. The mass source of air 

(0.0044 kg/s from each surface aerator) is calculated from the mass transfer 

coefficient (3 h-1) of a brush surface aerator (equation 4.5). There is no air from the 

booster, but it does produce a directional momentum source of water, without 

producing an additional mass of water in the ditch. 

 

4.3.2 Residence time distribution (RTD) 

When predicting the RTD, the flow equations of mass, momentum, turbulence and 

volume fraction are not solved further, so that the already solved multi-phase flow 

pattern is kept at steady-state throughout the RTD calculation. The RTD is calculated 

by a species transport model of a tracer (scalar defined as an additive variable) - 

equation 2.42. Physical properties of the tracer are the same as the background fluid 

(water). The mass diffusivity and the turbulent Schmidt number of the tracer in the 

water phase are defined. The tracer is an inert substance that is introduced at the 

entrance of the tank as a pulse or step. A uniform value of 1 for the tracer variable at 

the influent weir represents a uniform dose pulse for a short period (10 s). Transient 
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simulation with physical time stepping is used for the species simulation. It is solved 

for a duration that is equal to 4 times the theoretical hydraulic mean residence time 

(HRT) of the ditch - equation 2.46. The concentration of the tracer is measured in the 

effluent. This evolution of concentration in time is plotted as an RTD graph and is 

further interpreted in terms of the hydraulic performance of the ditch. The theory of 

the RTD and the species transport equation of the tracer are given in section 2.3.5. 

   

4.3.3 Numerical convergence    

For the multi-phase fluid solver the initial volume fraction weighted smoothing 

algorithm is used. The volume fraction solver is segregated which solves the water 

and air phase equations consecutively. To decrease the computational duration, the 

water surface is simplified by a degassing boundary condition, mesh independency 

study is conducted and the equations are solved iteratively to steady-state. Second 

order numerical grid discretisation is used. Convergence is achieved when all 

equations reach a convergence criteria of 10-6. Rate of convergence is fast and 

achieved between 4000 and 7000 iterations. Duration of multi-phase flow simulations 

is between 16 to 36 hours (396268 cells in OD1 and 452239 in OD2). Convergence 

residuals during a multi-phase flow simulation are shown in Figure 4.1 (case M5). 

 

Figure 4.1 Numerical residuals of case M5 

              pressure                                       velocity in w direction (air)   

                 velocity in u direction (air)                               velocity in w direction (water) 

  velocity in u direction (water)                                     turbulent eddy dissipation                    

  velocity in v direction (air)                                               turbulent kinetic energy                                                       

  velocity in v direction (water)                               mass (air)                                              

              mass (water) 
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4.4  Results and discussion 

 

4.4.1 Gas-liquid flow simulation 

Cases for the multi-phase flow simulations in each ditch at Potterne WWTP are 

shown in Table 4.1. The mean annual temperature at Potterne WWTP is 13 ○C. 

Therefore the mean annual density of water at 13 ○C and 1 atm of pressure is 999.4 

kg/m3 and mean annual viscosity of water is 0.0012 kg/ms. The mean annual density 

of air is 1.233 kg/m3 and mean annual viscosity of air is 0.000179 kg/ms. From the 

literature the average bubble size in oxidation ditches is around 4 mm. The effluent 

flow rates and mean velocities in the ditches are in Table 4.1 for each simulation.  

 

Table 4.1 Gas-liquid flow simulations 

Case OD Devices No Description 
Effluent 

(m3/s) 

Mean 

velocity   

(m/s) 

M1 1&2 none 0 - 0.0429 0.0079 

M2 1 Maguire jet aerator 1  aerated hydro-jet   0.1785 0.0731 

M3 1 surface aerator   4 rotating drum   0.0429 0.0316 

M4 1 diffuser aerator   1 air diffusion 0.0429 0.0120 

M5 1 operating (OD1) 6 All 0.1785 0.1195 

M6 2 flow booster   1  propeller   0.0429 0.1582 

M7 2 Fuch jet aerator   3 air jet 0.0429 0.0279 

M8 2 diffuser aerator   3 air diffusion 0.0429 0.0219 

M9 2 operating (OD2) 7 All 0.0429 0.1157 

 

Case M1 simulates OD1 and OD2 with no devices. Case M2 simulates OD1 with a 

Maguire jet aerator only. Case M3 simulates OD1 with surface aerators only. Case 

M4 simulates OD1 with a diffuser aerator only. Case M5 simulates OD1 with Maguire 

jet aerator, surface aerators and diffuser aerator. Case M6 simulates the other ditch, 

OD2 with flow booster only. Case M7 simulates OD2 with Fuch jet aerators only. 

Case M8 simulates OD2 with diffuser aerators only. Case M9 simulates OD2 with 

booster, Fuch jet aerators and diffuser aerators. Cases M5 and M9 are the gas-liquid 

flow simulations that represent the operating conditions at the WWTP for the ditches. 
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Case M1 No devices in OD1 and OD2 

 

The results are shown on a horizontal plane near to the water surface, unless 

otherwise specified. The geometric co-ordinate directions are x, along the ditch 

length, y along the ditch width and z, along the ditch depth. Figure 3.11 shows the 

water flow patterns in OD2 near the water surface without any devices for single-

phase flow.  The influent to OD2 has a low DO concentration of 0.04 mg/l. Air quickly 

reaches the water surface and dissipates out of the ditch, and there is no air in the 

rest of the ditch (Figure 4.2). The influent over the weir (top right) comes in at an 

angle to the longitudinal direction of the ditch. The influent flow stream reaches the 

opposite wall and there is a large zone of recirculation. Flow circulates in an anti-

clockwise direction in an almost plug flow regime (Figure 3.11). Direct flow short 

circuiting from the influent to effluent weir is evident. The flow patterns in OD1 and 

OD2 are the same when there are no devices.    

 

 

 

Figure 4.2 Volume fraction of air in OD2 with no aerators 

(scale: % air saturation) 
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Case M2 Maguire jet aerator only in OD1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Water velocity in OD1 with Maguire jet aerator 

 

 

 

 

y 

x 



110 
 

Figure 4.3 shows the water velocity vectors for multi-phase flow near the water 

surface in OD1. The jet from the Maguire aerator reverses the flow direction in the 

ditch to anti-clockwise, as intended to mitigate against the flow short-circuiting of the  

influent stream, and it also increases the flow velocities in the ditch. There is 

significant return flow along the walls that is caused by the jet. There is strong 

recirculation at the opposite end of the ditch to the influent, and in the downstream 

section of the ditch. Figure 4.4 shows in a vertical plane the jet flow behaviour from 

the aerator in a multi-phase flow. The air content in the inlet water of the Maguire jet 

aerator is fully saturated (volume fraction of 0.036). Figure 4.5 shows the air plume 

from the Maguire jet aerator and how the air rises to the water surface. 

 

 

Figure 4.4 Water velocity in OD1 caused by Maguire jet aerator 

 

 

 

 

 

Figure 4.5 Volume fraction of air in OD1 caused by Maguire jet aerator 

              (scale: % air saturation)  
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Case M3 Rotating surface aerators only in OD1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Water velocity in OD1 with surface aerators only 
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Figure 4.6 shows that for multi-phase flow the rotating brush aerators reverse the 

flow direction to anti-clockwise, as intended, and increase the flow velocities. The 

four rotating brush aerators create two large velocity plumes. Brush aerators near 

the influent cause the plume to be non-symmetrical, and there is significant return 

flow along the outside wall of the ditch. Further downstream from the influent flow the 

flow becomes more uniform. There are two small regions of recirculation just 

upstream of the brush aerators and close to the inner wall of the ditch. The air 

distributions are near the brush aerators and water surface (Figure 4.7). Air volume 

fractions reach saturation (shown by red in the bottom of Figure 4.7), where the drum 

makes contact with the water. Note the difference in scale is to highlight these 

features. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Volume fraction of air in OD1 caused by surface aerators 

(scale: % air saturation) 
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Case M4 Grid diffusion aerator only in OD1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Water velocity in OD1 with diffuser only 

 

 

 

 

 

Figure 4.9    Water velocity in OD1 caused by diffuser 
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Figure 4.8 shows that for multi-phase flow the diffuser in OD1 creates a complex flow 

pattern. Flow velocities in the ditch are increased to a maximum value of 0.54 m/s 

near to the water surface directly above the diffuser. Figure 4.9 shows strong upward 

flow above the diffuser and recirculation on either side of the diffuser. The upward 

flow from the diffuser reaches the water surface and there is local radial dispersion 

(Figure 4.8). There are two small regions of recirculation on the outside wall near to 

the diffuser. Recirculation is at the opposite end of the ditch to the influent. Unlike the 

surface aerators and the Maguire jet aerator, the diffuser aerator does not provide a 

strong flow direction in the ditch. Therefore, the horizontal velocities dissipate quickly 

in the ditch and in most of the ditch there are low flow velocities (Figure 4.8).   

The air volume fractions in OD1 with the diffuser show that there is a distinct circular 

region of high air concentration directly above the diffuser (left part of Figure 4.10). 

The air volume fraction above the grid diffuser forms a vertical concave shape (right 

part of Figure 4.10). The water shown by red in the right part of Figure 4.10 is at the 

saturation concentration of air. Note the difference in scale is to highlight these 

features. 

 

 

 

Figure 4.10  Volume fraction of air in OD1 caused by diffuser 

              -  top and side views (scale: % air saturation)  
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Case M5 Operating conditions with all aerators in OD1  

 

This is the most important predicted flow pattern in OD1, as it simulates the actual 

operational conditions at Potterne WWTP when using a multi-phase flow model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11  Water flow patterns in OD1 - operating conditions at WWTP 
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The flow stream from the Maguire jet aerator collides with the curved wall and there 

is strong flow parallel to this wall (Figure 4.11). This creates return flow in the 

opposite direction that is adjacent to this wall. The jet aerator and surface aerators 

combine to form a strong flow current. The main cause of heterogeneous flow 

distribution in the ditch is the Maguire jet aerator, with stronger flow on the outside 

wall and weaker flow nearer the inner wall. The surface aerators nearer the outside 

of the ditch produce stronger flow plumes. The main reason for this is the local effect 

of the strong flow stream of the jet aerator. The strong upward flow from the diffuser 

pushes out local surrounding fluid in a radial pattern (Figure 4.11). Flow coming from 

the surface aerators pushes the upward flow from the diffuser in the direction of the 

jet aerator. There are four small regions of recirculation in OD1, but generally the 

flow circulates in one direction around the ditch, due to the jet aerator and surface 

aerators. The maximum water velocities are near the water surface: 0.34 m/s 

(surface aerators), 0.47 m/s (jet aerator) and 0.64 m/s (diffuser). The air volume 

fractions at the water surface in OD1 show that there are small air patches above the 

diffuser, jet aerator and surrounding the surface aerators (Figure 4.12). There is a 

plume of air rising from the jet aerator (middle of Figure 4.12). Above the diffuser 

there is a stack of rising air, with some saturated air concentrations (red shape - 

bottom of Figure 4.12). Note the difference in scale is to highlight these features. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12  Volume fraction of air in OD1 - operating conditions 

    (scale: % air saturation) 
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Case M6 Flow booster only in OD2 

 

Figures 4.13 shows a significant water plume in OD2 that is produced by the booster 

that reverses the flow direction to clockwise, as desired. There is significant 

heterogeneous flow distribution due to higher velocities. The flow stream exiting from 

the booster is hindered by its ineffective position upstream of a solid object. There is 

significant return flow on the same side of the ditch as the influent. The air content of 

the influent in OD2 is low (DO is 0.04 mg/l) and there is no air content in the booster. 

Air from the influent quickly reaches the water surface and dissipates out of the ditch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13  Water velocity in OD2 with flow booster 
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Case M7 Fuch jet aerators only in OD2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14  Water velocity and air volume fraction in OD2 with Fuch aerators 
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The flow pattern in OD2 with the three Fuch jet aerators is complex (Figure 4.14). 

Surrounding the Fuch aerators the water flows upwards because of the local effects 

of the air stream from the aerator. This creates higher velocities just underneath the 

water surface and recirculation surrounding the jet aerators (Figure 4.14). The 

highest velocity near the water surface is around 1.5 m/s (Figure 4.14). The jet 

aerator nearest to the influent weir produces local flow recirculation patterns (Figure 

4.14). The influent stream to the ditch produces an anti-clockwise flow direction in 

the ditch. The other two jet aerators block this flow direction, because they produce 

localised upward flow, which spread out bi-directionally just beneath the water 

surface (Figure 4.14). The air volume fractions in OD2 around the Fuch jet aerator 

that is nearest to the influent shows saturated concentrations of air (red), that form a 

vertical plume that spreads underneath the water surface (Figure 4.15). Viewed from 

above (Figure 4.14) each jet aerator forms an elliptic patch of air above it. Note the 

difference in scale to highlight these features. 

  

 

 

Figure 4.15  Volume fraction of air in OD2 caused by Fuch jet aerator 

(scale: % air saturation) 
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Case M8 Grid diffusion aerators only in OD2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16  Water velocity and air volume fraction in OD2 with diffusers 

 

  



121 
 

The flow pattern in OD2 with the three diffusers is complex (Figure 4.16). Air rising 

from each diffuser causes local water to flow upwards. This can be seen more 

clearly in Figure 4.17 for just one diffuser. Higher velocities are just underneath the 

water surface and there is local recirculation surrounding the diffuser (Figure 4.17). 

In OD2 this is shown by red velocity vectors (Figure 4.16) just above the three 

diffusers. The highest velocities are near the water surface and are around 0.5 m/s 

(Figure 4.16). The influent to the ditch creates an anti-clockwise flow direction. The 

diffusers disturb this flow direction, even more so than with the Fuch jet aerators. 

Unlike the flow booster the diffusers do not create a dominant flow direction in the 

ditch. The upward flow from the diffuser reaches the water surface and forms a radial 

flow pattern. Horizontal velocities in the ditch dissipate quickly, therefore in most of 

the ditch there are relatively low flow velocities (Figure 4.16). Viewed from above 

(Figure 4.16) each diffuser forms a circular patch of air near the water surface.   

 

 

 

 

 

Figure 4.17  Water velocity in OD2 caused by diffuser   

 

 

 

 

 



122 
 

Case M9 Operating conditions with all aerators in OD2  

 

This is the most important predicted flow pattern in OD2, as it simulates the actual 

operational conditions at Potterne WWTP when using a multi-phase flow model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18  Water flow pattern in OD2 - operating conditions at WWTP 
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The water flow pattern in OD2 for multi-phase flow (Figure 4.18) shows that the flow 

direction in the ditch by the influent stream is anti-clockwise. The booster causes a 

reversal in flow direction to clockwise, which is intended to mitigate against short-

circuiting of the influent towards the effluent. Most of the ditch has fairly low uniform 

flow (green in Figure 4.18) in the velocity range from 0.1 - 0.2 m/s. There is flow 

stagnation near the outside curved wall near to the influent weir, at the opposite end 

of the ditch and at the ends of the central wall. The flow in a clockwise direction near 

the influent weir is blocked by upward flow from the two diffusers (Figure 4.18). The 

flow stream from the booster is diverted towards the central wall by the upward flow 

from the third diffuser (Figure 4.18). Flow is accelerated by the two jet aerators that 

are in parallel. Downstream of them there are two small stagnation flow zones as the 

flow dissipates. Further downstream the flow is even more uniform and dissipates to 

create a large stagnation fluid zone near the effluent weir. 

Near the diffusers the flow pushes upwards and at the water surface it flows out 

radially. This creates vertical flow recirculation near to each of the diffusers (Figure 

4.19). There are small horizontal recirculation zones also near to each diffuser 

(Figure 4.18). Around the Fuch jet aerators the air flow from the jet pushes the water 

upwards and causes recirculation (Figure 4.20). The flow direction near the Fuch jet 

aerators is in the same direction as the air jet pointing longitudinally along the ditch, 

but there is some return flow near the water surface (Figure 4.20). The booster forms 

a strong current plume which is suppressed by collision with a wall. Further 

downstream of the booster there is more homogeneous flow. The booster increases 

flow velocities in the ditch as intended. Unlike the booster the diffusers do not create 

a dominant flow direction in the ditch (Figure 4.18). The maximum water velocities 

near the water surface are 1.5 m/s (jet aerators) and 0.5 m/s (diffusers). The air 

volume fractions at the water surface in OD2 show that there are small circular air 

patches above the diffusers and small elliptic air patches above the jet aerators 

(Figure 4.21). There are air plumes that rise from the diffusers and jet aerators 

(Figure 4.22). Note the difference in scale is to highlight these features. 
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Figure 4.19  Water velocity in OD2 near diffuser - ditch length   

 

 

Figure 4.20  Water velocity in OD2 near Fuch jet aerators in parallel 

 

Figure 4.21  Volume fraction of air in OD2 

    (scale: % air saturation) 

 

Figure 4.22  Volume fraction of air in OD2 near diffusers and Fuch jet aerator 

(scale: % air saturation) 
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Turbulent dispersion force 

The turbulent dispersion force (section 4.2.3) is neglected in the multi-phase flow 

modelling, because it causes poor numerical convergence (equation 4.3). Even 

smaller time steps in a transient simulation or the multi-phase coupled flow solver 

does not converge the solution. The non-converged solution is presented to show 

that the force does have a dispersive effect on the air distribution in OD1 (case M5). 

With a converged solution it is expected to increase the dispersion of gas phase in 

the ditch. Without this force (Figure 4.23), the two air patches near the water surface 

are distinctly separate. The rising air plume from the Maguire jet aerator has a 

reduction in the volume fraction of air and then increases again when reaching the 

water surface (Figure 4.23). With the turbulent dispersion force the two air patches 

on the water surface are joined together and the air plume from the jet aerator shows 

more contiguous air dispersion behaviour (Figure 4.24).   

 

Figure 4.23  Volume fraction of air in OD1 (case M5 - without TDF) 

(scale: % air saturation) 

 

Figure 4.24  Volume fraction of air in OD1 (case M5 - with TDF) 
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4.4.2 Mesh independency 

 

Mesh independency has also been undertaken for single-phase flow, but it is not 

presented in the thesis, because multi-phase flow is more critical in this study. 

Description of the meshing strategy and mesh design are in Chapter 3. In a mesh 

independency study the number of cells and cell resolution is changed until the flow 

solution no longer changes significantly. Then the flow solution is deemed to be 

independent of the mesh. The mesh is then considered to be sufficiently refined. The 

benefit is to use the optimum number of cells to be able to improve computational 

efficiency. This is undertaken for multi-phase flow in the ditches (OD1 and OD2) at 

their operating conditions (cases M5 and M9). In OD1 the meshes tested range from 

206 to 698 thousand cells and are structured hexahedral cells. In OD2 the meshes 

range from 235 to 648 thousand cells and are 97 % structured hexahedral cells.   

In OD1 there is no significant difference between the flow patterns of water for all of 

the meshes (Figure 4.25). For a lower mesh resolution (206 and 298) there are 

slightly higher velocities near the Maguire jet aerator and an increase in flow plume 

length. When comparing the mesh used in this study (396) with a finer mesh (491) 

there is no difference in the flow pattern. With more refinement (698) there are 

slightly lower velocities near the jet aerator. There is a reduction in plume length of a 

surface aerator near the influent weir. The mesh used (396) is sufficiently accurate. 

The structured hexahedral mesh design is able to optimise the mesh in OD1.  

In OD2 there is also no significant difference between the flow patterns for all of the 

meshes (Figure 4.26). For a lower mesh resolution (235 and 331) there are slightly 

higher velocities near a Fuch jet aerator (bottom right) and a slight change to the 

plume. There are lower velocities near a diffuser (top middle) and a slightly different 

flow plume location. There are slightly lower velocities around the middle diffuser. 

The plume from the booster has some flow separation for the lowest mesh resolution 

(235). When comparing the mesh that is used (452) with the most refined mesh 

(648) there is no significant difference in flow pattern. The mesh used (452) is 

sufficiently accurate. There is however more effect of mesh refinement in OD2 than 

in OD1. The structured hexahedral mesh is also able to optimise the mesh in OD2. 
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Figure 4.25  Multi-phase water flow pattern in OD1 with mesh refinement 
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Figure 4.26  Multi-phase water flow pattern in OD2 with mesh refinement 
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Table 4.2 Mesh convergence study  

 

Ditch Cells 

Ditch 

velocity 

(m/s) 

    

  

   

 

 

 

 

    

 

(mean)  

  

 

 (max)  

1 206482  0.122  0.307 0.186  0.211 0.186  0.489   

1 298220  0.120  0.322  0.184 0.211 0.182  0.481   

1 396788  0.115 0.209  0.174 0.206 0.192 0.438   

1 491806  0.116   0.209  0.175 0.208 0.189  0.437   

1 698304  0.115 0.197  0.175 0.206 0.187 0.426   

        

2 235845  0.128  0.059 0.018 0.226  0.131 0.472 

2 331423  0.124   0.045 0.053 0.214   0.127  0.500 

2 452239 0.116 0.047 0.087 0.162 0.122 0.441 

2 648242 0.119 0.048 0.081 0.180 0.123 0.447 

 

The quantification of mesh independency is undertaken by a mesh convergence 

study. For the different meshes (OD1 and OD2) the velocities are shown in Table 4.2 

for multiple locations near the water surface. The locations of the circles and boxes 

are shown in Figures 4.25 and 4.26. The velocities for the mean value in the ditch, 

mean value at the DO measurement locations in Chapter 7 (white circles), maximum 

value at the DO measurement locations (black box) and values at three specific 

locations in the ditch (purple, orange and pink boxes) are shown in Table 4.2.   

In ditch OD1 as the mesh is refined, for almost all the columns in Table 4.2, the 

velocity values become uniform for the more refined meshes from 396 to 698 

thousand cells. This suggests that the mesh with 396 thousand cells is sufficiently 

accurate and no further refinement is required. In ditch OD2 as the mesh is refined, 

for almost all the columns of Table 4.2, the velocity values become uniform for the 

more refined meshes from 452 to 648 thousand cells. This suggests that the mesh 

with 452 thousand cells is sufficiently accurate and no further refinement is required. 

Therefore, the meshes that are chosen for the single-phase, multi-phase and multi-

component flow simulation have 396788 cells for ditch OD1 and 452239 cells for 

ditch OD2 respectively. 

     



130 
 

4.4.3 Numerical residence time distribution (RTD) 

 

The tracer is an inert substance that is injected at the influent weir of the ditch. A 

uniform step value of 1 for the tracer variable at the influent weir represents a 

uniform dose pulse for a very short period (10 s). The molecular (mass) diffusivity of 

tracer in water (1.35x10-9 m2/s for a chloride salt solution) is low enough to have no 

diffusive effect on the RTD. It is found that only much higher values (0.1 and 0.01) 

have an effect on the RTD. The turbulent Schmidt number of 0.7 does however have 

an effect on RTD. The transient simulation is run for a lengthy period to allow as 

much tracer to pass from the influent to effluent. A large time step of 10 s reduces 

the duration of the simulation. The multi-phase flow simulations for cases M5 (OD1) 

and M9 (OD2) best represent the operational conditions at Potterne WWTP. 

The RTD graph shows the tracer concentration over the effluent weir versus time, in 

terms of the dimensionless temporal variable on the x-axis (equation 2.45) and the 

dimensionless concentration variable on the y-axis (equation 2.43). The theoretical 

hydraulic residence time (HRT - equation 2.46) is the tank volume divided by the 

mean influent flow rate. For all single and multi-phase RTDs they are run for a 

duration of 4 theoretical HRTs. The partial RTD graphs (Figures 4.27 to 4.33) show 

only up to 1 theoretical residence time to show more clearly the peak time and peak 

concentration. Figures 4.32 and 4.33 show the complete RTD for multi-phase flow 

simulation. The numerical simulation time is therefore 140000 s (39 hours) for cases 

S1, S3, S5 and M9 and 33000 s (9 hours) for cases S2, S4 and M5.   

 

The most important parameter in Table 4.3 is the dimensionless mean HRT when it 

is compared to the theoretical HRT. Moreover, the dimensionless time at the peak 

tracer concentration in the RTD determines how much flow short circuiting there is in 

the ditch. The percentage of residual tracer in the ditch after 4 theoretical HRTs is 

calculated, which measures a small error (i.e. longer duration->lower error). To 

calculate the mean HRT (Table 4.3), the area under the complete RTD graph is 

determined after 4 theoretical HRTs. The mean HRT is the dimensionless time on 

the graph at the point where half of the cumulative graph area has elapsed. In 

practical terms, this is the residence time when half of the mass of tracer has 

travelled from the influent weir to the effluent weir in the ditch. 
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Single-phase flow RTD graphs  

 

Figure 4.27  RTD of OD1 and OD2 without aerators (case S1) 

 

Figure 4.28  RTD of OD1 with Maguire jet aerator only (case S2) 

 

 

Figure 4.29  RTD of OD1 with surface aerators only (case S3) 

 

Figure 4.30  RTD of OD1 with Maguire jet and surface aerators (case S4) 

 

Figure 4.31  RTD of OD2 with flow booster (case S5) 
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Multi-phase flow RTD graphs for operating conditions at WWTP  

 

 

 

Figure 4.32  RTD of OD1 - operating conditions (case M5) 

 

 

 

Figure 4.33  RTD of OD2 - operating conditions (case M9) 
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Table 4.3 Hydraulic parameters of residence time distribution 

 

Case OD Devices 
Theory  

HRT (s) 

Predicted

HRT (t/to) 

Time at    

peak conc 

(t/to) 

Peak 

conc 

(C/Co) 

Residual 

tracer  

(%) 

S1 1&2 none 46776  0.570 0.0321 0.00208 0.52 

S2 1 Maguire jet aerator 10932 0.768 0.2470 0.00149 0.47 

S3 1 surface aerator 46776 0.683 0.0846 0.00025 0.34 

S4 1 jet + surface  10932 0.615 0.0880 0.00319 0.63 

S5 2 flow booster 46776 0.661 0.0487 0.00005 0.56 

        

M5 1 All devices  (OD1) 10932 0.695 0.0855 0.00276 0.28 

M9 2 All devices  (OD2) 46776 0.684 0.0332 0.000315 0.12 

 

For single-phase flow simulation the predicted mean HRT of the ditches is between 

0.57 and 0.77 of the theoretical HRT (Table 4.3). Without any aeration the actual 

HRT is only 0.570. The inclusion of Maguire jet aeration improves (i.e. increases 

residence time) plug flow behaviour considerably from 0.570 to 0.768 in OD1. The 

inclusion of surface aeration improves it from 0.570 to 0.683 in OD1. The 

combination of the Maguire jet and surface aeration improves it from 0.570 to 0.615 

in OD1. The flow booster in OD2 improves it from 0.570 to 0.661. In OD1 the time for 

the initial effluent breakthrough is improved (lengthened) by the Maguire jet and 

surface aeration, from 0.0321 to 0.0880. The flow booster in OD2 improves this from 

0.0321 to 0.0487. The overall effect is that there is an increase in residence time of 

fluid in the ditches by using each of the aeration devices. There is a small fraction 

(0.12 - 0.63 %) of tracer that does not pass through the ditch (within 4 theoretical 

residence times), which is a small enough error to accept. 

For multi-phase flow simulation at the operating conditions (Table 4.3), the predicted 

mean HRT improves from 0.615 to 0.695 for case M5 (OD1) and from 0.661 to 0.684 

for case M9 (OD2), when compared to single-phase flow of the individual devices in 

the ditches (S4 and S5). Multi-phase flow simulation provides more accuracy than 

single-phase flow. Multi-phase flow simulation therefore predicts a hydraulic 

performance of almost 70 % of the theoretical residence time in the two ditches at 

the operating conditions at Potterne WWTP.   
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4.5 Summary  

 

For multi-phase flow simulation of OD1, with no devices, the low air content in the 

influent produces little air. There is a plume of air from the Maguire jet aerator that 

rises to the water surface where there is a small patch of air. The surface aerators 

near the influent have a non-symmetrical plume. There are air patches near the 

surface aerators. For the membrane diffuser, there is upward flow, recirculation, and 

radial dispersion near the water surface. The diffuser does not provide a strong flow 

direction in the ditch. The air stack above the diffuser has a vertical concave shape 

which forms a circular region of air. For operating conditions in OD1, the Maguire jet 

aerator and surface aerators form a strong fluid stream that drives the flow direction.   

 

For multi-phase flow simulation of OD2, the flow booster does not supply any air. 

Near the Fuch aerators the water flows upwards because of the effect of the air 

stream. This creates higher water velocities near the water surface in opposing 

directions. A vertical plume of rising air spreads upwards from each Fuch jet aerator 

with an elliptic patch of air above. The upward flow from the diffusers produces radial 

dispersion near the water surface. Diffusers do not provide a strong flow direction in 

the ditch. The air rising from the diffusers forms a vertical concave shape and a 

distinct circular region of air above. For operating conditions in OD2, the flow stream 

from the booster is diverted towards the central wall, by obstruction with an internal 

wall and upward flow from a diffuser. The booster drives the flow direction in OD2.   

For multi-phase flow the Maguire jet aerator increases the mean water velocity in 

OD1 by 9 because of a fluid mass source, surface aerators increase it by 4, and the 

diffuser increases it by 1.5. For operating conditions in OD1 it increases by 15. The 

booster increases the mean water velocity in OD2 by 20, Fuch jet aerators increase 

it by 3.5 and diffusers increase it by 2.8. For operating conditions in OD2 it is 

increased by 20. The mean water velocity in both ditches is similar (0.11 m/s) at the 

operating conditions in Potterne WWTP. The effect of the turbulent dispersion force 

is to disperse air slightly further and produce a more contiguous air distribution, as 

expected. The multi-phase flow pattern is considered to be independent of the mesh 

refinement for the ditches, for meshes with 396 and 452 thousand cells respectively. 

The meshes used in the study are therefore considered to be suitable for use.   
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In the numerical RTDs for single-phase flow, the predicted hydraulic residence times 

(HRT) are between 0.57 and 0.77 of the theoretical HRT. The Maguire jet aerator 

improves plug flow behaviour from 0.570 to 0.768. The surface aerators improve it 

from 0.570 to 0.683. The combination of Maguire jet and surface aerators improve it 

from 0.570 to 0.615 in OD1. In OD2 the flow booster improves it from 0.570 to 0.661. 

The initial effluent breakthrough is improved by Maguire jet and surface aeration in 

OD1 from 0.0321 to 0.0881 and by the flow booster in OD2 from 0.0321 to 0.0487. 

For multi-phase flow simulation the predicted HRT is almost 70 % of the theoretical 

HRT in both of the ditches at the operating conditions in Potterne WWTP.   

  

The benefits from the multi-phase flow study for ditch design are as follows. The 

Maguire jet aerator, surface aerators and booster produce a dominant flow direction 

that reduces flow short circuiting in the ditch. For all devices there is an increase in 

residence time and an improvement in the hydraulic efficiency of the ditches. For all 

devices there is an increase in water velocity, which can mitigate against sludge 

deposition that causes flow short circuiting and can also increase the transport of 

dissolved oxygen (DO) around the ditch. The highest air concentrations in OD1 are 

above the diffuser and Maguire jet aerator and near the surface aerators.  

 

The drawbacks from the multi-phase flow study for ditch design are as follows. The 

surface aerators are more effective near the water surface and therefore they 

produce a heterogeneous vertical flow distribution. The oxygen transfer rate (OTR) 

of a surface aerator is difficult to quantify unless it is physically measured. The main 

cause of heterogeneous distribution in OD1 is the strong flow stream of the Maguire 

jet aerator. It makes the velocity plumes from the surface aerators asymmetric. The 

air jet from the Fuch aerator causes the water to flow bi-directionally. The diffusers 

produce local flow recirculation. The diffusers and Fuch jet aerators block the 

general flow direction in the ditch. The flow booster has a strong flow stream that 

produces undesirable recirculation in OD2. Its ineffective position upstream of a 

blockage also produces undesirable fluid turbulence.   
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5. Numerical model of dissolved oxygen  

 

5.1 Introduction 

 

Wastewater requires enough dissolved oxygen (DO) for bacteria to be sufficiently 

aerobic to be able to reduce the biochemical oxygen demand (BOD). There is 

however insufficient natural oxygen in wastewater for this to occur and therefore an 

aeration system is required (Metcalf et al, 2003). While aeration increases the 

dissolved oxygen the biomass reduces it through bacterial oxygen demand. Aeration 

depends on the oxygen mass transfer (equation 2.5) between the air and water 

phases (Potier et al, 2005; Lei and Ni, 2014). This can be improved by increasing the 

interfacial area (equation 2.7) between the liquid water and the gaseous air, where 

the bubble size is an important parameter (Fayolle et al, 2007). Oxygen mass 

transfer also depends on the aeration system design (Degremont, 2007).   

 

The species transport equation is the most commonly used CFD model for the 

dissolved oxygen distribution (Guo et al, 2013) and oxygen mass transfer. The 

oxygen scalar equation that includes de-aeration of oxygen by BOD is able to predict 

the DO distribution in a ditch (Yang et al, 2011). It includes an oxygen source term 

for aeration and usually a uniform oxygen sink term for the BOD effect (Littleton et al, 

2007a). In real ditches however there is a BOD distribution, which is ignored in CFD 

models (Karpinska et al, 2016). Therefore to make further progress in research the 

effect of the BOD distribution is considered and modelled in this study. 

In this chapter multi-phase and multi-component flow simulation of two oxidation 

ditches with different aeration systems is conducted. The species transport model 

(equation 5.1) predicts the BOD and DO distribution based on the multi-phase flow 

pattern. The dissolved oxygen sink is modelled with both a uniform and a distributed 

BOD (equation 5.7). There are two mutually exclusive ways of modelling the BOD 

distribution. The local BOD concentration may be a function solely of the local 

residence time (equation 5.3) or the local DO concentration (equation 5.4). There is 

close agreement between the BOD distribution when using both models. There is a 

two-way coupled relationship between the DO and BOD in this study.     
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5.2 Theory 

 

5.2.1 Oxygen mass balance 

The mechanisms of oxygen transfer will determine the dissolved oxygen (DO) 

concentration. The multi-phase flow simulation solves for the local velocities of air 

and water which transport air around the ditch. The mass balance equation for 

oxygen includes the oxygen mass sources, inter-phase oxygen mass transfer from 

the air to water phase and the oxygen mass sinks. Oxygen concentration in the 

water phase is equivalent to the DO concentration. On one side of the oxygen mass 

balance are the oxygen sources and on the other side are the oxygen sinks. The 

oxygen sources in the water phase are in the influent and the Maguire jet aeration. 

The oxygen sources in the air phase are the atmospheric diffusion through the water 

surface (assumed negligible), mechanical surface aeration, membrane diffusion 

aeration and Fuch jet aeration. The oxygen sinks in the water phase are in the 

effluent and the de-aeration of oxygen by BOD. An oxygen sink in the air phase is 

the bubbles exiting the water surface (degassing boundary condition).  

There is a two way coupled relationship between the DO and BOD. Biodegradation 

of BOD in the activated sludge consumes oxygen and therefore decreases the DO 

concentration. DO determines the activity of the microorganisms in the sludge. 

Higher DO in the ditch is more likely to increase the BOD degradation and therefore 

result in local lower BOD levels.        

     

5.2.2 Species transport equation 

 

The governing equations of fluid motion of the primary phase are solved and the 

species are transported by the flow and treated as a scalar. The species transport 

equation predicts the local mass fraction concentration (Ranade et al, 2002). The 

concentration scalar can be coupled to the momentum equation as an equation of 

state (oxygen in air and water phases, BOD in water phase). Another use is a 

passive tracer (residence time), which has the same properties as the continuous 

liquid water phase and is transported by the water (Le Moullec et al, 2008b). 
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The mathematical model to predict the oxygen concentration (air and water phase), 

BOD concentration (water phase) and residence time (water phase) uses the 

species transport equation for scalar concentration in turbulent flow (equation 5.1):  

 

 

  
                                               

   

    
                   (5.1)  

 

where, Ctr is the concentration of the tracer (kg/m3); Ul is statistical average velocity 

(m/s); Dm is mass diffusivity (m2/s); µt is turbulent viscosity (kg/ms);                                        

Sct is turbulent Schmidt number (dimensionless). On the left side of the equation are 

the convection terms and on the right side is molecular and turbulent diffusion. 

 

 

5.2.3 Interfacial (inter-phase) bubble drag law  

 

The bubble drag law in this study (equation 2.22) uses the concept of mixture 

viscosity for bubbly flow (Ishi and Zuber, 1979), which can include shape distortion,   

although spherical bubbles are modelled in this study.   

 

 

5.2.4 Interfacial (inter-phase) oxygen mass transfer 

 

Inter-phase oxygen mass transfer is an essential part of the DO distribution. The 

oxygen mass transfer coefficient (KLa) is used to quantify the interfacial (inter-phase) 

mass transfer between the gas and liquid phases (units of s-1). The oxygen mass 

transfer coefficient is modelled (equation 2.6) using Higbie's film penetration theory 

(Higbie, 1935).  It is also used (equation 2.14) in this study to determine how much 

oxygen is transferred to the water from the surface aerators (units of h-1). The local 

mass transfer coefficient KL depends on the local distributed quantities predicted by 

the multi-phase flow pattern (equation 2.6). These are the local air and water 

velocity, volume fraction of air (gas holdup) and bubble diameter. In this chapter a 

uniform mean bubble size is modelled throughout the ditch, while in the next chapter 

a bubble size distribution is modelled.   
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5.2.5 BOD distribution in water phase 

 

Two approaches are used for predicting the BOD concentration distribution. 

 

(1) The decay of local BOD concentration in the water phase from influent to 

 effluent in the ditch is dependent on local residence time in the water phase.  

 

This is modelled using a first order exponential decay of the BOD concentration 

(equation 5.3) from the influent to effluent in terms of the local mean age of the fluid 

(LMA) to give the BOD distribution. This first approach does not consider the 

dissolved oxygen distribution and therefore the DO is assumed to be uniform in the 

ditch. LMA is a method used in the CFD modelling of ventilation systems in the built 

environment, to determine the age of air anywhere in and around a building 

(Ramponi et al, 2015). LMA can also be applied to a settling tank and an aeration 

tank in wastewater treatment (Karches and Buzas, 2013) and in a mixing reactor (Li 

et al, 2011). LMA can also be applied to determine the decay of BOD in a channel 

aeration tank (Ghawi, 2014; Karpinska and Bridgeman, 2018) and in lagoons (Salter 

et al, 2000; Wu, 2010; Wu and Chen, 2011). It can also determine the chlorine decay 

in contact tanks (Rauen et al, 2012) and in service reservoirs (Zhang et al, 2011).  

 

The distribution of LMA in the water phase in a ditch is determined by the species 

transport equation (5.1). LMA is defined as a passive tracer that does not affect the 

flow pattern of the water and the DO and BOD concentrations. The decay of local 

BOD in the water is then subsequently calculated by using first-order kinetics, that 

depends only on the predicted LMA in the water phase (Metcalf and Eddy, 2003), 

which is based on Chick-Watson law (Haas and Karra, 1984; Butler et al, 2017): 

   

  

  
                                                                 (5.2) 

 

         
                                                   (5.3) 

where, Ct is the local BOD concentration in the water phase (mg/l), Co is the BOD 

concentration (mg/l) in the influent (t = 0), k is the temperature dependent rate 

constant (day-1) and t is the LMA in the water phase (day).  
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(2) The dissolved oxygen determines the activity of the microorganisms in the 

 sludge. Higher dissolved oxygen in the ditch is more likely to increase the 

 BOD degradation and therefore result in lower local BOD concentrations. 

 

The BOD distribution in the water phase is determined by the species transport 

equation (5.1). The reduction of local BOD is subsequently modelled as a 'sink term' 

(BODsink - equation 5.4) throughout the ditch, that is only dependent on the local 

predicted mass fraction of DO. The resulting solution is the BOD distribution.  

             
        

      
                                                  (5.4) 

                                                                        (5.5) 

             
    

     
                                            (5.6) 

where BODsink is the local sink term of BOD (kg/s), DO is the local dissolved oxygen 

concentration (mg/l), BODload is influent mass flow rate of BOD (kg/s), Qinf is influent 

flow rate (l/s), BODinf is influent BOD concentration (mg/l), DOsat is saturation DO 

concentration (mg/l), DOmf is local predicted mass fraction of DO, DOsmf is saturation 

mass fraction of DO. The input constants are BODload, Qinf, BODinf, DOsat, DOsmf.      

 

5.2.6 Dissolved oxygen in water phase that is affected by BOD 

 

The de-aeration of local DO that is caused by the BOD depends only on the local 

BOD concentration. Using the previously predicted BOD distribution, the reduction of 

local DO concentration is subsequently modelled as a 'sink term' (DOsink - equation 

5.7) throughout the ditch, that is only dependent on the local predicted BOD 

concentration. The resulting solution is the DO distribution. 

             
        

       
                                                   (5.7) 

                                                                          (5.8) 

   

where DOsink  is the local sink term of DO (kg/s), BOD is the local predicted BOD 

concentration (mg/l), DOload is influent weir mass flow rate of DO (kg/s), Qinf is 

influent flow rate (l/s), BODinf is influent BOD concentration (mg/l), DOinf is influent 

DO concentration (mg/l). The input constants are DOload, Qinf, BODinf, DOinf     
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5.2.7  Interfacial (inter-phase) equilibrium model - Henrys law 

 

In physical chemistry, Henry's law states that the dissolved gas in a liquid is 

proportional to its partial pressure  above the liquid (equation 5.9). The 

proportionality factor is called Henry's law constant. Consider two phases, which are 

gas and liquid, which both contain component A. Consider the situation where 

component A is in dynamic equilibrium between the phases. For absorption / 

dissolution of the gas into a dissolved liquid, Henry's Law describes this equilibrium. 

It states there is a linear relationship between the mole fraction of component A that 

is dissolved in the liquid and the partial pressure of component A in the gas: 

 

                                                                  (5.9) 

 

where PAg is the partial pressure of component A in the gas phase (Pa), XAl is the 

mole fraction of component A in the liquid phase, Hx is the molar fraction Henry 

coefficient (Pa). 

 

  

5.3 Numerical methods 

 

5.3.1 Species transport modelling 

 

The multi-phase flow pattern and volume fraction of water and air is firstly predicted. 

Then the multi-phase flow equations are no longer solved and the multi-phase 

solution is used further. The assumption is that the flow patterns has an effect on the 

oxygen species concentration, but the reverse is negligible (one way coupled). Two 

scalars (or species) represent the oxygen concentration in each phase. The 

equations of the mass fraction of oxygen in the air phase and the mass fraction of 

oxygen in the water phase are solved using the species transport model. The latter 

quantity is converted into the DO concentration. The inter-phase mass transfer of 

oxygen is also solved. The species transport equation (5.1) solves the spatial 

distributions of variables in the water phase: DO, BOD and residence time. 
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The DO-BOD model is a two way coupled relationship between the dissolved oxygen 

and the biochemical oxygen demand. Wastewater is aerated by the aeration devices 

and this increases DO. The oxygen demand from the biomass decreases the DO by 

the biodegradation of BOD. The DO determines the activity of microorganisms in the 

sludge. Higher DO in the ditch is more likely to increase BOD degradation and result 

in lower local BOD levels. The predicted BOD distribution is adjusted in the BOD sink 

term by a factor to predict a minimum BOD concentration of 0 mg/l in the ditch. 

 

The first approach is to use a mean uniform BOD concentration in the ditch. The 

second approach is a BOD distribution by decay, that depends only on the local fluid 

residence time (equation 5.3). The third approach is a BOD distribution that depends 

only on the local DO concentration. The first and third approaches are used further. 

This study models the third approach which is the reduction of the local BOD by the 

local DO (Wicklein et al, 2016) - equation 5.4. This study also models the reduction 

of local DO by the local BOD - equation 5.7. An oxygen species transport equation 

includes a sink term for the oxygen that is removed by BOD. There are two 

approaches in determining the DO distribution: (1) uniform BOD concentration and 

homogeneous oxygen sink in ditch; (2) BOD distribution and heterogeneous oxygen 

sink in ditch. The uniform BOD concentration is the mean of the BOD distribution.   

The local mean age (LMA) or local residence time is defined as a scalar and solved 

as a distribution using the species transport equation (5.1). The BOD concentration 

is also defined as a scalar and solved as a distribution using the species transport 

equation. The arbitrary mass diffusivity of the residence time scalar is 1.35x10-9 m2/s. 

This is intentionally the same value that is used for the tracer in the RTD calculation. 

These are considered to be passive scalars that do not affect the water fluid. For the 

BOD scalar its mass diffusivity is 3.5x10-9 m2/s. The turbulent Schmidt number of the 

residence time and BOD concentration scalars are 0.7. There is a distributed BOD 

sink in the whole ditch that depends solely on the local DO concentration. In the 

species transport equation (5.1), the scalar for residence time in the water phase has 

units of time. The residence time is defined as zero at the influent to the ditch. A 

source term of 1 unit for the residence time scalar is applied to the whole flow 

domain in the ditch. For species transport the scalars for dissolved oxygen in the 

water and air phases and the BOD in the water phase have units of concentration.   
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5.3.2 Species boundary conditions 

 

The boundary conditions for the influent and effluent weir flows, water surface 

(degassing boundary condition), solid surfaces, influents of aeration systems and 

flow booster are the same as in the multi-phase flow model in the previous chapter. 

The oxygen transfer from atmospheric air into the bulk liquid through the water 

surface is considered negligible, in comparison to the oxygen transfer through the 

surface areas of the bubbles (Fayolle at al, 2007; Hu et al, 2010). The Maguire jet 

aerator has a flow stream of saturated aerated water. The membrane diffusion 

aerators and Fuch jet aerators have flow streams of pure air. The influent BOD 

concentration is defined at the influent weir and is taken from measured data. From 

measured data at Potterne WWTP in the two ditches, the mean annual influent BOD 

is around 300 mg/l and the mean annual effluent BOD is around 5 mg/l.    

Two scalars represent the oxygen concentration in the air and water phases. In an 

oxygen species transport model the boundary conditions for oxygen are modelled for 

the air sources: influent weir (water), brush surface aeration (air), Maguire jet aerator 

(water), diffusion aerator (air) and Fuch jet aerator (air). There is an oxygen sink 

boundary condition at the water surface from the rising bubbles (degassing boundary 

condition) and in the effluent (water). The oxygen concentrations at the inlet 

boundaries are defined for the influent weir, Maguire jet aerator, surface aerators, 

diffusers and Fuch jet aerators,using the same mass fraction of oxygen in the air 

phase. The standard mass fraction of dry oxygen in dry air is 0.229 at 1 atm 

pressure and 20 ○C (Çengel and Boles, 2008). The oxygen concentrations in the 

influent weir streams are defined by the mass fraction of oxygen in the water phase. 

These are equivalent to the influent DO measurements of 0.08 mg/l in OD1 and 0.04 

mg/l in OD2 (mass fractions are 8.7x10-8 and 4.35x10-8). 
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Iterations 

5.3.3 Numerical convergence    

To decrease the duration of the species transport simulations, the flow equations of 

mass, momentum, turbulence and volume fraction are not solved any further. This is 

to ensure that the multi-phase flow pattern is kept at steady-state throughout the 

species computation. Therefore only the equations of mass fractions of the local DO, 

BOD and residence time components in the ditch are solved. The species transport 

equations are solved iteratively to steady-state. An under relaxation factor of 0.3 is 

used for the scalar equations. Lowering the under relaxation factor for an equation 

can make the convergence more stable. When solving the next iteration a lower 

under relaxation factor uses relatively more of the solution of the previous iteration in 

order to maintain stability. Second order numerical grid discretisation is undertaken 

for better accuracy. The convergence is achieved when all scalar equations reach a 

convergence criteria of 10-6. The rate of convergence is fast and convergence is 

achieved between 3000 and 10000 iterations. The duration of the simulations is 

between 15 and 30 hours. The convergence residuals of the oxygen and residence 

time scalars are shown at the operating conditions in OD1 in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Numerical residuals of scalar equations 

   oxygen (left), residence time (right)   

            mass fraction of residence time in water 
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5.4  Results and discussion 

The physical properties in Table 5.1 of the water, air and oxygen at the mean annual 

temperature at Potterne WWTP at 13 ○C, include the density, viscosity, mass 

diffusivity and Henry law coefficients. The scalar component of oxygen in the dry air 

gas phase is the oxygen gas. The scalar component of oxygen in the water phase is 

the dissolved oxygen (DO). Dry oxygen approximately occupies 21% by volume of 

dry air. It has a higher density and viscosity than air (Çengel and Boles, 2008). The 

saturation DO concentration in water is 10.5 mg/l at the mean annual temperature at 

Potterne WWTP of 13 ○C (Degremont, 2007). This is the upper limit of the DO 

concentration in the ditch. The standard mass fraction of the oxygen in dry air is 

about 0.229 at 1 atm pressure and 20 ○C (Degremont, 2007). The mass diffusivity of 

dry oxygen in dry air is 1.26x10-5 m2/s. The mass diffusivity of DO in water is much 

lower at 1.2x10-9 m2/s (Çengel and Boles, 2008). From the literature the average 

bubble size used in the CFD models is around 4 mm. 

 

Table 5.1 Physical properties of dissolved oxygen modelling 

Physical Property Value Units 

temperature 13 ○C 

density of water 999.4 kg/m3 

density of air 1.233 kg/m3 

density of oxygen 1.370 kg/m3 

viscosity of water 0.0012 kg/ms 

viscosity of air 0.0000179 kg/ms 

viscosity of oxygen 0.0000201 kg/ms 

bubble diameter 4 mm 

mass fraction of oxygen in air 0.233 - 

saturation of air in water (volume fraction) 0.036 - 

saturation of dissolved oxygen in water 10.5 mg/l 

mass diffusivity of oxygen in air 1.26x10-5 m2/s 

mass diffusivity of oxygen in water 1.2x10-9 m2/s 

turbulent Schmidt number of oxygen in air 0.7 - 

turbulent Schmidt number of oxygen in water 0.7 - 

molar concentration Henry coefficient 61636 Pa.m3/mol 

molar fraction Henry coefficient 3.4x109 Pa 

mass transfer coefficient of surface aeration   3 h-1 
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The results of the dissolved oxygen distributions in this chapter are shown firstly, 

without the effect of de-oxidation due to the biochemical oxygen demand (BOD). 

This is to study the individual effects of the different aeration systems, and therefore 

better understand the aeration performance of aerators in terms of dissolved oxygen. 

Secondly the BOD distribution is simulated in the ditch. Thirdly the effect of the BOD 

on the DO distribution is then simulated for operating conditions at Potterne WWTP. 

These final set of results can be compared to experimental data in a later chapter.  

 

5.4.1 Dissolved oxygen distribution without BOD for different aerators   

Case O1 simulates OD1 with no devices. Case O2 simulates dissolved oxygen 

distribution in OD1 with the surface aerators. Case O3 simulates OD1 with one 

diffusion aerator. Case O4 simulates OD1 with one Maguire jet aerator. Case O5 

simulates OD1 with surface aerators, diffusion aerator and Maguire jet aerator. Case 

O6 simulates the other ditch OD2 with the flow booster. Case O7 simulates OD2 with 

three diffusion aerators. Case O8 simulates OD2 with three Fuch jet aerators. Case 

O9 simulates OD2 with the flow booster, diffusion aerators and Fuch jet aerators. 

Cases O5 and O9 represent the current operating conditions at Potterne WWTP. 

Table 5.2 shows the predicted mean and maximum DO concentration and the 

percentage of saturation DO in ditches OD1 and OD2 without any effect of BOD. 

 

Table 5.2 Dissolved oxygen concentrations without BOD 

Case OD Devices No 

Oxygen 

supply 

(kg/s) 

Max  

DO       

(mg/l) 

Mean            

DO                  

(mg/l) 

Max  

DO     

(% sat) 

Mean 

DO                             

(% sat) 

O1 1 none 0 3.7x10-6 0.087 0.087 1 1 

O2 1 surface aeration 4 0.01632 3.07 2.48 29 24 

O3 1 diffusion aeration 1 0.01386 7.91 5.44 75 52 

O4 1 Maguire jet aeration 1 0.00139 0.68 0.44 7 4 

O5 1 operating condition 6 0.0311 4.12 3.46 39 33 

O6 2 flow booster 1 1.8x10-6 0.0435 0.0435 0.4 0.4 

O7 2 diffusion aeration 3 0.0413 9.60 8.74 91 83 

O8 2 Fuch jet aeration 3 0.0747 10.22 5.97 97 57 

O9 2 operating condition 7 0.1165 10.23 8.74 97 83 



147 
 

Table 5.2 shows in OD1 that the Maguire jet aerator provides a low level of mean 

DO in the ditch (4 % of saturation) compared to surface aeration (24 %) and diffusion 

aeration (52 %). Diffusion is the most efficient aeration system in OD1, as it 

produces a higher DO from a lower oxygen supply than surface aeration. Table 5.2 

shows that in OD2 the Fuch jet aeration provides a considerable mean DO in the 

ditch (57 %). Again the diffusion aeration is the most efficient aeration system in 

OD2, as it produces a high mean DO (83 %) from a lower oxygen supply.    

The water flow patterns in the ditches are predicted by the Euler-Euler multi-fluid 

multi-phase flow model, which is described in the previous chapter. The measured 

influent DO concentration in OD1 is 0.08 mg/l and in OD2 is 0.04 mg/l. These values 

are used for the influent boundary condition (oxygen mass fraction in water phase). 

The results are shown on a horizontal plane near to the water surface.  

With no aeration from the devices (cases O1 and O6 in Table 5.2), there are low 

velocities throughout the ditch (Figure 5.2), and low uniformly distributed DO 

concentrations. In OD1, there are flow plumes that are dispersed from the surface 

brush aerators (Figure 5.3). The highest DO concentrations are near the brush 

aerators due to surface aeration (Figure 5.4). The DO concentrations are dispersed 

by the velocity plumes from the surface aerators. Near the influent there is a stream 

of very low DO concentrations (Figure 5.4). The flow pattern just above the diffuser is 

radially dispersed (Figure 5.5). The DO concentrations are evenly spread by a 

diffuser (Figure 5.6). The overall effect is a zonal DO pattern in OD1 due to the better 

aeration efficiency of the diffuser (Figure 5.6). There is a sudden drop in DO 

concentration, where flow circulates around the ditch in opposing directions, and 

meets where there is recirculation and mixing of water at different DO concentrations 

(top right of Figure 5.6). The Maguire jet aerator in OD1 creates a strong flow stream 

around the outside of the ditch (Figure 5.7). The DO concentrations are highest near 

the Maguire jet aerator, but then they dissipate quickly and are much more evenly 

spread (Figure 5.8). However, the DO concentrations are generally low in the ditch 

suggesting that the Maguire jet aerator is an ineffective aeration system.  

For the operating conditions in OD1, there are flow plumes from the surface 

aerators, strong flow stream from the Maguire jet aerator and radial dispersed flow 

from the diffuser (Figure 5.9). The greatest difference between the water and air 
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velocities (Figure 5.10) is above the Maguire jet aerator, where air enters the ditch as 

an aerated water stream. There are local air hotspots near the aerators (Figure 

5.11). The oxygen concentration in the air has oxygen hotspots near the aerators 

(Figure 5.12). The convection and diffusion of the oxygen in the air predicts that the 

oxygen is spread quite evenly around the ditch (Figure 5.12). The interfacial oxygen 

mass transfer from the air to water phase (Figure 5.13) is highest near the aeration 

sources (influent, surface, diffuser, jet aeration). The spatial distribution of mass 

fraction of oxygen in the water phase (Figure 5.14) is equivalent to DO concentration 

(mg/l) in water (Figure 5.15) and the percentage of DO saturation concentration (%) 

in water (Figure 5.16). The DO concentration (mg/l) is calculated from the predicted 

mass fraction of oxygen in water (equation 5.1). The DO concentration as a 

percentage of saturation is calculated from the DO concentration in mg/l. The highest 

DO concentrations are near the surface aerators and directly above the diffuser 

(Figure 5.15). There are higher DO concentrations near the internal wall (Figure 

5.15). Near the influent there is a stream of very low DO concentrations.   

In OD2, the flow booster creates a strong flow stream, especially near the internal 

and outside walls (Figure 5.17). There is no air supplied by the booster. The DO 

concentrations are very low, because there is only a low air supply from the influent 

stream. The flow pattern that is caused by the diffusers in OD2 includes radial flow 

directly above each diffuser and local flow recirculation (Figure 5.18). The DO 

distribution in OD2 is zonal with the highest concentrations close to each diffuser 

(Figure 5.19). The flow pattern is quite complicated with several small zones of 

recirculation. There is a sudden drop in DO concentration, where flow circulates 

around the ditch in opposing directions, and meets where there is mixing of water at 

different DO concentrations (lower right of Figure 5.19). The Fuch jet aerators have a 

very complex local flow pattern, because the jets are composed of pure air that 

causes the water to flow in opposing directions near the water surface (Figure 5.20). 

The DO is dispersed in opposing directions with an overall zonal DO pattern (Figure 

5.21). For the operating conditions in OD2 the flow pattern is the most complex near 

each diffuser and Fuch jet aerator (Figure 5.22). This creates high DO local hot spots 

near the aerators, while further away DO is more evenly spread (Figure 5.23). The 

influent flow stream has a low air concentration that lowers the DO concentrations 

around two of the diffusers (Figure 5.23). 
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Case O1: no devices   

 

Figure 5.2 Water velocity in OD1 without devices 

Case O2:  surface aerators only in OD1 

 

Figure 5.3 Water velocity in OD1 with surface aerators only 

 

Figure 5.4 DO concentration in OD1 with surface aerators only 

         (max = 3.07 mg/l, mean = 2.48 mg/l) 
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Case O3 Grid diffusion aerator only in OD1 

 

Figure 5.5 Water velocity in OD1 with diffuser only 

 

Figure 5.6 DO concentration in OD1 with diffuser only 

     (max = 7.91 mg/l, mean = 5.44 mg/l) 

Case O4 Maguire jet aerator only in OD1 

 

Figure 5.7 Water velocity in OD1 with Maguire jet aerator only 
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Figure 5.8 DO concentration in OD1 with Maguire jet aerator only 

     (max = 0.68 mg/l, mean = 0.44 mg/l) 

 

Case O5 Operating conditions with all aerators in OD1 

This is the most important DO concentration distribution in OD1, as it simulates the 

operational conditions at WWTP. Note that it neglects the effect of the BOD.  

 

Figure 5.9 Water velocity in OD1 - operating conditions at WWTP 

 

Figure 5.10  Air velocity in OD1 - operating 
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Figure 5.11  Volume fraction of air in OD1 - operating 

 

Figure 5.12  Mass fraction of oxygen in air phase in OD1 - operating 

      (max = 0.233,  mean = 0.078) 

 

 

Figure 5.13  Mass transfer coefficient in OD1 - operating 

(max = 9.4x10-4, mean = 1.1x10-5 m/s) 
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Figure 5.14  Mass fraction of oxygen in water phase in OD1 - operating 

(max = 4.12x10-6, mean = 3.45x10-6) 

 

 

Figure 5.15  DO concentration in OD1 - operating 

      (max = 4.12 mg/l, mean = 3.46 mg/l) 

  

 

Figure 5.16  DO percentage saturation in OD1 - operating 

 (max =  39 %, mean =  33 %) 
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Case O6  Flow booster    

 

Figure 5.17  Water velocity in OD2 with flow booster 

 

Case O7  Grid diffusion aerators in OD2 

 

Figure 5.18  Water velocity in OD2 with diffusers only 

 

Figure 5.19  DO concentration in OD2 with diffusers only 

   (max = 9.60 mg/l, mean = 8.74 mg/l) 
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Case O8 Fuch jet aerators only in OD2 

 

Figure 5.20  Water velocity in OD2 with Fuch jet aerators only 

 

Figure 5.21  DO concentration in OD2 with Fuch jet aerators only 

 (max = 10.22 mg/l, mean = 5.97 mg/l) 
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Case O9 Operating conditions with all aerators in OD2 

 

This is the most important DO concentration distribution in OD2, as it simulates the 

operational conditions at WWTP. Note that it neglects the effect of the BOD.  

 

 

Figure 5.22  Water velocity in OD2 - operating conditions 

 

Figure 5.23  DO concentration in OD2 - operating conditions 

    (max = 10.23 mg/l, mean = 8.73 mg/l) 
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5.4.2 Biochemical oxygen demand distribution    

From the measured data at Potterne WWTP in the two ditches, the mean annual 

influent BOD is around 300 mg/l and the mean annual effluent BOD is around 5 mg/l.      

 

Local residence time model 

The local BOD concentration in the water depends solely on the local residence time 

in the water by a decay term for the BOD (equation 5.3). The BOD distribution is 

adjusted to give a minimum BOD concentration of 0 mg/l in the ditch (maximum BOD 

is in the influent). The adjusted parameter is the decay rate constant (equation 5.3), 

with a value of 0.23 day-1 (Butler et al, 2017). This gives a mean BOD concentration 

in OD1 of 13 mg/l and an effluent BOD concentration of 14 mg/l.   

 

Figure 5.24  Residence time in OD1 - operating conditions 

                                 (max = 22629 s, mean = 19902 s, effluent = 18843 s, inlet = 0 s) 

 

Figure 5.25  BOD concentration in OD1 depends on residence time 

     (inlet = 300 mg/l, mean = 13 mg/l, effluent = 14 mg/l, min = 0 mg/l) 
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Local dissolved oxygen model  

 

The local sink term of BOD in the water depends solely on the local DO 

concentration in the water phase (equation 5.4). The BOD distribution is adjusted in 

the BOD sink term equation by an adjustment factor, to give a minimum BOD 

concentration of 0 mg/l in the ditch (maximum BOD is in influent). This gives a mean 

BOD concentration in OD1 of 15 mg/l and an effluent BOD concentration of 18 mg/l.   

 

 

 

Figure 5.26  BOD concentration in OD1 depends on DO 

                        (inlet = 300 mg/l, mean = 15  mg/l, effluent = 18 mg/l, min = 0 mg/l) 

 

The local residence time shows an increase near the inner wall, which is furthest 

away from the influent weir (Figure 5.24). Comparing the BOD distributions in OD1 

for the two methods there is close agreement (Figures 5.25 and 5.26). Therefore it 

would be reasonable to use either method. However, in the literature there is a 

recognised two way coupled relationship between DO and BOD ('DO-BOD' model). 

Therefore, the two-way coupled DO-BOD relationship is used to determine the BOD 

distribution, that subsequently has an effect on the DO distribution.   
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5.4.3 Dissolved oxygen distribution with BOD for operating conditions   

 

There is a two way coupled relationship between the DO and BOD. The 

biodegradation of BOD in the activated sludge consumes oxygen and therefore 

decreases the DO concentration. The DO determines the activity of the 

microorganisms in the sludge. Higher DO concentrations are more likely to increase 

the BOD degradation and therefore result in lower local BOD concentrations. The 

predicted BOD distribution is calculated by the local dissolved oxygen method 

(Figure 5.26). Reduction of the DO concentration is modelled by a 'sink term', that is 

dependent only on the local BOD concentration (equation 5.7). There are two 

methods to predict the de-aeration of DO by BOD, either by a uniform or a 

distributed BOD. The uniform BOD concentration is the mean value of the BOD 

distribution which is 15 mg/l. In OD1 both uniform and distributed BOD models are 

compared to predict the DO distribution at the operating conditions at Potterne 

WWTP. In OD2 only a uniform BOD model is used to predict the DO distribution at 

the operating conditions.   

The flow pattern of water in OD1 is shown in Figure 5.27. It is shown beside the DO 

concentrations to see more clearly how DO is dispersed around the ditch. 

Comparison between the DO distributions for uniform and distributed BOD (Figures 

5.28 and 5.29) show that the mean (0.41 and 0.42 mg/l) and maximum (1.26 and 

1.24 mg/l) DO concentrations in the ditch are very similar. The main difference is the 

variation of DO (Figures 5.28 and 5.29). For a uniform BOD the lowest DO 

concentrations are near the central wall (Figure 5.28). For a distributed BOD the 

lowest DO concentrations are downstream of the influent and near the outside wall 

(Figure 5.29). In the predicted BOD distribution (Figure 5.26) the highest BOD is also 

downstream of the influent, while the lowest is also near the inside wall.  

The flow pattern of water in OD2 is shown in Figure 5.30. It is shown beside the DO 

concentrations to see more clearly how DO is dispersed around the ditch. The flow 

pattern of air which is very similar is shown in Figure 5.31. The distribution of the 

volume fraction of air predicted by the multi-phase flow model shows there are high 

air concentrations near the diffusers and Fuch jet aerators and some radial 

spreading of air (Figure 5.32). The interfacial mass transfer of oxygen from the air to 
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the water phase (Figure 5.33) is localised around the aerators in OD2, which is a 

similar phenomena that is found in OD1. The distributions of mass fraction of oxygen 

in water, DO concentrations (Figure 5.34) and DO saturation concentrations have 

the same distributions due to their mathematical equivalence.   

The difference between the DO distribution in OD1 (Figure 5.28) and OD2 (Figure 

5.34) - for a uniform BOD - is mostly due to the aeration systems. The range of DO 

concentrations is the main difference: 0 -> 1.26 mg/l (OD1) and 0 -> 3.07 mg/l 

(OD2). The maximum DO concentration in OD1, with a uniform BOD (Figure 5.28) is 

near the surface, diffuser and Maguire jet aerators. In OD2 there are no surface 

aerators but instead there are diffusers and air jet aerators. The maximum DO in 

OD2 with a uniform BOD is near the Fuch jet aerators and diffusers (Figure 5.34). 

The effect of surface aeration in OD1 is to spread DO in a plume like pattern (Figure 

5.28). Away from the surface aerators the DO concentrations are more 

homogeneous and better mixed (Figure 5.28). In OD2 there is gradual diffusion of 

DO in the direction of flow (Figure 5.34). In OD2 there are local high concentrations 

of DO (Figure 5.34) caused by the submerged air jets. However, in quite a lot of OD2 

there are very low DO concentrations (Figure 5.34). The highest DO concentrations 

in OD2 are near the diffusers and Fuch jet aerators. In OD1, the mean saturation 

concentration of DO in the ditch is 4 % and it reaches a maximum of 12 % of 

saturation (near the aerators) when there is a uniform BOD (Figure 5.28). In OD2, 

the mean saturation concentration of DO in the ditch is 5 % and reaches a maximum 

of 29 % of saturation (near Fuch air jet aerators) for uniform BOD (Figure 5.34). 
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Figure 5.27  Water velocity in OD1 - operating conditions 

  

Figure 5.28  DO concentration in OD1 - operating - uniform BOD (15 mg/l) 

 (max = 1.26 mg/l, mean = 0.41 mg/l) 

 

 

Figure 5.29  DO concentration in OD1 - operating - distributed BOD 

(max = 1.24 mg/l, mean = 0.42 mg/l) 
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Figure 5.30  Water velocity in OD2 - operating conditions 

 

 

Figure 5.31  Air velocity in OD2 - operating 

 

 

 

Figure 5.32  Volume fraction of air in OD2 - operating 
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Figure 5.33  Mass transfer coefficient in OD2 - operating 

 

 

Figure 5.34  DO concentration in OD2 - operating - uniform BOD (15 mg/l) 

(max = 3.07 mg/l, mean = 0.52 mg/l) 
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5.5 Summary  

 

In this chapter firstly is the DO distribution without the effect of BOD to illustrate how 

each aerator affects the dissolved oxygen. Moreover, the effect of BOD on the DO 

distribution is predicted to represent the process conditions at Potterne WWTP. 

Local BOD can depend on either local DO or local residence time. The reduction of 

DO is modelled by an oxygen sink term throughout the ditch that depends solely on 

the local BOD. This is modelled with both a uniform and distributed BOD in the ditch.   

The overall benefits for oxidation ditch design are as follows. In OD1, the DO is 

dispersed quite evenly around the ditch by the surface aerators, diffuser and Maguire 

jet aerator. There is a desirable zonal DO pattern with the diffuser. In OD1, the 

highest DO is near the surface aerators and above the Maguire jet aerator and 

diffuser. In OD1, the diffuser provides a higher mean DO (52 % of saturation), with a 

lower oxygen supply than the surface aerators (24 %) and a much higher DO than 

the Maguire jet aerator (4 %). In OD2, the DO distribution from the diffusers is zonal 

which is desirable. The diffusers provide a high mean DO in OD2 (83 %), with a 

lower oxygen supply than the Fuch jet aerators. The Fuch aerators bi-directionally 

spread DO which creates a desirable zonal DO pattern. Fuch aerators still provide a 

considerable mean DO in OD2 (57 %) by having a pure air source. In OD2, the DO 

is highest near the aerators, while in most of the ditch it is quite homogeneous which 

is desirable. There is improved homogenisation of DO by the fluid mixing of the 

surface aerators, Maguire aerator and booster. The difference between the DO 

distribution in the ditches is due to the aeration systems. With a uniform BOD 

modelled in OD1, the mean DO is 4 % of saturation and maximum DO is 12 %. With 

a uniform BOD in OD2, the mean DO is 5 % of saturation and maximum DO is 29 %. 

The overall drawbacks for oxidation ditch design are as follows. The DO is low in 

most of OD1 when using the Maguire jet aerator suggesting it is an ineffective 

aerator, with a low oxygen supply from an aerated water stream. Fuch jet aerators in 

OD2 form a complex flow pattern, as the air jets cause water to flow bi-directionally. 

Near to each diffuser there is considerable flow recirculation. The influent flow 

stream lowers DO near two of the diffusers in OD2. There is a sudden drop of DO in 

OD2 by the mixing of opposing water streams with different DO concentrations.  
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6. Parameter study 

 

6.1 Introduction 

 

The bubble size has an effect on the flow pattern by the inter-phase momentum 

transfer of the drag force of the bubble (Karpinska et al, 2016). The bubble size has 

an effect on the dissolved oxygen distribution by the inter-phase mass transfer 

through the air/water interface of the surfaces of the bubbles (Karpinska et al, 2016). 

Bubbles break up and coalesce due to their interactions with turbulent eddies which 

result in a bubble size distribution (BSD), which is a key parameter for oxygen mass 

transfer (Potier et al, 2005; Lei and Ni, 2014). The oxygen mass transfer can be 

increased by increasing the interface area between the water and air by reducing the 

bubble size (Fayolle et al, 2007). It can also be increased by increasing the oxygen 

transfer rate (OTR) of the surface aerators (Degremont, 2007).  

 

Numerous studies simulate bubbly flow in an aeration tank, but only with a fixed 

mean bubble diameter (Cockx et al, 2001). It is proposed that the effects of BSD and 

mass diffusivity on oxygen transfer should be investigated (Le Moullec et al, 2010b). 

The multiphase flow modelling that incorporates BSD requires a population balance 

model (PBM) (Bridgeman, 2009). PBM with bubble breakage and coalescence 

models are coupled to the multi-phase multi-fluid model in order to predict the BSD 

in the ditch (Dhanasekharan et al, 2005). The species transport equation is the most 

commonly used model for predicting the DO distribution (Littleton et al, 2007a; Yang 

et al, 2011;  Guo et al, 2013) and the oxygen mass transfer (Karpinska et al, 2016).   

 

In this chapter the species transport model predicts the DO and BOD distribution that 

is based on the multi-phase flow pattern. This is undertaken in only one oxidation 

ditch (OD1) and only for the operating conditions in Potterne WWTP. There is a two 

way coupled relationship between BOD and DO. The de-aeration of DO is modelled 

with both a uniform BOD and a distributed BOD. The effect on the DO concentration 

by the mean bubble size, BSD, seasonal temperature, surface aeration, mass 

diffusivity, turbulent Schmidt number and Henrys law coefficient are studied.       
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6.2 Theory 

 

To simulate the oxygen concentration in the air and water phases and the BOD 

concentration in the water phase, the species transport equation is used (5.1). The 

bubble drag law uses the concept of the mixture Reynolds number (equation 2.20) 

for spherical bubbles (Ishi and Zuber, 1979). Interfacial oxygen mass transfer uses 

Higbie's film penetration theory (Higbie, 1935; Terashima et al, 2016). The local 

mass transfer coefficient is spatially distributed (equation 2.6). It depends on the 

local distributed quantities predicted by the multi-phase flow simulation: air velocity, 

water velocity, air volume fraction and bubble diameter. In this chapter both uniform 

and distributed bubble sizes are simulated. Bubble size distribution has an effect on 

the oxygen mass transfer distribution. The oxygen transfer rate (OTR) of spray water 

in air is the main oxygen transfer process for high-speed surface aerators (McWhirter 

et al, 1995; Huang et al, 2009) - equation 2.14. For dissolution/absorption of oxygen 

gas into liquid water, Henry's Law describes the equilibrium condition between the 

two phases (equation 5.9).  

Equations for interfacial oxygen mass transfer, oxygen transfer rate of surface 

aeration, bubble drag, bubble size distribution, species transport and dissolution of 

oxygen are in sections 2.3.1, 2.3.2, 2.3.4, 5.2.2 and 5.2.7 respectively.     

 

6.3 Numerical methods 

 

6.3.1 Species transport modelling and boundary conditions 

The multi-phase flow pattern and the volume fraction distribution of water and air are 

predicted in Chapter 4. The multi-phase flow equations are not solved further in 

order to maintain a steady-state flow pattern. The mass fractions of the scalars of the 

oxygen in the air phase, oxygen in the water phase and BOD in the water phase are 

simulated by the species transport model. Inter-phase oxygen mass transfer from the 

air to water phase is also simulated using species transport. The dissolution of 

oxygen into water that provides the dissolved oxygen uses Henrys law.  
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To calculate the BOD distribution the BOD species transport equation includes a sink 

term in order to model the reduction of BOD by DO (equation 5.4). The BOD sink 

term (negative kg/s of BOD) is applied to the whole of the ditch. The BOD sink term 

is adjusted to give a BOD distribution that has a minimum BOD concentration of        

0 mg/l in the ditch. To calculate the DO distribution the oxygen species transport 

equation includes a sink term in order to model the reduction of DO by BOD 

(equation 5.7). The DO sink term (negative kg/s of DO) is applied to the whole of the 

ditch. There are two methods to predict the DO distribution that includes the effect of 

the biochemical oxygen demand: (1) uniform BOD and homogeneous oxygen sink in 

ditch; (2) BOD distribution and heterogeneous oxygen sink in ditch. The uniform 

BOD concentration is the mean value of the BOD distribution. The boundary 

conditions for multi-phase and multi-component flow modelling are the same as in 

the previous chapter on dissolved oxygen modelling. 

 

 

6.3.2 Bubble size distribution (BSD) 

This study investigates the effect of bubble size distribution on the DO distribution in 

OD1. The poly-disperse homogeneous multiple size group model (Lo, 1998) predicts 

the BSD. The MUSIG model (Lo, 1998) is used considerably in industrial bubbly 

flow. It solves the continuity and momentum equations in an Euler-Euler framework 

for the continuous phase (liquid) and for one single disperse phase (gas). Continuity 

equations for different bubble size groups are solved. The bubble coalescence and 

break-up are based on the population balance method. Bubble coalescence and 

break-up uses the models of Prince & Blanch, 1990 and Luo and Svendsen, 1996. 

The performance of the homogeneous MUSIG model is limited to convective bubbly 

flow (for example in stirred vessels) and a homogeneous velocity field in all bubble 

size classes (Frank et al, 2005). The homogeneous MUSIG model is not suitable, for 

example, for the multiple fluid regimes in gas-liquid pipe flow (bubbly, slug, churn 

turbulent, annular, droplet). It is however sufficient for the flow in large tank volumes 

such as in aeration tanks, where the fluid regime is mainly bubbly flow, and non-drag 

forces are not as important, such as the lateral lift force (Frank et al, 2005). In this 

study there is subdivision of the full range of bubbles sizes in the ditch into distinct 

classes. In most cases 3 or 4 groups is sufficient (Frank et al, 2005). The full range is 
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0 - 8 mm with 4 subdivisions (0-2, 2-4, 4-6, 6-8 mm), that is based on a mean bubble 

size of 4 mm in the standard model. The lower and upper boundaries of the bubble 

diameter intervals for the size classes is controlled by either equal bubble diameter 

discretisation or equal bubble mass discretisation (Lo, 1998).   

 

  
6.3.3 Parameter study 

Different parameters are studied to see what effect they have on the DO distribution. 

The 'standard' CFD model (Table 6.1) has a mean bubble size of 4 mm, physical 

properties at the mean annual temperature of 13 ○C at Potterne WWTP and mass 

transfer coefficient of surface aeration is 3 h-1. Summer conditions at 20 ○C are also 

simulated that affect the physical properties (density, viscosity, saturation DO, mass 

diffusivity, turbulent Schmidt number, Henrys law coefficients). No physical 

measurement is taken of mass transfer coefficient of the surface aerators at Potterne 

WWTP. The KLa value for the brush aerators at 70 rpm is 3 h-1, which is taken from 

the literature (Thakre et al, 2008). A further boundary condition modelled is a fourfold 

increase in KLa to 12 h-1 for surface aeration. Different mean bubble sizes (3, 2, 1 

mm) and a BSD are modelled. Different values of mass diffusivity and turbulent 

Schmidt numbers of the BOD scalar in the water phase, oxygen scalar in the air 

phase and oxygen scalar in the water phase are modelled. Different values of molar 

concentration Henry coefficient and molar fraction Henry coefficient are modelled. 

 

6.3.4 Numerical convergence    

To decrease the computational duration of the species simulation, only mass fraction 

equations of DO and BOD scalars are solved and not the flow equations of mass, 

momentum, turbulence and volume fraction, so that the multi-phase flow pattern is 

kept at steady-state. The species transport equations are solved iteratively to steady-

state. The convergence rate is improved further by using an under relaxation factor 

(0.3) for the scalar equations. The convergence is achieved when all the scalar 

equations reach a convergence criteria of 10-6. The rate of convergence is fast and 

convergence is achieved between 3000 and 10000 iterations. Computer hardware is 

a 2.50 GHz processor (8 CPUs) with 16 GB RAM. Simulations are speeded up by 

parallel processing. Duration of all species simulations is between 15 and 30 hours.   
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6.4  Results and discussion 

Table 6.1 gives the physical properties at the mean annual temperature of 13 ○C 

(blue) and mean summer temperature of 20 ○C (purple). Dry oxygen occupies about 

21% by volume of dry air. Oxygen has a higher density and viscosity than air 

(Çengel and Boles, 2008). At the mean annual temperature of 13 ○C at Potterne 

WWTP, the saturation DO concentration is 10.5 mg/l and at 20 ○C it is 9.1 mg/l 

(Degremont, 2007). This is the upper limit of the DO concentration. The standard 

mass fraction of oxygen in dry air is 0.229 at 1 atm pressure and 20 ○C (Çengel and 

Boles, 2008). The mass diffusivity of DO in water is much lower than it is for dry 

oxygen in air (Çengel and Boles, 2008). In the literature the mean bubble size in an 

oxidation ditch in the CFD models is around 4 mm. The physical properties are 

dependent on the temperature (purple). Some parameters can be changed 

independently (orange). These are the mean bubble diameter, bubble size 

distribution and the OTR of surface aeration. Other parameters (green) depend on 

each other: mass diffusivity, turbulent Schmidt number and Henry law coefficient. 

Different parameters are studied to see what effect they have on the DO distribution. 

Table 6.1 Physical properties of parameter study in OD1 

Physical Property Annual Change Summer Units 

temperature 13 13 20 ○C 

density of water 999.4 999.4 998.2 kg/m3 

density of air 1.233 1.233 1.204 kg/m3 

density of oxygen 1.370 1.370 1.314 kg/m3 

viscosity of water 0.0012 0.0012 0.0010 kg/ms 

viscosity of air 1.79x10-5 1.79x10-5 1.81x10-5 kg/ms 

viscosity of oxygen 2.01x10-5 2.01x10-5 2.03x10-5 kg/ms 

bubble diameter 4 3, 2, 1;  BSD 4 mm 

mass transfer of surface aeration   3 12 3 h-1 

mass fraction of oxygen in air 0.233 0.233 0.229 - 

saturation of air in water (volume fraction)  0.036 0.036 0.032 - 

saturation of DO in water  10.5 10.5 9.1 mg/l 

mass diffusivity of oxygen in air 1.26x10-5 2.52x10-5, 0.63x10-5 1.58x10-5 m2/s 

mass diffusivity of oxygen in water 1.2x10-9 2.4x10-9, 0.6x10-9 1.9x10-9 m2/s 

mass diffusivity of BOD in water 3.5x10-9 7x10-9, 1.75x10-9 5.5x10-9 m2/s 

turbulent Schmidt number of oxygen in air 0.7 1.4, 0.35 0.7 - 

turbulent Schmidt number of oxygen in water 0.7 1.4, 0.35 0.7 - 

turbulent Schmidt number of BOD in water 0.7 1.4, 0.35 0.7 - 

molar concentration Henry coefficient 61636 123272, 30818 70998 Pa.m3/mol 

molar fraction Henry coefficient 3.4x109 6.8x109, 1.7x109 3.9x109 Pa 
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6.4.1 Dissolved oxygen distribution without BOD for model parameters  

 

Table 6.2 shows for different model parameters, the predicted mean and maximum 

DO in ditch OD1 at the operating conditions in Potterne WWTP, without any effect of 

the BOD. The 'standard' model has a mean bubble size of 4 mm, mean annual 

temperature of 13 ○C (Table 6.1) and mass transfer coefficient of surface aeration of 

3 h-1. Summer conditions are at 20 ○C (Table 6.1), surface aeration is at 12 h-1, mean 

bubble sizes (3, 2, 1 mm) and BSD are simulated. Other parameters simulated are 

the mass diffusivity, turbulent Schmidt number and Henry law coefficients. In the 

results in Table 6.2 the parameters shown in red are found to have a significant 

effect on the mean dissolved oxygen in the ditch. 

Table 6.2 Effect of parameters on dissolved oxygen - without BOD in OD1 

Parameter Value Unit 

Mean mass 

transfer, KL       

x 10-5 (m/s) 

Mean DO                  

(mg/l) 

Max 

DO     

(% sat) 

Mean 

DO                  

(% sat) 

Δ Mean 

DO          

(% sat) 

standard (13 o C ) Table 6.1 - 1.119 3.46 39 33 - 

summer (20 o C) Table 6.1 - 1.084 3.43 45 38 +5 

surface aeration 12 h-1 1.125 3.90 46 37 +4 

bubble diameter 3 mm 1.274 4.44 50 42 +9 

bubble diameter 2 mm 1.476 5.72 64 55 +22 

bubble diameter 1 mm 1.783 7.23 78 69 +36 

bubble size 

distribution (BSD) 

1  6.3 

(mean = 1.9) 
mm 1.387 3.15 37 30 -3 

molar fraction       

Henry coefficient 

6.8x109 / 

1.7x109 
Pa - 1.74 / 6.81 20 / 78 17 / 65 -16 / +32 

mass diffusivity of        

oxygen in water 

2.4x10-9 / 

0.6x10-9 
m2/s - 4.23 / 2.75 48 / 31 40 / 26 +7 / -7 

turbulent Schmidt of 

oxygen in water 
1.4 / 0.35 - - 3.54 / 3.31 41 / 37 34 / 32 +1 / -1 

mass diffusivity of         

oxygen in air 

2.52x10-5/ 

0.63x10-5 
m2/s - 3.46 39 33 0 

mass diffusivity of  

BOD in water 

7x10-9  / 

1.75x10-9 
m2/s - 3.46 39 33 0 

turbulent Schmidt  of 

oxygen in air 
1.4 / 0.35 - - 3.46 39 33 0 

turbulent Schmidt  of 

BOD in water 
1.4 / 0.35 - - 3.46 39 33 0 

molar concentration 

Henry coefficient 

123272 / 

30818 

Pa.m3

/mol 
- 3.46 39 33 0 
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Parameters that have a significant effect on the dissolved oxygen (Table 6.2) are 

temperature, mean bubble size, BSD, OTR of surface aeration, molar fraction Henry 

coefficient, mass diffusivity of oxygen in water and turbulent Schmidt number of 

oxygen in water. There is an inverse linear relationship between the molar fraction 

Henry coefficient and the DO and the gradient of this relationship is 1. There is a 

direct linear relationship between the mass diffusivity of oxygen in water and the DO. 

When there is no oxygen demand from BOD, the 'standard' model predicts a mean 

DO in ditch OD1 of 33 % of saturation (Table 6.2). By decreasing bubble size, the 

total interfacial surface area of the bubbles increases significantly and the oxygen 

mass transfer increases. For a mean bubble size of 3 mm, mean DO in ditch OD1 

increases to 42 % of saturation; for 2 mm bubble size it increases to 54 % of 

saturation; and for 1 mm bubble size it increases to 69 % of saturation.   

The bubble size distribution (BSD) predicts a mean bubble size of 1.9 mm. The 

mean interfacial oxygen mass transfer in the ditch increases by 24 % (compared to 

the 'standard' model). This is comparable to the mass transfer of a bubble between  

2 and 3 mm. The maximum mass transfer in the ditch is also increased and is 

comparable to a bubble between 1 and 2 mm. However, with a BSD the mean DO in 

the ditch is reduced only slightly to 30 % of saturation. When the OTR of surface 

aeration is increased fourfold, the mean DO increases from 33 to 37 % of saturation. 

For an increase in temperature from 13 to 20 ○C, the DO saturation concentration 

drops from 10.5 to 9.1 mg/l and mean saturation DO actually rises from 33 to 38 %. 

For the 'standard' model, the flow pattern in OD1 predicts flow plumes from the 

surface aerators, strong flow stream from the Maguire jet aerator and radial flow from 

the diffuser (Figure 6.1). Inter-phase oxygen mass transfer (Figure 6.2) is highest 

near the aeration sources (surface, diffuser, jet, influent). There is little oxygen mass 

transfer in the rest of the ditch. The highest DO concentrations are near the surface 

aerators and the diffuser (Figure 6.3). There is a drop in DO from the internal wall to 

the outside wall of the ditch. Near the influent there are lower DO concentrations.  

For an increase in temperature to 20 ○C, there is little difference to the water flow 

pattern. The DO distribution is also hardly affected, except magnitudes are lower 

near the surface aerators (Figure 6.4). When the surface aeration is increased, there 
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is stronger bi-directional flow from the aerators (Figure 6.5). There is also a 

significant increase in DO within the plumes of the surface aerators (Figure 6.6).           

When mean bubble size decreases from 4 to 3 mm the water flow pattern changes 

only slightly. However, the DO concentrations increase by about 1 mg/l and the DO 

distribution is affected (Figure 6.7). The DO distribution is quite similar to the case 

with increased surface aeration (Figure 6.6). When mean bubble size decreases 

from 4 to 2 mm the water flow pattern changes very slightly. However, DO 

concentrations increase by about 2 mg/l. The DO distribution for a 2 mm mean 

bubble size (Figure 6.8) is quite similar to a 3 mm size (Figure 6.7), but with higher 

magnitudes of DO. When mean bubble size decreases from 4 to 1 mm, the water 

flow pattern only changes slightly. However, DO concentrations increase by about          

4 mg/l. Moreover, the DO distribution for a 1 mm bubble size is different to the other 

bubble sizes (Figure 6.9). The DO distribution for 4, 3 and 2 mm bubble sizes appear 

similar, but with different magnitudes of DO concentration. The air flow pattern for 

the 1 mm bubble size is different near the Maguire jet aerator (Figure 6.10) and this 

might explain the effect it has on the DO distribution. 

When BSD is predicted for equal diameter discretisation the range of bubble sizes is 

from 0.99 to 6.32 mm with a mean bubble size of 1.94 mm in the ditch (Figure 6.11). 

For equal mass discretisation the range is from 1.02 to 6.74 mm with a mean bubble 

size of 3.36 mm (Figure 6.12). The BSD has a small effect on the DO concentration 

(Table 6.2). The predicted mean bubble size of 1.94 mm, for equal diameter 

discretisation, is near to the best value of 2 mm that is determined by comparison to 

experimental data in the next chapter. The largest bubbles predicted by the BSD are 

near the surface, diffuser and Maguire jet aerators and the central wall (Figure 6.11).  

BSD does not have a significant effect on flow pattern (Figure 6.13). However, it 

does increase interfacial mass transfer using equal diameter discretisation (Figure 

6.14). There is no significant increase in mass transfer with equal mass discretisation 

(Figure 6.15). The DO distribution is quite similar for the BSD (Figure 6.16) when 

compared to a mean bubble size of 4 mm (Figure 6.3). The DO distribution does not 

change significantly with molar fraction Henry coefficient, however its magnitude 

does change significantly (Figure 6.17). The DO distribution and magnitudes of DO 

change significantly with the mass diffusivity of oxygen in water (Figure 6.18).      



173 
 

 

Figure 6.1 Water velocity in OD1 - standard model 

  

Figure 6.2 Mass transfer coefficient in OD1 without BOD - standard 

      (max = 9.4x10-4, mean = 1.1x10-5 m/s) 

 

 

Figure 6.3 DO concentration in OD1 without BOD - standard   

      (max = 4.12 mg/l, mean = 3.46 mg/l) 



174 
 

 

Figure 6.4 DO concentration without BOD - summer (20 ○C) 

   (max = 4.08 mg/l, mean = 3.43 mg/l) 

 

Figure 6.5 Water velocity - surface aeration (12 h-1) 

 

 

Figure 6.6 DO concentration without BOD - surface aeration (12 h-1) 

  (max = 4.88 mg/l, mean = 3.90 mg/l) 
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Figure 6.7 DO without BOD - bubble diameter (3 mm) 

   (max = 5.27 mg/l, mean = 4.44 mg/l) 

 

Figure 6.8 DO without BOD - bubble diameter (2 mm) 

     (max = 6.69 mg/l, mean = 5.72 mg/l) 

 

Figure 6.9 DO without BOD - bubble diameter (1 mm) 

     (max = 8.22 mg/l, mean = 7.23 mg/l) 
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Figure 6.10  Air velocity - bubble diameter (1 mm) 

 

Figure 6.11  BSD without BOD - equal diameter discretisation 

             (max = 6.32 mm, mean = 1.94 mm, min = 0.99 mm) 

 

 

Figure 6.12  BSD without BOD - equal mass discretisation 

                     (max = 6.74 mm, mean = 3.36 mm, min = 1.02 mm) 
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Figure 6.13  Water velocity - BSD - equal diameter discretisation 

 

 

Figure 6.14  Mass transfer without BOD - equal diameter discretisation 

(max = 1.6x10-3, mean = 1.387x10-5 m/s) 

 

Figure 6.15  Mass transfer without BOD - equal mass discretisation 

 (max = 9.4x10-4, mean = 1.087x10-5 m/s) 
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Figure 6.16  DO without BOD - equal diameter discretisation 

           (max = 3.87 mg/l, mean = 3.15 mg/l) 

 

Figure 6.17  DO without BOD - molar fraction Henry coefficient (x 0.5) 

 (max = 8.14 mg/l, mean = 6.81 mg/l) 

 

Figure 6.18  DO without BOD - mass diffusivity of oxygen in water (x 2) 

(max = 5.03 mg/l, mean = 4.23 mg/l) 
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6.4.2 Dissolved oxygen distribution with BOD for parameters  

 

Table 6.3 Effect of parameters on dissolved oxygen - with BOD in OD1 

               

Parameter 
Value 

 

Unit 

Mean BOD 

mean / max 

DO (mg/l) 

Distributed BOD 

mean / max     

DO (mg/l) 

standard (13 o C ) Table 6.1 - 0.41 / 1.26 0.42 / 1.24 

summer (20 o C) Table 6.1 - 0.37 / 1.24 0.40 / 1.25 

surface aeration 12 h-1 0.39 / 1.86 0.40 / 1.77 

bubble diameter 3 mm 0.38 / 1.64 0.40 / 1.62 

bubble diameter 2 mm 0.39 / 2.34 0.40 / 2.32 

bubble diameter 1 mm 0.38 / 3.58 0.40 / 3.64 

bubble distribution 
1  6.3 

(mean=1.9) 
mm 0.40 / 1.12 0.40 / 1.21 

molar fraction       

Henry coefficient 
1.7x109 Pa - 0.40 / 2.07 

mass diffusivity  of 

oxygen in water 
2.4x10-9 m2/s - 0.40 / 1.53 

 

Comparison between the uniform and distributed BOD for the 'standard' model show 

that the mean (0.41 and 0.42 mg/l) and maximum (1.26 and 1.24 mg/l) DO 

concentrations in OD1 are very similar (Table 6.3). For some parameters 

(temperature and bubble size), there is little change to the mean and maximum DO, 

when modelling a uniform or distributed BOD (Table 6.3). The main difference is the 

distribution of DO (Figures 6.19 and 6.20). For a uniform BOD the lowest DO 

concentrations are near the central wall (Figure 6.19). For a distributed BOD the 

lowest DO concentrations are downstream of the influent and near the outside wall 

(Figure 6.20). The predicted BOD distribution in the ditch is quite similar for the 

different modelling parameters and quite similar for the mean BOD concentration in 

the ditch (standard: 18 mg/l; temperature (20 ○C): 18; surface OTR (x4): 18; bubble 

size = 3 mm: 17; 2 mm: 17; 1 mm: 16; bubble size distribution: 16).  

 

For summer conditions (20 ○C) and uniform BOD (Figure 6.21) and distributed BOD 

(Figure 6.22), the mean DO in the ditch (0.37 and 0.40 mg/l) and maximum DO (1.24 

and 1.25 mg/l) are similar. When surface aeration is increased fourfold there is an 
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increase in maximum DO to 1.86 mg/l for uniform BOD (Figure 6.23) and 1.77 mg/l 

for distributed BOD (Figure 6.24). The DO concentrations near the surface aerators 

increase the most in the ditch. Surface aeration has a bigger effect than temperature.  

 

When bubble size is reduced to 3 mm, the maximum DO concentration increases to 

1.64 mg/l for uniform BOD and to 1.62 mg/l for distributed BOD (Figure 6.25). For a      

2 mm bubble size, the maximum DO increases further to 2.34 mg/l for uniform BOD, 

and to 2.32 mg/l for distributed BOD (Figure 6.26). For a 1 mm bubble size, 

maximum DO increases further to 3.58 mg/l for uniform BOD and 3.64 mg/l for 

distributed BOD (Figure 6.27). There is an increase in variation of DO in the ditch 

when bubble size is reduced when the effect of BOD is also modelled. For the 

smallest bubble size studied (1 mm), DO concentrations are almost zero in many 

parts of the ditch (Figure 6.27). The local oxygen mass transfer is increased, when 

bubble size is reduced (Table 6.2) especially around the aerators. Smaller bubbles 

are less able to transport DO by convection all around the ditch. However, the higher 

local DO near the aerators are due to increased local oxygen mass transfer. Overall 

the result is a greater spatial variation of dissolved oxygen when there is a smaller 

bubble size. The lowest DO in the ditch is found to be furthest downstream from the 

aerators (Figure 6.27).    

Bubble size distribution (BSD) reduces the maximum DO from 1.26 to 1.12 mg/l for 

uniform BOD (Figure 6.28) and from 1.24 to 1.21 mg/l for distributed BOD (Figure 

6.29). Mean BOD in the ditch with a BSD is reduced from 18 to 16 mg/l. The DO 

distributions for BSD (Figures 6.28 and 6.29) only show slight differences when 

compared to a uniform bubble size of 4 mm (Figures 6.19 and 6.20). The predicted 

mean bubble size in the ditch with BSD is 1.9 mm, compared to the standard model 

of 4 mm. There is a wide range of bubble sizes predicted by BSD from 0.99 to 6.32 

mm. The mean interfacial mass transfer in the ditch is 24 % higher with a BSD.    

Doubling the mass diffusivity of oxygen in water (distributed BOD) increases the 

maximum DO to 1.53 mg/l (Table 6.3) and makes DO more heterogeneous. Halving 

the molar fraction Henry coefficient (distributed BOD) increases the maximum DO to 

2.07 mg/l (Table 6.3) and makes DO more heterogeneous. To determine the 

accuracy of these predictions there is comparison to experimental data for dissolved 

oxygen in the oxidation ditches at Potterne WWTP in the next chapter. 
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Figure 6.19  DO with uniform BOD - standard model 

            (max = 1.26 mg/l, mean = 0.41 mg/l) 

 

Figure 6.20  DO with distributed BOD - standard model 

    (max = 1.24 mg/l, mean = 0.42 mg/l) 

 

Figure 6.21  DO with uniform BOD - summer (20 ○C) 

          (max = 1.24 mg/l, mean = 0.37 mg/l) 
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Figure 6.22  DO with distributed BOD - summer (20 ○C) 

     (max = 1.25 mg/l, mean = 0.40 mg/l) 

 

Figure 6.23  DO with uniform BOD - surface aeration (12 h-1) 

  (max = 1.86 mg/l, mean = 0.39 mg/l) 

 

Figure 6.24  DO with distributed BOD - surface aeration (12 h-1) 

(max = 1.77 mg/l, mean = 0.40 mg/l) 
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Figure 6.25  DO with distributed BOD - bubble (3 mm) 

         (max = 1.62 mg/l, mean = 0.40 mg/l) 

 

Figure 6.26  DO with distributed BOD - bubble (2 mm) 

         (max = 2.32 mg/l, mean = 0.40 mg/l) 

 

Figure 6.27  DO with distributed BOD - bubble (1 mm) 

         (max = 3.64 mg/l, mean = 0.40 mg/l) 
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Figure 6.28  DO with uniform BOD - BSD - equal diameter discretisation 

(max = 1.12 mg/l, mean = 0.40 mg/l) 

 

Figure 6.29  DO with distributed BOD - BSD - equal diameter discretisation 

          (max = 1.21 mg/l, mean = 0.40 mg/l) 
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6.5 Summary  

 

The parameters that are found to have a significant effect on the dissolved oxygen 

are BOD distribution, temperature, surface aeration, bubble diameter, bubble size 

distribution, molar fraction Henry coefficient, mass diffusivity and turbulent Schmidt 

number of oxygen in water. When the oxygen transfer rate of surface aeration is 

increased fourfold, the mean DO in the ditch increases from 33 to 37 % of saturation. 

For an increase in temperature from 13 to 20 ○C, the mean DO rises from 33 to 38 

%. For this increase in temperature there is however little change to the flow pattern 

and DO distribution. There is an inverse linear relationship between molar fraction 

Henry coefficient and dissolved oxygen. There is a direct linear relationship between 

mass diffusivity of oxygen in water and dissolved oxygen. By decreasing mean 

bubble size, the total interfacial surface area of the bubbles increases, the interfacial 

oxygen mass transfer increases and the dissolved oxygen increases. For a 3 mm 

bubble size, mean DO increases from 33 to 42 % of saturation, for 2 mm to 54 %, 

and for 1 mm to 69 %. The variation of DO for these bubble sizes is however similar.   

For the bubble size distribution (BSD), using equal diameter discretisation in the 

MUSIG model, the bubble size range predicted is from 0.99 to 6.32 mm, with a mean 

of 1.94 mm. This is a similar value to the best comparison with dissolved oxygen 

experimental data, which is for a mean bubble size of 2 mm (Chapter 7). The mean 

interfacial oxygen mass transfer in the ditch increases by 24 % with BSD, when 

compared to a 4 mm mean bubble size. This effect is comparable to a mean bubble 

size between 2 and 3 mm. However, BSD only slightly affects the DO distribution. 

These results suggest BSD is useful in determining the real bubble size in the ditch.  

The mean and distributed BOD in the ditch are found to be quite similar for some of 

the parameters (temperature, surface aeration) but are more affected by bubble size. 

The mean and maximum DO in the ditch are affected by the different parameters 

(temperature, OTR of surface aeration, bubble size, BSD). Furthermore, for all of 

these parameters there is a significant difference in the variation of DO in the ditch, 

when modelling either a uniform or a distributed BOD. Therefore the bubble size 

distribution and the BOD distribution are found to be important parameters for the 

accurate prediction of the dissolved oxygen distribution in the ditch.  
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7. Experimental validation 

 

7.1 Introduction 

Dissolved oxygen (DO) can be measured in an aeration tank with a portable DO 

meter (Littleton et al, 2007a; Huang et al, 2009; Alaya et al, 2010; Le Moullec et al, 

2010b; Xu et al, 2010; Karpinska et al, 2013; Lei and Ni, 2014). Bubble size can also 

be measured in an aeration tank by using an optical probe (Cockx et al, 2001; 

Fayolle et al, 2007; Le Moullec et al, 2008b) or by using high resolution camera 

imaging (Talvy et al, 2007; Wang and Zhao, 2009).   

 

Portable propeller current meters can be used to measure water velocity in an 

aeration tank (Fayolle et al, 2007; Littleton et al, 2007a; Yang et al, 2010; Xie et al, 

2014; Zhang et al, 2016). Water velocity in an aeration tank can also be measured 

using advanced techniques, for example, Particle Image Velocimetry (Cockx et al, 

1997; Talvy et al, 2007; Wang et al, 2009; Hu et al, 2013; Ghawi, 2014), Acoustic 

Doppler Velocimetry (Brannock, 2003; Karpinska et al, 2013; Chen and Feng, 2014; 

Lei and Ni, 2014) and Particle Doppler Anemometry (Fan et al, 2010; Xu et al, 2010).   

 

Comparison between residence time distribution (RTD) from an experimental tracer 

test and a numerical RTD can validate a CFD simulation. The most commonly used 

tracers are chemical salts (Talvy et al, 2007; Le Moullec et al, 2008b; Gresch et al, 

2010; Karpinska, 2013; Ghawi, 2014; Climent et al, 2019). Other common tracers 

are fluorescent dyes (Makinia and Wells, 2005; Zima et al, 2009; Samstag and 

Wicklein, 2014). It would have been beneficial in this study to have conducted a 

tracer test to validate the predicted RTD and this has been proposed for future work. 

 

In this chapter physical observation of fluid flow behaviour in two full-scale 

operational oxidation ditches (OD1 and OD2) at Potterne WWTP are undertaken and 

compared to numerical multi-phase water flow patterns in OD1 and OD2. Dissolved 

oxygen measurements using a portable DO meter are conducted at multiple 

locations near the water surface in OD1 and OD2. Numerical DO concentrations in 

OD1 and OD2 are compared to DO measurements.   
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7.2 Method 

 

7.2.1 Experimental method 

Experiments on the observation of flow patterns and the measurement of DO 

concentrations in operational ditches at Potterne WWTP (OD1 and OD2) are 

conducted in August 2018. The temperature is measured at 20.5 ○C during the 

experiment. Therefore, one of the parameters studied has the physical properties of 

oxygen, air and water at 20 ○C, which are the summer plant conditions.  

Flow patterns are observed by sketches and photographs and videos of fluid 

behaviour near the water surface. It is easier to observe the flow pattern from above 

the ditch than at mid water depth. Dissolved oxygen measurements are also taken 

near the water surface. CFD simulation, observed flow patterns and DO 

measurements are therefore compared in the same locations in the ditches. DO 

measurements are taken at water depths below 0.2 m. When results are compared 

at water depths from 5 to 20 cm, there is less than 3 % difference in the results.        

Dissolved oxygen concentration measurements are taken with a portable optical DO 

meter (HachTM) near the water surface, at 15 locations in ditch OD1 and at 22 

locations in ditch OD2 that include the effluent. There is no measurement of water 

depth, which is the reason why DO measurements are not taken at multiple depths, 

and therefore this has been proposed for future work. The measurement of influent 

DO concentration is used as an inlet boundary condition in the CFD model. DO 

measurements are repeated for each location for better accuracy. The temperature 

of  20 ○C during the experiment has a DO saturation concentration of 9.1 mg/l. Due 

to the effects of BOD, the DO concentrations in the ditches are well below this value.     

The technique for measuring DO concentration is the luminescence DO method 

(LDO) (Roman and Felseghi, 2014; Gheorghe et al, 2018). There are no wastewater 

grab samples analysed in the laboratory. The portable DO meter (HachTM) has a 

luminescence based sensor that measures light emission characteristics. The LDO 

principle is based on the physical phenomenon of luminescence. Some materials 

emit light when excited by the stimulus of light. The intensity of luminescence and 

time it takes to fade are dependent on the oxygen concentration around the material.  
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7.2.2 CFD modelling 

 

The CFD results from previous chapters are compared to experimental observations 

of flow patterns and the measurements of DO in the two full scale ditches (OD1 and 

OD2). The numerical multi-phase flow patterns and DO distributions (horizontal slice 

near water surface) are at the operating conditions of the ditches. Comparison with 

real physical experimental data is only plausible using numerical DO that includes 

the effect of the biochemical oxygen demand (BOD). This simulates the real situation 

in biological wastewater treatment. Both uniform and distributed BOD models are 

compared to DO measurements in OD1 using different values of parameters. Only 

the uniform BOD model is used to compare with DO measurements in OD2 and only 

by using the 'standard' model. The theory and the methods of multi-phase and multi-

component flow modelling of the flow pattern, DO distribution, BOD distribution and 

boundary conditions are given in the previous chapters. 

 

There are different parameters studied to see how closely the predictions of 

numerical DO concentrations compare to the measurements in one oxidation ditch 

(OD1). The 'standard' CFD model has a mean bubble size of 4 mm, properties at the 

mean annual temperature of 13 ○C at Potterne WWTP and mass transfer coefficient 

of surface aeration is 3 h-1. The summer (experimental) conditions at 20 ○C is also 

simulated. A further boundary condition of surface aeration of mass transfer 

coefficient = 12 h-1 is also simulated. Different mean bubble sizes (3, 2, 1 mm) and a 

bubble size distribution (BSD) are simulated. To compare the numerical and 

measured dissolved oxygen a statistical analysis of the values at the same physical 

locations in the ditch are undertaken for the mean, maximum, minimum and standard 

deviation (SD). The parameter study in the previous chapter models different 

parameters for one of the ditches (OD1). Therefore the same method is used to 

compare numerical to measurements of DO in this chapter (Tables 7.1 and 7.2). 
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7.3  Results and discussion 

 

7.3.1 Flow patterns  

The water flow pattern from multi-phase flow simulation near the water surface are 

shown for operating conditions in OD1 (Figure 7.1) and OD2 (Figure 7.3). The 

sketches of observed flow patterns are shown for OD1 (Figure 7.2) and OD2 (Figure 

7.4). Photographs of flow patterns at Potterne WWTP are in Figures 7.5 and 7.6.         

In OD1 there is agreement between the numerical and observed flow patterns for the 

following phenomena. The dominant flow direction is anti-clockwise. There is 

stagnant flow near the effluent weir, upstream of the surface aerators and near the 

central wall. There is stagnant flow upstream of the diffuser and near the central wall. 

There is radial flow above the diffuser near the water surface. Downstream of the 

Maguire jet aerator there is a strong flow current near the curved outer wall. Just 

downstream of the jet aerator there is return flow along the right outer wall. 

Downstream of the jet aerator there is turbulence. Higher flow is observed near the 

central wall, just downstream of the surface aerators and near the influent, that is 

produced by the plumes from the surface aerators. While some predicted flow 

phenomena are not observed there is generally good validity by observation in OD1. 

In OD2 there is agreement between numerical and observed flow patterns for the 

following phenomena. The dominant flow direction is clockwise. There is stagnant 

flow near the effluent weir and at the ends of the central wall. Near the influent there 

is upward flow from the diffusers that block the horizontal flow currents. Flow is 

sucked by the booster and dispersed downstream as a strong current. Just 

downstream there is turbulence where flow impacts a dividing wall. Further 

downstream there is return flow along the central wall. All the Fuch jet aerators have 

bi-directional flow near the water surface. The diffuser furthest from the influent weir 

has radial flow. The left side of the ditch has homogeneous flow. Around the curved 

bend at the end of the ditch the flow accelerates towards the jet aerator. There is 

stagnant flow upstream of a nearby jet aerator. Downstream of the jet aerators there 

are higher velocities. Further downstream the air from the jet aerators rise upwards 

and cause turbulence. There are two small pools of stagnant flow. Further 

downstream of the jet aerators there is stagnant flow. While some predicted 

phenomena are not observed there is generally good validity by observation in OD2.   
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Figure 7.1    Multi-phase flow 
simulation of water velocity in OD1 

Figure 7.2    Sketches of water flow 
patterns in OD1 observed at WWTP 
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Figure 7.3 Multi-phase flow 
simulation of water velocity in OD2 

Figure 7.4 Sketches of water flow 
patterns in OD2 observed at WWTP 

 

 



192 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Observed flow behaviour in OD1 

(from top to bottom) near effluent weir; downstream of surface aerators near influent;

   near diffuser; downstream of aerators 
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Figure 7.6 Observed flow behaviour in OD2 

 (from top to bottom) two diffusers and booster; booster flow impacts wall;  

    jet aerator near influent; parallel jet aerators 
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7.3.2 Dissolved oxygen concentrations    

 

Figure 7.7 shows the measurement locations for dissolved oxygen in OD1 (left) and 

OD2 (right) near the water surface. Figure 7.7 also shows numerical DO 

concentrations for operating conditions in both ditches and with a uniform BOD. 

There are 15 measurement locations in OD1 and 22 locations in OD2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Numerical DO concentrations and measurement locations 

        uniform BOD for OD1 (left) and OD2 (right) - operating 
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Table 7.1 Dissolved oxygen compared to measurements at locations in OD1 

 

Uniform 

BOD 

Measure 

(mg/l) 

Standard 

(mg/l) 

3 

(mm) 

2   

(mm) 

1   

(mm) 

BSD          Temp 

20 ○C 

OTR 

12 h-1 

         

mean points 0.44 0.51 0.48 0.55 0.62 0.49 0.43 0.46 

max points 1.38 0.76 0.84 1.15 1.67 0.70 0.68 0.71 

min points 0.06 0.02 0 0 0 0.04 0 0 

SD points 0.44 0.20 0.23 0.36 0.63 0.19 0.17 0.17 

mean ditch - 0.40 0.38 0.39 0.38 0.40 0.37 0.39 

max ditch - 1.26 1.64 2.34 3.58 1.12 1.24 1.86 

min ditch - 0 0 0 0 0 0 0 

         

Distributed 

BOD 

Measure Standard 3 2 1 BSD 20 ○C 12 h-1 

         

mean points 0.44 0.46 0.49 0.58 0.80 0.45 0.45 0.46 

max points 1.38 0.78 0.93 1.23 1.79 0.72 0.78 1.03 

min points 0.06 0.07 0 0 0 0.12 0.05 0 

SD points 0.44 0.20 0.28 0.40 0.64 0.17 0.20 0.28 

mean ditch - 0.42 0.40 0.40 0.40 0.40 0.40 0.40 

max ditch - 1.24 1.62 2.32 3.64 1.21 1.25 1.77 

min ditch - 0 0 0 0 0 0 0 

 

 

Table 7.2 Dissolved oxygen compared to measurements at locations in OD2 

 

Uniform BOD Measurements 

(mg/l) 

Standard model 

(mg/l) 

   

mean points 0.59 0.60 

maximum points 3.67 1.24 

minimum points 0.03 0 

SD points 1.04 0.46 

mean ditch - 0.60 

maximum ditch - 3.07 

minimum ditch - 0 
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Figure 7.8 DO for mean bubble sizes - distributed BOD in OD1 

 

Figure 7.9 DO for BSD - distributed BOD in OD1 

 

Figure 7.10  DO for temperature and surface OTR - distributed BOD in OD1 
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Figure 7.11  DO for standard model - uniform and distributed BOD in OD1 

 

Figure 7.12  DO for BSD - uniform and distributed BOD in OD1 

 

Figure 7.13  DO for temperature - uniform and distributed BOD in OD1 

 

Figure 7.14  DO for standard model - uniform BOD in OD2 
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Table 7.1 shows the comparison between the measured and predicted dissolved 

oxygen concentrations (mg/l) in OD1, with uniform and distributed BOD and for 

different parameters. Table 7.2 shows the same comparison in OD2, but only with 

the standard model and uniform BOD. The 'standard' model has a mean bubble size 

of 4 mm, physical properties at 13 ○C and mass transfer coefficient of surface 

aeration of 3 h-1. In OD1 the simulations are for mean bubble sizes, BSD, 

temperature of 20 ○C during experimental conditions and surface aeration of 12 h-1. 

At the influent to OD1 and OD2 the DO measurements are 0.08 and 0.04 mg/l 

respectively. They are used in the inlet boundary condition of the CFD model.     

 

Consider when a uniform BOD is modelled in OD1. In terms of the magnitudes of DO 

the numerical and physical measurements are in quite good agreement (Table 7.1). 

But in terms of statistical variation there is not good agreement (Table 7.1). 

Comparison of the 'standard' model (0.51 mg/l) with measurements (0.44 mg/l) show 

quite good agreement for the mean DO in the ditch, taken at the same locations in 

the ditch (Figure 7.7). The maximum DO concentration at these locations are 

standard model (0.76 mg/l) and measurement (1.38 mg/l). The standard deviation 

(SD) of predicted and measured DO concentrations are taken at the same locations, 

and are 0.20 and 0.44 respectively.  

 

Reducing the mean bubble size to 3 mm in OD1 gives a mean predicted location 

value of 0.48 mg/l that is quite similar to the measured mean (0.44 mg/l). The 

maximum predicted location value is 0.84 mg/l compared to 1.38 mg/l. The 

maximum predicted DO increases from 1.26 to 1.64 mg/l. Comparison of the SD of 

variation improves this slightly to 0.23 (0.44). Reducing mean bubble size to 2 mm 

gives a mean predicted location value of 0.55 mg/l (higher than measurement) and a 

maximum location value of 1.15 mg/l (nearest to measurement). Comparison of the 

SD of variation improves this to 0.36 (closest to 0.44). The predicted maximum DO 

increases to 2.34 mg/l. Reducing mean bubble size to 1 mm gives higher mean and 

maximum predicted location values of 0.62 mg/l and 1.67 mg/l. The SD of variation is 

0.63 compared to 0.44. The maximum DO in OD1 increases further to 3.58 mg/l. 

Simulating BSD gives a mean predicted location value of 0.49 mg/l, that is similar to 

a 3 mm bubble size and measurement (0.44 mg/l). The maximum location value is 

0.70 mg/l compared to 1.38 mg/l. The maximum DO decreases slightly with BSD.   
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For the experimental temperature (20 ○C), the mean and maximum DO is about the 

same as the 'standard' model (13 ○C). Comparison of the prediction (0.43 mg/l) with 

measurement (0.44 mg/l) however shows better agreement for the mean dissolved 

oxygen at these locations. For a fourfold increase in surface aeration, comparison of 

the prediction (0.46 mg/l) with measurement (0.44 mg/l) shows better agreement for 

the mean DO at these specific locations in the ditch. With uniform BOD, as the 

bubble size is reduced the mean and maximum DO increases. Reducing the bubble 

size increases the variation (SD) of the dissolved oxygen. The closest match with the 

measurement data is for a 2 mm bubble size (SD of 0.36 compared to 0.44).   

 

For the 'standard model' in OD1, when comparing uniform (Table 7.1) and distributed 

BOD (Table 7.2), the mean and maximum DO values are about the same. However, 

the distributed BOD better predicts the mean value of 0.46 mg/l at these specific 

locations. The SD of variation is the same for the uniform and distributed BOD. For 

both the uniform and distributed BOD, when the bubble size is reduced, the 

maximum DO increases. There is no significant effect on the mean and maximum 

DO with a distributed BOD. However, there is a significant increase to the SD of 

variation (4 mm: 0.20->0.20; 3 mm: 0.23->0.28;  2 mm: 0.36->0.40; 1 mm: 0.63-

>0.64; temperature: 0.17->0.20; surface aeration: 0.17->0.28). These results suggest 

that there is an improvement in results when simulating a distributed BOD. The best 

match with experimental data for both a uniform and a distributed BOD in OD1 is 

with a mean bubble size of 2 mm (SDs of 0.36 and 0.40). This is confirmed by the 

BSD which predicts a mean bubble size in the ditch of 1.9 mm. This suggests that 

the actual mean bubble size in OD1 may be closer to 2 mm, than what was originally 

thought to be accurate (4 mm). 

 

Only the 'standard model' and uniform BOD is modelled in OD2. Comparison shows 

a bigger difference between numerical and measured DO in OD2 (Table 7.2). The 

predicted mean and maximum DO is 0.60 and 3.07 mg/l. The mean DO at these 

specific locations in OD2 for numerical and measurement are in close agreement 

(0.60 and 0.59 mg/l). However the maximum DO does not agree (1.24 and 3.67 

mg/l). DO variation (SD) at these measurement locations also differ (0.46 and 1.04).       
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Figures 7.8 to 7.10 show graphical comparisons between the numerical and 

measured DO at specific locations in OD1, for the model parameters and the 

distributed BOD. Figure 7.8 shows that a 2 mm bubble size has the best match with 

measurement for the first DO peak in the graph, while the 1 mm bubble size has the 

best match for the 2nd peak. Figure 7.9 shows there is no significant difference 

between a mean bubble size and a BSD. Figure 7.10 shows there is no significant 

difference between a temperature of 13 and 20 ○C. There is a small improvement in 

simulating a higher surface aeration (12 h-1), in terms of the first peak and first 

trough. This is confirmed by an SD of variation of 0.28 that is closer to the measured 

value (0.44). Figures 7.11 to 7.13 show the graphical comparison to measured DO, 

between uniform and distributed BOD for different model parameters. Figures 7.11 

and 7.12 show that for the standard model and BSD there is better match with the 

measurement at the first peak, first trough and second trough in the graph of the 

distributed BOD. Figure 7.13 shows a better match for the higher temperature of        

20 ○C at the first peak and first trough for the distributed BOD. The results suggest 

that the mean bubble size in OD1 may be nearer to 2 mm than was originally thought 

(4 mm). The results also suggest that a distributed BOD may be more accurate than 

a uniform BOD for determining the DO distribution in OD1.  

 

Figure 7.14 shows the comparison between the numerical and measured DO in the 

other ditch OD2. The measurement locations are shown in Figure 7.7. In most of 

OD2 there is not good agreement for DO. However, in one part of the ditch where 

DO concentrations are low there is good agreement (locations 17 to 22). Near the 

influent there is also good agreement (locations 1 and 2). For locations 3 to 13 the 

predicted DO is higher than the measurements. However, they do show similar 

trends to measurements from locations 7 to 22. Numerical values also show a peak 

at the same place as the largest peak of the measurements (locations 14 to 16).  

 

The different aerators are designed to produce different bubble sizes. The BSD 

predicts a range of bubble sizes from small (1 mm) to large (6 mm). There are 

however no measurements of bubble size. This would need to be done by either 

using an optical probe or by high resolution camera imaging. Measurements of 

bubble size at specific locations in the ditch can provide bubble size data for              

(1) inlet boundary conditions of the aerators and (2) validating the numerical BSD.     
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7.4 Summary  

 

In OD1 there is overall good agreement between the numerical simulation and the 

physical observation in terms of the flow pattern. There is agreement for the general 

flow direction, radial flow pattern above diffuser and strong flow current, fluid 

turbulence and return flow of the Maguire jet aerator. There is agreement for the flow 

stagnation near the effluent, upstream of the surface aerators, near the central wall, 

upstream of the diffuser and near the side wall by the Maguire jet aerator. 

In OD2 there is overall good agreement between the numerical simulation and the 

physical observation in terms of the flow pattern. There is agreement for the general 

flow direction, upward flow from diffusers that block horizontal flow circulating around 

the ditch and radial pattern above diffusers. There is agreement for the strong flow 

current from the booster that collides with an internal wall. There is agreement for the 

bi-directional flow near the water surface above the Fuch jet aerators and for the fluid 

turbulence caused by rising air from the jet aerators. There is agreement for the flow 

stagnation near the effluent, ends of the central wall, downstream of the flow booster 

and upstream of the Fuch jet aerators. 

Comparison with real physical experimental data is only plausible by using the 

numerical DO concentration that includes the effect of the biochemical oxygen 

demand (BOD). This modelling feature considers the real situation in biological 

wastewater treatment. Both the uniform and distributed BOD in the ditch is compared 

to the DO measurements in OD1 and using different parameter values. Only the 

uniform BOD model is used for OD2 and with only the 'standard' model. 

Comparison between the mean numerical DO concentrations in OD1, that include 

the effect of BOD and experimental measurements are favourable. Comparison 

between the variation of DO concentration is however not as favourable. For the 

mean BOD in OD1, the mean DO for the standard model and the measurements are 

in good agreement. The maximum and variation of DO are lower than the 

measurements. A bubble size of 2 mm gives a mean DO that is higher than the 

measurements. The maximum DO and its variation is closest to measurements. The 

bubble size distribution (BSD) gives a mean DO that is nearer to the measurements, 

when compared to a mean bubble size of 4 mm. The maximum and variation of DO 
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are similar to the standard model. As bubble size is reduced, mean and maximum 

DO increases and the variation of DO increases. The closest match to experimental 

data for the uniform BOD is with the 2 mm bubble size. It would have also been 

beneficial to have measured the DO concentrations at multiple depths in the ditches.  

For a BOD distribution in OD1, the standard deviation of DO values compares better 

with the measurements than for a uniform BOD concentration. The closest match 

with measurement is with the 2 mm bubble size and the BOD distribution. These 

results suggest that a BOD distribution in a ditch has an important influence on the 

DO distribution and is more accurate when it is compared to a mean BOD. 

Comparison between the mean numerical DO concentrations in OD2 which include 

the effect of uniform BOD and the experimental measurements show a bigger 

difference between the predictions and measurements in OD2. However, the DO 

concentrations at some locations in OD2 are in agreement. There are also some 

similar spatial trends in DO distribution between the predictions and measurements. 

The bubble size distribution (BSD) in OD1 shows a slight improvement in 

comparison to measurement data for dissolved oxygen, when compared to a mean 

bubble size. When using the homogeneous MUSIG model and equal diameter 

discretisation, the BSD predicts bubble sizes from 1.0 to 6.3 mm and a mean size of 

1.9 mm. This compares favourably with the best agreement with experimental data, 

suggesting that 2 mm may be the real mean bubble size in the ditch. BSD is used to 

calculate the variation of bubble size from knowledge of the multi-phase flow pattern. 

However, by taking measurements of bubble size, by either using an optical probe or 

by high resolution camera imaging, this could provide data for validation of the 

numerical BSD. This could also be used to provide data for the different numerical 

inlet boundary conditions of the aeration devices. Furthermore, conducting a tracer 

test could provide validation for the numerical residence time distribution (RTD).  

The bubble size distribution (BSD) and biochemical oxygen demand (BOD) 

distribution addressed in this study are important parameters when considering the 

fluid dynamics and dissolved oxygen distribution in an oxidation ditch. With reference 

to the existing published literature, there is little or no previous CFD modelling of 

these two parameters for aeration tanks in wastewater treatment.  
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8. Aeration system design 

 

 

8.1 Introduction 

 

The literature review has identified CFD simulation that is used for the development 

and design optimisation of aeration devices and aeration tank design (Karpinska and 

Bridgeman, 2016). The criteria for design optimisation is to improve the uniformity of 

the flow pattern, dissolved oxygen distribution and suspended solids distribution, 

increase the dissolved oxygen, increase the residence time of the aeration tank and 

reduce the energy consumption of the aeration process (Gillot and Heduit, 2000; 

Brannock, 2003; Gillot et al, 2005; Jensen et al, 2006; Kjellstrand, 2006; Thakre et 

al, 2008; Bhuyer et al, 2009; Fan et al, 2010; Xu et al, 2010; Gresch et al, 2011; 

Yang et al, 2011; Karpinska, 2013; Liu et al, 2014; Xie et al, 2014; Terashima et al, 

2016; Wei et al, 2016a; Wei et al, 2016b; Zhang et al, 2016; Climent et al, 2019). 

       

CFD simulation in this study has identified potential issues with the performance of 

the oxidation ditches in terms of their hydrodynamics and dissolved oxygen 

distribution. An analysis of how each aeration system affects the dissolved oxygen 

distribution is presented in Chapter 5. Moreover, the performance of each individual 

aerator is assessed in this chapter. Recommendations are given in this chapter to 

improve the hydrodynamic and aeration performance of the oxidation ditch. This is in 

terms of the design retrofitting of the aerators and some aspects of ditch design that 

have been identified in the review. There are different types of aerators studied 

(brush surface, membrane diffuser, hydro-jet and air jet). However, the detailed 

design retrofitting of each of these aerators (for example, the rotational speed of the 

surface aerator and pore size of the diffuser) is not the intention of this design study. 

 

 

  



204 
 

8.2 Theory 

 

To calculate the efficiency of an individual aerator there are two criteria used. The 

factor, Eff1 is a measure of how the running costs of the supply of oxygen to an 

aerator can be converted into the mean dissolved oxygen concentration in the ditch. 

 

      
        

                  
                                                    (8.1) 

 

where, mean_DO is the mean DO in the ditch (mg/l), sat_DO is the saturation DO 

concentration in water at 13 ○C which is 10.5 (mg/l), and oxygen_s is the oxygen 

supply to the individual aerator (kg/s). This efficiency relates to the oxygen transfer 

efficiency (OTE) of a submerged diffuser or jet aerator (Stenstrom and Rosso, 2010), 

which is calculated by the oxygen transfer rate (OTR) divided by the oxygen supply 

rate (equation 2.12). 

 

The factor, Eff2 is a measure of how the mean dissolved oxygen concentration in the 

ditch that is delivered by an aerator compares to the theoretical mean dissolved 

oxygen concentration in the ditch (Stenstrom and Rosso, 2010):  

   

     
       

         
                                                   (8.2) 

 

               
                        

               
                                                (8.3) 

 

where, theory_DO is the theoretical DO in the ditch (mg/l), residence_t is the 

predicted mean residence time of the ditch (s), which is calculated in section 4.4.3. 

The volume of the ditch is 2000 m3. 
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8.3 Method 

  

The methods for multi-phase and multi-component flow modelling of the flow pattern, 

DO distribution, BOD distribution and numerical boundary conditions are given in 

previous chapters. The standard model has a mean bubble size of 4 mm in the ditch, 

temperature of 13 ○C and mass transfer coefficient of surface aeration of 3 h-1. The 

dissolved oxygen saturation concentration in water at 13 ○C is 10.5 mg/l, which is the 

upper limit for DO in the ditch. The aeration performance of the aerators to aerate 

the oxidation ditch are individually assessed in this chapter in both oxidation ditches 

(OD1 and OD2), without considering the effect of BOD. 

 

Comparison between the performance of individual aerators in both ditches is given 

in Table 8.1. There are two efficiency criteria assessed, Eff1 and Eff2 that are 

calculated for each individual aerator. The first efficiency criteria Eff1 is based on how 

efficiently oxygen supply to an aerator is converted into the mean DO in the ditch. 

The second efficiency criteria Eff2 is based on how efficiently the delivered mean DO 

in the ditch from an aerator compares to the theoretical mean DO. The effects of  the 

individual aerators on the flow pattern and DO concentrations are analysed. 

Recommendations are also made on how the design of individual aerators and ditch 

design can be improved in terms of the hydrodynamic and aeration performance.  
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8.4  Results and discussion 

 

8.4.1 Aerator efficiency  

 

Table 8.1 shows that the most efficient conversion of oxygen supply (running costs) 

to dissolved oxygen are the membrane diffusers, with Eff1 = 37 for OD1, and         

Eff1 = 20 for OD2. The Maguire jet aerator in OD1 is also quite efficient for this 

criteria, Eff1 = 29. Brush surface aerators have a lower value of Eff1 = 15. The least 

efficient are the Fuch air jet aerators in OD2 with Eff1 = 8. The efficiency is lower for 

the actual operating conditions in OD1, Eff1 = 11 and in OD2, Eff1 = 7.      

The criteria, Eff2, considers the efficiency of the delivery of mean DO compared to 

the theoretical DO. This is a more accurate assessment of the performance of an 

aerator. Surface aerators in OD1 have Eff2 = 24 %. Less efficient are the Maguire jet 

aerator in OD1 with Eff2 = 7 %. For the operating conditions of the ditches these 

efficiencies are higher (Eff2 = 33 % in OD1), while in OD2 it is much better (Eff2 =         

83 %). The mean residence times in Table 8.1 are from the numerical RTDs              

(section 4.4.3). Where denoted by (*) they are predicted by single-phase flow. It is 

likely that multi-phase flow is more accurate (**). The missing data for Eff2 in Table 

8.1 is from the predicted residence times. Even though there is missing data, it is 

considered that aerators that provide a higher mean DO will have a higher Eff2. The 

highest efficiency is therefore for the membrane diffusers (5.44 mg/l in OD1 and 8.74 

mg/l in OD2), then Fuch jet aerators (5.97 mg/l in OD2), surface aerators (2.48 mg/l 

in OD1) and least efficient is the Maguire jet aerator (0.44 mg/l in OD1). This is the 

most accurate order for assessing the relative efficiencies of the aerators. 

Table 8.1 Dissolved oxygen and aerator efficiencies without BOD 

Case OD Devices No 
Oxygen 
supply  
(kg/s) 

Max  
DO       

(mg/l) 

Mean            
DO                  

(mg/l) 

Max 
DO     

(% sat) 

Mean 
DO                             

(% sat) 

Res. 
time 
(hr) 

 Theory: 
mean 
DO 

(mg/l) 

Eff1 Eff2   

O2 1 surface  4 0.0163 3.07 2.48 29.2 23.6  8.87* 10.5*sat   15  24 

O3 1 diffuser  1 0.0139 7.91 5.44 75.3 51.8 - - 37  - 

O4 1 Maguire jet  1 0.0014 0.68 0.44 6.5 4.2  2.33*  5.88 29  7 

O5 1 ALL  6 0.0311 4.12 3.46 39.2 33.0 2.11**  10.5*sat   11 33 

O7 2 diffuser 3 0.0413 9.60 8.74 91.4 83.2 - - 20 - 

O8 2 Fuch jet   3 0.0747 10.22 5.97 97.3 56.9 - - 8 - 

O9 2 ALL 6 0.1165 10.23 8.74 97.4 83.2 8.89** 10.5*sat   7 83 
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8.4.2 Aeration design  

 

Oxidation ditch 1  

The patterns of water and dissolved oxygen distributions for individual aerators in 

OD1 and OD2 are shown in Figures 8.1 to 8.15 near the water surface. The benefit 

of the brush surface aerators in OD1 is a homogeneous flow pattern in one flow 

direction around the ditch. A further benefit is it mitigates against the short-circuiting 

of the influent to the effluent by reversing the flow direction in the ditch. The flow 

pattern in Figure 8.1 is quite uniform, however there are fluid plumes that produce 

recirculation. A further benefit of surface aeration is to agitate the water surface and 

introduce air into the water. The DO distribution in the ditch is quite homogeneous 

which is desirable (Figure 8.2). One drawback is that the oxygen mass transfer of 

surface aeration is difficult to quantify. Another problem is that surface aeration does 

not efficiently aerate deeper water in the ditch. The brush surface aerators are one of 

the most inefficient types, with an oxygen mass transfer coefficient of 3 h-1. When 

operating at 3 h-1, for the operating conditions, the mean DO in the ditch is 3.46 mg/l. 

With a quadruple increase in surface aeration to 12 h-1 this increases to 3.90 mg/l.  

 

The benefit of a membrane diffuser in OD1 is less fluid turbulence that causes the 

flow pattern to spread in a tranquil manner (Figure 8.3). Diffusers do not provide a 

strong dominant flow direction and therefore there are low flow velocities in the ditch. 

The radial flow pattern has the benefit of diffusion and zonal spreading of dissolved 

oxygen (Figure 8.4). The mean DO is 52 % of saturation in OD1 and Eff1 = 37, which 

indicate that the membrane diffuser is more efficient than the surface aerator.    

The benefit of a Maguire jet aerator in OD1 is it provides a high local DO 

concentration. There are however problems with flow recirculation caused by a 

strong flow stream (Figure 8.5). There is high DO concentration near the aerator and 

much lower elsewhere in the ditch (Figure 8.6). Poor oxygenation of water gives a 

low mean DO of just 4 % of saturation in OD1 (Table 8.1). The amount of oxygen is 

limited from an air saturated water source. The efficiency of providing DO from the 

oxygen supply (Eff1 = 29) is however almost as good as the diffuser (Eff1 = 37).   



208 
 

For the operating conditions in OD1 the mean DO in the ditch is 33 % of 

saturation. The flow pattern is composed of plumes from the surface aerators, radial 

flow from the diffuser and a strong flow stream from the jet aerator (Figure 8.7). One 

design improvement may be to move the Maguire jet aerator to the opposite corner 

of the ditch, away from the diffuser and surface aerators. This could reduce its 

disturbance towards the radial flow (Figure 8.7) and zonal DO distribution of the 

diffuser (Figure 8.8). The Maguire jet aerator can be more centrally located and its 

flow stream in the same direction as the surface aerators (Figure 8.7). The diffuser 

can be moved slightly left in alignment to the surface aerators (Figure 8.7). The 

Maguire jet aerator causes the greatest instability to the flow and DO distribution.   

  

 

Figure 8.1 Water velocity in OD1 with surface aerators only 

 

Figure 8.2 DO in OD1 with surface aerators only 

    (max = 3.07 mg/l, mean = 2.48 mg/l) 
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Figure 8.3 Water velocity in OD1 with diffuser only 

 

Figure 8.4 DO in OD1 with diffuser only 

               (max = 7.91 mg/l, mean = 5.44 mg/l) 

 

Figure 8.5 Water velocity in OD1 with Maguire jet aerator only 
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Figure 8.6 DO in OD1 with Maguire jet aerator only 

         (max = 0.68 mg/l, mean = 0.44 mg/l) 

 

Figure 8.7 Water velocity in OD1 - operating conditions 

 

Figure 8.8 DO in OD1 - operating conditions 

          (max = 4.12 mg/l, mean = 3.46 mg/l) 
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Oxidation ditch 2  

The flow booster in OD2 does not introduce oxygen or extra flow to the ditch, but it 

does change the flow pattern significantly due to a strong flow stream (Figure 8.9). 

Its location is unsuitable as its flow stream collides with a dividing wall (Figure 8.9). It 

is recommended to move the booster downstream but keep it central. It is beneficial 

to move it away from diffusers, so its flow stream does not disturb their radial flow. It 

is also recommended for it to be kept away from the Fuch jet aerators. 

The benefit of the membrane diffusers in OD2 is a tranquil radial distributed flow 

pattern (Figure 8.10). Another benefit is a zonal dissolved oxygen pattern in OD2 

(Figure 8.11). The diffusers can be moved away from the influent stream, which is 

interfering with their radial flow. They can also be moved away from the dividing 

walls and kept central in the ditch. They can be placed in a designated diffuser zone 

(bottom and left of ditch in Figure 8.10). The diffusers can also be kept away from 

the Fuch jet aerators. There are higher dissolved oxygen gradients near the influent 

stream and near the dividing walls in OD2 (Figure 8.11).  

The benefit of the Fuch jet aerators in OD2 is they oxygenate water with a sufficient 

oxygen supply (Table 8.1). One of their problems is a high inlet velocity jet of air that 

produces turbulence (Figure 8.12). The flow stream from the Fuch jet aerator flows 

downwards at an angle, but rising air makes the water flow bi-directionally near the 

water surface (Figure 8.12). One original design feature of a Fuch jet aerator is 

mono-directional water flow. However, bi-directional dispersion of DO can be 

desirable for the spreading of the DO (Figure 8.13). Two Fuch jet aerators in parallel 

provide a more uniform flow pattern (Figure 8.12). There is a large drop in DO just 

downstream of the parallel jet aerators due to the mixing of two opposing fluid 

streams (Figure 8.13). The highest DO is near the nozzles of the aerators. Fuch jet 

aerators provide a reasonable mean DO of 57 % of saturation. This compares to       

83 % from the diffusers (Table 8.1), which also have a lower oxygen supply rate.   

For the operating conditions in OD2 the influent fluid stream interferes with the 

radial flow patterns of the diffusers (Figure 8.14). The flow stream from the booster 

collides with a dividing wall and interferes with the spreading of the DO from the 

diffusers. There is interference between the flow stream of the Fuch jet aerator near 

the influent and the diffuser downstream. The mean DO in the ditch is very high           
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(83 % of saturation) in OD2, when all the aerators are operating (Table 8.1). The DO 

distribution in OD2 (Figure 8.15) is quite homogeneous which is desirable. The 

exceptions are the high DO concentrations near the nozzles of the Fuch jet aerators, 

and near the diffuser that is furthest away from the influent. The lower DO 

concentrations near the two diffusers that are together is due to the dilution from the 

influent stream (Figure 8.15). Maintaining four operational Fuch jet aerators and 

keeping them as they are is recommended. Moving the three diffusers into one zonal 

area (bottom left) and away from the jet aerators and influent stream is 

recommended. Relocating the booster away from the dividing walls and maintaining 

a central location is desirable. When optimising the locations of the aerators the 

following objectives are desirable. The flow patterns and DO distributions should be 

as uniform as possible (Figures 8.7, 8.8, 8.14, 8.15). The mean DO in the ditch and 

the efficiency of the individual aerators should be increased (Table 8.1). The mean 

residence time of the ditch should also be increased.    

 

Figure 8.9 Water velocity in OD2 with flow booster only 

 

Figure 8.10  Water velocity in OD2 with diffusers only 
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Figure 8.11  DO in OD2 with diffusers only 

                       (max = 9.60 mg/l, mean = 8.74 mg/l) 

Figure 8.12  Water velocity in OD2 with Fuch jet aerators only 

 

Figure 8.13  DO in OD2 with Fuch jet aerators only 

          (max = 10.22 mg/l, mean = 5.97 mg/l) 
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Figure 8.14  Water velocities in OD2 - operating conditions 

 

Figure 8.15  DO in OD2 - operating conditions 

         (max = 10.23 mg/l, mean = 8.73 mg/l) 
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Comparison of OD1 and OD2 for operating conditions 

 

For the operating conditions the mean DO in OD1 is 33 % of saturation while in OD2 

it is 83 % (Table 8.1). These are similar to values for the efficiency criteria Eff2. For 

the two ditches the efficiency criteria Eff1 is quite similar (Eff1 = 11 in OD1, Eff1 = 7 in 

OD2). In order of aeration effectiveness, best are the 3 diffusers in OD2 (83 %) and 

1 diffuser in OD1 (52 %), then the 3 Fuch jet aerators in OD2 (57 %), then the          

4 surface aerators in OD1 (24 %) and least is the Maguire jet aerator in OD1 (4 %).  

In OD1 design retrofitting can move the Maguire jet aerator to the opposite corner of 

the ditch and central and away from the diffuser and surface aerators. This is to 

reduce its disturbance of the radial flow (Figure 8.7) and DO spreading of the diffuser 

(Figure 8.8). The Maguire jet aerator has the lowest mean DO and causes the 

greatest instability to the flow pattern and DO distribution. The dissolved oxygen 

distribution in OD1 does not show a reasonable homogeneous pattern (Figure 8.8).    

In OD2 the influent stream interferes with the radial flow of the diffusers (Figure 

8.14). The flow stream of the booster collides with a wall and interferes with the DO 

spreading of the diffusers. There is interference between the flow stream of the Fuch 

jet aerator near the influent and the diffuser downstream. Recommendation is to 

move the three diffusers into one zonal area, away from the jet aerators and influent. 

Another option is to relocate the booster away from the dividing walls. The DO 

distribution in OD2 does show a reasonable homogeneous pattern (Figure 8.15). 

The improved performance of OD2 (83 %) compared to OD1 (33 %) is due to the     

3 diffusers and 3 Fuch jet aerators instead of the 1 diffuser, 4 surface aerators and 1 

Maguire jet aerator. It can also be attributed to a higher oxygen supply to OD2 (0.11 

kg/s) compared to OD1 (0.03 kg/s). The diffusers are the most efficient aeration 

system. The Fuch jet aerators with a pure stream of air have merit as they supply 

sufficient oxygen. The bi-directional flow pattern from the Fuch jet aerators spreads 

DO around the ditch. For homogeneous flow around the ditch near the water surface 

the surface aerators in OD1 behave well. Their disadvantage is they mostly affect 

the distribution of DO that is nearer the water surface. The booster in OD2 produces 

a strong flow stream which drives flow around the ditch, but unfortunately creates 

flow recirculation and interferes with the flow patterns of the other aerators.  
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The criteria for improved aeration design is to increase the dissolved oxygen,  

uniformity of flow, DO and suspended solids distributions, increase the residence 

time of the tank and reduce the overall energy consumption (Karpinska and 

Bridgeman, 2016). Some of the design considerations of aeration systems are the 

locations of the influent and effluent weir (Jensen et al, 2006), inlet damper wall 

(Kjellstrand, 2006), locations and designs of baffles (Brannock, 2003; Jensen et al, 

2006; Kjellstrand, 2006; Wei et al, 2016a), design of mixing impellers in terms of 

radius (Liu et al, 2014), submergence depth (Wei et al, 2016b), position (Brannock, 

2003; Kjellstrand, 2006; Climent et al, 2019), number and rotating speed (Zhang et 

al, 2016), operation of surface aerators and mixing impellers (Gillot and Heduit, 

2000; Yang et al, 2011; Xie et al, 2014), rotating speed of surface aerators (Fan et 

al, 2010), oxygen transfer rate of surface aerators (Thakre et al, 2008; Bhuyer et al, 

2009), diffuser design with different bubble sizes (Terashima et al, 2016), grid 

diffuser spacing (Gillot and Heduit, 2000; Gillot et al, 2005; Gresch et al, 2011), air-

lift oxidation ditch (Xu et al, 2010), pressurised aeration chamber and hydrojets 

(Karpinska, 2013). 

 

In terms of oxidation ditch design at Potterne WWTP there are recommendations 

from the literature which can help optimise the hydrodynamics and aeration. It has to 

be considered that these recommendations apply to completely different designs 

than Potterne WWTP. Therefore they are only given here as general guidelines, and 

some of these may not be entirely suitable for the ditches at Potterne WWTP.  

 

A vertical baffle at the inlet can guide flow and mitigate against short circuiting of the 

influent towards the effluent and thereby increase the residence time of the tank. The 

inlet and outlet weirs can be placed at opposite ends of the ditch to increase the 

residence time. Positioning the inlet and outlet weirs centrally splits the flow equally 

by the central wall and may reduce the average velocity and increase the residence 

time (Jensen et al, 2006). Impellers with optimal radius (Liu et al, 2014) and optimal 

submergence depth (Wei et al, 2016b) can make the flow distribution more uniform. 

Baffles that are angled downwards just downstream of the surface aerators can 

increase velocity at the ditch bottom, make the vertical velocity distribution more 

uniform which help prevent sludge deposits and increase the residence time. Baffles 
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can also guide DO into the bottom of the ditch, which can increase the mixture time 

between oxygen and water and increase oxygen mass transfer (Wei et al, 2016a).        

 

By adjusting the position, rotating speed and number of submerged propellers, the 

flow distribution can be more homogeneous and problems with sludge deposits and 

the low velocity in the ditch bend may be improved (Zhang et al, 2016). Changes to 

the operation include turning on and off surface aerators and submerged impellers, 

which may improve the uniformity of the flow field, DO distribution (Yang et al, 2011) 

and suspended solids distribution (Xie et al, 2014). Suspended solids concentrations 

can be dispersed more evenly with a higher surface aerator rotating speed. Mixing 

propellers can be placed at the tank bottom to prevent sludge settling (Fan et al, 

2010). The optimum location of the mixing propellers can improve the uniformity of 

the flow pattern (Climent et al, 2019). An even distribution of mixers and baffles 

along the length of a channel reactor creates several small well mixed zones in 

series. When flow is more uniform this increases pollutant removal (Brannock, 2003). 

In a channel reactor measures are studied to deal with the high velocity of the 

influent flow by using an inlet damper wall, mixer and baffles. The options eliminate 

the short circuiting stream and increase the residence time of the tank (Kjellstrand, 

2006). The oxygen transfer rate (OTR) of the surface aerators can be improved by 

their design. In studies the curved blade rotor type is the best type with an oxygen 

transfer coefficient of 11.50 h-1, then cage fin rotor is 4.33 h-1, cage rope wound rotor 

is 3.78 h-1, and Kessener brush rotor is the worst at 2.94 h-1 (Thakre et al, 2008; 

Bhuyer et al, 2009).  

 

Different diffuser types produce different bubble sizes. Coarse-bubble, fine-pore, and 

slitted membrane diffusers have bubble sizes of 7-8 mm, 5-6 mm, and 3 mm 

(Terashima et al, 2016). In a channel reactor, the spatial distribution of air diffusers 

can lead to oscillations in the flow field (Gresch et al, 2011). In closed loop reactors 

these may be suppressed by slow speed mixers (Gillot and Heduit, 2000). When grid 

diffusers are spaced out, increasing the oxygen supply leads to a reduction in the 

oxygen transfer efficiency (OTE), that is caused by increased spiral flow (Gillot and 

Heduit, 2000). This supports the superiority of total floor coverage compared to 

diffusers that are placed in separate grids (Gillot et al, 2005). 
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8.4 Summary  

 

The overall benefits to the oxidation ditch design are as follows. The criteria for 

better aeration design is higher dissolved oxygen, more uniform distribution of flow 

and DO, higher residence time and lower energy consumption. The Maguire jet 

aerator, surface aerators and booster provide a dominant flow direction in the ditch 

which reduces flow short circuiting. For all devices there is an increase in residence 

time of the ditch. For all devices there is an increase in water velocity which mitigates 

against undesirable sludge deposition. Dissolved oxygen is dispersed quite evenly 

by the surface aerators, diffusers and Maguire jet aerator. In OD1, the diffuser 

provides a reasonable DO, from less oxygen than the surface aerators and a much 

higher DO than the Maguire jet aerator. In OD2, the diffusers provide an even higher 

DO and from less oxygen than the Fuch jet aerators. The Fuch aerators spread DO 

bi-directionally and produce a homogeneous DO pattern. They provide reasonable 

DO from a pure air source. There is DO homogenisation by the mixing from the 

surface aerators, Maguire jet aerator and booster. Diffusers are the most efficient 

aerator as they produce the highest DO. The higher DO and better homogeneity of 

DO in OD2 is attributed to the diffusers, Fuch jet aerators and higher oxygen supply.  

The overall drawbacks to the oxidation ditch design are as follows. The surface 

aerators produce a heterogeneous vertical distribution. The OTR of a surface aerator 

is difficult to quantify unless it is measured. The Maguire jet aerator produces 

undesirable flow recirculation. The DO produced by the Maguire jet aerator is low, 

because it is an ineffective aeration device from an aerated water source. The air jet 

from the Fuch aerator forms a complex bi-directional flow pattern. The diffusers 

produce local flow recirculation. The diffusers and Fuch aerators block the horizontal 

flow in the ditch. The booster produces undesirable flow recirculation and turbulence.  

Moving the Maguire jet aerator could reduce its disturbance towards the nearby 

diffuser. The booster could be moved to avoid collision of its flow stream with an 

internal wall and reduce its interference with other aerators. Diffusers could be zoned 

away from Fuch jet aerators and the influent stream to avoid disturbance between 

aerators. In future work, the design recommendations from the literature review may 

also be used to improve the performance of the aeration devices at Potterne WWTP.     
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9. Conclusions and future work 

 

9.1 Conclusions  

 

 The biochemical oxygen demand (BOD) distribution and bubble size distribution 

(BSD) are important parameters for the dissolved oxygen (DO) distribution.  

 Modelling the effect of the BOD distribution on the DO distribution is a novel 

approach that has not been undertaken in the literature.  

 Dissolved oxygen is affected by the BOD distribution, temperature, surface 

aeration, bubble diameter, bubble size distribution, molar fraction Henry 

coefficient and mass diffusivity and turbulent Schmidt number of oxygen in water.  

 Decreasing the bubble size increases the total interfacial surface area of the 

bubbles, which increases interfacial oxygen mass transfer and dissolved oxygen. 

 The local BOD concentration depends on either the local DO concentration or the 

local residence time. The coupled DO-BOD modelling approach is used. 

 BOD distribution when compared to mean BOD does improve the accuracy of the 

dissolved oxygen by better agreement with the measurements of DO variation.  

 Bubble size distribution when compared to mean bubble size does improve the 

accuracy of dissolved oxygen by better agreement with mean DO measurements.   

 The bubble size distribution predicts a mean bubble size of 1.9 mm.  

 The best agreement with the measurements of dissolved oxygen is a bubble size 

of 2 mm, suggesting this is the probable mean bubble size in the ditch.   

 There is good agreement between simulation and physical observation in terms 

of the flow pattern in both of the ditches at Potterne WWTP.   

 There is good agreement between simulation and physical measurement in terms 

of the mean DO in both of the ditches at Potterne WWTP.    

 The BOD distribution is quite similar for the different model parameters. 

 The mean and maximum DO in the ditch is affected by the model parameters. 

 In decreasing order of aeration performance are the air membrane diffuser, Fuch 

air jet aerator, Kessener brush surface aerator and Maguire hydro-jet aerator. 

 It is recommended that the flow booster, Maguire jet aerator and membrane 

diffusers are relocated to reduce the flow disturbance between the aerators.    
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The overall benefits for oxidation ditch design are as follows.  

 The criteria for better aeration performance is higher DO, better homogenisation of 

the flow and DO distribution, higher residence time and lower energy consumption. 

 For all the devices there is an increase in mean water velocity in the ditch, which can 

mitigate against sludge deposition and provide better transport of dissolved oxygen.   

 The Maguire jet aerator, surface aerators and flow booster provide a dominant flow 

direction in the ditch, which reduces flow short circuiting of the influent weir stream.  

 For all the devices there is an increase in the residence time of the ditch.   

 The diffusers provide a higher mean DO, with a lower oxygen supply than the Fuch 

jet aerators and surface aerators and much higher DO than the Maguire jet aerator.    

 There is a desirable zonal DO pattern with the diffusers and Fuch jet aerators.    

 The Fuch jet aerators provide a reasonable mean DO from a pure air source.  

 The better aeration performance of oxidation ditch OD2 is due to the diffusers, Fuch 

jet aerators and the higher oxygen supply.  

 There is improved homogenisation of dissolved oxygen in the ditches by the fluid 

mixing of the surface aerators, Maguire jet aerator, Fuch jet aerators and booster.   

 

The overall drawbacks for oxidation ditch design are as follows. 

 

 Oxidation ditches have a bend geometry, relative shallow depth and variable 

aeration sources and therefore their velocity and DO distribution is heterogeneous.  

 Main causes of heterogeneous flow distribution are Maguire jet aerator and booster.  

 The Maguire jet aerator causes the flow from the surface aerators to be asymmetric.   

 The ineffective position of the booster produces undesirable fluid turbulence. 

 The surface aerators produce undesirable heterogeneous vertical flow distribution.  

 The oxygen transfer rate of surface aeration is difficult to quantify unless measured.   

 The Fuch jet aerators cause water to flow bi-directionally due to a pure air jet source.  

 The diffusers produce undesirable local flow recirculation.  

 The diffusers and Fuch jet aerators block the general flow direction in the ditch.  

 The dissolved oxygen provided by the Maguire jet aerator is low, suggesting it is an 

ineffective aeration device with a low oxygen supply from an aerated water stream.    
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9.2 Future work 

 

CFD modelling 

The bubble size distribution (BSD) could also be helpful in understanding how the 

individual aeration devices deliver different bubble sizes to the oxidation ditch. The 

disturbance of the water surface can be affected by the surface aerator and the 

rising bubble plume and flow re-circulation from the diffuser, jet aerator and mixing 

impeller. To predict the shape of the water surface the surface tracking volume of 

fluid (VOF) model can be used. Quantifying the transfer of atmospheric air through 

the water surface and using it as an oxygen source term can be undertaken. More 

detailed geometric modelling of the membrane grid diffuser can be undertaken.   

 

Three phase flow modelling considers the main phase as the liquid wastewater and 

the bubbles and particles as dilute disperse phases. Spherical bubbles and particles 

can be simplified with uniform properties. Suspended solids can incorporate discrete, 

flocculent, hindered and compressive settling behaviour. Bubble coalescence and 

particle flocculation can be coupled to the three phase flow model.  

 

Activated Sludge Models (ASM) could be integrated into the CFD models that have 

been developed in this study. ASM can be used to predict nitrogen removal 

(nitrification and de-nitrification), phosphorus removal, COD removal and the growth 

and decay of aerobic heterotrophs and phosphorus accumulating organisms (PAOs).     

  

Experimental validation 

 

Comparison between a numerical residence time distribution (RTD) and an 

experimental tracer test can be used to validate the CFD simulation. Tracer 

experiments can be conducted on the Potterne WWTP ditches. Bubble size 

measurements can provide bubble size distribution data for (1) aeration device inlet 

conditions and (2) validation of the numerical BSD. The measurement of bubble size 

can be undertaken by an optical probe or high resolution camera imaging. They can 

be measured in the ditches at Potterne WWTP at multiple locations including near 

the different aerators. They can also be measured in a laboratory scale ditch model.  
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Fluid velocity measurements can be used to validate the numerical velocities. A 

portable propeller flow meter can take measurements near the water surface and at 

different depths. Experiments can be undertaken on the Potterne WWTP ditches or 

on a laboratory scale ditch model. Dissolved oxygen measurements may also be 

taken at different water depths in the Potterne WWTP ditches. The oxygen transfer 

rate (OTR) of the surface aerators may also be measured at Potterne WWTP.    

 

Aeration design and energy requirement  

It is the future intention to conduct a detailed CFD design study to be able to improve 

the aeration performance at Potterne WWTP. The criteria is to improve the uniformity 

of the flow pattern and DO distribution, to increase the residence time of the tank and 

to reduce the energy consumption. Aerators can be optimised individually in the 

oxidation ditch before combining them together. Design recommendations from the 

literature review can also be used to improve and optimise the design of the influent 

and effluent, mixing impeller, surface aerator, jet aerator and diffuser aerator. 

 

There is a balance between how much dissolved oxygen is produced and how much 

energy is consumed. Aeration systems are competitively bid on the basis of oxygen 

transfer per unit of power or energy consumed, which is (1) mechanical power for 

rotors, blowers and water pumps and (2) energy power for water motion. CFD 

simulation can be used to evaluate an aeration device for its power and energy input, 

its process variables (OTR, OTE and AE) and its fluid variables of velocity and DO.   

 

Graphical fluid visualisation 

Engineering fluid visualisation increasingly requires high visual fidelity photorealistic 

fluid animations to help demonstrate design improvements to engineers, benefit 

computer graphics research and provide a clearer understanding of the 

hydrodynamics and the energy savings. It can also help deliver a virtual reality (VR) 

technology. Photorealistic animations using games engine technology are being 

proposed. Fluid visualisation methods can be evaluated by conducting a participant 

usability study. The usability study can be undertaken by creating an online 

questionnaire that contains the graphical content of the fluid animations.   
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Appendix 

 

This is a literature review published during the doctorate study with this citation. The 

abstract of the published paper is also given here.  

Matko, T., Chang, J. and Xiao, Z., 2017, June. Recent Progress of Computational 

Fluid Dynamics Modelling of Animal and Human Swimming for Computer Animation. 

In International Workshop on Next Generation Computer Animation Techniques (pp. 

3-17). Springer, Cham. 

"A literature review is conducted on the Computational Fluid Dynamics (CFD) 

modelling of swimming. The scope is animated films and games, sports science, 

animal biological research, bio-inspired submersible vehicle design and robotic 

design. There are CFD swimming studies on animals (eel, clownfish, turtle, manta, 

frog, whale, dolphin, shark, trout, sunfish, boxfish, octopus, squid, jellyfish, lamprey) 

and humans (crawl, butterfly, backstroke, breaststroke, dolphin kick, glide). A benefit 

is the ability to visualise the physics-base effects of a swimmer's motion, using key-

frame or motion capture animation. Physics-based animation can also be used as a 

training tool for sports scientists in swimming, water polo and diving. Surface 

swimming is complex and considers the water surface shape, splashes, bubbles, 

foam, bubble coalescence, vortex shedding, solid-fluid coupling and body 

deformation. Only the Navier-Stokes fluid flow equations can capture these effects. 

Two way solid-fluid coupling between the swimmer and the water is modelled to be 

able to propel the swimmer forwards in the water. Swimmers are often modelled 

using articulated rigid bodies, thus avoiding the complexity of deformable body 

modelling. There is interesting potential research, including the effects of 

hydrodynamic flow conditions on a swimmer and the use of motion capture data. The 

predominant approach for swimming uses grid-based fluid methods for better 

accuracy. Emerging particle and hybrid-based fluid methods are being increasingly 

used in swimming for better three dimensional fluid visualisation of the motion of the 

water surface, droplets, bubbles and foam." 

 


