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Abstract 

Normal adult aging is associated with difficulties in processing social cues to emotions such 

as anger, and also altered motivation to focus more on positive than negative information. Gaze 

direction is an important modifier of the social signals conveyed by an emotion, for example an 

angry face looking directly at you is considerably more threatening than an angry face looking 

away. In the current study we tested the hypothesis that older adults would show less neural 

differentiation to angry faces with direct and avert gaze compared to younger people, with the 

opposite prediction for happy faces. Healthy older (65-75 years; M = 69.75) and younger (17-27 

years; M = 20.65) adults completed an fMRI experiment in which they were asked to identify 

happy and angry expressions displayed either with direct or averted gaze. While younger adults 

showed neural sensitivity to eye-gaze direction during recognition of angry expressions, older 

adults showed no effect of eye-gaze direction on neural response. In contrast, older adults 

showed sensitivity to eye-gaze direction during recognition of happy expressions, but younger 

adults did not. Additionally, brain-behavior correlations were conducted to investigate the 

relationships between emotion recognition and mentalizing brain network in both age groups. 

Younger (but not older) adults’ social cognitive performance was differentially correlated with 

activation in two brain networks when looking at angry faces with direct compared to averted 

gaze. These novel findings provide evidence for age-related differences in the neural substrates 

underlying the capacity to integrate facial affect and eye-gaze cues. The results of this study 

suggest that age-related differences in integrating facial cues may be related to engagement of 

the mentalizing network, with potentially important implications for social cognitive functioning 

in late adulthood.  
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Introduction 

People rely on eye gaze and emotional expressions to form expectations about others’ mental 

states (Graham & Labar, 2012). For example, the personal significance of an angry expression 

depends on whether it is accompanied by direct or averted gaze. Aging diminishes the ability to 

process information from eye gaze (Slessor, Phillips, & Bull, 2008) and emotional expressions 

(Ruffman, Henry, Livingstone, & Phillips, 2008), as well as the integration of these cues 

(particularly for angry facial expressions; Slessor, Phillips, and Bull, 2010). Reduced sensitivity 

to expression and eye-gaze cues may be indicative of underlying structural and functional neural 

change in old age and may have potential consequences for social interaction in late adulthood. 

Emotion recognition constitutes a critical skill in effective social communication particularly for 

maintaining positive interaction and interpersonal relationships. Thus, any difficulties 

recognizing emotional expressions and facial cues have the potential to negatively impact on a 

person’s capacity to develop and maintain strong social networks, with attendant consequences 

for health and wellbeing. Reduced sensitivity to emotional expressions and eye-gaze cues may be 

indicative of age-related changes in the underlying neural correlates involved in social cognitive 

processing. 

There is now evidence that social cognitive processing imposes demands on a large number 

of different brain regions and their connectivity (see e.g. Molenberghs, Johnson, Henry, and 

Mattingley, 2016). However, it remains important to gain a more complete and nuanced 

understanding of the functional networks that subserve these processes, as well as how these 

networks change in the context of normal adult aging. This is because social cognitive 

difficulties are early and salient features of many clinical disorders, including many common 

neurodegenerative disorders associated with old age (Bora, Velakoulis, & Walterfang, 2016; 

Henry, von Hippel, Molenberghs, Lee, & Sachdev, 2016; Kemp, Despres, Sellal, & Dufour, 

2012; McCade, Savage, & Naismith, 2011). A better understanding of the neural networks that 

subserve core aspects of change in social cognitive function in late adulthood could inform 

differential diagnosis and treatment of social cognitive impairment in this age group. 

A number of neuroimaging studies have assessed age-related differences in processing 

emotional facial expressions (e.g., for a review see Ziaei and Fischer, 2016). While some studies 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  AGING AND GAZE PROCESSING 

 4

found age-related decline in neural response to negative facial emotions, including regions of the 

medial temporal lobe such as the amygdala (Iidaka et al., 2002) and anterior-ventral insula cortex 

(Fischer et al., 2005), other studies reported that young and older adults recruited different brain 

regions irrespective of emotional valence (Gunning-Dixon et al., 2003). Direct comparisons 

between happy and angry expressions revealed two main findings (Ebner, Johnson, & Fischer, 

2012). First, greater ventromedial prefrontal cortex (vmPFC) activity was seen during 

recognition of happy (relative to angry) faces across both age groups. Second, greater 

dorsomedial PFC (dmPFC) activity in response to angry (relative to happy) faces was more 

pronounced for older relative to younger adults. Taken together, these findings suggest that older 

and younger adults differ in the neural networks they recruit when processing emotional 

expressions, and that for older adults, more cognitive effort may be required to recognize angry 

(relative to happy) facial expressions. However, whether there are also age differences in the 

brain networks involved in processing and integrating communicative facial cues (i.e., directed 

and averted gaze), and in interaction with facial expressions, remains to be established. It also 

remains unclear whether age-related neural differences in processing facial affective cues are 

related to social cognitive functioning, such as theory of mind and social behavior. To our 

knowledge, our study is the first to examine the age-related changes in the neural networks 

involved in processing facial communicative cues and their implications for social cognitive 

performance. 

Angry expressions in the context of direct gaze signal immediate threat to the observer. 

Neural responses to such threatening cues are automatic (Shepherd, 2010) and reflexive (Adams 

et al., 2012). In contrast, angry expressions accompanied by averted gaze signal that the anger is 

directed towards something else in the environment thus less likely to be interpreted as personal 

threat and may invoke higher-order social cognitive brain regions to determine the intentions of 

the angry individual (Pfeiffer, Vogeley, & Schilbach, 2013). However, because older adults 

show a lack of sensitivity to eye gaze in angry expressions (Slessor et al., 2010), they may also 

show more similar neural patterns when observing angry faces with direct and averted gaze. 

Additionally, age-related changes in integrating facial cues may reflect a lack of recruitment of 

mentalizing networks when processing social information. Recruitment of these networks may 

be most critical when understanding of the mental state of others is required, such as when 

processing angry faces with averted gaze.  
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Although happy expressions presented with direct versus averted eye-gaze orientations might 

convey different meanings, being targeted with happiness is less critical for survival than being 

targeted with anger. It therefore is possible that, at a neural level, there is less differentiation in 

the brain regions activated for direct versus averted gaze in happy expression relative to angry 

expressions, especially among younger adults. In contrast, given evidence that older adults are 

particularly motivated to attend to and process positive information such as happy faces 

(Carstensen, 2006; Mather & Carstensen, 2003) compared to their younger counterparts, older 

adults may show greater neural differentiation when processing happy expressions with different 

eye-gaze directions which has not been addressed in prior literature. 

To fill this research gap, the aim of this study was to identify age differences in the neural 

substrates involved in processing happy and angry facial expressions with different eye-gaze 

cues. We predicted that in younger adults, distinct brain substrates would be activated in 

response to angry expressions with differing gaze cues. For angry faces with direct gaze, activity 

in the salience network, involved in identifying the most relevant stimuli in the environment and 

orienting attention towards them in order to adaptively guide behavior (Barrett & Satpute, 2013; 

Menon, 2015) should be more prominent. On the other hand, in averted gaze conditions, 

additional brain networks involved in mentalizing, including regions such as mPFC and superior 

temporal gyrus (STS) (Frith & Frith, 2006; Roy, Shohamy, & Wager, 2012; Van Overwalle, 

2009; Van Overwalle & Baetens, 2009), should be engaged in decoding intentions. This study is 

the first to test this prediction and will therefore provide novel insights on how brain networks 

involved in processing facial features changing in the context of healthy aging. Because older 

adults showed less distinction between angry direct and averted eye gaze cues, we hypothesized 

attenuated neural differentiation between these conditions in older adults.  

Consistent with socioemotional selectivity theory (SST) (Carstensen, Fung, & Charles, 

2003), we expected older adults might show greater differentiation in processing facial 

expressions of happiness, because of their high motivation to attend to positive stimuli. However, 

the neural differentiation between direct and averted gaze should be smaller for happy than for 

angry expressions in younger adults. We expected to observe increased activity in the reward 

brain network, including regions such as vmPFC (Kringelbach & Rolls, 2004; O'Doherty, 
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Kringelbach, Rolls, Hornak, & Andrews, 2001; Roy et al., 2012), during recognition of happy 

expressions.  

Material & Methods 

Participants 

Twenty-one healthy older adults (aged 65-75 years; M = 69.75, SD = 2.97; 10 females) and 

21 healthy younger adults (aged 17-27 years; M = 20.65, SD = 2.66; 10 females) participated in 

this study. One older and one younger adult were excluded from the analysis due to brain signal 

loss, leaving 20 participants in each group. Younger adults were undergraduate students at the 

University of Queensland who were reimbursed with either course credits or $15 AUD per hour. 

The older adults were community volunteers who were reimbursed with $20 AUD per hour. 

Older adults were recruited through advertising in public notice boards of different clubs, 

libraries, churches, and the University of Queensland’s Aging Mind Initiative. All participants 

were right-handed English speakers who had normal or corrected-to-normal vision using MRI 

compatible glasses and no history of neurological impairment, psychiatric illnesses, head or heart 

surgery, or cardiovascular disease. Participants were screened for MRI compatibility as well as 

claustrophobia, neurological and psychiatric medication including mood disorder and epilepsy 

before taking part in this study. Participants took part in two separate sessions of testing, the first 

involving fMRI scanning and the second involving behavioral/neuropsychological assessment. 

The two sessions were conducted 3 to 4 days apart from each other. All participants were 

provided with written consent forms approved by the Human Research Ethics Committee at the 

University of Queensland and were debriefed upon the completion of the second session.  

Task materials 

Angry, happy, and neutral faces (100 for each expression) were drawn from the FACES 

database (Ebner, Riediger, & Lindenberger, 2010). Neutral faces were used as control to remove 

the effects of the visual perception component. All faces were colored, front-view, and high 

quality (300 Dots per Inch). The presented faces comprised two age groups (young posers: 18-31 

years and old posers: 69-80 years). The gazes of the posers were photoshopped so that an equal 

number of direct and averted gazes were used for the scanner task. All faces were categorized 
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into five lists, using MATLAB (The MathWorks Inc., MA), according to four selection criteria: 

age of the posers, gender of the posers, gaze direction, and emotional expression. The lists 

consisted of equal number of male and female posers (30 each), old and young posers (30 each), 

and emotional expressions (20 for each expression) and were presented in each fMRI run for a 

total of five runs. The order of the runs presented in the scanner was counterbalanced among 

participants. To control for effects of facial attractiveness on recognition of emotional 

expressions, faces in each list were also matched based on their attractiveness ratings from an 

independent study (M = 41.66, SD = 13.08; Ebner and Johnson, 2010). All of the stimuli were 

presented against a gray background using E-prime software, adjusted to be standardized in size 

(600 x 450 pixels) prior to presentation in the MRI scanner. 

Experimental design 

The 50-minute scanner session consisted of two components: structural magnetic resonance 

imaging (sMRI), functional MRI (fMRI). Prior to the scanning, participants were provided with 

verbal and visual instructions about the emotion recognition task and subsequently asked to 

practice it until they were completely familiarized with the instructions and timing of the task. 

The reason for training participants prior to the fMRI task was to ensure that the behavioral 

performance of accurate detecting the faces for both groups was equated, so that any differences 

at the neural level could not simply be attributed to differences in performance. Faces used in the 

practice run were different to those used during the main task in the scanner.  

In the scanner, participants performed two runs of the emotion recognition task (described 

below), followed by an sMRI acquisition, followed by another three runs of the emotion 

recognition task. During the emotion recognition task (Figure 1), each face was presented one at 

a time for 3.5 sec, followed by a fixation cross. Presentation of the fixation cross was jittered 

using three time intervals: 0.5 sec, 1 sec, and 1.5 sec in order to allow for an independent 

estimation of the blood-oxygen-level dependant (BOLD) response on a trial-by-trial basis. 

Furthermore, using jittered inter-trial intervals can enhance statistical power in the analyses 

(Huettel, Song, & McCarthy, 2014). Each of the five task runs, lasted for 4.5 minutes. 

Participants were required to indicate, as fast and as accurately as possible, whether each face 

displayed a happy, angry, or a neutral emotional expression by pressing the relevant button on an 
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MRI-compatible response box – using index finger for either angry or happy, the middle finger 

for neutral, and the ring finger for either happy or angry (counterbalanced across participants).  

[Insert Figure 1 about here] 

Neuropsychological measures 

During the behavioral sessions, all participants were asked to complete a range of 

background measures assessing executive control, intelligence, emotion recognition, social 

functioning, personality, empathy, and theory of mind (TOM) ability. Descriptive and inferential 

statistics of background measures are reported in Table 1. Descriptions of the measures are as 

follow: 

National Adult Reading Test (NART): The NART (Nelson, 1982) is a valid and reliable 

measure of crystalized intelligence that consists of 50 irregular words. Participants were required 

to read each word aloud and their responses were scored by two independent coders. Interrater 

reliability was reported .88 (Crawford, Parker, Stewart, Besson, & Lacey, 1989). 

Trail Making Test: The Trail Making Test consists of two parts, A and B (Reitan & 

Wolfson, 1986). In part A, participants were instructed to connect the circled numbers in 

sequential orders. In part B, they were instructed to alternate between numbers and letters (e.g., 

1-A-2-B). This measure provides an index of executive control. Part A predominantly measures 

visuoperceptual abilities, whereas part B additionally indexes working memory and mental 

flexibility. In order to minimize visuoperceptual demands, we used the B-A index to provide a 

relatively pure indicator of executive control abilities (Sanchez-Cubillo et al., 2009). 

Ekman Emotion Recognition test: The faces used in this experiment were drawn from the 

“Facial Expressions of Emotion: Stimuli and Test” stimulus set (Young, Perrett, Calder, 

Sprengelmeyer, & Ekman, 2002). Sixty black and white images from six basic emotional 

categories: anger, sadness, surprise, happiness, disgust, and fear, were presented for 3.5 secs. 

Participants were asked to choose the best label that describes each face and press the respective 

key on the keyboard. Reaction times and responses were recorded. 

Peer-Report Social Functioning Scale (PRSF): This scale is a peer-report assessment of 

social functioning (Henry, von Hippel, & Baynes, 2009). A 10-item subscale assesses socially 
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inappropriate behavior (α = .87; e.g., “enquires about potentially embarrassing issues in public” 

or “comments negatively on someone else’s physical appearance”). A 17-item subscale assesses 

socially appropriate behavior (α = .92; e.g., “speaks positively about others” or “lets other people 

have their say”). A 3-item subscale assesses prejudicial and stereotyping behavior (α = .75; e.g., 

“ignores stereotypes when making decision about people”). Participants’ peers provided their 

responses on a 4-point scale with labels, never, rarely, occasionally, frequently. Higher scores 

indicate a higher level of socially inappropriate behavior, socially appropriate behavior, or 

prejudicial behavior on the three subscales. Internal consistency reliability was reported high (α 

=  .94) (Henry et al., 2009). 

Big Five Personality Inventory (BFI): A 44-item self-report personality inventory was used 

(John, Donahue, & Kentle, 1991). This test comprises of five subscales measuring five 

personality dimensions, including Extraversion (α = .88; 8 items; e.g., “I am someone who is 

talkative”), Agreeableness (α = .79; 9 items; e.g., “I am someone who is helpful and unselfish 

with others”), Conscientiousness (α = .82; 9 items; e.g., “I am someone who does a thorough 

job”), Neuroticism (α = .84; 8 items; e.g., “I am someone who is depressed, blue”), and 

Openness (α = .81; 10 items; e.g., “I am someone who is original, comes up with new ideas”). 

Participants provided their responses on a scale from 1 (strongly disagree) to 5 (strongly agree) 

for each item to indicate the extent to which they agreed or disagreed with each statement. The 

reliability of this test has been estimated to be .83 (John & Srivastava, 1999).   

Empathy Quotient (EQ): A 40-item adult version of the empathy quotient developed by 

Baron-Cohen and Wheelwright, 2004 was used in this study. Participants responded to this 

questionnaire by choosing one of the 4-scale response options; strongly agree, slightly agree, 

slightly disagree, and strongly disagree. On each item, a person can obtain 2, 1, or 0, so the EQ 

score has a maximum score of 80 and a minimum of zero. High test–retest reliability (α = .83) 

was reported (Lawrence, Shaw, Baker, Baron-Cohen, & David, 2004). 

Reading the Mind in the Eye Test (RMET): This is a measure of theory of mind, which 

broadly refers to the ability to understand the mental states of others (Baron‐Cohen, 

Wheelwright, Hill, Raste, & Plumb, 2001). This test consists of a series of 36 photographs of the 

eye region of a person’s face. Participants are required to choose which word (out of four words) 

best describes what the person in the picture is feeling or thinking. The RMET assesses how well 
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people can decode others’ mental states, and is one of the best-validated measures of theory of 

mind (Henry, Phillips, Ruffman, & Bailey, 2013). 

[Insert Table 1 about here] 

Image acquisition and analysis 

Functional images were acquired using a 3T Siemens scanner equipped with a 32-channel 

head coil. The acquisition of functional data was achieved by using a whole-brain T2*-weighted 

echo-planar image (EPI) sequence (93 interleaved slices, repetition time (TR) = 3000ms, echo 

time (TE) = 45ms, flip angle = 90º, field of view (FOV) = 192mm, voxel size = 2mm3). High 

resolution T1-weighted images were acquired with a MPRAGE sequence (126 slice with 1mm 

thickness, TR = 1900ms, TE = 2.3ms, inversion time (TI) = 900ms, FOV = 230ms, voxel size = 

0.9mm3, flip angle = 90º). The tasks were presented to participants on a computer screen through 

a mirror mounted on top of the head coil. Participants were using earplugs and cushions inside 

the head coil to dampen the noise and minimize the head movement. 

For functional analysis, images were preprocessed with Statistical Parametric Mapping 

Software (SPM8; http://www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB 2010b. Following 

the realignment to a mean image for head-motion correction, the images were segmented to gray 

matter and white matter, and then spatially normalized into a standard stereotaxic space with a 

voxel size of 2mm3 using the Montreal Neurological Institute (MNI) template, and finally 

spatially smoothed with a 6-mm Gaussian Kernel. Data were examined for artifacts, such as 

ghosting in the initial stages, and individual time series were checked for motion artifact. Trials 

with more than 1 mm movement were excluded from analyses. 

The imaging data were analyzed using a multivariate analytical technique Partial Least 

Squares analysis (PLS; McIntosh, Bookstein, Haxby, and Grady, 1996; McIntosh, Chau, and 

Protzner, 2004; for a detailed tutorial and review of PLS, see Krishnan, Williams, McIntosh, and 

Abdi, 2011, as implemented in PLS software running on MATLAB 2010b. PLS decomposes all 

images into a set of patterns that capture the greatest amount of covariance in the data, rather 

than making assumptions about conditions or imposing contrasts for each pattern. PLS analysis 

uses singular value decomposition (SVD) of a single matrix that contains all participants’ data to 

find a set of orthogonal latent variables (LVs), which represent linear combinations of the 
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original variables. Therefore, PLS enables one to differentiate the degree of contribution of 

different brain regions associated with task demands, behavioral or anatomical covariates, or 

functional seed activity.  

The first LV usually accounts for the largest covariance of the data, with progressively 

smaller amount of covariance for subsequent LVs. Each LV delineates cohesive patterns of brain 

activity related to experimental conditions. Additionally, brain scores are calculated as the dot 

product of a participant’s image volume of each LV. The brain score reflects how strongly each 

participant contributes to the pattern expressed in each LV. Therefore, each LV consists of a 

singular image of voxel saliences (i.e., a spatiotemporal pattern of brain activity), a singular 

profile of task saliences (i.e., a set of weights that indicate how brain activity in the singular 

image is related to the experimental conditions, functional seeds, or behavioral/anatomical 

covariates), and a singular value (i.e., the amount of covariance accounted for by the LV). Given 

that the task was event-related, the analysis was conducted on the 15-sec period (5 TRs), starting 

at the onset of each face to account for the duration of the BOLD response. Activity at each time 

point in the analysis was normalized to activity in the first TR. As the activation patterns 

identified by PLS and corresponding brain responses is done in a single mathematical step, there 

is no need for multiple comparison correction (McIntosh et al., 2004). 

The statistical significance of each LV was assessed using a permutation test, which 

determines the probability of a singular value from 500 random reordering and resampling 

(McIntosh et al., 1996). In addition to the permutation test, to determine the reliability of the 

saliences for each brain voxel, a standard error of each voxel’s salience on each LV was 

estimated by 100 bootstrap resampling steps (Efron & Tibshirani, 1985). Peak voxels with a 

bootstrap ratio (BSR; i.e., salience/standard error) > 3.0 were considered to be reliable, as this 

approximates p < 0.01 (Sampson, Streissguth, Barr, & Bookstein, 1989). In the current study, we 

used task PLS and brain-behavior PLS, to examine the whole-brain activity pattern for 

processing each emotional category as a function of eye gaze and to assess the link between 

performance in the emotion recognition task and TOM ability. 

The procedure of the fMRI analysis was twofold. First, our main aim was to examine the 

impact of age on whole-brain activity during the labeling of emotional faces presented with 

different eye-gaze direction. We conducted whole-brain analyses of brain activity during angry 
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and happy conditions, which were compared between the two age groups. Neutral faces were 

included in the experimental design as a control condition to remove the effects of the visual 

perception component (for a review see Sabatinelli et al., 2011. However, the ambiguity of 

neutral faces may lead to uncertainty and heightened vigilance, which in turn may increase 

amygdala activation (Blasi et al., 2009) and may be evaluated as more negative in some 

situations (Lee, Kang, Park, Kim, & An, 2008). Therefore, all analyses were conducted only on 

happy and angry facial expressions in order to avoid activation confounds due to the presence of 

neutral pictures. In order to demonstrate the robustness of brain responses to happy and angry 

expressions, additional analyses including neutral conditions were also conducted. The results 

are reported in the Supplementary Material in Figure 1. Overall, the brain pattern responses to 

happy and angry expressions did not change as a result of including neutral expressions in the 

whole-brain analysis. For the whole-brain analyses, all voxel activities for both age groups were 

included in the analyses for the four experimental conditions; angry direct, angry averted, happy 

direct, and happy averted. However, for simplification and greater visual clarity, conditions are 

illustrated separately in Figures 3&4. 

Second, given that our ability to understand and respond to emotional cues in the 

environment is an integral part of our social cognitive ability, we examined the relationship 

between the recognition of facial cues and TOM performance. To explore any age-related 

differences in integrating facial cues in relation to social cognitive abilities, we conducted a 

brain-behavior analysis, examining the relationship between the neural activation involved in 

gaze and emotion processes and the TOM performance, the scores obtained on the RMET. For 

angry expressions, we included the accuracy of behavioral performance in the scanner task and 

correlated them with TOM scores. Because accuracy for recognition of happy expressions was at 

ceiling for both age groups, TOM scores were correlated with the brain activity in the two happy 

experimental conditions without including the behavioral performance accuracy from the 

emotion recognition task. For the brain-behavior analyses, all voxel activities for both age 

groups, accuracy from the emotion recognition task, and behavioral scores from the TOM task 

were included in the analyses for the two angry conditions (see Figure 5). For simplification 

however, we depicted the age groups in separate figures (see Figure 6). For happy expressions, 

all voxel activities for both age groups as well as scores from the TOM task were included in the 

analyses. These results are illustrated in Figure 6.  
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Reaction times and accuracies during the emotion recognition task were subjected to mixed-

model analyses of variance (ANOVAs) with age group as the between-subjects factor and 

emotional expression and eye-gaze orientation as the within-subjects factors. 

Results 

The descriptive and inferential statistics of all background measures were reported in Table 1. 

Older adults scored above the recommended cut-off of 27 on a widely-used dementia screen (M 

= 28.38, SD = 1.28), the Mini Mental State Examination (Folstein, Folstein, & McHugh, 1975). 

Significant difference between both age groups in the TOM scores measured by RMET was also 

found as reported in Table 1.  

Emotion identification performance 

A 2 (gaze direction: direct, averted) by 2 (emotional expression: angry, happy) by 2 (age 

group: young, older) repeated-measures ANOVA with response accuracy as the dependent 

measure showed that there was a significant main effect of emotional expression, F(1, 38) = 

34.85, p < .01, ηp
2 = .47. This reflected greater accuracy in recognizing happy relative to angry 

facial expressions in both age groups (Figure 2 & Table 1). No other main effects or interactions 

were significant (all Fs <1).  

A similar analysis on response times of accurate responses revealed a main effect of 

emotional expressions, F(1,37) = 87.68, p < .01, ηp
2 = .70, with faster responses for happy 

relative to angry facial expressions (Figure 2 and Table 1). None of the other main or interaction 

effects were significant (all Fs <1).  

[Insert Figure 2 about here] 

Whole-brain analyses 

The whole-brain responses for angry and happy expressions for both age groups are reported 

in this section. First, the findings for angry expressions and then happy expressions findings for 

both age groups will be presented.   

Angry expressions. The results from the whole-brain analyses showed two significant and 

distinct LVs for recognition of angry expressions as a function of eye gaze among younger but 
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not older adults. The first LV accounted for 33% of the covariance in the data and included brain 

regions such as inferior frontal gyrus (IFG), anterior cingulate cortex (ACC), inferior parietal 

lobule (IPL), posterior cingulate cortex (PCC), and amygdala. This pattern of brain activation in 

young adults was found only for angry expressions with averted gaze. In contrast, older adults 

recruited these regions during recognition of angry expressions with both direct and averted gaze 

(Figure 3, Panel A & Table 2). LV2, which accounted for 25% of the covariance in the data, 

yielded a pattern that was related to the recognition of angry expressions with direct gaze only 

among younger adults. This pattern included insula and medial prefrontal gyrus, the main nodes 

of the salience network (Menon, 2015). In older adults, there was no reliable recruitment of these 

regions in any of the conditions (Figure 3, Panel B & Table 2). These results indicate that social 

cognitive brain regions, such as mPFC, IPL, STS, amygdala (Frith & Frith, 2006; Van 

Overwalle, 2009), were engaged among younger adults during recognition of expressions in 

which the understanding of the intention of expresser was required, that is angry expressions 

with averted gaze. The salience network, including insula, medial prefrontal gyrus, in contrast, 

was activated in young participants when recognizing angry expressions with possible 

threatening signals to the self, i.e. direct gaze. These data further demonstrate that at the neural 

level, younger, but not older adults, are differentiating between angry facial expressions with 

direct versus averted gaze. 

[Insert Figure 3 & Table 2 about here] 

Happy expressions. During the recognition of happy expressions, results from the whole-

brain analyses revealed two LVs. The first LV included brain regions such as ACC, PCC, 

precuneus, angular gyrus, middle temporal gyrus (MTG), and hippocampus – known as major 

nodes of the default mode network (DMN; Buckner, Andrews-Hanna, and Schacter, 2008; 

Raichle et al., 2001). These brain regions were engaged by older adults for happy facial 

expressions with direct gaze. In contrast, younger adults recruited these regions for happy 

expressions with both direct and averted gaze (Figure 4, Panel A & Table 3). LV2 yielded a 

network of brain regions including medial and middle PFC, ACC, MTG, superior temporal gyrus 

(STG), PCC, and precuneus. These regions were engaged by older adults for happy expression 

with averted gaze and by younger adults for both direct and averted gaze (Figure 4, Panel B & 

Table 3). Overall, the whole-brain analyses for happy expressions indicate that older, but not 
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younger adults, recruit two orthogonal networks during recognition of happy expressions as a 

function of eye gaze while younger adults showed no sensitivity in their neural activity patterns 

to the eye-gaze orientations in happy faces.  

To summarize the results so far: younger adults showed the predicted differential brain activation 

to angry faces with direct and averted gaze, while older adults showed no such differentiation. In 

contrast, older adults were sensitive to gaze direction when processing happy faces, while 

younger adults were not.  

 [Insert Figure 4 & Table 3 about here] 

Brain-behavior analyses 

Lack of sensitivity to eye-gaze cues during recognition of angry expressions might have 

consequences for social cognitive abilities. Thus, if the capacity to integrate facial cues declines 

in late adulthood, such age-related changes might be related to the differential engagement of 

mentalizing or social cognitive brain regions. Brain-behavior analyses were conducted to assess 

the correlation between brain activity during the angry and happy recognition conditions with 

TOM scores obtained on the RMET (administered outside the scanner).  

Angry expressions. Accuracy scores from the angry conditions in the emotion recognition 

task were included in the brain-behavior analysis with the scores from the TOM task for both age 

groups in one single analysis. Brain-behavior analyses focused on angry expressions revealed 

one significant LV, which accounted for 36% of the covariance in the data and yielded two 

patterns of brain activity. The first of these patterns included superior, middle, and inferior PFC 

regions as well as insula. This network subserved recognition of angry expressions with averted 

gaze among younger adults and correlated positively with TOM scores and accuracy during the 

recognition of angry averted gazes. That is, those younger adults who performed better on the 

TOM task and the recognition of angry averted gazes engaged the frontal brain regions to a 

larger extent than those young adults with poorer performance (Figure 5, Panel A & Table 4). 

The second brain pattern mainly included posterior brain regions such as PCC, precuneus, 

cuneus, middle occipital gyrus, inferior temporal gyrus, MTG as well as mPFC and caudate. This 

network subserved the recognition of angry expressions with direct gaze among younger adults 

and was correlated positively with TOM scores and accuracy during recognition of angry faces 
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with direct gaze. In other words, younger adults who obtained higher scores on the TOM task 

and were better at recognizing angry faces with direct gaze recruited a set of posterior brain 

regions when processing angry direct gaze faces than those younger adults with poorer 

performance (Figure 5, Panel A & Table 4).  

In older adults group, brain-behavior analyses revealed two important findings. First, activity 

of the posterior brain regions (i.e., PCC, precuneus, cuneus, middle occipital gyrus, inferior 

temporal gyrus, MTG as well as medial PFC and caudate) was correlated with TOM scores 

during recognition of angry expressions, irrespective of eye-gaze directions. Moreover, these 

regions were only correlated with TOM scores, and not with accuracy of recognizing angry 

faces. In other words, there were no reliable associations between TOM scores and task 

performance in the scanner among older adults. Older adults who obtained higher scores on the 

TOM task engaged only the posterior areas while recognizing angry expressions with both direct 

and averted eye-gaze orientation. However, activity in these regions was not related to older 

adults’ behavioral performance in the recognition of angry expressions in the scanner (Figure 5, 

Panel B & Table 4).  

[Insert Figure 5 & Table 4 about here] 

Happy expressions. For the happy conditions, accuracy scores were at ceiling, thus, only the 

correlations between TOM scores and brain activation during the recognition of happy 

expressions were considered for both age groups. The corresponding analyses for happy 

expressions revealed one significant LV. This LV accounted for 32% of the covariance in the 

data and yielded a set of regions that were activated during the recognition of happy averted gaze 

among older adults and positively correlated with TOM scores. This network included superior, 

middle, and inferior PFC, ACC, STG, IPL, and precuneus regions. Older adults who obtained 

higher scores on the TOM task recruited these brain areas when they were recognizing happy 

expressions displayed with averted gaze more than with direct gaze, and more than younger 

adults (Figure 6 & Table 5).  

[Insert Figure 6 & Table 5 about here] 
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Discussion 

The present results provide novel insights into the neural substrates underlying age-related 

differences in integrating facial affect and eye gaze cues. First, the whole-brain results showed 

that, in contrast to younger adults, older adults’ brain activity was not modulated by eye-gaze 

direction during the recognition of angry expressions. Second, the brain-behavior results showed 

that the ability to integrate angry expression and gaze cues was related to TOM ability; for 

younger, but not older adults. TOM ability was differentially correlated with two distinct 

networks of brain regions activated as a function of eye-gaze direction in the presence of an 

angry expression. The brain-behavior correlations indicated that older adults’ lack of neural 

sensitivity to eye gaze with angry expressions was related to decreased recruitment of the main 

nodes of the mentalizing network, such as mPFC, STS, and amygdala (Frith & Frith, 2006; 

Molenberghs et al., 2016; Van Overwalle, 2009) in situations in which interpreting the intentions 

of the expresser is important; angry expressions with averted gaze. 

In keeping with previous research indicating that older adults are more motivated to process 

positive facial expressions, older, but not younger, adults’ brain activity was modulated by eye-

gaze direction during the recognition of happy expressions by recruiting the major nodes of the 

default mode network, such as vmPFC, PCC, and precuneus (Buckner et al., 2008; Raichle et al., 

2001). For happy expressions, older adults recruited the mentalizing brain regions for averted 

gaze conditions more than in the direct gaze condition, as well as relative to their younger 

counterparts. This finding is in line with the results from the whole-brain analyses, and might 

reflect well-documented motivational changes away from negative and towards positive 

information shown to occur with age (Carstensen, 2006). 

Eye- gaze modulation to angry expression 

Younger adults recruited areas of a more localized brain network including insula and 

anterior cingulate regions – major nodes of a salience network – during recognition of angry 

expression with direct relative to averted gaze. The engagement of the salience network is in line 

with the notion that angry expressions with direct gaze are considered to be more self-relevant 

(N'Diaye, Sander, & Vuilleumier, 2009; Sander, Grandjean, Kaiser, Wehrle, & Scherer, 2007; 

Sander, Grandjean, & Scherer, 2005) and important for survival. Therefore, a less distributed 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  AGING AND GAZE PROCESSING 

 18

neural activation and fewer executive control regions should be required to recognize angry 

expressions with direct gaze. On the other hand, younger adults recruited a more distributed 

network of regions, including more fronto-parietal regions during averted gaze. Because angry 

expressions with averted gaze convey ambiguous signals to the observer (Adams, Gordon, Baird, 

Ambady, & Kleck, 2003; Adams & Kleck, 2005), it was anticipated that angry expressions with 

averted gaze would impose greater demands on cognitive operations such as executive control 

and core social cognitive brain regions to understand the mental states of the expresser. The 

whole-brain results therefore aligned with our predictions that two different networks of brain 

regions should be involved among young adults for processing angry expressions, one involved 

in encoding threatening signals with direct gaze and one engaged social cognitive processes 

when the expressions were presented with averted gaze. It has to be noted that the two LVs yield 

two brain patterns that are orthogonal to each other, suggesting that the two brain patterns 

revealed for the angry direct and averted conditions are meaningfully different from each other. 

Older adults, on the other hand, recruited a distributed and large-scale pattern of brain 

activity, during the recognition of angry expressions irrespective of the eye gaze. This finding 

provides support for the age-related neural dedifferentiation hypothesis, whereby older adults 

show reduced distinctiveness of neural representation in domain-specific areas (Li, 

Lindenberger, & Sikström, 2001). Dedifferentiation has been evidenced in a variety of cognitive 

tasks in late adulthood, including memory processing (Carp, Gmeindl, & Reuter-Lorenz, 2010; 

Carp, Park, Polk, & Park, 2011; St-Laurent, Abdi, Burianová, & Grady, 2011), visual perception 

(Park et al., 2004), as well as cognitive load-dependent processes (Burianová et al., 2015; Grady, 

2008). The pattern of dedifferentiation among older adults in the present study suggests that they 

might exert greater executive control than needed when processing angry expressions 

(Dirnberger, Lang, & Lindinger, 2010). The lack of specificity in recruiting brain networks for 

angry expressions with different eye gaze among older cohorts is also consistent with behavioral 

findings showing less distinction between interpreting angry expressions with direct and averted 

gaze (Slessor et al., 2010). This finding may reflect a neural inefficiency in older adults 

processing threatening stimuli. This pattern of response may be related to the greater cognitive 

control resources older adults recruit while processing angry expressions or the regulatory effort 

they employ during processing of these emotions (Ebner et al., 2012).  
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In the current study we found no age difference in behavioral performance on the emotion 

recognition task. However, given that the task is not demanding in general and all our older 

adults’ participants were high functioning as indicated by their performance on the background 

cognitive assessments, behavioral differences were not anticipated. It is also important to note 

that all participants were trained and practiced the task prior to the fMRI session. The reason for 

training participants prior to the fMRI task was in fact to try and ensure that the performance of 

the groups for accurate detecting the faces was equated, so that any differences at the neural level 

could not simply be attributed to differences in performance. Therefore, the relatively low 

demands of the task, the high functioning nature of the older adult cohort, as well as the training 

procedure used likely all contributed to the two groups’ similar behavioral performance.  

Angry expressions and TOM  

Younger adults who were better at recognizing angry faces with averted gaze and who also 

obtained higher scores on the measure of TOM obtained from RMET, showed greater 

recruitment of the anterior PFC regions, such as medial PFC and IFG. In revealing a correlation 

between activity in mPFC, TOM scores, and accuracy in emotion recognition in the present data 

suggests that the recognition of angry expressions with averted gaze (relative to direct gaze) may 

impose greater social cognitive demands relying on mPFC and IFG as key regions of the 

mentalizing network (Schurz, Radua, Aichhorn, Richlan, & Perner, 2014). Task-related 

activation differences also emerged, whereby angry expressions with averted gaze engaged 

anterior brain regions and angry expression with direct gaze engaged more posterior regions, 

supporting functional specialization of the mentalizing network (Schurz et al., 2014).  

In contrast to their younger counterparts, older adults showed no reliable association between 

task performance and TOM scores. In addition, older adults’ TOM capacity was only correlated 

with activity in the posterior parts of the mentalizing network, such as the parietal region, when 

they were making explicit judgments about emotional expression of angry faces in the scanner 

task. The absence of any association between anterior PFC and TOM scores in older adults is 

consistent with the results of Moran et al. (2012), who also found age-related decline in 

recruitment of dorsal mPFC during various social cognitive tasks. The age-related decline in 

integrating facial cues during recognition of angry expressions could potentially be associated 

with older adults’ difficulties in reorienting social attention or higher-order mentalizing 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  AGING AND GAZE PROCESSING 

 20

processes during averted gaze in angry faces, as this was the condition that imposed greatest 

demands on social cognitive ability. It is possible that the extent of age-related differences in 

neural regions is predictive of behavioral age differences in processing and implicitly responding 

to basic facial cues as well as social cognitive tasks.  

Eye-gaze modulation to happy expression 

For happy expressions, whole-brain analyses revealed that older adults recruited two 

networks of brain regions as a function of direct vs. averted gaze. This gaze-dependent 

differentiation was unique to older adults, as no neural modulation was found for younger adults 

in response to eye-gaze direction. Older adults’ greater sensitivity to eye gaze when processing 

happy expressions coupled with older adult’s insensitivity to eye-gaze cues when processing 

angry expressions, align with findings on the positivity effect in aging (Reed & Carstensen, 

2012; Reed, Chan, & Mikels, 2014), showing age-related biases in attention, memory, and 

decision-making towards positive emotional information (Brassen, Gamer, & Buchel, 2011; 

Mather & Carstensen, 2003, 2005; Ziaei, von Hippel, Henry, & Becker, 2015). Specifically, the 

current data showing greater sensitivity to happy expressions with different eye gaze cues may 

most parsimoniously be explained in terms of the well-documented motivational shifts seen in 

late compared to young adulthood. One of the ways in which this motivational shift is argued to 

manifest is via an age-related positivity effect, whereby older adults exhibit greater attention 

towards and memory for positive relative to negatively valenced information (Reed et al., 2014). 

The current study indicates that older adults’ attentional bias may also be reflected at the neural 

level, via the recruitment of differential neural substrates toward positive expressions with 

different social communicative cues. As noted, this neural sensitivity was not evident for 

negative facial expressions. It has to be noted that depending on this region’s functional network, 

mPFC could be involved in mentalizing, self-referential, pain, reward, or social cognitive 

processing (Roy et al., 2012). Although much remained to be addressed about the role of the 

vmPFC in each of these domains, the functional network connected to this region seems to be 

essential in understanding the processes that this region subserves for any particular task.   

In line with the dedifferentiation hypothesis, in the present study older adults’ brain activity 

was indistinguishable for direct and averted eye gaze. That is, older adults recruited the same, 

single network for both angry direct and averted gaze conditions. However, recognition of happy 
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expressions is presumably easier for older adults and/or they are more motivated to process these 

expressions in general (consistent with Socioemotional Selectivity Theory). Therefore, as a result 

of greater availability of cognitive resources while processing happy expressions, older adults are 

able to differentiate between direct and averted gaze for happy expressions. Taken together, the 

dedifferentiation explanation for angry expressions is not in contradiction with the findings for 

happy expressions, as angry and happy conditions may differ in their relative cognitive demands. 

Happy expressions and TOM  

Additionally, the brain regions involved during recognition of happy expressions and 

correlated with TOM scores support the motivational shift toward positive information. Brain 

areas mainly included the parietal lobes, mPFC, and PCC, superior temporal gyrus - the main 

nodes of default mode network (Buckner et al., 2008; Raichle et al., 2001). Previous studies 

found increased activity of ventromedial prefrontal cortex during happy relative to angry 

expressions (Ebner et al., 2012). There is an overlap between the coordinates they reported with 

the mPFC region found in this study. Activity of this region is thought to reflect affective 

responses to cues which may be associated with reward (Roy et al., 2012) and lower cognitive 

demand. In other words, happy expressions seem to be more easily accessible and require lower 

cognitive demand, which consequently engage DMN more than angry expressions. Furthermore, 

engagement of DMN during recognition of happy expressions is consistent with TOM studies 

that reveal activity of DMN components. One of the subregions of this network, the mPFC, is 

activated when “thinking about the complex interactions among people that are conceived of as 

being social, interactive, and emotive like oneself” (Buckner et al., 2008, p. 24). The correlations 

identified between DMN activity and TOM scores during recognition of happy expressions, 

therefore suggest that older adults may be motivated to engage in social cognitive processing 

when the facial cues are of particular interest to them (i.e., depict positive affective states), and 

consequently they will notice the facial cues expressed with happy facial expressions more than 

angry expressions.  

One potential mechanism that may contribute to the observed age differences are the well-

documented changes in neural structural integrity seen in late adulthood (For reviews see Grady, 

2012; Li et al., 2001). Several studies have now shown important links between gray and white 

matter structural integrity and functional brain activity (Burianová et al., 2015; de Chastelaine, 
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Wang, Minton, Muftuler, & Rugg, 2011; Legon et al., 2015; Persson et al., 2006; Zhu, Johnson, 

Kim, & Gold, 2015). Therefore, it is possible that structural changes underlie the age-related 

differences processing emotional expressions identified in the present study. Future studies are 

needed to test this possibility, and investigate how age-related structural changes in main nodes 

of emotional processing, such as the amygdala, and white matter tracks between the amygdala 

and PFC, such as uncinate fasciculus, are related to brain activity when processing emotional 

expressions. 

Finally, two methodological limitations of this study need to be acknowledged. First, most of 

the neuroimaging literature focused on emotion processing used three emotions, angry, happy, 

and neutral expressions which limit inferences about potential age-related change for other 

emotions. Future neuroimaging studies should also include other emotional expressions such as 

fear and disgust to advance insight into the nature and magnitude of age-related change in the 

neural networks that subserve these critical social cognitive operations. Second, the perceptual 

properties of the happy faces, and in particular the fact that teeth were visible, could have 

influenced the findings of this study. This is because visible teeth have been shown to create an 

advantage in detecting happy faces in visual search paradigms (Horstmann & Ansorge, 2009), 

and may therefore have facilitated faster response times for happy expressions in both age 

groups. Thus, while an important consideration in this study was to use stimuli that represent 

natural emotional expressions as closely as possible, further investigation is now needed to 

examine the contribution of specific perceptual features, e.g., teeth, in integrating facial cues 

among both age groups. 

Nevertheless, these caveats aside, the present study is the first to provide evidence that the 

brain networks that subserve the recognition of angry expressions are modulated by eye-gaze 

direction for younger but not older adults. For happy expressions, the reverse pattern of neural 

specificity emerged, with older (but not younger) adults showing neural sensitivity to eye gaze 

direction. These results are consistent with the broader gerontological literature that shows there 

are motivational shift toward positive emotional information in late adulthood. Moreover, the 

pattern of brain-behavior correlations showed that two networks of brain regions were 

differentially correlated with TOM abilities and the ability to recognize angry expressions as a 

function of eye gaze, but only among younger adults. Taken together, these findings provide 
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novel insights into the underlying brain networks involved in processing socially communicative 

signals. Given that a core feature of many psychiatric, neurological, and neurodegenerative 

illnesses is impaired social cognitive abilities (Henry et al., 2016; Poletti, Enrici, & Adenzato, 

2012; Sprong, Schothorst, Vos, Hox, & Van Engeland, 2007; Stewart, Catroppa, & Lah, 2016; 

Yu & Wu, 2013), in the long term, this information has the potential to be used as biomarkers for 

early diagnosis of many clinical disorders.  
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Legends 

Figure 1. Example of Experimental Design. Each trial consisted of a presentation of a face 

with happy, angry, or neutral expressions for 3.5 second. Equal numbers of male and female 

faces with direct and averted gaze were presented. Fixation crosses were jittered using 0.5 

second, 1 second, and 1.5 second time intervals. In total, the task consisted of 5 runs, 4.5 minutes 

each. During the task, participants were required to indicate the emotional expressions of each 

face by using a MRI compatible response buttons. Abbreviation: ITI = Inter-Trial Interval.  

Figure 2. Behavioral Results from Emotion Recognition Task. Recognition of happy 

expressions was faster and more accurate relative to angry expressions for both age groups. 

However, there were no significant differences between avert or direct gaze in accuracy rates and 

RTs in either of the age groups.  

Figure 3. Whole-Brain Results for Angry Expressions. Patterns of whole-brain activity 

during the recognition of angry expressions with averted gaze among younger adults (YA) and 

both eye-gaze directions among older adults (OA) (A), angry expressions with direct gaze among 

YA, without any reliable effects among OA (B), relative to other conditions (derived from LV1 

& 2). Error bars denote 95% confidence intervals for the correlations calculated from the 

bootstrap procedure. All reported regions have BSR ≥ 3 and cluster size ≥ 100 voxels. All of the 

analyses were conducted by including both age groups. In order to simplify the visuals of the 

findings in the figures, the results are presented separately for each age group and condition. 

Abbreviations: L = left hemisphere, R = right hemisphere, OA = older adults, YA = younger 

adults, LV = latent variable.  

Figure 4. Whole-Brain Results for Happy Expressions. Pattern of whole-brain activity 

during the recognition of happy expressions with averted gaze among OA and both eye-gaze 

directions among YA (A), and happy expressions with direct gaze among OA and both eye-gaze 

directions among YA (B), relative to the other conditions (derived from LV1 & 2). Error bars 

denote 95% confidence intervals for the correlations calculated from the bootstrap procedure. All 

reported regions have BSR ≥ 3 and cluster size ≥ 100 voxels. All of the analyses were conducted 

by including both age groups. In order to simplify the visuals of the findings in the figures, the 
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results are presented separately for each age group and condition. Abbreviations: L = left 

hemisphere, R = right hemisphere, OA = older adults, YA = younger adults.  

Figure 5. Brain-behavior Results for Angry Expressions and Theory of Mind Measure. 

(A) Left panel: a pattern of whole-brain activity during recognition of angry expressions with 

averted gaze (top row) and direct gaze (bottom row) that correlated with scores on theory of 

mind (TOM) as measured by the Reading the Mind in the Eye Test (RMET) among younger 

adults. Right panel: correlations between TOM scores and performance on the scanner task 

during recognition of angry expressions. (B) Left panel: a pattern of whole-brain activity during 

recognition of angry expressions that correlated with TOM scores among older adults during 

angry expressions with averted gaze (top row) and direct gaze (bottom row). Right panel: 

correlations between TOM scores and performance on the scanner task during recognition of 

angry expressions. The brain activity presented depicted in the Direct gaze condition for younger 

adults and Direct and averted gaze for older adults are identical. Error bars denote 95% 

confidence intervals for the correlations calculated from the bootstrap procedure. All reported 

regions have BSR ≥ 3 and cluster size ≥ 100 voxels. All of the analyses were conducted by 

including both age groups. In order to simplify the visuals of the findings in the figures, the 

results are presented separately for each age group and condition. Abbreviations: L = left 

hemisphere, R = right hemisphere. 

Figure 6. Brain-behavior Results for Happy Expressions and Theory of Mind Measure. 

Left panel: a pattern of whole-brain activity during recognition of happy expressions with 

averted gaze that positively correlated with the theory of mind (TOM) scores measured by 

Reading the Mind in the Eye Test (RMET) among older adults. This analysis was conducted by 

including both age groups. Right panel: correlations between TOM scores and performance on 

the scanner task during recognition of happy expressions. All reported regions have BSR ≥ 3 and 

cluster size ≥ 100 voxels. Abbreviations: L = left hemisphere, R = right hemisphere. 
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Tables 

Table 1. Descriptive and inferential statistics for the background cognitive measures 

Measure 

Younger adults Older adults Inferential statistics  
       

M SD M SD t df 
Effect size 

(Cohen’s d) 

Age 20.65 2.66 69.75 2.97    

Education (years) 14.26 1.48 15.29 3.00 1.34 38 .43 

NART FSIQ 113.84 3.76 118.33 2.93 4.23**  38 1.37 

Trail Making Test        

Trail A in ms. 1789.17 667.67 2780.0 635.94 4.74**  37 1.55 

Trail B in ms. 3758.26 1971.73 5830.19 2103.62 3.20**  38 1.03 

B-A Index 2031.00 2126.95 3050.19 1763.61 1.63 37 .53 

RMET 27.47 1.94 23.65 5.54 2.69*  35 .90 

Ekman emotion 

recognition  
      

 

Sadness 7.78 1.81 7.71 1.48 0.14 38 .04 

Disgust 7.68 1.56 7.85 1.79 0.32 38 .10 

Happiness 9.60 0.58 9.85 0.35 1.14 38 .36 

Surprise 9.15 1.06 8.66 1.71 1.07 38 .34 

Fear 7.21 2.55 7.57 2.11 0.48 38 .15 

Anger 7.36 1.64 8.00 1.54 1.25 38 .40 

PRSF        

Social Inappropriateness 19.73 4.90 17.28 5.44 1.49 38 .48 

Social Appropriateness 58.10 6.90 61.57 5.38 1.78 38 .57 

Prejudice 6.84 1.06 6.71 0.90 0.41 38 .13 

Empathy Quotient 42.16 10.35 46.57 14.04 1.12 38 .36 

Big Five Inventory        

Extraversion 27.89 6.05 25.61 6.25 1.16 38 .37 

Agreeableness 31.31 3.41 33.33 2.72 2.07*  38 .67 
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Conscientiousness 30.78 5.66 36.80 5.17 3.51**  38 1.13 

Neuroticism 21.10 6.17 19.05 6.26 1.03 37 .33 

Openness 33.36 6.29 36.76 6.43 1.68 38 .54 

Note. * p < .05, ** p < .005. NART FSIQ = National Adult Reading Test Full-Scale Intelligence 

Quotient, RMET = Reading the Mind in the Eye Test, PRSF = Peer-Report Social Functioning 

Scale, ms. = millisecond.   
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Table 2. Peak coordinates for clusters from whole-brain analyses for angry facial expressions  

Regions Hem BA 
MNI coordinates 

BSR 
XYZ 

Angry averted gaze – Younger adults 

Angry direct and averted gaze – Older adults 

Middle frontal gyrus R 9 [51 26 27] 7.77 

 L 9 [-58 8 26] 5.10 

Inferior frontal gyrus R 45/47 [46 22 -1] 6.77 

 L 45/47 [-44 20 -6] 5.13 

 L 46/10 [-43 45 10] 5.17 

Anterior cingulate cortex R 32 [0 24 41] 6.86 

Insula L 13 [-31 17 10] 5.42 

 R 13 [46 21 -1] 6.63 

Postcentral gyrus L 3 [-36 -24 55] 5.81 

 R 2 [54 -14 29] 4.60 

Inferior parietal lobule L 40 [-45 -26 41] 6.03 

 R 40 [47 -27 41] 4.06 

Posterior cingulate cortex R 31 [32 -68 30] 4.28 

Precuneus R 7 [36 -52 48] 5.55 

 L 7 [-26 -54 50] 2.97 

Fusiform gyrus R 37 [48 -64 -9] 6.83 

 L 37 [-39 -67 -9] 4.40 

Cerebellum L  [-9 -76 -22] 6.60 

 R  [9 -74 -22] 5.03 
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Middle occipital gyrus R 18 [32 -82 3] 7.80 

 L 18 [-34 -88 3] 7.44 

Occipital gyrus R 19 [32 -77 -9] 5.72 

 L 19 [-34 -75 -9] 5.73 

Thalamus R  [14 -12 9] 5.07 

 L  [-9 -20 9] 3.80 

Amygdala R  [23 -7 -13] 4.97 

Angry direct gaze – Younger adults 

Insula R 13 [42 22 4] 4.51 

 L 13 [-34 22 4] 4.83 

Medial prefrontal gyrus R 6 [6 20 46] 5.82 

Precentral gyrus R 9 [43 12 30] 3.94 

Hem = hemisphere, BA = Brodmann Area, BR = Bootstrap Ratio, x coordinate = right/ left; y 

coordinate = anterior/posterior; z coordinate = superior/inferior.  
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Table 3. Peak coordinates for clusters from whole-brain analyses for happy expressions  

Regions Hem BA 
MNI coordinates 

BSR 
XYZ 

Happy direct gaze – Older adults 

Happy direct & averted gaze – Younger adults 

Anterior cingulate cortex L 24 [-7 36 -8] 4.83 

 L 10 [-3 63 8] 3.91 

Supramarginal gyrus L 40 [-58 -50 38] 3.83 

Angular gyrus L 39 [-44 -73 38] 3.64 

Middle temporal gyrus L 21 [-54 -8 -19] 3.63 

Posterior cingulate cortex L 31 [-2 -32 44] 4.45 

 L 30 [-12 -56 20] 4.23 

Precuneus R 7 [32 -66 39] 3.89 

 L 23 [-4 -58 16] 4.38 

Middle occipital gyrus R 19 [36 -87 12] 4.48 

Hippocampus R  [35 -35 -9] 3.79 

Happy averted gaze – Older adults 

Happy direct & averted gaze – Younger adults 

Medial prefrontal cortex R 9 [4 60 13] 4.42 

Anterior cingulate cortex R 24 [2 28 -14] 4.69 

 R 32 [0 46 -5] 5.91 

Middle frontal gyrus L 8 [-25 35 43] 3.81 

 R 8 [27 30 43] 4.11 

Middle temporal gyrus R 39 [50 -66 26] 3.88 
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Superior temporal gyrus L 22/42 [-64 -31 6] 5.07 

 L 39 [-47 -54 26] 4.39 

Posterior cingulate cortex L 31 [-2 -45 43] 3.84 

Precuneus L 31/23 [-2 -64 25] 5.42 

Cerebellum  L  [-11 -57 -5] 4.61 

Hem = hemisphere, BA = Brodmann Area, BR = Bootstrap Ratio, x coordinate = right/ left; y 

coordinate = anterior/posterior; z coordinate = superior/inferior.  
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Table 4. Peak coordinates for clusters from brain-behavior analyses for angry expressions and 

Reading the Mind in the Eye Test (RMET) performance  

 Regions Hem BA 
MNI coordinates 

BSR 
XYZ 

Angry averted – Younger adults 

Superior frontal gyrus  R 8 [0 42 41] 3.92 

 L 6 [-3 14 59] 4.41 

Middle frontal gyrus L 8/9 [-44 14 43] 5.39 

Inferior frontal gyrus L 45 [-51 27 6] 4.50 

Middle frontal gyrus L 10/46 [-40 44 4] 4.15 

Insula L 13 [-32 22 4] 4.77 

Angry direct – Younger adults 

Angry direct and averted – Older adults 

Medial prefrontal gyrus  6 [3 7 61] 4.70 

Inferior temporal gyrus R 37 [50 -54 -4] 4.51 

 R 19 [29 -56 -4] 5.23 

Middle temporal gyrus L 39 [-41 -79 20] 4.61 

 L 22 [-49 -49 0] 5.49 

Middle occipital gyrus L 19 [-34 087 12] 5.77 

Posterior cingulate cortex L 30 [-18 -62 15] 3.87 

 R 31 [0 -50 33] 5.05 

Precuneus  R 7 [26 -63 33] 4.66 

 L 31/7 [-12 -64 33] 3.50 

Cuneus R 7 [23 -71 38] 3.75 
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 L 7 [-24 -81 38] 4.34 

Thalamus R  [0 -27 15] 3.23 

Caudate R  [25 -33 15] 3.75 

 L  [-26 -35 20] 4.38 

Hem = hemisphere, BA = Brodmann Area, BR = Bootstrap Ratio, x coordinate = right/ left; y 

coordinate = anterior/posterior; z coordinate = superior/inferior.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  AGING AND GAZE PROCESSING 

 45

Table 5. Peak coordinates for clusters from brain-behavior analyses for happy expressions and 

Reading the Mind in the Eye Test (RMET) performance 

Regions Hem BA 
MNI coordinates 

BSR 
XYZ 

Happy averted gaze – Older adults 

Superior frontal gyrus R 10  [28 60 5] 5.11 

 L 10 [-21 54 18] 7.10 

Anterior cingulate cortex L 32 [-4 41 9] 4.42 

Middle frontal gyrus R 6/8 [44 15 41] 5.32 

Insula L 13 [-56 -36 24] 4.06 

Inferior frontal gyrus L 9 [-57 12 24] 5.11 

 L 45/47 [-36 27 -4] 6.55 

Postcentral gyrus L 3 [-44 -17 44] 4.74 

Precentral gyrus L 4/6 [-47 -4 49] 5.10 

Cingulate gyrus L 23 [-4 -11 33] 4.07 

Superior temporal gyrus R 39 [44 -48 27] 6.63 

 L 39 [-42 -56 25] 4.63 

Inferior parietal lobule  L 40 [-54 -23 31] 5.14 

 R 40 [52 -48 35] 7.01 

Angular gyrus L 39 [-44 -66 33] 5.11 

Precuneus R 31 [22 -64 27] 4.62 

 L 31 [-4 -60 25] 4.44 

Cuneus R 18 [0 -87 25] 4.24 

Cerebellum L  [-4 -62 -4] 4.84 
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Hem = hemisphere, BA = Brodmann Area, BR = Bootstrap Ratio, x coordinate = right/ left; y 

coordinate = anterior/posterior; z coordinate = superior/inferior. 
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Supplementary Material 

Additional Whole-brain Analyses 

Additional analyses were conducted including all three emotions at the whole-brain level. 

One significant LV was found. LV1 accounted for 40% variance of the data. For older adults, 

LV1 reflected a brain pattern that included inferior frontal gyrus (IFG), anterior cingulate cortex 

(ACC), inferior parietal lobule (IPL), posterior cingulate cortex (PCC), and amygdala during 

recognition of neutral expressions with averted eye gaze (Supplementary Figure 1- panel B). 

Younger adults, however, recruited different brain regions, including insula and medial 

prefrontal gyrus, the main nodes of the salience network, for neutral expression with direct eye-

gaze direction (Supplementary Figure 1 – panel A).  

These findings are in line with previous studies suggesting that neutral emotions may be 

perceived as uncertain and in turn may activate the amygdala (Blasi et al., 2009) and may be 

evaluated as more negative (Lee et al., 2008). Future studies are now needed to clarify the factors 

contributing to age-related differences in perception of neutral emotions. The age of the posers 

used in the task provide one potential reason why brain regions known to be involved in 

processing angry emotions were also activated when processing neutral expression. Specifically, 

older posers’ facial features, such as wrinkles, may have influenced the perception of the faces 

whereby neutral faces are more likely to be perceived as angry when expressed by older relative 

to younger posers. 

 

Supplementary Figure 1. Whole-Brain Results for Neutral Expressions. Pattern of whole-brain activity during the 

recognition of neutral expressions with direct gaze among YA (A), and neutral expressions with direct among YA and averted 
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gaze among both OA (B), relative to the other conditions. Error bars denote 95% confidence intervals for the correlations 

calculated from the bootstrap procedure. All reported regions have BSR ≥ 3 and cluster size ≥ 100 voxels. All analyses were 

conducted by including both age groups, however, in order to simplify the visuals of the findings in the figures, we presented the 

results separately for each age group and condition. Abbreviations: OA = older adults, YA = younger adults, L = left hemisphere, 

R = right hemisphere. 

Additional Brain-Behavior Analyses 

Prior to assessing brain-behavior correlations with theory of mind (TOM) scores, brain-

behavior correlations were computed to investigate the brain networks that were related to 

performance on the emotion recognition task, as indexed by response latency and accuracy. 

Given that responses to happy faces were at ceiling, only behavioral performance during 

recognition of angry expression contributed to these analyses. 

These analyses focused on angry expressions revealed one significant LV, which accounted 

for 46% of the covariance in the data and yielded two patterns of brain activity. The first of these 

patterns included right medial frontal gyrus, bilateral cingulate gyrus, superior parietal cortex, 

left inferior parietal lob, right insula, bilateral precuneus, and cerebellum (Blue regions in panel 

A, Supplementary Figure 3). This network correlated positively with RTs during the recognition 

of angry expression with direct gazes among younger adults. That is, younger adults who 

responded slower to angry direct gaze recruited these brain regions more. The second pattern 

included bilateral IFG, superior frontal gyrus, right ACC, bilateral superior temporal gyrus, left 

middle temporal gyrus, bilateral caudate, left thalamus, left insula, posterior cingulate gyrus, and 

left fusiform gyrus (yellow regions in panel A, Supplementary Figure 2). This pattern correlated 

with RTs for angry expressions with averted gaze among younger adults. That is, younger adults 

who were slower in responding to angry expressions with averted gaze engaged these brain 

regions to a larger extent. Neither of these patterns was reliably engaged by older adults.  
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Supplementary Figure 2. Brain-behavior Results for Angry Expressions and Response Times during Emotion 

Recognition Task. Left panel: a pattern of whole-brain activity during recognition of angry expressions that correlated with the 

Response latencies during the emotion recognition task which was reliable only among younger adults. Right panel: correlations 

between brain activities and performance during recognition of angry expressions with direct and averted gaze. Red/yellow brain 

pattern correspond to the averted gaze condition and blue brain pattern corresponds to the direct gaze condition. All reported 

regions have BSR ≥ 3 and cluster size ≥ 100 voxels. Abbreviations: L = left hemisphere, R = right hemisphere.  

The analyses focused on the accuracy of angry expressions among both age groups revealed 

one significant LV, which accounted for 45% of the covariance of the data and yielded one 

pattern of brain activity. This pattern included medial frontal gyrus, middle frontal gyrus, 

caudate, parahippocampus, supramarginal gyrus, superior temporal gyrus and correlated with the 

accuracy scores during recognition of angry expressions with both direct and averted eye-gaze 

directions. That is, younger adults who recognized angry expressions with higher accuracy 

recruited these brain areas for both direct and averted gaze. Older adults did not recruit any of 

these brain regions reliably. 
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Supplementary Figure 3. Brain-behavior Results for Angry Expressions and Accuracy during Emotion Recognition 

Task. Left panel: a pattern of whole-brain activity during recognition of angry expressions that correlated with the accuracy in 

the emotion recognition task which was reliable only among younger adults. Right panel: correlations between brain activities 

and performance during recognition of angry expressions with direct and averted gaze. All reported regions have BSR ≥ 3 and 

cluster size ≥ 100 voxels. Abbreviations: L = left hemisphere, R = right hemisphere.  
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• Older adults demonstrate neural dedifferentiation to angry stimuli. 

• Older adults do not demonstrate neural dedifferentiation to happy stimuli. 

• No correlation was found between angry emotion recognition and TOM of older 

adults.  

• Significant correlation was found between happy expressions and TOM of older 

adults. 

 


