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Abstract

Previous research has shown that visual attention does not always exactly follow gaze

direction, leading to the concepts of overt and covert attention. However, it is not yet clear

how such covert shifts of visual attention to peripheral regions impact the processing of the

targets we directly foveate as they move in our visual field. The current study utilised the co-

registration of eye-position and EEG recordings while participants tracked moving targets

that were embedded with a 30 Hz frequency tag in a Steady State Visually Evoked Poten-

tials (SSVEP) paradigm. When the task required attention to be divided between the moving

target (overt attention) and a peripheral region where a second target might appear (covert

attention), the SSVEPs elicited by the tracked target at the 30 Hz frequency band were sig-

nificantly, but transiently, lower than when participants did not have to covertly monitor for a

second target. Our findings suggest that neural responses of overt attention are only briefly

reduced when attention is divided between covert and overt areas. This neural evidence is

in line with theoretical accounts describing attention as a pool of finite resources, such as

the perceptual load theory. Altogether, these results have practical implications for many

real-world situations where covert shifts of attention may discretely reduce visual processing

of objects even when they are directly being tracked with the eyes.

Introduction

In daily life we experience a large variety of situations in which we need to visually track multi-

ple objects at the same time, for instance when crossing a busy street, monitoring the safety of

children playing in playgrounds, locating a spouse in a bustling shopping centre, etc. In these

situations we can make use of a division of visual attention as we monitor both moving and

stationary objects across time, often rapidly switching between attending to targets through

direct eye-movements or through our peripheral visual fields. The need to modulate our atten-

tion arises from inherent limitations in our capacity to attend to the broad array of stimuli our

senses may provide to us at any one moment [1, 2]. The Perceptual Load Theory advanced by

Lavie and others conceptualises attention as a limited pool of resources that we are able to

devote to the processing of targets and distractors in various environments. The balance of our
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attention directed to spatial locations at any given moment is thus related to the perceptual

load of the tasks being concurrently performed [3–6]. The way in which the brain modulates

visual input through attention has additionally been conceptualised as a mechanism that

decreases the salience of distractors by reducing the neural sensitivity to unattended stimuli so

that attended stimuli experience less competition while they are processed [7–9]. When

applied to contexts and tasks that require the visual analysis of complex scenes involving both

moving and stationary objects, these theories suggest a modulation of attention that depends

on the requirement of attention to be either divided or singularly focused [3–6]. Part of such a

dynamic involves attention directed to what we are directly foveating (overt attention), as well

as attention directed to areas outside our foveal fields in our parafoveal or peripheral visual

fields in the form of covert attention [10]. While overt visual attention can be indexed through

the recording of eye-position during various tasks, covert shifts of attention to areas outside of

foveal regions are by their nature often not accompanied by explicit behavioural measures and

must be measured indirectly through analyses of reaction time in paradigms involving cueing

to extra-foveal spatial locations compared to either an un-cued or an incorrectly cued location

[11, 12].

Aligning with the view of attention to be a limited pool of resources, some studies have sug-

gested that when covert attention is directed to spatial areas in the periphery there is a decrease

in attention directed towards foveated stimuli [13, 14]. However, competing evidence has sug-

gested that both covert and overt visual attention may be deployed simultaneously in parallel

in paradigms involving dual tasks without a notable decrease in performance [15, 16]. The

nature of the tasks in such paradigms is likely to play a critical role in how attention might be

divided between overt and covert monitoring during analysis of objects in the visual environ-

ment. In the case of complex scenes this may involve a selection of what targets to monitor

overtly with the eyes and which to monitor covertly through the shift of peripheral visual atten-

tion. What is yet to be clarified is how overt attention directed to a moving object is influenced

by additional requirements to monitor other spatial locations with covert visual attention. This

question is the basis of the current study.

While various behavioural tasks have been used to investigate the deployment of both overt

and covert visual attention, it is possible to index the relative recruitment of these forms of

attention by recording the neural responses in electroencephalographic (EEG) recordings to

the flickering of stimuli presented in different spatial locations of the visual field. While the

early occipital lobe responds to this flickering in a systematic way, the strength of this response

is strongly modulated by whether the flickering objects/regions are being attended to or not,

with larger responses to attended stimuli compared to unattended stimuli [17–22]. Known as

Steady-State Visual Evoked Potentials (SSVEP), this technique offers a complement to the

measurement of behavioural responses, as it can capture the time-course of shifts of attention,

contrasting with behavioural responses which, while influenced by attention, constitute the

end-point of a chain of perceptual and decision-making processes. Indeed, an important bene-

fit of the SSVEP approach is that it does not require a specific behavioural response, making it

well-suited to investigate shifts of attention that take place without behavioural markers [23].

Recent studies investigating attention allocation during smooth-pursuit paradigms have found

clear neural responses to flickering stimuli in both peripheral regions [24] and to a general

flickering background stimulus [25], with the latter suggesting the neural responses during

smooth-pursuit to be larger than when the eye-position is fixed. However, to our knowledge

this paradigm has not yet been used to investigate overt visual attention during the tracking of

moving objects or how it is affected by task-related shifts of covert attention.

Applied to the question of how visual attention is affected when extrafoveal areas are moni-

tored while a moving target is simultaneously tracked by the eyes, the SSVEP technique offers
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a means of determining whether covert shifts of attention decrease the sensitivity to the mov-

ing foveal target as might be predicted if a limited pool of visual attention leads to a sacrifice of

overt visual attention when deploying covert attention. In order to investigate this question

while maintaining systematic control over low-level visual properties, the current study com-

bined eye-position recordings with an SSVEP paradigm, measuring the neural responses to

the flickering of targets as participants followed them with their eyes as they moved across a

computer screen. The task consisted of overtly tracking a target as it moved across a computer

screen and pressing a button when it entered a specific portion of the screen. However, in half

of the trials the participants were instructed that a second target might also appear and follow

the same trajectory as the first, whereupon they should perform the task on the second target

instead. This manipulation created two conditions: An undivided condition where the task

required overt attention only to one single moving target, and a divided condition where the

expectation of a possible second target at a specific place and time provided the context where

both overt and covert visual attention could be used in the task. The neural responses to the

foveally-tracked target thus formed an index of overt attention, which would be significantly

reduced in the case of shared and limited pool of attentional resources, when the participants

covertly monitored for the appearance of a second target.

Methods

The Human Ethics Committee at the University of Fribourg approved the methods and proce-

dure used in this study.

Participants

22 participants were tested in the current study. 4 participant datasets were excluded due to

insufficient trial numbers to form a meaningful condition average and one dataset was

excluded due to strong contamination throughout the scalp originating from anterior/facial

areas during the trials which introduced a distinct 10 Hz distortion and separate broadband

distortion rising at 15 Hz and extending through to approximately 50 Hz, matching artefacts

observed in previous studies of frontalis muscle activity [26, 27]. Datasets were analysed from

the remaining 17 participants (13 females, 17 right-handed), aged between 19 and 44 years

(mean age = 26.5 years, SD = 7). All participants had normal or corrected-to-normal vision,

and gave their informed consent before participating in the study. Participants were offered 50

CHF for their time or course participation credits.

Stimuli and procedure

Participants were instructed to follow a moving target as it moved across a computer screen

and to press a keyboard button when the target entered a spherical “goal” portion of the

screen. The targets consistently travelled along a diagonal path from the top-left part of the

screen to bottom-right goal section (see Fig 1) at a speed of 3.75 deg/s. The target stimuli

consisted of a black and white rectangle (1.05˚ x 2.10˚ visual angle) checkerboard pattern alter-

nating (reversing between black and white) at a consistent rate of 30 Hz against a white back-

ground. The 30 Hz flicker created the frequency tag used for the subsequent EEG analysis of

visual attention.

Two experimental conditions were created by manipulating what participants expected to

see in the trials. In one condition block, participants were instructed that only one target

would travel across the screen in each trial, and that they should press the keyboard button

when it reached the goal area. In the other condition block, participants were instructed that a

second target might appear while the first target was still travelling across the screen (occurring
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in 2/3 of the trials in this condition). The second target (also flickering at the 30 Hz) appeared

in the same location as the first target at the onset of the trial so that participants had a specific

and predictable target for a covert shift of attention. The second target appeared at either 2136

or 2270 ms into the trial, providing a consistent time range for participants to predict when to

direct covert attention with a small range of variability. Participants were instructed that if a

second target did appear they were to then track that second target with their eyes and press

the button when the second target reached the goal area. This was to provide a task-related

division of attention, while balancing all low-level visual properties between the conditions up

until the appearance of a second target in the periphery. Participants were informed at the

beginning of each condition block whether to expect either only one or more than one target,

creating two experimental conditions; an undivided attention condition and a divided atten-

tion condition. The time-window leading up to the possible presentation of a second target

thus formed the period of interest for our analysis, where shifts of attention relating to partici-

pants condition-related expectations were predicted to occur. Analyses were performed on the

entire trial time-range, with particular focus on the period of interest where the participants’

eye-gaze was directly over the moving targets. Analyses on the time period preceding this

period are provided with the caveat that the conditions during this time period were uncon-

trolled for low-level visual properties relating to where the stimuli appeared in the participants’

visual field.

There were 204 trials in total, with 102 in each of the divided and undivided attention con-

ditions. The trials were divided into 4 alternating homogenous blocks, and the presentation

order of these blocks was counter-balanced to avoid fatigue or order-effects by creating two

block-orders presented to two participant groups (8 and 9 participants in the two counterbal-

anced groups). The experimental trials began with a fixation cross in the top left corner of the

screen, corresponding to the region where the target would initially appear. When participants

fixated on this cross area (1.3˚ x 1.3˚), the cross would disappear and the target would begin to

emerge from the top-left corner 266 ms later, becoming fully visible at 667 ms. The trials

ended when the participant made their decisions relating to the targets completely entering

the goal area (3170 ms into the trial in the undivided condition, 5003 or 5136 ms into the trial

in the divided condition) by making a keypress. The experimental stimuli were presented on a

24 inch VIEWPixx/3D monitor (1920 x 1080 pixels, 120 Hz refresh rate) at a distance of 75

cm, and presented through Experiment Builder (v1.10.1630) software.

Fig 1. Undivided and divided attention trial examples. Alternating checkerboard targets emerged from the left side of the screen (denoted by

“x”) and travelled across the screen to a circular region (left), whereupon participants pressed a button when they judged the target to be fully

within the region. In half of the trials a second target had a 66% probability of appearing and travelling across the screen (right), where

participants had to subsequently perform the button-press task on this second target instead.

https://doi.org/10.1371/journal.pone.0236967.g001
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Eye-movement recording and processing

Eye-positions were recorded through a desktop-mounted Eyelink 1000 monocular (left) eye-

tracker sampling at 1000 Hz. Calibrations of the eye-tracker (13-points, average position

error< 0.5˚) were performed at the beginning of the experimental blocks and after breaks in

the trials. The onset of a trial was triggered by a fixation in a specified region in the top left part

of the screen; if this was not fixated upon within 4 seconds after presentation then a re-calibra-

tion sequence was entered, ensuring effective calibration throughout each of the trials. The tri-

als began with the flickering targets emerging near the upper-left portion of the screen 266 ms

after trial onset. The early part of the trials was characterised by the target stimuli approaching

and passing the participants’ fixated gaze, and the subsequent orienting of their gaze to these

moving targets through catch-up saccades. This orienting phase generally took approximately

500 ms before participants were able to align their smooth-pursuit eye movements with the

movement of the targets. To allow for this, a time-window of analysis for eye-gaze and EEG

was created, beginning 1000 ms after the onset of the trial (734 ms after the onset the first tar-

get) and ending at 2000 ms (shortly before a second target might appear at either 2136 or 2270

ms).

The x and y gaze coordinates of the participants in the trials were exported and analysed to

ensure that the flashing targets were directly foveated by the participants during a 1000 ms

period immediately preceding the time at which the onset of a second target would occur. Tri-

als were rejected if the participants were not directly foveating the targets for over 95% of this

1000 ms time period (allowing for transient loss of foveation and eye-blinks). A 1000 ms

period of interest was chosen for two reasons: 1) it is preceding the likely appearance of the

second target so we expect relevant processes associated with attentional shifts to occur in this

period, and 2) this period starts after the catch-up saccade and when the smooth-pursuit is

consistently initiated across trials. To ensure a reliable average, a critical threshold of 25

accepted trials was applied, which led to the rejection of 4 participants due to insufficient trials.

The SSVEP technique has been found to yield a high signal to noise ratio, with analyses involv-

ing known oscillations (frequency tags) reliably measuring visually-entrained EEG responses

from as little as 10 artefact-free trials [28], and from 15 trials in a face-detection paradigm

using sweep SSVEP [29]. Because the co-registration of EEG and eye-movements in the cur-

rent study required rejection of EEG epochs where eye-gaze was outside of the stimulus

regions, the potential for a high trial rejection rate was considered in the experimental plan-

ning, with 102 total trials per condition being presented to allow for a potentially large number

of rejected trials. After this process an average of 39% of all trials were rejected. The average

number of accepted trials in the divided and undivided attention conditions in the current

study was much higher than this minimum threshold, with 65 and 60 accepted trials, respec-

tively (see S1 Fig). Bayes factor analysis was performed on the number of accepted trials

between the two conditions, allowing for an interpretation of not only the likelihood of the

data representing evidence in favour of a hypothesised difference between conditions, but of

evidence in favour of a null-effect [30]. The results suggested anecdotal evidence (for review of

Bayes factor terminology see Wagenmakers et al., 2013, [31]) for the null hypothesis and no

support for predicted differences between the conditions (BF10 = 0.825, 0.005% error). Bayes

factor analysis was performed through JASP (0.11.1) software with default settings [32].

After the trial exclusion process, the remaining trials were analysed to determine whether

there were systematic differences in eye-position between the divided and undivided condi-

tions. Bayes factor analyses were performed at each time point between the appearance of the

initial target (266 ms) and the end of the analysis period (2000 ms) using data that indexed the

absolute distance (in degrees of visual angle) between the participants’ eye-positions and the
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centre of the target at each time point. The results did not suggest evidence of a difference

between the conditions throughout this period, instead they indicated a general tendency

across the period to support the null hypothesis (divided absolute distance = undivided abso-

lute distance), with an average BF10 of 0.309 and a maximum of 0.858 (see Fig 2E for BF10 val-

ues across the period of interest). The participants’ accuracy at tracking the targets can be seen

in Fig 2A, 2B and 2C, which depict the distances at each time point that the participants’ eyes

were from the target centre in XY co-ordinates and in absolute Euclidean distance, measured

in degrees of visual angle. A value of zero would therefore correspond to the centre of the tar-

get in either the X or Y plane. The high target-tracking accuracy in the current study is consis-

tent with previous studies utilising targets of predictable speeds [33], and is in line with the

results of a previous study showing that following the centre of a moving target facilitates the

allocation of attention to peripheral locations when multiple objects are present [34]. The aver-

age distance from target centre for the undivided and divided attention conditions were -0.05˚

and 0.01˚ respectively for the X positions, and 0.03˚ and 0.02˚ for Y positions. For reference,

the length and width of the target stimuli were 2.2˚ and 1.1˚ respectively. The average precision

(both group average and individual average) across the critical time-period is illustrated in Fig

2G, which represents the average eye-positions on the target throughout the period of interest

for the divided and undivided conditions.

We additionally analysed the frequency of saccades made during the trials, as saccades have

been found to lead to a suppression of visual sensitivity for up to approximately 300 ms after

their onset [35]. Saccade events of amplitudes ranging from 1˚ and 38˚ (largest plausible

Fig 2. Eye-gaze accuracy during target tracking. Eye-gaze distances from target centre for x (a), y (b), and absolute

(c) measures, and the index of saccade probability throughout the trial until immediately before the possible

appearance of a second target (standard error shaded). Bayes factor analyses did not find differences between

conditions for absolute distance (e) or saccade probability (f) in the critical period of analysis. Fig 2g depicts the

condition average eye-positions (solid large blue/red) relative to the targets throughout the 1000 ms interest period, as

well as the individual participant averages (faded small blue/red).

https://doi.org/10.1371/journal.pone.0236967.g002
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saccade, given screen size and distance) were detected through Dataviewer (version 1.11.900)

using saccadic velocity and acceleration thresholds of 30˚/sec and 8000˚ /sec2, respectively.

Saccade frequency was calculated by counting the number of saccades made by participants in

each condition in bins of 50 ms width across the trial from 266 ms through to 2000 ms. The

saccade count for each participant was then divided by the total number of trials in each condi-

tion to form an index of saccade probability, or proportion of the trials in which a saccade was

made at each time bin. The early time range of the trials involved saccadic responses to the pre-

sentation of the moving targets, whereas the rest of the trial periods were characterised by a rel-

atively low proportion of saccadic activity (see Fig 2D). Bayes factor analysis of participants’

saccade probabilities revealed substantial evidence that there were more saccades in the undi-

vided condition in the early time range covering 400–450 ms (BF10 = 4.156), whereas at other

time points no substantial evidence for a difference was found (see Fig 2F).

To determine whether the incidence of eye blinks in the current study was modulated by

condition, the mean number of blinks each participant exhibited in each critical period per

condition was analysed through Bayes factor analysis. Blink events were detected using the

default blink detection Dataviewer algorithm (version 1.11.900). On average the number of

blinks per trial were very low, with 0.25 (SD = 0.26) blinks per trial in the undivided condition

and 0.22 (SD = 0.23) in the divided condition, as was the number of saccades (1.07, SD = 0.59,

and 0.99, SD = 0.51, respectively). Bayes factor analysis indicated no significant differences in

the incidence of eye blinks or saccades between the conditions (BF10) of 0.346 (0.003% error)

and 0.595 (0.002% error) respectively, indicating anecdotal evidence in favour of the null

hypothesis (no difference between conditions).

Participants’ eye-movements were monitored during the testing session by the experiment-

ers to ensure they understood and followed the task instructions. Participants initiated a sac-

cade to the second target within 351 ms (SD = 70 ms) of their appearance in relevant trials,

suggesting an adherence to the task instructions. Following the pre-processing of eye-position

data, only accepted trials were used in subsequent statistical analyses of task-related effects on

EEG responses.

EEG recording and processing

Electrophysiological responses were recorded through a Biosemi Active-Two amplifier system,

using 128 Ag/AgCl electrodes sampling at 1024 Hz. Additional electrodes were placed at the

outer canthi and above of each eye, to register ocular movements and blinks. EEG data was

processed offline through EEGLAB (14.1.0b) running in the MATLAB 2016B environment.

After an initial bandpass filtering process (0.1–75 Hz, zero phase shift, linear finite impulse,

Hamming window), epochs of 5000 ms duration were created, beginning at a -1000ms base-

line period at the onset of the trial. To isolate and remove blink and eye-movement distortions,

the 5000 ms epochs were subjected to Independent Component Analysis (ICA, using the

‘runica’ algorithm through EEGLAB) [36]. Independent components corresponding to frontal

blink and saccade topographic distortions were isolated and removed from the data, as well as

slow drift in EEG corresponding to smooth pursuit activity (see S2 Fig). However, in a number

of datasets this slow drift was not able to be isolated through ICA, even though a clear drift

could be observed in the raw data. This was not problematic in the current experimental

design, however, as the slow drift was not related to frequencies overlapping the 30 Hz fre-

quency tag utilised in the study (see S2A and S2B Fig for examples of the frequency responses

of independent components associated with blink and smooth pursuit distortions).

The EEG was subsequently re-referenced to a common-average reference, and epochs

noted for rejection in the eye-gaze analysis were removed from statistical analysis, leaving only
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epochs where the participants were directly foveating the targets more than 95% of the critical

1000 ms period. Frequency power values were measured relative to a 1000 ms pre-stimulus

onset baseline to quantify event-related spectral perturbation (ERSP) data in a normalized sig-

nal-to-noise ratio (SNR), and are hereafter presented in dB units (relative to pre-stimulus base-

line). The frequency tag from a directly foveated flickering stimulus was predicted to lead to a

corresponding neural frequency in the central-occipital region [37], approximately between

central Oz and Iz electrodes in a 10–20 system. This was confirmed with a fast-fourier trans-

form of the full 1000 ms critical period, where a 30 Hz signal was observed in the central

occipital region relative to the 1000 ms baseline period (see Fig 3A for a topographical repre-

sentation of 30 Hz power). The frequency response spectrum at the posterior occipital cluster

indicated a discrete spike in the 30 Hz frequency band (Fig 3B). This was complemented with

a time-frequency decomposition using Morlet wavelet transformations within the range of

3–70 Hz (3 0.5 wavelet cycles; yielding higher resolution as frequency increased and a wavelet

at exactly 30 Hz) to give insight into the timing of the 30 Hz signal from the beginning of the

trial to the period immediately preceding the possible onset of a second target (2000 ms win-

dow), collapsing across the two conditions. The 30 Hz signal was observed in both the ERSP

and inter-trial coherence (ITC) topographies to arise at approximately 750 ms in the central

occipital region and continuing through to the end of the 2000 ms window.

Following the confirmation of the 30 Hz frequency tag in the EEG recordings, statistical

tests were conducted to compare the effect of divided visual attention on the power of the

mean oscillation in the midline posterior occipital region corresponding to the Oz and Iz elec-

trodes for all participants, representing the two electrodes with the largest 30 Hz signals (Fig

3A). Event-related spectral perturbations (ERSP) from the Morlet wavelet transformations

from this region were computed for the divided and undivided attention conditions, produc-

ing ERSP averages of each condition for each participant. Differences between the divided and

undivided ERSP data at each time point were compared with both Bayes factor analyses. The

Bayes factor analysis gave an index of whether the 30 Hz ERSP power data provided support

for hypothesised differences between the conditions across the time range, or whether a null-

effect was more likely.

Fig 3. Scalp topography of 30 Hz SSVEP signal. Scalp topography revealed a strong 30 Hz signal in the central-

occipital region during the 1000 ms critical period (a), with a fast-fourier transform in this area indicating a distinct 30

Hz spike corresponding to the frequency-tag (b). Event-related spectral perturbation (c) and inter-trial coherence

transforms found reliable 30 Hz signatures in the central-occipital regions arising at approximately 750 ms into the

trial and continuing through the target-tracking period.

https://doi.org/10.1371/journal.pone.0236967.g003
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Results

Bayes factor analyses of the difference in 30 Hz power between the divided and undivided con-

ditions (Fig 4A & 4B) in the 1000 ms period of interest showed substantial evidence for

hypothesised differences early in the time window (BF10> 3) from 1289 through to 1367 ms,

and strong evidence (BF10> 10) from 1317 to 1331 ms (see Fig 4C). The source of these differ-

ences was observed to be due to greater 30 Hz power in the undivided attention condition com-

pared to the divided attention condition. This difference and Bayes factor comparison can be

observed in Fig 4C and 4D. Of note are results of the Bayes factor analyses for the other time

points in the period of interest, where the BF10 values suggest substantial support for the null

hypothesis, or no differences between the divided and undivided conditions (BF10< 0.33).

Analysis of the early trial period where the participants’ eye-gaze was not controlled

revealed an early period of substantial evidence (BF10> 3) for greater 30 Hz power in the undi-

vided condition between 200–287 ms, overlapping the period in which the initial target

appeared in the upper-left portion of the monitor.

Discussion

The current study sought to measure overt visual attention in a smooth-pursuit paradigm, and

to determine whether allocation of covert attention to peripheral regions modulated measures

of overt attention to a moving target. The SSVEP power corresponding to the 30 Hz frequency

tag of the moving stimuli was found to decrease when the task required participants to attend

Fig 4. 30 Hz SSVEP power. 30 Hz power (ERSP) across the trial period indicated sustained attention in both the

undivided condition and divided attention conditions (4a & 4b), with apparent decreases in neural response at discrete

periods in the divided attention condition (4c). The results of Bayes factor analyses suggested early discrete periods of

difference between the conditions corresponding to the onset of the initial target and early in the critical analysis

period (4d). Grey lines denote the timing of events in the trials, and coloured shading denotes periods of Bayes factor

evidence in favour of a condition effect (red) and of a null effect (blue).

https://doi.org/10.1371/journal.pone.0236967.g004

PLOS ONE In pursuit of visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0236967 August 4, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0236967.g004
https://doi.org/10.1371/journal.pone.0236967


covertly to where an additional target might appear in the periphery while concurrently track-

ing a moving target. This period of difference, however, was both very short, and relatively

early in the trial period. The lower SSVEP power in the divided condition aligns with the view

of covert and overt visual attention as expressions of a pool of attentional resources, where an

increase in covert attention can lead to a concomitant reduction in overt attention [1, 2], simi-

lar in nature to the reduction in SSVEP power to foveated static stimuli observed when covert

visual attention is recruited [13]. The finding suggests that that attention can be deployed

covertly while tracking a moving target, which is also in line with the behavioural results of

Seya and Mori (2012) [38], who used saccadic response times to index covert attentional shifts

to peripheral spatial regions. Similarly, they support the behavioural findings of Ludwig et al.

[16] suggesting that both covert and overt attention can operate in parallel. A notable differ-

ence between our methodology and that of Ludwig et al., however, is that we utilised a passive

measure of overt visual attention through SSVEP rather than a behavioural index. Thus, our

approach allowed us to investigate the fine-grained temporal modulations of overt attention

resulting from allocation of covert attention, rather than the end-product. However, there are

significant limitations to the inferences we can draw from the observed patterns in the current

study. Although the difference in 30 Hz power was in line with the direction predicted from

preceding studies, we had expected that such an effect would be observed with greater likeli-

hood in the time leading up to the possible appearance of a second target as the utility of

covertly monitoring for a second target increased. Not only did we not find evidence for this

effect in the later part of the trial, the Bayes factor analyses suggested that there was substantial

evidence that the conditions were indeed comparable. It would therefore be more precise to

suggest that we did not observe evidence of a covert shift of attention impacting overt attention

in the majority of the analysis period. The question then arises as to why an earlier period of

difference was observed rather than a later one. An answer may lie in nature of the task itself,

and of how visual targeting for covert monitoring or saccadic planning is achieved during

dynamic smooth pursuit. The current study utilized expectation of the likely appearance of a

second target in the trials to create a task-related division of visual attention between a moving

target and a defined area in the participants’ left peripheral field. While this allowed the partici-

pants to know where to allocate covert attention in these trials, the timing of the appearance of

second targets was also somewhat predictable. While it might have been a logical prediction

that the effects of divided attention in these trials would be more likely to be observed as time

advanced towards this critical moment, our data did not show this. Rather, differences in the

neural response to the overtly tracked targets were reliably observed approximately 800 ms

before the time a second target would have appeared. It is possible that within any one trial

there are multiple discrete shifts of attention away from the moving targets, but that the timing

or duration of such shifts are not systematic within the trials and thus do not reveal a statisti-

cally clear pattern when averaging across them. Another explanation for this pattern is that

sustained covert shifts of attention are not required in order to quickly respond to the appear-

ance of additional targets. Such an interpretation invites speculation as to why there was a

transient period of reliable difference in SSVEP power early in the trial. Such an early, discrete

period of reduced overt attention may reflect a process of the encoding of spatial locations for

future monitoring through covert attention, where overt attention is impacted to a lesser

degree after this encoding process has occurred. An early shift of covert attention to the spatial

location where an additional target may appear might then be analogous to pre-saccadic shifts

of attention noted to occur immediately prior to the onset of a saccade [39]. The reduction in

SSVEP power during this early period could then be considered to be due to processes involv-

ing the future execution of eye-movements, rather than an ongoing sampling of covert visual

areas in order to react quickly to a second target appearing. If the predictability of the time or
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location of potential distractor stimuli modulates the time or the strength of changes in overt

visual attention during object tracking, then future studies might specifically manipulate these

dimensions to determine how they contribute to such effects, and whether they interact with

the task requirements. While our SSVEP results indicate that there was a reduction in overt

attention to the moving targets when the task required a covert shift of attention to a periph-

eral location, this, however, does not necessarily mean that a performance decrease would also

be observed had an additional behavioural task been employed. This is in line with the percep-

tual load theory, which suggests that the division of visual attention across covert and overt

areas is moderated by the processing load required by the tasks at hand. Accordingly, it is likely

that modulating the salience of the moving target may also modulate the degree to which

covert shifts of attention to peripheral locations affect the processing of the moving target, as

smooth pursuit and saccadic programming have been found to share/compete attentional

resources [40]. In contexts such as parents tracking moving children in a playground, or secu-

rity forces monitoring moving threats, one dimension of the task involves accurately following

targets with the eyes while an additional task might involve a specific visual analysis of the tar-

get itself. In these contexts, the level of overt attention may be higher than when there was no

secondary task requiring visual analysis, making it more difficult (or less likely) for covert

shifts to occur. It is also likely that additional visual analysis of the moving stimuli would

require greater overt attention and thus may limit the amount of covert attention available for

monitoring other spatial areas, as suggested by the finding that foveal distractors are harder to

ignore than peripheral distractors [41]. The nature of any such task will likely then influence

the relative strength of both central overt and peripheral covert visual attention, as competition

between features for visual analysis and their distractors in central vision has been found to

lead to an enhancement of neural sensitivity to peripheral regions [42].

Apart from the window of ERSP difference observed in the SSVEP analysis period that was

controlled for participants’ eye-gaze, a very early period of difference was observed that corre-

sponded with the onset of the initial targets’ appearance in each trial (accounting for limita-

tions in temporal resolution of ERSP values inherent in Morlet wavelet transformation).

Interpreting this early difference is complicated by the nature in which the targets appeared, as

they emerged incrementally over a period of approximately 500 ms before being fully visible.

Small differences in where participants were fixating in this early period may have projected

the targets into different parts of their visual field, as only a small fraction of the images were

visible at different times. Calculating the absolute difference of eye-gaze from the center of the

targets is also problematic, as the centers of the targets were not yet visible until 250 ms after

the edge of the targets emerged. Although our interpretations of this early effect is limited by

these considerations, we do not rule-out the possibility that overt attention may be modulated

by task, even in this early time period.

In consideration of how low-level factors might modulate both overt and covert visual

attention during smooth-pursuit, other task-related dimensions may also significantly modu-

late the strength of overt attention such as the speed of the moving target, and the spatial loca-

tions of where covert shifts of attention are directed. Saccade latencies to stimuli presented

during smooth-pursuit have been found to increase as target speed increases [38, 43]. An

SSVEP index of covert attention throughout the overt tracking of a moving target would allow

for further clarification of how covert shifts of attention are influenced by target speed, and

whether the effects pertain to the strength of covert shifts, the timing of such shifts, or both.

Target-speed related modulation of covert peripheral attention is of particular concern in the

domain of road-crossing safety, where increased vehicle speed may disproportionately affect

individuals who tend to overtly track moving vehicles rather than covertly monitoring them

through peripheral vision, as is the case with young children [44, 45].
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From a methodological perspective, the current study supports the use of the co-registra-

tion of eye-position recordings with SSVEP paradigms as a means investigating the dynamics

of visual processing and attention while people perform tasks involving the tracking of moving

objects. The development of this approach has recently shed light on the spread of attention

during smooth-pursuit, with [24] providing electrophysiological evidence that visual attention

is directed slightly ahead of targets as they move across the visual field, supporting behavioural

results suggesting the same pattern [46, 47]. A natural convergence of the current study with

that of [24] would be to investigate the relationship between overt visual attention directed at a

moving target and the default spread of attention while visual analysis of the target is taking

place. The paradigm is also readily adaptable to investigate both overt and covert attention

where multiple moving objects require selection or detection through either overt or covert

visual attention [48]. The inclusion of a passive neural index of visual attention in such para-

digms provides another layer of measurement when determining the timing or intensity or

attentional shifts in complex visual environments.

Methodologically speaking, there are a number of technical dimensions that must be

addressed in order to obtain reliable SSVEP patterns that can be readily interpreted. The

major concern is the control of low-level visual properties. It is imperative that participants’

eye-positions are monitored throughout the SSVEP trials, as the relative position of such sti-

muli in the visual field significantly modulates both the intensity and topography of the

recorded signals [20, 49, 50]. This process will likely lead to the rejection of a certain number

of trials involving inappropriate gaze-positions, and so the experimental planning needs to

account for this reduction either by including a high number of trials, or an online index of

gaze-accuracy which can repeat trials when necessary to compensate for rejected trials. Provid-

ing sufficiently large frequency-tagged stimuli may also in part address this concern, as large

stimuli require less accurate gaze in order for them to be directly foveated. In addition, it is

likely that some tasks and conditions might involve differences in target-tracking accuracy,

where specific conditions or contexts are more likely to elicit saccades that are difficult to

inhibit (or in populations where such inhibition might be impaired). An analysis of trial rejec-

tion may therefore provide an index of this, as well as more in-depth analysis of gaze-behav-

iour in the trials as a means of relating such behavior with visual attention during periods of

target pursuit [51]. However, experimental conditions with significantly different numbers of

accepted trials might further complicate the interpretation of the comparison of SSVEP

responses in these conditions as the signal-to-noise ratios in the EEG averages is strongly

affected by this factor.

In summary, the application of SSVEPs to index overt visual attention while tracking a

moving target provides a useful tool for understanding the effects of task-related covert atten-

tional shifts in terms of both strength and timing. The results of the current study suggested a

period of reduced visual attention to a moving target when the task involved the appearance of

a possible second target. However, the transience and the early timing of the effect did not sug-

gest a sustained difference in visual attention as the appearance of a second target grew more

likely, suggesting a more complex dynamic between overt visual attention and covert shifts of

attention during smooth pursuit. Accordingly, the co-registration of EEG and eye-position

while using the SSVEP technique would thus be well-suited to exploring such dynamics in

future studies.

Supporting information

S1 Fig. Trial numbers accepted in analyses. Trials were excluded due to unreliable tracking

of the targets in both conditions from a total of 102 presented in each condition. Dots
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represent accepted trial numbers for each participant.

(TIF)

S2 Fig. Examples of ocular distortion removal through independent component analysis.

Distortions isolated and removed through the ICA process encompassed (a.) eye-blinks, and

(b.) eye-movements involving saccades (sharp onset/offset activity), as well as smooth pursuit

(slow drift). Fig 2C represents a single-trial example of uncorrected raw EEG (blue) and ICA

corrected EEG (blinks, saccades, and drift removed) (red).

(TIF)
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