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Abstract

Functionally (implicitly) defined 3D objects allow us to quite easily model parts

with complex topology such as lattices and organic-like structures with a high

level of flexibility. Previous works in this area are based on the direct genera-

tion of CNC programs for the 3D printing of these objects and are backed by

the growing support for this input format from hardware manufacturers. Effi-

cient contouring of functionally defined models, however, is not an easy task.

In this paper, we develop an algorithm for contour extraction of implicitly de-

fined objects for direct additive manufacturing (AM). By comparing various

adaptive and exhaustive (non-adaptive) methods of the function representation

contouring for AM (FRepCAM), we make a set of recommendations for its usage

depending on the specific resolution of the printer. In particular, we use a novel

criterion based on affine arithmetic to maintain efficiency while preserving the

robustness of the contouring process. The techniques mentioned were evaluated

for algebraic and non-algebraic solids and heterogeneous models under a resolu-

tion that is comparable with that of current AM technology. The results show

that the chosen adaptation criteria allow us to efficiently obtain a contour for

complex models and generally outperform those of traditional algorithms based

on exhaustive enumeration, especially for high-resolution contouring. In addi-

tion, the results present proof of the printability of implicitly defined objects

with different 3D printing techniques.
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Set; Interval Arithmetic; Affine Arithmetic; Rapid Prototyping; Additive

Manufacturing; Direct Fabrication; Adaptive Contouring; Process Planning.

1. Introduction

Over the past decade, the area of additive manufacturing (AM) has shown

exponential growth with new processes and materials for 3D printing. Moreover,

the hardware for AM has rapidly developed, with dozens of new models of

3D printers going to the market every year and with the machines becoming5

increasingly sophisticated on the one hand and yet user-friendly on the other.

At the same time, it can be seen that the software for design, engineering and

manufacturing cannot catch up with the rapid development of the hardware side

of AM. One of the main reasons for slower growth is that AM uses geometric

representations traditional for computer graphics rather than those specific to10

the AM area.

Modern geometric modelling software supports more than sixty file formats

of 3D models, with the majority being represented with boundary surfaces in

a representation called boundary representation (BRep). Likewise, the main

format for geometry in AM is stereolithography (STL) [1], where the solid object15

is represented by a set of boundary polygons. New AM-aimed formats .AMF and

.3MF improve STL with several useful additions, such as colour and material

information. Nevertheless, they inherit major drawbacks from STL, such as the

difficulty of obtaining arbitrary precision for the resulting 3D printed object and

very limited support of multi-material models and, in general, heterogeneous20

objects. Recently, voxel representation was introduced in AM to overcome the

problem of heterogeneous modelling, but at the same time, this representation

is not able to overcome the problem of large size for complex models with high

precision. This leads to the use of procedural approaches for dynamic generation

of voxel models with a given accuracy [2].25

All rapid prototyping techniques use a so-called 21⁄2 representation of models.

One of the standards that describes a model as a set of ordered contours is the
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common layer interface (CLI) [3]. Another 21⁄2 format is the SLiCe format (SLC)

[4]. Both of these standards require storing sets of polylines for several z-levels.

In this paper, we focus on geometric representation in an implicit form, where30

the object is represented by a mathematical function. This representation, called

function representation (FRep), has recently shown significant potential for AM

compared to traditional methods. For example, it allows the modelling of parts

with complex topologies, such as lattices and organic-like structures, quite easily

and with a high level of flexibility. Moreover, this representation allows us35

to define the heterogeneous nature of objects conveniently with the definition

of the geometry, and the resulting geometric model becomes a closed volume

with guaranteed printability. Instead of storing a mesh as a set of polygonal

approximation formats (STL), voxels or polylines, FRep stores only its implicit

functional description as a symbolic expression and requires less memory. This40

representation covers standard constructive solid geometry (CSG) [5], which

considers simple solids (primitives) as elementary units of the model that can be

connected by applying set-theoretic operations to primitives. FRep supports the

concept of direct manufacturing where no intermediate formats (such as .STL,

.AMF, .3MF) are needed for the fabrication of designed models. On the other45

hand, one needs to perform calculation to “extract” the model from the implicit

form. This feature allows us to fit the model into a discrete representation with

arbitrary precision. A more detailed discussion can be found in the implicit

modeling chapter of [6].

We describe algorithms and methods for contour extraction of 3D objects50

represented by FRep without explicit surface generation and thereby convert

converting FRep into a 21⁄2 model ready for direct additive manufacturing.

Function representation contouring for AM (FRepCAM) is a necessary part

of the AM chain for FRep models. Triangulated models with a complex topol-

ogy can occupy up to several GBs of disk space in STL format, and this size55

increases with increasing accuracy or complexity. There are a few 3D printers

that work with such large files, and it takes days to pre-process them. One of

the possible solutions is the concept of direct AM demonstrated in [7]. Direct
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manufacturing [8] assumes no intermediate geometric representations between

the modelling system and the CNC program. Such a concept can be included60

in the development of a computer-aided design (CAD) system with a geometric

modelling kernel based on FRep, which includes computer-aided manufacturing

(CAM) modules. According to [9], such a system can carry out the steps of

product design, model creation and generation of the build file for the AM digi-

tal thread (Figure 1). Moreover, the tessellated model becomes an unnecessary65

artefact of that chain.

Figure 1: AM digital thread without model tessellation

Generally, AM uses computing machines similar to a computer numerical
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control (CNC) machine; therefore, pre-processing methods for printing of 3D

models depend on the chosen strategy and the capabilities of this equipment.

In particular, the printing strategy depends on the number of available axes of70

the device. This paper considers the techniques of contouring and obtaining 2D

slices of functionally represented 3D models for 3-axis AM devices. In particular,

we focus on different techniques of contouring, such as contouring with a regular

grid or exhaustive enumeration and adaptive contouring with interval and affine

arithmetic.75

Above mentioned techniques were evaluated for algebraic and non-algebraic

solids at a resolution that is appropriate for the current state of AM technolo-

gies. The results show that the chosen adaptation criteria allow us to outperform

traditional contouring algorithms based on exhaustive enumeration for complex

models. The most dramatic difference appears in contouring with high resolu-80

tion. In addition, the results present proof of the printability of the designed

implicitly defined objects with different 3D printing techniques.

The contributions of this work are as follows:

1. We revisit the concept of direct manufacturing [8] with geometry repre-

sented by FRep by using contour slices as in [7] and preparing GCODE85

subroutines for two different 3D printers, where the slices are generated

directly from FRep objects without an intermediate step of surface gen-

eration.

2. We compare various adaptive and exhaustive (non-adaptive) methods of

FRepCAM, including exhaustive enumeration and reliable methods based90

on interval arithmetic.

3. We present a novel criterion based on affine arithmetic that reduces the

number of cells processed during the adaptive subdivision algorithm for

contour extraction while preserving the robustness of the algorithm.

4. Based on the comparison of the methods for contour extraction of FRep95

curves, we make a set of recommendations for their usage depending on

the specific resolution of the printer.
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5. We present the results of contouring with a resolution of up to 0.5 µm,

which is lower than the minimal resolution of 400 µm presented in [7].

2. Background and related works100

2.1. Function representation

We first describe the general concepts of FRep. Following [10], the key parts

of the modelling process with FRep can be formalized as a triple (M, Φ, W ),

where M is a set of geometric objects, Φ is a set of geometric operations, and

W is a set of relations for the set of objects. In this paper, we focus on M.105

Geometric objects are closed subsets of an n-dimensional space En. For our

purposes of 3D modelling and 3D printing, we consider E3. The 3D object is

defined in FRep by an inequality:

f(x, y, z) ≥ 0, (1)

where x,y,z are real-valued Cartesian coordinates of a point and f is a real

continuous scalar function defined on E3, also called a defining function. The110

equation:

f(x, y, z) = 0,

which defines the boundary of such an object, is called an implicit sur-

face. The function f can be defined by a formula, an evaluation algorithm or

tabulated values with an appropriate interpolation procedure. For each point

P = (x, y, z) ∈ E3:115

f(P ) > 0 if P is inside the object;

f(P ) = 0 if P is on the boundary of the object;

f(P ) < 0 if P is a point outside the object.

(2)

The majority of modelling systems that work with FRep employ an approach

similar to that of CSG. A designer can introduce or write down several simple
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functions for primitives and then construct more complex objects by using op-

erations on these primitives. FRep supports many traditional CAD operations,

for example, set-theoretic operations (realized via R-functions) [11], blending,120

tapering, offsetting [10] and even filleting and rounding [12]. Additionally, one

can invent a sophisticated defining function f(x, y, z) = 0 from scratch. It can

describe a new complex geometry or include a new operation. The technique of

tessellating a unit cell in [13] or reconstructing the geometric primitive from a

point cloud [14] are examples of such user-defined functions. For AM, the FRep125

approach has the following additional advantages:

1. Point membership classification is a natural operation in FRep; therefore,

slice rasterization for image stack-based 3D printers is very simple and

efficient.

2. The 3D model can be evaluated with arbitrary quality and with the re-130

quired level of accuracy, which satisfies the capabilities of the 3D printing

equipment.

3. The representation provides a compact description of 3D models while

representing smooth models as well as CAD objects with sharp features

by using the same approach. Both can be represented by defining functions135

with the same complexity.

4. Multi-material objects can be defined by a similar function, and there-

fore FRep can provide a description not only of the geometry but also of

materials in the same model.

2.2. Applications of function representation in additive manufacturing140

Recently, FRep has attracted increasing attention from AM specialists. One

of the earliest works in this field is [15], where the authors considered it as a way

to print artworks of the Dutch artist M.C. Escher. In that work, FRep had to be

converted to BRep with the STL file format. Limitations of the STL and BRep

formats when working with FRep to model the vascular tree were discussed145

in [16]. In [17], FRep was mentioned as a suitable approach to represent the
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complex geometry of absorbing structures. These structures can have different

lattice patterns and different skin configurations. In this case, BRep becomes

a limiting factor of the size and complexity of their design. The authors of

[18] considered FRep as a possible technique for the design of porous structures150

such as bones while still using BRep as the main geometric representation. The

discussion about complex structures was continued in [19]. The newer work [20]

considers FRep as a suitable technique for scaffold modelling. Bodkin, Bibb,

and Harris [21] discussed some problems of prosthetic design. They mentioned

FRep as a part of their own design strategy and noted an existing bottleneck155

with intermediate STL representation. The authors of [2] used functions to

insert graded lattices and other cellular structures into models described via

voxels. FRep was considered a possible technique for functionally graded mate-

rial modelling in [22] and [23]. [24], [25] and [26] show how to fill a model with

a cellular structure based on a chosen pattern, but again the models have to be160

converted from FRep to STL to handle 3D printing tasks. Recently, FRep was

used for 3D printing purposes in [7]. The authors demonstrated the pipeline

from FRep modelling to 3D printing with a self-generated G-code file. They

used the marching squares (MS) algorithm [27] and interval arithmetic during

the contouring process. At the same time, other important aspects, such as the165

problem with ambiguous cells in the contouring process and the practicality of

applying adaptive algorithms, were not considered.

3. Contouring the model

In this work, we use the 21⁄2 representation of models or slices to generate

the toolpath of the 3D printer. This representation is based on a layer-by-170

layer description of a model, where each layer consists of one or several disjoint

contours. The number of layers depends on the resolution of the machine and

on the level thickness.

Contouring the geometric models depends on the geometry type. For geo-

metric models with FRep (see equation (1)), the set of contours of an object175
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on level z = z0 can be formally defined as the 2D point set H = {(x, y) |

f(x, y, z0) = 0}. In our text, we denote 2D objects built of contours on level z0

as fz0(x, y) = f(x, y, z0) so that we can use equation (2) with P = (x, y) and

the 2D function fz0 for the point classification-process. It can be seen that the

contour set for the given layer is a zero-level set of a functionally represented180

model in 2D, which is called an implicit curve in some works. Additionally,

note that each level in this formal approach has zero thickness, and intra-level

connectivity is assumed by the AM process. The resolution of the machine in

both the XY and Z directions is important in this process because it affects the

quality of the final result. The resolution in the Z direction defines how many185

slices have to be produced and sent to the machine to define the layers. It should

be noted that there are methods with a variable z-step [28], but in this work,

we only consider methods with a constant z-step. The resolution in XY, on

the other hand, defines the quality of the contours in each layer, which in func-

tionally represented geometry means the quality of the approximation. Higher190

approximation quality requires longer processing times for the approximation

process, which very often makes the contouring process time-consuming.

The topology of the implicit curve defined by the function fz0(x, y) = 0

depends on the function itself, and for models with microstructures, this curve

can contain hundreds, if not thousands, of disjoint contours per layer. The195

goal of FRepCAM, therefore, is to efficiently approximate the set H given the

resolution of the target AM hardware, ensuring that all the contours are included

in the toolpath for the current layer.

3.1. Conventional contour extraction for AM

Conventional methods for extracting the 2D contours of a model defined in200

an implicit form can be classified as follows:

1. Exhaustive enumeration or contour extraction on a regular grid [29],[30],[31].

2. Adaptive subdivision of the space on adjacent cells [32],[33],[34].

3. Surface tracking or numerical continuation [35],[36],[37].
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The methods in the third category essentially perform contour extraction205

based on moving according to implicit surface using piecewise-linear methods

or predictor-corrector methods with incremental partitioning [38]. Continuity-

based methods tend to extract contours by taking into account the tangent

and curvature of implicit curves. It takes a point on the implicit curve as the

starting point and then moves forward at a certain distance along the tangent of210

the implicit curve at the starting point to predict the position of the new point.

Then, the new point is corrected for closing to the curve along the direction of

the gradient of the field defined by the implicit function. In the case of a layer

containing a very large number of contours, it requires finding a seed point

on every single component, which is a tedious task that requires solving the215

problem of component analysis for an implicitly defined curve [39]. Because of

the described limitation, this method will be excluded from discussion. Below,

we discuss the conventional methods from the first two categories.

3.1.1. Contour extraction on a regular grid

The methods of contour extraction on a regular grid, mainly based on the220

marching cubes (marching squares in 2D) algorithm [29], are widely used in

many applications dealing with implicitly defined curves and surfaces.

The basic idea of this approach is to split the contouring domain into a

regular grid, then check the edges of these cells for a sign change in the vertices

and find the points of the target curve or surface. In 2D, there are cells of225

16 types (Figure 2) defined by the sign values in the cell vertices. Fourteen of

these types mean that a cell contains a piece of the resulting contour. In the

implementation of this method, the traversal starts from the bottom left cell.

The traversing direction is from bottom to top and left to right.

The algorithm operates on objects such as line segments and polylines. A230

polyline is an oriented chain of segments. The result of the algorithm is a

set of polylines. These polylines are closed for correct FRep models and a

proper bounding box. FRep model is correct if it is defined by a continuous

function. The bounding box here is a rectangular domain where the regular
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grid is constructed.235

Figure 2: Look-up table for marching squares

The process of contour creation, therefore, is to process the cells and to

connect the resulting segments accordingly. However, two types of cells, 7 and

10, produce ambiguous configurations, which need to be resolved separately.

There are several ways to resolve this issue. For example, in [40], ambiguity is

avoided by local subdivision of ambiguous cells. In this case, however, significant240

extra time can be spent on this splitting process, and the resulting grid is not

regular, which can potentially result in a broken contour and the process going

beyond the calculation tolerance. The second approach to the problem is to

calculate the additional value of the function at the centre of a cell [41], [42].

An example of resolving ambiguity inside cell number 7 is illustrated in Figure245

3. If the function value of the cell centre is positive, then this cell has the type
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of Figure 3a; otherwise, the cell has the type of Figure 3b. This method relies

on scalar field regularity and can lead to an incorrect conclusion in the case that

a field is non-symmetrical with respect to the cell in question.

Figure 3: Variants of ambiguity resolution inside cell number 7

In our method, we approximate the defining function fz0(x, y) with a bilinear250

function:

h(x, y) = fz0(x1, y1)
x2 − x
x2 − x1

+ fz0(x2, y1)
x− x1
x2 − x1

y2 − y
y2 − y1

+

+ fz0(x1, y2)
x2 − x
x2 − x1

+ fz0(x2, y2)
x− x1
x2 − x1

y − y1
y2 − y1

(3)

for the considered cell (Figure 4). Here, (x1,y1) is the lower left and (x2,y2)

is the upper right vertices of the cell. This approach is described in [43] for

3D surfaces. The proposed approximation resolves the ambiguity. It works

better for smooth defining functions. Moreover, this method does not require255

refinement of the grid.

The function h(x, y) is an implicit description of a hyperbola. Its centre has

the following coordinates:

xc =
x2fz0(x1, y1) + x1fz0(x2, y2)− x1fz0(x2, y1)− x2fz0(x1, y2)

fz0(x2, y2) + fz0(x1, y1)− fz0(x1, y2)− fz0(x2, y1)
, (4)

yc =
y2fz0(x1, y1) + y1fz0(x2, y2)− y1fz0(x1, y2)− y2fz0(x2, y1)

fz0(x2, y2) + fz0(x1, y1)− fz0(x1, y2)− fz0(x2, y1)
. (5)

In addition, it can be seen that for ambiguous cells with x1 ≤ xc ≤ x2 and

y1 ≤ yc ≤ y2, two possible configurations of the hyperbola are possible. For260

example, for y = y1, one can obtain x0 ≤ xc or xc ≤ x′0, where the value of the

12



Figure 4: Bilinear approximation of the defining function.

defining function is zero. The first option leads to the “blue” cell configuration

and the second to the “green” configuration (Figure 3). It should be noted that

this approach can also produce the wrong result in the meaning of the true shape

of the model. Nevertheless, it does not require to calculate function values at265

any extra point.

In the context of AM, the parameters for a regular grid are defined by the

target precision of the machine. For example, the precision r defines the minimal

length of the cell in the X or Y direction, and for fused filament fabrication, this

value is 30-300 µm. This means r is the minimal distance that can guarantee270

that two different points will not be merged.

3.1.2. Contour extraction using adaptive subdivision of the space

It is clear that for very small resolution, conventional methods are not effi-

cient because of the necessity to calculate the value of the defining function at

very large number of points. To avoid this limitation, an adaptive subdivision275

is used. The main idea is to increase the resolution locally, i.e., to localize the

areas where f(x, y, z) = 0 and subdivide these areas up to the required precision

to optimize the time by decreasing the number of calculations. The contour ex-

traction for one Z-layer is performed using a marching squares algorithm with
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adaptive subdivision using the quadtree [38].280

The quadtree is built from the root node, which is the bounding box of the

implicit curve. Then, it is divided into four equal regions, which form the child

nodes. Every child node can be recursively divided further.

The process of contour extraction using the quadtree for one Z-layer and for

the whole model is shown in Figure 5(a-d). The equations for the functionally285

defined model for these pictures are presented in Appendix B.

Figure 5: The process of contour extraction using the quadtree

The simplest approach to build an adaptive subdivision is to use the MS

algorithm with rough resolution to understand the topology of the implicit curve.

The MS algorithm checks the sign differences in the corners of the processed

cell for contour detection. However, this criterion is not robust and can miss290

several cases; examples of these are shown in Figure 6 [38], [44].

Another method to identify the cells that need to be subdivided is to use

interval arithmetic (IA). IA is an extension of real arithmetic defined on the set

14



Figure 6: Errors of the marching squares algorithm

of real intervals [45],[46],[47]. In IA, every quantity is represented by an interval

of real numbers. An interval [a, b] is a set of x ∈ R such that a ≤ x ≤ b. During295

functions processing in IA, each quantity is replaced by its interval extension,

and all computations are executed on intervals. There are extensions of the usual

operations (+, −, ×, /) for intervals. These operations guarantee that each

computed interval includes the whole range of function values on the defined

argument range. A more detailed description can be found in Appendix A.300

IA allows us to estimate the upper and lower bounds of the range of the

function values for each cell of the quadtree. The axis-aligned boundaries of

processed quadtree cells are the intervals used as function arguments. The

result of the computation of the defining function in IA is also an interval.

If the upper and lower bounds of the interval are on opposite sides of zero,305

then the defining function changes signs inside the interval. This means that

the processed quadtree cell may contain contours of the curve and should be

divided [48], [33]. An example of an interval estimation for a function with one

variable is shown in Figure 7.

The FRepCAM of the model (a union of spheres) using the IA criteria is310

shown in Figure 8. However, using IA in contour extraction results in the

overestimation of the function interval values, especially if the function includes

a large number of nonlinear operations. As a result, it leads to an increase in

the number of calculations [49].
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Figure 7: An example of an interval estimation. f(x,y,z=const)=0 is the contour (green

color); The estimation of the function value f(x,y,z=const) in the quadtree cell with intervals

X and Y is the calculated interval of F(X,Y,Z=const). F(X,Y,Z=const) is a natural interval

extension for the function f(x,y,z=const).The natural interval extension for a function is the

interval extension with intervals as function arguments and the interval arithmetic operations

performed on them.

3.2. New approach to contour extraction for AM315

So far, IA has been used only in the context in the context of direct slicing

based on FRep [7], [50]. However, using the IA approach with the adaptive

subdivision algorithm has the drawbacks mentioned above (in 3.1.2); therefore,

it is useful to apply an appropriate evolution of IA in FRepCAM, namely, affine

arithmetic (AA). This paper describes the use of revised AA for adaptive sub-320

division of space. Its main purpose is to improve the accuracy of the interval

estimation in comparison to IA. Once more, AA is used as an adaptation crite-

rion in the adaptive subdivision of space with quadtrees.

The main ideas of AA can be found in Stolfi and Figueeirdo’s introduction

[51]. In AA, all quantities are represented in affine form as first-degree polyno-325

mials with coefficients and symbols for unknown real-valued variables. These

variables are independent and are called noise symbols. The affine forms are
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Figure 8: The quadtree construction and the contouring process for one layer of the sphere-

union model with an XY resolution of 0.01 mm using the AA criterion (a) and the IA criterion

(b). All visited quadrants from all stages of the quadtree construction are shown (black lines).

The contour (green line) is built using only cells from the last level of the quadtree. The

look-up table of the MS algorithm is used for contour construction.

constructed for each quantity and operation in the defining function. Then, the

computations are performed with the affine forms of the defining function. This

allows us to obtain an interval estimation of the defining function with more330

accurate ranges than by using interval arithmetic.

A more detailed description can be found in Appendix A. AA was revised in

[52], and several approximations for non-affine operations were improved. Many

applicable approximations were collected in [53]. Furthermore, AA was used for

the purposes of performing spatial enumeration of implicit surfaces (n being the335

number of arguments of the defining function, i.e., the dimension [49]).

The revised affine form of a real-valued quantity x̂ consists of two parts: the
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standard affine part of the length n and the interval part:

x̂ = x0 +

n∑
i=1

xiεi + ex[−1, 1], ex ≥ 0, (6)

where the xis are finite real numbers and the εis are unknown real-valued vari-

ables located within the interval U = [-1;1]. The coefficient x0 is called the340

central value of the affine form x̂, and the coefficients xi are called the partial

deviations. εi are called the noise symbols. ex[−1, 1] is a cumulative error,

which represents the maximum absolute error of non-affine operations. One of

the main constraints of pure AA is that noise symbols increase dramatically

during computations. ex[−1, 1] accumulates the noise symbols that are present345

in pure AA and are not dependent on the input values. This means that the

length of the revised affine form does not exceed the number of input variables

during computation. In the interrogation methods for contouring the implicit

curve, three coordinates of 3D space are used as input variables.

If two quantities x and y are represented in revised affine forms:

x̂ = x0 + x1ε1 + x2ε2 + ...+ xnεn + ex[−1, 1], (7)

ŷ = y0 + y1ε1 + y2ε2 + ...+ ynεn + ex[−1, 1], (8)

then, the affine operation f(x̂, ŷ) ≡ αx̂+βŷ+γ using the revised affine form

can be written as follows:

f(x̂, ŷ) = (αx0+βy0+γ)+

n∑
i=1

(αxi+βyi)εi+(|α|ex+|β|ey)[−1, 1], (α, β, γ ∈ R),

(9)

where α, β, γ are real-valued coefficients; x0, y0 are the central values of the350

revised affine forms x̂ and ŷ, respectively; the coefficients xi are the partial

deviations of the revised affine forms; the εis are the noise symbols; and ex, ey

are cumulative errors.

There is a special tight form of the product of two revised affine forms x̂ and
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ŷ of length n:355

x̂ ∗ ŷ = (x0y0 +
1

2

n∑
i=1

xiyi) +

n∑
i=1

(x0yi + xiy0)εi + exy[−1, 1], (10)

where

exy = exey+ey(|x0|+u)+ex(|y0|+v)+uv− 1

2

n∑
i=1

|xiyi|, u =

n∑
i=1

|xi| v =

n∑
i=1

|yi|.

(11)

In this work, the revised AA was implemented to calculate the adaptation

criterion for quadtree space division. This means that for our defining function

f, we have to obtain its AA version, which we do by replacing all non-linear op-

erations by their AA counterparts with the techniques explained in the relevant

literature discussed above. To define whether a cell needs to be subdivided, we360

calculate its AA function and analyse the interval containing the zero value,

skipping the cells that do not contain it. On the last level of subdivision, we

calculate the defining function value and process the cells in the same way as

MS does. The result of this algorithm is a polyline, which we use as a toolpath

in our direct fabrication process for the given layer. Algorithm 1 is the resulting365

algorithm.

The FRepCAM of the model (union of two spheres) using the AA criterion

is shown in Figure 8. Here, given a resolution of 0.01 mm, we obtained 29781

cells for IA in 250 ms and 11021 cells for AA in 100 ms. IA and AA provide

us with the same contours, yet AA works 2.5 times faster and reduces370

the number of explored cells for this model.

4. Experimental results and a comparison of FRepCAM methods

As we have various criteria for FRepCAM, we have compared models of dif-

ferent complexity from a geometric point of view as well as based on the com-

plexity of the defining function. The models were prepared with our approach375

for direct fabrication, i.e., sliced by using contouring methods, and every con-

tour defined a path for 3D printing hardware. In Table 1, we show different

models with respect to the dimensions of their fabricated versions.

19



Algorithm 1 Contouring with adaptation criteria

1: BuildQuadTree(x0, y0, z0, BoundingBox)

2: Create the topology of the curve using Connected Component Labeling

(CCL) algorithm[54]

3: Calculate the exact values of the implicit curve on the edges of adjacent cells

using numerical methods for solving nonlinear equations (bisection method)

4: procedure BuildQuadTree(x, y, z, CellLength)

5: if CellLength > Precision then

.

Testing Cell: computation of the interval inside the cell based

on the Affine Arithmetic extension of the target function. The

interval is checked for zero.
6: if AdaptationCriterion(x, y, z, CellLength) contains 0

then

. Cell division by 4 cells recursively

7: CellLength / = 2

8: BuildQuadTree(x, y, z, CellLength)

9: BuildQuadTree(x+ CellLength, y, z, CellLength)

10: BuildQuadTree(x, y + CellLength, z, CellLength)

11: BuildQuadTree(x+CellLength, y+CellLength, z, CellLength)

12: else

13: Reject Cell

14: end if

15: else

16: Add Cell as Quadtree Leaf with MS processing

17: end if

18: end procedure . AdaptationCriterion is Affine Arithmetic extension of

target function
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FRepCAM was implemented and tested on a PC with an Intel Core i5-

8250U CPU @1.60 GHz, 1.80GHz, 8 Gb RAM, with multi-threading through380

OpenMP. We used the template-based Boost library [55] for IA and the authors’

implementation of the revised AA [49].

We used algebraic surfaces (Figure 9) along with more complex non-algebraic

surfaces (Figure 10) with procedural microstructures and set-theoretic opera-

tions, which are based on R-functions [10]. The defining functions of the models385

can be found in Appendix B.

Figure 9: Algebraic surfaces

To test contouring with various resolutions for the models presented in Table

1, we used the following values of XY precision: 0.2 mm, 0.1 mm, 0.05 mm,

0.02 mm and 0.01 mm. These values were chosen to reflect the most common

resolutions of AM devices. The resulting timings are shown in Figure 11 and390

Figure 12.

Figure 11 and Figure 12 allow us to see correlations in timings. For a more

accurate comparison of the experimental results, statistics were used. F-tests for

variance and t-tests for mean values were performed. All tests were performed

with a p-value equal to 0.01 and a number of experiments equal to 20. Analysis395

of the plots and related statistics led us to the conclusions below.

It can be seen that for algebraic surfaces with a relatively simple defining

function, the adaptive techniques and conventional methods provide similar

results on a rough resolution (see Figure 11). However, for a finer resolution,

exhaustive enumeration is no longer efficient.400
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Figure 10: Non-algebraic surfaces

For the sphere model and a resolution of 0.2 mm (200 µm), exhaustive

enumeration and adaptive algorithms are the same with respect to time con-

sumption. However, starting from a resolution of 100 µm, adaptive algorithms

perform better. For the slightly complex algebraic model of the decocube, the

exhaustive enumeration algorithm shows the same contouring time as adap-405

tive algorithms until the resolution reaches 50 µm. For the orthocircle model,

exhaustive enumeration works faster than the adaptive algorithm with IA for

resolutions coarser than or equal to 20 µm. Its performance is relatively the

same as that of the adaptive algorithm with revised AA up to a resolution of

50 µm and becomes worse for finer grids.410

For the union of two balls, which is the simplest non-algebraic model consid-

ered, conventional contouring with exhaustive enumeration is faster when the

resolution is above 0.05 mm. With grid sizes of 20 µm and 10 µm, adaptive
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Model Width, mm Length, mm Height, mm

Sphere 9 9 9

Decocube 4 4 4

Orthocircle 4 4 4

Union of two spheres 7 7 5

Cylinder with a lattice 60 60 60

Gear with a lattice 134 134 30

Microstructure 32 32 20

Table 1: Bounding boxes for contouring

methods work better. Note that only one non-algebraic operation is used in this

model, which is the square-root operation. A more complex model of the cylin-415

der with a lattice includes trigonometric functions in its definition in addition to

the square-root operation. The exhaustive enumeration algorithm shows better

results on this model for all considered resolutions. The same conclusions can

be drawn for the microstructure, which uses a lattice with a specific space map-

ping (Algorithm 2), and for the gear model. For all considered resolutions, the420

algorithm with a regular grid works faster. The performance of both adaptive

algorithms is the same.

One additional calculation with a 5 µm resolution was performed for the

cylinder model (Figure 12, bottom plot). It showed that the adaptive algorithm

with IA is the best option in these conditions. It should be noted that such425

computations have a large cost in terms of both time and memory.

Thus, the efficiency of adaptive criteria such as IA and AA increases with

increasing precision of the calculated curve in one layer. Additionally, we can say

that IA and AA work better with algebraic surfaces, especially with quadratic

ones. However, the error of overestimation increases when we use transcendental430

functions or loops for describing complex models. The efficiency of adaptive

contouring techniques appears with high XY resolution.

Our recommendations for using algorithms for contouring functionally de-
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Figure 11: Contouring results for algebraic surfaces

fined 3D objects are summarized in Table 2. Note that the selected threshold

(10 µm, 50 µm) changes depending on the model complexity and its original435

size. It moves to a more accurate XY resolution (smaller step size) with a more
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Figure 12: Contouring results for non-algebraic surfaces

complex or smaller model. This means that with increasing model complex-

ity, the use of adaptive methods become reasonable only with finer accuracy.

Concerning the choice between adaption criteria, the adaptive subdivision with

revised AA is preferred in general.440

Our results and recommendations are applicable to fused deposition mod-

elling (FDM) and direct metal deposition (DMD) printing of complex models.

Both methods (exhaustive enumeration and adaptive algorithms) can be used

until the precision reaches 60 µm. For selective laser sintering and selective laser
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Implicit 3D objects XY resolution
Recommended contour-

ing methods

Algebraic surface with-

out loops or conditions
> 50 µm

exhaustive enumeration or

adaptive algorithms

≤ 50 µm AND >

20 µm

adaptive algorithms are

more preferable

≤ 20 µm only adaptive algorithms

Non-algebraic complex

surfaces
> 10 µm exhaustive enumeration

≤ 10 µm adaptive algorithms

Table 2: Recommended contouring methods for implicit 3D objects

melting (SLS/SLM) and stereolithography (SLA) with digital light process-445

ing (DLP), using adaptive algorithms is preferable due to their high resolution

near 10 µm.

5. The fabrication of the parts

Our test models were fabricated using FDM, DMD and DLP printing pro-

cesses. The open-source project CuraEngine [56] was used for the generation450

of supports, infill and GCODE for our FDM and DMD additive manufacturing

equipment. In general, this software is applied for the FDM printing process;

however, the strategies of FDM printing and DMD printing are different. There-

fore, a specific AM profile was created for the 3D laser-aided direct metal tooling

(DMT) printer Insstek MX-1000. This profile includes the generation of specific455

GCODE commands for managing the feed speed of the metal powder, the gas

shield and the laser beam. Additionally, DMT printing with the stainless steel

metal powder requires printing the shells twice; only after that does the infill

process start. The printed part using the 3D DMT printer Insstek MX-1000

is shown in Figure 13a. The same software was used for the fabrication of the460

gear model using the 3D FDM printer Ultimaker S5 (Figure 13b). The 3D DLP
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printer Wanhao Duplicator 7 was used for the fabrication of the microstructure

model. The raster slices and GCODE for this model were prepared using our

software module in CWS format.

Figure 13: Printed models: the cylinder with lattice (radius 30 mm, height 60 mm) printed

using the 3D DMT printer Insstek MX-1000 (a), the gear (radius 67 mm, height 30 mm)

printed using the 3D FDM printer Ultimaker S5 (b), the microstructure (radius 16 mm,

height 20 mm) printed using the 3D DLP printer Wanhao Duplicator 7 (c).

6. Conclusions465

Direct fabrication, where the toolpath for the hardware is created by omit-

ting the traditional step of conversion into a polygonal representation and sub-

sequently slicing it, allows us to increase the efficiency of using alternative rep-
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resentations in the AM process. In our work, we compare different methods

for FRepCAM, such as using a regular grid with exhaustive enumeration and470

recursive methods based on quadtrees with different adaptation criteria. The

MS algorithm with the CCL algorithm allows us to build a correct topology of

implicit curves. IA and AA can be used as adaptation criteria for improving

the algorithm of contour extraction,but the efficiency of their use increases with

increasing contouring accuracy. Therefore, algorithms based on exhaustive enu-475

meration might have the same efficiency when high precision is not required.

The recommendations given help in choosing the appropriate contouring method

according to the 3D printing technology.

Our work represents one of the first steps in CAM systems for fabricating im-

plicit models directly from their FReps without generating a surface mesh. This480

CAM module will support heterogeneous models on the levels of microstructures

and multiple materials. [57]. For microstructures, one can select a resolution

arbitrarily. Note that practically any resolution can be selected due to the func-

tional nature of the model. In other models, the resolution is dictated by the

given rasterization of the model. For a multi-material model, we detect the num-485

ber of materials and then apply the proposed algorithm to the defining function

of each material separately. In a slice, materials can be deposited appropriately

within their obtained boundaries. Note that within their boundaries, materi-

als may remain constant or vary volumetrically. A non-uniform distribution of

material inside a boundary can be distinguished during the construction of the490

quadtree with a certain accuracy level. This is a direction for future research.
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Appendix A. Interval and Affine Arithmetic

Appendix A.1. Interval Arithmetic495

Denote the interval as I = [a, b] ∈ R; it is a set of real numbers that are

located between two numbers a and b, which are also included in the set: [a, b] :=

{x ∈ R | a ≤ x ≤ b },

a – lower bound of the interval, infI = a;

b – upper bound of the interval, supI = b.500

Interval arithmetic operations:

a+ b = [a+ b, a+ b]

a− b = [a− b, a− b]

a ∗ b = [min {ab, ab, ba, ab},max {ab, ab, bab}]

a/b = a ∗
[1

b
,

1

b

]
for b /∈ 0.

Middle point or centre of the interval:

mid(I) =
a+ b

2
.

Radius of the interval:

rad(I) =
a− b

2
.

Denote the natural interval extension of the function f(x, y, z) as F (X,Y, Z),

where X,Y, Z ∈ R; in accordance with the fundamental theorem of interval

analysis, it can be concluded that:

{f(x, y, z) | x ∈ X, y ∈ Y, z ∈ Z} ⊆ F (X,Y, Z).

Thus, the result of interval estimation F (X,Y, Z) contains a set of values of

the function f(x, y, z) in the cell (X,Y, Z). This fundamental inclusion property

allows the user to calculate the upper and lower bounds of the estimation of the

intervals of function values [45], [58].505

Transcendental functions with arithmetic operations are used in 3D mod-

elling. We can construct the interval extension for most such functions: ex,
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lnx,
√
x, sinx, and cosx. An example of interval extension for the monotonous

decay function is:

e−X = [e−x, e−x].

For other functions, the interval extension can be constructed by dividing

function into monotonic (decay or increasing) intervals [34]:

Xn =


[xn, xn] n odd or x ≥ 0

[xn, xn] n even or x ≤ 0

[0,max(−x, x)] n evenx < 0 < x

To ensure the inclusion property, it is necessary to take into account the

rounding modes of the arithmetic operations, which depend on the types of the

variables. For instance, the Boost library requires selecting the rounding policy

according to the data types used (integer or float) [59]. It is worth noting that

one way to increase the performance of the interval estimation calculation is510

to reduce the number of switches of the rounding mode of the floating-point

unit (FPU). For example, the calculation of the sum of the intervals [a, b] +

[c, d] = [(a+ c), (b+ d)] requires changing the rounding mode (towards +∞

and −∞); however, we can use only one mode using the replacement operation:

(a+ c) = −(−a− c). This leads to an increase in the speed of the calculation,515

because the operation of changing the sign is cheaper than the operation of

changing the rounding mode.

Appendix A.2. Affine Arithmetic

In affine arithmetic, a partially unknown quantity x is represented by affine

forms x̂ (i.e., first-degree polynomials):

x̂ = x0 + x1ε1 + x2ε2 + ...+ xnεn,

where the xi are finite real numbers and the εi are symbolic unknown real-

valued variables located within the interval U = [-1;1]. The coefficient x0 is520

called the central value of the affine form x̂, the coefficients xi are called the

partial deviations, and the εi are called the noise symbols. The components εi
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are independent. On the implementation level, this means that each of them

corresponds to an initialized variable if it was not initialized as an affine combi-

nation of other variables. Let us represent the quantity x with the affine form525

x̂ as above; then, the interval bounds for x will follow x ∈ [x0 − rx, x0 + rx],

where rx =
∑n

i=1 |xi| is called the total deviation of x̂. For estimation of the

quantity x, the same methods are used as for interval arithmetic. The affine

arithmetic extension is constructed for the quantity x via replacement of all

elementary operations and functions by their affine forms. The computations530

are conducted under this affine extension. For the representation of the affine

operation, let us consider two quantities x and y represented by the affine:

x̂ = x0 + x1ε1 + x2ε2 + ...+ xnεn

ŷ = y0 + y1ε1 + y2ε2 + ...+ ynεn.

Then, the operation z between these quantities x and y can be written as

follows:

z = f(x, y) = f(x0 +

n∑
i=1

xiεi, y0 +

n∑
i=1

yiεi) = f∗(ε1, ..., εn), εi ∈ U,

where f∗(ε1, ..., εn) is a function Un → R.

If the values of x are y are partially dependent, then the affine forms of these

quantities have shared noise symbols. This means that the joint interval Z of x535

and y is not a rectangle R = X×Y as in interval arithmetic but is a polygon in

R2. Therefore, the bound intervals of quantities produced in affine arithmetic

can be better than those in interval arithmetic.

If f∗ is linear, then ŷ can be represented easily:

x̂+ ŷ = (x0 + y0) + (x1 + y1)ε1 + ...+ (xn + yn)εn

x̂− ŷ = (x0 − y0) + (x1 − y1)ε1 + ...+ (xn − yn)εn

αx̂ = (αx0) + (αx1)ε1 + ...+ (xn − (αxn)εn, α ∈ R.
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If f∗ is not linear, then an approximated linear function fa for f∗ with

introduced approximated error is used. Every non-affine operation leads to the540

addition of an extra term zN+1εN+1:

ẑ = fa(ε1, ..., εn) + zN+1εN+1 = z0 + z1ε1 + z2ε2 + ...+ znεn + zN+1εN+1,

where fa approximates a non-affine operation, zN+1 is an upper bound on

the absolute magnitude of the approximation error andN is the number of noises

before the considered operation. A new term zN+1εN+1 is used to represent the

difference between f∗ and fa.545

For the computation of the affine arithmetic form, we must find a good affine

approximation fa for each simple non-affine operation f∗. Different approxi-

mation techniques are discussed in [60] for the affine forms of several functions:

Chebyshev, Min-range and Interval approximation.

For example, here is a classic example for multiplication in the AA form [61]:

x̂ŷ = x0y0 +

n∑
i=1

(x0yi + y0xi)εi + zN+1εN+1,

where

zN+1 ≥
∣∣∣ n∑
i=1

xiεi

n∑
i=1

yiεi

∣∣∣, εi ∈ [−1; 1].

In addition, Stolfi and de Figueeirdo suggest introducing an extra noise550

symbol for roundoff errors during calculations.

For a more detailed comparison of IA and AA see [61], section 4. Affine

arithmetic and the dependency problem.

Appendix B. The implicit surfaces tested

Sphere: f = R2 − x2 − y2 − z2, where R = 6.555

Decocube: f =
(
(x2 + y2 − 0.82)2 + (z2 − 1)2

)(
(x2 + z2 − 0.82)2 + (y2 −

1)2
)(

(z2 + y2 − 0.82)2 + (x2 − 1)2
)
− 1.

Orthocircle: f =
(
(x2 + y2− 1)2 + z2

)(
(y2 + z2− 1)2 + x2

)(
(z2 + x2− 1)2 +

y2
)
− a2

(
1 + (x2 + y2 + z2)

)
; a = 0.075, b = 3.
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Union of spheres: f = s1
⋃
s2, where s1 = 22 − x2 − y2 − z2, s1 = 22 − (x−560

2)2 − (y − 2)2 − z2.

Cylinder with lattice:

Figure B.1: FRep tree for the cylinder model

Gear:

Figure B.2: FRep tree for the gear model

Microstructure:
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Algorithm 2 The microstructure model in the HyperFun [62] syntax

1: my model(x[3], a[1]) {

2: R = 16; thickness = 20; l = 0.5;

3: distance = sqrt(x[1]*x[1] + x[2] * x[2]);

4: freqX = 10; freqY = 10; freqZ = 10;

5: sx=sin(freqX*x[1]) - l;

6: sy=sin(freqY*x[2]) - l;

7: sz=sin(freqZ*x[3]) - l;

8: rx=sy & sz;

9: ry=sx & sz;

10: rz=sx & sy;

11: lattice=(rx | ry | rz);

12: BigCylinder = R*R - x[1]*x[1] - x[2]*x[2];

13: SmallCylinder = BigCylinder - thickness;

14: inter = SmallCylinder & lattice;

15: sub = BigCylinder \ SmallCylinder;

16: sub = sub | inter;

17: my model = sub;

18: }
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