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Abstract

The appropriate assessment of threat and safety is important for decision-making but

might be altered in old age due to neurobiological changes. The literature on threat

and safety processing in older adults is sparse and it is unclear how healthy ageing

affects the brain's functional networks associated with affective processing. We mea-

sured skin conductance responses as an indicator of sympathetic arousal and used

functional magnetic resonance imaging and independent component analysis to com-

pare young and older adults' functional connectivity in the default mode (DMN) and

salience networks (SN) during a threat conditioning and extinction task. While our

results provided evidence for differential threat processing in both groups, they also

showed that functional connectivity within the SN – but not the DMN – was weaker

during threat processing in older compared to young adults. This reduction of within-

network connectivity was accompanied by an age-related decrease in low frequency

spectral power in the SN and a reduction in inter-network connectivity between the

SN and DMN during threat and safety processing. Similarly, we found that skin con-

ductance responses were generally lower in older compared to young adults. Our

results are the first to demonstrate age-related changes in brain activation during

aversive conditioning and suggest that the ability to adaptively filter affective infor-

mation is reduced in older adults.
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1 | INTRODUCTION

Healthy ageing is associated with neurobiological changes in the

brain's structural and functional organisation, which impact cognitive

and affective functioning (Burianová et al., 2015; Grady, 2012;

Razlighi et al., 2017). In particular, such age-related changes might

reduce an individual's ability to appropriately assess the emotional

value of a stimulus, which might lead to adverse consequences during

risky decision-making, particularly in contexts of threat and safety

(Huang, Wood, Berger, & Hanoch, 2015; Mikels, Cheung, Cone, &

Gilovich, 2013; Weller, King, Figner, & Denburg, 2019). To identify

age-related changes in threat and safety processing, we used classical

threat conditioning and compared behavioural, physiological, and neu-

ral responses in young and older adults.

Classical threat conditioning paradigms typically compare

responses to conditioned stimuli (CS+) that have been repeatedly
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paired with an aversive unconditioned stimulus (US; e.g., electric

shock, a loud sound, or loss of money) – and therefore come to repre-

sent threat – with responses to conditioned stimuli (CS-) that have

never been paired with a US and therefore come to represent safety.

Threat and safety learning are most commonly assessed by measuring

psychophysiological signals of arousal, such as the skin conductance

response, which indicate the sympathetic nervous system's defensive

response to direct, impending threat. Previous studies investigating

threat conditioning in older adults have shown no age-related differ-

ences in older adults' behavioural or psychophysiological differential

responses to conditioned stimuli beyond a general reduction in

arousal (Battaglia, Garofalo, & di Pellegrino, 2018; LaBar, Cook,

Torpey, & Welsh-Bohmer, 2004; Rosenbaum et al., 2015). However,

the absence of behavioural and psychophysiological differences does

not necessarily imply the absence of neural differences. A wealth of

evidence supports the idea that the brains of older adults compensate

for neural changes and cognitive decline by recruiting additional neu-

ral resources to achieve behavioural performance comparable to

young adults (Burianová et al., 2015; Burianová, Lee, Grady, &

Moscovitch, 2013; Morcom & Johnson, 2015; Reuter-Lorenz &

Lustig, 2005).

In younger adults, the neural activity during a classical threat con-

ditioning paradigm has been shown to involve two patterns associated

with threat and safety respectively (Fullana et al., 2016). The neural

pattern underlying threat includes structures associated with inter-

oception (such as the anterior insula and anterior cingulate cortex)

and somatosensation (such as the secondary somatosensory cortex,

thalamus, and cerebellum). In contrast, the brain activation underlying

safety includes structures associated with stimulus-independent pro-

cesses in the cortical midline (such as dorsal anterior and ventromedial

prefrontal cortices, posterior cingulate and retrosplenial cortices) and

temporo-parietal regions (such as the hippocampus, inferior and mid-

dle temporal cortices, inferior parietal cortex, and precuneus), as well

as structures associated with somatosensation (such as the primary

somatosensory cortex and posterior insula).

These neural correlates of threat and safety processing overlap

with two central large-scale brain networks, the salience network

(SN) and default mode network (DMN; Fullana et al., 2016; Marstaller,

Burianová, & Reutens, 2017). While the SN makes interoceptive pre-

dictions about homeostatically relevant (i.e., salient) internal or exter-

nal stimuli (Seeley et al., 2007; Menon & Uddin, 2010; Uddin, 2015;

Barrett & Simmons, 2015), the DMN provides and maintains context

through the integration of abstract, transmodal information (Hasson,

Chen, & Honey, 2015; Margulies et al., 2016; Marstaller et al., 2017;

Murphy et al., 2018; Smith, Mitchell, & Duncan, 2018, 2019).

Together, the SN and DMN are thought to form a unified allostatic

system, in which cognitive context constrains interoceptive predic-

tions about the physical consequences of stimuli and actions

(Barrett, 2017; Kleckner et al., 2017). The interaction between the SN

and DMN shapes how stimuli are evaluated, responded to, and experi-

enced emotionally. The available evidence suggests that in the healthy

young adult brain, the interaction between the SN and DMN is essen-

tial for the acquisition of evaluative responses to threat and safety.

Yet, it is unclear whether and how the brain's affective responses are

altered during healthy ageing.

Many neuroimaging studies have demonstrated that healthy age-

ing is associated with decreased functional connectivity in the SN and

DMN (Marstaller, Williams, Rich, Savage, & Burianová, 2015; Putcha,

Ross, Cronin-Golomb, Janes, & Stern, 2016; Tomasi & Volkow, 2012)

and that this loss of connectivity is associated with reduced perfor-

mance on cognitive tasks, such as executive functioning or long-term

memory retrieval (Damoiseaux et al., 2008; Grady, St-Laurent, &

Burianová, 2015; Onoda, Ishihara, & Yamaguchi, 2012). Applied to

threat and safety processing, this body of evidence suggests that age-

related changes in SN and DMN connectivity might be accompanied

by changes in threat and safety processing.

Given the lack of neuroimaging studies, it is unclear whether pre-

vious behavioural findings are the result of neural compensation or

reflect the absence of neural decline. Therefore, the goal of this study

was to compare brain activity during threat and safety processing in

healthy young and older adults using a classical threat conditioning

and extinction paradigm. Based on the aforementioned studies, which

show no behavioural differences between the two age groups, we

expected to find comparable behavioural and psychophysiological

responses in older and younger adults. Based on the evidence that

healthy ageing is associated with reduced connectivity within the SN

and DMN (He et al., 2014; Staffaroni et al., 2018), we further hypo-

thesised that older adults would show weaker connectivity in those

networks during threat and safety processing respectively. Finally, in

line with the idea of compensation as behavioural equivalence

through neural divergence, we expected that older adults would pro-

vide evidence for compensatory recruitment. Given that previous

studies of healthy ageing most frequently report compensation in

frontal regions (Burianová et al., 2013, 2015; Cabeza, Anderson,

Locantore, & McIntosh, 2002; Reuter-Lorenz & Lustig, 2005), we

expected to find some evidence of compensatory recruitment in

regions in medial frontal and anterior cingulate cortices of older com-

pared to younger adults for threat and safety processing.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-eight older, right-handed adults with normal or corrected to

normal vision took part in the experiment after giving written consent.

All participants self-identified as native speakers of English. The study

was approved by the Human Ethics Research Committee of the Uni-

versity of Queensland. Five data sets had to be excluded from the

analysis because of excessive movement (two data sets), incidental

findings (two data sets: macular degeneration and empty sella syn-

drome), and trauma, that was not disclosed during screening but after

data acquisition (one data set: experience of terrorist attack). The final

data set used in the analysis contains data from 23 participants (age

M = 70.5 years, SD = 7.4 years, range = 59–83 years; 13 females; Mini

Mental State Exam, M = 29.4, SD = 1.0; Folstein, Robins, &
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Helzer, 1983). As a control group, 23 data sets of young adults (age

M = 26.2 years, SD = 3.5 years, range = 21–32 years; 12 females)

were selected from a previously published study, which used the same

experimental paradigm and acquired data using the same equipment

and procedures (Marstaller et al., 2017).

2.2 | Procedure

This experiment follows the procedure described in Marstaller

et al. (2017). Participants took part in a partially reinforced, differential

threat conditioning experiment with repeated conditioning and extinc-

tion blocks (A-B-A-B paradigm). During each block, two visual stimuli,

a black triangle or a black circle, served as conditional stimuli (CS) and

were repeatedly presented in a randomised order. Each type of block

(conditioning or extinction) was associated with a different back-

ground colour (blue or orange) and the association was randomised

across participants. During the task, participants were asked to iden-

tify the stimuli by pressing one of two buttons with the second and

third digits of their right hand. One of the two stimuli (CS+) was paired

with an unconditional stimulus (US) during the first and third block

(CON) but not the second and fourth block (EXT), while the other

stimulus (CS-) was never paired with the US.

Each block started with 15 sec of background presentation to

allow the electro-dermal response to settle and the participants to

habituate. During each experimental block, 20 stimuli (10 CS+, 10 CS-

) were presented for 3 sec and followed by 15 sec of background.

Two colours, blue and orange, served as backgrounds and were ran-

domly associated with each experimental block. All stimuli were pres-

ented in a randomised order using Presentation software (v.20,

Neurobehavioural Systems Ltd, https://www.neurobs.com/) and pro-

jected onto a screen, which could be viewed with a mirror attached to

the head coil.

Sixty percent of CS+ presentations co-terminated with the US,

which consisted of 50 ms transcutaneous electrical stimulation using

two pre-gelled carbon snap electrodes attached to the right wrist

(EL508, Biopac Systems, Inc. https://www.biopac.com). Prior to scan-

ning, the stimulation voltage was adjusted to individual tolerances fol-

lowing established procedures to ensure that stimulation was highly

uncomfortable, but not painful (LaBar, Gatenby, Gore, LeDoux, &

Phelps, 1998). Stimulation was administered using a STIMISOC isola-

tor connected to a STM100C stimulator, which was controlled by a

MP150 (Biopac Systems, Inc.). In addition to the procedure described

in Marstaller et al. (2017), after each experimental block, older partici-

pants were asked to verbally provide a shock expectancy rating on a

scale from 0 to 100 for the CS+ and CS- (see Figure 1a).

2.3 | Psychophysiology acquisition and analysis

Electrodermal activity was recorded during neuroimaging and digitised

at a sampling rate of 1 kHz with 16-bit resolution using a Biopac

MP150 system (Biopac Systems, Inc.). Electrodermal activity was

measured on the medial phalanges of the index and middle fingers of

the participant's left hand using pre-gelled carbon snap electrodes

(EL508, Biopac Systems, Inc.), amplified and low-pass filtered (0.1 Hz)

using an EDA100C amplifier (Biopac Systems, Inc.).

Data were downsampled to 1 kHz and analysed using a custom

Python (v.3.6, https://www.python.org/) script using the Neurokit

module (https://neurokit.readthedocs.io). The electrodermal data

were analysed using the cvxEDA module (https://github.com/lciti/

cvxEDA). cvxEDA uses a convex optimization approach to model the

electrodermal activity of the recorded skin conductance response

(SCR) and to derive estimates for phasic sudomotor nerve activity

(SNA), tonic changes, and noise (Greco, Valenza, Lanata, Scilingo, &

Citi, 2016). As an indicator of arousal, we computed the maximum

SNA estimate for each non-reinforced stimulus' SCR in the time

F IGURE 1 Description of the paradigm and analysis pipeline.
(a) The figure shows the threat conditioning and extinction task, in
which participants are presented with circles or triangles that are
either reinforced (CS+) or not (CS-) during the conditioning phase
(CON), but never during the extinction phase (EXT). The different
phases are marked by separate background colours (blue and orange).
(b) The figure shows the analysis pipeline for fMRI and SCR data and
includes the analysis steps and tools (in italics) used for each step.
ICA, independent component analysis; IC, independent component;
GLM, general linear model; BR, back-reconstruction; FNC, functional
network/internetwork connectivity; PSA, power spectrum analysis
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window 1–4 sec post onset (Lockhardt, 1966). SNA values larger than

30 were considered unrealistic and excluded from the analysis

resulting in 47% and 39% of missing data in the older and young adult

group respectively. Missing average SNA values were imputed using

multivariate imputation by chained equations as implemented in the

“mice” package (v.3.4) in RStudio (v.1.2.1335) using predictive mean

matching with 20 iterations of 100 imputations (Azur, Stuart,

Frangakis, & Leaf, 2011; van Buuren & Groothuis-Oudshoorn, 2011).

One dataset in the older adult group was lost due to technical error.

The final data for the skin conductance analysis included 22 older and

23 young adults.

2.4 | MRI acquisition and preprocessing

Images were acquired with a Siemens Magnetom Trio 3T scanner and

a 32-channel head coil at the Centre for Advanced Imaging at the Uni-

versity of Queensland. For each participant, a T1-weighted volumetric

anatomical MRI was acquired with the following parameters:

176 slices sagittal acquisition MP2-RAGE; 1 mm3 isotropic volume;

repetition time (TR) = 4,000 msec; echo time (TE) = 2.89 msec; flip

angle = 6�; FOV = 256 mm, GRAPPA acceleration factor = 3. Func-

tional images were acquired using a T2*-weighted echo-planar image

sequence with the following parameters: 45 slices;

2.5 × 2.5 × 2.7 mm voxel size; TR = 3,000 msec; TE = 30 msec;

FOV = 192 mm; flip angle = 90�. Functional images were acquired in

four runs, each corresponding to one experimental block.

Brain activation was assessed using the blood oxygenation level

dependent (BOLD) effect (Ogawa, Lee, Kay, & Tank, 1990). For func-

tional analysis, T2*-weighted images were preprocessed with Statisti-

cal Parametric Mapping software (SPM8; http://www.fil.ion.ucl.ac.uk/

spm). Images were realigned to the mean image for head-motion cor-

rection and then spatially normalised into standard stereotaxic space

with a voxel size of 2 mm3 (Montreal Neurological Institute template)

using segmented white and grey matter T1 maps. Head movement

and rotation in the three dimensions did not exceed 2 mm or 2� and

no dataset had to be excluded from analysis. Finally, the functional

images were spatially smoothed with an 8-mm full width half maxi-

mum Gaussian kernel.

2.5 | Independent component analysis

Following preprocessing, functional networks were identified with

group independent component analysis (ICA) using the Group ICA of

fMRI Toolbox (GIFT; http://mialab.mrn.org/software/gift/index.html;

see Figure 1b). ICA is a method of blind source separation, which

identifies source signals (indepentend components) in the fMRI data

by maximising the signals' statistical independence. The resulting inde-

pendent components (ICs) are defined as functional networks, in

which neural activity operates in concert to generate a statistically

independent signal. Each IC consists of a timecourse and a 3D map.

The 3D map indicates the spatial extent of the network while the

timecouse indicates the strength of the network signal (i.e., functional

connectivity) in the data across time. To assess task-relatedness, each

IC's timecourse can be analysed with a general linear model in the

same manner applied in mass-univariate analysis.

Individual images were first normalised to their mean intensity

and then concatenated across time. The optimal number of ICs was

estimated to be 51 using the minimum description length algorithm

(Li, Adali, & Calhoun, 2007). After data reduction with principal com-

ponent analysis, 51 ICs were identified using the infomax algorithm

(Bell & Sejnowski, 1995). To estimate the stability of ICs, this analysis

was repeated 50 times using ICASSO (Hirnberg, Hyvärinen, &

Esposito, 2004). Only those ICs with a stability index larger than 0.95

were selected for further analysis. Finally, back-reconstruction was

applied to estimate the spatial maps and time courses of each IC for

each participant using dual regression (Calhoun, Adali, Pearlson, &

Pekar, 2001).

Next, two ICs of interest were identified based on their overlap

with the SN and DMN target networks identified in Laird et al. (2011)

as ICNs 4 and 13. Overlap between target networks and ICs was cal-

culated using the spatial involvement measure implemented in

ICN_atlas (Kozák, van Graan, Chaudhary, Szabó, & Lemieux, 2017).

The selected ICs will be referred to as salience network component

(SN-IC), and default-mode network component (DMN-IC) in the

remainder of the report.

To identify differences in the task-relatedness of ICs, a general

linear model was fitted to each IC's time course. Subject-specific

regressors for CS+ and CS- were created for each of four imaging runs

in SPM8 using convolution of a canonical hemodynamic response

function with stick functions at the stimulus onsets. The beta-

estimates were compared using a 2 × 2 × 2 analysis of variance

(ANOVA) with the within-subjects factors stimulus (CS+, CS-) and

phase (conditioning, extinction), and the between-subjects factor

group (young, older) separately for each IC of interest.

To identify group differences in network recruitment as well as

recruitment of potentially compensatory areas in older adults, we

also conducted non-parametric tests based on the t-statistics for

comparisons of each IC of interest between young and older adults.

For each session, back-reconstructed individual maps of the SN-IC

and DMN-IC were compared using FSL's randomise (FMRIB Soft-

ware Library, v 5.0.10; https://fsl.fmrib.ox.ac.uk; Winkler, Ridgway,

Webster, Smith, & Nichols, 2014) with 5,000 permutations and

corrected for multiple comparison on the cluster level using family-

wise error correction (see Figure 2 for results, maps are thresholded

at p < .001 FWE).

Finally, in order to assess the interaction between the SN-IC and

DMN-IC, we computed the functional network connectivity as the

correlation between the two networks' time courses for each subject's

back-reconstructed time course (Jafri, Pearlson, Stevens, &

Calhoun, 2008). We further assessed the normalised spectral power

in each back-reconstructed time course across six frequency bins

(Garrity et al., 2007). Both measures, functional network connectivity

and spectral power, were computed using GIFT and compared

between groups for each experimental phase separately.
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3 | RESULTS

3.1 | Expectancy ratings

Older adults rated their expectancy of receiving a US following the CS

+ (Mcond = 68.13, SDcond = 21.0; Mext = 13.98, SDext = 26.0) and the

CS- (Mcond = 4.93, SDcond = 11.1; Mext = 3.85, SDext = 11.4) following

each phase. Two paired t-tests comparing expectancy ratings for the

CS+ and CS- following conditioning and extinction showed that after

conditioning older adults were correctly expecting the US following

CS+ but not CS-presentations (t[26] = 12.77, p < .001, d = 2.457)

whereas their expectancy ratings did not differ significantly between

conditioned stimuli after extinction (t[26] = 1.97, p = .06, d = .378; see

Figure 2a).

3.2 | Response times

A 2x2x2 analysis of variance of response times with within-subjects

factors stimulus (CS+, CS-) and phase (conditioning, extinction), and

between-subjects factor group (younger, older adults) resulted in sig-

nificant main effects of stimulus (F(1,43) = 6.7, p = .01, ηp
2 = .133) and

phase (F(1,43) = 6.5, p = .01, ηp
2 = .129). The factor group almost met

the significance criterion (F(1,43) = 3.5, p = .07, ηp
2 = .073). No inter-

actions were significant (all p > .05). Together, these results show that

participants responded faster during conditioning than during extinc-

tion but slower in response to CS+ than to CS- (see Figure 2b).

3.3 | Skin conductance responses

A 2x2x2 analysis of variance of SNA estimates with within-subjects

factors stimulus (CS+, CS-) and phase (conditioning, extinction), and

between-subjects factor group (younger, older adults) resulted in a

significant main effects of group (F(1,43) = 5.1, p = .03, ηp
2 = .107) and

stimulus (F(1,43) = 5.9, p = .02, ηp
2 = .12). The factor phase almost met

the significance criterion (F(1,43) = 3.5, p = .07, ηp
2 = .08). No interac-

tions were significant (all p > .05). Together, these results show that

young adults produced higher overall skin conductance responses and

provide evidence for successful differential conditioning in both

groups (see Figure 2c).

3.4 | Independent component analysis

The 2x2x2 ANOVA of the beta-estimates for the DMN-IC showed a

significant main effect of stimulus (F(1,54) = 20.7, p < .001, ηp
2 = .277).

No other effects or interactions were significant (all p > .05; see

Figure 2a). A follow-up t-test showed that connectivity in the DMN-

IC was significantly lower in response to the CS+ than the CS-

irrespective of phase or group (t[54] = 4.6, p < .001).

The 2x2x2 ANOVA of the beta-estimates for the SN-IC showed

significant main effects of stimulus (F(1,54) = 5.7, p = .02, ηp
2 = .096)

and group (F(1,54) = 4.9, p = .03, ηp
2 = .082). The factor phase almost

met the significance criterion (F(1,54) = 3.1, p = .09, ηp
2 = .054). No

other effects or interactions were significant (all p > .05; see

Figure 2b). Follow-up t-tests showed that young adults engaged the

SN-IC more strongly than older adults (t[54] = 2.2, p = .03) and that

both groups showed greater SN-IC connectivity in response to the CS

+ compared to the CS- (t[54] = 2.4, p = .02).

The group comparison of individual back-reconstructed compo-

nents revealed stronger functional connectivity of the DMN-IC with

occipital cortex in older adults and posterior cingulate cortex and

precuneus in young adults. The group comparison further showed

stronger functional connectivity of the SN-IC with the anterior cingu-

late cortex, insula, and thalamus in young compared to older adults

(see Figures 3 and 4).

A 2 × 2 ANOVA of functional network connectivity between the

DMN-IC and the SN-IC with within-subjects factor phase (condition-

ing, extinction) and between-subjects factor group (younger, older

adults) resulted in a significant main effect of group (F(1,45) = 42.5,

p < .001, ηp
2 = .321). The factor phase almost met the significance

F IGURE 2 Behavioural and psychophysiological responses. The figure shows the means (and 95% confidence intervals) for expectancy
ratings (a), response times (b), and the phasic component of the skin conductance response (c) for each combination of stimulus, phase, and group.
CON, conditioning phase; EXT, extinction phase; STIM, stimulus; O, older adults; Y, young adults; SNA, sudomotor nerve activity
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criterion (F(1,45) = 3.9, p = .05, ηp
2 = .041). No other effects or inter-

actions were significant (all p > .05). The mean correlation between

the DMN-IC and SN-IC was −.25 (SD = .26) during the conditioning

and − .35 (SD = .3) during the extinction phases for older adults com-

pared to −.59 (SD = .26) during the conditioning and − .61 (SD = .25)

during the extinction phases for younger adults).

Two-sided t-tests (Bonferroni adjusted p-values for multiple com-

parisons) of the spectral power across time bins for each network fur-

ther revealed significantly higher power in the SN-IC (but not the

DMN-IC) for younger, compared to older adults, in the low frequency

bins during conditioning (0–0.08 Hz: t(44) = 3.9, p = .009;

0.08–0.16 Hz: t(44) = 4.1, p = .005) and extinction (0–0.08 Hz: t

F IGURE 3 Group-ICA results of
the default mode network. The
figure shows the connectivity
pattern best matching the default
mode network on the left. The
graphs on the right show the mean
(95% confidence intervals) beta-
estimates of the IC time courses for
each combination of stimulus, phase,

and group. The brain image on the
bottom right shows the results of the
voxel-wise comparison of the back-
reconstructed connectivity maps
between younger (red) and older
adults (blue) (thresholded at p < .001
FWE). CON, conditioning phase;
EXT, extinction phase; STIM,
stimulus; O, older adults; Y, young
adults

F IGURE 4 Group-ICA results of
the salience network. The figure
shows the connectivity pattern best

matching the salience network on
the left. The graphs on the right
show the mean (95% confidence
intervals) beta-estimates of the IC
time courses for each combination of
stimulus, phase, and group. The brain
image on the bottom right shows the
results of the voxel-wise comparison
of the back-reconstructed
connectivity maps between younger
(red) and older adults (blue)
(thresholded at p < .001 FWE). CON,
conditioning phase; EXT, extinction
phase; STIM, stimulus; O, older
adults; Y, young adults
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(44) = 3.5, p = .03; 0.08–0.16 Hz: t(44) = −3.1, p = .13) phases. The

results further show significantly higher power in both networks

across both experimental phases for older, compared to younger,

adults in the high frequency bins (> .16 Hz, all p < .05).

4 | DISCUSSION

The aim of this study was to investigate age-related differences in

behavioural, psychophysiological, and neural responses to threat and

safety, as well as to test for evidence of compensatory recruitment in

older adults. All three types of data provided evidence of differential

responding to threat and safety across both age groups. However, in

contrast to young adults, older adults showed a general reduction in

skin conductance responses and in SN connectivity irrespective of

stimulus or experimental phase. Our results further showed age-

related changes in the SN, but not the DMN, including reduced con-

nectivity in the anterior cingulate cortex, insula, and thalamus, and

reduced power in the low frequency spectrum in older, compared to

younger, adults. In addition, our results demonstrate that connectivity

in the SN and DMN is less strongly anticorrelated in older, compared

to younger, adults. Our results provide no evidence of compensatory

activity in older adults.

The psychophysiological pattern of our results is in line with find-

ings of previous studies, which report overall reduced skin conduc-

tance responses in older compared to young adults (LaBar

et al., 2004; Rosenbaum et al., 2015). LaBar et al. (2004) further

showed that skin conductance responses in older adults are depen-

dent on contingency awareness. Post-run expectancy ratings suggest

that all older participants in this study were aware of the differential

nature of the stimulus contingencies. This result suggests that contin-

gency awareness might not be the only reason for the reduction in

skin conductance responses in older adults. However, a large propor-

tion of our electrodermal data was missing and had to be imputed.

Hence, while showing the same pattern found previously, our results

do not provide strong evidence against the importance of contingency

awareness. Instead, our results highlight the need for further studies

investigating the impact of contingency awareness on skin conduc-

tance responding during threat conditioning in older adults.

One potential explanation for the reduction in skin conductance

responses is based on our fMRI data. The neuroimaging results dem-

onstrate reduced task-related connectivity in the SN in older adults; in

particular, a reduction in the connectivity between the thalamus and

the anterior cingulate cortex. Previous studies have established that

the anterior insula is engaged in the perception and anticipation of

salient stimuli whereas the anterior cingulate cortex is more strongly

associated with behavioural adaptation (Ham, Leff, de Boissezon,

Joffe, & Sharp, 2013; Holtz, Pané-Farré, Wendt, Lotze, &

Hamm, 2012; Lovero, Simmons, Aron, & Paulus, 2009; Menon &

Uddin, 2010). In addition, research shows that SN connectivity modu-

lates the degree to which autonomic responses are consciously expe-

rienced as arousal (Medford & Critchley, 2010; Xia, Touroutoglou,

Quigley, Feldman Barrett, & Dickerson, 2017). Given this role of the

SN in predicting and experiencing salient afferent inputs, our results

suggest that older adults might prepare less for the US and, therefore,

show a reduced sympathetic response to the CS. This interpretation

receives further support from findings which show that ageing is asso-

ciated with a shift from proactive to reactive cognitive control

(Paxton, Barch, Racine, & Braver, 2008), and a reduction in attentional

orienting (Bollinger, Rubens, Masangkay, Kalkstein, & Gazzaley, 2011;

Hämmerer, Li, Müller, & Lindenberger, 2010), both of which have

been shown to be related to the SN (Dosenbach et al., 2006; Nelson

et al., 2010).

Interestingly, our results do not show a significant group differ-

ence in task-related DMN connectivity. Previous studies generally

report an inability of older adults to decrease activity in the DMN dur-

ing externally directed tasks (Brown, Hakun, Zhu, Johnson, &

Gold, 2015; Grady, Grigg, & Ng, 2012; Park, Polk, Hebrank, &

Jenkins, 2010; Sambataro et al., 2010; Staffaroni et al., 2018). While

our data show stronger decreases in DMN connectivity for young

compared to older adults, the difference was not significant. However,

our results do show significantly lower decreases in DMN connectiv-

ity in response to safety (CS-) compared to threat stimuli (CS+). These

results are in line with previous findings that young adults engage the

DMN during safety processing (Marstaller et al., 2017; Zidda

et al., 2018).

Finally, our results show that in older adults, connectivity within

the DMN is significantly less anticorrelated with connectivity within

the SN. In addition, our results show that low frequency BOLD-

related power in functional connectivity is reduced in older, compared

to young, adults in the SN, but not the DMN. Together, these findings

suggest that during threat and safety responding older adults do not

engage the SN to the same degree as young adults and that this lower

SN activity is not due to the DMN or the interaction between the

DMN and SN.

Taken together, our results highlight important age-related

changes in threat and safety processing. A central idea in current cog-

nitive neuroscience is that prediction of afferent signals is central to

the brain's computational architecture (Bubic, von Cramon, &

Schubotz, 2010; Hoemann, Gendron, & Barrett, 2017). In the context

of threat and safety processing, the predictive framework suggests

that the anticipation of affective values depends on interoceptive and

visceromotor sensory predictions computed using a hierarchical, inter-

nal model of the body, which is constantly updated via the resulting

prediction errors (Barrett, 2017; Barrett & Finlay, 2018; Barrett &

Simmons, 2015; Kleckner et al., 2017). In particular, research increas-

ingly suggests that the DMN constitutes the central backbone of such

an internal model, whereas the SN acts as a filter that weighs predic-

tion errors based on the prediction errors' relevance for allostasis

within the current context (Barrett, 2017; Hasson et al., 2015; Mar-

gulies et al., 2016). Following this view, our findings that older adults

under-activate the SN relative to young adults during threat

processing can be interpreted as a reduction of their ability to use pre-

diction errors to adjust the internal predictive model to the current

context. This age-related reduction in the ability to adaptively filter

prediction errors and to adjust the internal predictive model might

20 MARSTALLER ET AL.



then lead to a reduction in the processing of aversive and appetitive

stimuli as well as to reduction in cognitive flexibility (Braver

et al., 2001; Chowdhury et al., 2013; Eppinger, Hämmerer, & Li, 2011;

La Corte et al., 2016; Onoda et al., 2012; Radulescu, Daniel, &

Niv, 2016; Touroutoglou, Zhang, Andreano, Dickerson, &

Barrett, 2018; van de Vijver, Ridderinkhof, & de Wit, 2015). Ulti-

mately, these changes in SN connectivity might be caused by neuro-

chemical changes in dopamine and serotonin levels, which affect both

SN and DMN activation and play a central role in appetitive and aver-

sive prediction error processing (Chowdhury et al., 2013; Conio

et al., 2019; Dang, Donde, Madison, O'Neil, & Jagust, 2012; Li &

Rieckmann, 2014; Nagano-Saito, Liu, Doyon, & Dagher, 2009;

Pignatelli & Bonci, 2015). Finally, the reduced ability of older adults'

brains to adapt to fluctuating affective values in the environment

could potentially explain the altered emotional responses commonly

observed in older adults, such as the positivity effect (Mather &

Carstensen, 2005; Reed, Chan, & Mikels, 2014).

In summary, our results are the first to show age-related differ-

ences in brain activation during aversive conditioning. In particular,

our findings highlight the role of the SN in the processing of aversive

prediction errors and sympathetic nervous system responses. How-

ever, this study can only provide a starting point and further research

into the ultimate causes of age-related changes in SN connectivity,

prediction error processing, and aversive conditioning are necessary.
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