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Abstract 

Automatic animation synthesis has attracted 

much attention from the community. As most 

existing methods take a small number of 

discrete expressions rather than continuous 

expressions, their integrity and reality of the 

facial expressions is often compromised. In 

addition, the easy manipulation with simple 

inputs and unsupervised processing, although 

being important to the automatic facial 

expression animation applications, was 

relatively less concerned. To address these 

issues, we propose an unsupervised continuous 

automatic facial expression animation approach 

through Action Units transfer in the latent space 

of Generative Adversarial Networks (GAN). 

The expression descriptor depicted with Action 

Units vector is transferred into the input image 

without the need of labelled pairs of images, 

their expressions and further network training. 

We also propose a new approach to quickly 

generate input image’s latent code and cluster 

the boundaries of different Action Units 

attributes with their latent codes.  Two latent 

code operators, vector addition and continuous 

interpolation, are leveraged for facial expression 

animation simulating align with the boundaries 

in the latent space. Experiments have shown that 

the proposed approach is effective on facial 

expression translation and animation synthesis. 

Keywords: Facial expression, Facial 

animation, Action Units, Generative 

Adversarial Networks, Latent code encoding 

1. Introduction 

Facial expression animation is one of the 

powerful ways to insert the personalities into the 

computer generated characters [1].  It has 

created big impacts on applications in movie 

and other creative industries. The pioneering 

research of facial expression animation can be 

traced back to the work of Frederic I. Parke [2] 

in 1972.  In the past decades, the facial 

expression animation research has been much 

conducted in computer graphics community [3], 

with well-known approaches proposed such as 

those based on mass-and-spring model [41] and 

 

Figure 1: Examples of facial expression animation generated automatically by our approach. Each row demonstrates 

an animation from the neutral to happy expressions. 



2D/3D morphing [42]. It has however received 

great attention in computer vision community in 

recent years because of the advance and success 

of deep learning techniques [4].  

One of the challenging research topics on facial 

expression animation is to automate the process 

without manual intervention. Due to the 

diverseness of appearance from person to 

person, the same type of face expression such as 

happiness consists of an irregular structure, 

which makes its representation difficult. The 

development of CNN (Convolutional Neural 

Network) [5] and GAN (Generative Adversarial 

Networks) [6] has brought facial synthesis great 

promotion as they can dig deep image feature 

and generate high-reality fake images. Recently, 

the technology has been successfully applied to 

image-to-image translation to change the 

attributes of face, including gender, hair, age, 

and also facial expressions [7][8][9][10][11].   

Most of the translation methods take the 

message-based approach [12] to describe facial 

behaviour and classify facial expressions into 7 

basic emotions: anger, disgust, fear, happiness, 

sadness, surprise and contempt [13].  However, 

a discrete and low number of facial expression 

categories cannot fully depict the complex 

human expression of emotions.  

According to the studies of psychologists, facial 

expressions are caused by a set of anatomically-

motivated facial muscles. Paul Ekman and 

Wallace Friesen [14] proposed the Facial Action 

Coding System (FACS). In the system, facial 

expressions are decomposed into Action Units 

(AU) which are anatomically related to the 

contractions of specific facial muscles.  Facial 

expressions can then be comprehensively 

described as a combination of different AUs. 

There are more than 30 AUs related to the 

contraction of specific facial muscles, and these 

AUs are diverse with different intensities. In 

fact, facial AUs can be combined into more than 

7000 expressions. To this end, AU is more 

precise to describe facial expression than the 

message-based approaches. Fig.2 shows AU 

illustrations exampled by Ekman himself. 

Taking advantages of FACS’s powerful 

representation of expression and addressing the 

limitations of the message-based approach, we 

present a GAN based approach in this paper for 

automating the facial expression animation 

through anatomic muscle actions. Our approach 

is inspired by the success of StyleGAN [15], 

which generates facial images from latent code 

with unsupervised separation of high-level 

attributes. We synthesize AU properties in the 

latent space, by leveraging the latent code to 

embed attributes of face. Our approach is able 

to generate impressive continuous facial 

expressions, as shown in Fig. 1 Moreover, it is 

unsupervised and does not require the pairs of 

face images of the same person in different 

expressions or the expression annotation.  Our 

contributions can be summarized as follows: 

 A convolutional GAN based continuous 

facial expression animation synthesis 

framework is proposed to transfer AU 

description into facial images without 

requiring face alignment and extra network 

training. To measure the difference of AU 

attributes encoded in the latent space, we 

decouple the entangled attributes with 

subspace projection. 

 A latent code encoding model is proposed 

to increase the convergence rate. We use the 

deep CNN network, VGG [40] to derive 

initial latent code. The VGG features are 

also leveraged to construct the loss function 

so that less iteration is required than the 

conventional pixel-wised distance methods. 

 An approach based on two latent code 

operators is proposed for AUs transferring 

and continuous facial expression animation. 

Since linear subspaces align with different 

 

Figure 2: Facial Action Units illustrations acted by Ekman 

[14]. 12 main AUs are listed with the essential muscle action 

explanations. 



AUs attributes emerging in the latent space, 

AUs boundaries are built for adding vector 

operator. Since the continuous facial 

expression changes according to linear 

latent codes, we leverage the interpolation 

operator based on AU transferring. 

2. Related Work 

Facial expressions play a major role in non-

verbal communication, which carry two-thirds 

of human emotion [16]. In the span of time, 

significant efforts have been devoted to the 

development of automatic facial expression 

animation which can be treated as an unpaired 

image-to-image translation problem. They can 

be broadly grouped into two categories: the 

geometry-based and the vision-based. 

2.1 Geometry-based methods 

Traditionally, the facial animation has been 

mainly addressed from a graphical perspective 

in which a 3D Morphable Model (3DMM) is 

first fitted to image and then re-rendered with a 

different facial expression [17]. The model is 

typically trained using spatially aligned 3D 

scans dataset [18][19][20]. These approaches 

usually involve three steps: image pre-

processing, 3D modelling and expression 

fitting. As the facial attribute could be sensitive 

to affine transform and illumination variation, 

the pre-processing steps of face detection and 

alignment with landmarks [21][22] is required. 

3D modelling then fits a 3D shape to match the 

input image with 3DMM method [23][24]. 

Finally, the expression coefficients are adjusted 

to perform animation followed with image or 

video rendering [25][26]. 

 

These geometry-based methods can provide 

high quality simulation of the input facial 

image, however they are unable to generate the 

expressions not shown by the image and unable 

to model parts not existing in the source image, 

such as the teeth when the mouth is closed. 

Moreover, it is difficult to acquire sufficient 3D 

face datasets for those methods requiring the 

network training. 

2.2 Vision-based methods 

Generative Adversarial Networks (GAN) does a 

creative work on realistic fake image generation 

and opens a door to facial attribute editing [27] 

[28][29][30].  GAN based facial attribute 

editing approaches have been proposed for 

unpaired image-to-image translation 

[31][8][9][10][11]. The attributes include 

gender, age, face color and facial expression 

[32][33][7]. However, these approaches depict 

expressions as a discrete emotion category thus 

fail to simulate continuous expression 

animation.  

To tackle the limitation, an unsupervised 

continuous facial expression generating 

 

Figure 3: The overview of our approach. Firstly, the latent code 𝑧𝑥 of the facial image 𝐼𝑥  is encoded through iteration 

with the well-trained StyleGAN generator g(z). Secondly, the latent set 𝑍  are generated in the latent space based on the 

specified facial expression descriptor 𝐸𝑦 and the AU boundaries set 𝐵. Lastly, the set of expressive latent codes is fed into 

the generator g(z) to produce the facial expression animation A. 



approach based on GAN and AUs was proposed 

[4]. While it requires only a single face image, 

user must recognize the AU of the face’s 

expression and provide its intensity, which is 

challenging for ordinary users.  

 

To address the challenge, we exploit the 

operators of latent code in GAN network, which 

gives us two unique features compared with [4]. 

One is our framework does not require the AU 

occurrence vector of the input facial; the other 

is we use the well-trained StyleGAN generator 

to encode and decode the latent code without 

requiring facial images in dataset be labelled 

with AU vector for the training of generator and 

discriminator network.  

3. Methodology 

3.1 Facial expression transfer 

Automatic facial expression transfer is a very 

challenged task in facial animation, whilst it is 

much essential for delicate emotion 

understanding. The conventional seven basic 

expressions cannot depict all real actions. In this 

work, we propose a unified approach to animate 

facial expression animation through AUs 

transfer in the latent space. We embed an 

expression, which combined by AUs, into the 

facial image unsupervised. The pipeline of our 

approach is illustrated in Fig.3.  

The input of the pipeline includes a facial image 

and an expression descriptor represented by a 

vector of AU intensities from 0 to 1. The 

expression descriptor is transmitted to the input 

facial image. The output of the pipeline is the 

facial animation corresponding with the 

expression descriptor. The addition operator of  

latent codes is leveraged for expression transfer, 

and the linear interpolation operator that aligns 

with different AUs latent boundaries is used to 

produce continuous facial expression animation. 

We denote the input RGB facial image as 𝐼𝑥 ∈
ℝ𝑊×𝐻×3  and the output RGB facial image as 

𝐼𝑦 ∈ ℝ
𝑊×𝐻×3  , both with 𝑊  width and 𝐻 

height. 𝐼𝑦 , which is from the same person as 𝐼𝑥, 

couples with the deterministic expression 

descriptor.   𝐼𝑥  of an arbitrary expression is 

provided by the user who is required to 

recognize the AU of the expression.  

The pipeline consists of three main modules: 

latent code encoding, facial expression fitting 

and AU boundary building. 

The conventional latent code encoding methods 

[34][35], which reverse the GAN generator 

process by iterating latent codes through to 

reduce the loss between the generated image 

and the ground truth image, are  time-

consuming and unstable because of the random 

initialization and pixel-wised loss function 

which drag down the convergence of the 

iteration. To address the issue, we initialize the 

latent code with the VGG full connect feature of 

the image. For the loss function we use the norm 

distance of VGG’s full connected layer feature 

between the generated image and ground truth 

image. This improves the accuracy and 

efficiency of extracting image latent code. The 

latent code of 𝐼𝑥 is denoted as 𝑧𝑥, as illustrated 

in Fig. 3.  

Facial expression fitting in latent space is the 

most important part in our pipeline. We bridge 

𝑧𝑥  and 𝑧𝑦  with the expression descriptor 𝐸𝑦 =

[𝑒1, … , 𝑒𝑚]  under our fitting approach which is 

described in the next two sections, where 𝑧𝑦 is 

the latent code of the target facial image,  𝑒𝑖 ∈
[0,1] is the normalized AU boundary distances 

and 𝑚 is the number of AUs. 

Based on the observation that linear subspace 

aligns with different facial AUs emerging in the 

latent space and continuous facial expression 

variation corresponding to linear latent code 

changing, we generate the facial expression 

animation through the linear interpolation of 

latent code. 𝐷  in Fig. 3 indicates the 

interpolation coefficients of the latent code 

transformation to simulate the intensity of the 

expressions. The output 𝐴  represents the 

continuous facial expressions contained in 

output animation which is transferred from the 

input facial image.  

It has been widely observed that the facial image 

and its style can be disentangled in latent space 

[15]. There exists a hyperplane in the latent 

space between two semantic attributes [36]. 

Therefore, we can generate the latent codes of 

AU classification boundaries for facial 

expression animation.  We define 𝐵 =
[𝑏1, … , 𝑏𝑚] as the set of  AUs boundaries in 

latent space, where 𝑏𝑖 is a unit normal vector to 

classify the hyperplane of the 𝑖𝑡ℎ  action unit. 

The boundary set specify the semantic range of 



the AUs in latent space. The interpolation of 

expression in the boundary norm direction 

smooths the animation. 

3.2 Latent code encoding 

The latent code encoding is an essential module 

in our approach which can be formulated as the 

function 𝑔−1: 𝐼 → 𝑧 , where 𝑔−1  is an inverse 

process of GAN generating function, 𝐼 denotes 

facial image, and 𝑧 is the latent code of 𝐼 . Since 

it is impossible to deduce an inverse algebraic 

formula, we tackle it through a learning network. 

The learning network updates initial latent code 

depending on loss function under the feature 

distance from the generated image to the source 

image. The conventional methods [34][35] only 

consider the random initial latent code and 

pixel-wised image distance loss function. The 

convergence of the network is very slow and 

unstable. To tackle the issues, we introduce a 

deep convolution based loss function and initial 

latent code generating approach as illustrated in 

Fig.4.  

Firstly, the last full connected layer with 1000-

dimension feature map of VGG-16 is leveraged 

as the feature descriptor of images. The L1-

norm distance between two feature descriptors 

of the generated image and the source image is 

exploited as the loss function:  

ℒ(z, I) = 𝐿1(𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑔(𝑧)), 𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝐼))  (1) 

 𝐿1  stands for the norm distance between the 

features. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒(⋅)  denotes the feature 

computed by the last full connected layer of 

VGG-16 network. 𝑔(⋅)  represents the 

StyleGAN generator which operates on the 

latent code z to synthesize the generated image. 

This loss function has improved the 

convergence rate and more robust than pixel-to-

pixel distance loss function, as demonstrated in 

our experiments.  

Secondly, we bridge the source image with its 

initial latent code in Fig.4 through a deep 

convolution, by choosing a specific initial latent 

code instead of using a random value: 𝑧0 =
𝑣(𝐼), where 𝑧0 represents the initial latent code 

and 𝑣(⋅) denotes the trained convolution model.  

Therefore, the training dataset with pair data 

{𝑧𝑚, 𝐼𝑚}𝑚=1
𝑀 is needed, where 𝑧𝑚  is the 𝑚𝑡ℎ 

latent code, 𝐼𝑚  is the 𝑚𝑡ℎ  image and 𝑀 is the 

number of  data pairs. The random latent codes 

are fed into the generator, which synthesises 

images. The pair data are then used on model 

parameters training. The specified initial latent 

code has reduced the convergence time 

enormously.   

3.3 Facial action units transfer 

In this section we aim to find out the boundary 

hyperplane between different AUs in the latent 

space. We use Supported Vector Machine 

(SVM) to classify the latent codes from the 

neutral images to AU images and obtain the 

classification boundaries of each AU categories. 

Through the AU latent codes boundary, we can 

attach the AU attribute to a facial image. For the 

boundary hyperplane 𝑏 between the latent codes 

with an AU characteristic and the neutral facial 

image latent codes, we define e = 𝑑(𝑏, 𝑧) as the 

distance from the boundary to an arbitrary latent 

code 𝑧  as illustrated in Fig.5. The distance is 

along the normal of the boundary. 𝑛 is the unit 

normal of the boundary.  Note that, e is not the 

real distance since it can be negative. e  is 

positive when 𝑧 has the AU characteristic with 

the same direction with 𝑛 . And e  will be 

negative when 𝑧 is to neutral which is on the 

opposite side of the boundary.  

The vector addition operator can be used for 

expression transfer [31] although simply adding 

facial expression latent code to neutral facial 

latent code directly is barely satisfactory [31]. 

Thanks to the AU boundaries, the vector 

addition operator works effectively for AU 

transfer.  To obtain a latent code with AU 

characteristic, we only need to add the distance 

from the boundary to the latent code: 

𝑓(𝑧) = 𝑧 + 𝑑(𝑏, 𝑧) ∙ 𝑏     (2) 

where 𝑓(𝑧) holds the same facial with 𝑧 except 

for the additional AU characteristic. The AU 

expression intensity is determined by 𝑑, and 𝑏 

is the AU boundary vector.  The latent code 

 

Figure 4: The overview of latent code encoding.  The 

framework iterates its latent code with the change of the loss 

distance between features. The initial latent code comes from 

the well-trained deep convolutional network feature.  



transferring aligning with the boundary 𝑏 

makes the expression transformation naturally 

and gives rise to a further smooth animation 

interpolation. 

3.4 Facial animation synthesis 

Facial expression transfer is to learn a mapping 

𝒯: 𝐼𝑥  
     𝐸𝑦      
→     𝐼𝑦  from the facial image 𝐼𝑥  to 𝐼𝑦 

with the expression 𝐸𝑦 . 𝐼𝑦  is the output of 𝐼𝑥 

with addition of the expression.  

According to Rameen Abdal et al. [31], the style 

of image can be embedded in latent space for 

style transfer, including facial expressions. 

Hence the mapping from 𝐼𝑥  to 𝐼𝑦  can be 

translated as ℱ: 𝑧𝑥  
     𝐸𝑦      
→     𝑧𝑦 , where 𝑧𝑥 =

𝑔−1(𝐼𝑥) is the reverse GAN image generated 

process (detailed in the section 3.2), and 𝐼𝑦 =

𝑔(𝑧𝑦)  denotes the image generator function 

with the well-trained StyleGAN.  

𝐸𝑦 = [𝑒1, … , 𝑒𝑚]
𝑇  is the expression descriptor 

which indicates the vector of all AUs expression 

distances from the boundaries in the latent space, 

and 𝑚 is the number of AUs. The output latent 

code 𝑧𝑦  with expression can be obtained by 

input latent code 𝑧𝑥  under the following 

function𝑓𝐵: 

𝑧𝑦 = 𝑓𝐵(𝑧𝑥) = 𝑧𝑥 + 𝐸𝑦
𝑇B       (3) 

where B = [𝑏1, … , 𝑏𝑚] is the matrix made up by 

all boundaries.  

The generator network can be used to generate 

the output expression facial image 𝐼𝑦 from the 

output latent code 𝑧𝑦, which is synthesized by 

the latent code of input image 𝐼𝑥  and the 

expression descriptor. We illustrate it with the 

following function: 

𝐼𝑦 = 𝑔(𝑓𝐵(𝑔
−1(𝐼𝑥))) = 𝑔(𝑧𝑥 + 𝐸𝑦

𝑇B)     (4) 

To generate facial expression animation, we 

apply linear interpolation to simulate the 

expression changing with different intensities. 

When two latent codes are linearly interpolated, 

the expression contained in them changes 

gradually and the appearance of the 

corresponding images changes continuously. 

 

𝑍 = ℎ𝐷(𝑓𝐵(𝑧𝑥)) = 𝐷(𝑧𝑥 + 𝐸𝑦
𝑇 B)     (5) 

where D = [𝜆1, … , 𝜆𝑘]
𝑇  indicates the linear 

coefficients of expression interpolation. 𝑘 is the 

number of generated expression latent codes.  

𝑍 = [𝑧1, … , 𝑧𝑘]  contains all generated latent 

codes. D  controls the frame frequency of the 

expression animation. 

From the set of latent codes, we can generate the 

facial expression animation with pre-trained 

GAN network: 

𝐴 = 𝑔(ℎ𝐷(𝑓𝐵(𝑔
−1(𝐼𝑥))))       (6) 

Since the expression is combined with each AU 

boundary distance along boundary normal 

vector, the expression transfer path is as natural 

as the real expression animation. 

4. Experiments 

In this section we report and visualize the results 

of 3 experiments: facial image encoding, facial 

AU transfer and facial animation. 

4.1 Experimental settings 

Dataset: The images are sampled from Denver 

Intensity of Spontaneous Facial Action database 

(DISFA) [37] which spontaneous emotion facial 

expressions were recorded while the subjects 

were watching YouTube videos. Twelve AUs 

were coded manually in DISFA. They are AU1, 

AU2, AU4, AU5, AU6, AU9, AU12, AU15, 

AU17, AU20, AU25, and AU26. There are only 

a few samples with intensity 5, despite it is the 

   

Figure 5: The distribution of different AU latent codes. 
The boundary 𝑏  is represented as red line, which is a 

separate hyperplane between the latent codes with an AU 

characteristic (yellow rectangles) and that of the neutral 

facial image (green circles). 𝑛  is the unit normal of the 

boundary represented as red arrow.  𝑑(𝑏, 𝑧) represents the 

distance from boundary to an arbitrary facial image with 

latent code 𝑧. 



highest intensity with the best AU 

representation, hence we sample the facial 

images with 4 and 5 AU intensity in DISFA. 

Network setting: In our model, the network of 

StyleGAN is used twice. The first is for latent 

code encoding. The generator network [15] is 

applied to generate image from latent code 

which is updated under the loss. The VGG 

network is also used in this stage to obtain the 

initial latent code and to calculate loss together 

with the generator network. Both networks are 

well-trained with CelebA-HQ [38] dataset and 

ImageNet [39] dataset, so we do not need to take 

time to train them. The second time is in the last 

stage of our framework. The synthesized latent 

code is fed into the well-trained generator 

network to produce facial images with 

expression. 

In StyleGAN, the initial latent space goes 

through a fully connected neutral network to the 

intermediate latent space which is the input of 

the generator. An important insight from [31] is 

that it is not easily possible to embed the 

expression attribute into initial latent space or 

intermediate latent space. Thus, the enhanced 

intermediate space becomes a good choice for 

our approach which is a concatenation of 18 

different 512-dimensional intermediate latent 

vectors.  

4.2 Encoding experiment 

In this experiment, we evaluate our approach’s 

performance on latent code encoding, and 

compare it with the random initialization 

approach [34]. 

As showed in Fig.6, our approach has a smaller 

initial loss and faster convergence rate than the 

 

Figure 7: The comparison of our latent code encoding result with that from the random initialization approach 

[34]. The number on the top of an image is the iteration times on generating the latent code for the image. 

 

Figure 6: The convergence of our latent code 

generating process.  

 

Figure 8: The visualization of latent code encoding. The first column is original images. The subsquent columns are 

the images generated by the initial latent code obtained by the VGG features to ensure quick convergence. The last column 

is the images generated with the final latent codes. On the tops and the right-most are the iteration times.  



random initial code approach, thanks to the 

utilization of the VGG full connect feature to 

initialize the latent code. In the experiment we 

found that in most cases the iteration for our 

approach to reach the threshold was no more 

than  29 = 512 times. In fact, as seen in Fig. 7, 

the generated images are very similar to the 

original images at the 16 times of iteration, 

which has demonstrated the quick convergence 

of our approach. On the contrary, the random 

initial code approach cannot converge even at 

512 iterations. Fig. 8 shows some more 

encoding visualization results achieved using 

our approach. Again, the quick convergence is 

clearly demonstrated. 

4.3 AU transfer and animation experiments 

In this section, we verify our animation 

approach through two experiments: single AU 

transfer interpolation and combined AU 

interpolation.  

In Fig. 9, we demonstrate the AUs transfer 

animation. Each row is the animation images 

under the linear interpolation.  

To experiment with different AUs, we chose 

AU4 and AU5 mainly happening on upper face, 

AU6 mainly happening on middle face, AU12 

and AU25 mainly happening on lower face. It 

can be seen from Fig. 9 that our approach 

 

Figure 10: Facial expressions interpolation results of the discrete facial expression with the specified AU 

combination. 

 

Figure 9: The AU transfer animation. Each row is the animation images with a specified AU transfer. AU4 indicates 

brown lower. AU5 indicates upper lid raising. AU6 indicates cheek raising. AU12 indicates lip corner pulling. AU25 

indicates lips parting. 



achieves better interpolation for AUs in AU4, 

AU12 and AU25, but less ideal for those in AU4 

and AU6. We attribute it to the insufficient 

subject independent AU data in DISFA of these 

AUs. This is a part of limitations we will 

investigate in the future.  

In Fig. 1, we demonstrate the compound AUs 

animations with the expression descriptor 

[0,0,0,0,1,0,1,0,0,0,1,0] to simulate the happy 

expression. It includes 12 AU occurrence 

descriptions which is similar to DISFA database 

[37] and those illustrated in Fig.2 by Ekman. In 

this expression descriptor, AU6 which indicates 

cheek raising is set as 1, and AU12 which 

indicates lip corner pulling is set as 1, and AU25 

which indicates lips parting is set as 1, and the 

others are all set as 0 which means they have 

never happened on the animations.  

Fig. 10 shows more animation results of the 

facial expressions. The results have 

demonstrated the effectiveness of our approach 

on generating high quality of facial expression 

animation with AU transfers. 

5. Conclusion 

In this paper, we proposed a framework to 

animate the facial expressions. Our framework 

is able to generate continuous facial expressions 

unsupervised, and also deal with convenient 

manipulation. The input of our approach is a 

facial image and an AU vector which transfers 

to the face in the input image. Our approach 

used the well-trained network thus saves time 

on training. The AU translation is done in the 

latent space instead of image space so that we 

can uncouple the semantic attributes containing 

AU feature in the latent space. The experiment 

results have demonstrated the high performance 

and effectiveness of our proposed approach. 
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